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Abstract

Motivated by theoretical considerations involving the existence of
extra compact dimensions of space, mostly developed to solve the
hierarchy problem, we explore the possibility to extend our 4D space-
time with more spatial dimensions. After an introduction into the math-
ematics of extra dimensional physics, we examine the corrections to
Newton’s Gravitational law, inspired by this extra dimensional physics.
These deviations can be described by Yukawa-type corrections. We
discuss constraints placed on these corrections from recent short-
range gravity experiments and theoretical constraints that arise from
astrophysics.
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Preface

Over the last century the hectic world of theoretical physics has flourished
like never before. The discovery of special relativity and the development
of quantum mechanics paved the way for a chain of new theoretical break-
troughs and discoveries. In a relatively short period of time, theories grew
to give very precise descriptions of not only the world around us, but also
the universe at scales that are unimaginable small or astronomically big.

One of the most recent discoveries in this ever expanding web of theoreti-
cal physics is string theory. Without getting into too much detail about this
promising young theory, we will explore one of its features in this article:
extra dimensions. To be more precise, we will explore some of the possi-
bilities extra dimensions have to offer, but most of all: the constraints that
restrict their existence.

This article was created as a part of the second year project for physics
students at the University of Amsterdam (UvA). Our project group originally
consisted out of six second year students. Together we worked through a
couple of exercise sets that made us calculate and fully grasp every step
mentioned in sections 2 - 5 and parts of section 6. These first couple of
sections will be more or less the same in their and our report, as we were
first studying as a group of six. We would like to thank them for their help on
these sections. After the introduction we were divided into two groups. One
group went on to study another fascinating phenomena concerning extra
dimensions; the possibility to create miniature black holes in particle ac-
celerators. We devoted this spring to the study of short-range gravity and
indications that this subject can give us for the existence of extra dimen-
sions.

We want to express our deep gratitude to Nick Jones, our project leader,
for his patience, devotion and his ever clear explanations.
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1 Introduction

Before we begin our journey through the physics of higher dimensions, we
should make some things clear. To begin with: what do we mean with a
dimension?

You can define the number of dimensions as the number of independent
directions along which you can travel. When we look around us, we see
one direction in front of us, one aside of us and one above. We count three
directions and the conclusion is rapidly drawn that we must live in three di-
mensions. You can also define the number of dimensions as the (precise)
number of coordinates you need to completely pin down a point in space.
Mathematicians use in this context the notation (x, y, z) and add a new
symbol for every new dimension. We can visualize the three dimensions
we just counted by three coordinate axes. One extra dimension simply re-
quires adding another axis, independent of the first three axis. This created
4D coordinate system may be hard to draw, but must not be hard to imag-
ine. When the extra dimensions come along we better stop visualizing and
continue with words and equations.

Everything around us, since the day we were born, suggests that we are
living in three spatial dimensions. This state of mind remains for almost
every person on earth. A small group, who is introduced to special rel-
ativity, discovers the combination of our three dimensions of space with
one dimension of time, forming the space-time continuum. In this construct
space and time become inseparable. This group of privileged people is of-
fered time as the 4th dimension. Mathematically speaking this means that
you need four coordinates to describe an event in space-time. Now we are
getting to the even smaller crowd of people who are considering even more
spatial dimensions. This last gang consists of well educated people, most
of them physicists. These are normally not the kind of folks who would be-
lieve in science fiction. What has gotten into them? Why seriously think
about extra dimensions that you cannot even see?

First we have to note that not having seen another dimension does not
mean that there is none. In addition, no physical theory states that there
must be only three dimensions of space. Still, this does not explain why
we would go through a whole lot of trouble working out the mathematics
in a more dimensional world. The best motivation comes from the search
for the holy grail of physics: unification. Our heavyweight theory of today
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is the standard model. This theory describes three out of four fundamental
forces: the strong, weak and electromagnetic forces. However the standard
model is not a complete theory. The theory does not include the fourth fun-
damental force: gravity.

To give an accurate description of gravity and how it behaves, we have to
turn to Einstein’s general relativity. The problem is that this theory breaks
down at very short distances due to quantum mechanical effects. In addi-
tion, relativity is uncapable to describe all of the other forces. The unification
of all the fundamental forces into one theory is the holy grail of physics: the
fusion of Einstein’s general relativity, with the standard model. The only se-
rious candidate that can make this dream come true is string theory. In this
model of theoretical physics, particles and forces are presented as tiny ex-
tended object: strings. It appears that string theory can only be consistent
if there are up to seven additional spatial dimensions. [1]

But surely these extra dimensions cannot be of any shape or size? What
are the constraints that we have to put on extra dimensions so that their
existence does not contradict experimental evidence? The main focus of
this article will be on the bounds that have to be put on extra dimensions,
in order for them to stay consistent with astrological observations, experi-
ments and theoretical frameworks.

In order to explain how these bounds can be obtained by experiment, we
first have to explore the mathematical environment of higher dimensional
physics to get an idea of what to measure. First we will discover how New-
tonian gravity behaves in arbitrary number of dimensions. Then, in sections
3 and 4 we will introduce compactification, the idea that the additional spa-
tial dimensions are wrapped into a very small volume, and we will work out
the Newtonian gravitational potential in this new compactified space-time
continuum. After this we turn to the hierarchy problem, which is believed to
be solved if we assume extra dimensions. This will give a good impression
on the consequences that extra dimensions have to our four-dimensional
world. Finally, we turn to the experimental part of this article. We will con-
sider various experiments, both laboratory work and astrophysical observa-
tions. They all have one thing in common: they restrict the size of the extra
dimensions. At the end we will make a definite conclusion that will clearly
show the conditions under which extra dimensions can exist.
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2 Newton’s law of Gravitation in more than 4D

From the preceding section we came up with the why of our extra dimen-
sions quest. The next step we are going to take is looking at physics in a
world with more spatial dimensions than the three we are used to in every-
day life.

Let’s consider Newton’s gravitational force law. This icon of classical physics
tells us how the gravitational force depends on the distance, r, between two
massive objects m and M :

F (r) =
GNmM

r2
(1)

with GN the gravitational proportionality constant.

Every grown-up multidimensional theory which includes gravity should re-
produce this formula. This will form a check point along the way. The man-
ner in which this inverse square law depends on distance is strongly linked
with the number of spatial dimensions. This number tells us how gravity
diffuses as it spreads in space. Before we adjust our formula to more than
three spatial dimensions it might be nice to have some picture of how this
spreading takes place.

As a descriptive explanation we picture the problem of watering a plant in
a garden. We distinguish between giving the plant the water through a
nozzle or through a sprinkler. In figure 1 we can see the differences be-
tween the two methods. When we use the spout, all the water will end up

Figure 1: The amount of water delivered by the sprinkler is less than the
amount delivered by the nozzle. (Figure from page 44 of [1])



2 NEWTON’S LAW OF GRAVITATION IN MORE THAN 4D 5

Figure 2: The same number of field lines intersect a sphere of any radius
(Figure from page 45 of [1])

on the plant, whereas using the sprinkler the water is spread. Accordingly
not every drop will reach the plant. Besides that, the distance between the
sprinkler and the plant does matter as well. With the nozzle this is not the
case. The importance of this illustration is to recognize the fundamental
distinction between the two watering methods, that is, jumping to a higher
dimension. The spout only gives water to a point (one dimension), other
than the sprinkler, which distributes the water on to a surface (two dimen-
sions). In general we can say that anything that is spread in more than one
direction will have a lower impact on objects that are farther away. Similarly,
gravity will spread more quickly with increasing distance.

We will represent the strength of gravity by field lines (in analogy with the
sprinkler: the water flux). The line-density indicates the strength of the grav-
itational force at a given point. Because of the fact that gravity attracts all
the surrounding mass isotropically, the field lines will go radially outwards.
Therefore, as you can see from figure 2, the same number of field lines will
intersect a sphere of any radius and the field lines become more diffuse
along the way. Due to the fact that the fixed number of gravitational field
lines are spread over a sphere’s surface, we can conclude that the gravita-
tional flux has to decrease with the radius squared (see page 42 - 46 of [1]).

The mathematical description of the above is given by Gauss’ law, which,
in a gravitational field, gives the relation between the gravitational flux flow-
ing out of a closed surface and the mass enclosed by this surface. We
will use Gauss’ law to derive Newton’s law of gravitation in more than four
dimensions (we are considering space-time):∫

surface

~g · d~S = −4πGNM (2)
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where, ~g, is the acceleration due to gravity, caused by a point mass, M . The
integral is taken over any surface which completely surrounds the mass.

