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Abstract

In strings theory, a critical dimension, Dc is required to yield consistent
theories. For bosonic strings Dc = 26 and for superstrings Dc = 10. These
numbers arise naturally from the theory itself. Less familiar are noncrit-
ical string theories, theories with D 6= Dc. These theories emerge when
background fields are included to the theory, in particular linear dilaton
backgrounds. We will study quintessence-driven cosmologies and show an
analogy between them and string theories in a timelike linear dilaton theory.
We will also present a set of exact solutions for the linear dilaton-tachyon
profile system that gives rise to a bubble of nothing. Generalizing this set-
ting induces a dimension-changing bubble, which can also be solved exactly
at one-loop order. Eventually, we will consider transitions from one theory
to another. In this way, noncritical string theories can be connected to the
familiar web of critical string theories. Surprisingly, transitions from su-
perstring theories can yield pure bosonic theories. Our main focus will be
bosonic strings.
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Preface

Foreword

When I started writing my thesis, I was immediately confronted with a
tremendous abundancy of background material on string theory. Even
though string theory is relatively new, already a lot of books and an enor-
mous amount of articles have been written on the subject, and the level
of difficulty varies greatly. Some books were very advanced, others were
much more comprehensible but somewhat limited in detail. I found it was a
challenging task to restrict my focus only on those subjects relevant to the
scope of this thesis, because it is very easy to get lost in all the fascinating
features and idea’s that are indissoluble connected to string theory.

At first I had some doubt whether I should go into a lot of detail with
calculations or not. But gradually, I found that I gained most satisfaction
out of explaining most of the intermediate steps needed to complete a cal-
culation, whenever I thought they contributed to the clarity of the subject.
Whenever a calculation would become to detailed or advanced, I decided to
give a reference to the book or article the problem can be found in.

I wrote this thesis on the level of graduate students, with preliminary
knowledge on quantum field theory, general relativity and string theory.
Only chapter 3 involves some knowledge on algebra and representations. It
will not be used later on. With this in mind, I still tried to make the thesis
as self-contained as possible, reviewing some general facts where needed.

Just as many people before me, I too found out that writing a thesis is
by far the most challenging and difficult task of completing my studies as a
physics student. Nevertheless, I’ve experienced this as a very educative and
enjoyable time, and during this period I found out that my interest in doing
theoretical research has grown considerably.
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Notation and conventions

M A two-dimensional manifold, denoted as the surface of an arbi-
trary world-sheet.

∂M The boundary of M .

D Number of spacetime dimensions.

d Number of spatial dimensions. D = d+ 1.

ηµν Minkowski metric, or flat metric. ηµν = diag(−1, 1, . . . , 1)

c Speed of light. c = 1.

h̄ Planck’s constant. h̄ = 1.

l String length scale. l =
√

2α′.

α′ Regge slope parameter.

T String tension. T = 1
2πα′ .

xµ Spacetime coordinates. µ = 0, 1, . . . , D − 1.

xi Space coordinates. i = 1, . . . , D − 1.

Xµ(τ, σ) Spacetime embedding functions of a string.

Pµ(τ, σ) Momentum conjugate to Xµ(τ, σ). Pµ(τ, σ) = T∂τX
µ(τ, σ).

x± Spacetime lightcone coordinates. x± = 1√
2
(x0 ± x1)

xI Transverse coordinates. I = 2, . . . , D − 1.



xii Notation and conventions

(τ, σ) World-sheet coordinates of a string. (τ, σ) = (σ0, σ1).

σ2 Euclidean world-sheet time. σ0 = iσ2.

σ± World-sheet lightcone coordinates. σ± = σ0 ± σ1. Another
convention is ρ± = −σ∓.



Introduction

Introduction and motivation

For many decades already, string theory has been proposed to be the ‘theory
of everything’. Various problems and ideas lead physicists to believe that
picturing elementary particles as one-dimensional objects, called strings,
could very well account for (a lot of) these problems. At a very early stage,
however, it became clear that string theory, described in four dimensions,
lead to inconsistent theories. In order to solve this problem, it was necessary
to describe string theory in an arbitrary number of dimensions, D, and then
determine this number by hand. For the simplest case, bosonic string theory,
various calculations suggested that this number should be D = 26. Since our
world clearly does not consist of pure bosonic particles, there was also need
for a fermionic version. Superstring theory turned out to be this theory. For
superstring theory, it was found that the number of dimensions that would
give consistent theories should be D = 10. Since only these numbers give
consistent theories, and they arise so naturally from the theory itself, they
are refered to as the critical dimension. Later on even, it was understood
that different superstring theories are all limits of an eleven-dimensional
theory, namely the theory of supergravity.

One could wonder if a theory that requires that many more dimensions
than we observe in nature is still a realistic one. But on the other hand,
if nature is constructed in such a way that only four dimensions are no-
ticeable at large scales, this should not really have to be a problem. A
way to ‘effectively remove’ these extra dimensions is by means of compat-
ification. Compactifying dimensions means that these dimensions are no
longer infinite in extend, but finite, and they are (highly) curled up. Peri-
odicity is also allowed, so that one could picture compacitified dimensions
as very small circles. In this way, compactified dimensions are no longer
observable at lenght scales, large compared to the radius of these circles.
Therefore, in bosonic string theories, the extra dimensions can be viewed
as a 22-dimensional compactified sphere or torus, an for superstring this is
a six- (or seven) dimensional sphere or torus. So with this approach, the
problem of extra dimensions had therefore been solved.

A way to determine the critical dimension is by calculating the β func-
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tion, that comes from rescaling the world-sheet. One important feature of
string theory is that the world-sheet is scale invariant, and therefore the β
function should vanish. For bosonic strings in flat spacetime this then sim-
ply comes down to saying D = 26, and for superstring D = 10. However,
more general theories arise if one includes background fields to the theory,
such as a curved spacetime, a Kalb-Ramond field, or a scalar dilaton field.
Eventhough (apart from curved spacetime) these background fields have not
yet been observed in nature, they play an important rôle in string theory,
and it is very useful to consider them. One important feature of includ-
ing background fields is that the condition for vanishing β functions also
changes. Depending on the actual form of the background fields, vanishing
β functions are now able to render consistent string theories outside of the
critical dimension. These theories are called noncritical string theories.

The simplest example of a noncritical string theory is the linear dilaton
background, a theory where spacetime is flat, and the dilaton has linear
dependence on the spacetime coordinates. The influence of this background
becomes apparent when a tachyon profile is also taken into account. Inter-
actions with tachyons can be described by a low energy effective action. The
equation of motion for this action is called the on-shell tachyon condition,
and its solution is called the tachyon profile. When the on-shell tachyon
condition is solved for a theory with linear dilaton background, the solu-
tion becomes an exponent of the spatial coordinates. The linear dilaton and
tachyon profile can then be included to the world-sheet action, which is then
called a Liouville theory. The tachyon, which couples to the world-sheet as
a potential, starts to act as a barrier which becomes inpenetrable for strings.
When a tachyon profile grows (obtains a vacuum expectation value), this
is usually called a tachyon condensate. Strings that come in contact with
such a barrier are reflected off, or they are pushed outwards if the barrier is
dynamical. So, it is clear that including a linear dilaton background to the
theory can have tremendous effects on the strings living in this background.

Even though the structure of such theories a quite simple, it is still
extremely difficult to find solutions for these theories, due to the exponential
dependence of the tachyon profile. The only hope for obtaining correct result
would be to find exact solutions for these theories. In this thesis, we will
present exact solutions for some of these theories. We will see that when
a tachyon condenses along the null direction X+, all quantum corrections
to this theory vanish. So, in fact, the solutions at the classical level are
the exact solutions for this theory. For these solutions, we will see that the
tachyon barrier can be seen as ‘a bubble of nothing’, absence of spacetime
itself. Strings that come in contact with this barrier are expelled from this
region.

As a first application, we will study the analogy between string theories
with a (timelike) linear dilaton background and quintessence-driven cos-
mologies. It turns out that the action of cosmologies with quintessence has
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exactly the same form as the low energy effective action for massless closed
strings. Comparing the two theories, we find that the tree-level potential of
this string theory gives rise to an equation of state at the border between
accelerating and decelerating cosmologies. Time-dependent backgrounds in
string theory have always been hard to solve. By comparing quintessent
cosmologies and string theories, we will be able to find solutions for strings
in time-dependent backgrounds.

Aside from tachyon condensation in the null direction, we will also con-
sider a theory where the tachyon has oscillatory dependence on more coor-
dinates. In this setting, the theories turn out to be exact at one loop order,
still simple enough to be calulated. When we impose dependence on more
coordinates X2, . . . , Xn, we will see that only strings that do not oscillate
in these directions are able to penetrate the (tachyon) bubble interior. All
other strings will be pushed outwards and get frozen into their excited states.
This effectively means that strings inside the bubble interior start out in a
D-dimensional theory, but end up in a (D − n)-dimensional theory. These
processes are called dynamical dimension changing solutions, and these the-
ories can be described for bosonic strings, as well as superstrings. It is even
possible for strings to start out in one theory, but end up in another theory.
In this case we call these processes transitions. Even though noncritical
string theories are consistent internally, it has always been difficult to link
them to the familiar web of theories in the critical dimension. We will see
that we are able to link them in the setting that we will use in this thesis. A
surprising result is that there are even transitions possible where superstring
theories turn into pure bosonic string theories, a relation that has not been
achieved before.

Outline

In chapter 1 we will first argue why there is need for string theory at all.
Then we’ll treat the basic principles of string theory. We start with the
classical point particle and discuss its analogy with a classical (bosonic)
string moving in spacetime. There can be open and closed strings. The
classical equations of motion of the string will be derived. Thereafter we
will quantize the string and analyse its spectrum.

In chapter 2 we will discuss scale transformations. In physics, the con-
cept of symmetries has grown extremely important for constructing the-
ories. Symmetries in string theory, in particular scaling symmetries, are
important, because the whole theory is built under the assumption that a
rescaling leaves the theory invariant. In addition to this we will also discuss
coupling parameters and β functions. We will show that in order to have
consistent theories, strings require a so-called critical dimension to live in.

In chapter 3 we shall discuss conformal field theory. CFT is a very
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extended subject, and our goal is not to discuss all details. Rather we will
derive some basic results, to give a global understanding of the field. Some
main subjects will be conformal transformations, primary fields, operator
product expansions and Virasoro operators.

In chapter 4 we look at vertex operators. We will discuss interacting
strings and show that a rescaling of the world-sheet can actually deform
the theory in such a way that it can be described in a completely different
way, making use of operator-state correspondence. It is argued that string
states can be represented by vertex operators, attached to the world-sheet.
We discuss various vertex operators, such as the tachyon vertex operator
and the massless vertex operator. Both can be studied for the open and
closed string case. Scattering amplitudes can be calculated and we shall
do so for some simple examples. Finally we will derive some results from
varying some parameters in the world-sheet action, which will later be used
extensively.

In chapter 5 we will discuss strings in the vicinity of backgrounds. So
far we only looked at flat spacetime, but as we will see later on, including
backgrounds to the theory can have tremendous effects on the theory. We
will incorporate some aspects from general relativity into string theory and
see that such an extension of the theory makes good sense. Thereafter,
we will also include an antisymmetric tensor and a dilaton as backgrouds
into string theory. Here we see a close analogy with some scale symmetries
discussed in chapter 2.

In chapter 6 for the first time, string theory is considered from a com-
pletely different point of view. Instead of describing the physics from the
world-sheet point of view, an effective spacetime action is introduced. This
spacetime action describes the effective low energy physics of the theory.
Switching over to the effective action allows one to analyse different aspects
of the theory.

In chapter 7 we will be looking at backgrounds, involving the dilaton.
First we will discuss the constant dilaton, and show that this simple model
actually provides us with a tool for constructing a UV finite theory of quan-
tum gravity, a result which no other theory has yet provided. Subsequently,
we will discuss the linear dilaton background. This theory is still simple and
exactly solvable, and it turns out that the linear dilaton is even capable to
alter the number of dimensions of spacetime the string lives in.

In chapter 8 we will study quintessence driven cosmologies, theories that
resemble the behaviour of cosmologies with a cosmological constant. We
will examine different solutions, which depend on the equations of state of
these cosmologies. Finally we will discuss these solutions in terms of Penrose
diagrams.

In chapter 9 we will compare string theory in the vicinity of a timelike
linear dilaton background, with quintessence driven cosmologies. We show
that the solutions of a quintessence driven cosmology are really the same
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as those of a timelike linear dilaton theory. We will analyse massless and
massive modes in these theories and determine under which conditions these
are stable against perturbations of background fields.

In chapter 10 will go into more detail and talk about a tachyon-dilaton
model. We will give a world-sheet description of this theory and find a
solution that is exactly solvable, even at the quantum level. When a tachyon
profile is added to this theory, we see particular solutions give rise to a
spacetime-destroying “bubble of nothing”, bouncing off all material that it
encounters. Finally, we will give a more general low energy effective action
for this theory.

In chapter 11 will generalize the tachyon condensation along the null
direction. We will consider a theory where the tachyon also has oscillatory
dependence on more coordinates and see that this results in dimension-
changing exact solutions. Quantum corrections terminate at one-loop order,
so they are still easy enough to be solved. We will also consider transitions
between different string theories.
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Part I

Theoretical frame-work





Chapter 1

Basic principles on string
theory

1.1 Why string theory?

For many centuries theoretical physicists have been trying to unify physical
theories. Very often a theory gives a valid description up to a certain limit,
but as soon as the limit is crossed, the theory breaks down. For example,
the dynamics of moving particles is well understood and neatly described by
Newton’s laws of physics in the limit where velocities are small compared to
the speed of light c. Switching to a frame which has a velocity −→v relative to
the initial frame, simply comes down to adding or subtracting this velocity
to velocities of particles described in the initial frame. But as we know, c
(which in terms of SI units is 2.99792458× 108ms−1) is constant, no matter
what frame an observer is in. This immediately leads to an inconsistency
in the theory, which we now know is solved by Einstein’s law of special
relativity.

Another example is the classical description of black body radiation.
Both Rayleigh-Jeans law and Wien’s approximation for black body radiation
give an accurate description for only part of spectrum of the radiation that
is emitted. This problem was attacked by Max Planck, who proposed that
the radiation energy E is quantized, E = hν, where h is Planck’s constant
(6, 62606896× 10−34Js in SI units) and ν is the frequency of the radiation.
This proposal eventually led to the theory of quantum mechanics.

In the early 20th century there were two major developments in theoret-
ical physics. First of all, Einstein developed his theory of general relativity.
This theory covers dynamics of particles with arbitrary velocities, in the
presence (or absence) of gravity, and is mainly applied to big scales. It com-
pletely solved the inconsistencies that arose in Newton’s theory of dynamics,
and dramatically changed our view on the structure of space and time.

Secondly, a number of different ideas and results eventually led to the
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theory of quantum mechanics, drastically changing our view on physics on
small scales. Later on, the theory of quantum mechanics for particles was
extended to quantum field theory in order to cope with interactions of many
particle systems and relativistic quantum mechanics. Quantum field theory
eventually developed into the Standard model for elementary particles and
is now globally accepted as the theory for all known particle interactions,
supported by an overwhelming amount of evidence. Together, these two
theories (general relativity and quantum mechanics) are able to describe all
(known) physics.

A full understanding of the fundamental laws of physics, however, is
not attained until the two theories are unified to one grand unified theory
(GUT). A problem appears, however, when we try to embed these theories
into each other. We might try to quantize the theory of gravity, for example.
But if we try to write down a perturbative field theory for gravitation, we
run into all sorts of uncontrollable infinities. Ultraviolet divergences that
arise when one works in perturbation theory grow worse at each order, so
apparently these two theories can not easily be merged into each other.

In the late 1960’s a theory called string theory was developed to solve
the problem for strong nuclear forces.1 In this theory fundamental parti-
cles are suggested to be one-dimensional objects, instead of point particles.
However, in this theory a lot of technical problems arose (such as unwanted
tachyons, unwanted massless spin-two particles and unwanted extra dimen-
sions). When finally quantum chromo dynamics (QCD) turned out to be the
correct theory for strong nuclear forces, the need for string theory seemed
to have gone down the drain.

String theory made a remarkable comeback in 1974, when it was pro-
posed to identify the massless spin-two particle with the graviton, making it
a theory for quantum gravity! Since then string theory has evolved tremen-
dously. The theory is not yet fully understood, but physicists all around the
world are working very hard, trying to complete the theory. It seems that
string theory is one of the most promising candidates for unifying general
relativity and quantum mechanics. Superstrings and higher dimensional ob-
jects, called D-branes, were discovered and ever since it’s discovery, string
theory has turned out to be an extraordinary fascinating theory. The the-
ory can be used to describe the expanding universe, as well as elementary
particle physics. Even though we are still a long way removed from under-
standing it’s complete description, string theory has provided us with very
promising and surprising results. The dream of unifying all physics into one
fundamental theory therefore seems to be within our grasp.

1for more information on the development of string theory, see [2].
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1.2 Relativistic point particle

1.2.1 Point particle action

From Einstein’s theory of general relativity, we know that mass and energy
bend spacetime itself. A relativistic point particle moving in spacetime
follows a path, or worldline along a geodesic, where x0 is taken as the time-
direction, and Σ = xi, i = 1, 2, 3 as the spatial directions (see figure 1.1).2

A geodesic can be seen as a path through a curved space, such that the
distance is minimal. In other words, it is the path of a free particle in a
curved spacetime.

A very useful tool for describing physics is the action principle. An action
S is the spacetime integral of the Lagrangian density L, and can be varied
in its arguments (which can be coordinates, conjugate momenta, fields or
derivatives of the fields). When one demands the action to be invariant
under such a variation, this leads to restrictions for these arguments, also
know as the equations of motion (EOM).

Since an action extremizes the path length of a particle, it is a logical
choice to set the length of a particles worldline equal to the action. A line
element in a curved space, described by a metric gµν(X) is given by

ds2 = gµν(X)dXµ(τ)dXν(τ) (1.1a)
≡ dXµ(τ)dXµ(τ), (1.1b)

where µ, ν = 0, . . . , 3. Since for timelike trajectories dXµ(τ)dXµ(τ) is always
negative, we can introduce a minus-sign, to make sure that ds is real for time-
like paths. When we parameterise the worldline of a particle with mass m
by τ , the action can be written as

Spp = −m
∫
ds (1.2a)

= −m
∫
dτ

[
−gµν(X)

dXµ

dτ

dXν

dτ

]1/2

(1.2b)

= −m
∫
dτ
[
−ẊµẊ

µ
]1/2

, (1.2c)

where the dot represents a derivative with respect to τ . The action is
invariant under reparametrizations, so if we let τ → f(τ), the action does
not change.

1.2.2 Auxiliary field

Even though we found the correct expression for the action of a relativis-
tic point particle, we immediately see that it can not be used for massless

2Appendix B gives a detailed description on this geodesics and curved spaces.
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particles. Furthermore, the square root in the action also complicates de-
riving its equations of motion. These problems can, however, be omitted by
introducing an auxiliary field e(τ). Now consider the following action,

S̃pp =
1
2

∫
dτ

[
ẊµẊ

µ

e(τ)
− e(τ)m2

]
. (1.3)

It is not hard to show (see [2]) that this action is equivalent to (1.2). Im-
posing reparametrization invariance here as well, implies that e(τ) should
transform accordingly. When we know how e(τ) transforms, we can repa-
rameterize in such a way that we can set e(τ) = 1. This then brings the
action into the form

S̃pp =
1
2

∫
dτ
[
Ẋ2 −m2

]
, (1.4)

where Ẋ2 = ẊµẊ
µ.

For a free particle, the metric gµν(X) just becomes the Minkowski metric
ηµν = diag(−1, 1, 1, 1). We can then easily derive the equations of motion
for Xµ and e(τ), to find

Ẍµ = 0, (1.5a)

Ẋ2 +m2 = 0. (1.5b)

These are of course the correct equations for the point particle. (1.5a) is
just the condition that the particles moves in straight lines. (1.5b) is just
the mass-shell condition p2 = −m2, when we realize that pµ = Ẋµ is the
momentum conjugate of Xµ. So we see that with the action principle, we
obtain the same physical constrainst as with Einstein’s theory of (special)
relativity.

1.3 Relativistic bosonic strings

1.3.1 Polyakov action

A relativistic string, moving through spacetime, can be described in a very
similar fashion as the relativistic point particle. We will start out with the
description of a bosonic string, the simplest example of a string. A string is
a one-dimensional object, moving in D spacetime dimensions. So instead of
a worldline, it now carves out a world-sheet in spacetime, parameterized by
two parameters (τ, σ), or equivalently (σ0, σ1). τ can be thought of as the
time-direction along the world-sheet, and σ as the spatial direction.

Strings can be open or closed. The has the consequence that the world-
sheet can have two different topologies, namely a cylinder for the closed
string, and a sheet with two boundaries at the endpoints of the string. We
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Σ Σ

σ0

σ1

x0 X 0

Figure 1.1: Left: a point particle carves out a worldline in spacetime, param-
eterised by one parameter τ . Right: A string carves out a world-sheet, pa-
rameterised by two parameters σ0 and σ1. x0 and X0 are the time-directions
and Σ stands for the spatial part of the spacetime diagrams.

will use the convention that for open strings, σ lies in the interval σ ∈ [0, π],
and that for closed string, σ lies in σ ∈ [0, 2π]. Moreover, we will leave
the number of spatial dimensions, d = D − 1, arbitrary for the string. In
figure 1.1 we have drawn a spacetime diagram for the world-sheet of an open
string, moving in D spacetime dimensions. X0 is again the time-direction
and Σ = Xi, i = 1, . . . , D − 1 are the spatial directions.

In analogy with the relativistic point particle, we also want to make
use of the action principle in string theory. Instead of describing a mini-
mal path length, we now describe a minimal area in this spacetime. We
start out with describing a bosonic string in flat spacetime, since this is the
easiest example. In flat spacetime, we will be using the Minkowski met-
ric ηµν = diag(−1, 1, . . . , 1). It can be shown that the correct form of the
world-sheet, known as the Polyakov action, is

SP = − 1
4πα′

∫
M
d2σ

√
−h(σ)habηµν∂aX

µ∂bX
ν , (1.6)

where hab is the world-sheet metric, h = det(hab), and the constant α′

is called the Regge slope parameter. Here hab plays the same rôle as the
auxiliary field in the point particle case.

It is important to realize that from the spacetime point of view, the
coordinates Xµ(σ0, σ1), µ = 0, . . . , D − 1 are just the spacetime coordi-
nates of points on the world-sheet. However, from the world-sheet’s point
of view, Xµ(σ0, σ1) are spacetime embedding coordinates. These are D two-
dimensional fields that live on the world-sheet.
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1.3.2 World-sheet symmetries

The world-sheet action satisfies three important symmetries. These symme-
tries are needed in order to have consistent theories. They are,

� Poincaré invariance. These are symmetries under which we let the
Xµ fields vary as

δXµ = aµ
νX

ν + bµ, aµν = −aνµ, (1.7a)

δhab = 0. (1.7b)

The constants aµ
ν are infinitesimal Lorentz transformations, and the

constants bµ are translations in spacetime.

� Diffeomorphism (diff) invariance, or also called reparametrization in-
variance. These are symmetries under which we reparameterize the
world-sheet, switching over to new coordinates σ̃a = σ̃a(σ0, σ1). So we
let

σa → σ̃a(σ0, σ1), (1.8a)

and hab(σ) =
∂σ̃c

∂σa

∂σ̃d

∂σb
hcd(σ̃). (1.8b)

Intuitively this makes sense, because the physics (thus the action),
should not depend on the way that we parameterize the world-sheet.

� Weyl invariance, or rescaling invariance. Weyl invariance specifically,
is a symmetry of the action under which we locally rescale the world-
sheet metric by an overall factor. So we let

δhab → e2ω(σ0,σ1)hab, (1.9a)
δXµ = 0. (1.9b)

Rescaling transformations in general are known as conformal transforma-
tions. This is why Weyl invariance is also referred to as conformal invari-
ance.

Only in two dimensions can an action of the form (1.6) be Weyl-invariant.
This can be seen as follows. If we rescale the metric in (1.6), the determinant
will rescale as [

δ∏
n=1

e2ω(σ0,σ1)

]
h = e4ω(σ0,σ1)h, (1.10)

where δ is the number of dimensions, which for the world-sheet is δ = 2. Tak-
ing the square root, this yields a rescaling factor of e2ω(σ0,σ1). Furthermore,
hab = (h−1)ab will rescale with a factor e−2ω(σ0,σ1). So, in two dimensions
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these factors exactly cancel each other out, and therefore rescaling is a sym-
metry of the action. This extra symmetry is what makes string theory much
more attractive to work with than a theory of higher dimensional objects
(also known as p-branes).

These symmetries have nice consequenses. As we shall see shortly, they
will even be able to determine the number of spacetime dimensions D strings
can live in!

1.4 Solutions of the bosonic string

1.4.1 Choosing a world-sheet gauge

In the previous section we saw that the world-sheet action has three sym-
metries. Physically, this means that performing a symmetry transformation
yields exactly the same theory. So it is just a different description of the
same theory. These symmetries are also called gauge symmetries. By simply
choosing one gauge, we say that we gauge-fix the theory. In order to solve
the equations of motion for strings, we can gauge-fix the world-sheet action,
just as we did with the point particle. By knowing how the world-sheet
metric transforms, we can put it in a convenient form.

First of all, since the world-sheet metric is a symmetric tensor, we find
h01 = h10, so there are only three independent components. Next, we can use
reparametrization invariance to choose two components of h, leaving us with
only one independent component. And finally we use the rescaling invariance
to completely fix the world-sheet metric. One of the most convenient choices
is the gauge in which the world-sheet metric has Minkowski signature, so

hab =
(
−1 0
0 1

)
. (1.11)

In some cases a Euclidean signature is more convenient. In most calculations
it should be clear what signature is used.

1.4.2 Constraints for embedding coordinates

To solve the Xµ field equations is a rather lengthly and detailed derivation.
We will not give a full derivation here, but merely give a short sketch of what
steps can be taken to obtain the solutions. There are three sets of equations
that constrain the Xµ fields. The first set are equations of motion, coming
from varying the action with respect to the Xµ fields. The second set are
equations of motion, coming from varying the action with respect to the
world-sheet metric. And the third set are boundary conditions, which are
imposed by Poincaré invariance. The second set equations make up the
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so-called energy-stress tensor, who’s definition is

T ab(σ) =
4π√
−h(σ)

δ

δhab(σ)
S. (1.12)

From its definition, it follows that T ab is a symmetric tensor. Conformal
invariance implies T ab = 0, so this puts extra constraints on the Xµ fields.
Moreover, one can check that the energy-stress tensor T ab is conserved,
meaning that

∂aT
ab = ∂aT

ba = 0. (1.13)

Next, one can use Poincaré invariance of the action to determine bound-
ary conditions for the strings. At this point we should make a distinction
between closed and open string.

