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Abstract

In this thesis we review recent developments in studies of gluon scattering
amplitudes in planar, maximally Supersymmetric Yang-Mills theory using
string theory methods. In 2007, Alday and Maldacena managed to com-
pute a gluon scattering amplitude at strong coupling using the AdS/CFT
correspondence. They showed that, in this regime, amplitudes are dual to
Wilson loops along light-like contours, which eventually boils down to find-
ing a minimal surface in Anti-de Sitter space. Surprisingly, it turned out
that this equivalence between gluon amplitudes and light-like Wilson loops
continues all the way down to the weak regime of the theory. After intro-
ducing sufficient background material, we present both results (at strong
and weak coupling) for four gluons amplitude, and discuss the symmetry
responsible for the duality at this level. Finally, we sketch some interesting
results obtained in studies of amplitudes for six gluons and highlight the
main difficulties there. At the end, we summarise and pose important ques-
tions which require further investigation, and might lead to interesting new
paths of research.
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1
Introduction

1.1 How to read this thesis

We assume, that the reader will be either a master student, whose thesis
topic is somewhat related to this field, or a PhD student who would like
to perform further research in the field of gluon scattering amplitudes at
strong coupling. As one would expect, some previous knowledge of a non-
abelian quantum field theory and supersymmetry is essential in order to
follow the subject. Later on in the discussion, familiarity with string theory,
D-branes and the AdS/CFT correspondence will prove very useful to the
reader. Of course, full appreciation of the subject would require tracking
back to the deepest sources of all of the aforementioned topics, which we
guess is impossible, especially on a master’s level. That is why, we will
elaborate a bit on some basic necessary tools to reach the final goal, a string
theory computation of gluon scattering amplitudes. Furthermore, the reader
is strongly encouraged to follow references to the relevant literature in this
field.
In the chapter about the Alday-Maldacena prescription for the amplitudes
we review their computation quite extensively. Therefore, any advanced
researcher interested in details, may easily skip the introductory part.

3



Introduction

1.2 History and motivation

In the early 1990’s, ’t Hooft and Susskind studied a paradox posed by Hawk-
ing about loss of information when a body falls into a black hole. They re-
alised that theories of quantum gravity could be formulated in a holographic
way. Namely, all of the information contained in a volume of space could
be projected and fully described by a “hologram” living on the boundary
of this volume. Their argument is known as the “holographic principle”1.
This surprising result inspired physicists searching for a theory of quantum

Figure 1.1: The idea of ’t Hooft and Susskind about the holographic Uni-
verse with all information on the boundary prepared the ground for the first
holographic models. Picture of Camille Flammarion from 1888 shows the
Universe with a boundary.

gravity and they started studying all kinds of models based on holography.
One of them was a string theorist, Juan Maldacena. In 1998, he published
the famous proposal [35] suggesting the equivalence between gauge theories
in four dimensions, living on a boundary of a five dimensional space (see
1.2). As an example, he conjectured the duality (equality) between string
theory in Anti-de Sitter (AdS) space 2 (quantum gravity) and the maximally
supersymmetric, conformal Yang-Mills theory in four dimensions living on

1For a nice review of the holographic principle see [8]
2Precisely superstring theory with AdS5 × S5 background compactified on S5 to five

dimensions
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1.2 History and motivation

Figure 1.2: Maldacena’s model postulates that strings living in the five di-
mensional AdS space are equivalent to particles living at the four dimensional
boundary. Wilson loops are being interpreted as open stings with end points
on the boundary, while their world-sheet is stretching into the interior of
AdS space (“bulk”).

the boundary of AdS. We will refer to this example as the AdS/CFT dual-
ity. The theory with gravity, described by type IIB superstring theory in ten
dimensions is endowed with two parameters, the radius R of AdS, and the
string coupling gs. On the gauge theory side, the N=4 Super-Yang-Mills
theory with non-abelian, SU(N) gauge group, also has two parameters:
Yang-Mills coupling gYM and the number of colours N . As we can expect,
in order to claim an equivalence between two systems, one has to prove
that observables computed in both theories are the same. That is why, to
compare correlation functions in the dual systems, Maldacena proposed an
identification between the four parameters:

gs = g2
YM , R4 = 4πg2

YMN(α′)2, (1.1)

where α′ is the historical Regge slope related to the string length as ls =
√
α′.

The form of the conjecture described above is usually referred to as the
”strong form”, as it is supposed to hold for all values of the Yang-Mills
coupling and all N .

People started to test this proposal in many possible ways. However,
as it often happens in physics, things turned out to be more complicated
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Introduction

than they appeared at first. The main difficulty was due to the lack of
a quantisation method for string theory on a general curved background
(here AdS5 × S5). Therefore, the first attempts to compute something in
AdS/CFT required studying its more treatable limits (see 1.3). It was known
before [49] that in non-abelian gauge theories, in the so-called ’t Hooft limit,
perturbative expansion in gYM could be reorganized into a form similar to
string theory’s perturbative series in 1/N . Precisely, defining the ’t Hooft
coupling

λ = g2
YMN (1.2)

and taking the number of colours to be very large, N →∞, while keeping λ
fixed, only diagrams that can be drawn on a plane contributed (hence this
limit is often known as planar)3. On the AdS side, since

λ = g2
YMN = gsN ⇒ gs =

λ

N
, (1.3)

the large N limit made string theory weakly coupled, so it could be studied
perturbatively as a series in gs. Nevertheless, this was still not enough for
reasonable computations. Hence, Maldacena proposed taking the limit of
large ’t Hooft coupling on the gauge theory side (expand in λ−1/2), which
would correspond to the classical type IIB supergravity solutions in AdS,
and α′ string expansion. It turned out that the dual theories had the
same underlying symmetry, the SU(2, 2|4) conformal group, and study-
ing its representations allowed for a precise mapping between observables
on both sides of the conjecture. That was a great success of Maldacena’s
proposal. Surprisingly, this limit served as a new powerful tool, such that
strong coupling physics of non-abelian gauge theories -extremely hard to
treat analytically- could be approached from a weakly coupled string theory
in AdS space. One of such applications was the original motivation for this
thesis. Namely, how to use AdS/CFT to understand strong coupling gluon
collisions.
The key link between string theory and gluon amplitudes is encoded in Wil-
son loops: an exponent of the integral from a gauge field Aµ along a contour
C

W [C] = 〈e
∮
C A

µxµ〉. (1.4)

In the seventies, people formulated QCD with large number of colours in
terms of Wilson loops, which played the role of Green’s functions. In 1998,
Maldacena realised that the dominant (classical saddle point) part of the

3we will explain this limit later in the part about gauge theories
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1.2 History and motivation

Figure 1.3: Treatable limits of AdS/CFT. Later we will compare a proposal
postulated at weak coupling λ (bottom left corner) with a string theory com-
putation which corresponds to strong λ (upper right part).

expectation value of a Wilson loop can be obtained from the AdS/CFT cor-
respondence. Namely, as an exponent of the area of an open string world-
sheet (minimal surface) stretching into AdS, attached to C on the boundary
(see 1.2). His prescription was tested for the simplest contours, like cir-
cles or parallel lines, and seemed to give reasonable results. At the same
time, the holographic treatment of the gluon scattering amplitudes became
possible. However, due to the lack of any analytical predictions for strong
coupling physics, the correctness of the string theory approach was impossi-
ble to verify. The picture changed in 2005, when Bern, Dixon and Smirnov
[7] discovered iterative properties of Maximally-Helicity-Violating (MHV)
gluon amplitudes in maximally Supersymmetric Yang-Mills. Based on their
results, they proposed a general structure of the amplitudes (so-called BDS
ansatz) depending on functions f(λ) and g(λ), which could be written for
both strong and weak values of the ’t Hooft coupling λ (see (3.2), (3.4));
this was the perfect moment for AdS/CFT Wilson loops to be applied. To-
gether with Alday [1], Maldacena explained how to find a minimal surface
for a particular gluon configuration and compared it with BDS. The results
matched perfectly for four gluons. In this thesis we tried to generalise their
result to 6 particles. This turned out to be quite a non-trivial task and
nobody has found it yet. Fortunately, many new things appeared along the
way. Firstly, Korchemsky and his collaborators [22] noticed the potential
duality between Wilson loops and MHV amplitudes. This surprising cor-
respondence survived an explicit test of numerical calculation for 6 gluons.
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Moreover, many interesting questions appeared during intermediate steps of
the research, so they are going to be discussed throughout this thesis and
possible ways for solving these problems will be suggested.

1.3 Plan

• Part one will review basic ingredients of gauge theories which will
serve as a background for studying the string theory results. First, we
will introduce the N=4 theory and its planar limit. Then, basic facts
about MHV amplitudes, super-Ward identities and the BDS ansatz
will be reviewed. At the end, we will familiarise ourselves with Wilson
loops and their supersymmetric extensions.

• Part two will be dedicated to string theory tools needed in the final
gluon scattering amplitude computation. We will introduce the sim-
plest notion of the bosonic string and their actions. Finally, we will
show the T-duality from the perspective of the string’s world-sheet.

• The last part will present the results for gluon scattering amplitudes,
from weak to strong coupling, with a strong emphasis on the Alday-
Maldacena computation. In addition, the equivalence between the
4-point MHV gluon amplitude and the Wilson loop on the four light-
like intervals will be shown. Also, the results for 6-gluons amplitudes
which spot the failure of BDS will be presented. At the end we will
conclude, pose some open questions and try to sketch a possible follow
up of this work.

• The appendices will hopefully clarify more technical parts of the thesis.
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Gauge Theory
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2
The N=4 Super-Yang-Mills theory

We start by introducing the gauge ingredient of the AdS/CFT duality, the
N=4 Supersymmetric Yang-Mills theory. This theory is just a special case
of a non-abelian gauge theory, like the standard model’s QCD (fr example
see [39]), and shares many general features with all of them. For instance,
one of the main motivations, other than AdS/CFT, for studying N=4 SYM
is the infrared (IR) structure of scattering amplitudes (similar to QCD). In
both theories they suffer from soft and collinear divergences. Despite this
fact they can be used to construct complete, gauge invariant correlators from
unitarity [3]. Therefore, full control and understanding of the IR behaviour
is essential for precise computations. It turns out that N=4 SYM is a
much more friendly ground for this analysis than QCD. The IR character in
the former is governed by two functions: the “cusp anomalous dimension”
and the “collinear anomalous dimension”, which we will define below. The
cusp anomalous dimension was calculated in the supersymmetric theory
using the holographic correspondence [38]. This should already be sufficient
motivation to embark on a study of the N=4 SYM theory. As a reminder
to the reader, for the last few decades the strong coupling regime of QCD
has been accessible only by means of lattice gauge theories (see for e.g.
[45]). Therefore any new method of probing this region is a breakthrough
in our understanding of strong force at low energies. The calculation of
the anomalous dimension using the holographic correspondence, is only the
beginning of “miracles” in this new field [31]. The recent progress in studies

11



The N=4 Super-Yang-Mills theory

of the gluon scattering amplitudes in N=4 SYM using the spinor-helicity
formalism, [30], [24], gave birth to a new, fruitful area of research. People
discovered the so-called MHV gluon amplitudes which have a very specific
helicity configuration. An explicit evaluation of the MHV’s showed that they
satisfy a very surprising iterative relation between higher and lower orders
in perturbation theory. Such a relation led Bern, Dixon and Smirnov (BDS)
to the ansatz [7] for the general structure of an n-point MHV amplitude.
This will be reviewed here, and in the following chapters we will compare
it with the strong coupling string theory result of Alday and Maldacena [1].
Now, full of excitement and curiosity, we can proceed with a more systematic
introduction to the N=4 SYM theory.

2.1 N=4 SYM

We will start by disentangling all the abbreviations, letters and numbers
present in the literature about this theory. First of all, it is defined in 4
dimensions. Then, the calligraphic N stands for the number of supersym-
metries1 in the theory, so there are 4 of them. Their function, as in the case
of every supersymmetry, is to mix bosons and fermions. Finally, there is a
non-abelian gauge group SU(N), where the capital N denotes the number of
gluon colours.
This model has a few properties which make it special compared to other
non-abelian theories. One is that it is the maximally supersymmetric theory
without gravity. In order to understand this statement, we will look at the
massless fields of the theory. There are eleven of them, all in the adjoint
representation of SU(N):

• a gluon Aµ(x) (the gauge field is called a gluon by analogy to QCD),
occurring in two helicities: h = +1 and h = −1

• six real scalars φi(x) (i = 1, · · · , 6)

• four Majorana gluinos, which are usually written as the sixteen-component
Majorana-Weyl2 spinor χα(x), α = 1 · · · , 16. They can also appear in
two helicities: h=-1/2 and h=1/2.

The four supersymmetries transform fermions into bosons and vice-versa.
More precisely, their action is generated by operators called supercharges

1for a speed-of-light introduction to supersymmetry see [47]
2see Majorana condition (2.5)
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2.1 N=4 SYM

Qi, i = 1, 2, 3, 4. They act upon fields as

Qi(fermion)→ (boson) Qi(boson)→ (fermion).

This can be formally viewed as shifting the helicities from -1 to 1 in units
of a half

(A−, h = −1)↔ (χ−, h = −1
2

)↔ (φ, h = 0)↔ (χ+, h =
1
2

)↔ (A+, h = 1)

(2.1)
If there were more supersymmetries one would have to include particles with
spin greater than 1. In order to unitarily quantize models with such objects,
we would need to include a spin 2 graviton (see for e.g. [17]). This remark
obtains a deeper meaning in the context of the AdS/CFT correspondence.
There the theory of gravity in AdS space is fully determined by the holo-
graphic image living on the boundary, with no gravity at all.
The action for the theory is uniquely fixed by the number of colours N and
the coupling constant gYM [28]:

S =
∫
d4x

1
2g2
YM

[
1
2
(
F aµν

)2 +
(
∂µφ

a
i + fabcAbµφ

c
i

)2
+ χ̄aiΓµ

(
∂µχ

a + fabcAbµχ
c
)

+ifabcχ̄aΓiφbiχ
c −

∑
i<j

fabcfadeφbiφ
c
jφ
d
i φ

e
j + ∂µc̄

a
(
∂µc

a + fabcAbµc
c
)

+ ζ(∂µAaµ)2

 ,
where we introduced the ghost fixing part with ghost fields ca and the gauge
parameter ζ. The small Latin index a runs from 1 to N2 − 1 and labels the
number of generators T a of SU(N). They are normalised to[

T a, T b
]

= ifabcT c, T rT aT b =
1
2
δab. (2.2)

The fabc are the structure constants of this Lie algebra and in addition
satisfy ∑

cd

facdf bcd = Nδab. (2.3)

Naturally, there is also the kinetic term for the gauge field. It contains the
anti-symmetric tensor

F aµν = ∂µA
a
ν − ∂νAaµ + fabcAbµA

c
ν . (2.4)

All the fermionic fields can be written as a 16-component spinor χ satisfying
the Majorana condition

χ(x) = Cχ?(x), (2.5)

13



The N=4 Super-Yang-Mills theory

where C is the charge conjugation matrix (see for e.g. [47]).
Finally, the Dirac matrices are generalised to the form

ΓA = (Γµ,Γi) , (2.6)

where µ = 0 . . . , 4 and i = 5 . . . 9. They are real, 16× 16 matrices in the ten
dimensional Majorana representation with the Weyl constraint. The trace
of the two matrices is also normalised to

TrΓAΓB = 16δAB. (2.7)

Let us pursue this further by analysing all the propagators. The most con-
venient way to do this is to pick up the covariant gauge fixing condition
[16]

∂µA
a
µ = 0, (2.8)

and set ζ=1, so we are going to work in the Feynman gauge. With these
assumptions the propagators in momentum space are:
The gluon

∆ab
µν(p) = /o/o/o/o/o/o/o = g2

YMδ
ab δµν

p2
(2.9)

The scalars
Dab
ij (p) = = g2

YMδ
ab δij
p2

(2.10)

The fermions
Sab(p) = //______ = g2

YMδ
ab−γ·p

p2 (2.11)

The ghosts

Cab(p) = // = g2
YMδ

ab 1
p2 (2.12)

The passage to position space can be easily obtained from the Fourier trans-
form. For general propagators in 2ω dimensions and a given number s the
transform is defined as∫

d2ωp

(2π)2ω

eip·x

(p2)s
=

Γ(ω − s)
4sπωΓ(s)

1
(x2)ω−s

. (2.13)

The next step is specifying all the interactions present in the theory. Fol-
lowing the conventions of the propagators, we have 8 of them, see Fig.2.1.
At the end of this section, we have to stress the most important property
of N=4 SYM: its conformal invariance. Naturally, what one has to check
to find this property is the Beta function (see for e.g. [39]) of the theory.
It was shown, [46], [20], [29], that in the framework of the N=4 SYM, the

14



2.1 N=4 SYM

Figure 2.1: Interactions in N=4 SYM.