To use this law we have to realize a few things. First we choose the surface
around the point mass to be a sphere. Secondly, d~S is a unit vector pointing
radially out of this sphere, whereas the direction of ~g is the negative radial
direction and thus they are antiparallel. Now the integral becomes easy to
solve, because we can pull out g (it has the same value everywhere on the
surface and additionally we can work with the norm) and the integral is just
the surface area of a sphere. Hence,

−g

∫
surface

dS = −g · 4πr2 = −4πGNM (3)

To get equation (1) all there is left to do is substitute Newton’s second law
F = m · a with g as a and we obtain the desired result.

We are interested in expanding this relation to more dimensions. Assuming
that (2) holds for more than three dimensions, we can easily rewrite (1) for
d dimensions in terms of the volume of a (d− 1)-dimensional sphere (note:
(d− 1)-sphere’s live in d dimensions).
Further, if (2) holds in d dimensions, than (3) must hold as well. For 3
dimensions the integral on the left was just the surface area of a sphere,
however now that we are in d dimensions it becomes the surface area of a
(d−1)-sphere: Vd−1(r) (We shall refer to this as their “volume”). We obtain,

gVd−1(r) = 4πGNM ⇒ F =
4πGNmM

Vd−1(r)
(4)

The last hurdle we have to take in order to produce Newtonian gravity in d
dimensions is evaluating the volume of a (d− 1)-dimensional sphere.

2.1 The ”volume” of a (d− 1)-dimensional sphere

Several times we were confronted with the surface or ”volume” of a hyper-
sphere. Let’s look at this concept more precisely. A point in a d-dimensional
Euclidean space is represented by (x1, x2, . . . xd). The surface of a d-
dimensional sphere of radius R is then defined by the equation:

x2
1 + x2

2 + . . . + x2
d+1 = R2. (5)
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For a 0-dimensional sphere (5) reads x2
1 = R2, so x1 = ±R. The volume

of a 0-dimensional sphere consists of two points at +R and −R, living in a
1-dimensional world (we will not evaluate the “volume” just yet, but we shall
see later on that it is 2).

A 1-dimensional sphere is given by the equation x2
1 + x2

2 = R2. This is a
circle in two dimensions and its volume can be obtained by integrating a
infinitesimal bit of the circle’s circumference Rdφ over the entire circle:

V1 =
∫ 2π

0
Rdφ = 2πR (6)

The 2-dimensional sphere is what we commonly hold for a sphere and its
surface is given by x2

1+x2
2+x2

3 = R2. The volume of this sphere can also be
obtained by integration. Only one more variable is needed, because there
is one more dimension in this problem. We must integrate the infinitesimal
bit R sin(θ)dθ over half a circle (the other integral will take it around the
whole sphere). We obtain:

V2 =
∫ 2π

0
Rdφ

∫ π

0
R sin(θ)dθ = 4πR2 (7)

From all this we can make the generalization that the volume of a (d − 1)-
sphere must depend on r(d−1). Moreover from (4) we see that the gravita-
tional force F must depend on r−(d−1).
We can ask ourselves how the preceding is applied to the volumes of
spheres with dimensions higher than 2? We will answer this by deriving
a formula for Vd−1(r) in order to complete (4). To do this we use a trick. We
will evaluate the integral I given by:

I =
∫

all space

ddr e−r2

in two ways; in Cartesian coordinates and in polar coordinates.
In Cartesian coordinates we know that r2 = x2

1 + x2
2 + . . . + x2

d. Since the
integral must be over all space, which is from −∞ to +∞ for every variable
xi with 1 ≤ i ≤ d, the integral I becomes:

I =
∫ +∞

−∞
dx1dx2 . . . dxd e−(x2

1+x2
2+...+x2

d) (8)
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This is the known integral
∫∞
−∞ dxe−x2

=
√

π in d dimensions. Hence,

I =
√

π
d = π

d
2 .

Now we will look at the problem in polar coordinates. To evaluate the inte-
gral over all space is the same as taking the volume of a (d− 1)-sphere as
a function of r and integrating that over all r′s (from 0 to ∞).

I =
∫ ∞

0
dr e−r2

Vd−1(r) (9)

We already know how Vd−1(r) depends on r and d (quantitatively: Vd−1(r) =
c · rd−1, where c is a constant). We can substitute this into the equation
above.

I =
∫ ∞

0
dr e−r2

crd−1 (10)

We can solve this in terms of the Gamma function:

Γ(x) ≡
∫ ∞

0
tx−1e−tdt.

if we substitute t = r2, we obtain

I =
c

2

∫ ∞

0
dt e−tt

d
2
−1 (11)

(here we use that if t = r2, then dr = dt
2r and r = t

1
2 ). The integral is just

the Gamma function for x = d
2 and we already know from the Cartesian

coordinates what the answer should be.

I =
c

2
Γ(d/2) = π

d
2 (12)

This can be solved for c and that gives us a result for Vd−1:

Vd−1(r) =
2π

d
2

Γ(d
2)

rd−1. (13)

We can check this equation for d = 1, 2, 3 (remember: Γ(n) = (n−1)!, when
n is an integer, Γ(1/2) =

√
π and Γ(3/2) =

√
π/2). We find the same re-

sults we ran into earlier and now we see why the volume of a 0-dimensional
sphere equals 2. In the rest of the article we will be running into this ex-
pression occasionally, but then we will refer to the volume of a unit sphere,
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which we will also call Vd−1. So from here we will drop the r-dependence.

We have almost achieved our goal. We can substitute our expression
for Vd−1(r) in equation (4) to end up with the expression for F in a d-
dimensional space.

F =
2πGNmMΓ(d

2)

π
d
2 rd−1

(14)

2.2 An application: Planetary orbits in higher dimensions

With the expression for the gravitational force in more dimensions, which
we obtained in the preceding section, we can check if there can be sta-
ble planetary orbits in higher dimensions. To do so, we consider the total
energy of the planet:

E =
1
2
mv2 + V (r), (15)

where the gravitational potential V (r) is a function of r and alters when
we change the number of spatial dimensions. By looking at the shape
of the potential, we can draw conclusions about the stability of planetary
orbits in higher dimensions. We can evaluate the potential by integrating
the gravitational force:

V (r) = −
∫ ∞

r
F (r)dr =

{
k 1

(2−d)rd−2 d 6= 2
k ln r d = 2

(16)

where k is a constant which is different for different dimensions:

k = 2πGNmMΓ( d
2
)

π
d
2

≥ 0

Because we are considering planetary orbits, we can be satisfied with a
2-dimensional description of the orbit. We can therefore write ~r and ~v in
terms of 2-dimensional polar coordinates (r̂, θ̂). ~r becomes rr̂, while ~v (the
time derivative of ~r) becomes ṙr̂ + rθ̇θ̂.
The angular momentum of the system must be constant, because we are
looking at an orbit.

~l = ~r × ~p = rr̂ ×m(ṙr̂ + rθ̇θ̂) (17)
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l = 0 + mr2θ̇ ⇒ θ̇ =
l

mr2
. (18)

If we substitute the potential and ~v = (ṙr̂ + rθ̇θ̂) in (15) we get the expres-
sion:

E =
1
2
m(ṙr̂ + rθ̇θ̂)2 +

{
k 1

(2−d)rd−2 d 6= 2
k ln r d = 2

(19)

working out the quadratic factor and substituting(18) for θ̇ we obtain:

E =
1
2
mṙ2 +

l2

2mr2
+

{
k 1

(2−d)rd−2 d 6= 2
k ln r d = 2

(20)

We have reduced the problem to a one-dimensional situation (there is only
r-dependance) and we have split (20) in two parts; one dependent of ṙ,
associated with the kinetic energy of the system and one dependent on r,
associated with the potential of the system. In order to see if a planetary
orbit could be stable, we can look at the potential of the system in different
dimensions.

V (r) =
l2

2mr2
+

{
k 1

(2−d)rd−2 d 6= 2
k ln r d = 2

(21)

We plotted the curve for d = 3 and d = 5, they are shown in figure 3. This
potential can only have a minimum value for d − 1 < 3. For higher dimen-
sions than three there is either no extreme value (for d = 4) or a maximum,
which means that planetary orbits are not stable in higher dimensions. They

Figure 3: A plot of the gravitational potential for d = 5 and d = 3 at the left,
respectively the right.
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could exist, but the slightest knock would put them out of orbit. The radial
position of the planets can not be stable.