� For closed strings, boundary conditions imply embedding coordinates
Xµ to be periodic in σ, with period 2π, so

Xµ(τ, σ) = Xµ(τ, σ + 2π). (1.14)

� For open strings, we find that there are two possible boundary condi-
tions, namely Neumann boundary conditions and Dirichlet boundary
conditions.

- Neumann boundary conditions tell us that

∂σXµ ≡ X ′
µ = 0 for σ = {0, π}, (1.15)

so no momentum is flowing through the endpoints of the string.
- Dirichlet boundary conditions, however, tell us that

δXµ = 0 for σ = {0, π}, (1.16a)
so Xµ

∣∣
σ=0

= Xµ
0 and Xµ

∣∣
σ=π

= Xµ
π , (1.16b)

where Xµ
0 and Xµ

π are constants. What these boundary condi-
tions tell us is that the endpoint of the string are fixed in some
(say p) directions. The modern interpretation of this seemingly
strange condition is that the constants Xµ

0 and Xµ
π represent the

positions of (higher dimensional) objects, called Dp-branes. Dp-
branes are a fascinating feature of string theory, but we will not
be needing them in the course of this thesis.

1.4.3 Solutions for embedding coordinates

To find the explicit forms of the solutions of the embedding coordinates
Xµ(τ, σ), one usually switches over to world-sheet lightcone coordinates
σ± = σ0 ± σ1. After having switched over to lightcone coordinates and
working out the equations of motion, we finally end up with the solutions
for the Xµ fields that satify all of the constraints.
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� Solutions for the closed string Xµ fields turn out to be a superposition
of right-moving fields Xµ

R(τ−σ), and left-moving fields Xµ
L(τ+σ). We

find

Xµ
closed(τ, σ) = Xµ

R(τ − σ) +Xµ
L(τ + σ), with (1.17a)

Xµ
R(τ, σ) =

1
2
xµ +

1
2
l2pµ(τ − σ) +

i

2
l
∑
n6=0

1
n
αµ

ne
−in(τ−σ), and

(1.17b)

Xµ
L(τ, σ) =

1
2
xµ +

1
2
l2pµ(τ + σ) +

i

2
l
∑
n6=0

1
n
α̃µ

ne
−in(τ+σ), (1.17c)

where the constant xµ is the string’s center of mass, pµ is the string’s
total momentum and l is the string length scale, related to the Regge
slope parameter by α′ = 1

2 l
2. Furthermore, αµ

n and α̃µ
n are called

right-movers and left-movers respectively. They obey the equality

αµ
−n = (αµ

n)∗ and α̃µ
−n = (α̃µ

n)∗, (1.18)

in order for the Xµ fields to be real. These are also called the oscillator
modes of the string. It turns out that on the world-sheet, every right-
mover αµ

n is always accompanied by its left-mover α̃µ
n, and vice versa.

� Solutions for the open string Xµ fields with Neumann boundary con-
ditions are written as

Xµ
open,N = xµ + l2pµτ + il

∑
n6=0

1
n
αµ

ne
−inτ cosnσ, (1.19)

where xµ, pµ, l and αµ
n have the same interpretation as in the closed

string case. Also, the equality αµ
−n = (αµ

n)∗ holds, to render Xµ real.

� Solutions for the open string Xµ fields with Dirichlet boundary con-
ditions are written as

Xµ
open,D = xµ + l2p̃µσ + il

∑
n6=0

1
n
αµ

ne
−inτ sinnσ. (1.20)

The parameters still have the same interpretation, with one exception.
Namely, p̃µ does not longer have the interpretation of momentum any-
more. Again, the equality αµ

−n = (αµ
n)∗ holds, to render Xµ real.

For later purposes, it is convenient to define αµ
0 = lpµ for open strings, and

αµ
0 = α̃µ

0 = 1
2 lp

µ for closed strings.
All these solutions for the Xµ fields are classical solutions. However, we

want to include quantum mechanics into our theory as well. How this is
achieved is discussed in the next section.
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1.5 Quantizing the relativistic string

1.5.1 Commutation relations

When a theory is quantized, we let observables like position xµ, momentum
pµ, angular momentum Lµ, etc. become operators that can act on states of
a Hilbert space. Furthermore, if we have a classical theory, we can calculate
Poisson brackets of two observables A and B, {A,B}. Then, if we quantize
the theory, we substitute the commutator [A,B] for the Poisson brackets.
For example, a classical relativistic point particle has observables xµ and pµ,
but if we quantize the theory, these become operators, with commutation
relations [xµ(τ), pν(τ)] = iηµν (and other commutators zero).

In string theory, we follow the same procedure. First we promote Xµ

and its conjugate momentum

Pµ = TẊµ (1.21a)

=
1

2πα′
∂τX

µ (1.21b)

to operators and impose their commutation relations

[Xµ(τ, σ), P ν(τ, σ′)] = iδ(σ′ − σ)ηµν , (1.22a)
[Xµ(τ, σ), Xν(τ, σ′)] = 0, (1.22b)
[Pµ(τ, σ), P ν(τ, σ′)] = 0. (1.22c)

One can show that by working this out, for open strings this leads to the
conditions

[xµ, pν ] = iηµν , (1.23a)
[αµ

m, α
ν
n] = mδm+n,0η

µν , (1.23b)

and when we consider closed strings, we also obtain the relations

[α̃µ
m, α̃

ν
n] = mδm+n,0η

µν , (1.24a)
[α̃µ

m, α
ν
n] = 0. (1.24b)

First of all, it’s nice to notice that when the string has no oscillations3,
we obtain the same result as for the point particle case. Secondly, if we look
at the oscillator modes and rescale them as αµ

m → aµ
√

m
, we see that they

actually represent the modes of a harmonic oscillator! We already know to
interpret the oscillator modes of a harmonic oscillator. With a harmonic
oscillator we introduce a ground state with momentum kµ. We can act on
this ground state with raising operators αν

−m, m > 0 to obtain excited states.

3So all the αµ
n (and α̃µ

n) vanish and the only degrees of freedom are the string’s center
of mass position and momentum.
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Moreover, lowering operators αν
m, m > 0 lower excited states and annihilate

the ground state. Since we now have an infinite set of lowering operators,
the ground state is infinitly degenerate. For open strings, the ground state
|0, kµ〉 is defined by

αν
m|0, kµ〉 = 0, for m > 0, (1.25a)
pν |0, kµ〉 = kν |0, kµ〉, (1.25b)

and for closed strings it is defined by

α̃ρ
mα

ν
m|0, 0, kµ〉 = 0, for m > 0, (1.26a)
pν |0, 0, kµ〉 = kν |0, 0, kµ〉. (1.26b)

By acting on the groundstate with modes that have m < 0, we get excited
states.

So physically, a quantized (bosonic) string is an one-dimensional ob-
ject that lives in D spacetime dimensions. It has waves propagating on its
world-sheet, traveling at the speed of light. The waves are excited states of a
harmonic oscillator. For closed strings, left-moving parts are always accom-
panied by their right-moving parts, so these waved propagate in opposite
directions.

1.5.2 Mass levels

To determine the mass of a particle, we can use the on-shell condition, or
mass-shell condition M2 = −p2, where M is the particle’s mass and pµ

is its momentum. In string theory, we also determine the string’s mass
by applying this condition. The question is, however, can we calculate p2

for a string? It turns out that this is done by using so-called Virasorro-
operators Lm, or specifically L0. These operators can be constructed from
the oscillator modes, and they can be deduced from conformal field theory
(CFT).4 The mass-squared becomes an operator, and it is written as

M2 =
2
α′

[ ∞∑
n=1

α−n · αn − 1

]
, for open strings, (1.27a)

M2 =
2
α′

[ ∞∑
n=1

(α−n · αn + α̃−n · α̃n)− 2

]
, for closed strings. (1.27b)

As we already saw, the mth level excitation of a string is created by acting
on the ground state with a mode αµ

−m for open strings, and α̃ρ
−mα̃

µ
−m for

closed strings, with m = 0, 1, · · · . So, we can apply the mass operator to a
mth level state and, making use of the commutation relations for the modes,

4We will investigate CFT at a basic level in chapter 3. For more details, the reader is
referred to [12].
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see that it contributes a discrete value to the strings mass! So, the string
mass splits up into different levels.

� The first mass-level is a state with m = 0. These are states that have
no oscillator modes acting on the ground state. Strangly enough, as
can be seen from (1.27), the mass-squared of these states is negative!
We see that M2 = − 2

α′ for open strings and M2 = − 4
α′ for closed

strings. These string states are called tachyons and are not thought
to represent actual particles. We will come back to them later on.
Tachyons will play an important rôle throughout this thesis.

� The next mass-level to consider are modes with m = 1. These par-
ticles have mass-level M2 = 0, so they are massless. These massless
(vector) states are called photons. In the case of closed strings we can
even identify such states with quantum particles of gravitation, called
gravitons.5

Of course we can consider oscillator modes with m > 1. These states give
rise to massive particles M2 > 0. But it turns out that the masses of these
states are really big compared to particles that we observe in nature, so they
take a lot of energy to be created. For most purposes we do not need to
consider them.

In the next chapter we will further investigate the property that the
string world-sheet is scale invariant. When we combine this scale invariance
with properties of the energy-stress tensor, we will find that in order to have
consistent theories, strings require a critical dimension to live in.

5for further reference on this subject for example see [2], [11] or [14].



Chapter 2

Scale transformations and
interactions

2.1 Couplings

2.1.1 Interacting theories

In physics, a very important concept is interaction and interaction strength.
The reason that we are able to describe physics at all is that particles
and fields interact with each other. For example, gravitation, mass, elec-
tric charge and spin are all quantities that can have interactions, and it is
through this interaction that we are able to do measurements and experi-
ments. Nowadays, most physics is described in terms of Lagrangians L and
actions S. In quantum field theory, the interaction of particles is described
by a Lagrangian containing fields, kinetic parts as well as interacting parts.
In Maxwell’s theory of electromagnetism, charged particles couple to elec-
tromagnetic fields, and in general relativity, energy-momentum tensor fields
couple to the curvature of spacetime itself.

In order to tell how strong interactions between fields are, we need to
compare it with something. In the Lagrangian formalism, a coupling pa-
rameter g determines the strength of interacting fields with respect to the
(free) kinetic part of the theory, or two sectors of the interacting part of
the theory. For example, a gauge coupling g in a non-Abelian gauge theory
appears in the Lagrangian density as

L =
1

4g2
Tr F a

µνF
a µν , (2.1)

where F a
µν is a gauge field tensor and the trace runs over the index a.

There are two important regimes for the coupling parameter where one
can work in, namely
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� g � 1, called weak coupling. In this regime, perturbation theory is
a good way to describe to interactions up to a certain order in g.
Including higher orders in g comes down to giving a more accurate
description of the interaction.

� g � 1, called strong coupling. Perturbation theory no longer works,
and one has to find another way to calculate interactions. For example,
one can try to find exact solutions, so that perturbation is no longer
necessary.

2.1.2 Running couplings and renormalization

In quantum field theory, looking at shorter distances amounts to going to
higher energy scales. At short distances ’virtual particles’ go off the mass
shell. Such processes renormalize the coupling, making it dependent on the
energy scale µ, so g → g(µ). This dependence of the coupling on the energy
scale is called running of the coupling and is described by the renormalization
group.

Renormalization is a process of rescaling a theory, and therefore will
involve conformal transformations. The importance of renormalization in
theoretical physics has grown considerably over the years. One of its major
applications is found in condensed matter theory, where it is described within
the framework of the so-called renormalization group (RG). In this frame-
work, a lattice, with lattice-spacing a and coupling g is considered. Then, a
Fourier transformation is performed, going over to momentum space. The
lattice permits certain frequencies, namely high frequency modes (or so-
called fast modes), corresponding to short distances, and low frequency
modes (so-called slow modes), corresponding to long distances.

To renormalize this theory, one first writes down an effective action that
can be used to describe slow mode interactions only. The next step is to
integrate out all fast modes. After this integration, a rescaling is performed
on the relevant parameters, such as the modes and the coupling. This com-
pletes the renormalization. We end up with a description of the same theory,
on a different scale. So starting out with a theory of fast and slow modes
and coupling g, we perform a renormalization transformation and end up
with a theory of slow modes and coupling g′. If a theory is invariant under
a scale transformation, it is called conformal invariant. In that case the
theory is at a fixed point (more information on this subject can be found in
[1]).

2.1.3 Renormalization β functions

Renormalization and conformal invariance also play a big rôle in quantum
field theory and string theory. In quantum field theory, the running of a
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Quantum field theory String theory
coupling g ←→ world-sheet action S

energy scale µ ←→ world-sheet metric hab

β(g) = 1
µ

∂g
∂µ ←→ β ' T a

a '
hab√
−h

δS
δhab

Table 2.1: analogy between renormalization functions in quantum field theory
and string theory.

coupling parameter is described by what is called the renormalization β
function,

β(g) = µ
∂g(µ)
∂µ

=
∂g(µ)
∂ lnµ

. (2.2)

As can be seen from (2.2), when a theory is scale invariant, the β function
should vanishes. When a β function does not vanish, it is said to have a
conformal anomaly.

One big difference between quantum field theory and string theory is
the coupling. In quantum field theory, the coupling parameter depends on
the energy scale. In string theory however, (as we will see in chapter 6) the
coupling will become a spacetime dependent function, namely the exponent
of a scalar field, eΦ(X).

Another big difference between quantum field theory and string theory
is the meaning of the β function. As we said before, in quantum field theory
it is the dependence of the coupling on the energy scale. In string theory,
however, it is the dependence of the action on the local world-sheet scale.

We can perform a conformal transformation, locally rescaling the world-
sheet metric (see (1.9a)). Conformal invariance is a fundamental symmetry
of string theory. This means that (at least classically) there is no confor-
mal anomaly when we rescale the world-sheet metric, and therefore these β
functions should vanish. Since the variation of the world-sheet action, with
respect to the metric is proportional to the energy-stress tensor T ab, we can
see the analogy between β functions in quantum field theory and in string
theory (see table 2.1). The importance of β functions will become clear in
subsequent sections.

2.2 Weyl invariance and Weyl anomaly

2.2.1 Weyl invariance

Weyl transformations locally rescale the world-sheet by an overall factor.
As we saw in section 1.3, only in two dimensions can a theory be conformal
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invariant. Let’s investigate the property of Weyl invariance a bit further.
An infinitesimal Weyl transformation (see (1.9a)) says that locally

hab −→ hab + δhab (2.3a)

= hab + 2habδω. (2.3b)

For the action to be Weyl invariant, we need the variation of the action with
respect to the metric hab to vanish, so

δS

δhab
= 0. (2.4)

According to Noether’s theorem the energy-stress tensor is written as (1.12).
From this we see that the energy-stress tensor and the claim for Weyl in-
variance are closely related. Actually the claim for Weyl invariance can be
put in form

T a
a(σ) =

4π√
−h(σ)

[
δ

δhab(σ)
S

]
hab(σ) (2.5a)

= 0. (2.5b)

In other words, Weyl invariance implies the energy-stress tensor to be trace-
less.

2.2.2 Path integral approach

However, this derivation is only true classically. In order to include quantum
corrections, we need a different way of introducing the energy-stress tensor.
Therefore, consider the path integral

Z '
∫

[dX] exp(−S[X,h]). (2.6)

This path integral counts the number of field configurations on the world-
sheet. However, there is a huge set of configurations that only differ by a
Weyl or diff transformation, and therefore render the same action. There-
fore, there is an enormous overcounting of field configurations in this path
integral. What we really want is the path integral, divided by the volume of
the Weyl × diff symmetry group, Vdiff×Weyl. So we need to gauge fix the
path integral.

The way to do this is to choose a path trough the volume of the symmetry
group, in such a way that each slice that represents the same theory is only
crossed once. A way to carry out such a gauge fixing is known as the
Faddeev-Popov procedure, which is explained nicely in [11]. We will not go
into detail here, but simply state that it comes down to introducing two new
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(anticommuting) Grassmann ghost fields, ca and bab and writing down an
action for these fields of the form,

Sg =
1
2π

∫
d2σ
√
−hbab∇acb, (2.7)

where hab is now some fixed metric. Then the gauge fixed Polyakov path
integral is locally written as

Z =
∫

[dX db dc ] exp(−S[X, b, c, h]) (2.8a)

=
∫

[dX db dc ] exp(−S[X,h]− Sg). (2.8b)

This gauge fixed path integral can be used for calculating correlation func-
tions 〈. . .〉h, where

〈. . .〉h ≡
∫

[dX db dc] exp(−S[X, b, c, h]) . . . . (2.9)

Most of the time we will omit the discussion on ghosts in this thesis for the
sake of simplicity, but formally they need to be included.

With this correlation function, we are able to deduce another expression
for the energy-stress tensor. The way to do this is to vary this correlation
function with respect to hab. When we do so and rewrite (1.12) as

δS

δhab(σ)
=

√
−h(σ)
4π

T ab(σ), (2.10)

we see that this variation can be written as1

δ〈. . .〉h = − 1
4π

∫
d2σ

√
−h(σ)δhab(σ)

〈
T ab(σ) . . .

〉
h
. (2.11)

So, the energy-stress tensor can be written as the infinitesimal variation of
the path integral with respect to the metric.

This result is derived for general variations of the world-sheet metric.
However, we are interested in the specific case where the variation was a
Weyl variation. Therefore we can substitute (2.3b), i.e. δhab = 2habδω.
Performing a Weyl transformation and using (2.11), the expression for T ab

becomes

δW 〈. . .〉h = − 1
2π

∫
d2σ

√
−h(σ)δω(σ)〈T a

a(σ) . . .〉h. (2.12)

1From a mathematical point of view, the path integral (or partition function) (2.8b) can
be seen as a functional Z

ˆ
S[hab(σ)]

˜
. Varying this functional with respect to hab requires

applying the chainrule for functionals. With this procedure, we also need to integrate over
the parameters σa, a = 0, 1. This explains the extra surface integral.



20 Scale transformations and interactions

2.2.3 Critical dimension

As we said before, demanding our theory to be Weyl-invariant now requires
that the energy-stress tensor is traceless. So classically

T a
a

classically
= 0. (2.13)

However, quantum effects can contribute to the trace of the energy-stress
tensor, causing a conformal anomaly, or Weyl anomaly to occur. We have
already investigated this property in chapter 3. One can show that (see [11])
the Weyl anomaly is equal to

〈T a
a〉

QM
= − c

12
R, (2.14)

where c is called the central charge (which will be introduced in chapter 3)
and R is the world-sheet Ricci scalar.2 The only way to obtain a consistent
theory is if the total central charge is c = 0.

The central charge is made up of two components, namely the Xµ

bosonic field contributions cX and the ghost contributions cg. It can be
shown the central charge for the ghost fields is cg = −26. Furthermore,
every bosonic spacetime coordinate field Xµ contributes an amount of +1
to the central charge. Therefore, we find that the total central charge is

c = cX + cg = D − 26. (2.15)

So, Weyl invariance can only be achieved for D = Dc = 26, where D is
the number of spacetime fields Xµ, and therefore equal to the number of
dimensions. This is the famous result that bosonic strings can only live in 26
dimensions.3 A bosonic string theory in Dc = 26 is called a critical (bosonic)
string theory and for a critical string, Dc is called the critical dimension. One
can also consider string theories with fermions, called superstring theories.
It turns out that the critical dimension for superstrings in flat spacetime is
Dc = 10, as can be showed in quite a similar way.

In the derivation above we considered a string theory in flat spacetime.
In a little while we shall include other backgrounds in our theory and see
that this has a big influence on the condition for Weyl invariance. As we
will see, the number of spacetime dimensions the strings lives in will be able
to deviate from the critical dimension!

2The Ricci scalar basically tells you how much curvature there is locally. For a non-flat
world-sheet R generally is non-zero. Also see section B.

3Note however, that have just looked at flat spacetime here! The metric is equal to the
Minkowski metric ηµν and no other background fields are involved.
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2.3 Fields and target space

When looking at string theory, it’s important to be aware of the similarities
and differences between string theory and ordinary quantum field theory for
point particles. For one, a classical point particle carves out a worldline,
which can be parameterised by a parameter τ , and can be set equal to the
particle’s proper time (see section 1.2). We can write down an action for a
point particle, from which we can derive it’s equations of motion. A particle
in quantum field theory is described by quantum fields φ(xµ), µ = 0, . . . , 3,
living in D = 4 dimensions. A theory of these particles can be described
by an action, involving the fields and derivatives of these fields. The four
dimensions quantum fields live in, are equal to our spacetime. When we
want to describe particles interacting with each other, we write down an
action, involving the fields and derivatives, plus higher order terms and
corresponding couplings.

This is not the case in string theory. First of all, strings are one-
dimensional objects embedded in D spacetime dimensions. These strings
are not generated by fields, as in quantum field theory. It is, however, pos-
sible to define a field theory for strings. Such a theory is called String field
theory.4 You could say that string theory relates to string field theory as a
point particle does to quantum field theory.

In contrast to the point particle, a string has infinitely many more in-
ternal degrees of freedom, the oscillator modes, or string modes. These
string modes can be seen as waves propagating on the world-sheet at the
speed of light. When we quantize the string, the string modes actually be-
come quantum modes of a two dimensional quantum field theory. Since
a string propagates in D spacetime dimensions, there are D such fields
Xµ(τ, σ), µ = 0, . . . , D − 1. From the world-sheet’s point of view, the fields
Xµ can be seen as the coordinates of a manifold, called target space. In the
case of string theory this is just equal to spacetime.

So particles in quantum field theory are described by quantum fields,
living in D = 4 dimensions. Interactions can be described by putting higher
order terms in the Lagrangian. Particles in string theory are described by
different modes of a string propagating in spacetime. From the world-sheet’s
point of view, a string mode is some configuration of D two dimensional
quantum fields, which are embedded in spacetime.

In the next chapter we will study conformal field theory. Since the two-
dimensional string world-sheet is conformal invariant, it is not a bad idea to

4In string field theory there are fields Φ[X(σ)] which create and annihilate strings
in a certain configuration. However, such fields do not even live in ordinary spacetime
anymore, but in some sort of ‘stringy’ target space. It is possible to write down an action
for open string field theory, but it turns out to be very complicated, if not impossible,
to write down an action for closed string fields. This subject is, however, far beyond the
scope of this thesis.
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investigate this property to full extent. Conformal field theory provides us
with a good way of achieving this. After having studied the mathematical
framework of conformal field theory, we will incorparate it into a theory of
interacting strings.



Chapter 3

Conformal field theory

3.1 Complex coordinates

3.1.1 Wick rotation

Conformal field theory is a very important tool for string theory. Interac-
tions between strings and other strings, or backgrounds can be very hard
to describe if one would try to parameterize the theory, and apply correct
boundary conditions. An important idea that has been put forward is that
interactions (for example the emission or absorption of strings) should be
transformed (rescaled) in such a way that they become ‘pointlike’ opera-
tors on the world-sheet. Since the world-sheet is conformal invariant, such
transformations leave the theory unchanged. After having applied these
transformations, it becomes very interesting to see how these operators be-
have in the vicinity of each other. When two operators approach each other
on the world-sheet, the quantum effects become apparent. A very conve-
nient setting in which to study these sorts of interactions is called conformal
field theory (CFT). CFT is a very extensive subject, so we will just cover
some bacis properties and give a global overview on the subject.

It turns out to be convenient to study interacting strings in a Euclidean
framework, hab = δab. A Euclidean metric can easily be obtained by per-
forming a Wick rotation on one of the world-sheet coordinates (usually the
propertime coordinate).1 So we let

w = σ0 + σ1 (3.1a)

= σ1 + iσ2, (3.1b)

and w̄ = σ1 − iσ2. (3.1c)

It is easily checked that with these coordinates, the world-sheet metric in-
deed has a Euclidean signature.

1One has to be careful that when performing a Wick rotation, no poles are crossed. In
most examples, however, this is not the case.
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σ00
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σ00

σ0

Figure 3.1: Left: The world-sheet of a closed string is a cylinder in space-
time. Right: The conformal mapping to complex coordinates. In the complex
plane, the origin corresponds to the string’s proper time at minus infinity,
σ0
−∞. Points at |z| = ∞ correspond to the string’s proper time at plus

infinity, σ0
∞

3.1.2 Conformal transformation

The next convenient choice is to perform a conformal transformation on
these coordinates, such that

z = e−iσ1+σ2
(= e−iw) = z1 + iz2, (3.2a)

z̄ = eiσ
1+σ2

(= eiw̄) = z1 − iz2. (3.2b)

Both open and closed strings can be studied in these coordinates. However,
since closed strings are most easily described in this setting, we will focus
on them for the remainder of this chapter.

As we discussed before, the world-sheet of a closed string is a cylinder,
where the string’s proper time σ0 runs from −∞ to +∞, and the σ1 coor-
dinate runs from 0 to 2π. In our new z coordinates, however, the string’s
proper time runs radially outwards, with z = 0 corresponding to σ0 → −∞,
and |z| → +∞ to σ0 → +∞. The σ1 coordinates at a fixed time σ2 are
represented by circles around the origin. See figure 3.1.

Derivatives on the complex plane are defined by

∂ ≡ ∂z =
1
2
(∂z1 − i∂z2), (3.3a)

∂̄ ≡ ∂z̄ =
1
2
(∂z1 + i∂z2), (3.3b)
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and in general, vectors with lower and upper indices transform as

(V 1, V 2)→ (V z, V z̄), (3.4a)

(V z, V z̄) =
1
2
(V 1 + iV 2, V 1 − iV 2), (3.4b)

and (V1, V2)→ (Vz, Vz̄), (3.4c)

(Vz, Vz̄) =
1
2
(V1 − iV2, V1 + iV2). (3.4d)

With these new coordinates, the metric also transforms. By working out
the details, we find gzz = gz̄z̄ = 0 and gzz̄ = gz̄z = 1

2 . Therefore, the inverse
of the metric gives gzz = gz̄z̄ = 0 and gzz̄ = gz̄z = 2.2

3.2 Operator-product expansions

3.2.1 Currents and charges

On the world-sheet, one often encounters conserverd currents Ja, implying
that ∂aJ

a = 0, and conserved charges Q, implying that d
dtQ = 0. A con-

served current induces a conserved charge. By applying Gauss’ divergence
theorem, one can show that the conserved charge on the world-sheet, induced
by a conserved current equals

Q =
1
2π

∫ 2π

0
dσ1J0. (3.5)

Next, we can switch to complex coordinates (w, w̄), and Wick rotate
J0 = iJ2. In this case, the integral splits up into a holomorfic part (only
dependent on w) and a anti-holomorphic part (only dependent on w̄). Then,
we can switch to the conformally transformed coordinates (z, z̄) and see that
the integrals turn into contour integrals around the origin.