Beta function vanishes to all orders in perturbation theory. This serves as
a sufficient condition for the UV finiteness of the theory, and makes the
superconformal group SU(2, 2|4), [18], its global symmetry, [28].
As a nice form of relaxation, we can convince ourselves about the vanishing
of the Beta function (to lowest order in g2

YM , [31]). The diagrams that con-
tribute to this calculation are shown on Fig.2.1.

Figure 2.2: Diagrams contributing to the vanishing of the β function (to
second order in gYM ).
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The N=4 Super-Yang-Mills theory

and in the pictorial order, they give

β(gYM ) ≡ µdgYM
dµ

=
(

6 · 1
6

+ 4 · 2
3
− 11

3

)
Ng2

YM

4π
= 0, (2.14)

where N is the number of colours and µ the renormalisation scale (see [39]).

2.2 The ’t Hooft limit

In non-abelian gauge theories there exists a very special limit, in which the
perturbation series gain a topological structure, [49]. Every term of the se-
ries can be classified by its topological properties in such a way that the new
perturbation expansion will look exactly like that of string theory, [25]. This
was first done by ’t Hooft in 1973, [49], for a general class of non-abelian
gauge theories. In this section we will just follow his arguments which natu-
rally apply to N=4 SYM. Let us assume that we have a gauge theory with a
local symmetry group U(N) (it contains SU(N) as a subgroup). In addition
we have a gauge (vector) field Ajiµ(x) in the adjoint representation of this
group, and the coupling constant g. If we decide to treat the number of
colours N as a free parameter, we can perform the perturbative expansion
in terms of 1/N instead of the coupling g. This can be done as follows: a
single propagator carries two indices i and j. In order to keep track of them
properly, we can denote an upper index by an incoming arrow and a lower
index by the outgoing one. In this convention, the propagator −δµν/k2 is
represented by the double line

Figure 2.3: Double-line propagator.

Having done that, with the stripes-propagators we can construct standard
Feynman diagrams for any process we want. The structure of the simplest
tree level diagrams will not change too much. However, we can quickly no-
tice that every time we have a closed loop, the number N will enter into the
expression for the amplitudes, due to∑

i

δii = N, (2.15)

For example, the three-loop diagram in Fig.2.2 (one big and two smaller)
will be proportional to N3. Realising that, we can classify all the diagrams

16



2.3 Colour decomposition and MHVs

Figure 2.4: Planar diagram proportional to N3.

according to the powers of N and a coupling constant g. Following ’t Hooft,
with every surface-diagram we associate a factor

r = (g2N)
1
2
V3+V4N2−2H−L, (2.16)

where Vn is the number of n-point vertices, L counts the number of loops
and H is a genus of the surface on which the diagram is embedded (H =
0 for a sphere, H = 1 for a torus etc.). After labelling all of them, we
group diagrams with similar powers of N . This procedure rearranges the
perturbation series into the string theory form, such that surfaces with genus
0 enter at first order in perturbation theory, genus one contributes at the
second, and so on. At the end we take the ’t Hooft limit defined as

N →∞, λ ≡ g2N fixed, (2.17)

where λ is called the ’t Hooft coupling. Non-planar diagrams are pro-
portional to powers of 1/N and higher, and they do not contribute when
N →∞. Hence, this limit is often called the planar limit.

2.3 Colour decomposition and MHVs

Our main goal in this thesis, namely gluon scattering amplitudes, is quite
cumbersome in the weak coupling treatment [39],[47]. This is mostly caused
by the large amount of proliferating indices at higher orders in the pertur-
bative expansion. That is why we really need to come up with a neat and
systematic solution for this problem. One strategy, which has been very
fruitful in the past years, is to specify the colour quantum numbers at the
very beginning. By doing so, we do not have to worry about them in the
remaining computation. We will first describe this separation and then see
what kind of interesting features are left thereafter.
The idea is simply based on the general structure of every amplitude for n-
gluons. This is a function of kinematical variables and the quantum numbers
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The N=4 Super-Yang-Mills theory

of particles: momenta pi, helicities hi and colours ai:

An = A(p1, . . . , pn, h1, . . . , hn, a1, . . . , an). (2.18)

The evaluated amplitude is a sum of traces of the group matrices T a, with
kinematical coefficients in front, called ”colour-ordered amplitudes”. For
example, the four point amplitude can be written as

A4 = Tr (T a1T a2T a3T a4)A4(1, 2, 3, 4) + Tr (T a1T a2T a4T a3)A4(1, 2, 4, 3)
+Tr (T a1T a3T a2T a4)A4(1, 3, 2, 4) + Tr (T a1T a3T a4T a2)A4(1, 3, 4, 2)
+Tr (T a1T a4T a2T a3)A4(1, 4, 2, 4) + Tr (T a1T a4T a3T a2)A4(1, 4, 3, 2)

(2.19)

where we used the convention that the n-th number carries the kinematical
properties of the n-th particle (so 1 denotes a particle with momentum p1

and helicity h1). From this particular example, we notice that the amplitude
is a sum over all non-cyclic permutations, (σ), of particles. If we label each
external particle by its helicity

An(p1, h1; p2, h2, . . . , pn, hn) ≡ An(1h1 , 2h2 , . . . , nhn), (2.20)

the 4-point result is easily generalised to an n-point amplitude, [32], as

An =
∑

σinoncycl.

Tr(T a(σ(1)) . . . T a(σ(n)))An
(
σ(1h1), . . . , σ(nhn)

)
. (2.21)

This separation clearly saves us from a lot of trouble. The only thing we
have to do is to find the remaining, colour-ordered amplitudes. Of course,
they are the actual goal of every computation. They can be obtained in a
similar way to the general amplitudes, but instead of ordinary methods we
have to use colour ordered Feynman rules [32]. We will not present them
here, because they are not important from the string theory point of view.
Nevertheless, a very pedagogical review of this subject can be found in [30].
Among all the colour ordered amplitudes, there are a few very interesting
subgroups characterised by a particular helicity configuration. The first
subgroup consists of the amplitudes with: all helicities plus, all helicities
minus, all helicities plus except one and all helicities minus except one.
They are very specific, because the supersymmetric Ward identities present
in the theory, [37], [36], force them to vanish

A(1+, . . . , n+) = 0
A(1−, . . . , n−) = 0

A(1+, . . . , i−, . . . , n+) = 0
A(1−, . . . , i+, . . . , n−) = 0. (2.22)
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Other, even more interesting ones, are those containing two out of n particles
with different helicities from the others. They are called Maximally-Helicity-
Violating. The ones with two particles carrying positive helicity are called
“mostly minus” MHVs, and the ones with only two negative are known as
“mostly plus” MHVs. As we have mentioned before, they have interesting
iterative properties, [7], [41], [6], and we are going to discuss them in the
next chapter.
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3
The BDS proposal

We will begin this chapter with a brief discussion of the infrared divergent
behaviour of gluon scattering amplitudes in N=4 SYM. In this regime they
can be characterised in a very simple way by two functions, f(λ) and g(λ).
We will show the form of these functions at weak and strong ’t Hooft cou-
pling. After reviewing the IR properties we will present the BDS proposal
for n-point, IR divergent, n-gluon amplitudes.

3.1 Infrared structure

As with every conformal field theory, N=4 SYM is UV finite. However,
it suffers from ordinary IR divergences, which also appear in QCD. They
originate from either collinear regions, in which the transverse momenta of
internal gluons vanish, or a soft-gluon exchange in which the virtual gluon
energy is very small, [32]. Both of these phenomena require a regularisation,
so we have to pick our favourite scheme to do it. In theN=4 SYM case, there
is a dimensional regularisation in D = 4 − 2εIR dimensions with εIR < 01,
that preserves all the supersymmetries [53]. After regularising our theory
in this particular way, the parameter ε enters the game, and from now on

1For simplicity, we will drop the subscript IR form ε and µ in this chapter. However,
there will be another εuv and µuv for Wilson loops, so the reader should not confuse them
(at least for now).
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The BDS proposal

it will be present in the results of our calculations. For instance, each of
the IR divergences mentioned above will give rise to a single pole, 1/ε, at
one loop, so our predictions (no matter the framework) should have a 1/ε2

divergence at this particular level of the perturbative expansion. Naturally,
at L-loop order we should expect 1/ε2L divergent behaviour. This is not the
whole price we have to pay for dimensional regularisation. The scheme in
D = 4− 2ε dimensions breaks conformal invariance, and in order to have it
back we need to expand the amplitudes in a Laurent series around ε = 0,
up to constant terms. That is why, in most of the literature on the subject,
there appears the “O(ε)” term. It denotes terms of order ε and higher,
which vanish when ε → 0. Another subtle issue we should keep in mind
is that, while the coupling constant of the N=4 SYM was conformal in 4
dimensions, after switching to 4 − 2ε dimensions, at the IR scale, the new
coupling starts to run[7]. Fortunately, the running-relation is quite simple
[7]:

g̃YM = gYM

(
µ2

µ̃2

)ε
(4πe−γ)ε, (3.1)

where µ is the IR cut-off, µ̃ a particular renormalisation scale and γ = −Γ′(1)
stands for the Euler constant (see. App.3).
Last but not least, the IR character of gluon amplitudes is governed by only
two functions [10], [33], [48]:

• the cusp anomalous dimension f(λ)

• the “collinear” anomalous dimension g(λ)

In the ’t Hooft limit, their dependence on λ is known at both weak and
strong coupling regimes. At weak coupling, they were computed pertur-
batively [7] and by using integrability [15], [5], [43]. Also, recently, as we
will see in this thesis, their values have been computed at strong coupling
using the AdS/CFT [1] correspondence. Summarising the results of the
aforementioned work, the cusp anomalous dimension , f , is

f(λ) =
λ

2π2

(
1− λ

48
+

11λ2

11520
−
(

73
1290240

+
ζ2

3

512π6

)
λ3 + . . .

)
, λ→ 0

f(λ) =

√
λ

π

(
1− 3 ln 2√

λ
− K

λ
+ . . .

)
, λ→∞, (3.2)

where K is the “Catalan” constant:

K =
∞∑
n=0

(−1)n

(2n+ 1)2
w 0.9159656. (3.3)
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Whereas the collinear anomalous dimension, g is 2:

g(λ) = −ζ3

(
λ

8π2

)2

+
2
3

(6ζ5 + 5ζ2ζ3)
(

λ

8π2

)3

+ . . . , λ→ 0

g(λ) = (1− ln 2)

√
λ

2π
, λ→ 0. (3.4)

Once again, we would like to stress these two regimes. The BDS ansatz,
which we will present below, was proposed for λ→ 0, whereas our main goal,
gluon scattering amplitudes at strong coupling occur by default at large λ.
Therefore, we present f and g in these two regions. Later, in the chapter
about Wilson loops, we will see another function of the cusp anomalous
dimension, which actually originates from the contour of a cusped loop.
The soft anomalous dimension actually has nothing to do with an anomalous
behaviour, but only controls the 1/ε IR divergence. In the meantime, let us
move to the BDS ansatz.

3.2 The Bern-Dixon-Smirnov proposal

Following the pursuit of the IR divergences, Bern, Dixon and Smirnov [7]
found that MHV amplitudes at higher loops can be expressed in terms of
their lower-loops counterparts. For example, the explicit computation, with
the help of new-developed techniques [6], showed that the color-ordered,
MHV, four-point function at two loops, A(2)

4 , divided by the same func-
tion evaluated at the tree level of the perturbation theory, A(0)

4 , exhibits a
surprising, iterative structure:

M
(2)
4 (ε) ≡ A

(2)
4

A
(0)
4

=
1
2
(
M1

4 (ε)
)2 + f2(ε)M (1)

4 (2ε) + C2 +O(ε), (3.5)

where f(ε) is the cusp anomalous dimension at an appropriate perturbation
level, whereas C is a constant. This is a remarkable result, since, from every-
day experience, when people calculate higher-loop terms in any theory they
only notice the enormous proliferation of complicated graphs. The work
of BDS immediately attracted the attention of physicists. The avalanche
of new developments, [7], [21], in this branch of gauge theory gave birth
to a conjecture for the iterative relation for n-gluon, colour-ordered MHV

2The strong coupling result for g is actually obtained from a string theory computation,
which we will see later
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amplitudes evaluated at all loops. The proposal, abbreviated from the names
of the authors to BDS, claims that such a general amplitude should be of
the form

MFull
n = exp[

∞∑
l=1

αl
(
f (l)(ε)M (l)

n (lε) + C(l) +O(ε)
)

], (3.6)

where f (l), M (l)
n and C(l) are respectively the cusp anomalous dimension,

the n-point function at l-loop order and the constant term also evaluated
at the l-loop order of perturbation theory. The coefficient α guides the
expansion such that if we want to know the iterative relation at 10 loops,
only the terms up to α10 matter. At this point we can absorb the effect of
the running coupling constant in D = 4− 2ε dimensions into the parameter
α. Since every term in the expansion will contain the coupling constant
(3.1), we will get rid of all the inconvenient constants by reparametrising α
as

α =
(
λµ2ε

8π2
4πe−γ

)ε
, (3.7)

where λ is the ’t Hooft coupling in four dimensions, which we will keep fixed
in the ’t Hooft limit.
Beginning our analysis of the proposal, we can start with a very special and
interesting feature. Precisely, neither the f(ε) nor the constant C depends
on the number of gluons. They are universal, so we can determined them
in a certain n-gluon process (at l-loop). Doing this allows us to write the
iterative relation for any number of gluons. Let us check how it works in
practice. The ansatz for 4-gluons (confirmed by explicit computation) has
a simple form

M4 = (Adiv(s))
2 (Adiv(t))

2 exp

[
f(λ)

8
ln2
(s
t

)
+ C

]
. (3.8)

As we mentioned before, the divergent parts are fully determined by the
anomalous dimensions f and g

Adiv(s) = exp

[
− 1

8ε2
f−2

(
λµ2ε

sε

)
− 1

4ε
g−1

(
λµ2ε

sε

)]
. (3.9)

We will compare this prediction of the BDS ansatz with the string theory
result, therefore the two important structures that we should keep in mind
are:
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3.2 The Bern-Dixon-Smirnov proposal

• Finite part

f(λ)
8

ln2
(s
t

)
• The form of the IR divergence

Adiv(s) = exp

[
− 1

8ε2
f−2

(
λµ2ε

sε

)
− 1

4ε
g−1

(
λµ2ε

sε

)]

For later purposes, the ansatz can be “massaged” into a more useful form.
Since the main feature of BDS relies on its iterative property, it is enough to
focus on one-loop amplitudes. Effectively, higher order amplitudes will be
polynomials of amplitudes at one-loop. Let us then consider the logarithm
of MHV, Mn, at one loop order

lnMBDS
n = Zn + FBDSn + Cn +O(ε), (3.10)

where Zn is the IR divergent part, F is the finite term, C is some constant
and O(ε) vanishes when ε→ 0. In the N=4 theory, Z can be expressed as,
[22]:

Zn = −1
4

n∑
l=1

αl

(
f (l)(λ)
(lε)2

+
g(l)(λ)
lε

)
n∑
i=1

(
−
µ2
IR

si,i+1

)lε
, (3.11)

where si,i+1 ≡ (pi + pi+1)2. The IR cut off µIR = 4πe−γµ2 is a function of
the dimensional regularization scale µ2. The finite piece, FBDSn , is predicted
by BDS to be

FBDSn =
1
2
f(λ)Fn, (3.12)

where Fn, for n = 4, is:

F4 =
1
2

ln2

(
x2

13

x2
24

)
+ 4ζ2, (3.13)

with Riemann’s zeta function Li2(1) = ζ2 = π2/6. In the logarithm, we
have used the convention for general kinematical invariants:

x2
i,i+j ≡ (pi + . . .+ pi+j−1)2 . (3.14)
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Finite terms for n ≥ 5, can be written in a more systematic way:

Fn =
1
2

n∑
i=1

gn,i, (3.15)

where the terms in the sum are

gn,i ≡ −
bn

2
c−1∑
r=2

ln

(
x2
i,i+r

x2
i,i+r+1

)
ln

(
x2
i+1,i+r+1

x2
i,i+r+1

)
+Dn,i + Ln,i +

3
2
ζ2. (3.16)

In the above formula we used a standard “floor function”, bn2 c, defined for
all real numbers x ∈ R as

bxc = max{n ∈ Z|n ≤ x}. (3.17)

So any real number takes the value of the closest lower integer (e.g. b5
2c = 2,

b7
5c = 1).