This result should not be to surprising, since we have never seen a devia-
tion to the inverse square law on ordinary distances. We know that New-
ton’s law behaves as 1

r2 so this automatically leads to the conclusion that
d = 3. Also the assumption that the extra dimensions are of infinite size
sounds a little strange. If they were, why would we be uncapable to see
them, or take a walk in them?
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3 Compactification and Kaluza-Klein Reduction

3.1 Compactification

In the preceding sections we came up with some mathematical description
of physics involving more spatial dimensions. Once more we can ask some
questions that already arose in the introduction. How is it possible that the
universe could appear to have only three dimensions of space if the fun-
damental underlying spacetime contains more? Why are they not visible?
And if they are real, do these extra dimensions have any discernible impact
on the world we see?

The idea of extra dimensions was first introduced in 1919 by the Polish
mathematician Theodor Kaluza. He recognized the possibility of extra di-
mensions in Einstein’s theory of relativity. The questions that are bothering
us were the same questions asked then by Einstein. These questions re-
mained unanswered until 1926, when the Swedish mathematician Oskar
Klein shed some light on the case. He provided a reasonable explanation
to these problems, by imagining these extra dimensions to be compacti-
fied, meaning that they are curled up into circles so tiny that we would not
ever suspect their existence (just 10−35m). This concept is now known as
Kaluza-Klein reduction. Thus in the Kaluza-Klein universe space can have
not only extended dimensions like the ones we are familiar with, but also
extremely small curled-up dimensions.

Figure 4: The tight-rope artist can move in one direction, but the spider
can move in two directions along the cord. So the tight-rope appears one-
dimensional for the artist and two-dimensional for the spider
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In this section we will try to get a good idea on how these extra curled-up
dimensions look like and how the physics works out when we assume one
extra dimension to be compactified on a circle. We will see that in this new
space-time, gravity and the Coulomb force can be unified in one expression.

To begin with, how can we imagine space to be curled up? The best way to
make this clear might be by considering the one-dimensional world of the
tight-rope artist. In figure 4 you can see that the tight-rope artist is restricted
to the tight-rope. He can move in only one direction, so the rope appears
1-dimensional to him. However, if we zoom in on the tight-rope, we can see
a little spider crawling along the cord. This spider is confined to the same
rope, but he has two independent directions along which he can travel: he
can move along the length of the cord, or go around it in circles. The same
tight-rope appears two-dimensional to the spider.

This example shows that a universe that has just one extended dimension
to large objects, might look multi-dimensional to small objects. We can
generalize this picture to a universe with more extended dimensions, like
our well know four-dimensional world, which has three extended spatial di-
mensions. This universe might also look more dimensional for very small
objects, because the extra dimensions are curled up. Of course, these
curled-up dimensions do not have to be in the shape of a circle, they can
be any shape you would like to imagine them, as long a they are periodic in
space. For a more detailed look into imagining compact extra dimensions
see chapter 8 of [2].

3.2 KK-modes

Let’s look a bit closer at the Kaluza-Klein compactification, where we as-
sume one extra dimension to be curled-up on a circle of radius R. When we
consider one relativistic particle with mass m in this 5-dimensional world,
the 5-momentum for this particle is given by:

p(5) ≡ (
E

c
, p1, p2, p3, p4). (22)

We know from special relativity that:

p(5) · p(5) = −E2

c2
+ p2

1 + p2
2 + p2

3 + p2
4 = −m2c2. (23)
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Where (p1, p2, p3) = p̃ is the momentum in the three extended dimensions
and p4 is the momentum in the compactified dimension. We can rewrite
this as an equation for the energy of the particle:

E2 = m2c4 + p̃2c2 + p2
4c

2. (24)

When we compare this equation to the equation for the energy in 4D:

E2

c2
= M2c2 + p̃2 (25)

where M is the mass in four dimensions, we see there is an extra term in
equation (23). This means that, since E and c are the same for both 4D en
5D, the mass m in 5D has to be smaller than the mass M in 4D to compen-
sate for the extra factor p2

4.

We can find an explicit expression for p4, using quantum mechanics. The
direction of the particle in the curled-up dimension is periodic over time
(x4 = x4 + 2πR). We therefore consider a particle stuck on a circle. Real-
izing that the particle’s wavefuntion Ψ(x, p) ∝ e

ipx
~ it must be single-valued.

Its wavelength has to fit a whole number of times on this circle. Hence,

e
ip4x4

~ = e
ip4(x4+2πR)

~ (26)

leads to:

p4 =
n~
R

(27)

We see that the momentum in the extra dimensions is proportional to 1
R .

The situation were n = 1 or −1 is called the first Kaluza Klein modes (or
short: KK-mode). From the comparison of (24) and (25) we know that the
KK-modes can be associated with mass. The momentum of the particle in
the curled-up dimension translates to mass in four dimensions.

3.3 Kaluza-Klein reduction

Now we observe two particles in 5D instead of just one. If we take the
5-momenta of the two particles to be p and p′, then the gravitational force
between the particles, when they are at rest in the extended dimensions
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(so p̃ equals zero) and separated by r � R, can be approximated by the
semi-relativistic expression:

F (r) ' GN

c2

p · p′

r2
. (28)

We can rewrite this force by substituting E = Mc2 (with M , the mass in the
extended dimensions), p̃ = 0 and equation (27) in:

p · p′ = −EE′

c2
+ p̃ · p̃′ + p4p

′
4 (29)

so that (28) becomes:

F (r) = −GNM ′M

r2
+

GNnn′~2

c2R2r2
. (30)

In this equation we can identify both Newton’s gravitational force (the first
term) and the Coulomb force (the second term). Notice that the second
term can be both negative and positive (since n can be both as well), which
states that this term can be both attractive and repulsive. To get all the con-
stants right so that the second term is exactly the Coulomb force (which is
given by Fc = qq′

4πε0r2 ), we would have to take n = n′ = 1 for the elementary
charge q and then work out what R must be. It turns out that the size of
the extra dimension must be 1.8 · 10−34 m for the second term in (30) to
represent the Coulomb force!
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4 Gravitational potential in n compactified dimen-
sions

The result we obtained in the last section that combined Newton’s gravity
and Coulombs electromagnetic force in one expression is promising for fur-
ther unification. This provides an excellent motivation for considering the
gravitational potential in more than one compactified dimension.

In section 2.1 en 2.2 we have derived Newton’s gravitational potential in d
spatial dimensions (equation 16):

V (r) = k
1

rd−2
(31)

where k = 2πGNmMΓ( d
2
)

(2−d)π
d
2

. We can express the potential in 4 + n space-

time dimensions as, using G4+n: Newton’s gravitational constant in n + 4
spacetime dimensions:

V (r) = −G4+nmM

rn+1
(32)

We now turn to the question what the gravitational potential would look like,
if the additional n dimensions were compactified on to a circle with radius R.
We can imagine this as we consider a mass M on a cylinder. The length
of the cylinder represents the three unfolded spatial dimensions and the
radius the n compactified dimensions. We can solve the problem using the
method of images (just like the electrodynamic problem of a point charge
on a cylinder).
If we first imagine n to be 1, we can unfold the extra dimension, so to get
an infinite extra dimension, with the mass M repeated every 2πR. Equation
(32) now becomes an infinite sum over all the masses. The distance to the
mass becomes

√
r2 + (b2πR)2, where b is an integer going from −∞ to∞.

Following this reasoning, the potential becomes:

V (r) = −
∞∑

b=−∞

Gn+4mM

[r2 + (b2πR)2]
1
2

(33)

If we generalize this to n compactified dimensions, we get an expression in
terms of n infinite sums:

V (r) = −
∞∑

b1=−∞
· · ·

∞∑
bn=−∞

Gn+4mM

[r2 + (b12πR)2 + · · ·+ (bn2πR)2]
n+1

2

(34)
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In the limit of r � R these sums can be replaced by integrals. This is
because the pieces of 2πR are small in comparison to r, that it can be
approximated as infinitely. Now (34) can be written as:

V (r) = −
∞∫

b1=−∞

· · ·
∞∫

bn=−∞

Gn+4mM

[r2 + (b12πR)2 + · · ·+ (bn2πR)2]
n+1

2

db1 . . . dbn

(35)

To clean up this expression we divide the denominator by r2 and substitute
xi = bi2πR

r to get:

V (r) = −Gn+4mM

r(2πR)n

∞∫
x1=−∞

· · ·
∞∫

xn=−∞

1

(1 + x2
1 + · · ·+ x2

n)
n+1

2

dx1 . . . dxn

(36)

Now we can switch to polar coordinates using the volume of a n− 1 dimen-
sional sphere (Vn−1(ρ)). The integral can be written (We will use ρ for the
radial variable, because we already have a different r in the expression):

V (r) = −Gn+4mM

r(2πR)n

∫ ∞

0
Vn−1(ρ)

1

(1 + ρ2)
n+1

2

dρ (37)

If we now substitute u for ρ2, we can solve this in terms of the Beta function
(from [17]);

B(p + 1, q + 1) =
∫ ∞

0

updu

(1 + u)p+q+2
=

Γ(p + 1)Γ(q + 1)
Γ(p + q + 2)

(38)

Working out the integral and writing the Beta function in terms of Gamma-
functions yields:

V (r) = −Vn−1Gn+4mM

2Σn

1
r

(39)

where Vn is the volume of a n dimensional unit sphere given by (13) and
Σn is the volume of the extra dimensions (in this case Σn = (2πR)n). The
equation looks just like the gravitational force we know in 4D. This is what
we would expect, since we are working in the limit of r � R. We can
acquire an expression for Gn+4 in terms of GN 39. We obtain,

Gn+4 =
2GNΣn

Vn−1
(40)
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If we assume the extra n dimensions to be compactified on a circle, we
obtain the usual inverse square law for distances much greater than the
size of the extra dimensions. However, if we look at distances close to R,
the approximation of a sum by an integral no longer stands. Therefore we
would expect the gravitational force to deviate from Newtonian gravity and
pick up an extra correction term. These are often referred to as Yukawa-
type corrections (see, for instance [6]).