We know from Noether’s theorem that every symmetry of an action gives
rise to a conserved current. We will use this to study the conserved current
for conformal symmetry. Fist of all, consider the energy-stress tensor on the
world-sheet, T ab. We already discussed that the energy-stress tensor itself
is conserved, meaning ∂aT

ab = 0. Then, moving to the complex plane, it
can be shown that this leads to the conditions

∂z̄Tzz = 0, → Tzz = T (z), (3.6a)
∂zTz̄z̄ = 0, → Tz̄z̄ = T̄ (z̄), (3.6b)

so T (z) is holomorfic, and T̄ (z̄) is anti-holomorfic.
This derivation works quite similar for the current of conformal symme-

try, Ja(ε) = Tabε
b, where εb is an infinitesimal conformal transformation.

2Be cautious that raising or lowering indices can lead to counter intuitive results!
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If ε(z) and ε̄(z̄) represent infinitesimal conformal transformations on the
complex plane, the current Ja(ε) also splits up into a holomorfic and anti-
holomorfic part,

Jz = T (z)ε(z), (3.7a)
Jz̄ = T̄ (z̄)ε̄(z̄). (3.7b)

In the following we will show how this can be used to generate conformal
transformations of fields, living on the complex plane.

3.2.2 Generators of conformal transformations

In quantum field theory one often needs the product of two (or more) opera-
tors, for example when calculating correlation functions. But such a product
only makes sense if it is time-ordered.3 Since the world-sheet’s proper time
coordinate of a (closed) string in conformal complex coordinates runs radi-
ally outwards, we impose radial ordering for operator products, i.e.

RA(z, z̄)B(w, w̄) =
{
A(z, z̄)B(w, w̄) for |z| > |w|
B(w, w̄)A(z, z̄) for |z| < |w| . (3.8)

Now we turn our attention back to the conserved charge for conformal
transformations, Qε. Such a charge can generate (infinitesimal) conformal
transformations. The quantum version of an infinitesimal conformal trans-
formation of a field φ(z, z̄) is given by the commutator with Qε, i.e.

δεφ(z, z̄) = [Qε, φ(z, z̄)] (3.9a)

=
1

2πi

∮
du ε(u) [T (u)φ(z, z̄)− φ(z, z̄)T (u)] , (3.9b)

where we have just written down the holomorphic part here. The anti-
holomorphic part is written is a similar way. But as we just discussed with
radial ordering, the first term only makes sense for |u| > |z|, and the second
term only makes sense |z| > |u|. Since these contour integral are integrated
along contours around the origin, we can deform these contours in such a
way that we end up with just one contour around the point z, γz (see [12]
for a more detailed derivation). So, therefore the variation of a field φ(z, z̄)
can finally be written as

δεφ(z, z̄) = [Qε, φ(z, z̄)] (3.10a)

=
1

2πi

∮
γz

du ε(u)R (T (u)φ(z, z̄)) . (3.10b)

3Time ordering makes sure that the operators are put in the correct order. If this is
not the case, one can have a situation where the expectation values of the product blow
up, and would therefore be undefined.
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3.2.3 Operator-product expansions

We will now try to evaluate δεφ in (3.10b), the quantum version of the
variation of a field φ(z, z̄). Therefore, we first need to know how a field
globally transforms under a conformal transformation. It turns out that
fields transform in a very similar way as tensors do under general coordinate
transformations. If we start with a field φ(z, z̄), and we perform a conformal
transformation, letting z → f(z) and z̄ → f̄(z̄), the field globally transforms
as

φ(z, z̄) =
(∂f(z)

∂z

)h(∂f̄(z̄)
∂z̄

)h̄
φ(f(z), f̄(z̄)). (3.11)

Here h and h̄ are called the conformal weights of the field. They are real,
but need not be integers. A field that transform according to (3.11) is also
called a primary, or conformal field of weight (h, h̄).

Since (3.10b) is just the holomorphic part, we expect a conformal trans-
formation just to transform z. Clasiccaly, this means that an infinitesimal
conformal transformation would transform φ(z, z̄) as

δεφ(z, z̄) = h∂zε(z)φ(z, z̄) + ε(z)∂zφ(z, z̄). (3.12)

Now that we know how fields classically transform under conformal
transformations, we will turn our attention back to the quantum version of
such transformations. First of all, when we deformed the contour in (3.10b),
we assumed that the product R(T (u)φ(z, z̄)) is analytic in the neighbour-
hood of the point z. When this is the case, we can expand the product in a
Laurent series,

R(T (u)φ(z, z̄)) =
∑

n

(u− z)nOn(z, z̄), (3.13)

where the On are usually operators. The idea of expanding operators near
each other in a Laurent series is known as operator-product expansion (OPE).

After we have expanded the product in a Laurent series, we can substi-
tute it back into (3.10b). If we then compare this result with the classical
version (3.12), we see we obtain the correct result for the operator product
expension if4

R(T (u)φ(z, z̄)) =
h

(u− z)2
φ(z, z̄) +

1
u− z

∂zφ(z, z̄). (3.14)

We can now take this equation, (3.14), (plus its anti-holomorphic version)
as the definition of what we mean by a conformal field of weight h, in the
quantum regime. In other words, if the (radial ordered) operator-product
expansion of the energy-stress tensor T (u) with a field φ(z, z̄) has the form
of (3.14), this field is called a conformal field of weight h (and analogious
for the anti-holomorphic part).

4There are of course more terms in the expansion, but these have no poles at u = z.
Therefore they do not contribute to the integral and we will leave them out.
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3.2.4 Free bosons and OPE’s

Now that we have found a way to describe conformal fields in the quantum
regime, we can look at some explicit examples. We can also use the operator-
product expansion technique to investigate other OPE’s. First of all, since
we are interested in applying CFT to string theory eventually, let’s consider
the action for free boson fields, Φi. On the cylinder, in Minkowski spacetime
this action is just equal to the Polyakov action, (1.6). However, if we switch
to complex coordinates on the cylinder, (w, w̄), this action turns into

S =
1

2πα′

∫
M
dwdw̄

D∑
i=1

∂wΦi(w, w̄)∂w̄Φi(w, w̄), (3.15)

where we have made use of the fact that dzdz̄ = 2d2σ. Classically, this
implies that the energy-stress tensor is written as

T (w) = −1
2

D∑
i=1

∂wΦi(w)∂wΦi(w), (3.16a)

T̄ (w̄) = −1
2

D∑
i=1

∂w̄Φ̄i(w̄)∂w̄Φ̄i(w̄). (3.16b)

Next, we can use this action and then apply the correct boundary con-
ditions to find the solutions of the equations of motion of the boson fields.
After having found them, and having switched over to complex coordinates
on the plane, (z, z̄), we find that the solutions of the bosons are

Φi(z, z̄) = qi − i
[
pi log(z) + pi log(z̄)

]
+ i
∑
n6=0

1
n

[
αi

nz
n + α̃i

nz̄
n
]
, (3.17)

where (qi, pi) play the same rôle as (xµ, pµ) in foregoing, and the operators
αi

n and α̃i
n are again oscillator modes of a harmonic oscillator. This time

we have excluded the string lenghtscale l, since in this derivation we do not
need to interperate the operators as representing position or momentum.

Next, we want to find the OPE of two boson fields Φi(z, z̄) and Φj(u, ū).
In the foregoing, we already discussed that these fields need to be radially
ordered, in order to give correct results. However, if we multiply two boson
fields, we run into another ordering ambiguity! To see this, note that the
operators qi and pi, as well as the oscillator modes αi

n, do not commute.
Therefore, when we multiply these operators, we need to define the correct
order to put them in. The ordering that we will use is called normal ordering.

Let’s say that we have two operators L and R and we define normal
ordering of the two operators such that R is always to the right of L. Then
we may write this as

: RL : =: LR : = LR, (3.18)
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where the colons stand for normal ordering. First of all, we can see that
operators between colons behave as classical objects (within colons, they
commute). Secondly, note that this implies

RL =: RL : + [R,L]. (3.19)

For the operators qi, pi, we define normal ordering such that pi is always
to the right of qi. And for the oscillator modes αi

n and α̃i
n, we define normal

ordering such that the annihilations operators (modes with n > 0) are always
to the right of the creation operators (modes with n < 0). With these
definitions we are now ready to derive OPE’s for various fields and operators.
We will not perform the actual calculations here, but merely state their
results.

� The OPE for two bosonic fields Φi(z, z̄) and Φj(u, ū) becomes

R
(
Φi(z, z̄)Φj(u, ū)

)
=: Φi(z, z̄)Φj(u, ū) : −δij

[
log(z−u)+log(z̄− ū)

]
.

(3.20)
We are usually interested in OPE’s, in the limit z → u. In this limit,
the classical part (so, the part within normal ordering signs) always
yields a constant. This part does not contribute in contour integrals,
so it is usually left out. Also, in OPE’s, one always implies radial
ordering. For this reason, is the radial ordering symbol is also usually
left out. Therefore the OPE (3.20) can be written as

Φi(z, z̄)Φj(u, ū) = −δij
[
log(z − u) + log(z̄ − ū)

]
. (3.21)

� By differentiation of (3.20), one can also calculate the OPE of the
derivatives of the fields, ∂Φi(z, z̄)∂Φj(u, ū). In this case, we obtain

∂Φi(z, z̄)∂Φj(u, ū) = − δij

(z − u)2
, (3.22)

and equivalent for the anti-holomorphic part.

� Recall that the definition of a conformal field φ(z, z̄) of weight h in-
volved the OPE of the energy-stress tensor with the field, T (u)φ(z, z̄).
Since in complex coordinates the energy-stress tensor classically is
written as (3.16), we see that we have to be careful when we want
to write down the quantum version. Making use of (3.22), we see that
we can define a nice, non-singular version of the energy-stress tensor
in the quantum regime as

T (z) ≡ −1
2

:
D∑

i=1

∂Φi(z)∂Φi(z) : (3.23a)

= −1
2

D∑
i=1

lim
z→u

[
∂Φi(z)∂Φi(u) +

δii

(z − u)2

]
, (3.23b)
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and equivalently for the anti-holomorphic part. With this definition it
is possible to calculate the OPE of T (z) with ∂Φi(u). If we work out
the calculation, we find that it gives

T (z)∂Φi(u) =
1

(z − u)2
∂Φi(u) +

1
z − u

∂2Φi(u). (3.24)

Comparing this result with (3.14), we can conclude that ∂Φi(u) is a
conformal field of weight 1. And of course, the anti-holomorphic part
is calculated in the same fashion.

� The last example of an OPE that we will discuss is the OPE of T (z)
with itself. By working out the details, one can show that it yields

T (z)T (u) =
c/2

(z − u)4
+

2
(z − u)2

T (u) +
1

z − u
∂uT (u), (3.25)

where the constant c = D, in this case equal to the number of bosons.
This example shows that T (z) is not a conformal field. It would have
been if the first term was absent. In that case its conformal weight
would have been h = 2, equal to its classical value. This first term is
caused by the quantum effects and is called the conformal anomaly.

These OPE’s were just a few examples in order to illustrate how they can
be obtained. In string theory, when one wants to study the quantum effects
of fields on the world-sheet near each other, OPE’s are a very useful tool.

3.3 Virasoro operators

3.3.1 Virasoro algebra

In the foregoing we have looked at a current for a conformal symmetry,
Jz = T (z)ε(z) (and similar for the anti-holomorphic part). The function ε(z)
is an arbitrary holomorphic function. Therefore, we are able to expand it in
modes. The expansion will in general depend on the surface that the function
is expanded on. In this case, we are expanding on the complex plane, and
we shall include the point ∞, so that surface is in fact the Riemann sphere.

It can be shown (see [12]) that the Laurent modes generate transfor-
mations of the form z → z − zn+1, if ε(z) = zn+1. So in fact, we obtain
an infinite set of currents Jn(z) = T (z)zn+1. Just as before, each of these
currents has its own conserved charge, which we will now denote by Ln. We
also saw that in the quantum regime, these charges become generators of
these transformations and they are written as

Ln =
1

2πi

∮
dz zn+1T (z), (3.26)
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where we integrate the contour around the origin. If we invert this relation,
we obtain

T (z) =
∑

n

z−n−2Ln. (3.27)

Again, this can similarly be repeted for the anti-holomorphic part.
It turns out that the generators Ln are elements of an algebra, called the

Virasoro algebra. The elements themselves are called Virasoro operators.
By calculating the commutator of two generators, we find that the Virasoro
algebra obeys

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0. (3.28)

Classically, the last term is absent and indeed the commutator of two ele-
ments is itself again an element of the algebra. But in the quantum algebra,
we now obtain an extra term, including c (introduced in (3.25)).

Formally, such a constant term is not allowed in an algebra, but we
can solve this problem. We should interpret c not as a number, but as an
element of the algebra that commutes with all other elements. In that case,
the operator c has a constant value in any representation of the algebra, and
this value is equal to the number c. A constant term that arises as in the
algebra (3.28) is often called a central charge.

The Virasoro operators can also be used to show that they obey im-
portant conditions, called Virasoro constraints. Classically, the Virasoro
constraints say Lm = L̄m = 0, for all m. One particular important Virasoro
constraint is L0 = L̄0 = 0. If we consider an action of free bosonic fields,
which have solutions of the form (3.17), the classical Virasoro constraints
for L0 and L̄0 are written as

L0 ≡
∞∑

n=0

αµ
−nαnµ = 0, (3.29a)

L̄0 ≡
∞∑

n=0

α̃µ
−nα̃nµ = 0, (3.29b)

where we have used the fact that αµ
0 = α̃µ

0 = 1
2 lp

µ. Now, one can show that
the Hamiltonian of the system classically is equal to the sum of these two
Virasoro operators, so we find

H = L0 + L̄0 = 0. (3.30)

This result will be used later on in the thesis.

3.3.2 Operator-state correspondence

Now that we have found the Virasoro algebra, we want to study its repre-
sentations. Even though this algebra has many representations, we will just
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consider the so-called unitary highest weight representations. A representa-
tion of the Virasoro algebra is called unitary if all operators Ln are realized
as operators acting on a Hilbert space, and obey the condition L†n = L−n.
A representation is a highest weight representation if it contains a state with
a smallest value of L0.5

If |h, h̄〉 is a highest weight state, and has eigenvalues

L0|h, h̄〉 = h|h, h̄〉, (3.31a)
L̄0|h, h̄〉 = h̄|h, h̄〉, (3.31b)

then it is annihilated by all generators Ln and L̄n, with n > 0, so

Ln|h, h̄〉 = L̄n|h, h̄〉 = 0, for n > 0. (3.32)

Beside highest weight states, we can also define the groundstate, |0〉,
of this system. The groundstate can be defined as the state that respects
the maximum number of symmetries. Therefore, it must be annihilated
by the maximum number of conserved charges, Ln and L̄n. Classically, this
amounts to all n, but due to the central charge term in the quantum algebra,
this is not possible. It turns out that the maximal symmetry is6

Ln|0〉 = L̄n|0〉 = 0, for n ≥ −1, (3.33)

and its Hermitean conjugate 〈0| satisfies

〈0|Ln = 〈0|L̄n = 0, for n ≤ 1. (3.34)

We are now ready to introduce the so-called operator-state correspon-
dence (OSC). As we will now show, one can find a connection between a
local operator (or conformal field) φ(z, z̄) of weight (h, h̄) and a highest
weight state |h, h̄〉. If we define a state |h, h̄〉 as

|h, h̄〉 = lim
z,z̄→0

φ(z, z̄)|0〉, (3.35)

one can show that this state indeed satisfies

Ln|h, h̄〉 = L̄n|h, h̄〉 = 0, for n > 0, (3.36)

so that the condition for a highest weight state is indeed satisfied. It is also
not difficult to show that

lim
z,z̄→0

[L0, φ(z, z̄)] = lim
z,z̄→0

hφ(z, z̄), (3.37a)

lim
z,z̄→0

[L̄0, φ(z, z̄)] = lim
z,z̄→0

h̄φ(z, z̄), (3.37b)

5Physically this can be interpreted as a ground state of the Hilbert space, or the state
with the lowest energy. Since H = L0 + L̄0, and this should of course be bounded from
below.

6For more details see [12].
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so that if we let this condition act on the vacuum, we find that the state
|h, h̄〉 indeed has the correct eigenvalues (h, h̄). Such a relation can also be
obtained outside the limit (z, z̄) → 0. It can be shown that the operators
L−1 and L̄−1 generate translations on the cylinder. This means that if we
want to find a local operator on the complex plane at a point (u, ū), we
define

φ(u, ū)|0〉 = euL−1+ūL̄−1 |h, h̄〉. (3.38)

So, apparently we are able to find a one-to-one correspondence between
(highest weight) states and local operators (fields) on the world-sheet.7

Interactions between strings can be very difficult to describe. We could,
of course try to put higher order terms in the world-sheet action, but that
would only describe interactions of the fields on the world-sheet, and there-
fore a more complicated theory on the world-sheet. But that’s still a theory
of a single string, and no interacting strings! This is where OSC comes in.
OSC in string theory means replacing string states on the world-sheet by
local operators. How to describe interaction strings is treated in the next
chapter.

7We haven’t actually given a formal proof of the one-to-one correspondence here. For
more details, the reader is refered to [12].
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Chapter 4

Vertex operators and
amplitudes

4.1 Operator-state correspondence

4.1.1 Applying CFT to string theory

Up till now we have just studied some basic properties of the (bosonic)
string and the world-sheet action. But if string theory is supposed to be
the potential ‘theory of everything’, it should be able to properly describe
interactions as well. As we mentioned in the foregoing, interactions between
strings can not simply be build in by putting higher order terms in the
world-sheet Lagrangian. Parameterising the theory and applying the correct
boundary conditions also isn’t a real practicle idea, because the level of
difficulty for these calculations gets out of hand real quick. So we need to
come up with something completely different.

Fortunately, we already have such a tool to our disposal. Conformal field
theory is the correct way to describe interactions. In particular we will make
use of the OSC.

4.1.2 Introducing the vertex operator

Let’s focus on the scattering amplitude of one string emitting another string.
As we know, we can apply a conformal transformation to the world-sheet,
locally rescaling it. It’s even possible to apply such a transformation that the
emitted string becomes a puncture in the world-sheet! First of all we should
divide between open and closed interacting strings. The world-sheet of an
open string emitting another open string will become a disk with punctures
on the boundary. The world-sheet of a closed string emitting another closed
string will become a sphere with punctures on the surface, since there are
no boundaries for closed strings. See figure 4.1 and 4.2.
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Figure 4.1: Open string scattering. Left: open strings with sources at
X0 = ±∞. Right: A conformally equivalent picture, a disk with four vertex
operators attached to the boundary. We should note that we have used a
Euclidean signature for the world-sheet here. A Minkowski signature would
yield a strip with two vertex operators attached to the boundary.
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Figure 4.2: Closed string scattering. Left: closed strings with sources at
X0 = ±∞. Right: A conformally equivalent picture, a sphere with four ver-
tex operators attached. Here we also used Euclidean signature. A Minkowski
signature would yield a cylinder with two vertex operators attached to the
surface.
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Figure 4.3: Left: Emission of one open string. Right: Conformally equiva-
lent picture, the emitted string has become a vertex operator on the world-
sheet. This time we used a Minkowski signature, and therefore obtained a
stip with one vertex operator attached to the boundary.

A nice example, illustrating how to deal with string interactions and
scatterings, is calculating the probability amplitude A of interacting strings.
Let’s, for the moment, turn our attention to the simplest open string tree-
diagram, one open string emitting another (see figure 4.3). We know from
quantum mechanics that if we want to calculate the probability amplitude,
we take the inner product of the in-state and out-state:

AQM = 〈ψin | ψout〉. (4.1)

But this doesn’t hold for interacting strings. The difference is that when a
string in the in-state |B〉 emits another string |C〉, the out-state |B′〉 is no
longer the same as the in-state. Instead, what we can do is introduce an
operator V (τ, σ) that turns the out-state into the in-state, and then take
the inner product,

AST = 〈B | V (τ, σ) | B′〉. (4.2)

So in fact we have substituted an operator for a string state! These operators
are called vertex operators, and here we have made explicit use of the OSC.

The fact that a theory of interacting strings can equivalently be described
by a theory of operators on the world-sheet is one of the true elegant features
of string theory. In the next section we will calculate some amplitudes, using
these vertex operators.
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4.2 Tachyon tree-diagrams for open strings

4.2.1 Vertex operators for open strings

Let’s first find the correct expression for a vertex operator. Since each
different string state has it’s own vertex operator, we need to consider each
case seperately. We begin with a simple case, the tachyon state which has
negative mass squared (M2 = −k2 = − 2

α′ ).
1 As was said in chapter 1,

the definition of an open string tachyon state with momentum kµ is the
groundstate of a string, |0, kµ〉, which obeys

pν |0, kµ〉 = kν |0, kµ〉, (4.3a)
αν

m|0, kµ〉 = 0, for m > 0. (4.3b)

Using this and recalling the commutation relations for the operators xµ

and pµ, (1.23a), we can calculate the momentum of the following state

pν |ψ〉 = pνeik1ρXρ |0, kµ
2 〉 (4.4a)

=
{[
pν , eik1ρXρ]

+ eik1ρXρ
pν
}
|0, kµ

2 〉 (4.4b)

= (kν
1 + kν

2 )eik1ρXρ |0, kµ
2 〉 (4.4c)

= (kν
1 + kν

2 )|ψ〉. (4.4d)

In other words, the state |ψ〉 has momentum kµ
1 +kµ

2 . Again, by making use
of these commutation relations, it is not hard to show that αν

m|ψ〉 = 0, for
m > 0. So in fact we have proven that |ψ〉 is the groundstate, i.e.

eik1ρXρ |0, kµ
2 〉 = |0, kµ

1 + kµ
2 〉. (4.5)

Therefore it changes the momentum of a tachyon state from k2 to k1 + k2.
In other words, the operator eik1ρXρ

has exactly the property that we are
looking for in a vertex operator! It’s conjugate expression is

〈0, kµ
2 |e

−ik1ρXρ
= 〈0, kµ

1 + kµ
2 |, (4.6)

so that the condition for momentum conservation of a tachyon state becomes

〈0, k1|0, k2〉 = N δD(k1 − k2), (4.7)

and N is just a normalization constant, it has no further significance.
The oscillator modes do not commute, so when we write the exponential

as a power series there is an ordering ambiguity. We can solve this problem
by using normal ordering. Normal ordering means that we write all anni-
hilations operators to the right and all creation operators to the left. We
write the normal ordered version of an operator F as : F : . Therefore, the

1In the remainder of this section we will set α′ = 1 for simplicity.



4.2 Tachyon tree-diagrams for open strings 39

normal ordered form of an open string tachyon vertex operator, located at
(τ1, σ1), can be written as

Vtachyon,o(τ1, σ1) = go

∫
∂M

ds : eik·X(τ,σ) : δ(2)(τ1, σ1) (4.8a)

= go : eik
µXµ(τ1,σ1) : , (4.8b)

where we have integrated along the boundary of the world-sheet. Further-
more, we have introduced an open string coupling go. It comes from the
fact that when we add a vertex operator, it couples to the world-sheet with
interaction strength go. We can always set the open string coupling equal
to go = 1, by redefining the fields Xµ and will do so in the following. In a
section 4.3 we will go into some more detail about the string coupling.

4.2.2 Emitting one open tachyon state

We will now calculate the simplest scattering amplitude for strings, namely
the amplitude of one open string tachyon emitting another open string
tachyon, A1↔2 (see figure 4.3). For this example we will impose Neumann
boundary conditions for the open string, so therefore we can substitute the
solution (1.19) for the Xµ fields. We find that the vertex operator for a
tachyon state becomes

Vtachyon,o(τ, σ) = : eik
µXµ(τ,σ) :

= : eik
µ(xµ+l2pµτ+il

P
n6=0

1
n

αnµe−inτ cos nσ) :

= eik
µ(xµ+l2pµτ)

× e−lkµ
P

n<0
1
n

αnµe−inτ cos nσ × e−lkµ
P

n>0
1
n

αnµe−inτ cos nσ.
(4.9)

Since we can choose either side of the world-sheet (σ = 0 or σ = π) as
the boundary where the vertex operator is located, we make the convenient
choice σ = 0. Furthermore, the probability amplitude is invariant under a
translation along the τ -direction, so we can use this to set τ = 0. If we
assign incoming momenta with a plus sign and outgoing momenta with a
minus sign, the probability amplitude will become

A1↔2 = 〈B | VC(0, 0) | B′〉 (4.10a)

= 〈0, k1 | e−ikµ
2 xµ × elkµ

P
n<0

1
n

αnµ × elkµ
P

n>0
1
n

αnµ | 0,−k3〉 (4.10b)
= 〈0, k1 + k2 | 0,−k3〉 (4.10c)

= N δD(k1 + k2 + k3), (4.10d)

which is really nothing more than saying that the momentum of the
tachyons is conserved! If we take it one stap further and calculate two
tachyons scattering off each other, things become a little more interesting.
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4.2.3 2-tachyon open string scattering

What was done for the emission (or absorption) of one single string state can
be repeated for two of states as well. Since it is an instructive exercise, we
will go through a detailed calculation of the 2-tachyon open string scattering.
This process is depicted in figure 4.1

First of all, we will again assume Neumann boundary conditions, so we
will use the solutions (1.19) for the Xµ fields. Next, we should notice that
this time we have to insert two vertex operators, VC(τC , σC) and VD(τD, σD).
Without loss of generality, we can put both vertex operators on the same
side, so we choose σC = σD = 0. Furthermore, we can use translational
invariance to put the τ parameter of one vertex operator to zero, but then
we have to integrate over the other one. Therefore, the simplest form the
scattering amplitude A2↔2 can be brought into is

A2↔2 =
∫ ∞

0
dτ 〈B | VC(0, 0)VD(τ, 0) | E〉 (4.11a)

=
∫ ∞

0
dτ 〈0, k1| : e−ikµ

2 Xµ(0,0) : : e−ikν
3Xν(τ,0) : |0,−k4〉 (4.11b)

=
∫ ∞

0
dτ 〈0, k1|e−ikµ

2 xµ exp
{
lkµ

2

∑
n>0

αnµ

n

}
(4.11c)

× exp
{
lkν

3

∑
m<0

αmν

m
e−imτ

}
e−ikν

3 (xν+l2pντ)|0,−k4〉.

(4.11d)

We have assigned the incoming momenta k1 and k2 with plus signs and the
outgoing momenta −k3 and −k4 with minus signs.