The form of Dn,i and Ln,i depends on whether n is even or odd. For even,
n = 2m:

Dn,i = −
m−2∑
r=2

Li2

(
1−

x2
i,i+rx

2
i−1,i+r+1

x2
i,i+r+1x

2
i−1,i+r

)
− 1

2
Li2

(
1−

x2
i,i+m−1x

2
i−1,i+m

x2
i,i+mx

2
i−1,i+m−1

)
(3.18)

Ln,i =
1
4

ln2

(
x2
i,i+m

x2
i+1,i+m+1

)
, (3.19)

while for odd, n = 2m+ 1:

Dn,i = −
m−1∑
r=2

Li2

(
1−

x2
i,i+rx

2
i−1,i+r+1

x2
i,i+r+1x

2
i−1,i+r

)
(3.20)

Ln,i = −1
2

ln2

(
x2
i,i+m

x2
i,i+m+1

)
ln2

(
x2
i+1,i+m+1

x2
i+m,i+2m

)
. (3.21)

After this rather technical but important chapter, we shall start our journey
from gauge theories to strings. We will quickly review some basic facts about
Wilson loops, and then proceed with extending them to N=4 SYM.

26



4
Wilson loops

Wilson loops1 are one of the most interesting tools of gauge theories. Math-
ematically, they are defined as a holonomy2 associated with a gauge field
Aµ, along a contour C. Physically, if we study an infinitely massive quark
in the fundamental representation of SU(N), moving along the loop C, it
would transform by the face factor equivalent to the Wilson loop3. This
picture proves to be very fruitful in reconstructing the interaction potential
between quark and anti-quark. In appendix 4, we demonstrated a simple
example from ordinary electrodynamics on how a Wilson loop can be used
to deduce the potential.
Wilson loops were also crucial in the development of string theory. Polyakov,
in his pioneering paper [44], studied models with Wilson loops as ”rings of
glue” propagating in space-time. That led to the construction of the string
actions known today. For thirty years of their existence, Wilson loops have
become almost a separate field of research. Unfortunately, for the purposes
of this thesis, we will not have time to study them very extensively. The
only three things we will need to know about Wilson loops are:

• their perturbative analysis
1Named after Keneth Wilson
2measure, to which extent parallel transport along the closed loop preserves the infor-

mation being transported [40]
3In quantum field theory, we can also interpret them as operators, that create excita-

tions of the gauge field Aµ along the loop C
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• supersymmetric extension to N=4 SYM

• strong coupling interpretation using the AdS/CFT correspondence.

We will present the first two points in this chapter; the third one will be
mentioned together with string theory in the next chapter.

4.1 Perturbative Wilson loops

Let us consider the theory described by an action S. The action contains a
matrix gauge field Aµ = AaµT

a (a ∈ {1, . . . , N2−1}) where T a are generators
in the fundamental representation of the non-abelian gauge group SU(N)4.
A coupling constant of the theory is g. Then, the Wilson loop WC , along
the contour C, is defined as

WC = 〈 1
N
TrPeig

∮
C dx

µAaµT
a〉. (4.1)

The curve C can be parametrized by s ∈ (0, 1), such that C = x(s). N ,
from SU(N), will be referred to as the number of colours in the theory (e.g.
QCD with a non-abelian gauge group SU(3) contains 3 colours). The trace
is taken over the generator matrices T a. “P” denotes the path ordering
which assures the right order of exponentiated operators. Finally, by the
expectation value we mean the usual path integral

〈. . .〉 ≡
∫
DAµe

−S . . .∫
DAµe−S

. (4.2)

Defined this way loops, are gauge invariant and “well-behaved” for a large
class of contours (see e.g. [39], [34]).
In order to evaluate a Wilson loop, we can study the expectation value
perturbatively. If we expand the exponent up to terms of order g2, two
gauge fields under the expectation value become a propagator

〈Aµ(x)Aν(y)〉 = Gµν(x− y) ∼ δµν
(x− y)2

. (4.3)

By analogy to QCD we will call this gauge field propagator a “gluon” prop-
agator. However, one should keep in mind that all the physical quantum

4Though, we will be interested in non-abelian theories, Wilson loop can be defined in
the abelian theory as well. See App.4

28



4.1 Perturbative Wilson loops

Figure 4.1: After the expansion, parametrisation x(s) describes the end
points of a gluon propagator.

numbers and properties are generalised, so that the gluon can occur in N
colours etc. After inserting the propagator into (4.3), the first order pertur-
bative Wilson loop becomes

WC = 1+(ig)2CF

∫ 1

0
ds

∫ s

0
dtẋµ(s)ẋν(t) {Gµν (x(t)− x(s))}+O(g4), (4.4)

where CF is the quadratic Casimir of SU(N) obtained by evaluating the
trace over T a’s

CF = TrT aT a =
N2 − 1

2N
. (4.5)

Dots above xµ denote the derivatives with respect to parameters s or t.
After the expansion, xµ(s) and xν(t) gain a new interpretation. Now, they
parametrise the end points of the propagator along the loop C (see 4.1).
Path ordering, present in (4.1), keeps the propagators’ end-points in the
right order. Therefore, the end point xµ(s) is always before the xµ(t) one.
This is manifest in the integrals (4.4) concatenated in an appropriate way.
After explaining this basic step, the full perturbative Wilson loop is just
a matter of generalisation. The full series of the path ordered exponent
becomes

Peig
∮
C dx

µAµ =
∞∑
n=0

∫ 1

0
ds1

∫ s1

0
ds2 . . .

∫ sn−1

0
dsn

dxµ(sn)
dsn

Aµ(x(sn)) . . .
dxµ

ds1
Aµ(x(s1)).

(4.6)

Next, we have to compute the trace of the T a matrices. Then, we should
carefully contract all the fields under the expectation value, and the function
that is left is a Wilson loop to all orders in perturbation theory.
There is one more extremely important detail we have to take into account.
With the propagator (4.3) along the loop C we quickly run into trouble.
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Namely, if the end points approach each other, a Wilson loop diverges. In
other words, we have the ultraviolet (UV) divergence. There are many ways
to cure this problem. Here, following most of the literature, we will use
dimensional regularisation in D = 4 − 2εuv dimensions [50]. Unlike in the
IR regularisation of N=4 SYM amplitudes, the UV cut-off εuv is taken to
be greater than zero. We also pick a renormalisation scale µ̃, and use the
Fourier transform (2.13) in D = 4−2εuv dimensions. Finally, the regularised
gluon propagator reads

∆µν(x− y) = −Γ(1− εuv)(πµ̃2)εuv

4π2

δµν

[−(y − x)2 + i0]εuv−1 . (4.7)

Similar to the IR divergent amplitudes in N=4 SYM, after regularisation,
Wilson loops will depend on the UV cut-off εuv.

4.2 Supersymmetric Wilson loops

The supersymmetric extension of a Wilson loop to N=4 SYM is quite a non-
trivial task. First of all, we pointed out in the previous section that a Wilson
loop in ordinary non-abelian gauge theory (like QCD) is the phase factor as-
sociated with a heavy quark in the fundamental representation moving along
the loop. On the contrary, we saw in the chapter about N=4 SYM, that
all the fields in the theory are in the adjoint representation. The solution of
this puzzle was first given by D.Gross et al. [12]. The authors generalised
the standard derivation of a Wilson loop. Namely, in the theory with a mat-
ter field in the fundamental representation (like quarks), the Wilson loop is
derived by writing a correlation function of the field in terms of the path in-
tegral over the quark’s trajectories. As a result, one obtains the appropriate
phase factor defining the Wilson loop. In the N=4 case, the authors used
W bosons from the symmetry breaking of SU(N + 1) → SU(N) + U(1).
They rewrote the bosonic part of the N=4 action (terms with the gauge
field Aµ and scalars Φ) in terms of Aµ,Φ and W bosons. Then, they studied
W ’s correlation function as the path integral over W trajectories. This way
they arrived at the phase factor defining the Wilson loop

WC =
1
N
TrPexp

(
ig

∮
C
ds
(
ẋµAµ − iΦiθ

i|ẋ|
))

. (4.8)

Including the extra six scalars required six new coordinates yi, one for each
field Φi. In other words, the contour C was enlarged to ten dimensions.
Therefore, their loop has a normal, four dimensional part with Aµxµ (due
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4.2 Supersymmetric Wilson loops

to the gauge invariance xµ has to be closed) and an extra six dimensional
part Φiyi (yi can be an arbitrary path in R6). At the end, the requirements
of supersymmetry allowed for special parametrisation yi =

√
ẋ2θi, where

θ2 = 1 are coordinates on a six dimensional sphere. We should remember
that physically, a Wilson loop constructed in this fashion corresponds to
the phase factor with which an infinitely massive W boson will transform
moving along the contour C.
This definition naturally allows the study of the perturbative expansion
of the loop. We will have two propagators. One for a usual gauge field
Gµν(x− y), and the other for scalars Dij(x− y)

〈WC〉 = 1− g2
YMCF

∫ 1

0
ds

∫ s

0
dt [ẋµ(s)ẋν(t)Gµν [x(s)− x(t)]

−|ẋi(s)||ẋj(t)|Dij [x(s)− x(t)]
]
. (4.9)

The form of both propagators was defined earlier (2.9),(2.10), and their posi-
tion representation is obtained by Fourier transforming (2.13) in D = 4−2ε
dimensions. The extra feature, which distinguishes Wilson loops in N=4
SYM, is their natural invariance under supersymmetry transformations. Let
us then check what is the requirement for supersymmetry (SUSY) invari-
ance. The bosonic fields Aµ and Φ transform under SUSY as [19]

δεAµ = χ̄Γµε
δεΦi = χ̄Γiε, (4.10)

where ε is a 10-dimensional Majorana-Weyl spinor, while χ are gluinos.
Acting with these transformations upon the Wilson loop 4.8, we arrive at
the supersymmetry-invariance condition

δεWC =
ig

N
TrP

∫
dsχ̄

(
Γµẋµ(s)− iΓiθi|xi(s)|

)
εeig

∫
dt(Aµẋµ−iΦiθi|ẋ|) = 0.

(4.11)
Precisely, for every parameter ε, the following equation must hold(

Γµẋµ(s)− iΓiθi|xi(s)|
)

= 0. (4.12)

This condition stresses an important property of supersymmetric Wilson
loops. Since it clearly depends on the parametrisation x(s), only a small class
of loops will preserve SUSY globally. Namely, the loops along a straight line.
In general, most of the loops will be supersymmetry invariant only locally.
This fact will be important during the perturbative computations in the
following chapters.
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4.3 Gauge theories in loop space

Non-abelian gauge theories with a large number of colours can be reformu-
lated in terms of Wilson loops. Observables, like n-point Green’s functions,
are replaced by averages of Wilson loops along specific contours5. In ad-
dition, a quantum equation of motion in an ordinary gauge theory, the
Dyson-Schwinger equation (see e.g. [39]), is generalised to a so-called loop
equation [51]. Later, we will see that gluon scattering amplitudes in N=4
SYM can be linked to string theory by holographic interpretation of a Wil-
son loop. That is why it is useful to quickly review how observables in large
N , non-abelian gauge theories are expressed by Wilson loops.
Let us start with re-writing observables in loop space form. First, the loop
analog of the n-point Green’s function Gn(x1, . . . , xn) at finite N , is the
expectation value of n exponents like in a single Wilson loop

Gn(x1, . . . , xn) ≡ 〈 1
N
TrPeig

∮
C1

dxµAµ , . . . ,
1
N
TrPeig

∮
Cn

dxµAµ〉, (4.13)

where Cn is the contour that contains the point xn. This formula does not
look too encouraging to work with, but it was proven [51] that in the limit
of N →∞6, n-point functions reduce to a surprisingly simple form

Gn(x1, . . . , xn) ≡
∑
C

G(C)〈 1
N
TrPeig

∮
C dx

µAaµT
a〉, (4.14)

where now the sum runs over all possible contours C that contain points
x1, . . . , xn. The weight G(C) depends on the observable, and the way to
compute it for a couple of simple examples is given in [34].
In whatever way we define our observables we would like them to be dynam-
ical objects; we need an equation which governs their dynamics. In classical
mechanics, we have Euler-Lagrange equation of motion. In the theory of
quantised fields there is a quantum counterpart, the Dyson-Schwinger equa-
tion (for more details see [34] or [39]). This functional relation states that
the Euler-Lagrange equation of motion of a quantum field ϕ is also satisfied
by all the Green’s functions of this field, up to ”commutator terms”. For
the action S[ϕ] and functional F [ϕ], the equation reads〈

δS [ϕ]
δϕ (x)

F [ϕ]
〉

= ~
〈
δF [ϕ]
δϕ (x)

〉
. (4.15)

5The material of this section is based on a book of Y.Makeenko [34].
6At the end, this is the same limit where we are able to test AdS/CFT
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The term on the right-hand-side is a ”commutator term”. We kept ~ to
emphasize that in the classical limit ~→ 0 we recover the E-L equation. As
an explicit example, we can write down the Dyson-Schwinger equation for
the simplest, Yang-Mills theory7. To avoid confusion, we denote a functional
of the gauge field as G[A]

−
〈
∇abµ F bµν (x)G [A]

〉
= ~

〈
δG [A]
δAaν (x)

〉
. (4.16)

As we see, on the left-hand-side there is the classical Maxwell equation,
whereas the right-hand-side will give a contribution if fields in the functional
approach Aaν (x).
A generalisation to Wilson loops is quite straightforward. Let us just take
a functional F [A] to be a Wilson loop

F [A] =
1
N
TrPeig

∮
C dx

µAaµ . (4.17)

Next, we insert F [A] to (4.16), and use the functional derivative of the gauge
field Aµ

δAijµ (y)
δAklν (x)

= δµνδ
(d)(x− y)

(
δilδkj − 1

N
δijδkl

)
. (4.18)

As a result, in the limit of N → ∞, we arrive at the Dyson-Schwinger
equation for a Wilson loop (see [34] p.256)

i〈 1
N
TrP∇µFµν(x)ei

∮
C dζ

µAµ〉 = g2N

∮
C
δd(x − y)〈WCyxWCxy〉, (4.19)

where WC is a Wilson line along C. The contour C splits into two parts,
Cyx and Cxy, because a functional derivative was applied at a point x of
the contour, while a point y, where the gauge field ”sits”, runs along C.
Hence, one part is a line from x to y, Cyx, and the other from y to x, Cyx.
The presence of δ(x − y) on the right-hand-side implies, that a non-trivial
contribution to the equation (4.19) comes from the loops, where x and y are
the same points of space, but not necessarily the contour8. One example
of a non-trivial loop is depicted in Fig.4.2. Summarising, it is possible to
reformulate non-abelian gauge theories in terms of Wilson loops. From now

7Full Yang-Mills action should pick the contributions from ghosts and gauge-fixing
terms. However, when the functional F[A] is gauge invariant, for example a Wilson loop,
they cancel each other [34].

8They might be associated with different values of the parameter s
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Wilson loops

Figure 4.2: Contours in equation (4.19).

on, we will keep in mind that computing any observable, in the limit of a
large number of colours, is equivalent to evaluating a Wilson loop along a
specific contour. In addition, with the loop equation in hand, we are able
to control loop kinematics.

4.4 Note on the cusp anomalous dimension

The last thing we promised to mention is the origin of the cusp anomalous
dimension. To see where it enters our game, let us consider a Wilson loop
along the contour with a single cusp:

Figure 4.3: Contour with a cusp.

In the past, people have studied such objects extensively [44], [27]. They re-
alised that the formulation of non-abelian gauge theories in terms of Wilson
loops enables us to study their behaviour under the renormalisation group
(RG) [39]. When they applied the standard RG equation to a Wilson loop
in a particular theory, they could see how it changes with a coupling con-
stant. The cusp anomalous dimension f(λ) appeared when the equation was
applied to the cusped Wilson loop like 4.4. In such a case, f(λ) determines
the leading divergence(

ρ
∂

∂ρ
+ β

∂

∂g

)
lnWCcusp = −2f(λ) ln ρ2 +O(ρ0), (4.20)
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4.4 Note on the cusp anomalous dimension

where O(ρ0) are the constant terms and higher powers of ρ. The parameter
ρ is defined in Fig. 4.4. This was the last part of the gauge theory back-
ground. In the next chapters, we will introduce some string theory methods
which will help us to understand the gluon scattering amplitudes at strong
coupling.