V (r) ∼ 1
r
(1 + αe

−r
λ + . . .) (41)

4.1 The exact gravitational potential for n = 1

If we take n to be 1, we can work out (34), obtaining the exact potential.
We can then check that the expression for the potential satisfies our expec-
tations. If we calculate the limit of r � R we want to find the 1

r potential,
while taking the other limit (R � r) we would expect the potential, derived
in section 2.2 to appear. In the last case we are looking at such small dis-
tances that the extra dimensions appear very large. For n = 1 equation
(34) becomes:

V (r) = −
∞∑

b=−∞

G4+1mM

r2 + (b2πR)2
(42)

Now we divide the denominator by 2πR and use the identity:

∞∑
m=−∞

1
m2 + a2

=
π

a
coth(πa). (43)

to get:

V (r) = −G4+1mM

2rR
coth

(
r

2R

)
(44)

We will first check the limit R � r, so we will need the limit limx↓0 coth x =
2+x2

2x , where we can forget about the quadratic term, because in this case it
would be extremely small.

V (r) = −G4+1mM

r2
(45)

which is exactly what we would expect!



4 GRAVITATIONAL POTENTIAL IN N COMPACTIFIED DIMENSIONS19

Now we use the limit limx→∞ coth x = 1 to get the other limit:

V (r) = −G4+1mM

2Rr
(46)

which is exactly (39) for n = 1.
We have seen that for n = 1 the potential satisfies what we would physically
expect. The exponential power in (41) can be obtained by calculating the
first order of corrections to equation (46). We can calculate this corrections,
by keeping the first correction term of the approximation we made to get
from (44) to (46). To simplify matters, we write

V (r) ∼ 1
r

coth
(

r

2R

)
(47)

When we work out coth and multiply by e
−r
2R we obtain

V (r) ∼ 1
r

(
1 + e

−r
R

1− e
−r
R

)
(48)

In the limit where r � R, the term e
−r
R goes to zero. This is where we made

the approximation (see [18])

V (r) ∼ 1
r
(1 + e

−r
R )(1 + e

−r
R + . . .) (49)

Working out the brackets and omitting the last term leaves us with

V (r) ∼ 1
r
(1 + 2e

−r
R + . . .) (50)

which is essentially the result stated in 41.
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5 Deviations from Newton’s inverse square law

In the preceding section we have derived an expression for the gravitational
potential in n compact dimensions. We have also stated that, looking at the
problem in four dimensions, this leads to a deviation from the 1

r Newtonian
potential for distances close to the size of the extra dimensions. This new
potential is given by:

V (r) ∼ 1
r
(1 + αe

−r
λ ) (51)

This is what we stated in equation (41) (see, for instance [6]).

This equation is very useful for experimental physicists, because it gives
a description of how the gravitational potential would change if there were
compactified extra dimensions. If someone would be able to measure this
deviation from Newton’s law, this would be a strong proof that extra dimen-
sions do in fact exist.

What is the physical interpretation of this deviation? Moreover, why is it an
exponential power, and not some factor of 1

rn+1 as in equation (32)?

To answer the first question is that we just have to look closely at the formula
above. The exponential power tells us that gravity will become stronger at
shorter distances. Here we can see that the parameter α accounts for the
strength of the deviation. It tells you how much stronger it gets. While the
λ parameter tells you at what distance the deviation begins to have effect.
Intuitively, this parameter is related to the size of the extra dimensions, be-
cause the deviation only starts to have effects at distances close to the size
of the extra dimension.

We can try to measure these two parameters in order to put experimental
constraints on the size of the compactified dimensions. High precision short
range measurements of the inverse square law that do not show any devi-
ation from the gravitational force or potential give us strong upper bounds
on α and λ and thereby on the size of the extra dimensions. We can also
get experimental bounds on the size of extra dimensions from astrophysical
constraints, as we will show in section 8.

The rest of this section is devoted to the answer of the second question
mentioned above. We will derive (51) in two ways. First we consider the
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case of n extra dimension compactified on a circle (or torus) as we did in
section 4. This will give us theoretical values for α and λ. Next we will con-
sider the more general case, where the geometry of the extra dimensions
is unknown. Research on this subject is done in [4].

5.1 Deviations from compactification on a n torus

Just like before we consider 4 + n dimensional space-time and we let the
extra n dimensions to be compactified on a circle of radius R. We assume
all the extra dimensions to be of the same size, although it does not change
anything in the derivation if they are not (then you just have to read Ri where
we put R). As shown in section 4 the gravitational potential is given by n
infinite sums (see equation (34)).

Unlike before, now we consider not only the points in the same 4D direction
as the mass M , but we also consider points that have a direction in the
extra dimensions. We write {xi}n

i=1 = x for the direction vector in the extra
dimensions. It is not that hard to see that (34) now becomes:

V (r) = −
∑
b∈Z

Gn+4mM

[r2 +
∑n

i=1(xi − 2πRbi)2]
n+1

2

(52)

(see (2) of [4])where we can consider b = {b1, b2, . . . , bn} to be a vector
in the n-dimensional lattice, that is: every coefficient of b can take every
integer number.

The trick we use to evaluate these sums is called Poisson resummation. It
allows you to rewrite the sum over a periodic function f(nR) with n ∈ Z to
a sum over its Fourier transform f̃ (from [15]).

∞∑
n=−∞

f(nR) =
∞∑

n=−∞

f̃( n
R)

2πR
(53)

We will apply Poisson resummation to our potential in (52) and although
our function is periodic in n directions, the procedure is straightforward.
Realizing that:

f̃(m) =
∫

dny
Gn+4mMe−im·y

[r2 +
∑n

i=1(xi − yi)2]
n+1

2

(54)
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where m = { b1
R , b2

R , · · · , bn
R } and y is a vector in n space (y = {yi}n

i=1). We
see from (53) that our potential becomes:

V (r) = −Gn+4mM

Σn

∑
b∈Z

∫
dny

e−im·y

[r2 +
∑n

i=1(xi − yi)2]
n+1

2

(55)

(see (4) of [4]) This can be evaluated if we shift the y coordinate to y + x
(which is allowed because we integrate over all space) and then change
to polar coordinates. When we change to polar coordinates, we have to
realize that the exponential depends on θ, where θ is the angle between
m and y. This is because its argument hold an inner product between
two vectors in n space. Because the function holds a θ dependance, the
change to polar coordinates is given by:∫

dny =
∫ ∞

0
dρ

∫ π

−π
dθρn−1(sin θ)n−2Vn−2 (56)

with Vn−2 the volume of a (n − 2)-dimensional unit sphere and ρ = |y| =√
y2
1 + . . . + y2

n. It follows that:

V (r) = −Vn−2Gn+4mM

Σn

∑
b∈Z

e−im·x
∫ ∞

0
dρ

ρn−1

[r2 + ρ2]
n+1

2

∫ π

−π
dθe−i|m|ρ cos θ(sin θ)n−2

(57)

Substituting u (and du = sin θdθ) for cos θ and taking the real part gives:

V (r) = −Vn−2Gn+4mM

Σn

∑
b∈Z

e−im·x
∫ ∞

0
dρ

ρn−1

[r2 + ρ2]
n+1

2

∫ 1

−1
du cos(|m|ρu)(1− u2)

n−3
2

(58)

(see (7) of [4]) Note that |m| = ( b21
R2 + b22

R2 + · · · + b2n
R2 ) are the masses of

the KK-modes derived in section 3.2. This equation might seem a handful,
however, by use of the following integrals ( from 8.411(8), 6.565(3) of [14])
it is quite easy to get to the final answer.