In order to solve this, we need to know how to rearrange exponents of
noncommuting operators. First of all, when two operators A and B do not
commute, the equality eA+B = eAeB does no longer hold. Therefore, we
need to make use of the Baker-Campbell-Hausdorff formula (BCH)

eAeB = eBeAe[A,B], (4.12)

and can also be put into the form

et(A+B) = etAetB × e−
t2

2
[A,B] × e

t3

6
(2[B,[A,B]+[A,[A,B]]) × . . . . (4.13)

Secondly, we know that the operators xµ and pµ have commutation relations
(1.23a). If we now apply BCH to (4.11) and use the fact that k2 = 2 for
open string tachyons, one can show that

eikρ(xρ+l2pρτ) = eikρxρ
ei(l

2kρpρ+1)τ . (4.14)

Now that we know how to rearrange the exponents, we let the exponent
involving pρ act on the outgoing state |0,−k4〉. Next, we let the operators
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eikρxρ
act on the incoming and outgoing states. Together, this yields

A2↔2 =
∫ ∞

0
dτ ei(l

2kν
3k4ν+1)τ 〈0, k1 + k2| exp

{
lkµ

2

∑
n>0

αnµ

n

}
× exp

{
lkν

3

∑
m<0

αmν

m
e−imτ

}
|0,−k3 − k4〉. (4.15)

A good idea next, is to switch the order of the modes with n > 0 and
m < 0. Therefore we need to make use of BCH again. In that case, the
modes annihilate the ingoing and outgoing states, so that we only end up
with the commutator terms. So, by making use of BCH and (1.23b) we find
that[

lkµ
2

∑
n>0

αnµ

n
, lkν

3

∑
m<0

αmν

m
e−imτ

]
= l2kµ

2k
ν
3

∑
n>0
m<0

e−imτ

mn
[αnµ, αmν ] (4.16a)

= l2kµ
2k

ν
3

∑
n>0
m<0

e−imτ

mn
nδm+nηµν (4.16b)

= l2kµ
2k3µ

∑
n,p>0

eipτ

−p
δp,n (4.16c)

= −l2kµ
2k3µ

∑
n>0

einτ

n
(4.16d)

= l2kµ
2k3µ ln(1− eiτ ). (4.16e)

We can now plug this back into (4.15) and use the orthogonality of the
incoming and outgoing state, to obtain the expression

A2↔2 =
∫ ∞

0
dτ ei(l

2k3·k4+1)τ (1− eiτ )l2k2·k3N δ(D)(k1 + k2 + k3 + k4), (4.17)

Again, the delta function means conservation of momentum and we will
leave it out from here on. We would like to express the outgoing momenta
k3 and k4 in terms of incoming momenta k1 and k2. Therefore, we use the
fact that

(ki + kj)2 = k2
i + k2

j + 2ki · kj (4.18a)

= 4 + 2ki · kj (4.18b)

to show that k3 · k4 = k1 · k2. Now we do a Wick-rotation iτ → −τ and
substitute x = e−τ , so dτ = −dx

x . This can be used to put the amplitude
into the form

A2↔2 =
∫ 1

0
dxxl2k1·k2(1− x)l2k2·k3 . (4.19)
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Eventhough this is the final result, there is yet another useful form that
the amplitude can be put into. Let’s switch to (rescaled) Mandelstam vari-
ables, s = −l2(k1 + k2)2 and t = −l2(k2 + k3)2. Substituting these into the
scattering amplitude yields

A2↔2 =
∫ 1

0
dxx−s/(2l2)−2(1− x)−t/(2l2)−2 (4.20a)

=
∫ 1

0
dxxa−1(1− x)b−1, (4.20b)

where we have defined a = −s/(2l2)− 1 and b = −t/(2l2)− 1. The form of
the scattering amplitude, (4.20b), is equal to the Euler beta-function B(a, b),
which brings the scattering amplitude, in terms of Γ-functions, into its final
form

A =
Γ(a)Γ(b)
Γ(a+ b)

. (4.21)

As you can see this function is nicely symmetric in a and b.

4.2.4 Vertex operators for excited states

Up till now, we discussed vertex operators for open string tachyon states. We
could of course also consider vertex operators of excited open string states.
The first excited state is the open string photon, a massless state. An open
string photon state has a polarization ηµ, so we need a vertex operator that
can be contracted with this polarization in order to obtain a scalar. It turns
out that the correct form of the open string photon vertex operator is

Vphoton,o(τ1, σ1) = go

∫
∂M

ds :
[
ηµẊ

µ(τ, σ)
]
eik·X(τ,σ) : δ(2)(τ1, σ1)

(4.22a)

= :
[
ηµẊ

µ(τ1, σ1)
]
eik·X(τ1,σ1) : , (4.22b)

where the dot again means a derivative with respect to τ . This vertex
operator can be used to calculate scattering amplitudes and other quantities
in the same fashion as the tachyon case. The photon vertex operator for open
strings satisfies

M2 = −k2 = 0, (4.23)

and it is Weyl-invariant if it has polarization

kµηµ = 0. (4.24)

Of course we can take this one step further and look at strings at the
first massive level and so on, but in practice most calculations are done only
for the lightest string states only. As we mentioned before, it requires a huge
amount of energy to create massive string states in comparison to particles
that we observe in nature. Therefore, considering vertex operators for light
string only should be a good approximation to describe interactions.
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4.3 Tachyon tree-diagrams for closed strings

4.3.1 Closed string tachyon vertex operators

We showed that the topology of the world-sheet for closed strings is com-
pletely different from that of the open string. Interactions cannot be de-
scribed by punctures on the boundary, but will become punctures on the
interior of the world-sheet. Since we cannot set σ = 0 or σ = π, and can-
not fix τ either, we have to integrate over the entire world-sheet. Therefore
vertex operators for closed string tachyons are written as

Vtachyon,c = 2gs

∫
M
d2σ
√
heik·X , (4.25)

where we have now introduced a closed string coupling constant gs, which is
obtained when a closed string is added to the world-sheet. Since we now have
to integrate over the entire world-sheet, we have to include the world-sheet
metric hµν as well. For the moment, we have also assumed a general world-
sheet metric, and have therefore dropped the minus sign in the square root.
As soon as a Minkowski signature is implied, the minus sign is reintroduced
again. Switching to complex coordinates, the vertex operator can be written
as

Vtachyon,c = gs

∫
d2z : eik·X : . (4.26)

There turns out to be a relation between the open and closed string
coupling, namely gs = g2

o . Why this is the case can be seen as follows.
Adding an exteral closed string (or closed string source) to the world-sheet,
comes down to making a puncture in the conformally equivalent compactified
space M . In other words, the topology of the world-sheet changes because
a boundary is added. Adding another closed string to the world-sheet, due
to a loop interaction comes down to adding a handle to the world-sheet.

In the open string case, we can add an exteral open string (or open string
source) to the world-sheet. When we do so, the topology of the world-sheet
doesn’t change, but we do add two corners to the world-sheet. And adding
an open string to the world-sheet due to a loop interaction means that we
are adding a boundary to the world-sheet.

There is a famous topological invariant that can be used to describe these
sorts of topological changes of a manifold M , called the Euler characteristic
χ(M). The Euler characteristic is a quantity that depends on the above
mentioned topological concepts, such as handles, boundaries and also cross-
caps (to be discussed in chapter 7). When amplitudes are calculated by
means of a path integral, one can show that the Euler characteristic of M
determines the power of the string couplings gs and go in the path integral.

So adding strings comes down to changing the topology of world-sheets.
This, in turn, determines the power of the string coupling in the path in-
tegral. In [11], equal interaction processes for open and closed strings are
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compared, and in this way it is shown that the string couplings are indeed
related through the equality gs = g2

o . In chapter 7 we will work this out in
more detail and show that the coupling in string theory actually becomes a
spacetime dependent function.

4.3.2 Closed massless string vertex operator

The vertex operator for a massless closed string is a bit more complicated.
Unlike the open string case, we cannot use just one derivative to contract
with the photon polarization to obtain a scalar. Therefore, we have to use
two derivatives. Moreover, operators which are included in the path integral
(2.8b) need to respect the local diff×Weyl symmetry of the system. A nice
way to achieve this effect is to introduce renormalized operators [F ]r. These
operators have the property that they are automatically diff-invariant. Weyl-
invariance needs to be checked by hand though. See appendix A for more
details on renormalized operators.

By using renormalized operators, the most general vertex operator for
massless closed strings (at fixed momentum) that is diff-invariant is given
by

Vmassless,c =
gs

α′

∫
d2σ
√
h
{
(habsµν + iεabaµν)[∂aX

µ∂bX
νeik·X ]r

+ α′φR[eik·X ]r
}
. (4.27)

Here sµν is a symmetric matrix, aµν is an antisymmetric matrix, φ is a
constant and R is the world-sheet Ricci scalar. Furthermore εab is an anti-
symmetric tensor, normalized such that

√
−hε12 = 1. In the most general

case, one has to sum over all different momenta, but we will just be looking
at fixed momentum now.

Later on, we will find that sµν , aµν and φ play an important rôle when
we introduce background fields to the theory. It can be shown that the
symmetric matrix sµν actually represents the polarization of a graviton state
(see [2], [11], or [14] for further reference on this subject). We can also see
that the term including φ is one order higher in α′ than the other terms.
This is because it is lacking the factors coming from the fields Xµ. It can
be shown that the matrices have polarizations

kµsµν = kµsνµ = 0, (4.28a)
kµaµν = −kµaνµ = 0. (4.28b)

Since we have used renormalized operators in (4.27), diff-invariance is
automatically satisfied. But Weyl invariance needs to be checked out by
hand. Therefore, we apply a Weyl transformation to this vertex operator.
When we do so, the Ricci scalar transforms, as well as the renormalized op-
erators (see appendix A how renormalized operators transform under Weyl
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transformations). The variation of the renormalized operators introduces
several derivatives with respect to the variation δω. Also a renormaliza-
tion parameter γ is obtained and, by choosing the proper renormalization,
can take abritrary values. Working out the details, one can show that the
variation of the vertex operator to first order in δω is equal to

δWVmassless,c =
gs

2

∫
d2σ
√
hδω

{
(habSµν + iεabAµν)[∂aX

µ∂bX
νeik·X ]r

+ α′FR[eik·X ]r
}
, (4.29)

where Sµν , Aµν and F are defined by

Sµν = −k2sµν + kνk
ωsµω + kµk

ωsνω − (1 + γ)kµkνs
ω
ω + 4kµkνφ, (4.30a)

Aµν = −k2aµν + kνk
ωaµω − kµk

ωaνω, (4.30b)

F = (γ − 1)k2φ+
1
2
γkµkνsµν −

1
4
γ(1 + γ)k2sν

ν . (4.30c)

In this case the renormalization parameter γ = −2
3 , but sometimes it is

convenient to explicitly keep it for other calculations. We will not have need
for it in the course of this thesis though.

In the next chapter we will be looking at strings with nontrivial back-
grounds. It turns out that the form of the massless closed string vertex
operator, (4.27), will be playing a very important rôle in establishing the
equations of motion for strings with backgrounds. This will be essential for
finding a low energy effective action for closed strings (introduced in chapter
6), one of the building blocks for noncritical string theory.
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Chapter 5

Strings with backgrounds

5.1 Strings in curved spacetime

5.1.1 Nonlinear sigma model

Up till now we have only considered string in flat spacetime, in absence of any
other backgrounds. More realistic models will include a curved spacetime
(related to gravitation). Moreover, an antisymmetric tensor (closely related
to electromagnetic fields) and a dilaton (a scalar background field) can be
added to the theory.1 In a couple of calculations and derivations to come,
we will be using techniques involving curvature. Readers who like to review
some general facts and definitions in curved space mathematics can turn to
appendix B.

First we will try to incorporate a curved spacetime into string theory.
Recall that the world-sheet action of a string moving in D flat dimensions
is given by the Polyakov action (1.6), where the world-sheet metric hab

has the signature (−,+). In Minkowski spacetime, the flat metric ηµν has
signature (−,+,+, . . . ,+). We know from general relativity that if we want
to describe a theory in curved spacetime, we replace the flat metric ηµν by a
more general metric Gµν(X), which describes a curved spacetime. We could
try to do the same thing in string theory. This would imply that the same
replacement on the Polyakov action yields

Sσ =
1

4πα′

∫
M
d2σ
√
hhabGµν(X)∂aX

µ∂bX
ν . (5.1)

This theory is known as the nonlinear sigma model. One could wonder,
though, whether we are allowed to makes such a replacement at all. As we
will show in the following, we are.

1We should note that these fields have not yet been observed in nature though.
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5.1.2 Coherent background of gravitons

We know that the graviton is a state of a string itself. So writing down a
curved spacetime metric should somehow be equivalent to a background of
graviton states. In other words, we want to show that a curved spacetime
really is really the same thing as a coherent background of graviton states.
Therefore, consider a curved spacetime metric that is close to flat spacetime,
so

Gµν(X) = ηµν + χµν(X), (5.2)

with |χµν(X)| � 1. If we write down the world-sheet path integral and
expand around ηµν we obtain

exp(−Sσ) = exp
[
− 1

4πα′

∫
M
d2σ
√
hhab(ηµν + χµν)∂aX

µ∂bX
ν

]

= exp(−SP )

[ ∞∑
k=0

− 1
4πα′k!

∫
M
d2σ
√
hhabχµν∂aX

µ∂bX
ν

]k

≈ exp(−SP )
[
1− 1

4πα′

∫
M
d2σ
√
hhabχµν∂aX

µ∂bX
ν)
]
. (5.3)

Comparing our result with the vertex operator for massless closed strings,
(4.27), we see that to first order, χ is equal to the vertex operator for the
graviton state if we make the identification

χµν(X) = −4πgse
ik·Xsµν . (5.4)

In other words, a very small fluctuation around flat spacetime gives rise to
the vertex operator of a graviton, so it creates a graviton state!

So a remarkable thing has happened here. Replacing the flat space-
time metric ηµν by a general metric Gµν(X) comes down to exponentiating
the graviton vertex operator, creating a coherent background of gravitons.
Therefore we are indeed allowed to replace the flat metric by a general
metric Gµν(X) when we want to describe strings moving through a curved
spacetime.

5.2 Other background fields and β functions

5.2.1 β functions up tp first order in background fields

The idea of including backgrounds into the string world-sheet action can be
generalized. If we take a look at (4.27) we see that we can also include more
backgrounds for massless strings. Namely an antisymmetric tensor field
Bµν(X), which is called the Kalb-Ramond field, and a scalar field Φ(X),



5.2 Other background fields and β functions 49

called the dilaton. Following the example of curved spacetime, we can also
incorporate these other backgrounds to the theory. This leads to

Sσ =
1

4πα′

∫
M
d2σ
√
h
[ (
habGµν(X) + iεabBµν(X)

)
∂aX

µ∂bX
ν

+ α′RΦ(X)
]
. (5.5)

It can be shown (see [11]) that this action still respectes the gauge symme-
tries. Therefore, this action is also Weyl-invariant. In chapter 2 we showed
that this implies the β function to vanish. Since this action can now be
varied to three variables Gµν(X), Bµν(X) and Φ(X), we expect three β
functions to arise.

Solving the β functions to full generality is hard, if not impossible. The
best approach is to consider very small fluctuations of the background fields
again. When we do this, we can calculate the β functions to first order,
second order, etc. We will start with the simplest approximation for the β
functions.

Let’s consider the case in where Bµν(X) and Φ(X) are small, Just as
in the case of the curved spacetime background. Writing the action as
Sσ = SP − V1 + . . ., we find that we can identify

Gµν(X) = ηµν − 4πgssµνe
ik·X , (5.6a)

Bµν(X) = −4πgsaµνe
ik·X , (5.6b)

Φ(X) = −4πgsφe
ik·X . (5.6c)

To first order in χµν(X), Bµν(X) and Φ(X), the Weyl variation of the action
with background fields is given by (4.29). For convenience, we can set the
renormalization parameter γ = 0, by choosing a proper renormalization.

So, when we perform a Weyl variation of the vertex operator Vmassless,c,
we know how the background fields enter this variation. It’s not so hard
now to relate this variation (4.29) to our prior expression of T a

a (2.12) in
the path integral approach. Comparing the two, will tell us exactly what
the Weyl anomaly looks like! We find that

T a
a = − 1

2α′
(
βG

µνh
ab + iβB

µνε
ab
)
∂aX

µ∂bX
ν − 1

2
βΦR, (5.7)

where

βG
µν ≈ −

α′

2
(
∂2χµν − ∂ν∂

ωχων − ∂µ∂
ωχων + ∂µ∂νχ

ω
ω

)
+ 2α′∂µ∂νΦ, (5.8a)

βB
µν ≈ −

α′

2
∂ωHωµν , (5.8b)

βΦ ≈ D − 26
6

− α′

2
∂2Φ. (5.8c)
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We have used the fact that

∂ωχµν = −4πgsik
ωeik·Xsµν , (5.9a)

∂ωΦ = −4πgsik
ωeik·Xφ, (5.9b)

and Hωµν = ∂ωBµν + ∂µBνω + ∂νBωµ. (5.9c)

Hωµν can be seen as a generalization of the electromagnetic field tensor Fµν .
Weyl invariance implies the energy-stress tensor to be traceless. This

now leads to the condition

βG
µν = βB

µν = βΦ = 0. (5.10)

So we see that the presence of background fields, yield more complicated re-
strictions than simply saying D = 26. However, it is not untill the next order
of the β functions that we find a nice interpretation of these restrictions.

5.2.2 β functions up to first order in α′

As we said before, we only considered the variation to first order in χµν(X),
Bµν(X) and Φ(X). Of course we can take this one step further and consider
variations to second order in the background fields. One can show [11] that
in this case, the β functions yield

βG
µν = α′

(
Rµν + 2∇µ∇νΦ−

1
4
HµλωH

λω
ν

)
+O(α′2), (5.11a)

βB
µν = α′

(
−1

2
∇ωHωµν +∇ωΦHωµν

)
+O(α′2), (5.11b)

βΦ =
D − 26

6
+ α′

(
−1

2
∇2Φ +∇ωΦ∇ωΦ− 1

24
HµνλH

µνλ

)
+O(α′2).

(5.11c)

The terms in (5.11) are now made covariant, and furthermore Rµν is the
Ricci tensor for spacetime, instead of the world-sheet Ricci tensor Rab. Of
course, Weyl invariance again implies (5.10).

We can make two important observations to make here. The first one
is that, eventhough we worked up to second order in background fields, we
have found the exact expressions for the β functions up to first order in α′.
Every order in α′ corresponds to a different energy level of the theory. The
higher the order in α′, the higher the energy level. So we could say that the
conditions (5.11) represent the low energy limit for this theory.

The second observation is a remarkable feature that arises in string the-
ory. By demanding the β functions to vanish, we obtain actual equations of
motion in spacetime! Notice that the equation βG

µν = 0 resembles Einstein’s
equation (B.21), with source terms coming from Φ(X) and Bµν(X). Also
notice that the equation βB

µν = 0 is a generalization of Maxwell’s equation.
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Therefore it surely looks like these equations are very sensible equations
and we are still on the right track. We will come back to this absolutely
non-trivial result in chapter 6.
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Chapter 6

Low energy effective action

6.1 The string metric

6.1.1 Equations of motion

In the previous chapter we have derived the expressions for the β functions,
and shown that these have to vanish in order for our theory to be Weyl
invariant. This in turn gave us some useful equations, namely (5.10). You
could say that these equations describe the low energy physics of the theory.
When we derived these equations, we started from the world-sheet action
for the massless closed string Sσ, (5.5).

However, there is another way to obtain the same equations (and there-
fore physics). Up to now we have only worked with the world-sheet action,
and as discussed before, this action can be seen as a two dimensional in-
teracting field theory. We also know that excitations of the string (except
the photon), create massive string modes and take a lot of energy to be
created. Since in nature, we haven’t encountered these massive particles
yet, it is not such a bad idea to consider just the lightest modes of the
theory and approximate this by an effective action. Consider the following
spacetime action S,

S =
1

2κ2
0

∫
dDx

√
−G(S)e−2Φ

[
− 2(D − 26)

3α′
+ R(S) − 1

12
HµνλH

µνλ

+ 4∂µΦ∂µΦ +O(α′)
]
, (6.1)

where G
(S)
µν and R(S) are now the spacetime metric and spacetime Ricci

scalar respectively.1 It is not immediately obvious, but this action actually
describes the same low energy behaviour as the world-sheet action for the
massless closed string Sσ! In order to prove this, we need to vary this action

1The label S just means that we are working in the string frame, but this will be
explained shortly.
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in all it’s arguments. First we do an infinitesimal coordinate transformation

Xλ −→ Xλ + ξλ(X). (6.2)

With this variation, the other fields in the Lagrangian vary as

Gµν(X) −→ Gµν(X) + δGµν(X),
with δGµν(X) = ξρ(X)∂ρGµν(X), (6.3a)

Bµν(X) −→ Bµν(X) + δBµν(X),
with δBµν(X) = ξρ(X)∂ρBµν(X), (6.3b)

Φ(X) −→ Φ(X) + δΦ(X),
with δΦ(X) = ξρ(X)∂ρΦ(X). (6.3c)

Now we substitute this into (6.1) and consider all variations δGµν(X),
δBµν(X) and δΦ(X), up to first order in ξλ(X). This is however, a very
tricky and lengthly calculation.2 It will be helpful to make use of the fol-
lowing equalities

δ
√
−G = −1

2

√
−GGµνδG

µν , (6.4a)

δGµν = −GνρGµλδGλρ, (6.4b)

δ(e−2Φ) = −2e−2ΦδΦ, (6.4c)

δR = RµνδG
µν +∇µ∇νδGµν −Gµν∇2δGµν . (6.4d)

To keep the calculation up to first order, one has to make repeated use of
the fact that

δS[AB] = − 1
2κ2

0α
′

∫
dDx [(A+ δA)(B + δB)−AB] (6.5a)

= − 1
2κ2

0α
′

∫
dDx [AδB + (δA)B]. (6.5b)

If all the terms are properly taken into account, the variation of (6.1) finally
becomes

δS = − 1
2κ2

0α
′

∫
dDx
√
−Ge−2Φ

[
δGµνβ

Gµν + δBµνβ
Bµν

+ (2δΦ− 1
2G

µνδGµν)(βGω
ω − 4βΦ)

]
, (6.6)

2See [11] for further reference.
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where βGµν , βBµν and βΦ are the β functions, defined in (5.11).
Form this it immediately follows that if we want δS to vanish, all separate

terms have to vanish, and therefore all the β functions have to be zero. So
in fact, the equations of motion of the spacetime action produce the exact
same world-sheet results, (5.10), and therefore describe the same low energy
limit of this theory! This action is known as the low energy effective action.
The spacetime metric used in this action is known as the string metric, and
is often written as G(S)

µν (X).
One has to keep in mind that, eventhough effective actions can provide

us with useful and sometimes new features of a theory, they do not always
provide us with the correct answers. When this is the case, one needs to
include higher order terms in the action in order to obtain correct answers.

6.1.2 Spacetime dependent coupling

In section 2.1.3, we said that in quantum field theory, a coupling appears in a
Lagrangian as a factor 1

g2 . Now that we have found a spacetime string action,
we can also consider this coupling. Comparing the coupling from quantum
field theory with the string action, (6.1), we see that we can make the
identification gs = eΦ(X). In other words, the string coupling is a spacetime
dependent function! Therefore, we can say that, at least in the low energy
limit, the string coupling is equal to the exponent of the dilaton field.

6.2 Link between β functions and EOM

In the previous section we showed that the claim for conformal invariance on
the world-sheet somehow was similar to some equations of motion (EOM)
for the spacetime action. It is absolutely not trivial that this should be the
case. One way to look at this is the following.

If we write down a path integral for the world-sheet action (5.5), and we
integrate out the fields Xµ, we end up with a path integral that looks very
similar to that of the low energy effective action (6.1). So

e−S[G,B,Φ] =
∫
DX e−S[X,G,B,Φ]. (6.7)

If we now vary the left as well as the right hand side with respect to the
metric Gµν , we get

δS

δGµν
e−S[G,B,Φ] =

∫
DX Vgraviton(Z0)e−S[X,G,B,Φ]. (6.8)

Recall that in section 5.1 the origin of the graviton vertex operator is made
explicit. Z0 is the point on the complex plain where the vertex operator
arises.
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Now if we take a look at this equation, we see that both the left-hand
side and that right-hand side are equal to zero. First of all, the right hand
side is zero, because a one-point function is always zero,3∫

DX Vgraviton(Z0)e−S[X,G,B,Φ] = 〈Vgraviton(Z0)〉 = 0. (6.9)

And second of all, the left hand side being zero exactly corresponds to the
equations of motion found for the spacetime action.

So, we see that this derivation implies a connection between spacetime
equations of motion and vanishing β functions.

6.3 The Einstein metric

6.3.1 Effective action in the Einstein frame

See appendix B for how to write down an action for curved spacetime in gen-
eral relativity. In the absence of the matter part and cosmological constant,
it is written slightly different, namely

SH [G(E)] =
∫
dDx k

√
−G(E) R(E), (6.10)

where G(E)
µν means the spacetime metric in the Einstein frame, which will

be explained in a short while and R(E) is the Ricci scalar constructed from
G

(E)
µν .4

The effective action (6.1) has the same Einstein-Hilbert term,
√
−G(S)R,

although multiplied with an factor e−2Φ. We can, however, perform a few
simple transformations in order to put the Hilbert term in exactly the same
form as (6.10). Let

G(E)
µν (x) = e2ω(x)G(S)

µν (x), (6.11)

which relates G(E)
µν and G

(S)
µν by an overall rescaling of the metric, thus a

Weyl transformation. Since the Ricci scalar is constructed from the metric,
it also transforms, according to (see [11])

R(E) = exp(−2ω)
[
R(S) − 2(D − 1)∇2

Eω − (D − 2)(D − 1)∂µω∂
µω
]
,

(6.12)
where R(E) is the Ricci scalar, constructed from the Einstein metric G(E)

µν

and R(S) is the Ricci scalar, constructed from the string metric G(S)
µν . Also,

3The graviton vertex operator is translation invariant and scale invariant. Translation
invariance implies that the vertex operator is constant. Then scale invariance requires this
constant to be zero.

4k = (16πGN )−1 ≈ 2.95× 1036GeV 2 in units where c = 1.
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indices are raised with G(E)
µν (X). Next define

ω = − 2Φ̄
D − 2

, (6.13a)

with Φ̄ = Φ− Φ0, (6.13b)

such that Φ̄ has vanishing expectation value. Putting this together, we can
rewrite the spacetime action (6.1) as

S =
1

2κ2

∫
dDX

√
−G(E)

[
− 2(D − 26)

3α′
e4Φ̄/(D−2) + R(E)

− 1
12
e−8Φ̄/(D−2)HµνλH̃

µνλ − 4
D − 2

∂µΦ̄∂̃µΦ̄ +O(α′)

]
, (6.14)

where the tildes mean that the indices are raised with G(E)
µν (X). As you can

see the Hilbert term
√
−G(E)R has been put in the exact same form as the

Hilbert action (6.10). When the spacetime action has been put in this form,
the metric G(E)

µν (X) is referred to as the Einstein metric. In this case,

κ = κ0e
Φ0(=

1√
2k

) (6.15)

is the observed gravitational coupling constant.5

6.3.2 Utility of the Einstein frame

When we want to calculate actual physical quantities and compare them
with experimental data, we use the Einstein metric. This is due to the
fact that when we observe experiments, the measurements experience the
Einstein metric. However, a string moving through spacetime experiences
the string metric. The string metric does have nicer symmetries though, but
there is no preferred metric, and both shall be used later on.