35



Wilson loops

36



Part II

String Theory

37





5
Bosonic string theory

In this chapter, we are going to briefly recall a few basic concepts from
bosonic string theory. Starting from the simplest bosonic model and its
connection to minimal surfaces, we will motivate a geometrical equivalence
between the Nambu-Goto and the Polyakov actions. This is naturally a
basic fact, but we will show its practical meaning, crucial in computing the
area of minimal surfaces. Next, we will present string actions in general
backgrounds. This will be followed by a short review of T-duality where
we will show how the dual system emerges from the non-linear sigma model
perspective. Finally, the result of Gross and Mende about scattering ampli-
tudes in flat space-time will be presented.

5.1 Minimal surfaces and classical bosonic strings

Let us first start with a simple and illustrative example, a minimal surface in
Euclidean space (like a soap bubble). To compute the area of the surface we
can use the coefficients of second-fundamental form. For the parametrisation
Xµ = Xµ(u, v) they are defined as

Aαβ = ∂αX
µ∂βX

νηµν =
(
E F
F G

)
=
(
∂uX · ∂uX ∂uX · ∂vX
∂vX · ∂uX ∂vX · ∂vX

)
.
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Bosonic string theory

The element of area is simply the square root of the determinant of Aµν

dA =
√

det(Aαβ) =
√
EG− F 2. (5.1)

Hence, the area of a surface is

A =
∫∫

dudv
√
EG− F 2. (5.2)

This is a general formula for any surface embedded in the Euclidean Rn.
On the other hand, if we want to find an unknown parametrisation Xµ of
a minimal surface with given boundary conditions (Plateau’s problem), we
have to vary the area functional

δA = 0. (5.3)

Already here, we see that a special choice of coordinates parametrising a
surface, such that

E = G F = 0, (5.4)

makes the functional very simple

A =
∫∫

dudvE =
1
2

∫∫
dudv(E +G). (5.5)

This fact proves to be very useful in the theory of minimal surfaces, since
instead of trying to find a general solution for the Euler-Lagrange equation
corresponding to (5.3), we can just solve

(∂2
u + ∂2

v)X = 0, (5.6)

and make sure that our solution satisfies two extra constraints

∂uX · ∂vX = 0 (∂uX)2 = (∂vX)2. (5.7)

This special set of coordinates is called the ”isothermal coordinates”. More-
over, it was proved by L. Bers that one can always find a parametrisation
such that equations (5.4) are satisfied.

With this knowledge we can easily construct actions for bosonic strings.
First of all, string theory as a description of particles emerged by generali-
sation of point particles. As we know, from classical mechanics, the action
for a point particle is proportional to the length of the world-line which
the particle marks propagating in space-time. By analogy one dimensional
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5.1 Minimal surfaces and classical bosonic strings

Figure 5.1: Strings world-sheet is a generalisation of a particles world-line.

string traces a world-sheet (surface in space-time) (see Fig. 5.1), so their
action is proportional to the area of the world-sheet

SNG = −T
∫
dA, (5.8)

where T is the string tension and dA is the area element. Like every action,
it must be dimensionless, so [T ] = [length]−2 = [mass]2.
A string world-sheet can be parametrised by (τ, σ), and the action becomes

S = −T
∫∫

dτdσ
√
∂σX2∂τX2 − (∂σXµ∂τXνηµν)2, (5.9)

where ηµν is the usual Minkowski metric ηµν = (−1, 1, 1 . . .) in n-dimensions
(26 for bosonic string). This is the well known Nambu-Goto action for clas-
sical strings.
We can use Bers’ theorem to rewrite it in a form that is more conve-
nient to work with. However, we should remember that the world-sheet
has Minkowski signature, so the condition for isothermal coordinates will
slightly change to

− (∂τX)2 = (∂σX)2 ∂τX · ∂σX = 0. (5.10)

In such coordinates the string action is

SP = −T
2

∫∫
dτdσ (−∂τX · ∂τX + ∂σX · ∂σX) . (5.11)
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This is known as the Polyakov action. In addition, the isothermal constraints
(5.10) can be put into a more compact form

(∂τX ± ∂σX)2 = 0. (5.12)

In string theory this condition is known as the Virasoro constraint.
It is sometimes convenient to introduce light-cone coordinates

σ± = τ ± σ, (5.13)

and corresponding light-cone derivatives

∂± =
1
2

(∂τ ± ∂σ). (5.14)

In light-cone language, the Polyakov action takes a nice and compact form1

SP = 2T
∫
d2σ∂+X

µ∂−X
νηµν . (5.15)

Strings can be easily embedded in general spaces with the metric Gµν(X).
Since coefficients of the second-fundamental form are simply equal to those
of the induced metric on the world-sheet, the N-G action is

SNG = −T
∫
d2σ
√
−det ∂αXµ∂βXνGµν(X), (5.16)

whereas the Polyakov action reads

SP = 2T
∫
d2ξ∂+X

µ∂−X
νGµν . (5.17)

Physically, with such actions, we would like to describe strings propagating
in curved backgrounds. It turns out that a complete description of these
kind of systems requires including the antisymmetric two-form gauge field
Bµν(X) and the dilaton field Φ(X) (see [26]). Then, the action for a bosonic
string in a curved background is

S =
1

4πα′

∫
dσdτ∂αX

µ∂βX
ν
(√

ggαβGµν(X) + εαβBµν(X)
)

+
1

4π

∫
d2R(2)Φ(X),

(5.18)
where T = 1/2πα′ and R(2) is the scalar curvature of the world-sheet metric
gαβ.

1In the literature it is usually called the Polyakov action in the conformal gauge, where
the world-sheet metric gαβ = ηαβ
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5.2 T-duality on the world-sheet

Figure 5.2: T duality of closed strings.

5.2 T-duality on the world-sheet

The idea of T-duality arose from studies of particles on a circle. The Hamil-
tonian for this system is

H =
1
2

(
W 2 1

R2
+K2R2

)
, (5.19)

with winding number W and momentum excitation number K. It is not too
difficult to notice that H does not change upon the following manipulation

R→ 1
R
, W ↔ K. (5.20)

This way, two systems

• particle on a circle of a radius R, winding number W and momentum
number K

• particle on a circle of a radius 1/R, winding number K and momentum
W

are completely equivalent. In string theory, we can study a similar model.
The bosonic strings in 26 dimensions can have some of their coordinates
periodic (then we say that strings are compactified on a circle). In practise,
they can wrap circles. Then, T-duality manifests that we cannot distinguish
between strings with momentum K/R wound W times around the cylinder
of radius R, and strings with momentum W/(1/R) wound K times around
the cylinder of radius 1/R (see Fig. 5.2). More formally, we can analyse
what happens with the world-sheet when we switch from one system to its
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dual. In the parametrisation Xµ = Xµ
R + Xµ

L, for closed strings, T-duality
flips the sign of the right-movers

XR → −XR XL → XL. (5.21)

For the open strings T-duality interchanges boundary conditions. There
are two of them: Neumann, when the string can freely move at the end-
points, and Dirichlet, when the end-points of the open string are fixed.
The Dirichlet condition breaks Poincare invariance. Therefore, they are
equivalent to introducing a new object in the theory, namely a hyperplane
on which open strings end. These hyperplanes are called D-branes, and are
fully dynamical objects. This means that we can study how they deform
space-time around them. We will see a bit more about D-branes in the next
chapter about the AdS/CFT duality.
T-duality can be studied in a general and formal way [9]. No matter whether
strings are open or closed, we can write the Polyakov action, which is an
example of a sigma model. For a string on the cylinder with a radius R:

S =
R2

4π

∫
d2σ∂αX · ∂αX, (5.22)

where ∂α = gαβ∂β. To read out the properties of the dual system with
world-sheet Y , we can first “gauge” the action (make it invariant under
local translations). For that, we will have to introduce the gauge field Aα,
where α ∈ (τ, σ). To make sure that the new action is equivalent to the
original, we can add Y which will play the role of the Lagrange multiplier.
Hence, integrating out Y from the action (substituting it by the solution of
its equation of motion) we will get the old Polyakov integral. On the other
hand, integrating out the Aα, we will arrive at the dual sigma model. Let us
see how this works explicitly. Naturally, the action (5.31) is invariant under
global translations X(σ, τ) → X(σ, τ) + a. When translations are local we
have to introduce the gauge field Aα which transforms as

Aα → Aα − ∂αa, (5.23)

and the corresponding field strength F

F = ∂τAσ − ∂σAτ ≡ εαβ∂αAβ. (5.24)

After we incorporate this into the action, it becomes

S =
1

2π

∫
d2σ

R2

2
(∂αX +Aα) · (∂αX +Aα)− Y · F, (5.25)
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which is invariant under the local shift transformation. Now, we can perform
a gauge transformation to absorb ∂αX into Aα

Aα → Aα − ∂αX. (5.26)

Finally, the action becomes

S =
1

2π

∫
dsσ

R2

2
Aα ·Aα − Y · F. (5.27)

The equation of motion for Y

F = ∂τAσ − ∂σAτ = 0⇒ Aα = ∂αX̃, (5.28)

when plugged into (5.27), shows the equivalence to the original sigma model

S =
R2

4π

∫
d2σ∂αX̃ · ∂αX̃. (5.29)

On the other hand, the equation of motion for the gauge field Aα reads

Aα = − 1
2R2

εαδ∂
δY. (5.30)

Inserting this solution into (5.27) we obtain the dual sigma model

S =
1

4π
1
R2

∫
d2σ∂αY · ∂αY. (5.31)

In this way we see that T-dual systems have inverted radii

R⇔ 1
R
. (5.32)

We will apply this formal T-duality to string amplitudes in order to simplify
boundary conditions for minimal surfaces in AdS.

5.3 Remark on string amplitudes

Scattering amplitudes in string theory can be naturally studied in the lan-
guage of two-dimensional conformal field theory (CFT) (see e.g.[18]). For
example, four closed or open string scattering realised as an appropriate
deformation of the string world-sheet, in CFT corresponds to the sphere or
the disk respectively, with four vertex-operator insertions. The amplitude
is then evaluated as a path integral over all possible world-sheets with these
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Figure 5.3: String scattering pro-
cess.

Figure 5.4: Corresponding ampli-
tudes in CFT.

operators inserted at the boundary. According to the operator-state corre-
spondence, we can construct vertex operators for all kinds of string states.
For example, for the massless string-tachyon with momentum k, we define
the vertex operator at σi as

V (σi) =
∫
d2σeik·X(σi), (5.33)

and the corresponding 4-tachyon amplitude is

A4 =
∫
DgαβDXµe−

1
2π

∫
d2σ
√
ggαβ∂αXµ∂βXµ

4∏
i=1

V (σi). (5.34)

Depending on whether we consider an open or a closed string, we have to
use different correlators for Xµ (see [18]).
In [11] D. Gross and P. Mende studied four-point open string amplitudes at
fixed angles and very high momenta. They showed that when the momentum
transferred in the process is very high, the amplitude is dominated by a
classical world-sheet area in flat space-time (see Fig. 5.5). They evaluated
a disc with four insertions of vertex operators in points σ1 = 0, σ3 = 1,
σ4 = ∞ and the remaning one parametrised in terms of the Mandelstam
variables

σ2 =
s

s+ t
, s = −(k1 + k3)2, t = −(k1 + k4)2. (5.35)

The four massless string amplitude became

A4 ∼ eS(s,t), (5.36)

where the on-shell action S is

S(s, t) = s ln(−s) + t ln(−t)− (s+ t) ln(−s− t). (5.37)
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5.3 Remark on string amplitudes

Figure 5.5: Open string amplitudes at very high momentum transfer s, are
dominated by the saddle point of the action (classical, minimal surface).

Moreover, lightlike open strings ending on a D-brane can be identified with
gluons in a gauge-theory. This way, we are able to reconstruct the gauge
theory amplitudes as the low energy limit of the string ones. This is a very
remarkable result and we should keep it in mind, especially when we will
study scattering amplitudes in AdS. As we will see, the result of Alday and
Maldacena is a sort of generalisation of the Gorss and Mende computation
to AdS space.
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6
The AdS/CFT correspondence

In this chapter we will briefly review the idea of the correspondence between
string theory in Anti-de Sitter space and a conformal field theory, the non-
abelian N=4 SYM theory. Starting from brane solutions in supergravity, we
will see the original system, a stack of N D3 branes, which motivated Mal-
dacena to formulate his famous proposal. Then, we will briefly present the
general proposal and explain the limits which allowed for explicit computa-
tions supporting that bold conjecture. The last section explains how Wilson
loops can be interpreted in terms of open strings stretching into the interior
of AdS. This result will be crucial in the computation of the gluon scattering
amplitudes in planar N=4 SYM at strong coupling. We mentioned before
that in theories with a large number of colours, amplitudes are equivalent to
Wilson loops along specific contours. That is why understanding how they
behave in different regimes is so important.

6.1 D3 branes

We have learned that for open strings in d dimensions, one has to specify
what happens at their end-points. If we impose Dirichlet conditions (string
is fixed) in p directions, we breake Poincare symmetry in these directions.
In other words, we introduce a new object, a D(d-p-1) brane1. In this way,

1As we remember a Dp brane is labeled by the number of its spatial directions p
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the open strings attached to a D(d-p-1)-brane can freely move in d − p di-
rections.
Let us now consider a single open string attached to a D3 brane (Fig.6.1)
in 10 dimensional Minkowski space-time. The string can have an arbitrar-
ily short length, so it must be massless. If the end-points carry extra labels

Figure 6.1: Massless open string
on a D3 brane.

Figure 6.2: Stack of N D3 branes.

i, j = 1 . . . N , this string excitation mode induces a massless U(1) gauge the-
ory on the D3 brane. If we look at the brane as a 3+1 dimensional Minkowski
world-brane, our brane+string system defines a non-abelian gauge theory in
this space. The system can be enlarged by adding more D3 branes. If we put
N of them close to each other (Fig. 6.1), we can not only have strings that
starts and ends at the same brane, but also there are N2 −N open strings
which start at one brane and end on the neighboring. In the limit where
branes coincide, all strings are massless and the gauge symmetry induced
on them becomes U(N). After precise and extensive studies of the stack
of N D3 branes, people realised that the low energy limit of this system is
equivalent to the N=4 SYM theory [19].
Alternatively, N D3 branes can be described in terms of closed strings prop-
agating in their presence. In order to see how D3 branes modify space-time
one needs to solve type IIB supergravity equations. Analysing symmetries
of D3 branes and their SUSY properties, the metric which solves them for
N coincident branes is

ds2 = H−
1
2
(
−dt2 + dx2

1 + dx2
2 + dx2

3

)
+H

1
2
(
dr2 + r2dΩ2

5

)
, (6.1)
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where

H ≡ 1 +
R4

r4
, R4 ≡ 4πgs(α′)2N. (6.2)

The first bracket in the metric describes the coordinates “on” D3 branes
(parallel to the branes). Whereas the second bracket contains the coordi-
nates perpendicular to the branes. dΩ2

5 is the metric of the five dimen-
sional sphere. This will be the supergravity metric for space-time where
open strings propagate. In addition, type IIB theory contains the Ramond-
Ramond (RR) four-form A4. The flux coming from integrating the field
strength F5 = dA4 will also contribute to the open string background [19].
Factors H(r) have the following physical interpretation: if we measure the
energy of the D3 brane system Er from some constant distance r, it would
be related to the energy observed at infinity E∞ by

E∞ = H−
1
4Er. (6.3)

Therefore, the low energy limit, according to the observer at∞, is equivalent
to focusing on the branes (r → 0). In this limit, the fraction in H dominates
and the metric becomes (after change of variables r → R2/r)

ds2 = R2

(
ηµνdx

µdxν

r2
+
dr2

r2
,

)
+R2dΩ2

5. (6.4)

which is precisely the metric on the product manifold AdS5 × S5 with the
same radius R 2. On the other hand, if we ”zoom out” far from the branes,
the space-time geometry is flat (see Fig.6.3)

6.2 The AdS/CFT duality

Intuitively, we would expect that approaching branes at low energies requires
the N=4 SYM theory (without gravity) to be the correct description of the
physics we see. On the contrary, the low energy limit of type IIB supergrav-
ity solution tells us to use string theory in AdS5 × S5 with R-R flux (with
gravity). In 1998, this argument encouraged J. Maldacena to conjecture the
exact equivalence between string theory in AdS5 × S5 and conformal N=4
SYM (hence, the abbreviation: AdS/CFT duality)3.