Jν(z) =
( z
2)ν

Γ(ν + 1
2)Γ(1

2)

∫ 1

−1
(1− t2)ν− 1

2 cos(zt)dt (59)∫ ∞

0
xν+1(x2 + a2)−ν− 3

2 Jν(bx)dx =
bν√π

2ν+1aeabΓ(ν + 3
2)

(60)
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here Jν is the Bessel function of order ν. After performing the integrals we
find:

V (r) = −G4mM

r

∑
b∈Z

e−r|m|e−im·x (61)

with G4 defined in (40).

At this point we need to remember that we are searching for an expression
for how gravity would behave in 4D, assuming extra toroidal compactified
dimensions. Since all point particles in four-dimensional space-time can be
taken to have x = 0, we get to the four dimensional gravitational potential:

V4(r) = −G4mM

r

∑
b∈Z

e−r|m| (62)

(see (9) of [4]) Obviously, the term with b = 0 results in Newton’s expres-
sion. As stated above, the second term (the one with |b| = 1) can be
associated with the lightest KK-mode. There are 2n of these modes (two
in every extra dimensions, since bi can be either 1 or −1.) and all of them
have mass 1

R . Thus the gravitational potential can be approximated by:

V4(r) = −G4mM

r
(1 + 2n e−r/R) (63)

Here we see that for compactification on a n-torus, we get explicit values of
α and λ in equation (51). Especially nice is the fact that λ = R in this case,
thus the deviations from the 1

r potential are starting to have a noticeable
effect at distances in the order of R. In the case of n = 2 we will show
in section 6.2 that R must be in the order of millimeters. Therefore, sub-
millimeter tests of the inverse square law must be able to strongly bound
the existence of two extra toroidal dimensions.

5.2 Deviations from the 1/r potential in a n-dimensional com-
pact manifold

We have no idea how the extra dimensions would look like, if they exist at
all. It is easy to picture them as being rolled up into a finite size, but for all
we know it might be a very complex geometrical shape. However, without
saying something about the precise geometry of the extra dimensions, we
can still work out an expression for the 4-dimensional potential that gives a
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correction to Newton’s potential.

In the Newtonian limit the 4 + n potential obeys the Poisson equation (this
is of course in 3 + n dimensions, since the Laplacian does not cover time):

∇2
3+nV4+n = (n + 1)Vn+2G4+nMmδ(n+3)(x) (64)

(see (14) of [4])In a flat and uncompactified space, this equation is solved
by (32), but we are looking for an expression for V4+n with n dimensions
on a compact manifold Mn. We do not know the precise geometry of the
n-dimensional compact manifold, but we can still define a set of functions
{Ψm} as eigenfunctions of the Laplacian operator in n dimensions.

∇2
nΨm = −µ2

mΨm (65)

(see (13) of [4])This set is orthogonal:∫
Mn

Ψn(x)Ψ∗
m(x) = δn,m, (66)

(see (11) of [4]) and complete. (n and m are vectors the n-dimensional
lattice, just like b was in the last section.)

Now the trick is to solve equation (64) for V4+n with n dimensions compacti-
fied by separation of variables. We will expand V4+n in terms of the basis of
eigenfunctions of the Laplace operator in the n-dimensional compact man-
ifold, {Ψm}.

V4+n =
∑
m

Φm(r)Ψm(x) (67)

(see (15) of [4]) Note that Φm is only dependent of r. Substituting this in
equation (64) yields for the left hand side:∑

m

[Ψm(x)∇2
3Φm(r) + Φm(r)∇2

nΨm(x)] (68)∑
m

Ψm(x)[∇2
3Φm(r)− µ2

mΦm(r)] (69)

Now we use the orthogonality of {Ψm} by multiplying both sides of (64)
with

∫
Mn Ψ∗

m(x). We obtain:
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∇2
3Φm(r)− µ2

mΦm(r) =
∫
Mn Ψ∗

m(x)(n + 1)Vn+2Gn+4Mmδ(n+3)(x)

= (n + 1)Vn+2Ψ∗
m(0)Gn+4Mmδ(3)(r)

(for the above two lines of equations see (16) of [4])To solve this equation,
you can fill in Φm as a Fourier transform: Φm(r) =

∫
d3kΦ̃m(k) eik·r. The

Fourier transform of the delta function equals one, so we get an expression
of Φ̃m(k).

Φ̃m(k) = −(n + 1)Vn+2Ψ∗
m(0)Gn+4Mm

k2 + µ2
m

(70)

Plugging this back into the definition of the Fourier transform would give us
an expression for Φm(r), we would just have to solve:

Φm(r) = −(n + 1)Vn+2Ψ∗
m(0)Gn+4Mm

∫
d3k

eik·r

k2 + µ2
m

(71)

Once again we can change to polar coordinates and pay attention to the
inner product in the exponential, it will give us a cos θ term. We have looked
up the final integral over k and found for Φm(r) (from 3.723(3) of [14]):

Φm(r) = −VnΨ∗
m(0)Gn+4Mm

2
1
r
e−µmr (72)

(see (17) of [4]) Now equation (67) looks like:

Vn+4 = −VnGn+4Mm

2r

∑
m

Ψ∗
m(0)Ψm(x)e−µmr (73)

(see (18) of [4]) Just like before, we can set x = 0. Also like before, we
would expect some of the exponential powers in the sums to be the same.
Remember that we had a degeneracy of 2n for the first KK-mode in the
case of the n-torus: we could go around the torus in one direction and the
other way around. Consequently, symmetry in the compact manifold Mn

would also lead to some kind of degeneracy. We can change this sum
above to a sum which is only over all the irreducible representations mir

Vn = −GnMm

r

∑
mir

dmire
−µmir r (74)

(see (19) of [4]) We have used the theoretical result that the sum of |Ψmir |2
over all representatives equals dmir/Σn. Now Σn 6= (2πR)n, but it gives the
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volume of the compact manifold Mn. Additionally, dmir is the degeneracy
of each irreducible representation.

This is about as far as it goes without getting into the actual shape of Mn.
However, if you have a nice idea in mind for the shape of your extra dimen-
sions, all you have to do is calculate the eigenvalues of the Laplace operator
µm and its degeneracy dm, and you will know the theoretical values for α
and λ.
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6 Fundamental energy scales and the Hierarchy Prob-
lem

Before we dive into the experimental evidence for constraints on large extra
dimensions, we will take a look at some important energy scales at which
physical processes take place. We will see that the fundamental scale at
which gravity becomes strong is much bigger than the fundamental scale
at which the other forces operate. We will show in section 6.2 how extra di-
mensions can nullify this difference, but first we take a look at these energy
scales and how they are related to length.

6.1 Terminology

To get a good idea of the relation between energy and length, picture the
following. Only particles whose wavefunctions differ over very small scales
will be affected by physical processes taking place at short distance. How-
ever, when we recall the de Broglie relation, particles whose wavefunction
involve short wavelengths also have large momenta. Consequently we can
conclude that you need high momenta, and hence high energies, to be sen-
sitive to the physics of short distances ([1] page 143 ).

Therefore, particle physicists use the term energy scale for the place on the
ladder of energy that indicates the amount of energy they need to probe the
physical processes they want to study. We can convert an energy into a cor-
responding length with the formula E = hc

λ and into mass using E = mc2.
This length we just acquired illustrates the range of the associated force.
The ”ladder of energy” just mentioned is pictured in figure 5 along with the
corresponding length scale. We see that climbing up the ladder in energy,
means climbing down in length.

Now we have had some conceptual thought of energy scales, we should
write down equations. The fundamental units GN , ~ and c can be combined
into a new quantity with units of mass, and another with units of length.
These quantities are called the Planck mass (Mp) and the Planck length
(lp):

Mp ≡
√

~c

GN
= 2.2 · 10−8kg ∼ 1.2 · 1028eV. (75)
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Figure 5: Some important length and energy scales in particle physics.
(Figure from page 136 of [1])

and:

lp ≡
√

~GN

c3
= 1.6 · 10−35m (76)

We see from equation (75) that Newton’s gravitational constant is inversely
proportional to the Planck mass and thus also related in this way to a con-
cept called Planck energy.