As we shall see, effective actions play a major rôle in string theory. In
this chapter we only considered the low energy effective action for massless
(closed) strings, since we assume that this low energy limit gives a good
approximation of the physics we observe. Eventhough tachyons are not
thought to represent actual physical particles, it is useful to consider their
interactions with other strings. We could therefore, of course, also consider
a low energy effective action for tachyons. We will do so in the next chapter,
where tachyons have interactions with strings in a dilaton background.

5In D = 4 this has the value 4.11× 10−19GeV −1.
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Part II

Applications on noncritical
string theory





Chapter 7

Away from the critical
dimension

7.1 Constant dilaton

7.1.1 Constant dilaton action

So far we have considered strings in general backgrounds, different from
flat spacetime. However, we have not yet given any concrete examples. As
a warm-up we’ll consider the simplest case for the dilaton, the constant
dilaton. For this derivation, it’s useful to switch to complex coordinates.
Doing so and looking at the massless world-sheet action (5.5), we see that
the dilaton enters the theory as

SΦ =
1
4π

∫
M
d2z
√
hΦ(X)R, (7.1)

where R is the Ricci scalar from the two dimensional world-sheet. Let’s focus
on the case where is constant, Φ(X) = Φ0.1 First of all, when the dilaton
Φ(X) is constant, the integrant can locally be written as a total derivative.
Secondly, one can show that in the case of a constant dilaton, the action is
invariant under variations of the metric (hab → hab + δhab).2 This means
that the value of the integral only depends on the global topology of the
world-sheet and therefore does not contribute to classical field equations.

7.1.2 Euler characteristic

A nice feature about this action is that it actually is a very famous topo-
logical invariant, named the Euler characteristic of M , χ(M) (for more

1Notice that we haven’t said anything about the topology of the world-sheet.
2This is due to the fact that when we vary the action with respect to the metric, we

obtain the Einstein equations in two dimensions, multiplied with δhab. In two dimensions,
the Einstein equations are always equal to zero. N.B. This tells us that there can not be
gravity in D = 2.
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information on this subject see [2], [11] or [10]). So

SΦ =
Φ0

4π

∫
M
d2z
√
hR (7.2a)

= Φ0χ(M) (7.2b)
= Φ0(2− 2nh − nb − nc), (7.2c)

where nh is the number of handles (also called genus g), nb the number of
boundaries, and nc the number of cross-caps of M .3 For example, a sphere
has no handles, no boundaries and no cross-caps. The simplest case, there-
fore, is the Euler characteristic for a sphere, χ(sphere) = 2. There are two
cases with χ(M) = 1, namely the disk, which has one boundary, and the
projective plane, which has one cross-cap. A projective plane can be con-
structed by taking a disk and identifying opposite points on the boundary as
equivalent. Furthermore there are four topologies that have Euler character-
istic χ(M) = 0, namely a torus (one handle, no boundaries or cross-caps),
an annulus (two boundaries, no handles or cross-caps), the Moebius strip
(one boundary and one cross-cap), and finally a Klein bottle (two cross-caps,
no handles or boundaries. More complicated topologies allow for negative
Euler characteristics, but the main idea should be clear now.

7.1.3 UV finite quantum gravity

The simple idea we just discussed, actually has much deeper consequences,
and this is one of the example where string theory shows it’s true power.
As we know from quantum field theory, interactions can be described by
Feynman diagrams. Each order in the perturbation theory is determined
by the number of loops in the diagram. When amplitudes are calculated,
ultraviolet divergences appear, which need to be dealt with. Now consider a
theory of closed, oriented strings (in D = 10, superstring theories with these
properties are type II or heterotic theories). Since the theory is closed,
the world-sheet does not have any boundaries. Also, the theory must be
free from cross-caps, because a cross-cap would render the theory unori-
entable. So the topology of the world-sheet for these theories is completely
determined by the genus nh. This also means that when we calculate the
partition function, the sum over different metrics just turns into a sum over

3A cross-cap can be obtained by diametrically identifying points on opposite sides of
boundaries, as is done in the same manner with the Moebius strip. Another definition is
that we consider the complex plane, we can cut a hole with radius slightly less than one
and identify z and − 1

z̄
to be equivalent.
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different number of handles of the theory, so

ZΦ=Φ0 =
∫

[dX] exp(SΦ) (7.3a)

=
∑

topologies

exp[Φ0(2− 2nh)] (7.3b)

=
∑

topologies

g2−2nh
s , (7.3c)

where gs is the string coupling.
Furthermore, on can say that interactions in string theory are smeared

out in spacetime, softening the short-distance divergencies that arise in
quantum field theory. Some very technical calculations (see [11]) show that
at each order the amplitudes are free of ultraviolet divergences. This means
that these theories (type II and heterotic theories) are actually ultraviolet
finite theories of quantum gravity. So far, this is the only theory that has
achieved this result!

7.2 Linear dilaton background

The second simplest case for the dilaton is the case where the dilaton Φ(X)
is a linear function of Xµ. Or more specifically,

G(S)
µν (X) = ηµν , Bµν(X) = 0, Φ(X) = VµX

µ. (7.4)

This theory is called the linear dilaton background, a theory in which space-
time is equal to Minkowski space, there is no antisymmetric background
field, and the dilaton is linear in Xµ. The linear dilaton background is
called spacelike if VµV

µ > 0 and timelike if VµV
µ < 0. In the literature,

one often encounters the quantity q, with −q2 = VµV
µ. Due to the simple

structure of the theory, the linear dilaton background is a very useful model
for studying string theories with backgrounds and, moreover, it is one of the
most important ingredients for studying noncritical string theory.

One way to determine the critical dimension for a string in flat Minkowski
spacetime was to look at the β functions (5.11). In that case βΦ = 0 simply
says D = 26. In the case for strings with a linear dilaton background, the β
functions βG

µν and βB
µν become trivial, but βΦ yields

D − 26
6

+ α′VµV
µ = 0, (7.5a)

or D = 26− 6α′VµV
µ, (7.5b)

where we have used (5.11), so we considered the β functions up to first
order in α′. But looking more closely at the β functions, we see that in the
case of the linear dilaton background Rµν ,Hµλω,∇µ∇νΦ(X) and ∇2Φ(X)
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and all higher order derivatives vanish! So the result (7.5) actually is exact.
As a side remark, note that this also leads to the equality

q =
(
D − 26

6α′

)1/2

. (7.6)

We can write down an expression for the energy-stress tensor of the
conformal field theory in presence of a linear dilaton background. Going to
the complex plane, the energy-momentum tensor is written as

T (z) = − 1
α′

: ∂Xµ∂Xµ : +Vµ∂
2Xµ, (7.7a)

T̄ (z̄) = − 1
α′

: ∂̄Xµ∂̄Xµ : +Vµ∂̄
2Xµ. (7.7b)

In this way one can work out (see [11]) that the central charge indeed
satisfies

c = c̃ = D + 6α′VµV
µ, (7.8)

which actually is an exact result, in perfect agreement with the condition
(7.5) for cancellation of the Weyl anomaly.

If the dilaton was set to zero, the world-sheet action would just reduce
to the flat world-sheet Polyakov action (1.6), and indeed, (7.5) would reduce
to the well know condition that D = 26. But, depending on whether V µ is
timelike, spacelike or null, D can now, in principle, take any value! Therefore
string theories exist where D 6= Dc! These theories are called noncritical
string theories, which will be the main focus for the remainder of this thesis.

- When D < Dc a theory is called subcritical,

- When D > Dc a theory is called supercritical.

This applies to bosonic, as well as superstring theories.

7.3 Tachyon profile

7.3.1 On-shell tachyon condition

As we saw in section 6 we can look for an effective action that produces the
same physical behaviour as the world-sheet action does in the low energy
limit. Said somewhat differently, we look for actions that effectively describe
the corresponding (low energy) conformal field theory. One can look for all
sorts of low energy effective actions in a lot of different processes. For
example, closed strings, open strings, tachyons, massless string states, tree-
level amplitudes, loop amplitudes, and so on.

When we look at the scattering amplitude of a massless string and two
string tachyons, for example (see [11] for a detailed calculation), we find that
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this process is described by the corresponding low energy effective action
S = Smassless + ST , where Smassless is the massless closed string action
(6.1), and ST is the closed string tachyon action,4

ST = −1
2

∫
dDx

√
−G(S)e−2Φ

(
G(S)µν∂µT (x)∂νT (x)− 4

α′
T 2(x)

)
. (7.9)

Now that we have this tachyon effective action, we can simply plug in
the linear dilaton background. Subsequently we can vary this action, letting

T (x) −→ T (x) + δT (x). (7.10)

Working this out, we get

δST = −1
2

∫
dDx e−2Vρxρ

(
2ηµν∂µT (x)∂ν(δT (x))− 8

α′
T (x)δT (x)

)
(7.11a)

= −
∫
dDx e−2Vρxρ

(
2V µ∂µT (x)− ∂µ∂

µT (x)− 4
α′
T (x)

)
δT (x)

(7.11b)

and end up with the linearized tachyon field equation,

−∂µ∂
µT (x) + 2V µ∂µT (x)− 4

α′
T (x) = 0. (7.12)

This equation is the condition for Weyl invariance of the linear dilaton
energy-momentum tensor (7.7) and it ensures that the tachyon momen-
tum is on-shell. The solution to this equation, the tachyon field, or tachyon
profile, is

T (x) = µ2 exp(Bρx
ρ), (7.13a)

with (B − V )2 =
2−D
6α′

, (7.13b)

where µ2 is a parameter that determines the interaction strength.
4We need to be cautious with writing down an effective action for interactions between

tachyons and massless string states though. An effective action gives a good approximation
of interactions for low energy processes, meaning that we only look at light (massless)
fields. It takes a lot of energy to create massive fields, so therefore they are omitted in this
action. A tachyon, on the other hand, can have arbitrary large negative mass squared,
which comes down to perturbating the theory around an unstable point in the vacuum.
If the tachyon is given just a little bit of energy, it will start rolling down its potential
to → −∞, and, in principle, is capable to create excited string states in interactions.
Therefore, we should restrict this tachyon effective action to processes where time scales
are such, that excited strings are not created.
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7.3.2 Liouville field theory

A particular simple solution is obtained when we look at a linear dilaton
background that is only dependent on one direction (the 1-direction, for
example). In that case

Vµ = δ1µ

(
26−D

6α′

)1/2

. (7.14)

Writing out the solution for the on-shell condition, (7.13b), we obtain

0 = BµB
µ − 2VµB

µ + VµV
µ − 2−D

6α′
(7.15a)

= (B1)2 + B̃2 − 2B1

(
26−D

6α′

)1/2

+
26−D

6α′
− 2−D

6α′
(7.15b)

= (B1)2 − 2B1

(
26−D

6α′

)1/2

+
4
α′

+ B̃2, (7.15c)

with B̃2 = −(B0)2 +
D−1∑
k=2

(Bk)2. (7.15d)

We can solve this quadratic equation for B1. If we do so, we end up with
the most general solution for the tachyon profile,

B1 = α− ∨ B1 = α+, (7.16a)

with α± =
(

26−D
6α′

)1/2

±
(

2−D
6α′

+ B̃2

)1/2

. (7.16b)

Depending on whether the tachyon profile is timelike (i.e. BµB
µ < 0),

spacelike (i.e. BµB
µ > 0), or null (i.e. BµB

µ = 0), the tachyon can become
a real exponential.

Let’s now, for simplicity assume that B̃2 = 0. In that case, we end up

B1 = α± =
(

26−D
6α′

)1/2

±
(

2−D
6α′

)1/2

. (7.17)

For D > 2, B1 becomes complex and the tachyon oscillates. However,
for D ≤ 2 the tachyon profile becomes a real exponential, diverging at
x1 → +∞. We should keep in mind that the tachyon will have nonlinear
corrections, but as it turns out they do not effect the qualitative form of the
background. However, only the solution with α− does not lead to a non-
singular background (see [11] for reference). Therefore the tachyon profile
can be written as

T (x) = T0 exp(α−x1), (7.18)



7.3 Tachyon profile 67

where T0 = α′µ2 is again the interaction strength.
We can add this tachyon field to the world-sheet action. When we do so,

the tachyon field become a potential on the world-sheet. Therefore, when
considering world-sheets, the tachyon profile is sometimes referred to as a
tachyon potential. In this linear dilaton background, the tachyon profile
T (x) starts to act as a sort of barrier. This can be seen when we look at a
world-sheet action, including a linear dilaton and tachyon background,

Sσ =
1

4πα′

∫
M
d2σ
√
h
[
habηµν∂aX

µ∂bX
ν + α′RV1x

1 + T0 exp(α−x1)
]
.

(7.19)
In this theory, there is an asymptotic region x1 → −∞, where the tachyon
goes to zero, and is said to be weak. Here strings can interact freely with
each other. But when x1 becomes very large positive, the tachyon begins
to dominate the linear dilaton in the action. This means that in this region
the path integral is suppressed because of an effective tachyon potential,
meaning that it becomes very hard for strings to penetrate this region.
Strings propagating in a region where x1 � 1 can interact with each other,
but bounce off the potential barrier, back into asymptotic region! A theory
of the form (7.19) is called a Liouville field theory, and the barrier is known
as a Liouville wall.

The tachyon barrier acts as a sort of elastic wall, so when strings start
to feel the barrier, they still travel a distance ∆L before they reflect off.
One could say that the wall has thickness ∆L. In a lot of calculations one
uses the approximation ∆L→ 0. This approximation is called the thin wall
approximation.

The exponential in the action renders the theory hard to solve due to
quantum corrections. In chapter 10, we will again take a look at the tachyon
dilaton theory. There, however, we will choose such a framework in which
all quantum corrections vanish. The advantage of this framework is that
in that case, the classical solutions become equal to the quantum solutions,
rendering the results exact! Before we go there, we will first show a connec-
tion between a string theory with a linear dilaton background, and a theory
of expanding cosmologies driven by quintessence.5

5To be explained in the next chapter.
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Chapter 8

Quintessence-driven
cosmologies

8.1 Quintessent cosmologies

8.1.1 Quintessence

As is often the case in string theory, results can have very close connections
with cosmological features. The linear dilaton background that we studied
in the previous chapter seems to be one of those cases. The authors in
[6] have written a few articles, extensively studying string theory in the
noncritical framework, making use of a linear dilaton background. As it
turns out, timelike linear dilaton theories are really the same as expanding
FRW cosmologies, driven by quintessence. In order to show this, we shall
first discuss the principle of quintessence.

When Einstein derived his theory of general relativity and applied it
to our universe, he noticed that his equations (B.19) would not allow a
static solution of our universe, unless an extra constant term was added,
namely the cosmological constant Λ. Even though including a cosmological
constant leads to a static solution, this solution is an unstable equilibrium.
A slight expansion of the universe will result in an accelerating expanding
universe. And vice versa, a slight contractment of the universe will result in
a continuing contracting universe.

However, soon after the introduction of this static solution, observations
by Edwin Hubble showed that our universe actually is expanding. There-
fore, there didn’t seem to be any need for a cosmological constant anymore.
Einstein discarded it, calling it “the biggest blunder of his life”.

Ironically, the cosmological constant made it’s comeback when observa-
tions in the late 1990′s showed that the expansion of the universe is accel-
erating. Reintroducing a very small positive cosmological constant could
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account for this observation.1 A positive cosmological constant causes a
negative pressure to the universe and is also referred to as dark energy.

There are however, more models that could explain an accelerating uni-
verse, quintessence for example. Quintessence in physics is one or more
scalar background fields φi(X), which can be added to the Lagrangian for
the cosmology. It has a kinetic part and a potential part V(φ), which is pro-
portional to the exponential of the scalar field(s), and mimics the behaviour
of the cosmological constant. Including quintessence, results in a hypotheti-
cal form of dark energy, postulated to explain observations of an expanding
universe. Quintessent cosmologies are defined through the equation of state

w ≡
pQ

ρQ
, (8.1)

where pQ is the quintessence pressure and ρQ is the quintessence energy den-
sity. In general, w can be some complicated spacetime dependent function,
but we will assume that our cosmology model has a constant equation of
state w. One can show that accelerating expanding cosmologies satisfy w

−1 ≤ w < wcrit, (8.2)

where wcrit is a critical value for the equation of state. In D = 4 one finds
wcrit = −1

3 , but in general, wcrit will depend on the number of spacetime
dimensions D, as we will show in the forthcoming.

The simplest way to generate quintessence models is to introduce just
one real scalar field, which enters the action with a kinetic part and an
exponential part,

V(φ) = c exp(γφ), (8.3)

where c, γ > 0 and γ determines the equation of state w.

8.1.2 FRW cosmologies in D dimensions

Our universe is made up of galaxies. When going to big enough length scales,
the universe becomes homogenous and isotropic. This means that the uni-
verse can be seen as a perfect fluid, where the galaxies are the fluids particles.
Moreover, since our universe is expanding, the spatial coordinates have time-
dependence, which can be described by a cosmological scale factor a(t). A
system that meets these conditions can be described by Einstein’s field equa-
tions (see appendix B). It’s solution, called the Friedmann-Robertson-walker
cosmology (FRW) reads

ds2 = −dt2 + a2(t)
(

dr2

1− kr2
+ rD−2dΩD−2

)
, (8.4)

1Λ ≈ 10−120 in Planck units.
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where k describes the spatial curvature, which can be −1, 0 or +1. Further-
more t is the called FRW time, and ΩD represent the angle coordinates of a
sphere in D dimensions with radius r.

For the derivation of the equations of motion for quintessent cosmological
backgrounds in D dimensions, we will be working in the Einstein frame,
discussed in chapter 6. Furthermore, we will restrict our discussion to the
case where spacelike hyper surfaces are flat. So, in other words, k = 0.
Going over to a Cartesian coordinate system, the metric for a spatially flat
FRW cosmology is now simply given by

ds2 = −dt2 +
D−1∑
i=1

a2(t)dxidxi. (8.5)

When ä(t)
(
= d2a

dt2

)
> 0, the expansion of the universe is accelerating, and

when ä(t) < 0, the expansion of the universe is decelerating.
Present day observations show that distant galaxies are redshifted, be-

cause of a Doppler effect due to their motion. The further a galaxy lies, the
more redshifted is becomes. This means that the further galaxies are apart,
the faster they drift apart. It should be noticed that this expansion is an
expansion of spacetime itself, causing the galaxies to expand along with it.
This phenomenon is described by Hubble’s law, which reads

v(t) = H(t)d, (8.6)

where v(t) is the velocity of a galaxies at a distance d from the observer,
and H(t) is the Hubble parameter. The Hubble parameter can be directly
measured2, but is can also be calculated in terms of the scale factor a(t), in
which case it reads

H(t) ≡ ȧ(t)
a(t)

. (8.7)

It can be a very useful quantity in cosmology calculations. Let us try to
investigate this a bit further.

Consider the Einstein equations (B.20), in the case of the FRW metric
(8.5). Furthermore, take the energy-momentum tensor to be of the form
(B.16), and recall that we assumed the curvature of spatial slices, k, to
be zero. When we work out the Einstein equations in this setting, in D
dimensions, we obtain two very famous equation, namely(

ȧ

a

)2

=
2

(D − 1)(D − 2)
κ2ρ, (8.8a)

and
ä

a
= −D − 3 + w(D − 1)

(D − 1)(D − 2)
κ2ρ, (8.8b)

2Present day observations made by WMAP in 2008, show that the Hubble parameter
is about 71.9+2.6

−2.7 kms−1Mpc−1.
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which are called the Friedmann equations. Indeed, for D = 4 (and reintro-
ducing k), they reduce to the well known results(

ȧ

a

)2

=
1
3
κ2ρ− k

a2
, (8.9a)

and
ä

a
= −1

6
κ2 (ρ+ 3p) . (8.9b)

We can immediately read off the Hubble parameter from (8.8a).

8.1.3 Determining the critical equation of state

In the following we derive the critical equation of state for a quintessence-
driven cosmology. We will make use of the explicit form of the quintessent
Lagrangian density. As we said before, the matter part of the theory enters
the Lagrangian density as a kinetic part and a exponential part, thus

Lφ =
1
κ2

√
−G(E)

[
1
2
G(E)µν∂µφ∂νφ− c exp(γφ)

]
, (8.10)

where κ is again the gravitational coupling constant. With the action S[Lφ],
we are able to calculate the energy-momentum tensor Tµν , associated with
this field φ. It reads

Tµν ≡
−2√
−G(E)

δS

δG(E)µν
(8.11a)

= ∂µφ∂νφ+G(E)
µν Lφ. (8.11b)

If we now assume the scalar field φ to be isotropic and homogeneous, we can
make the identifications

ρQ = T00 =
1
2
φ̇2 + V(φ) (8.12a)

pQ = Tii =
1
2
φ̇2 − V(φ). (8.12b)

At this point we will make explicit use of the fact that w is constant. By
making this assumption, one can show that φ̇2, H2 and V all scale as t−2.
This, in turn, implies that φ(t) and a(t) can be put into the form

φ(t) = λ ln
(
t

t1

)
, (8.13a)

a(t) = a0

(
t

t0

)α

, (8.13b)

for some constants t0, t1, α and λ.3 If we make use of these explicit
expressions, we can substitute them into the constraint equations (8.8) and

3See [6] for the technical details of this derivation.
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the equation of state (8.1). Then, with some technical tricks we can finally
determine the coefficients λ, α and γ. We will skip the details, but simply
state that they yield

α =
2

(1 + w)(D − 1)
, (8.14a)

γ2 =
2(D − 1)(w + 1)

D − 2
, (8.14b)

λγ = −2. (8.14c)

It is now easy to see that the cosmological scale factor a(t) accelerates
as a function of FRW time for α > 1. Taking a close look at (8.14a), we see
that this restricts w to

−1 ≤ w < wcrit, (8.15a)

where wcrit = −D − 3
D − 1

. (8.15b)

We have been able now, to determine the critical equation of state for a
quintessence-driven cosmology in D dimensions. Substituting D = 4 yields
the well-known result wcrit = −1

3 .

8.2 Global structures in quintessent cosmologies

8.2.1 Global structures

So basically, if we construct a cosmology with quintessence and adopt the
ansatz that the equation of state is constant, we find that this cosmology
accelerates, if and only if w is bounded from above by wcrit. This upper
bound, in turn, is dependent on the number of spacetime dimensions D.
Notice that for D ≥ 4, wcrit is always negative and that for large D, the
range for w for an accelerating cosmology becomes asymptotically small.

There are three interesting cases that can be considered, w < wcrit,
w = wcrit and w > wcrit. In all three cases the spatial slice t = 0 defines an
initial singularity. However, the behaviour at t → +∞ will depend on the
equation of state.

The value of w determines the global structure of the cosmology. We
can investigate this in greater detail by applying a coordinate transformation
which puts the FRW metric (8.5) in a conformally flat form. Let’s introduce
a new coordinate t̄,

t̄ ≡
(
ξ

a0
t

2
(D−1)(1+w)

0

)
t

1
ξ , (8.16a)

where ξ =
(D − 1)(1 + w)

(D − 1)w + (D − 3)
. (8.16b)
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With this new coordinate, the FRW metric can be written as

ds2 = ω(t̄)2
[
−dt̄2 +

D−1∑
i=1

dxidxi

]
(8.17a)

= ω(t̄)2
[
−dt̄2 + dr2 + rD−2dΩ2

D−2

]
, (8.17b)

where ΩD are coordinates of a D dimensional sphere, with radius r. So,
with this redefinition of t, we have shown that (8.5) in this setting actually
is globally conformally equivalent to flat spacetime! Furthermore, ω(t̄) is
given by

ω(t̄) ≡ l
[
t̄

ξ

]∆

, (8.18a)

with ∆ =
2

(D − 1)w + (D − 3)
, (8.18b)

and l = a0

(
a0

t0

)∆

. (8.18c)

We should now examine the two different cases, namely accelerating
cosmologies and decelerating cosmologies. It then becomes clear that they
have very different global structures. We find that

� for accelerating cosmologies (−1 ≤ w < wcrit), both ξ and ∆ are
negative. Looking closely at (8.16), we see that this implies the range
for t̄ to be t̄ ∈ (−∞, 0). The initial singularity lies at t̄ = −∞ and the
infinite future lies at t̄ = 0.

Past spacelike singularity

Future null

infinity

(τ,χ) = (π,0)

(τ,χ) = (0,0) (τ,χ) = (0,π)

Figure 8.1: Penrose diagram for a decelerating cosmology, w > wcrit. The
initial singularity is spacelike, and the future boundary is null
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� For decelerating cosmologies (w > wcrit), ξ and ∆ are positive. It
follows that the range for t̄ becomes t̄ ∈ (0,∞). Now the initial singu-
larity lies at t̄ = 0 and the infinite future is located at t̄ = +∞.

8.2.2 Penrose diagrams

The different global structures can be made more explicit when one switches
to the use of Penrose diagrams. Penrose diagrams can be constructed by
ignoring the (D − 2)-sphere in (8.17b). Next, a coordinate transformation
is applied to conformally compactify the two remaining coordinates t̄ and r,

r ≡ sinχ
cosχ+ cos τ

, t̄ =
sin τ

cosχ+ cos τ
. (8.19)

In these coordinates, the FRW metric (8.17b) is written as

ds2 =
l2

4

[ 1
2|ξ| sin |τ |]

2∆[
cos(χ+τ

2 ) cos(χ−τ
2 )
]2+2∆

(
− dτ2 + dχ2

)
. (8.20)

By careful examination, it can be shown that in these new coordinates
τ and χ, the range becomes

� for an accelerating cosmology : τ ∈ [−π, 0], χ ∈ [0, π + τ ],

� for an decelerating cosmology : τ ∈ [0,+π], χ ∈ [0, π − τ ].

The nice thing about Penrose diagrams is that they compactify a multi-
dimensional spacetime into a two dimensional picture, in such a way that

singularity

(τ,χ) = (π,0)

(τ,χ) = (-π,0)

Past

Future spacelike infinity

null

(τ,χ) = (π,0)

Apparent
horizon

Figure 8.2: Penrose diagram for an accelerating cosmology, −1 < w < wcrit.
Now the initial singularity is null, and the future infinity is spacelike. The
future spacelike boundary is obscured by a horizon.
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the global structure can be written off very easily. If we look at the Penrose
diagram of the decelerating cosmology (w > wcrit), we see that the spatial
slice t = 0 is a spacelike Big-Bang singularity, and future infinity t → +∞
is null. This is depicted in figure 8.1 on page 74.