2AdS metric is in Poincare coordinates. For more details about the AdS/CFT see
App.A.

3String theory in AdS5 × S5 is compactified on the S5, so that the gravity theory in
5d is equivalent to the gauge theory in 4d. This makes the duality holographic.
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Figure 6.3: Space-time in the presence of D3 branes. Flat geometry, far
from D3 branes turns into the ”throat” AdS5 × S5 when r → 0.

Naturally, Maldacena did not finish pointing the potential equivalence be-
tween these gauge and gravity systems. First of all, in order to compare
observables on both sides, and check whether they really ”match”, he had
to explain how to relate the different parameters from dual theories. Observ-
ables in N=4 SYM depend on usual kinematical parameters (Mandelstam
variables, helicity etc.), the Yang-Mills coupling constant gYM and the num-
ber of colours N of the non-abelian gauge group SU(N). Simultaneously,
the type IIB solution in AdS5 × S5 also possess two parameters; radius R
and the string coupling gs. Maldacena’s idea was to identifay them in a
following way

g2
s ≡ g2

YM

R4

(α′)2
≡ 4πg2

YMN ≡ 4πλ, (6.5)

where λ is the ’t Hooft coupling and α′ = l2s is the Regge slope, equal to
the square of the string length. Already from these relations we can deduce
when the AdS/CFT duality will be a useful tool for physics. When the
coupling λ is small

g2
YMN =

R4

4πl4s
� 1, (6.6)

we can trust the perturbative expansion in the gauge theory, whereas on the
gravity side we have the radius of AdS comparable with the string length ls
(difficult quantum gravity). On the other hand, when λ becomes strong and
we loose control of the gauge theory, classical supergravity for large R in ls
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units is a good description. Therefore, we see that these two disconnected
regimes make AdS/CFT very difficult to prove, since it would require a
non-perturbative solution of either the N=4 SYM or the string theory in
AdS5×S5 background with R-R flux. Nevertheless, we can look at the other
side of this coin. If the duality is true, we have a very powerful tool at hand.
More specifically, we are able to study the non-perturbative regime of gauge
theories by classical supergravity in AdS space, and a quantum gravity in
AdS by perturbative N=4 SYM.
Let us then present, in some detail, this limit where we can test and use
AdS/CFT. We begin with a general string theory in AdS5×S5 background
and a general N=4 SYM theory. Then, we perform the following steps

1. The ’t Hooft Limit
On the gauge side we fix the coupling λ ≡ g2

YMN , while N → ∞.
As we saw in the part about the gauge theory, in the ’t Hooft limit
only planar diagrams contribute to the perturbative series. On the
gravity side, since gs = λ/N , we end up with non-interacting strings
gs → 0 in curved space with constant radius R. This way we weaken
the AdS/CFT to a duality between large N , planar N=4 SYM and
classical strings (no quantum corrections) on AdS5 × S5.

2. The Large λ Limit
Taking the ’t Hooft coupling λ → ∞, physically, makes the string
tension T ∼ λ very large, such that all the massive modes become
extremely heavy. They decouple from low energies. An effective the-
ory is approximated by type IIB supergravity on AdS5 × S5. More
intuitively, we can just say that the large λ translates simply to the
large R so we can use the classical, low energy type IIB supergravity.
The gauge theory after this limit becomes strongly coupled.

Our two limits can summarised in table 6.1
There has been a lot of progress in work done in these testable limits of
AdS/CFT. People realised that symmetries on both sides match and this
way they could precisely relate certain operators on the gauge side with
supergravity observables. This allowed for a fruitful confirmation of the
AdS/CFT in these regimes. Among many observables mapped from the
gauge to the gravity, the most established are Wilson loops. In the next
section we will briefly describe what is the gravity counterpart of Wilson
loops in N=4 SYM at strong coupling.
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N = 4SYM String in AdS5 × S5

The Parameters
gYM gs

colours N radius R
Relation between the parameters
gs = g2

YM ,
R4

(α′)2 ≡ 4πg2
YMN

The ’t Hooft limit
N →∞, λ = g2

YM fixed gs → 0, fixed R
planar limit free strings

The Strong λ limit
N →∞, λ� 1 gs → 0, R� 1

strongly coupled N=4 SYM classical type IIB supergravity

Table 6.1: Limits of the AdS/CFT correspondence.

6.3 Wilson loops in AdS/CFT

Wilson loops at strong coupling can be evaluated using the AdS/CFT corre-
spondence. The way it is done is actually quite surprising and geometrically
beautiful. The standard loop in N=4 SYM along a contour C is identified
with the world-sheet surface of the open string in AdS5, with the end points
attached to the contour C (Fig. 6.3). This is like a soap bubble fastening
to a 2-dimensional surface on the edges while the entire part stretches into
the third dimension. Let us give to this nice picture a slightly more pre-

Figure 6.4: Wilson loop interpre-
tation in the AdS/CFT.

Figure 6.5: Soap bubbles.

cise description. We have learned from [12] that the Wilson loop in N=4
SYM required the W ’s from the symmetry braking. We can perform a sim-

54



6.3 Wilson loops in AdS/CFT

ilar construction using the D3 branes. We start with the stack of N D3
branes in flat 10 dimensional Monkowski space. Next, we seperate one D3
brane from the rest. This way SU(N) is broken to SU(N − 1)×U(1). The
open strings will stretch between the stuck and the separated brane. Their
ground state will correspond to W bosons and their superpartners of broken
SU(N). The string trajectories should give the same effect as a very heavy
particle in the fundamental representation [12]. This way, we identify the
expectation value of a Wilson loop in N=4 SYM over a contour C with the
string partition function in AdS5 × S5 space

〈W [C, θ]〉 =
∫
DXDθDhabe−

√
λ

4π

∫
B d

2σ
√
hhabGMN∂aX

M∂bX
N+F . (6.7)

“F” stands for fermions, λ is the ’t Hooft coupling and hab is the world-sheet
metric. The action is the Polyakov string sigma model with the metric GMN

ds2 = R2

(
ηµνdx

µdxν

r2
+
dr2

r2

)
+R2dΩ2

5. (6.8)

This is the ideal, “Platonic” AdS/CFT proposal for Wilson loops, valid
at any regime of λ. However, as we pointed out before, it is difficult to
analytically solve the non-linear sigma model with RR fluxes. Hence, we
usually study the proposal after taking the ’t Hooft and large λ limits. The
partition function is then dominated by the classical, saddle point. This is
naturally the area of the minimal surface in AdS5.
The negative curvature of the AdS space forces the string world-sheet to
stretch into the “bulk”. Therefore, the minimal surface is attached to C
in four dimensions and the entire part is in the AdS. This constrains the
boundary conditions for the world-sheet parametrisation at r = 0

Xµ|r=0 = C(x) = xµ(s), Θi|r=0 = C(θ) = θi(s) (6.9)

where Θ parametrises the position of the world-sheet in S5. Summaris-
ing, computing the Wilson loops at strong coupling is equivalent to solv-
ing Plateau’s problem in Anti-de Sitter space4. Of course, there will be a
quantum corrections to this picture: the perturbations around the classical
solution. Though this is a very interesting problem, we will not discuss it in
this thesis.
We should conclude this part witha last remark about the divergence of the
area in AdS. Form the term 1

r2
in the metric, we can easily guess that the

4Actually finding the area of the minimal surface for given boundary conditions.
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The AdS/CFT correspondence

divergences will occur when want to evaluate the area close to r = 0. There
are two ways to remedy this problem. The first way is to introduce a cut-off
r = rε, then compute the integrals and at the end take rε → 0. The second
scheme is the dimensional regularisation on the gravity side. We will discuss
both of them later in the Alday-Maldacena computation. Let us now use
all the knowledge we have from the previous chapters to compute the gluon
scattering amplitude at strong coupling.
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Part III

Gluon scattering amplitudes.
From weak to strong
coupling and back.
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7
The Alday-Maldacena computation

We will start this final part by presenting the computation of the 4-gluon
scattering amplitude in N=4 SYM at strong coupling. This was first ob-
tained by Alday and Maldacena (A-M)[1] in 2007. We will follow their
derivation and stress the most important conceptual steps. Hopefully, the
reader, having passed through the two previous parts, will be able to fully
appreciate this interesting result.
In the discussion below, we will see, that the amplitude at strong coupling
will turn out to be dual to the Wilson loop along the contour parametrised
by the gluons’ momenta. In chapter 8, we will show that this duality, sur-
prisingly, survives in the weak regime of λ. As is suggested by the title
of this part, ”Gluon scattering amplitudes. From weak to strong coupling
and back”, we will start from the BDS ansatz, then move to the Alday-
Maldacena computation and end up at the Wilson loops at weak coupling
again. In chapter 9 we will sketch the mechanism allowing for this strange
passage. Finally, we will present the results for 6-gluon amplitudes at weak
and strong coupling, and conclude with problems and open questions which
need to be answered.
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7.1 Motivation

The motivation for computing gluon scattering amplitudes at strong cou-
pling started from the BDS ansatz. Just to remind the reader, according to
the BDS, the IR regularised gluon amplitude can be expressed in terms of
the usual kinematical variables and two universal functions: the cusp anoma-
lous dimension f(λ) and the collinear anomalous dimension g(λ). Therefore,
since we know the form of these functions at strong coupling (see chapter
3), we are able to write the ansatz for large λ. Having done this, Alday and
Maldacena decided to check whether the strong coupling observable in the
N=4 theory SYM matched the dual result conjectured by the AdS/CFT
correspondence. There was only one small problem: no gravity dual de-
scription of the gluon scattering amplitudes existed.
Naturally, the authors had to come up with a construction of the gluon am-
plitudes using available string theory tools. The main difficulty that they
faced was related to the divergent structure of the amplitudes. Namely, we
cannot define them for a definite number of gluons. As we saw before, they
have to be regularised (dimensional regularisation in D = 4− 2ε). This way
we ”dress” the gluon propagator and study jets with an indefinite number
of gauge particles. In string theory this picture is quite awkward to realise
(we do not have a notion of a jet in terms of string modes). Nevertheless,
A-M managed to give a more geometrical and elegant prescription using
AdS/CFT. They started by putting a single D3 brane at some value rIR in
the radial direction of the AdS space. The aim of this step was to use it as
the IR regulator (at the end take its position to infinity). The asymptotic
states on the brane were massless open strings1 and A-M defined gluons at
their end points. Hence, the n-point gluon amplitude was identified with
the correlation function of these massless string states. The states had the
proper momentum kpr = krIR/R, where k is the momentum conjugate to
string position Xµ(σ, τ), and R is the radius of the AdS. Therefore, when the
D3 brane is moved to rIR →∞, kinematically the process becomes identical
to the one studied by Gross and Mende [11] (see chapter 5). Similar to the
flat space example, they conjectured that the n-point amplitude has to be
dominated by the classical saddle point of the action. This was naturally
the minimal surface, but this time, due to the presence of the D3 branes
background, the surface had to be computed in the AdS5 space (see Fig.
7.1).
As we clearly see, the A-M computation does not refer to any particular he-

1With both end-points on the D3 brane.
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Figure 7.1: Gluon amplitude in the AdS/CFT.

licity configuration of scattered gluons. Therefore, though the BDS ansatz
was proposed for MHV amplitudes, the string theory computation is more
general. Let us examine this proposal in more detail.

7.2 Set-up

Our goal is to compute the scattering amplitude for four massless, open
strings at strong coupling λ. The amplitude in this case has the topology of
a disc with four vertex operators2 inserted at the boundary

A4 ∼ 〈Vk1(σ1)Vk2(σ2)Vk3(σ3)Vk4(σ4)〉. (7.1)

To describe the kinematics, we use the standard Mandelstam variables. For
the process 1 + 2 7−→ 3 + 4, they are

s = −(k1 + k2)2 = −2k1 · k2 = −4k2sin2φ

2

t = −(k1 + k4)2 = −2k1 · k4 = −4k2cos2φ

2
u = −(s+ t). (7.2)

We fix the scattering angle φ and increase the momenta of the incoming
particles (by shifting the IR brane to ∞). In this regime, the amplitude is
dominated by the saddle point of the action[11]

A4 ∼ eδS=0, (7.3)
2We are not going to specify the form of vertex operators because it will not be impor-

tant for computing the minimal surface.
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where S is either the Polyakov or Nambu-Goto action for the open string
embedded in the AdS5 space. The classical saddle point of S is proportional
to the minimal surface with particular boundary conditions. In our case,
the minimal surface on the boundary should be attached to the D3 brane at
r = rIR. In addition, close to the vertex operators insertions, it should be
fixed by the gluons’ momenta [1]. From the geometrical point of view, this
does not say too much. Fortunately, A-M showed that there exists a trick
that changes the boundary conditions into a -very convenient to work with-
form; especially when we want to find the minimal surface. We will analyse
it very carefully in the next section.

7.3 T-duality and boundary conditions

The trick which involves simplifying the boundary conditions is based on
performing the T-duality along the coordinates of the D3 brane. Precisely,
if the minimal surface is parametrised by X = (x0, x1, x2, x3, r), the T-
duality can be formally applied to xµ, µ ∈ (0, 1, 2, 3), by gauging the shift
symmetry in these directions (see chapter 5). From the quantum point of
view this step seems to be forbidden since x0 is non-compact (no winding
modes). However, we are only interested in the classical minimal surface
(without handles etc.). In this case, the T-duality is just a map between
two world-sheets with different boundary conditions, but the same areas.
To see explicitly how this procedure acts upon the world-sheets’ boundaries,
let us consider the n-point, massless, open string amplitude, and T-dualise
it. The n-point correlation function is

An = 〈
n∏
i=1

V (ki, σi)〉 ∼
∫
D
DXeiSei

∑n
i=1 ki·x(σi). (7.4)

Vertex operators V are inserted at the boundary of the disc D (that is why
they only depend on xµ)3. The product of n operators will give the exponent
of the sum

i

n∑
j=1

kj · x(σj). (7.5)

3We use tachyon vertex operators just to illustrate the action of the T-duality. They
should not be confused with the proper vertex operators representing the scattering of the
open super-strings in the AdS.
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First, we will “massage” it a bit, and add as the boundary term to the
exponent of the action in (7.4)

eiS = e
1
4π

∫
dσdτ∂αxµ∂αxνGµν+ R2dr2

∂αr∂αr , (7.6)

where Gµν is the “Minkowski” part of the AdS metric

ds2 = R2

[
dx2

3+1 + dr2

r2

]
≡ Gµνdxµdxν +

R2dr2

r2
. (7.7)

Then, we can perform the T-duality and read out the new boundary condi-
tions4 and the new, “dual” metric.
The sum (7.5) can be written as

i

n∑
j=1

kj ·X(σj) = i

n∑
j=1

kj ·
∫
dσX(σ)δ(σ − σj). (7.8)

In our scattering process, the momenta of massless gluons are conserved.
Hence, we can replace one of them by the sum of the others (with a minus
sign). For instance, let us pick the momentum kn

kn = −
n−1∑
j=1

kj , (7.9)

substituting into (7.8) we obtain

i

n−1∑
j=1

kj ·
∫
dσX(σ)(δ(σ − σj)− δ(σ − σn)). (7.10)

Using the equality of the distributions

∂σθ(σ;σj , σn) = δ(σ − σj)− δ(σ − σn), (7.11)

where the periodic Heaviside’s step function θ is defined as

θ(σ;σi, σj) =
{

1 σi < σ < σj
, 0 otherwise

(7.12)

4In further computations we will omit the term with derivatives of r since the T-duality
will be applied only to xµ.

63



The Alday-Maldacena computation

our product becomes

−
n−1∑
j=1

kj ·
∫
dσX(σ)∂σθ(σ;σj , σn). (7.13)

In order to gauge this boundary piece, we would like to have it in the form
of ∂x · (. . .). Let us then integrate by parts the second factor in (7.13)∫

dσX(σ)∂σθ(σ;σj , σn) = −
∫
dσ(∂σX(σ))θ(σ;σj , σn) +∫

dσ∂σ(X(σ)θ(σ;σj , σn)). (7.14)

The second integral gives the value of X(σ) between points σn and σj .
Because of this, it can be written as∫

dσ∂σ(X(σ)θ(σ;σj , σn)) = −c
∫
dσ∂σX(σ), (7.15)

where c is some constant that, multiplied by four-momentum vector, be-
comes a constant 4-vector c. In the first integral, the theta function “cuts”
the region of integration to

∫ σn
σj

. Finally, putting all this together, the con-
tribution from the vertex operators to the action is

i

n∑
j=1

kj ·X(σ) = −i
n−1∑
j=1

∫ σj+1

σj

dσ∂σX(σ) ·

∑
i≤j

ki + c

 . (7.16)

We are ready to perform the T-duality. The procedure was already studied
in chapter 5. Here, we just generalise it to the AdS metric. First, we write
the -local shift symmetry invariant- action(5.25) (only the Minkowski part
of the AdS metric), together with the gauged boundary piece

1
4π

∫
D
dσdτ(

R2(∂αx−Aα)2

r2
−iy·F )+i

n−1∑
j=1

∫ σj+1

σj

dσ[∂σx−Aσ]·

∑
i≤j

ki + c

 .