In nature there are at least two fundamental energy scales. On the one
hand we have the electroweak energy scale (mEW ∼ 102 GeV ). This is
the scale at which the Standard Model operates, it determines the mass
of the elementary particles and above this scale the symmetry associated
with the Standard Model is spontaneously broken. Current experiments in
particle accelerators are operating around this energy and have found re-
sults verifying the Standard Model with great precision. When the LHC will
become operational in 2007 at CERN we will be able to do experiments
above the weak scale energy.
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On the other hand we have the already mentioned Planck scale energy
(Mp ∼ 1019 GeV ). We saw that Newton’s gravitational constant is in-
versely proportional to Planck energy. Therefore gravity is weak because
the Planck scale energy is large. Moreover the Planck scale energy is the
amount of energy that particles would need to have for gravity to be a strong
force. As told before we can convert an energy scale into a corresponding
length scale, which tells us about the range of the force in question. The
enormous gap (note the 16 orders of magnitude difference in figure5) be-
tween the Plank scale and the electroweak scale bothers a lot of physicists,
and they have called this the hierarchy problem.

The supporters of the Grand Unified Theory like to think of gathering all
physics in one theory. However you can expect particles that experience
similar forces, to be somewhat similar. The enormous desert in between
the two energy scales does not help them much. For example, this gap
gives a huge dissimilarity in the mass of the particles. Therefore many
physicists take a lot of care in solving this mystery.

6.2 Compactified dimensions to the rescue

One possible solution of the hierarchy problem was proposed by Arkani-
Hamed, Dimopoulos and Dvali in [3] (further we will refer to them as ADD).
They propose a model where the weakness of gravity is explained by as-
suming extra compactified spatial dimension. In their reasoning the gravi-
tational and Standard Model interactions become united at the weak scale,
which will then be the only fundamental scale in physics. The Planck scale
would only ”look” large to us, because it can spread into the compactified
dimensions.

Before we take a look at the Planck mass and length in 4 + n dimensions
and see how the Planck mass evolves, we must say something about the
Standard Model forces in 4 + n dimensions. The Standard Model is a the-
ory which works in four dimensions. In order not to mess with the elec-
troweak scale, but to bring down only the Planck scale, we must assume
the Standard Model particles and forces to be confined to our 4-dimensional
world. We can picture them as being stuck to a 4-dimensional membrane
(or ”brane”) that lives in a (4 + n)-dimensional universe. Gravity is not con-
fined to this brane and free to spread in the extra dimensions. This is why
the Planck scale seems much bigger than it is (remember from section 3.2
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that momentum in the extra dimensions translates to additional mass in the
4-dimensional world).

With the above in mind we must go back to the compactified dimensions.
We can generalize the quantities from the beginning of this section to come
up with a Planck length and mass in n dimensions. We already know from
section 4 that Newton’s constant has different units in more dimensions. In
4 dimensions (that is: three spatial and one time dimension) it has units of
m3s−2kg−1. In n + 4 dimensions G4+n has units of mn+3s−2kg−1. You can
easily check that the Planck length now becomes:

lp =
(

~G4+n

c3

) 1
n+3

(77)

Now we can find an expression for the Planck mass in 4D (75), in terms of
the Plank mass in (4 + n) dimensions (M4+n), given by:

M4+n =
(

~n+1

G4+ncn−1

) 1
n+2

(78)

Substituting Gn+4 from (40) in (78) and using (75) works out to be (we will
denote Mp as M4 for the 4 dimensional Planck mass to avoid confusion):

M2
4 =

(
M4+n

)n+2 2Σncn

Vn−1(~n)
(79)

With this result we can work out how large the extra dimensions must be as
a function of the number of extra dimensions, if we know the value of M4+n.
If we rewrite (79), pull out Rn from Σn, use the volume of a unit sphere and
fill in M4 = 1016TeV, which we know from measurements, we get an explicit
formula of R in terms of n and M2+n

4+n :

R =
10

32
n TeV

2
n

M
1+ 2

n
4+n 2 n

√
π

n−1
2 Γ(n+1

2 )
(80)

If we write M
1+ 2

n
4+n in TeV , (80) has dimensions TeV −1. This comes from

the convention to set ~ = c = 1. To express R in meters we use E = 2π~c
λ ,

this gives us:
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R =
1.98

2 n

√
π

n−1
2 Γ(n+1

2 )

10
32
n
−19

M
1+ 2

n
4+n

m (81)

Only n < 7 are the relevant extra dimensions for our purpose, since this
is the maximum known number of extra dimensions still consistent with a
theory on physics in extra dimensions. The factor 1.98

2
n
q

π
n−1

2 Γ(n+1
2

)
can be left

out, since we only want to get an indication of the size of the possible extra
dimensions. Hence,

R ∼ 10
32
n
−19

M
1+ 2

n
4+n

m (82)

Remember that M4+n has to be given in TeV . The first way to put this re-
lation into practice is by assuming M4+n = mEW ≈ 1TeV, as proposed by
ADD. This is the value M4+n should have to solve the hierarchy problem.
With this we can calculate the size of the extra dimensions:

n 1 2 3 4 5 6
R(m) 1013 10−3 10−9 10−11 10−13 10−14

From the table above we can draw some conclusions. For n = 1 we have
a size for the extra dimensions of R ∼ 1013 m implying deviations from
Newtonian gravity over solar system distances, so this case is ruled out.
Gravity is very well studied over this kind of distances. If this deviation
would be true, then we would have noticed this. However, for all n ≥ 2
the corrections to gravity only become noticeable at distances smaller than
those currently probed by experiment. Recent experiments actually allow
us to study gravity at smaller distance scales than ever before. In the next
section we will examine two experiments of this kind. They will help us to
say something about n = 2.
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7 Short-Range Tests of the gravitational inverse square
law

7.1 Gravity measurement

Gravity was the first of the four known fundamental forces to be understood
quantitatively since 1687. Despite this fact, gravity cannot compete in any
way to the detailed study of the other three forces at short distances. There
is an evident lack of experimental data in this range. More concrete, until
recently, nothing could be said about gravity for distances below 1 mm!

In the preceding sections we have brought the weakness of gravity several
times to your attention. The moment you want to carry out an experiment
concerning the strength of gravity at short distances, you walk right into
serious technical difficulties due to this weakness. To illustrate this once
more: in any gravitational experiment the ’cancellation’ of the electromag-
netic interaction between test masses must be at the level of roughly one
part in 1040 to leave any sensitivity to gravity. On short distance scales, lo-
cal charge inhomogeneities and magnetic impurities in the materials of the
experiment quickly become important. A careful analysis of subtle system-
atic effects is therefore crucial for any measurement of gravity at this scale.

Fortunately, experimental physicists like a challenge and came up with sev-
eral ways to tackle this problem. This was not an easy task. The main
reason for giving this subject some serious thought came from the specu-
lations about potential deviations from Newtonian gravity at short distances
as discussed in section 5.2. This adds yet another difficulty, because devia-
tions from something weak must be even weaker. In the following sections
we will describe some ingenious experiments that probe the gravitational
interactions below the millimetre.

These experiments can be divided into two groups. The first group consists
of ”low frequency” experiments. In this category fall (among others) the
classic torsion balance used by Cavendish and the experiment described
below, carried out by the Eot-wash group. The name of this category is
chosen only in contrast with the other one. In this second category fall the
”high frequency” experiments. We will also describe one of them briefly.
In this experiment, they use a kilohertz resonant-oscillator technique. Now
the choice of the categories is clear. We used the articles of the various
research groups [5]-[8].
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Figure 6: The apparatus of the Eöt-Wash group. The distance between the
pendulum and the attractors has been exaggerated. (Figure from [9])

7.2 The Eöt-Wash experiment

The first experiment we will encounter comes from the research carried out
by the Eot-Wash group. In this experiment they used a torsion pendulum.
A schematic representation is shown in figure 6.
The setup consists of a ring suspended by a fiber above two disks (the at-
tractors). During the experiment the two disks are set into slow rotational
motion. As all torsion pendulums, the pendulum oscillates (i.e. twists and
untwists) after being given an initial torque When these attractors rotate,
they cause the ring to twist back and forth due to gravitational interaction.
The ring and the two disks have ten cylindrical holes drilled into them evenly
spaced about the azimuth. These holes of ”missing mass” are the key-
elements of this experiment. When the holes would not be there, gravity
from the disks would pull directly down on the ring and therefore would not
be able to twist it. The holes in the lower attractor are placed 18◦ rotated
compared to those in the upper one. In this way they are rotated ”out of
phase”. This means that they lie halfway between the holes in the upper
disk as can be seen from figure 7. By attaching this second thicker disk in
this intelligent way, the lower holes produce a torque on the ring that sub-
stantially reduces the signal due to Newtonian gravity.