Figure 8.2 on page 75 shows the Penrose diagram of an accelerating
cosmology (−1 < w < wcrit). The hyper surface at FRW time t = 0 is null
and future infinity is spacelike. Furthermore static observers see an apparent
horizon at a distance4

LH = tξ. (8.21)

This horizon recedes at a fixed proper speed and approaches the speed of
light as w ↑ wcrit.

Then finally there’s the case with w = wcrit. This case can be seen
as a hybrid of the two. It has a null initial singularity and a null future
infinity. In fact, this quintessent model actually is conformally equivalent to
Minkowski space. This case is depicted in figure 8.3.

In the next chapter we will show that there is a nice analogy between
quintessence-driven cosmologies and string theory. This, in turn, can be used
to derive some useful results for this string theory, based on the cosmological
results we studied in this chapter.

singularity

(τ,χ) = (-π,0)

Past

Future

null

(τ,χ) = (π,0)

null
infinity

Figure 8.3: Penrose diagram for a cosmology with a critical equation of state,
w = wcrit. This diagram is globally conformally equivalent to Minkowski
space

4See [6] for reference.



Chapter 9

String theory with
cosmological behaviour

9.1 Linear dilaton as quintessent cosmologies

9.1.1 Comparing the two theories

In the foregoing we derived the global solutions for a quintessence driven
cosmology. We showed that there were actually three distinct possibilities,
namely, accelerating expanding cosmologies, with −1 ≤ w < wcrit, deceler-
ating cosmologies, with w > wcrit and the limit case, where w = wcrit. We
showed that the limit solution actually is globally conformally equivalent to
Minkowski space. In this chapter, we will show that there is a very close
relation between quintessence driven cosmologies and string theories with a
linear dilaton.

The starting point for deriving this relation will be the spacetime effective
action for the massless closed string (6.14). We can simplify things a bit
by assuming that the fundamental strings are invariant under reversal of
orientation. The procedure where a projection is made onto strings that
are invariant under reversal of orientation is called an orientifold projection.
When such a projection is done, there is no antisymmetric field Bµν(X),
and therefore the term involving Hµνλ in the spacetime action vanishes. In
addition to this, we can rescale Φ̄(X)→ 1

2

√
D − 2φ(X). Working this out,

we obtain

S =
1

2κ2

∫
dDX

√
−G(E)

[
−2(D − 26)

3α′
e

2φ√
D−2 +R(E) − (∂φ)2

]
, (9.1)

where (∂φ)2 = G(E)µν∂µφ∂νφ.
It can immediately be seen that the Lagrangian density in (9.1) has

exactly the same form as the Lagrangian density for a quintessence driven
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cosmology, (8.10), with coefficients

γ =
2√
D − 2

, (9.2a)

c =
D − 26

3α′
= 2q2, (9.2b)

provided that the (rescaled) dilaton φ satisfies (∂φ)2 < 0 (is timelike). So we
see that a quintessence driven cosmology is really the same thing as the low
energy limit of a string theory with closed massless strings and the presence
of a dilaton field. We can use this fact to derive some useful equations,
which were originally used to solve for the quintessence driven cosmology.

Let’s start by making an important observation. From (8.14b) it follows
that, with the expression for γ in (9.2), the equation of state for a string
theory with (timelike) dilaton is

w = −1 +
(D − 2)γ2

2(D − 1)
(9.3a)

= −D − 3
D − 1

(9.3b)

= wcrit. (9.3c)

In other words, the action (9.1) yields an equation of state, right at the
transition between an accelerating and a decelerating cosmology. We have
already seen that this limit case is conformally equivalent to Minkowski
space.

Thinking about this, we see that this is in perfect agreement with what
we already knew for a (timelike) linear dilaton background! After all, Such
a theory is defined to have a target space that is equivalent to Minkowski
space. And of course, for a linear dilaton background we also assumed that
the range of the coordinates Xµ is infinite. So in fact, we could say that this
string theory gives rise to an equation of state w = wcrit, at the boundary
between accelerating and decelerating cosmologies, driven by quintessence.

9.1.2 Fixing the scale factor

Next, we will determine the explicit forms for the dilaton Φ(X) and the scale
factor a(t), making use of the quintessent cosmology solutions. We already
showed that for the critical case γ = 2√

D−2
. One can also show that the

other coefficients (recall (8.14)) for the field and scale factor are α = 1 and
λ = −

√
D − 2. Plugging these results into equation (8.13), we find that the

dilaton and scale factor satisfy

Φ(X) = Φ0 −
D − 2

2
ln
(
t

t0

)
, (9.4a)

a(t) =
a0

t0
t, (9.4b)
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where we switched back to the original dilaton field Φ(X).
The time coordinate t, used here, is still equal to the FRW time, intro-

duced in section 8.1. With this coordinate, it is not so clear that the dilaton
is linear. We can obtain this result, however, by considering a more natural
time coordinate tconf ,

tconf =
(D − 2)

2q
ln
(
t

t0

)
, (9.5a)

t = t0 exp
(

2q
D − 2

tconf

)
(9.5b)

with q defined as in (7.6). With this new time coordinate, the dilaton
becomes

Φ(X) = Φ0 − qtconf (9.6a)

= Φ0 − qX0, (9.6b)

where we have set tconf ≡ X0. From this it is clear that the dilaton is
indeed linear. Another advantage of switching over to tconf is that the
Einstein metric has now become conformally flat. This can be seen if we
first recognize that

dt2 =
4q2

(D − 2)2
t2 dt2conf . (9.7)

Then, using this and (9.4b), and plugging it into the FRW metric, (8.5), we
find that the Einstein metric becomes

ds2 = G(E)
µν dX

µdXν (9.8a)

=
a2

0

t20
t2ηµνdX

µdXν (9.8b)

= a2
0 exp

(
4qtconf

D − 2

)
ηµνdX

µdXν (9.8c)

=
4q2

(D − 2)2
t2

(
−dt2conf +

D−1∑
i=1

dX idX i

)
, (9.8d)

which shows that it is indeed conformally flat. Moreover, this sets

t0 =
(D − 2)a0

2q
. (9.9)

Now that we have chosen a coordinate system, such that the metric is
conformally flat, we can set a0 and t0 to our convenience. We will make
the choice such that string frame metric is equal to the Minkowski metric,
so G

(S)
µν = ηµν . This choice completely fixes a0 and t0. If we recall that
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we defined the Einstein metric as a conformal transformation of the string
metric,

G(E)
µν = exp

(
4qtconf

D − 2

)
G(S)

µν , (9.10)

we see that this choice implies

a2
0 exp

(
4qtconf

D − 2

)
= exp

(
4qtconf

D − 2

)
, (9.11)

and therefore we find a0 = 1,1 so that the scale factor for this model is
equivalent to

a(t) =
2q

D − 2
t2. (9.12)

So, by acknowledging that a string theory with a timelike linear dilaton
background is actually equivalent to a quintessence driven cosmology, we
are able to derive the cosmological features of this theory and solve for all
its variables. The results turn out to be in perfect agreement with what we
already found earlier.

9.2 Stable modes

9.2.1 Stability

In the previous section we derived the cosmological solutions of the timelike
linear dilaton background. We have, however, said nothing about what
string modes are considered stable in this background. In this section we
will be investigating this issue.

First of all, we can ask the question “we do we mean by stable modes?” A
good way to think of stability is to see how a string mode responds to a small
fluctuation of the background fields. But in time-dependent backgrounds
there is no natural definition for stability. Since we are studying a linear
dilaton background, there are two background fields that can be varied,
namely the metric Gµν(X) and the dilaton Φ(X). When we vary these
fields, a string mode can react to this fluctuation in three different ways. It
can remain constant, it can damp out or grow as time advances. When the
response of a string mode to a small fluctuation, grows exponentially as time
advances, this string mode is considered to be unstable. On the other hand,
if the response of a string mode damps out, or at most remains constant
when time advances, this string mode is considered to be stable.

1The authors in [6] find the result a0 = e−
2Φ0
D−2 . This difference comes from the fact

that they define the Einstein metric as e−
4Φ

D−2 G
(S)
µν , instead of e−

4Φ̄
D−2 G

(S)
µν , used in this

thesis.
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We need to be careful, however. With this definition of stability, we can
easily mistaken modes that are pure gauge 2 for unstable modes. Therefore,
we need to look a bit more careful with our definition of stability. Once
again, consider the low energy effective action for the massless closed string
(6.1). We can couple string modes to backgrounds in this action. String
modes can be represented by scalar fields σ(X). Consider for example, a
massless scalar field σ(X) that couples to metric Gµν(X). It enters the
Lagrangian density as

Lσ = − 1
2κ2

0

√
−G(S)e−2Φ(∂σ)2 (9.13a)

= − 1
2κ2

√
−G(E)(∂σ)2. (9.13b)

As is seen explicitly in the string frame case (9.13a), scalar fields that cou-
ple to background fields are suppressed by the sting coupling gs = eΦ(X).
Therefore, can introduce a very convenient definition for stability of string
modes in background fluctuations. A stable mode is one that grows slower
than g−1

s at late times, and an unstable mode is a mode that grows faster
than g−1

s at late times.

9.2.2 Massless modes

Let’s see how this works for a massless scalar field σ(X). First of all, we
need to rescale the field σ(X) canonically if we want the field fluctuations
to represent normalizable string states. Therefore, we let

σ̃(X) ≡ e−Φσ(X), (9.14)

so that we find

e−2Φ(∂σ)2 = (∂σ̃ + 2σ̃∂Φ)2 (9.15a)

= (∂σ̃)2 + σ̃2(∂Φ)2 + 2σ̃(∂σ̃) · (∂Φ) (9.15b)

= (∂σ̃)2 − q2σ̃2 + 2σ̃(∂σ̃) · [(∂Φ)bg + (∂Φ)fl] , (9.15c)

where we have used the fact that (∂Φ)2 = VµV
µ = −q2 for a linear dilaton

background. As can be seen, this last term is split in two parts, namely
a constant background part (∂µΦ)bg, and a fluctuation part (∂µΦ)fl. Since
the background is constant, the part (∂µΦ)bg, contracted with (∂µσ̃) yields a
total derivative and does therefore not contribute. The second part (∂µΦ)fl

is a fluctuating term, which represents a trilinear vertex. We discard this
term. Therefore, we recover a new expression for the Lagrangian density of

2Such as overall rescalings of the metric, or constant shifts of massless scalars in the
action (see [6] for reference.
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rescaled field. It now contains a mass term −q2, which couples to a trivial
metric G(S)

µν = ηµν ,

Lσ̃ ∼ −
1

2κ2
0

√
−G(S)

[
(∂σ̃)2 − q2σ̃2

]
. (9.16)

For a timelike linear dilaton theory, q2 > 0, so the mass term is tachyonic.
Next, we will solve the equations of motion for this Lagrangian and

determine whether the solutions are stable or unstable modes. Since the
scalar field σ̃(X) is free in the spatial directions xi, i = 1, . . . , D − 1, its
solutions in the spacial directions are plane waves. One can easily check
that the correct solutions are

σ̃(X) = Aei~k·~x±Γ̃tconf , (9.17a)

where Γ̃2 = q2 − ~k2, (9.17b)

and A is an arbitrary amplitude, such that σ̃(X) is still real. To study the
behaviour of the massless modes further, it is convenient to move back to
the original FRW time t, and original field σ(X). There are tree distinct
possibilities, namely, overdamped modes, with (q > |~k|), critically damped
modes, with (q = |~k|), and finally, underdamped modes, with (q < |~k|).

� In the case of overdamped modes, Γ̃ is real, and the solutions reduce
to

σover(X) = AeΦ0+i~k·~x
(
t

t0

)B±
, (9.18a)

where B± ≡
D − 2

2q
Γ±, (9.18b)

and Γ± ≡ ±
√
q2 − ~k2 − q. (9.18c)

Modes of the form (9.18a) are sometimes referred to as pseudotachyons.

It is interesting to see what happens at ~k = 0. Γ± then takes two
values, namely Γ+ = 0 and Γ− = −2q. For Γ+ = 0, σ(X) approaches
a constant value and we say that the mode represents a condensation
of the massless field. This is the same as saying that the field obtains
a vacuum expectation value (vev). For Γ− = −2q, however, the scalar
field takes the form

σover(X) = AeΦ0

(
t

t0

)−(D−2)

. (9.19)

So we see that in these cases, the modes damp out as time advances.
Therefore, these modes are considered to be stable.
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� In the critically damped case, (q = |~k|), Γ̃ = 0, so the scalar field just
reduces to plane waves along the spacial directions, i.e.,

σcrit(X) = AeΦ0+i~k·~x. (9.20)

Also here we see that these modes are stable.

� And finally, we can look at the underdamped modes (q < |~k|). In this
case Γ̃ becomes complex, and it is more convenient to switch to ω,
with the property

ω2 = −Γ̃2 (9.21a)

= ~k2 − q2. (9.21b)

It is a simple exercise to find that the underdamped modes of the
scalar field in this case are written as

σunder(X) = AeΦ0+i~k·~x
(
t

t0

)− (D−2)
2q

(q±iω)

, (9.22)

and it is clear that this mode damps out at late times.

So, in all cases, the modes asymptote to zero (or at most stay constant) as
t → ∞. This means that when we start out with a massless scalar field
σ, and properly (canonically) normalize it to give σ̃(X) ≡ e−Φσ(X), the
modes are stable under fluctuations of the dilaton field. All modes have
the property that gsσ̃(X) → 0 (or stay constant at most) at late times, in
perfect correspondence with our definition of stability.

9.2.3 Massive modes

One can wonder what the effect of dilaton fluctuations would be if we had
taken a massive field σm(X), with mass m, instead of the massless field
σ(X). This would mean that, instead of (9.13a), a term of the form

Lσm = − 1
2κ2

0

√
−G(S)e−2Φ[(∂σm)2 +m2σ2

m] (9.23)

would be added to the Lagrangian density. In that case the modes would
break up into overdamped modes, with ~k2 < q2 − m2, critically damped
modes, with ~k2 = q2 − m2, and underdamped modes with ~k2 > q2 − m2.
Again, all these modes turn out to be stable in the sense that gsσ̃m(X)→ 0
at late times, as long as m2 ≥ 0.

But what would happen if the scalar field was a tachyon, in the sense that
m2 < 0? For this analysis it is convenient to focus on fields with ~k2 < |m2|.
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One can show that in this case, the overdamped modes have the exact same
form as (9.18a), but now with

B± ≡
D − 2

2q
Γ(m)±, (9.24a)

and Γ(m)± ≡ ±
√
q2 + |m2| − ~k2 − q. (9.24b)

We see that in this case, Γ(m)+ can become positive, causing a positive
exponential growth in the scalar field. Therefore, we see that it is possible
to obtain unstable modes in this theory. These states correspond to non-
normalizable states of the string, but they do not have the interpretation of
particle excitations. Rather, they are seen as unstable modes of the vacuum,
meaning that we are expanding around the wrong point in the vacuum. Just
as we saw with the massless field, the tachyon can also approach a constant
value at late times, namely if we consider Γ(m)−, with |m2| = ~k2 = 0. When
this happens, the tachyon acquires an expectation value. This process is
then called tachyon condensation.

In this chapter we have studied an effective string action with timelike
dilaton, and found that this theory gave rise to a quintessence-driven cosmol-
ogy, at the boundary between an accelerating and decelerating background.
Moreover, we have been able to derive some of its dynamics, using corre-
sponding cosmological solutions. And finally, we derived that most string
modes are stable against fluctuations of the background in such a theory.
What is strinking about this analysis is the fact that we have been able to
find solutions of a string theory with a time-dependent background at all.
In general, such theories are very hard to solve. In the next chapter, we will
focus our attention on the world-sheet dynamics of a timelike linear dilaton
background, coupled to a tachyon. We will choose such a setting that this
theory becomes exactly solvable!



Chapter 10

Exact tachyon-dilaton
dynamics

10.1 Exact solutions and Feynmann diagrams

10.1.1 Lightcone gauge

In chapter 7 we already considered the tachyon in a strict linear dilaton
background. There we started out with the low energy effective action for
a tachyon profile in the vicinity of the linear dilaton background, and de-
rived the linearized tachyon field equation (7.12) from it. Solving the lin-
ear tachyon field equation gave us a tachyon profile of the form (7.13a),
T (X) = µ2 exp (BµX

µ). Then finally, we added this tachyon profile to the
world-sheet action and were able to derive some of the dynamics of this
system.

In this section we will study general solutions of a theory with a non-zero
tachyon. We will be looking at solutions at the classical level and show that
these are in fact also exact at the quantum level. In the next section, after
having studied this non-zero tachyon, we will go to a more general setting
where we let the dilaton background derivate from the strict linear dilaton
background. Using our novel set of solutions, we will derive a more general
effective action for tachyon-dilaton interactions.

First of all, let us go through a few basic fact about world-sheet calculus,
in a slightly different way than we have already seen. It turns out to be
convenient to work in world-sheet lightcone coordinates of the form

ρ± = −τ ± σ (10.1a)

= −σ0 ± σ1. (10.1b)

These world-sheet lightcone coordinates are closely related to the complex
world-sheet coordinated z and z̄, introduced in chapter 3. In these coordi-
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nates the energy-stress tensor can be written as

T++ = − 1
α′

: ∂+X
µ∂+Xµ : + Vµ∂

2
+X

µ, (10.2a)

T−− = − 1
α′

: ∂−Xµ∂−Xµ : + Vµ∂
2
−X

µ, (10.2b)

where

∂+ ≡ ∂ρ+ = 1
2(−∂σ0 + ∂σ1), (10.3a)

∂− ≡ ∂ρ− = 1
2(−∂σ0 − ∂σ1), (10.3b)

and we can see the close analogy with (7.7). We also explained that physical
string states correspond to local (vertex) operators V (ρ+, ρ−) on the world-
sheet, which need to be normal ordered. Therefore we can write

V (ρ+, ρ−) ≡ : T (X) : , (10.4)

where T (X) satisfies the momentum on-shell condition (7.12). For tachyon
profiles of the form (7.13a), the on-shell condition comes down to condition
(7.13b), or put in a slightly different way,

B2 − 2V µBµ +
4
α′

= 0. (10.5)

In general, for arbitrary Bµ, this will lead to nontrivial interacting theo-
ries. There is, however, a set of choices for Bµ, such that the solutions to the
theory are exact and conformal to all orders in perturbation theory. This
set of choices comes down to choosing the tachyon profile to be lightlike, or
equivalently Bµ null. When make this choice for Bµ, the first term in (10.5)
vanishes. If one now works out the OPE of two tachyon vertex operators, it
can be seen that in the vicinity of each other they do not become singular,
as they would in general. Normally in free field theories, singularities in
normal-ordered operators arise when the propagators for from one free field
are contracted with propagators from the other. In this case, all contrac-
tions would render terms proportional to B2, and would therefore vanish.
Furthermore, we can always perform a Lorentz boost, to put Bµ into the
form

B0 = B1 ≡
β√
2
, (10.6a)

Bi = 0, i ≥ 2. (10.6b)

If we then also adapt to lightcone spacetime coordinates,

X± ≡ 1√
2
(X0 ±X1), (10.7)
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X X-

Figure 10.1: A propagator for X±, depicted as an arrow, pointing from X+

to X−.

The tachyon profile couples to the world-sheet as a (normal ordered) poten-
tial. Therefore, the tachyon vertex operator can be written as

V (ρ+, ρ−) =: µ2 exp(βX+) : (10.8a)

= µ2 exp(βX+). (10.8b)

As can be seen, at this point the normal ordering symbols are dropped.
Normal ordering would yield self-contractions of the Bµ-fields, which all
vanish.

10.1.2 Exact solutions

Now that we have written the tachyon in terms of lightcone coordinates X±,
let us also express the kinetic term for X± of the world-sheet Lagrangian
density. One can show that in terms of X±, the Lagrangian density, includ-
ing the tachyon contribution, takes the form

L = − 1
2πα′

[
(∂σ0X+)(∂σ0X−)− (∂σ1X+)(∂σ1X−) + α′µ2 exp(βX+)

]
.

(10.9)
Just looking at the kinetic part, we see that the X+ fields are always coupled
to the X−fields. The propagator for the X± fields therefore is orientated
and always has one X+ at one end, and one X− at the other. So a diagram
for a X± propagator can be depicted as an arrow, pointing from X+ to X−.
See figure 10.1

Now, with this Lagrangian, it is not hard to write down its equations of
motion. By varying the fields, or using the Euler-Lagrange equations, we
find that the equations of motion for the string are

∂+∂−X
i = 0, for i = 2, 3, . . . , D − 1, (10.10a)

∂+∂−X
+ = 0, (10.10b)

∂+∂−X
− =

α′βM2

4
, (10.10c)
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where M2 ≡ µ2 exp(βX+). These equations are exactly solvable at the
classical level. First of all, we note that the most general solution for (10.10b)
can, at most, be a sum of a function of ρ+ and a function of ρ−. Secondly,
by making use of some basic integral calculus, one can show that the exact
solutions to these equations of motion are

X+ = f+(ρ+) + f−(ρ−) (10.11a)
X− = g+(ρ+) + g−(ρ−) (10.11b)

+
α′βµ2

4

{∫ ∞

ρ+

dy+ exp[βf+(y+)]
}{∫ ∞

ρ−
dy− exp[βf−(y−)]

}
,

(10.11c)

where f±(ρ±) and g±(ρ±) are arbitrary functions. Next, we will argue that
the exactness of the solutions extends to the quantum level, so that we have
obtained a full set of solutions for the non-zero tachyon theory.

As we said before, doing world-sheet physics can really be seen as de-
scribing 2D quantum field theory, but then with some extra conditions on
the fields Xµ. It is therefore possible to describe interactions in the same
fashion as in quantum field theory. In quantum field theory, when an in-
teraction coupling g is small, perturbation theory is a good way to describe
the interactions as long as the energies don’t become to large. When us-
ing perturbation theory, different contributions to interactions are given by
different powers of g and correspond to a different number of loops in the
diagrams. The classical limits of interactions are given by tree diagrams,
and quantum corrections are given by loop diagrams.

Coming back to the problem at hand, all interactions at the quantum
level with the non-zero tachyon depend only on X+. This means that when
we use perturbation theory to describe interactions, the corresponding di-
agrams can only have outgoing lines. In other words, it is impossible to
construct diagrams with loops, because these would involve X− dependence
as well. In other words, the only diagrams possible are tree diagrams and
all of these correspond to their classical limits! Since we already solved all
these contributions exactly we conclude that we have obtained the complete
set of solutions for this theory. See figure 10.2 for some tree-level diagrams.

One can also write down the OPE’s of the X± fields. The structure of
these OPE’s is just as simple, but we will not go into that here. For further
detail, the reader is referred to [6].

10.2 Bubble of nothing

10.2.1 Bubble of nothing

In this section we will give a physical interpretation of the exact solutions for
the model of a non-zero tachyon and linear dilaton we found in the previous
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, ,    . . .   ,

Figure 10.2: Different tree-interaction vertices for a world-sheet with non-
zero tachyon. Only diagrams with outgoing lines are possible.

section. We will see that this solution actually gives rise to a bubble of
nothing, a region where no particles can enter. In section 7.3 we already
encounterd a model that is very closely related to this model, and there we
also saw that the tachyon field became an impenetrable barrier for matter,
but only in the X1 direction. The power of this model, however, lies in
the fact that we are able to solve this theory exactly at the quantum level
(since there are no quantum corrections in the interactions). Later on in
this section we will also describe the trajectory of a string colliding with the
bubble.

Just as in section 7.3, the tachyon profile T (X) = µ2 exp (βX+) here also
acts as a barrier. It can be thought of as a phase boundary in spacetime
between the region where T ≈ 0 and a region where T > 0. In the region
T > 0, where the tachyon becomes relevant, matter starts being pushed
outwards, and one can say that this is the point at which the bubble is
expanding. If the linear dilaton were absent, the boundary of this bubble
would be moving to the left (that is, in the −X1 direction) at the speed of
light. No degrees of freedom can live inside this bubble at all, not even the
graviton. Matter that encounters the bubble is rapidly pushed outwards,
approaching the speed of light. You could say that this is an actual absence
of spacetime itself.

So far, we have considered the null solution for the closed string tachyon
description of a bubble of nothing. A full classical solution is not known
explicitly, but in [6] it is suggested that in the presence of a timelike linear
dilaton, a closed tachyon theory would approach the null solution, long after
the nucleation of the bubble. The difference from a bubble of nothing in a
trivial flat spacetime (so, no dilaton) with this model, is that the barrier wall
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is not properly accelerating. This is due to Hubble friction and the presence
of the timelike linear dilaton. From the linearized tachyon field equation, it
can be seen that when the thickness of the bubble is of order α′|Φ̇| ∼ β−1,
the drag force of the background fields stop the acceleration.

From the action for this model, it is clear that no particles can enter
the high potential region, since particle wavefunctions would be suppressed
by the potential barrier. But since are able to solve this model exactly, we
can actually describe trajectories of particle that come in contact with the
barrier wall!

10.2.2 Particle trajectories

Let us, for sake of simplicity, consider pointlike strings, which only depend on
σ0 and not on σ1. We then use the string’s conserved momenta, introduced
in chapter 1,

P I ≡ TẊI , for I = 2, . . . , D − 1, (10.12a)

P+ = TẊ+, (10.12b)

P− = TẊ−, (10.12c)

For a pointlike string, one can write the X+ solution as

X+ = α′p+(σ0 − σ0
0), (10.13a)

P+ =
1
2π
p+, (10.13b)

P I =
1
2π
pI , (10.13c)

where σ0
0 is a constant.1 Then, using this solution and equation (10.10c),

it’s easy to show that the X− solution becomes

X− = α′p−0 (σ0 − σ0
0) +

µ2

βα′(p+)2
exp

[
α′βp+(σ0 − σ0

0)
]
, (10.14a)

P− =
1
2π
p−0 +

µ2

2πα′p+
exp

[
α′βp+(σ0 − σ0

0)
]
, (10.14b)

where p−0 is a constant of motion.
There is a relation between the constant of motion p−0 and the other

conserved momenta pI . We will show this relation by using the fact that
PµP

µ = −2P−P+ +P 2
I and the Virasoro constraints, introduced in chapter

3. For pointlike strings, all excited modes are absent, so the only contribu-
tions come from αµ

0 and α̃µ
0 . Therefore, the classical Virasoro constraint for

1Recall that we T = 1
2πα′ , and that we set α′ = 1.
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Figure 10.3: Trajectory of a pointlike string which encounters an expanding
bubble of nothing. We have set α′ = 1 and taken the values µ2 = 1, β = 0.1,
p+ = 3 and α′p2

I = 8.