(7.17)
New coordinates y play the role of a Lagrange multiplier. This means that
the equation of motion for y leads to the equivalence between (7.17) and the
original sigma model in the AdS. By gauge transforming Aα → Aα + ∂αx
we can absorb ∂αx into Aα. Hence, (7.17) becomes

1
4π

∫
D
dσdτ(

R2Aα ·Aα

z2
− iy ·F ) + i

n−1∑
j=1

∫ σj+1

σj

dσAσ ·

∑
i≤j

ki + c

 . (7.18)
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As we remember, the final step in the T-duality was to integrate out the
gauge field Aα (substituting Aα by the solution of its equation of motion).
Before doing that, we integrate by parts the term with y in (7.18)

−i
4π

∫
D
dσdτy · (∂τAσ − ∂σAτ ) =

−i
4π

∫
D
dσdτ(∂σy ·Aτ − ∂τy ·Aσ)−

i

4π

(∫
dσy ·Aσ −

∫
dτy ·Aτ

)
. (7.19)

After incorporating the second term into c, we end up with a neat form of
the action and the boundary term

1
4π

∫
D

(
R2Aα ·Aα

r2
− i(Aτ · ∂σy −Aσ∂τy)

)
−i

n−1∑
j=1

∫ σj+1

σj

dσAσ · (
∑
i≤j

ki + c +
R2

4π
y). (7.20)

There are two equations of motion for Aα. One emerging from Aσ at the
boundary of the disc∑

i≤j
ki + c +

R2

4π
y(σj ≤ σ ≤ σj+1) = 0. (7.21)

The other, coming from Aα in the “bulk” of the disc

Aα =
r2

R2
iεαβ∂βy. (7.22)

After substituting (7.22) into the “bulk” part of (7.20), we obtain the dual
sigma model

1
4π

∫
dσdτ

r2

R2
∂αy∂

αy. (7.23)

This means that after the T-duality, the minimal surface is embedded in the
space with metric

ds̃2 =
r2

R2
dy2

3+1 +
R2

r2
dr2. (7.24)

If in addition we invert the radial direction r = R2

r , the dual space again
becomes Anti-de Sitter with y

ds2 = R2

[
dy2

3+1 + dr2

r2

]
. (7.25)
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Let us summarise what has actually happened. In the original coordinates,
we had momenta kµ conjugated to xµ. In the new coordinates (at the
boundary), the difference between two neighboring yµ (close to the insertion
points σi and σi+1), is proportional to the gluon momenta5

yµ(σi)− yµ(σi+1) =
R2

4π
kµi . (7.26)

This basically means that the entire boundary contour C consists of the
light-like segments li, so that

C =
4⋃
i=1

li,

and li is defined as
li ≡ yµi − τik

µ
i | τi ∈ (0, 1), (7.27)

where yµi denotes the position of the i-th cusp in four dimensions. This can
be viewed in Fig. 7.2 presenting the new boundary, where cusps are placed
at the vertices of the cube. This way, by the T-duality, we mapped the

Figure 7.2: After T-duality we end up with the coordinates yµ. The boundary
contour is then fully determined by gluons’ momenta.

problem of computing the 4-gluon scattering amplitude at strong coupling
to finding the minimal surface which ends on the four light-like momenta.
There is only one thing which remains to be clarified: the position of the
single D3 brane. Originally, we placed it at some value rIR. Then, in order
to map the IR regularisation it was moved to r =∞. In the new coordinates

5The proportionality constant can be removed by rescaling of all the AdS coordinates.
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r = R2

r2
this corresponds to r = 0, whereas the new boundary of the AdS

(previously at r=0) moved to r =∞.
Putting this all together, we have to find the minimal surface in dual-Anti-
de Sitter space which fastens to the light-like contour C on the D3 brane
at r = 0 (Fig. 7.3) Before attacking this task, we will play with a simpler

-1.0
-0.5

0.0
0.5

1.0

-1.0
-0.5

0.0
0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 7.3: World-sheet bounded by light-like momenta and stretching into
AdS.

example, the minimal surface on the light-like cusp. This will give us some
intuition for how to work with minimal surfaces embedded in the AdS5

space. Later we will see that the 4-cusps solution we are looking for can be
constructed from the one-cusp toy model.

7.4 Minimal surface on the light-like cusp

Let us consider a light-like cusp y1 = ±y0 (see Fig. 7.4) on the boundary
of the AdS5. Intuitively, the surface with such a boundary is an object
from the AdS3 embedded in the AdS5. This is analogous to the shortest
path in space-time (x, y, z). A line on the x − y plane is minimal when its
parametrisation has y = z = 0. The AdS3 is endowed with scaling and boost
symmetries and we will use them to construct the minimal surface in quite
an elegant way [38]. The symmetries are transparent when we parametrise
the AdS3 metric

ds2 = R2

[
−dy2

0 + dy2
1 + dr2

r2

]
, (7.28)

with (τ, σ, ω(τ))

y0 = eτ coshσ, y1 = eτsinhσ, r = eτω
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Figure 7.4: The minimal surface on the light-like cusp is an object from
AdS3 embedded in AdS5.

In these parameters, scalings correspond to shifts in τ and boosts correspond
to shifts in σ. Already from a simple analysis of the relations between τ , σ
and ω(τ), we notice that

r2 = ω(τ)
(
y2

0 − y2
1

)
(7.29)

This is precisely the surface on the two light-like cusps in Fig. 7.5. The
extra parameter ω governs the amplitude of the semi-circles far from the
vertex. We will only consider the ”upper” cusp (y0 > 0). In order to find

y0

y1

r

Figure 7.5: 2 cusps for an arbitrary ω

out which value of the ω minimises the surface, we will solve the equation of
motion for the Nambu-Goto action. The action with the AdS3 metric 7.28
reads

S =
1

2π

∫
dτdσ

√
−det(Gµν∂αyµ∂βyν) (7.30)
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Where µ ∈ (0, 1, 2, 3) and y3 = r. According the discussion before, we set
y2 = 0. Hence, the determinant in (7.30) becomes

det

(
Gµν∂τy

µ∂τy
ν Gµν∂τy

µ∂σy
ν

Gµν∂σy
µ∂τy

ν Gµν∂σy
µ∂σy

ν

)
=

1
ω2
det

(
−1 + (ω(τ) + ω′(τ))2 0

0 1

)
This gives the Nambu-Goto action in terms of ω

S =
R2

2π

∫
dσ

∫
dτ

√
1− (ω(τ) + ω′(τ))2

ω2(τ)
(7.31)

The corresponding equation of motion is the second order differential equa-
tion

∂τ

(
ω + ω′

ω2
√

1− (ω + ω′)2

)
=

2− (ω + ω′)(ω + 2ω′)
ω3
√

1− (ω + ω′)2
(7.32)

A general solution seems to be quite difficult, but we are interested in a
particular stationary one. This allows us to take the ansatz ω = const.
From this, it easily follows that

0 = 2− ω2 → ω =
√

2 (7.33)

This way we find the minimal surface on the single cusp

r =
√

2
√
y2

0 − y2
1 (7.34)

It is very instructive to study this solution in the embedding coordinates
of the AdS space (see appendix A). Unlike the Poincare coordinates which
parametrise only half of the AdS cylinder (see Fig. 7.6), the global ones
cover all the space. Let us see what kind of interesting surprises can be
found after a simple change of coordinates. The AdS5 can be seen as a
surface embedded in six-dimensional space. Its quadric equation is

− Y 2
−1 − Y 2

0 + Y 2
1 + Y 2

2 + Y 2
3 + Y 2

4 = 0 (7.35)

The coordinates Y are usually known as the embedding coordinates and are
related to the Poincare y by

Y µ =
yµ

r
, µ = 0, . . . , 3

Y−1 + Y4 =
1
r
, Y−1 − Y4 =

r2 + yµy
µ

r
(7.36)
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Θ=
Π

2

1 cusp

Poincare

Global

Figure 7.6: Single cusp solution in the Poincare coordinates, in the embed-
ding, corresponds to four cusps.

Using these relations, we can easily check that the single cusp solution in
the embedding coordinates reads

Y 2
0 − Y 2

1 = Y 2
−1 − Y 2

4 , Y2 = Y3 = 0 (7.37)

This solution represents the minimal surface on four cusps 7.6. We will see
this explicitly after finding the minimal surface for the four light-like cusps.
They will be related by the SO(2, 2|4) isometry of AdS5. This interesting
result will give us the motivation to construct the minimal surfaces for 6-
gluons from the 4-point ones. With some confidence in the environment
of minimal surfaces in AdS, we are ready for the final, Alday-Maldacena
computation.

7.5 The minimal surface for 4 cusps

In this section are going to find the minimal surface which, at r = 0,
ends on the contour depicted in Fig. 7.2. It is easier to start with the
Poincare coordinates, so that the embedded surface we are looking for is
yµ = (y0, y1, y2, y3, r). Analogous to the single cusp, we fix y3 = 0. From
the theory of minimal surfaces (see chapter 5.1), we know that a general
surface embedded in Rn is the image of a map R2 → Rn. This way, any two
coordinates of Rn can serve as the parameters. Following the same logic,
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the most natural way to choose a parametrisation in our case seems to be
by expressing y0 and r in terms of y1 and y2. Hence, we have

yµ = (y0(y1, y2), y1, y2, 0, r(y1, y2)) (7.38)

In addition, using the rescaling invariance of AdS, we put y1, y2 ∈ (−1, 1).
After these important steps, we can apply all the machinery we have learned
in the previous parts. First, we construct the Nambu-Goto action for (7.38)
embedded in

ds2 = R2

[
−dy2

0 + dy2
1 + dy2

2 + dr2

r2

]
(7.39)

The determinant det(Gµν∂αyµ∂βyν) is then

det(. . .) =
1
r2
det

(
−(∂1y0)2 + (∂1r)2 + 1 −∂1y0∂2y0 + ∂1r∂2r
−∂2y0∂1y0 + ∂2r∂1r −(∂2y0)2 + (∂2r)2 + 1

)
where the derivatives ∂α are naturally with respect to y1 and y2. The emerg-
ing Nambu-Goto action stays

S =
R2

2π

∫
dy1dy2

√
1− (∂iy0)2 + (∂ir)2 − (∂1r∂2y0 − ∂2r∂1y0)2

r2
(7.40)

The associated equation of motion is relatively complicated (see appendix
E). Nevertheless, by studying the behaviour of y0 and r at the boundary,
we might come up with an ansatz for the solution. From the figure 7.2 we
can read off the boundary for y0

y0(±1, y2) = ±y2, y0(y1,±1) = ±y1 (7.41)

Simultaneously, on all the light-like intervals r has to vanish

r(±1, y2) = r(y1,±1) = 0 (7.42)

At this point, the ambitious reader might use his geometrical intuition or
other more metaphysical methods to guess the form of r and y0. Here, we
just follow Alday and Maldacena, and check that

y0(y1, y2) = y1y2 , r(y1, y2) =
√

(1− y2
1)(1− y2

2) (7.43)

satisfy not only the boundary conditions (7.41) and (7.42), but also the
equations of motion for (7.40). This beautiful solution is depicted in Fig.
7.7 and Fig. 7.8.
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Figure 7.7: y0(y1, y2)
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Figure 7.8: r(y1, y2)

So far, so good, we have found the minimal surface which ends on four
light-like momenta. The last thing to do is to find its area, exponentiate
it, and compare it with the BDS ansatz for four gluons ...almost. The first
problem that stops us from doing this is the kinematical configuration of the
momenta we used. In figure 7.2 we placed the momenta on the diagonals of
the unit squares. This obviously means that we have made them all equal.
Therefore

s = −(k1 + k3)2 = −(k1 + k2)2 = t (7.44)

On the other hand, a very important part of the BDS ansatz consists of
the finite term of the form ln2 s/t. To avoid this inconvenience we have to
find a similar minimal surface but with s 6= t. Fortunately, A-M solved this
puzzle in a very clever way. Their trick requires switching to the embedding
coordinates.

7.6 The solution with non-trivial kinematics

In order to generate the solution s 6= t, we have to write the solution (7.43)
in global coordinates and perform a boost in the Y4 direction. Why boost?
First of all, the equations of motion from the string actions are boost in-
variant. Hence we are allowed to do it freely. But the main motivation goes
as follows: The kinematics of our scattering is basically determined by the
size of the bottom square in Fig. 7.2. Namely, its diagonals are equal to√
s and

√
t. In the embedding coordinates the square lies in the Y1 − Y2
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plane. Therefore, if we want to change the kinematics, we have to deform
the square into a rhombus. A boost in the perpendicular direction Y4 does
this modification in a very elegant way. Since ds2 = GµνdYµdYν is by de-
fault the invariant distance, after a boost in Y4 the length of intervals in
the Y1 − Y2 plane must change. To see how this idea works in practice, let
us write (7.43) in the embedding coordinates. The surface is an object in
AdS4, so we can set two of the coordinates to zero: Y4 = Y3 = 0. As a
consequence (using (7.36)) we get Y−1 = 1

r . With Y−1 in this form we can
write the following equation

Y0Y−1 =
y0

r

1
r

=
y1y2

r2
= Y1Y2, (7.45)

where in the second equality we plugged in the solution 7.43 for y0. Simul-
taneously, we can rewrite r

r2 = (1− y2
1)(1− y2

2) = Y 2
−1(1− Y 2

−1 + Y 2
1 + Y 2

2 ) = Y 2
1 Y

2
2 . (7.46)

In the last equality we made use of the quadric equation for AdS5 (7.35).
Finally, the solution (7.43) in the embedding coordinates is simply:

Y−1Y0 = Y1Y2, Y4 = Y3 = 0. (7.47)

Before boosting, we will make one more side remark. We note that the single-
cusp toy model, in the embedding coordinates, is equivalent to a four-cusp
solution. Now the reader can easily check that indeed the solution (7.47)
can be generated from (7.37) by the conformal transformations

Y2 → Y4, Y0 →
1√

2(Y0 + Y−1)
, Y−1 →

1√
2

(Y0 − Y−1)

Y1 →
1√
2

(Y1 + Y2), Y4 →
1√
2

(Y1 − Y2). (7.48)

Naively, one might expect that since we found the four-cusp solution in
Poincare coordinates, in the embedding ones it will describe a minimal sur-
face on eight light-like intervals. Unfortunately, this is not the case6.
To perform a boost in Y4 we will take the Y0 direction as playing the role of
”time”. Then, the new coordinates are(

Y ′0
Y ′4

)
=
(

γ vγ
vγ γ

)(
Y0

Y4

)
=
(
γ(Y0 + vY4)
γ(Y4 + vY0)

)
.