However, now the holes are we may be able to measure an extra damping
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Figure 7: Top view of the attractors. The solid circles represent the in-
phase upper-plate holes. The open circles show the ones out-of-phase.
Figure from page 6 of [5]

force, due to other additional forces. According to the theory described in
section 5, there may be deviations from Newton’s gravitational force law of
the form 63. Note that these correction terms make the gravitational force
stronger than predicted by Newtonian theory alone. In addition, they will die
away very quickly with increasing distance, because they are exponential
functions.

As mentioned earlier the second disk significantly reduces the Newtonian
gravity. However, when we assume that the deviations are correct, than,
if gravity becomes stronger at short distances due to this deviations, the
torque induced by the lower disk to cancel the torque from the upper disk
will be relatively smaller than expected from Newtonian gravity alone. This
will happen because the lower attractor is farther from the pendulum ring.
However, torques from a short-range interaction with a length-scale less
than the thickness of the upper attractor disk will not be canceled. This
results in an extra damping force on the pendulum, due to the possible
Yukawa interactions. Thus the geometry reduces the torque from Newto-
nian gravity. but will have little effect on a induced short-range torque.

In order to diminish other forces, such as the electrostatic interactions be-
tween the attractor and the pendulum, they put a stiff conducting membrane
between them. Additionally the pendulum was surrounded by an almost
complete Faraday cage.

The amount of torque was measured by shining a laser beam on a mirror
installed on the pendulum, as can be seen from figure 6. The variation of
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the magnitude of the torque with changing separation between the ring and
the disks provided a signature for any new gravitational or other short-range
phenomena. These measured torques were then compared to calculations
of the expected Newtonian and possible damping Yukawa effects. From
this they could say something about α and λ from equation (41). (For this
subsection ([9] was used)

7.3 The Colorado experiment

Figure 8: Active components of the experiment(From [11])

As mentioned above there is another type of experiment for testing grav-
ity at short distances. Here so-called high frequency techniques are used.
The torsion balance experiment discussed, has limits for the minimum prac-
tical test mass separation due to background effects. They become more
problematic with decreasing distance. However, experiments using high
frequency techniques do alow us to operate at smaller test mass separa-
tion. A research group at Colorado used this technique. We shall discuss
their experiment briefly.

The active components of the apparatus used by the Colorado group is pic-
tured in figure 8. The experiment uses a tungsten torsional oscillator (the
detector in the picture). The source of gravitational field is a tungsten vibrat-
ing cantilever (the source mass in the picture). The source and detector are
separated by a stiff conducting shield to eliminate background forces due to
electrostatics and residual gas in the vacuum chamber surrounding the ex-
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periment. A planar test mass geometry is chosen to concentrate as much
mass as possible at the scale of interest. This is done because of the short
range of the Yukawa interaction. When you would use a thicker device, the
Newtonian interactions would be relatively stronger than the Yukawa force
using the thin plate, because this force is dominated by nearby mass due
to its exponential character. The best test masses for Yukawa interactions
are heavy thin plates concentrating as much mass as possible at the clos-
est range. Therefore a thin plate of tungsten is used. The choice of this
material is due to its relatively high density.

Similar to the Eöt-Wash group, the Colorado group used a null geometry
experiment with respect to 1

r2 forces. That is, one that should result in a
zero output for Newtonian gravity if all is well (but we hope it is not!). The
Newtonian gravity exerted by the detector on the reed almost cancels the
force exerted by the reed on the detector. However, this is not the case
for the Yukawa interactions, which become stronger with increasing dis-
tance. When the vibrating reed comes closer to the detector there might
be a small Yukawa force exerted that would influence the oscillating detec-
tor. We might be able to measure this distortion. The extensive apparatus
arrangement is pictured schematically in figure 9.
The attractor formed by the tungsten reed of size 35 mm × 7 mm × 0.305
mm was brought into vibration at the natural resonance frequency of the
detector mass, which was around 1 kHz. The detector consists of two
coplanar rectangles joined along their central axes by a short segment.
The attractor was positioned so that its front end was aligned with the back
edge of the detector rectangle and a long edge of the attractor was aligned
above the detector torsion axis. The attractor, detector and electrostatic
shield were mounted on separate vibration-isolation stacks to minimize any
mechanical couplings, as can be seen from 9. While our board vibrates in
the resonant mode of interest, it induces a torque on the detector oscillator,
causing the detector to counter-rotate in a torsional mode around the axis
that can be seen in . They searched for distortions of the vibration modes
after corrections for unintended effects such as thermal noise. When an
extra signal in the oscillation is noticed this might be due to Yukawa inter-
action. The minimal test mass separation was 108 µm.
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Figure 9: Apparatus (From page 21 of [10])

7.4 Results

7.4.1 Eöt-Wash group

The Eöt-Wash group found no deviation from Newtonian gravity and inter-
pret these results as constraints on extensions of the Standard Model that
predict Yukawa forces. They set a constraint on the largest single extra di-
mension (assuming toroidal compactification and that one extra dimension
is significantly larger than all the others) of R ≤ 160 µm, and on two equal-
sized large extra dimensions of R ≤ 130 µm. Yukawa interactions with α ≥
1 are ruled out with a confidence level of 95% for λ ≥ 197 µm. We can see
this graphically in figure 10.

7.4.2 Colorado group

The null results from the experiment taken at the minimal separation were
turned into constraints on α and λ using a maximum-likelihood estimation.
For various assumed values of λ, the expected Yukawa force was cal-
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culated numerically 400 times, each calculation using different values for
experimental parameters that were allowed to vary within their measured
ranges. A likelihood function was constructed from these calculations and
was used to extract limits on α from the results with a confidence level
of 95%. This leads to a constraint for the largest extra dimension (again
assuming toroidal compactification and that one extra dimension is signif-
icantly larger than all the others) of R ≤ 108 µm,The constraints from the
Colorado group on α and λ are graphically represented in figure 10.

Figure 10: The results for the Yukawa constraints from the Eöt-Wash group
are graphed in red. Figure from page 29 of [5]
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8 Astrophysical bounds

In this section we consider bounds placed on the size of the extra dimen-
sions by looking at stellar objects. In addition we hope to say something
about solving the hierarchy problem. For instance, is M4+n ∼ 1TeV not
excluded? The chosen objects are the Sun, red giants and a supernova
named SN1987A.

The reason why we look at these objects is that they have very high tem-
peratures and we expect KK gravitons to be produced, which can escape
to higher dimensions by several reactions, to be discussed later on. Those
gravitons have momentum and therefore carry energy, which they take with
them while escaping into the extra dimensions. After escaping, they have a
very small probability of returning to the brane , since the brane only covers
a small region of the higher dimensions. For more information on branes
review section 6.2.

8.1 Cross section of graviton

When a reaction between SM-particles takes place, there is a probability
that a graviton is emitted, which can escape into the extra dimensions (i.e. a
KK mode) [12]. In particle physics we usually do not talk about probabilities,
instead we discuss cross sections. Let’s start with calculating the cross
section of one graviton, σ1. We want to get some sort of probability of
a graviton being emitted. Each KK mode is very weakly coupled ∼ 1

M4
.

In a diagram this looks like figure 11. Therefore the probability at which
gravitons are being emitted by a certain reaction involving SM-particles, is
given by

Figure 11: Coupling of a graviton to a Standard Model particle.
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σ1 ∼
∣∣∣∣ 1
M4

∣∣∣∣2 =
(

1
M4

)2

(83)

To get the total cross section of the gravitons, we consider the number of
KK modes possibly emitted, when a reaction between SM-particles takes
place, with energy E. The KK modes have momentum p in the extra dimen-
sions∼ b

R (see section 3.2), and so b
R . E. First consider an 1-dimensional

sphere with radius E. Since p is quantized with spacings of 1
R , the number

of KK modes would be ER. This means, for an n-dimensional sphere with
radius E, that the number of KK modes is given by

#KKmodes ∼ (ER)n (84)

Combining (84) with σ1 gives

σ ∼ (ER)n

(
1

M4

)2

(85)

If we look at possible graviton production by a stellar object, first of all we
look at the total energy emitted. This is usually associated with ε̇, which is
the energy emitted per unit time per unit mass. Secondly we look at ε̇grav,
the energy lost to gravitons per unit time per unit mass. This ε̇grav depends
linearly on σ [12]. The next thing, to take into account, is the temperature
T of the object. Temperature is associated with energy by setting kB = 1,
where kB is Boltzmann’s constant. We can even write T ∼ E. This can be
explained by looking at the Planck spectrum, which tells us about the par-
ticles a black body radiates. It gives us a relation between the frequency
ν and the intensity of electromagnetic radiation. This depends on the tem-
perature of the black body. The Planck spectrum looks like figure 12. The
frequency corresponding to the maximum is given by Wien’s displacement
law [16]