H yields

H = α2
0 + α̃2

0 (10.15a)

=
1
2
α′PµP

µ +
1
2
α′PµP

µ (10.15b)

= −α′p−0 p
+ +

1
2
α′p2

I + µ2 exp(βX+) (10.15c)

= 0. (10.15d)

By taking the limit X+ → −∞, we find that p−0 is equal to

p−0 =
p2

I

2p+
. (10.16)

This is al the information we need to plot the trajectory of a pointlike
string that collides with the bubble wall. The only parameters that are still
free to choose are α′, β, µ2, p+ and p2

I . It can be more insightful to plot
the trajectory, using the original coordinates X0 and X1. Therefore, we
take (10.13a) and (10.14a) and invert relation (10.7) and use the obtained
expressions for X0 and X1 to plot a trajectory. In figure 10.3 we plotted
such a trajectory.

It is also possible to plot the particle’s velocity as it collides with the
bubble wall. First of all, we note that the particle’s initial velocity is given
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Figure 10.4: The velocity of a pointlike string that encounters the same
expanding bubble of nothing as in figure 10.3. We have assumed the same
numerical values. It can be seen that the particle’s velocity is reversed, and
rapidly approaches the speed of light.

by

v ≡ Ẋ1

Ẋ0

∣∣∣∣∣
initial

(10.17a)

=
Ẋ+ − Ẋ−

Ẋ+ + Ẋ−

∣∣∣∣∣
initial

(10.17b)

=
P+ − P−

P+ + P−

∣∣∣∣∣
initial

. (10.17c)

The particle moves with this velocity until it collides with the bubble wall.
There, the exponential term in P− becomes large and starts to dominate
the numerator and denominator. Therefore, the particle’s velocity rapidly
goes to −1. The velocity of the trajectory in figure 10.3 is given in figure
10.4.

10.3 Tachyon-dilaton low energy effective action

10.3.1 General two-derivative form

In chapter 6 we introduced the low energy effective action. We argued that
such an effective action can be very useful for describing the low energy
physics of a system. In chapter 7 the effective action provided us with the
on-shell condition for the tachyon, and in the chapter 9 we were even able to
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link a timelike linear dilaton theory to a quintessence cosmology by means
of the effective action.

We have derived some interesting features of string theories in the vicin-
ity of a tachyon profile and linear dilaton background. Moreover, we found a
world-sheet description of a theory with linear dilaton and tachyon field that
turned out to be exactly solvable. But we haven’t written down an effective
action for this model yet. In this section we will derive the most general
second-order derivative effective action for the tachyon-dilaton model we
discussed.

First of all, recall that we only have to deal with tree-level interactions
in our model.2 This means that the dilaton dependende appears as an
overall factor of e−2Φ(X) in the effective action. Then, the most general
two-derivative low energy effective action for a dilaton-tachyon theory is

S =
1

2κ2

∫
dDx
√
G

[
F1R−F2(∇Φ)2 −F3(∇T )2

−F4 −F5(∇T ) · (∇Φ)
]
, (10.18)

where the functions Fi are defined by

F1 ≡ e−2Φf1(T ), (10.19a)

F2 ≡ −4e−2Φf2(T ), (10.19b)

F3 ≡ e−2Φf3(T ), (10.19c)

F4 ≡ 2e−2ΦV(T ), (10.19d)

F5 ≡ e−2Φf5(T ), (10.19e)

and fi(T ) and V(T ) are five arbitrary functions of the tachyon field. More-
over, we have chosen an Euclidean signature for the spacetime metric here,
and the prefactors are for later convenience.

We obtain the equations of motions for this model by varying this action
to it’s fields, the metric Gµν(X), the dilaton Φ(X) and the tachyon T (X).
Varying the action to the metric gives the Einstein equations, and varying
to Φ(X) and T (X) gives two other equations of motion. Subsequently, they
are,

2Due to the fact that we have chosen such a coordinate system that all self contractions
the tachyon field would render terms proportialnal to B2, which are equal to zero
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� Einstein equations:[
∇µ∇ν −Gµν∇2 +

1
2
GµνR−Rµν

]
F1

+
[
∇µΦ∇νΦ− 1

2
Gµν(∇Φ)2

]
F2 +

[
∇µT ∇νT − 1

2
Gµν(∇T )2

]
F3

−
[
1
2
Gµν

]
F4 +

[
1
2
∇µT ∇νΦ +

1
2
∇νT ∇µΦ− 1

2
Gµν(∇T ) · (∇Φ)

]
F5

= 0 (10.20)

� Equation of motion coming from varying with respect to Φ(X):

− 2Rf1 + 8f2(∇Φ)2 − 8f ′2(∇T ) · (∇Φ)− 8f2∇2Φ

+ (2f3 + f ′5)(∇T )2 + f5∇2T + 4V = 0. (10.21)

� Equation of motion coming from varying with respect to T (X):

Rf ′1 + (4f ′2 − 2f5)(∇Φ)2 + f ′3(∇T )2 − 4f3(∇Φ) · (∇T )

− 2V ′ + f5∇2Φ + 2f3∇2T = 0. (10.22)

10.3.2 Determining the final form

Without more imput, this is about as far as we can get. But what we were
really looking for, was the most general low energy effective action that was
able to reproduce the tachyon-dilaton theory we discussed! So, it is therefore
reasonable to assume that this effective action admits a solution where

T (X) = µ2 exp(βX+), (10.23a)

G(S)
µν (X) = ηµν , (10.23b)

Φ(X) = −qX0. (10.23c)

This assumption, together with the equations of motion (10.20), (10.21)
and (10.22) impose conditions on the functions fi(T ) and V(T ). First of
all, the on-shell condition for the tachyon immediately lead to the condition
βq = 2

√
2

α′ . We will not work out the details here, but in [6] it is shown that
the functions fi(T ) meet the following conditions,

f2 = f1, (10.24a)

f3 = − 1
T
f ′1 − f ′′1 , (10.24b)

V(T ) =
D − 26

3α′
f1 +

4
α′
T f ′1, (10.24c)

f5 = 4f ′1. (10.24d)
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So, apparently it is possible to express f2, f3, f5 and V(T ) entirely in terms
of f1.3

Taking all of this together, we end up with the most general (two-
derivative) effective action that produces solutions for the tachyon-dilaton
model we considered,

S =
1

2κ2

∫
dDx
√
Ge−2Φ

[
f1R+ 4f1(∇Φ)2 +

(
1
T
f ′1 + f ′′1

)
(∇T )2

− 4f ′1(∇T ) · (∇Φ)− 2(D − 26)
3α′

f1 −
8
α′
f ′1T

]
. (10.25)

This result holds for all spacetime dimensions D.
A question we can ask ourselves is, if we take a model where the tachyon

condences in a direction other than the null direction, are the equations of
motion (10.20), (10.21) and (10.22) still satisfied? It turns out that this
is not the case (see [6]). This doesn’t tell us, however, that our theory is
wrong, or that the tachyon potential V(T ) should vanish, but merely that
the effective action is not complete enough to describe more general settings.
A way to continue is include higher order derivatives into the effective action,
in such a way that the null tachyon background is still an exact solution of
the action. A nice way to obtain this result is to first notice (see (7.12))
that a null tachyon background satisfies the equation

(∂µΦ) · (∂µT ) =
2
α′
T (10.26)

everywhere. So, including a term of the form[
(∂µΦ) · (∂µT )− 2

α′
T
]2

· F
[
Gµν(X),Φ(X), T (X)

]
(10.27)

to the action, where F
[
Gµν(X),Φ(X), T (X)

]
is an arbitrary function of

the background fields, will automatically satisfy the null tachyon - timelike
linear dilaton background we discussed.

In this chapter we have investigated the tachyon-dilaton interactions
further. Also, by choosing the proper coordinates, we have been able to give
exact solutions for this model. We saw that we obtained a solution which can
be thought of as a spacetime-destroying bubble of nothing. In this model,
however, the tachyon profile only depended X+. In the next chapter we will
study a similar model, but there we will let the tachyon profile depend on
more coordinates X2, . . . , Xn. We will see that the solutions to this system
are still simple enough to be solved exactly, and that the solutions are able
to dynamically change the number of dimensions of the theory!

3It is worth noticing that if the tachyon potential V(T ) is not trivial (and the linear
dilaton is nonvanishing), the function f1(T ) cannot be constant. This means that in an
effective action for such a model, the normalization of the Einstein term R must also be
nontrivial. This is quite an important result, since various articles have approximated the
normalization of the Einstein term as constant. See [6] for further reference.
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Chapter 11

Dimension-changing
solutions

11.1 Dimension-change for the bosonic string

11.1.1 Oscillatory dependence in the X2 direction

In the previous chapter we studied a bosonic string theory in a timelike
linear dilaton theory, in which the tachyon profile T (X+) condensed along
the null direction X+. By considering the theory in this lightcone coordinate
system, we were able to find exact solutions, due to the fact that all quantum
corrections vanished.

There are, however, more general settings to consider. We could, for ex-
ample, study a similar theory, but assume that the tachyon profile also has
oscillatory dependence on more coordinates, X2, X3, . . . , Xn.1 This general-
ization is possible, as long as the on-shell tachyon condition, (7.12), is still
satisfied. Let us, for the moment, focus on a tachyon profile that has oscil-
latory dependence on a third coordinate X2, and consists of a superposition
of perturbations. Such a profile has the form

T (X) = µ2
0 exp(βX+)− µ2

k cos(kX2) exp(βkX
+), (11.1a)

with qβk =
√

2
(

2
α′
− 1

2
k2

)
. (11.1b)

As we already encountered in (10.8), the tachyon profile couples to the
world-sheet as a normal ordered potential, − 1

2π : T (X) : . Furthermore, we
can expand this potential around the vacuum X2 = 0. If we do so, and
recall that we were allowed to drop the normal ordering symbols for the null

1Usually these ‘extra’ fields are written with upper indices. However, for the purposes
in this chapter, it is more convenient to write them with lower indices. Moreover, since
the spacetime metric is in the Minkowski frame, (recall that this was how a linear dilaton
background was defined) there is no distinction between the two anyway.
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coordinate X+, we find

T (X) = µ2
0 exp(βX+)−µ2

k exp(βkX
+)+

1
2
k2µ2

k exp(βkX
+) : X2

2 : +O(k4X4
2 ).

(11.2)
We can simplify this theory significantly by taking the wavelenght of the

oscillatory part, k−1, long compared to the string scale l. In other words,
we can take k → 0. In this limit, the part O(k4X4

2 ) vanishes, and βk → β.
Furthermore, if we define µ2 ≡ α′k2µ2

k, and fix µ′2 ≡ µ2
0 − µ2

k, the tachyon
profile becomes

T (X) =
µ2

2α′
exp(βX+) : X2

2 : + T0(X+), (11.3a)

with T0(X+) =
µ2X+

α′q
√

2
exp(βX+) + µ′2 exp(βX+). (11.3b)

We can intuitively interpret these solutions as follows. For X+ → −∞
the tachyon is zero, so strings are free to propagate in all spatial directions,
X1, . . . , Xd. But in the region where the tachyon becomes relevant, X+ ∼ 0,
strings are confined to a region where the tachyon is minimal. In other
words, strings are confined to X2 → 0. At late times, X+ → +∞, it
becomes impossible for strings to move in the X2 at all, so they are frozen
in at X2 = 0. Initially, these strings move in D spacetime dimensions, but
at late times they can only move in (D − 1) dimensions, and therefore the
number of spacetime dimensions has effectively been reduced by one! Strings
that continue to oscillate in the X2 direction are expelled from the region
where the tachyon condensate is large. They are pushed outwards, along
the X+ direction, in a very similar way that was described in chapter 10.
The process where strings at late times live in a lower number dimensions
than at early times is called dynamical dimensions change.

Of course, this is not the complete story. We have said nothing about
the other terms appearing in T0(X+). If we look at them, we see that it a
logical idea to interpret the term involving µ′2 as the tachyon condensate
at late times (so in (D − 1) spatial dimensions). This term is a conformal
field, so it can be tuned to zero by setting µ′2 to vanish. The other term,
however, can not simply be tuned away. But as one can show, fortunately,
a quantum effective potential that is generated upon integrating out the
X2 field, exactly cancel out this term.2 Therefore, we are left with a clear
interpretation of this theory, namely a dimension-changing bubble.

2It can be shown that this quantum effective potential turns out to contribute an

amount of ∆V = −µ2

8π
βX+ exp(βX+) to the vacuum energy of the system. Using that

βq = 2
√

2
α′ , we see that this indeed exactly cancels the extra term in T0. See [7] for more

details.
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11.1.2 Classical world-sheet solutions

We will now take a closer look at this system. Therefore, we will consider
the world-sheet action for this theory and try to find its classical solutions.
Writing down the full action, we find

S =
1

2πα′

∫
M
d2σ

[
− (∂σ0X+)(∂σ0X−) + (∂σ1X+)(∂σ1X−)

+
1
2
(∂σ0XI)(∂σ0XI)− 1

2
(∂σ1XI)(∂σ1XI)− α′T (X)

]
. (11.4)

The equations of motion for this action become

∂+∂−X
+ =

α′

4
∂X−T = 0, (11.5a)

∂+∂−X2 = −α
′

4
∂X2T (11.5b)

= −1
4
µ2 exp(βX+)X2, (11.5c)

∂+∂−X
− =

α′

4
∂X+T (11.5d)

=
β

8
µ2 exp(βX+)X2

2 +
1
4
∂X+T0, (11.5e)

∂+∂−XJ = 0, for J = 3, . . . , D − 1, (11.5f)

where just as before, ∂± are derivatives with respect to ρ±. From these
equations, we can derive some results straightaway. First of all, just as in
chapter 10, we notice that if ∂+∂− acting on a function yields zero, the
most general solution is a sum of a function that only depends on ρ+ and a
function that only depends on ρ−, so

X+ = f+(ρ+) + f−(ρ−), (11.6a)

XJ = fJ
+(ρ+) + fJ

−(ρ−). (11.6b)

The second result is that the equation of motion for the X2 field, (11.5c),
is exactly the equation of motion for a (scalar) field with physical mass
M(X+) ≡ µ exp

(
1
2βX

+
)
. This interpretation is of course sensible if we

treat X+ as fixed.
Since the equations of motion are nonlinear, they are difficult to solve in

full generality. But we do not need to know the general solution in order to
study the behaviour of particles in this background. We will try to solve the
equations of motions in a simpler setting, namely when we consider pointlike
strings (so no dependence on σ1), just as in the previous chapter. Therefore,
we will asume X+ to be of the form (10.13a). With this simplification, the
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equation of motion for X2 becomes

Ẍ2 = −ω2(σ0)X2, (11.7a)

with ω(σ0) ≡M(σ0) = µ exp
[
1
2
βα′p+(σ0 − σ0

0)
]
, (11.7b)

and the dots are again derivatives with respect to σ0. The solutions of
this equation are Bessel functions of the first and second kind (J0 and Y0

respectively), so we end up with

X2 = AJ0

[
2ω(σ0)
βα′p+

]
+BY0

[
2ω(σ0)
βα′p+

]
, (11.8)

where A and B are just constants of motion.

11.1.3 An energy consideration

In order to understand the behaviour of this system it is important to realize
that, with respect to the X2 field, particles behave like harmonic oscillators
with time-dependent frequency ω(σ0). The energy of a harmonic oscillator
with constant frequency can easily be calculated. One could wonder, though,
if in this case the changes in frequency are slow enough for particles to
adapt to these changes. In other words, does the system obey the adiabatic
theorem? It turns out that this is the case. If a system is charaterized by
a frequency ω, changes in the wavelength λ = ω−1 with respect to time σ0

should vanish, so

lim
σ0→∞

dλ

dσ0
= lim

σ0→∞

−1
ω2

dω

dσ0
= 0. (11.9)

It is easily checked that the system meets this condition.
From this result, we can deduce that the energy in the oscillator modes

grows proportionally to ω(σ0). Quantum mechanics tell us that the (total)
energy for a hamonic oscillator is propotional to the number of excitations,
or more specifically, EN = (N + 1

2)h̄ω. With this in mind, we can write
down an expression for the total energy (in the X2 direction) of a particle.
Even though we are only considering the classical theory at this point, we
write down

E = Ekinetic + Epotential (11.10a)

=
1
2
Ẋ2

2 +
1
2
ω2(σ0)X2

2 (11.10b)

≡ h̄α′

R
N(σ0)ω(σ0), (11.10c)

where R is the world-sheet scalar, N(σ0) is the number of excitations, and
we have explicitly written down Planck’s constant h̄. Moreover, we have left
out the factor of 1

2 , since we are considering a classical derivation.
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Even though N(σ0), in general is some time-dependent function, it is
not difficult to show that at late times, it approaches a constant, Nfinal.
To see this, one has to write out the explicit forms for the Bessel functions
and consider their behaviour at late times.3 Working out the details, it can
be shown that the kinetic term, as well as the potential term both scale as
ω−1(σ0). We can substitute this back into (11.10), and use the fact that
limσ0→∞ ω−1(σ0) = 0. Then, by comparing left and right, we see that this
can only be true if limσ0→∞N(σ0) = Nfinal. In other words, at late times,
the number of oscillator excitations becomes constant.

This is actually a rather important result. Using this in combination
with the virial theorem, we are able to understand the behaviour of particles
in this system at late times. First of all, the virial theorem predicts that the
average kinetic and potential energy of a system satisfy a certain relation.
For potentials that scale with the distance r as Epotential ∼ rn+1, the virial
theorem says that4

〈Ekinetic〉 =
n+ 1

2
〈Epotential〉. (11.11)

The potential for a harmonic oscillator scales as r2, so this yields the relation
〈Ekinetic〉 = 〈Epotential〉. It is therefore clear that both terms in (11.10b)
approach h̄α′

2RN(σ0)ω(σ0) on average.
With this information we are now ready to derive the particle’s behaviour

at late times. First of all, we can take the equation of motion for X−, and
substitute the results that we derived above. In this way, we obtain

Ẍ− =
1
2
βµ2 exp(βX+)X2

2 (11.12a)

=
1
2
βω2(σ0)X2

2 (11.12b)

≈
βµα′h̄Nfinal

2R
exp

[
1
2
βX+(σ)

]
, (11.12c)

at late times. Furthermore, as we assumed before, we made use of the fact
that the term T0 vanished all together. This then leads to the final form for
X−,

X− ≈
2µh̄Nfinal

βα′(p+)2R
exp

[
1
2
βX+(σ)

]
, (11.13)

for σ0 →∞. The interpretation of the dynamics for particles in this system
is as follows. At a certain time, a particle meets the bubble wall. If the
particle has excited oscillator modes in the X2 direction (so Nfinal 6= 0), the

3One can show that for large x, J0(x) ≈
q

2
πx

cos(x− π
4
), and Y0(x) ≈

q
2

πx
sin(x− π

4
).

Therefore, for large x,
ˆ
J0(x) + Y0(x)

˜2 ∼ 1
x

and
ˆ
∂xJ0(x) + ∂xY0(x)

˜2 ∼ 1
x
. See [9] for

reference.
4See [13] for reference.
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particle is pushed outwards along the null-direction, and rapidly accelerates
to the speed of light. These particles are energetically forbidden to enter
the bubble interior. On the other hand, particles in their groundstates (so
for Nfinal = 0) do not feel the bubble wall at all. In this case, the particles
are able to penetrate the interior of the bubble.

Even if we allow σ1-dependent modes exp(inσ1) of the X2 field back
into our model (so we consider one-dimensional strings again), this pic-
tures doesn’t change. Each of these modes has a time-dependent frequency
ωn(σ0), with5

ωn(σ0) ≡
[
M2(σ0) +

n2

R2

] 1
2

. (11.14)

It can again easily be checked that the adiabatic theorem is satisfied, so that
the energy of these modes is again proportional to this frequency,

En ∼ Nn(σ0)ωn(σ0). (11.15)

And also, the number of oscillations Nn(σ0) approaches a constant at late
times, so

lim
σ0→∞

Nn(σ0) = Nn,final. (11.16)

Only when Nn,final = 0, particles are energetically allowed into the bubble
interior. So therefore we see that at late times, the interior of the bubble
consists entirely of particles that are in their groundstates with respect to
the X2 direction.

This result is in perfect agreement with what we already derived before.
Only particles that have no excitations in the X2 direction are able to pene-
trate the interior of the bubble, and once they have entered the bubble, they
are confined to the minimum of the tachyon profile, at X2 = 0. These results
indicate that this new tachyon background gives rise to a theory that starts
out in D spacetime dimensions and ends in (D − 1) spacetime dimensions.

11.1.4 Oscillatory dependence on more coordinates

In the foregoing, we considered a tachyon profile that had oscillatory de-
pendence on one extra coordinate, X2. We can of course generalize this
theory to a tachyon profile that has oscillatory dependence on n extra co-
ordinates, X2, . . . , Xn+1. We will not repeat the entire calculation again,
since the analysis is quite similar to the foregoing. Instead, we will shortly
go through the derivation.

First of all, if we expand around Xi = 0, and assume the wavelengths
of the extra fields long compared to the string scale, the tachyon profile

5See [7] for reference.
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D dimensions
time

Σ

(D-n) dimensions

Figure 11.1: Schematical picture of a dimension-changing bubble. Σ stands
for the spatial directions of this theory. At a certain point the bubble is
created. The bubble then rapidly expands, changing the interior of the bubble
from a D-dimensional theory to a (D − n)-dimensional theory.

simplifies to

T (X) =
µ2

2α′
exp(βX+)

n+1∑
i=2

: X2
i : + T0(X+), (11.17a)

with T0(X+) =
nµ2X+

α′q
√

2
exp(βX+) + µ′2 exp(βX+). (11.17b)

It can immediately be seen that either particles are confined to the minimum
of the tachyon profile, X2 = . . . = Xn+1 = 0, or they are pushed outwards,
along the null-direction. Next, one can write down the Lagrangian for the
world-sheet theory, and derive the equations of motion. In that case, the
equation of motion for the null-field X− becomes

∂+∂−X
− =

α′

4
∂X+T (11.18a)

=
β

8
µ2 exp(βX+)

n+1∑
i=2

X2
i +

1
4
∂X+T0, (11.18b)

where we assume the second term to vanish. Then, we can simplify the
model by considering pointlike strings, to find the solutions of the extra
fields, Xi. The solutions of these fields are again Bessel functions of the
first and second kind, just as before. Particles behave as harmonic oscilla-
tors in these extra directions, for which the adiabatic theorem is satisfied.
Then finally, the virial theorem can be used to show that at late times both
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the kinetic and potential energy of the oscillator modes ωi(σ0) approach
an amount of h̄α′

2RNi(σ0)Mi(σ0) on average. Substituting these results into
(11.18b), and solving it, we find that at late times

X− ≈
n+1∑
i=2

2µh̄Ni,final

βα′(p+)2R
exp

[
1
2
βX+(σ)

]
, (11.19)

where Ni,final are the (constant) number of oscillator modes for the Xi fields
at late times.

The interpretation of this theory is clear. Only particles that have no
oscillator excitations in either of the Xi directions are able to penetrate the
bubble interior. All other particles are expelled from the interior, pushed
along the null-direction, approaching the speed of light. Again, this picture
doesn’t change when the strings do have σ1-dependent modes of the Xi

fields. Therefore, at late times, the bubble interior consists only of particles
that have no oscillatory dependence in the extra directions. Moreover, since
they are also confined to the tachyon minimum X2 = . . . = Xn+1 = 0, one
can say the theory has dynamically changed from a D-dimensional theory
to a (D − n)-dimensional theory. This is schematically depicted in figure
11.1. This type of dynamical dimension-change is also called dimension
quenching.

11.2 Quantum corrections

11.2.1 Exact solutions at one-loop order

In the foregoing, we have seen that the theory of a tachyon background that
has oscillatory dependence on n extra coordinates is exactly solvable classi-
cally. In the previous chapter, where we considered a tachyon background
that only depended on the null coordinate X+, all quantum corrections on
the world-sheet were absent due to the fact that vertices could only have
outgoing lines. Therefore, the classical solutions were actually the exact
solutions of this theory. In the theory that we consider here, not all quan-
tum corrections on the world-sheet vanish. But remarkably enough, we will
see that the perturbation series is simple enough that it can be computed
exactly!

For this derivation it is useful to consider Feynmann diagrams again.
Moreover, for sake of clarity we will look at the tachyon background that
only depends one extra coordinate, X2 for now. This derivation can then
trivially be extended to an arbitrary number of oscillatory fields Xi. In the
Feynmann diagrams we should now make a distinction between the null-
fields and the oscillatory fields. The null-fields behave like massless fields,
and we will denote them by dashed lines. Moreover, we have already shown
that the propagator for null-fields is oriented, since it always connects X+
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, ,

Figure 11.2: Feynmann diagrams of zero-loop vertices. Each diagram shows
a different number of dashed lines emanating from one vertex.

fields to X− fields. Therefore, it can be drawn as an arrow, pointing from
X+ to X−. The oscillatory field, however, behaves like a massive field, and
we will denote it with a solid line.

Let’s now take a look at the interaction vertices for this theory. The
tachyon profile only has dependence on X+ and X2. So, just as in the
previous chapter, no loops can be formed, using massless (dashed) lines. It
is also impossible to connect two vertices by a massless leg. Therefore, we
see that the dashed part of an interaction vertex can only be at the tree-
level. This is not the case for the massive fields, though. The form of the
tachyon profile tells us that every vertex has either zero, or two solid lines
passing through it. This means that two seperate solid line sigments can
never be connected with either a dashed line (the tachyon has no dependence
on X−), or a solid line (since then three solid lines would emanate from
these vertices). Therefore, we can conclude that every connected Feynmann
diagram has either zero loops, or one loop at most.

The general structure of a diagram with zero loops can be seen as one
solid line, passing through an arbitrary number of vertices, in an ordered

, ,

Figure 11.3: Feynmann diagrams of zero-loop vertices. Each diagram shows
a different number of vertices, with just one dashed line emanating from
each of them.
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perms.

Figure 11.4: A Feynmann diagram of a four-point interaction. Since these
interactions exhaust all possibilities, these diagrams are exact at one-loop
order.

sequence. Each of these vertices has an arbitrary number of dashed lines
emanating from it. Figure 11.2 shows a few Feynmann diagrams with zero
loops, and a different number of dashed lines emanating from one vertex.
Figure 11.3 also shows a few Feynmann diagrams with zero loops, but now
with one dashed line emanating from a different number of vertices.