6see Goedel theorem.
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In the original reference frame we had Y4 = 0, whereas now, Y ′4 = vY0.
Plugging it into the inverted relation for Y0 gives

Y0 = γ(Y ′0 − v2Y ′0) = γ−1Y ′0 . (7.49)

So that the solution for s 6= t in boosted global coordinates is

Y ′4 − vY ′0 = 0,
1
γ−1

Y ′0Y−1 = Y1Y2. (7.50)

To see how the boosted surface looks from the original frame in the Poincare
coordinates, we just substitute the new solution into

Y ′−1 + Y ′4 =
1
r′

= Y−1 + vY ′0 , (7.51)

which gives

1
r

+ vγ
y0

r
=

1
r′
⇒ r′ =

1
1 + vγy0

r =
1

1 + v√
1−v2 y0

r. (7.52)

Redefining b = vγ (in our scattering b < 1 so v < c√
2
, [1])

b2 =
v2

1− v2
→ v2 =

b2

1 + b2
γ =

1√
1− v2

=
√

1 + b2,

leads to r′ as a function of the old coordinates

r′ =
r

1 + by0
(7.53)

Simultaneously for y′0

Y ′0 =
y′0
r′

= γ
y0

r
(7.54)

hence

y′0 =
γ

1 + vγy0
y0 =

√
1 + b2y0

1 + by0
(7.55)

Both of these are depicted in Fig. 7.9 and Fig. 7.10. Naturally, after
boosting, the parameters y1 and y2 change as well. They are given by

y′i =
yi

1 + by0
(7.56)
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The results for a general boost in Y4 can be presented in a more systematic
way. For this purpose we will introduce special coordinates ui, i = 1, 2:

yi = tanhui. (7.57)

The s = t solution takes the form

r = (coshu1 coshu2)−1, y0 = tanhu1 tanhu2 (7.58)

Similarly the boosted surface (7.53) and (7.55)

r =
a

coshu1 coshu2 + b sinhu1 sinhu2
, y0 =

a
√

1 + b2 sinu1 sinhu2

coshu1 coshu2 + b sinhu1 sinhu2

y1 =
a sinhu1 coshu2

coshu1 coshu2 + b sinhu1 sinhu2
, y2 =

a coshu1 sinhu2

coshu1 coshu2 + b sinhu1 sinhu2

(7.59)

Parameter a is the size of the base square’s side7 in Fig. 7.2, and it sets
the scale of the overall momentum (the bigger the square the higher the
momentum). We would like to see how the contour y0(y1, y2) depends on a
and the boost parameter b at the boundary r = 0. In the new coordinates
the boundary corresponds to u1,2 → ±∞. Therefore we can check the
asymptotic behaviour of (7.59) and projecting y0 into the y1 − y2 plane, we
obtain a generic rhombus. The table 7.1 shows all four asymptotic solutions.

The corresponding rhombus is shown in Fig. 7.11. Lines (1,2,3,4) from
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u1 u2 y1 y2 y0 line
+∞ u2

a
1+b tanhu2

a tanhu2
1+b tanhu2

a
√

1+b2 tanhu2
1+b tanhu2

(1)y1 + by2 = a

−∞ u2
−a

1−b tanhu2

a tanhu2
1−b tanhu2

−a
√

1+b2 tanhu2
1−b tanhu2

(2)y1 + by2 = −a
u1 +∞ a tanhu1

1+b tanhu1

a
1+b tanhu1

a
√

1+b2 tanhu1
1+b tanhu1

(3)by1 + y2 = a

u1 −∞ a tanhu1
1−b tanhu1

−a
1−b tanhu1

−a
√

1+b2 tanhu1
1−b tanhu1

(4)by1 + y2 = −a

Table 7.1: Possible boundary (r=0) behaviour of the boosted solution

H1L

H2L

H3L

H4L s
t

I -a

1-b
,

a

1-b
M

I -a

1+b
,

-a

1+b
M

I a

1-b
,

-a

1-b
M

I a

1+b
,

a

1+b
M

Y1Y1Y1Y1Y1

Y2
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y2

-2

-1
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Figure 7.11: The projection of the boundary solution y0 gives a contour
determined by parameters b and a

the last column of the table are labelled on the plot in the same way. As
we can see, the position of the cusp is a function of a and b. From very
simple geometrical manipulations we can read out the relations between the
physical gluon momenta and the two parameters

− s(2π)2 =
8a2

(1− b)2
, −t(2π)2 =

8s2

(1 + b)2
,

s

t
=

(1 + b)2

(1− b)2
(7.60)

Hence, we have a neat control of the kinematics which can be quickly ad-
justed to an appropriate rhombus shape in Fig. 7.11.
Summarising, starting from the simplest kinematical case, s = t, we ob-
tained a minimal surface in the dual Poincare coordinates. However, this
was not the most useful solution to compare with the BDS ansatz. It turned

7previously we set it to 1
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7.7 Area of the minimal surface

out that, in quite a clever way, we were able to generate the solution with
s 6= t. Now, with our minimal surface in hand, we can proceed towards the
string theory prediction for the gluon scattering at strong coupling.

7.7 Area of the minimal surface

We found the minimal surface for a specific light-like contour and it solves
the equation of motion. If we plug it back to the action and integrate, we get
an expression proportional to the area of our surface. Though this procedure
seems to be straightforward, there are two pieces of news waiting for us, one
bad and one terrible. The bad news is that the integral in the N-G action
looks very complicated 8. Fortunately, we learned from the minimal surfaces
in chapter 5 that it is always possible to parametrise a world-sheet in terms
of the isothermal coordinates. Since we use them, the induced metric on the
surface becomes Euclidean (or Minkowskian) and we can use the Polyakov
action (usually more treatable than N-G). At this point, we have a nice
surprise for the reader. We already know what the isothermal coordinates
for our solutions are. It is easy to check that the induced metric9, when
parametrised by yi = tanhui(i = 1, 2) becomes Euclidean

ds2 =
dy2

1

(1− y2
1)2

+
dy2

2

(1− y2
2)2

. (7.61)

This means that we can compute the area using the Polyakov action

iS = −R
2

2π

∫
du1du2

1
2
∂1r∂1r + ∂2r∂2r + ∂iy

µ∂iy
νηµν

r2
. (7.62)

Despite this nice surprise, we have terrible news as well. Both the N-G action
and the Polyakov action, due to the presence of r2 in the denominators, give
an infinite area10. This means that if we want to get a reasonable result we
must regularise it. In the next section we will see how Alday and Maldacena
solved this problem.

8The reader passionate about ”nasty” integrals can automatically skip this irrelevant
argument.

9On the solution for s = t
10The careful reader remembers that we run into the same problem studying Wilson

loops in AdS/CFT. The A-M computation is nothing but the evaluation of a specific
Wilson loop at strong coupling.
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7.8 Regularisation

In the context of the AdS/CFT correspondence one aspect of regularisation
is very subtle. Using string theory in AdS, we want to solve the correspond-
ing physical problem in the gauge theory. Therefore we would like to have a
consistent regularization scheme on both sides of the duality. As we remem-
ber, in N=4 SYM we use the dimensional regularization in D = 4−2ε. More
precisely, we start with the supersymmetric Yang-Mills theory in eleven di-
mensions (with 16 supercharges) and dimensionally reduce to D = 4 − 2ε
(keeping the number of supercharges fixed) [50]. Introducing the AdS5×S5

geometry from D3 branes, we stressed that at low energies the branes ef-
fectively describe N=4 SYM in 4 dimensions. The general rule is that an
effective action for the integer dimensions corresponds to the supergravity
solutions for Dp brane theories with p = D − 1 (hence D3 branes for D=4
dim). In the string frame, the metric for these configurations of D branes in
D dimensions is (in the near horizon (NH) limit)

ds2 = H−1/2dy2
D +H1/2[dr2 + r2dΩ2

9−D], HNH =
cDλD
r8−D , (7.63)

where cD ≡ 24επ3εΓ(2+ε), λD = g2
DN is the t’ Hooft coupling and g2

D the
Yang-Mills coupling, both in D dimensions, N is the number of colours and
Γ is the Euler Gamma function (see appendix C). Now the idea of Alday and
Maldacena for dimensional regularisation in the dual gravitational theory,
is to compute the minimal surface in the space with the metric (dropping
the S5 part):

ds2 = f1/2
(
dy2
D + dr2

)
=
√
cDλD
rε

(
dy2
D + dr2

r2

)
=
√
cDλD
rε

·(AdS). (7.64)

With this metric we end up with a modified action

S =
√
λDcD
2π

∫
Lε=0

rε
, (7.65)

where L is either the N-G or the Polyakov Lagrangian density evaluated in
AdS5.
Finally, to make ”numerical” connection with the regularisation scheme used
in the BDS proposal, λD is parametrised by the infrared cut-off µ

λD =
λµ2ε

(4πe−γ)
, γ = −Γ′(1). (7.66)

Let us see how this procedure works on the single-cusp toy-model.
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7.8.1 Regularised cusp

The algorithm for finding the surface on a single cusp remains exactly the
same, we just use a different action functional. Plugging (7.4) into the
modified action (7.65) leads to

S =
√
cDλD
2π

∫
dσ

∫
dτ
e−ετ

ωε

√
1− (ω(τ) + ω′(τ))2

ω2(τ)
. (7.67)

Then, we just have to solve the corresponding equations of motion with an
ansatz ω = const:

∂τ

(
−e−ετ ω2

ω3+ε
√

1− ω2

)
= e−ετ

(
−2− ε+ ω2(1 + ε)
ω3+ε

√
1− ω2

)
. (7.68)

Taking the time derivative of the left hand side gives

0 = e−ετ
(

−εω2

ω3+ε
√

1− ω2
+
−2− ε+ ω2(1 + ε)
ω3+ε

√
1− ω2

)
= e−ετ

ω2 − (2 + ε)
ω3+ε

√
1− ω2

.

(7.69)
Hence the regularised solution for ω is

ω =
√

2
√

1 +
ε

2
. (7.70)

This naturally corresponds to r

r =
√

2 + ε
√
y2

0 − y2
1 =
√

2 + ε
√
y+y−. (7.71)

Computing the area integral simplifies when we use light-cone coordinates.
That is why we substituted y± = y0 ± y1. Inserting into the action (7.67)
and changing the integration variables

dy+ ∧ dy− = 2dy0 ∧ dy1 = 2e2τ (cosh2 σ − sinh2 σ)dτ ∧ dσ (7.72)

reduces our computation to

S =
√
cDλD
2π

2
∫
dy+dy−

√
1− ω2(τ)

(eτω(τ))2+ε
=
√
cDλD

√
1 + ε

2π(1 + ε
2)1+ ε

2

2
∫

idy+dy−

(2y+y−)1+ ε
2

(7.73)
We should notice the factor “i” in the integral above. Because of it, the
action is imaginary and the amplitude11 will be exponentially suppressed.
Finally, the dimensionally regularised area of the cusp is

− iS =
4Aε
ε2

1
(2y+y−)ε

(7.74)

11Eventual amplitude on the cusp.

79



The Alday-Maldacena computation

where

Aε =
√
cDλD

√
1 + ε

8π(1 + ε
2)1+ ε

2

. (7.75)

With some confidence we can pursue regularising the surface for four gluons.

7.8.2 Regularised four-cusps surface

The regular surface we are looking for is a solution of the equation of motion
for a general ε (E.5), (E.6). One could naively expect that such a solution
would be just a factor-function of ε multiplying boosted solutions (7.59).
However, this does not seems to be the case12. Therefore, it is very difficult
to solve the equation directly or even come up with some ansatz for r or
yµ. Fortunately, there is a way to evaluate S with the accuracy we need.
Namely, we are interested in all terms with divergences of order 1

ε2
, 1
ε , finite

terms and finally the constant ones. It turns out that for this purpose one
can consider the contribution from the surface close to the cusps [1]. Hence,
we can assume that these near-cusp solutions are regularised like a single
cusp

rε ∼
√

1 +
ε

2
rε=0, yµε ∼ y

µ
ε=0 (7.76)

Where rε=0 and yµε are the boosted solutions (7.59). Then, inserting them
into (7.67) and expanding in ε gives

−iS =
√
λDcD
2πaε

∫ ∞
−∞

du1du2(coshu1 coshu2+b sinhu1 sinhu2)ε(1+εI1+ε2I2+. . .)

(7.77)
where the terms to integrate are

I1 =
(b2 − 1)(cosh 2u1 + cosh 2u2)− 2(1 + b2)

8(coshu1 coshu2 + b sinhu1 sinhu2)2

I2 =
1 + b2 − (1 + b2) cosh 2u1 cosh 2u2 − 2b sinh 2u1 sinh 2u2

16(coshu1 coshu2 + b sinhu1 sinhu2)2

(7.78)

After integrating (see App.C) we get the regularised action which should be
expanded in ε up to finite terms

iS = −
√
λDcD
2πaε

(
πΓ
[−ε

2

]2
Γ
[

1−ε
2

]2 2F1

(
1
2
,− ε

2
,
1− ε

2
; b2
)

+ 1

)
(7.79)

12A proof of this statement has not been achieved but many checks point to such a
scenario.
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7.8.3 Cut-off

An alternative method of regularisation is simply introducing a radial cut-
off r = rC . This basically means that we have to evaluate the part of our
minimal area enclosed by

rC =
a

coshu1 coshu2 + b sinhu1 sinhu2
(7.80)

Though this method seems to be more brutal and straightforward than the
aforementioned dimensional regularisation, they are equivalent [1]. After
this long tour through the A-M computation we are ready to see the final
answer.

7.9 The final result

Putting all the ingredients together and expanding in ε, we finish with the
following string theory prediction for the 4 gluon scattering amplitude at
strong coupling

A4 = exp

[
i(2Sdiv(s) + 2Sdiv(t)) +

√
λ

8π

(
ln
s

t

)2
+ C

]
(7.81)

where the divergent pieces contains of sum of a function evaluated at s and
t

Sdiv(t) = − 1
ε2

1
2π

√
λµ2ε

(t)ε
− 1
ε

1
4π

(1− ln 2)

√
λµ2ε

(t)ε
(7.82)

and the constant term is

C = −
√
λ

4π
(1− 2 ln 2 + (ln 2)2 +

π2

3
) (7.83)

Comparing these results to the BDS, we clearly see that the finite piece
matches perfectly. Moreover, to match the IR divergences, according to
A-M the cusp anomalous dimension and the collinear dimension at strong
coupling should satisfy (

λ
d

dλ

)2

f−2(λ) = f(λ)

λ
d

dλ
g−1(λ) = g(λ) (7.84)
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and at strong coupling should be equal to

f(λ) =

√
λ

4π
, g =

√
λ

2π
(1− ln 2) (7.85)

Remarkably, the strong coupling result for f(λ) is precisely equal to the one
obtained by Kruczenski [38]. The constant term will not play an important
role, as we will see later.
Summarising, Alday and Maldacena developed the method which allows for
computing the gluon scattering amplitudes in planar N=4 SYM at strong
coupling. The main part of the computation is mapped by T-duality into
finding the minimal surface on a specific light-like contour. After finding the
analytical formula for the surface, the action in AdS is divergent and has
to be regularised. The authors explained how to gravitationally mimic the
dimensional regularisation in D = 4 − 2ε from the gauge theory. Perform-
ing the regularisation the string theory prediction for four gluons perfectly
matches the BDS ansatz.
After such a success one would naturally want to perform more tests of this
interesting string theory method. Before any further steps, we will first focus
on a very surprising result related to the four cusps, light-like contour.
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8
The Wilson loop at weak coupling

In this chapter we will follow a simple and very interesting computation
which emerged after the proposal of Alday and Maldacena. As we saw in
the previous chapter, at strong coupling, the computation of the four-gluon
amplitude is dual to the Wilson loop along the light-like contour. Two
groups: Brandhuber, Heslop, Travaglini, [42] and Drummond, Korchemsky,
Sokatchev [22] decided to check whether this duality is still valid in the
weak regime of the coupling. Their idea was to take the same contour
parametrised by gluon momenta, and compute perturbatively a Wilson loop
in N=4 SYM along it. In other words, evaluate the propagators between
the light-like segments in four dimensions (see Fig. 8.1). Let us analyse all
the one loop diagrams that contribute to the 4-segments Wilson loop, and
see whether the duality holds at weak coupling as well.

8.1 Light-like Wilson loop at one-loop

Naturally we already have all the necessary tools to smoothly compute the
Wilson loop in N=4 SYM. It was introduced in chapter 4, and has the
following form (in the dual coordinates yµ)

WC =
1
N
TrPexp

(
ig

∮
C
ds
(
ẏµAµ − iΦiθ

i|ẏ|
))

, (8.1)
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Figure 8.1: Wilson loop at weak coupling along the light-like contour at the
boundary of AdS5. Yellow dashed lines denote three examples of the gluon
propagator.

where the contour C is parametrised by the gluon momenta

C =
4⋃
i=1

li, li ≡ {yµ(τi) = yµi − τik
µ
i τi ∈ (0, 1)} . (8.2)

With this form of C, the derivative of yµ(τi) is equal to the momentum of
the external gluon kµi to which the end-point of the propagator is attached.
Since the propagator for the six scalars is proportional to the absolute value

of the parametrisation |ẏ(τi)| =
√
k2
i = 0, the expectation value of the

Wilson loop simplifies to

〈WC〉 = 1 +
(igYM )2CF

2

∫ 1

0
dτi

∫ τi

0
dτjk

µ
i k

ν
jGµν [y(τi)− y(τj)], (8.3)

where Gµν is the dimensionally regularised, in D = 4 − 2εuv, gluon propa-
gator (4.7).
To simplify the figures representing each diagram, we project the contour
C onto a two dimensional plane. There are ten possible, path ordered, di-
agrams contributing to (8.3). Furthermore, they can be divided into three
families. The first one consists of the graphs with both ends of the propaga-
tor attached to the same light-like interval (Fig. 8.2). The second contains
the diagrams whith the propagator between two neighboring edges which
meet at a cusp (Fig.8.3). Finally, to the third family contributes two di-
agrams with propagator end points on the opposite segments (Fig. 8.4).
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8.1 Light-like Wilson loop at one-loop

Figure 8.2: The diagrams proportional to k2
i .