ν =
2.821kBT

h
(86)

We can rewrite this to

E = hν = 2.821kBT (87)
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And by setting kB = ~ = 1 and neglecting the numerical factor we obtain

E ∼ T (88)

If T � R−1, KK modes cannot be produced. If T � R−1, they can be pro-
duced. The latter case gives a number of KK modes that can be produced
[12]. Now by use of T ∼ E and (79), we can rewrite (85) and obtain

σ ∼ Tn

Mn+2
4+n

(89)

This is exactly what we need, to say something about ε̇grav, since it depends
on σ. The exact derivation of the cross sections of the relevant processes
taking place in stellar objects, which can produce gravitons, is beyond the
scope of this paper. It can be found in [12]. We just state the relevant cross
sections:

• Gravi-Compton scattering: γ + e → e + grav

σv ∼ δe2 Tn

Mn+2
(4+n)

β2 (90)

Figure 12: Planck spectrum of a black body for different values of T [16]
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• Gravi-brehmstrahlung: (e + Z → e + Z + grav)

σv ∼ δZ2e2 Tn

Mn+2
(4+n)

(91)

• Graviton production in photon fusion: γ + γ → grav

σv ∼ δ
Tn

Mn+2
(4+n)

(92)

• Gravi-Primakoff process: γ+EM field of nucleus Z → grav

σv ∼ δZ2 Tn

Mn+2
(4+n)

(93)

• Nucleon-Nucleon Brehmstrahlung: N +N → N +N + grav N can be
a neutron or a proton.

σv ∼ (30millibarn)× (
T

M(4+n)
)n+2 (94)

Where δ = 1
16π and β = v

c . We have finally obtained enough information to
take a closer look to three different stellar objects: the Sun, red giants and
SN1987A.

8.2 The Sun and red giants

The first stellar object that allows us to place a bound on M4+n is the Sun.
The Sun has temperature ∼ 1keV and

ε̇ ∼ 10−45TeV (95)

The relevant particles are protons, electrons and photons [12]. To consider
ε̇grav we let ε̇ & ε̇grav. In words this means that the energy loss by gravitons
can never exceed the normal energy loss. This looks like a nonsense de-
mand, but in this way we can place a lower bound on M4+n and it can be
only greater than this bound.
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The only two relevant processes, by which gravitons are being produced
in the Sun, are Gravi-Compton scattering and photon fusion. There are no
high-Z nuclei, so Gravi-brehmstrahlung is excluded. The Gravi-Primakoff is
comparable to photon fusion, but in this case the latter is more dominant
than the former. And last, Nucleon-Nucleon Brehmstrahlung is excluded,
since the temperature of the Sun is too low [12]. Now, let’s consider the
relevant processes.

• Gravi-Compton scattering: γ + e → e + grav gives us

ε̇grav ∼ 4παδ
Tn+5

mpmeM
n+2
4+n

(96)

By use of (95) and T ∼ 1keV , we can rewrite this to

M4+n & 10
10−9n
n+2 TeV (97)

n 2 3 4 5 6
M4+n(TeV ) 10−2 10−4 10−5 10−5 10−6

R(m) 10 10−3 10−5 10−6 10−7

The highest lower bound is given by n = 2 and reads M6 & 10−2TeV . This
bound does not exclude M4+n ∼ 1TeV . It does give a possible radius to
the extra two dimensions of R ∼ 10m. This is not a problem, since this is
the upper bound for R and R can only be smaller, as it has to be.

• Graviton production in photon fusion: γ + γ → grav gives us

ε̇grav ∼ δ
Tn+7

ρMn+2
4+n

(98)

Which gives a lower bound of

M4+n & 10
12−9n
n+2 TeV (99)

n 2 3 4 5 6
M4+n(TeV ) 3 ∗ 10−2 10−3 10−4 10−5 10−6

R(m) 1 10−4 10−5 10−6 10−7
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For n = 2, Mn+4 can still be low enough, but notice that this lower bound is
slightly higher and so is a stronger bound.

Now we turn to red giants. The only difference in this case is the tempera-
ture T ∼ 10keV [12]. This is only slightly higher than the sun’s temperature
and so the same two processes as with the sun apply to red giants. We
will not repeat all the calculations and we will just conclude that for all n
M4+n ∼ 1TeV is still a good possibility.

8.3 SN1987A

As we have seen for the Sun and red giants, M4+n ∼ 1TeV has not yet
been in danger. To push up the lower bound on M4+n we need to look at
stellar objects with higher temperature. Therefore, the collapse of the iron
core of SN1987A is useful for our search to put a strong bound on M4+n.
During the collapse the energy emitted was

ε̇ ∼ 10−44TeV (100)

The temperature T of the object is being estimated at 30 − 70MeV [13].
To produce a lower bound, we will choose T ∼ 30MeV . The two main
processes which took place are, Nucleon-Nucleon Brehmstrahlung and the
Gravi-Primakoff process [12]. We will only consider the former, since this
will provide us the strongest bound

M4+n & 10
15−4.5n

n+2 TeV (101)

With this we can calculate the lower bound on M4+n and upper bound on
R.

n 2 3 4 5 6
M4+n(TeV ) 30 2 3 ∗ 10−1 8 ∗ 10−2 3 ∗ 10−2

R(m) 10−6 10−9 6 ∗ 10−11 8 ∗ 10−12 2 ∗ 10−12

The bound for n = 2 is somewhat above 1TeV . The interpretation of this
bound is a bit more tough. The authors of [12] argue that M6 ∼ 30TeV
is still consistent with a string scale ∼ fewTeV . While the authors of [13],
who use a different technique and find M6 ∼ 50TeV , argue this is too large
to be measured now or in the nearby future.

From this astrophysical perspective we can draw some conclusions about
the viability of solving the hierarchy problem and the actual measurement
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Figure 13: Upper bounds placed on the size of the possible extra dimen-
sions by astrophysics. The red and green line represent Gravi-Compton
scattering, respectively photon fusion, in the Sun. The blue line comes
from Nucleon-Nucleon Brehmstrahlung in SN1987A.

of any extra dimensions in the laboratory. The results are combined and
can be seen in figure 13. The strongest bound on M4+N is given to us by
observations on SN1987A. For n ≥ 3, M4+n ∼ 1Tev is not excluded. For
n = 2 the analysis becomes a bit more tricky. It is a matter of perspective
and assumptions if n = 2 can be excluded. So for now, we will not exclude
this possibility either. This means the LHC might provide answers in solving
the hierarchy problem. Nevertheless, finding deviations on the gravitational
force, by sub-mm tests, does seem implausible. The upper bound on the
size of the extra dimensions reads R . 10−6m, this is far beyond the reach
of tests described in section 7.
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9 Conclusion

From the short-range gravity experiments we found no evidence for viola-
tions of Newtonian gravity due to Yukawa interaction. From this we can only
exclude some possibilities by setting upper bounds for the size of the extra
toroidal compactified dimensions. From the torsion balance experiments
we found the strongest bound to be R ≤ 160 µm. The High frequency
experiment showed an even stronger bound of R ≤ 108 µm. From the as-
trophysical considerations we found the strongest bound to be R . 10−6m,
for n = 2. For higher n, R will only decrease further.

For the future there is still a lot of work to do. The torsion-balance experi-
ment group try to further improve their apparatus. However, this will be with
of lot of modifications. Among other things they will use a larger number
of smaller sized holes. They hope to provide good results for length scales
down to 50 µm. The high frequency group hope to probe this same range
of interest. An experiment is planned with a stretched membrane shield in
place of a sapphire plate. If the backgrounds can be controlled, this exper-
iment could improve limits for R to fall between 10 - 50 µm.

From astrophysics we saw that observations on stellar objects, show no
inconsistency with M4+n ∼ 1TeV , the manner in which ADD try to solve
the hierarchy problem. Even the strongest bound, obtained by observa-
tions on SN1987A for n = 2, on M4+n can still be considered within the
range of ∼ 1TeV . This bound reads M6 & 50TeV . We have to take into
account that the bounds from astrophysics are insecure. How insecure
exactly is hard to tell, but it is comforting that M4+n ∼ fewTeV is not ex-
cluded yet. This means future particle colliders could start measure signs
of extra dimensions. Nevertheless, It seems improbable for sub-mm tests,
to find deviations on the gravitational force. It does look good though that
both ways (i.e. sub-mm tests and astrophysics) of considering deviations
have not contradicted each other. Sub-mm tests have not shown deviations
yet and from astrophysics we know, that deviations cannot be seen at the
distances these tests measure.
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