The general structure of a diagram with one loop can be seen as a closed
solid line, with an arbitrary number of dashed lines emerging from an ar-
bitrary number of vertices on the closed line. We have shown an example
of such a diagram in figure 11.4. Here we have drawn all possibilities for a
four-point diagram. This can trivially be extended to a n-point diagram.

Figure 11.5: A vertex that only depends on X+. Such a vertex is depicted
by an arbitrary number of outgoing dashed lines.
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Finally, there are counterterms in the interaction of the tachyon that
only depend on X+. The diagrams for these terms can be depicted by an
arbitrary number of dashed lines emerging from one vertex, just as was
shown in chapter 10. For completeness, this is shown again in figure 11.5.

The diagrams that we just discussed exhaust all possibilities! All quan-
tum corrections terminate at one-loop order. Therefore, we can conclude
that this theory is indeed exact at one-loop order, still simple enough to be
calculated!

11.2.2 Dynamical readjustment

The concept of dynamical dimension-changing bubbles is a fascinating fea-
ture of string theory. The fact that these theories are exactly solvable is even
more striking. But there is one important aspect that we have been over-
looking. If a theory changes from a D-dimensional to a (D−n)-dimensional
theory, doesn’t the central charge of the theory change as well? If this is the
case, then the theory is no longer consistent anymore. Fortunately, it turns
out that the total central charge of the theory doesn’t change. The central
charge coming from the fields, indeed decreases by an amount of n, but this
difference is compensated by an increase in central charge coming from the
dilaton! In other words, comparing the theory at X+ → −∞ to the theory
at X+ → +∞, we see that a central charge transfer takes place from the
bosonic fields to the dilaton field.

To determine the change in central charge from the dilaton, one looks
at the effect of the one-loop diagrams, discussed in the foregoing. It turns
out that the effect of these one-loop diagrams vanishes for most of the fields
involved in the theory. The only fields that are effected for X+ → +∞ are
the string fram metric Gµν(X) and the dilaton Φ(X). To see how these
fields are effected, one considers the renormalization of the string frame
metric and the dilaton. This is the so-called dynamical readjustment of the
metric and dilaton gradient. We will not perform the calculations here, but
simply state the results. For more details, the reader is refered to [7].

We will consider dimension-change for n coordinates again. Furthermore,
we will denote renormalized fields with a hat. Then, after renormalization,
the string frame metric appears as

Ĝ++ = 0, (11.20a)

Ĝ−− = −nα
′β2

24
, (11.20b)

Ĝ+− = Ĝ−+ = −1, (11.20c)

where we have switched over to the lightcone coordinate system. All other
components are unrenormalized. Moreover, the renormalization of the linear
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dilaton, Φ(X) = VµX
µ appears as

V̂− = − q√
2
, (11.21a)

V̂+ = − q√
2

+
nβ

12
. (11.21b)

With this information, it is easy to compute the central charge of the
dilaton at late times. Recall from chapter 7 that the total central charge of
a linear dilaton theory was equal to

c = cX + cΦ + cg (11.22a)
= D + 6α′GµνV

µV ν − 26. (11.22b)

Therefore, we see that at late times the central charge contribution of the
dilaton becomes

cΦ = 6α′Ĝµν V̂
µV̂ ν (11.23a)

= −6α′q2 +
nqβα′√

2
− nα′2q2β2

8
(11.23b)

= −(D − 26) + n, (11.23c)

where in the last step, we made use of the fact that q2 = D−26
6α′ and qβ = 2

√
2

α′ .
From this it is indeed clear that even though the central charge from the
bosonic fields decreases by an amount of n, this difference is picked up by
the dilaton field, so that the total central charge of this theory is conserved.

This is actually a very important result. We see that the theory is excatly
solvable and that no central charge is lost in the process. This means that we
can start in an arbitrary number of spacetime dimensions D and eventually
return to a critical dimension by simply choosing n = (D − 26) (for the
bosonic case). We can even return to a subcritical string theory. In [7] and
[8], a different number of superstring theories are linked to each other by
practically the same mechanism. We will have a short discussion on this
subject in the final section of this chapter.

11.3 Dimension-change for superstrings

11.3.1 Superstring theories

Up till now we have only considered bosonic string theories. These theo-
ries, however, are not capable of generating theories containing fermionic
particles. Therefore, bosonic string theories are not thought to be realistic
theories for the universe that we observe. When supersymmetry is taken
into account, string theories emerge that do contain fermions. These string
theories are called superstring theories.
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A lot of the material that we have covered for bosonic strings is also
applicable to superstrings. We already mentioned that practically an equiv-
alent calculation for a traceless energy-stress tensor on the world-sheet leads
to a critical dimension for superstrings, Dc = 10. There is a big difference
between bosonic string theories and superstring theories though. Bosonic
string theory really only distincts between open and closed strings. This
is not the case in superstring theory. There turn out to be a great deal
of distinct superstring theories. These superstring theories are devided in
type I, type IIA, type IIB, heterotic SO(32) and E8 × E8 theories. All
these theories are interconnected by a web of dualities, such as T -dualities
or c-dualities. A surprising result is that all these theories turn out to be
different limits of one 11-dimensional theory of supergravity. Less familiar
are so-called type 0A or type 0B string theories. For these theories the
world-sheet is supersymmetric, but the spacetime spectrum is not and does
not contain fermions. Its groundstate contains a tachyon, so that this theory
resembles bosonic string theory a lot. For more detail on superstring theory,
the reader is refered to [2], but most other books on string theory also cover
this subject.

11.3.2 Transitions among various string theories

The null-tachyon dilaton system that we discussed in the previous sections
can also be applied to superstring theories. These derivations are very ex-
tensively described in [7] and [8], but are to technical for the scope of this
thesis. Therefore, we will just give a very global picture of the applications
in this field of research.

The main difference between the superstring theories is the amount of
supersymmetry they contain, or the orientation of the strings. Therefore, it
is intuitively not so surprising that if superstrings encounter an expanding
tachyon bubble, strings that do enter the interior of the bubble might have a
different amount of supersymmetry or orientation in the lower dimensional
theory. Therefore, not only the dimension of the theory is able to change,
but the theory itself can change all together. This is why we also refer to
these processes as transitions. In [8], a distinction is made between three
types of transitions, namely

� Stable transitions: No perturbation of the solution can destroy or
alter the final state qualitatively,

� Natural transitions: No instability can destabalize the solution with-
out breaking additional symmetry,

� Tuned transitions: The initial conditions of an unstable mode must
be fine-tuned to preserve the qualitative nature of the final state.
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Figure 11.6: A schematic picture of dimension quenching transitions among
type 0 string theories. Horizontal arrows correspond to normal T -dualities,
vertical arrows correspond to natural transistions and diagonal arrows cor-
respond to tuned transitions. The stable endpoint of this lattice is a two-
dimensional type 0A or type 0B theory.

With these definitions, we can study various transitions among string
theories. In figure 11.6, we showed a small part of a semi-infinite lattice
of transitions among type 0 theories. Here we see that these theories can
undergo transitions from a D-dimensional theory to a (D − 2)- or (D − 1)-
dimensional theory. In this particular example, a stable endpoint is a two-
dimensional type 0A or type 0B theory.

Another example is a theory where one starts with a type 0A or type 0B
theory, but eventually ends up with a type IIA or IIB theory respectively,
in the critical dimension Dc = 10. A fascinating feature of these sort of
transitions is that in this way, we are now able to link an infinite number of
noncritical string theories to the well-known web of supersymmetric string
theories in Dc = 10. Before, these theories were thought to be completely
disconnected, so this is a very important result.

Maybe even more striking, is the fact that other type of transitions are
able to link type 0 theories to pure bosonic theories! In this way, type 0A
or type 0B theories in D dimensions can change into bosonic string theories
in D dimensions, or in (D − 1) dimensions. This means that we have now
actually found a connection between purely bosonic string theories and super
string theories! Even though there is much more to say about dimension
quenching and transitions among noncritical superstring theories, we will
end our discussion here. Readers who are interessed in more information on
this subject are refered to the articles of Simeon Hellerman and Ian Swanson.
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Summary

String theory provides us with a surprising fact that these theories are only
consistent in a specific number of dimensions. In contrast to theories of
one-dimensional particles (quantum field theory, for example), this number
arises from the theory itself, instead of being put in by hand. In this thesis
we have studied various aspects of string theory, in regard to the number of
spacetime dimensions. We restricted our attention mainly to pure bosonic
strings. In this first part we set the stage for studying string theory in an
arbitrary number of spacetime dimensions and the second part we studied
various applications of noncritical string theories.

We started part 1 by explaining why there is need for a critical dimension
in string theory. We investigated the classical behaviour of bosonic strings in
flat spacetime, in the absence of background fields. Strings in such a theory
are described by the Polyakov action, an action for a world-sheet that is
carved out by a string, in an arbitrary number of spacetime dimensions. We
showed that this action has three important symmetries, namely Poincaré
invariance, diff (or reparametrization) invariance and Weyl (or rescaling)
invariance. Then, we considered the energy-stress tensor for this action. We
derived that the condition for Weyl invariance on the world-sheet, translates
to the condition that the energy-stress tensor is traceless. Since rescaling
the world-sheet can be described by a renormalization β function, we argued
that this tracelessness of the energy-stress tensor is equivalent to saying that
the β function should vanish. Then finally, we saw that by taking quantum
effects into account, the condition for a vanishing β function gave rise to the
critical dimension Dc of the theory. These are the famous numbers Dc = 26
for bosonic strings, and Dc = 10 for superstrings.

After determining the critical dimension for bosonic strings in flat space-
time with no background fields, we considered the most general world-sheet
action that respects diff invariance. This action describes a theory of strings
living in a spacetime containing three different background fields, namely a
curved spacetime metric Gµν(X), an antisymmetric tensor, called the Kalb-
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Ramond field Bµν(X), and a (scalar) dilaton field Φ(X). Since the claim for
Weyl invariance on the world-sheet is still effectual, the energy-stress tensor
still needs to be traceless. Or in other words, the β function still needs to
vanish. Since there are now three different background fields, the β function
consists of three contributions, namely βG

µν , β
B
µν , and βΦ, which all need

to vanish seperately. We found that these β functions are difficult to solve
exactly, so we derived them up to first order in α′, equivalent to the low
energy limit of the theory. A result that was of major importance for the
course of this thesis was the fact that the condition, βΦ = 0, told us that
the usual numbers for the critical dimension (Dc = 26 or Dc = 10) could
be altered by choosing suitable corresponding background fields. In other
words, by considering a string theory with background fields, the number of
spacetime dimensions of this theory is allowed to deviate from the critical
dimension! This is how we introduced noncritical string theories.

In part 2, we started out by introducing the linear dilaton background,
one of the simplest settings for studying noncritical string theory. In this
background, the spacetime metric is equal to the Minkowski metric ηµν , the
Kalb-Ramond field is absent, and the dilaton is linear in the spacetime co-
ordinates Xµ. The number of spacetime dimensions in this theory is now
altered by an amount proportional to the square of the gradient of the dila-
ton, VµV

µ, which is always a constant for the linear dilaton background.
This result is actually exact, since all higher order derivatives vanish. It
turned out to be very interesting to study a tachyon profile in the vicinity of
a linear dilaton background. To this end, we considered the low energy ef-
fective action for a tachyon. Solving the equation of motion for this action,
the so-called tachyon on-shell condition, gave rise to the tachyon profile.
When we added this tachyon to the world-sheet action for strings in a linear
dilaton background, we obtained a so-called Liouville field theory. Such a
theory typically shows the behaviour of a potential barrier, growing expo-
nentially with distance, in time, or both, depending on the choice of the
dilaton. These theories are typically very hard to solve exactly.

Another aspect of noncritical string theory that we studied is cosmologi-
cal behaviour. There seems to be a very close analogy between cosmologies,
driven by quintessence (i.e. a scalar field that enters the cosmology action
with a kinetic part, and an exponential potential part) and string theories
with a timelike linear dilaton background. By comparing the two theories,
we found that the tree-level potential of the string theory gives rise to an
equation of state at the boundary between accelerating and decelerating
cosmologies. This analogy inspired us to look for cosmological solutions of
this string theory. We also investigated what string modes are stable against
perturbations of the background, and found that the only unstable modes
of this theory are tachyonic modes, modes with negative mass-squared. A
striking aspect of this analysis is we have actually been able to find solutions
of strings in time-dependent backgrounds, a problem that generally is very
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hard to solve!
In chapters 10 and 11, we have mainly been concerned with finding

exact solutions for theories with linear dilaton and tachyon backgrounds.
The exact solutions that we obtained were either ‘bubbles of nothing’, or
‘dimension-changing bubbles’. The starting point for finding exact solutions
for the tachyon-dilaton theory is the Liouville theory that we already en-
countered in the foregoing. Now, however, we made the important assump-
tion that the tachyon profile is ‘null’. In this case, this assumption comes
down to imposing the d’Alembertian of the tachyon profile, ∂µ∂

µT (X), to
be zero. By adapting to lightcone coordinates, X±, we discovered that with
this choice, the tachyon profile only depends on X+. The consequence of
this is that interactions on the world-sheet with the tachyon terminate at
the tree-level. In other words, all quantum corrections in this theory are ab-
sent, so that the classical theory is actually the exact theory for this model!
We solved the equations of motion of the world-sheet action and made a
simplification by considering pointlike strings. With this simplification, we
were able to plot trajectories of strings that encounter these bubbles. We
discovered that all such particles are pushed outwards, rapidly accelerating
to the speed of light. From this analysis it became clear that no particles
whatsoever are able to penetrate the bubble interior, not even the graviton.
Therefore, the bubble indeed can be seen as a spacetime-destroying bubble
of nothing.

In the final chapter of this thesis, we studied the null-tachyon dilaton
theory again, but now assumed the tachyon to have oscillatory dependence
on n extra coordinates. By considering this theory in the limit where wave-
lenghts of these extra fields are long compared to the string scale, we found
that we obtained a theory that actually resembles the bubble solution in
the foregoing alot. Strings that have oscillations in at least one of the extra
directions are expelled from the bubble interior, very much like we described
in the foregoing. However, there is one major difference: strings that have
no oscillations in the extra directions are able to penetrate the bubble, but
in this bubble interior they are confined to the region where the tachyon is
at its minimum with respect to the extra directions. Energetically, they are
forbidden to have any oscillations in the extra directions, so therefore they
have to be in their groundstates. The interpretation of this theory therefore
is clear. Instead of a bubble of nothing, this solution is a dimension-changing
bubble! A theory in this setting starts out as a D-dimensional theory, but
ends up as a (D− n)-dimensional theory. A beautiful feature of this theory
is the fact that it is still exactly solvable. In contrast to the foregoing, not
all quantum corrections vanish, but they turn out to terminate at one-loop
order. This result could then be used to show that the total central charge
of the theory is conserved, transfered from the bosonic fields to the dilaton.

Finally, we argued that this theory can also be considered for superstring
theories. Solutions that arise in these theories are again dimension-changing
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solutions, but as it turns out, these superstring theories can change all to-
gether! There are various transitions possible from one theory to another.
In this frame-work it has even become possible to establish a connection
between supercritical string theories and critical theories, a result that had
not been achieved before. Moreover, there are even transitions that connect
superstring theories to pure bosonic string theories!

It is clear that the study of noncritical string theory almost offers an
overabundance of new and insightful information about string theory, which
can help us gain a better perspective of the field. Even though noncritical
string theory is not so well-known among string theorists, it is a truely
elegant frame-work and it may deserve more attention in the future.
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Renormalized operators

In we start out with an operator F , which enters a path integral, and we
want it to respect diff×Weyl invariance, we can renormalize this operator.
A renormalized operator [F ]r is defined as

[F ]r = exp
[
1
2

∫
d2σd2σ′∆(σ, σ′)

δ

δXµ(σ)
δ

δXµ(σ′)

]
F , (A.1a)

where ∆(σ, σ′) =
α′

2
ln d2(σ, σ′) (A.1b)

and d(σ, σ′) is the geodesic distance between the points σ and σ′.1 This
expression instructs us to sum over all possibile ways to contract pairs in
F , making use of ∆(σ, σ′). As can be checked (see [11]), the renormalized
operator automatically satisfies diff-invariance.

The Weyl-invariance needs to be checked by hand. Since a Weyl variation
is a variation in the world-sheet metric (recall chapter 2), we obtain two
contributions when varying a renormalized operator. The first contribution
comes from the explicit metric-dependence of the operator F . The second
comes from the metric-dependence of ∆(σ, σ′). Therefore, the Weyl variation
of [F ]r can be written as

δW [F ]r = [δWF ]r +
1
2

∫
d2σd2σ′δW ∆(σ, σ′)

δ

δXµ(σ)
δ

δXµ(σ′)
[F ]r. (A.2)

Next, we consider the case where the distance between the two points σ
and σ′ is small. In that case it can be derived that

d2(σ, σ′) ≈ exp [2ω(σ)] (σ − σ′)2, (A.3)

which implies

∆(σ, σ′) ≈ α′ω(σ) +
α′

2
ln(σ − σ′)2. (A.4)

1Geodesic distances are introduced in appendix B.



116 Renormalized operators

In the limit where σ′ → σ, the Weyl variation is non-singular. This means
that the Weyl variation of ∆(σ, σ′) can be written as

δW ∆(σ, σ′) = α′δω(σ). (A.5)

Now this result can be used to check the Weyl-invariance of the renormalized
operator [F ]r explicitly, by plugging it back into (A.2) and working out the
integrant.

Another way to look at this, is that when we perform a Weyl variation to
a renormalized operator, we obtain a condition that ensures Weyl-invariance.
For example, in [11] it is shown that performing a Weyl variation to a renor-
malized closed tachyon vertex operator, leads to the well known result for
the tachyon’s momentum

k2 = −M2 =
4
α′
. (A.6)

In some cases (depending on the actual form of the renormalized op-
erator), one needs to work in higher order of the variation of the geodesic
distance, and derivatives need to be included. One can show (see [11]) that
to first and second order in derivatives,

∂aδW ∆(σ, σ′)
∣∣∣
σ′=σ

=
1
2
α′∂aδω(σ), (A.7a)

∂a∂
′
bδW ∆(σ, σ′)

∣∣∣
σ′=σ

=
1 + γ

2
α′∇a∂bδω(σ), (A.7b)

∂a∂bδW ∆(σ, σ′)
∣∣∣
σ′=σ

= −γ
2
α′∇a∂bδω(σ), (A.7c)

where ∂′b means the derivative with respect to the coordinates σ′, and ∇a is
a covariant derivative.2 Furthermore, γ is a renormalization parameter and
can be chosen at will, by choosing the proper renormalization.

2For details on a covariant derivative, see appendix B.
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Curvature

B.1 Path length and proper time

In flat Minkowski spacetime the path length or geodesic length of a point
particle carving out a worldline xµ(λ), parameterised by λ, is defined by

s =
∫
dλ

√
ηµν

dxµ

dλ

dxν

dλ
, (B.1)

where ηµν is the Minkowski metric diag(−,+, . . . ,+). It is related to the
particles proper time by

τ =
∫
dλ

√
−ηµν

dxµ

dλ

dxν

dλ
, (B.2)

which will be positive for timelike paths. In curved spacetime, the curvature
is determined by a spacetime dependent metric gµν(x). The proper time of
a particle moving in curved spacetime can now be written down in exactly
the same way as in flat spacetime, but now replacing the Minkowski metric
ηµν with the curved metric gµν .

τ =
∫
dλ

√
−gµν

dxµ

dλ

dxν

dλ
. (B.3)

B.2 Christoffel connection

If we want to use derivatives in curved manifolds, it is very useful to intro-
duce a covariant derivative ∇µ, which unlike the partial derivative ∂µ, is
independent of the coordinate system used. The covariant derivatives of a
vector V ν , and a covector ων are defined by

V ν
;µ ≡ ∇µV

ν = ∂µV
ν + Γν

µρV
ρ, (B.4a)

ων;µ ≡ ∇µων = ∂µων − Γρ
µνωρ. (B.4b)
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Here Γλ
µν are known as the Christoffel connections, which in terms of the

metric and its derivatives are written as

Γλ
µν =

1
2
gλρ (∂µgνρ + ∂νgρµ − ∂ρgµν) . (B.5)

An important property of the covariant derivative is that ∇ρg
µν =

∇ρgµν = 0, so locally the covariant derivative of the metric always vanishes.
Furthermore the covariant derivative along a path xµ(λ) can be written as

D

dλ
=
dxµ

dλ
∇µ. (B.6)

One equation that is very important in curved space calculations is the
geodesic equation. One way to think of this is as an equation of motion telling
you what straight lines in curved space are, or equivalently, the shortest path
between two points in this curved space.1 The geodesic equation is written
as

D

dλ

dxµ

dλ
=
d2xµ

dλ2
+ Γµ

ρσ

dxρ

dλ

dxσ

dλ
= 0. (B.7)

As can be seen, this equation reduces to the usual equation of motion for
a particle moving in flat spacetime, which can be seen when we choose
gµν = ηµν .

B.3 Curvature tensors and scalars

Another very useful quantity is the Riemann curvature tensor Rρ
σµν . This

tensor locally gives a description of the amount of curvature of the manifold
we are describing. One way to locally describe the amount of curvature is
by means of parallel transporting a vector. A vector can be transported
in such a way that it is parallel to its original direction, along a path in a
curved space (a process known as parallel transport). Then, if we choose
such a path that we return to the starting point, the vector can actually
deviate from the vector at the beginning. It we transport a vector V µ in an
infinitesimally closed loop in a curved space, the amount of change of the
vector δV µ will be proportional to the Riemann curvature tensor.

The Riemann curvature tensor is defined as

Rρ
σµν = ∂µΓρ

νσ − ∂νΓρ
µσ + Γρ

µλΓλ
νσ − Γρ

νλΓλ
µσ (B.8)

and is antisymmetric in the last two indices. Sometimes it is useful to
consider contractions of the Riemann curvature tensor with itself. One par-
ticular interesting contraction is the following,

Rµν = Rλ
µλν . (B.9)

1For example, a meteorite that passes the Sun closely, seems to be deflected by the
Suns gravity and therefore describes a curved path. But it actually satisfies the geodesic
equation in a space, curved by the Suns gravity.
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The remaining tensor is known as the Ricci tensor, and in terms of the
Christoffel connection it is a symmetric tensor, so Rµν = Rνµ. We can even
carry this one step further and contract the Ricci tensor with itself. We then
end up with what is known as the Ricci scalar R.

R = Rλ
λ = gµνRµν . (B.10)

A nice property of the Ricci scalar is that it is independent of the coordinate
system used. For example, the Ricci scalar for Euclidean spacetime is zero,

REuclidean = 0 (B.11)

and the Ricci scalar for a two-sphere S2 of radius r is

RS2 =
2
r2
, (B.12)

as is shown in [4].

B.4 Riemann normal coordinates

When calculating curvature tensors or scalars, one often ends up with a very
large number of terms. This can makes calculations very hard. There are,
however, some simplifications that can be made, even without loss of gen-
erality. One of these simplifications is switching to what is called Riemann
normal coordinates in point p, or RNC for short. It is always possible locally
to choose a coordinate system where the metric in a point p is equal to the
Minkowski metric, and the first order derivative of the metric at p vanishes.
Second and higher order derivatives however, need not vanish. So, RNC at
p satisfy

gµν(p) = ηµν , (B.13a)
∂ρgµν(p) = 0. (B.13b)

A lot of expressions simplify considerably when switched to RNC. The
Christoffel connection for example, which is made up of first order derivatives
of the metric, vanishes. Therefore covariant derivatives turn into ordinary
partial derivatives. The Riemann curvature tensor becomes a lot simpler
and therefore it’s much easier to calculate the Ricci tensor and Ricci scalar.
And since the Ricci scalar is independent of the coordinate system used,
the result will be completely general. However, one needs to be cautious
though. RNC can only be applied to one point p!
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B.5 Einstein’s equations

Now with the curvature quantities defined above, one can define a Einstein
tensor

Gµν = Rµν −
1
2
Rgµν . (B.14)

Using the Bianchi identity2, one can show that

∇µGµν = 0. (B.15)

So far we just considered how curvature can be described in terms of
the metric gµν . Up till the early 20th century physicists believed that our
universe was a 3 + 1 dimensional space, where masses attract each other
through gravitational forces. Einstein, however, was the first to realize that
mass and energy somehow bend spacetime itself, causing objects to follow
paths in this curved spacetime. He was able to relate the energy and mass
present in a region of space, to the amount of curvature it caused. He
therefore introduced an energy-momentum tensor Tµν .3 The form of an
energy-momentum tensor is dependent on the theory that is considered.

An example of an energy-momentum tensor the one for the universe. In
cosmology, our universe is considered as a homogeneous isotropic fluid, also
referred to as perfect fluid. Galaxies in the universe are the “particles” that
make up this fluid. When this assumption is made, the energy-momentum
tensor, in terms of the energy density ρ and pressure p in a region of space,
can (locally) be written as

Tµν =


ρc2 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 . (B.16)

The energy-momentum tensor is conserved. In a curved space this leads to
the condition

∇µTµν = 0. (B.17)

Now, Einstein’s principle of equivalence tells us that there is no way
for observers to distinct between uniform acceleration and the presence of
a gravitational field. Although the actual derivation is rather subtle, intu-
itively it is a logical idea to somehow relate the energy-momentum tensor
to Ricci curvature tensor. Since the energy-momentum tensor is conserved,
we have to look for a combination of the Ricci tensor that is also conserved.

2∇λRρσµν +∇ρRσλµν +∇σRλρµν = 0.
3This basically tells you how much energy, mass and momentum is present in a part

of space.
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But we already had such combination, namely the Einstein tensor, (B.14).
We therefore impose that

Gµν = κTµν , (B.18)

where κ is the gravitational coupling constant. By working out the details,
one finds4

Rµν −
1
2
Rgµν =

8πGN

c4
Tµν , (B.19)

where GN is the gravitational constant.5 These famous equations are known
as the Einstein equations. If we take the trace of (B.19), we find that
R = −8πGN

c4
T . Plugging this back into (B.19), we end up with a slightly

different version of the Einstein equations, namely

Rµν =
8πGN

c4

(
Tµν −

1
2
Tgµν

)
. (B.20)

In a vacuum, Tµν = 0, and as can be seen from (B.20), the Einstein equations
then simplify to

Rµν = 0. (B.21)

Even though this looks like a simple set of functions, they can still be very
hard to solve.

The Einstein equations can also be describes in the Lagrangian formal-
ism. If a curved space is described by a metric gµν and a matter-part of the
theory LM , and we include the cosmological constant Λ, the action for this
theory, known as the Einstein-Hilbert action, is

SH [g] =
∫
d4x
√
−g [k(R− 2Λ) + LM ] , (B.22)

with k = 1
2κ

2, and we also assumed D = 4 dimensions.

4See [4] of [3] for reference.
5GN = (6.67428± 0.00067)× 10−11m3kg−1s−2.
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