Analytically, all ten terms can be written in a compact form (we take the
logarithm to avoid the unit element in the expansion)

ln 〈W [C4]〉 =
(igYM )2CF

4π2

∑
1≤i≤j≤4

Iij +O(g4) (8.4)

where Iij is the integral over the gluon propagator which begins at the i-th
segment and ends at the j-th segment (see Figures: 8.4, 8.3, 8.2). If we
express the propagator (4.7) in terms of the parametrisation (8.2) , Iij reads

Iij = −
∫ 1

0
dτi

∫ 1

0
dτj

ki · kjΓ(1− εuv)(πµ̃2)εuv

[−(yi − yj − τiki + τjkj)2 + i0]1−εuv
(8.5)

Let us now analyse each of the three families separately. The easiest, de-
picted in figure 8.2, consists of I11, I22, I33, and I44 proportional to k2

1, k2
2,

k2
3 and k2

4 respectively. Therefore none of these diagrams contribute.
As a representative of the second group (Fig. 8.3), we can evaluate I12. The
integral is simply

I12 = −Γ(1−εuv)(πµ̃2)εuv
∫ 1

0
dτ1

∫ 1

0
dτ2

k1 · k2

[−(y1 − y2 − τ1k1 + τ2k2)2]1−εuv
= (∗)

(8.6)
After substituting y1 − y2 = k2 in the denominator we obtain

(∗) = −Γ(1− εuv)(πµ̃2)εuv
∫ 1

0
dτ1

∫ 1

0
dτ2

k1 · k2

[−2(k1 · k2)(1− τ1)τ2]1−εuv
(8.7)

To evaluate this integral it is convenient to re-define the parameter τ̃1 = 1−τ1

and use the Mandelstam variable s = 2k1 · k2. Then it becomes

I12 =
Γ(1− εuv)[(−s)πµ̃2]εuv

2

∫ 1

0

dτ̃1dτ2

[τ̃1τ2]1−εuv
(8.8)
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Figure 8.3: The diagrams contributing to the divergent term.

By en elementary integration we get the double pole in εuv∫ 1

0

dτ1dτ2

[τ1τ2]1−εuv
=

1
ε2uv

(8.9)

Hence the value of I12 is

I12 =
Γ(1− εuv)[(−s)πµ̃2]εuv

2ε2uv
(8.10)

Evaluation of I12 immediately gives us the answers for the remaining Iijs in
this group. From the conservation of the momentum, (k1·k2)2 = (k3·k4)2, we
have the equality I12 = I34. Similarly, from the form of (8.5) we notice that
the integrals I23 = I14 are simply generated from I12 by interchange of the
Mandelstam variables s = (p1 +p2)2 ↔ t = (p1 +p4)2. This gives the second
family in Fig. 8.3. At this point we should notice one very important issue.
The integrals Iij should be dimensionless numbers. But, since I12 contains
the product of s and µ̃2, our UV scale is forced to have a dimension of
[µ̃2] = [mass]−2 (instead of [mass]2 which is the usual energy scale). This
is caused by the fact that “dual” parametrisation of the contour C gives
the dimension of momentum to the light-like segments (they are precisely
the momenta), whereas they should have the unit of the distance. On the
other hand, we evaluate the integrals in D = 4 − 2ε dimensions, where the
Yang-Mills coupling “runs” according to (3.1). Fortunately, we can actually
kill two birds with one stone and introduce the new scale

µ2
uv = (µ̃πeγ)−1 (8.11)

The last two integrals, I13 = I24 (Fig.8.4), do not contain the UV diver-
gences, hence they give a finite answer when εuv = 0. This allows us to
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8.1 Light-like Wilson loop at one-loop

Figure 8.4: The diagrams that gives rise to a finite term.

compute them in D = 4 dimensions. Let us take I24

I24 =
∫ 1

0
dτ2dτ4

−k2 · k4

[k2(1− τ2) + k3 + τ4k4]2
. (8.12)

Again shifting τ̃2 = 1− τ2, and manipulating the momenta we obtain

I24 = −1
2

∫ 1

0
dτ2dτ4

s+ t

tτ2 + sτ4 − (s+ t)τ2τ4
= − ln2(s/t) + π2

4
(8.13)

Now we just have to add all the contributing terms together and separate
the Wilson loop WC into the divergent, finite and constant pieces. This
procedure leads us to the finial answer

ln 〈W [C4]〉 =
−λ

8π2ε2uv

[(
µ2
uv

s

)−εuv
+
(
µ2
uv

t

)−εuv]
+

λ

8 · 2π2
ln2(s/t) + 2

λ

4π2
ζ2

(8.14)
where λ = g2

YMN is the ’t Hooft coupling in four dimensions. This result
agrees with the BDS ansatz if we impose two conditions:

• The UV scale for the Wilson loop is equal to the IR scale for the
scattering amplitudes

µ2
uv = µ2

IR

• The value of the UV regulator εuv is equal to the value of the IR
regulator εIR (opposite signs)

ε2IR = −ε2uv
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The Wilson loop at weak coupling

Similarly, the 4-gluon Wilson loop along C, at weak coupling, is dual to the
minimal surface along the same contour at strong coupling. Duality here is
understood as an equivalence between the methods. So that the final answer
from any of the approaches (direct computation at weak coupling, Wilson
loop and minimal surface in AdS) will depend on the functions f(λ) and
g(λ). And in order to evaluate the four-gluon amplitude at strong or weak
coupling λ, we have to insert an appropriate form for both of them (3.2),
(3.4). Figure 8.5 summarises the results for 4 gluons. We should stress that
this relation holds for four gluon amplitudes (we will show that for 5 as
well).

Figure 8.5: Four-gluon amplitude in planar N=4 SYM can be obtained from
direct computation and light-like Wilson loop at weak coupling, and the min-
imal surface in AdS5 at strong λ

In the next chapter we will investigate what fixes the form of the four-
gluon MHV amplitude, the four cusps light-like Wilson loop and finally
the minimal surface found by Alday and Maldacena. We will analyse the
range of this mechanism (number of scattered gluons) and see what happens
beyond it.
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9
Conformal symmetry

This chapter will involve the discussion of 4-gluon amplitudes at weak and
strong coupling. First, we will show that integrals appearing in the direct
computations at weak coupling, after changing the integration variables into
”dual”, exhibit the conformal symmetry. Then we will see that the SO(2, 4)
conformal symmetry of the minimal surfaces in AdS5 leaves the light-like
contour C parametrised by the gluons’ momenta invariant as well. Finally,
we will argue that due to the requirement of regularisation of the Wilson loop
(as we remember the gluons’ propagator is divergent along the loop), the
path integral from the Wilson loop is not SO(2, 4) invariant and anomalous
Ward identities can be derived. Moreover the identities completely fix the
form of 4 and 5 gluon amplitudes.

9.1 Dual conformal symmetry and MHVs

The main difficulty of the Alday-Maldacena computation was to find the
minimal surface on the light-like momenta. As we recall, the surface in
AdS5 was invariant under boosts and scalings so we could use that to de-
duce the analytical form for the surface. Let us pursue a similar analysis
and check whether the conformal transformation leaves the explicit gluon
amplitudes invariant. Below we will follow the discussion from [22] and [13].
The SO(2, 4) group has 15 generators: 6-rotations Mµν (3 rotations and 3
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Conformal symmetry

boosts), 1-dilatation B, 4-translations Pµ and 4-special conformal transfor-
mations Kµ

Mµν = (xµ∂ν − xν∂µ) +mµν

D = x · ∂ + d

Pµ = ∂µ

Kµ = (2xµx · ∂ − x2∂µ) + 2xµd+ 2xνmµν , (9.1)

where d is the conformal weight of the fields upon which the generators act,
whereas mµν denotes the generator of spin rotations. These are basically
the usual Poincare transformations plus two extra operations: scaling

xµ → αxµ, (9.2)

and special conformal transformation which is a sequence of inversion-translation-
inversion. The conformal inversion acts as

xµ → xµ

x2
, dx · dx→ dx · dx

(x2)2 . (9.3)

To check whether gluon amplitudes are invariant under the above operation
we consider the simplest (but sufficient for us) example: the box integral. It
was shown in [21] that the one loop, planar MHV amplitude for four gluons
(see for e.g. (3.6)) is proportional to an integral I(1)

M
(1)
4 = 1− λst

16π2
I(1) +O(λ2), (9.4)

where

I(1) =
∫

dDk

k2(k − p1)2(k − p1 − p2)2(k + p4)2
. (9.5)

The name for I(1) comes naturally from the corresponding Feynmann di-
agram which is displayed in Fig. 9.1. Now we will change the integration
variables into the one that has the property of the dual parametrisation used
by Alday and Maldacena. Namely, the difference between the two neigh-
boring edges is equal to gluon’s momenta. Denoting the difference between
dual coordinates (see Fig. 9.1) as

yij ≡ yi − yj , , (9.6)

the momenta in (9.5) become

p1 = y12, p2 = y23, p3 = y34, p4 = y41, k = y15. (9.7)
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9.1 Dual conformal symmetry and MHVs

Figure 9.1: Box diagram corresponding to I1.

With this substitution the box integral becomes

I(1) =
∫

dDy5

y2
12y

2
25y

2
35y

2
45

. (9.8)

Now, the conformal properties are clearly exposed. Translations, boosts and
scalings leave it invariant because of the dependence on yi − yj only, and
equal powers of y’s in the numerator and the denominator. The inversion
transformation acts upon the inverse square of yij and the measure dDx5 as

1
y2
ij

→
y2
i y

2
j

y2
ij

, dDy5 →
dDy5(
y2

5

) , (9.9)

hence appropriate terms in the integral cancel and this proves its conformal
invariance in dual variables (hence the dual conformal invariance). Of course
one would have to repeat this procedure for higher loops. This has been done
up to five loops and seems to hold for higher orders as well. One obvious
question arising here is whether this dual conformal symmetry for explicitly
computed amplitudes is not just the conformal symmetry of N=4 SYM.
The paradigm in most of the literature regarding this issue seems to be that
it is not, at least not in a direct way (for further references see [21], [22]).
As a summary of the above result we can give an intuitive reasoning about
the form of MHV for four (and five) gluons. Since the amplitude is invariant
under SO(2, 4), the 15 generators enable one to constrain 15 parameters
in the theory. In a scattering of gluons we need only three numbers for
each of them (kinematical 3-momentum). Therefore the four and five gluon
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Conformal symmetry

amplitude is endowed with 12 and 15 parameters which can be fully fixed
by the group generators.

9.2 Conformal symmetry and Wilson loops

Let us try to perform a similar reasoning to the light-like Wilson loops. The
first thing we can easily see is that the contour C (8.2) preserves the dual
conformal symmetry as well. If we take a segment:

yµi = yµi − τik
µ
i = yµi − τi

(
yµi − y

µ
i+1

)
; (9.10)

and apply the conformal inversion to it, we end up with another light-like
segment parametrised by:

τ ′i =
τi

τi + (1− τi)(y′i)2/(y′i+1)2
. (9.11)

Naturally, parametrisation should not matter in a physical reasoning so a
full contour remains invariant. Despite this promising sign of conformal
invariance, the perturbative, light-like Wilson loop causes a more subtle
problem. As we remember, due to the presence of cusps in the contour
C, propagators are UV divergent and require regularisation (D = 4− 2ε)1.
Therefore, though the WC is SO(2, 4) invariant, the path integral:

〈W [Cn]〉 =
∫
DADχDφeiSεtrP exp

(
i

∮
Cn

dyµAµ(y)
)
, (9.12)

contains an action with the integral in D = 4−2ε dimensions over a covariant
Lagrangian (with the canonical weight (see. [39]) d=4)

Sε =
1

g2µ̃2ε

∫
dD=4−2εxL(x). (9.13)

This way the dimension does not match and when two of the conformal
transformations (dilatations and special conformal transformation) change
the fields in L, we get anomalous terms. This can be summarised in the
corresponding anomalous Ward identities [22] :

D ln〈W [Cn]〉 = − 2iε
g2µ̃2ε

∫
dDx
〈L(x)W [Cn]〉
〈W [Cn]〉

Kµ ln〈W [Cn]〉 =
4iε
g2µ̃2ε

∫
dDxxν

〈L(x)W [Cn]〉
〈W [Cn]〉

. (9.14)

1This is also the case without cusps.
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9.2 Conformal symmetry and Wilson loops

They can be analysed order by order in perturbation theory and the anomaly
terms at one loop can be found in [22].
The anomalous Ward identities can be used further to constraint the form
of Wilson loops. If we split the logarithm into a divergent and a finite part

lnW [Cn] = lnZn + lnFn, (9.15)

the first identity in (9.14) boils down to∑
i

(xi · ∂xi)Fn = 0, (9.16)

and requires Fn to be a dimensionless scalar function of cross ratios

ui ≡
(yi − yj)2

(yk − yl)2
. (9.17)

For example in the case of four gluons there is only one independent cross
ratio and the finite part is:

F4 ∼ ln2

(
y2

13

y2
24

)
= ln2(s/t), (9.18)

where the second equality comes from the dual parametrisation. Incorpo-
rating this requirement to a full Wilson loop we obtain the dilatation Ward
identity

D ln〈Wn〉 = −1
2

∑
l≥1

(
λ

8π2

)l n∑
i=1

(−y2
i−1,i+1µ

2)lε
(
f(λ)(l)

lε
+ g(l)(λ)

)
.

(9.19)
The special conformal identity requires a bit more effort but after some
approximations (see [22]) becomes

n∑
i=1

(
2yνi yi · ∂i − y2

i ∂
ν
i

)
lnFn =

1
2

Γcusp(a)
n∑
i=1

ln
y2
i,i+2

y2
i−1,i+1

yνi,i+1. (9.20)

The two identities, (9.20) and (9.19), are also very special for 4 and 5 gluons.
In these cases they have a unique solution (up to an additive constant) and
fix the form of finite pieces in the amplitudes:

lnF4 =
f(λ)

4
ln2

(
y2

13

y2
24

)
+ const

lnF5 = −f(λ)
8

5∑
i=1

ln

(
y2
i,i+2

y2
i,i+3

)
ln

(
y2
i+1,i+3

y2
i+2,i+4

)
+ const, (9.21)
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where
y2
i,j := (pi + . . .+ pi+j−1)2. (9.22)

Summarising, though perturbative Wilson loops are not conformally invari-
ant, the corresponding anomalous Ward identities governs the form of Fn.
Combining this result with the one from the previous section we can con-
clude that the dualitites between Wilson loops at weak coupling and MHV
amplitudes were caused by the dual conformal symmetry, which at the level
of 4 and 5 point amplitudes does not leave any freedom for the structure of
gluon amplitudes. This basically means that if there exist any non-trivial
dualitites between the aforementioned objects, we should be able to spot
them starting from a six gluon amplitude. We will see in the next chapter
that not only can we spot potential dualities but we can also obtain some
interesting conclusions about the BDS ansatz.
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10
6-gluon amplitude

In this last chapter we will briefly summarise results for six gluon amplitudes.
We will start by presenting an argument of Alday and Maldacena about
potential problems of BDS at large gluon number. This will be supported
by recent computations at weak coupling for six gluons. On top of that,
since the dual conformal symmetry does not fix the amplitudes completely,
we will obtain a clearer picture of the relations between Wilson loops and
MHV amplitudes.

10.1 BDS failure

In the second article about gluon scattering amplitudes [2], Alday and Mal-
dacena noticed that, at strong coupling, the BDS ansatz should fail for a
large number of gluons. Their argument goes as follows: in the case of four
gluons the minimal surface ends on four light-like segments. If we increase
the number of particles (very large), a contour will approximate a rectangle
(Crec) with sides T and L (see Fig. 10.1)1. Luckily, a minimal surface in
AdS5 for such a contour was found in the original paper of Maldacena [23]
where he postulated the interpretation for Wilson loops at strong coupling.

1At weak coupling a Wilson loop along this contour is considered in appendix D.
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6-gluon amplitude

Figure 10.1: Light-like contour for a large number of gluons.

Its form is

ln〈W [Crec]〉 =

√
λ4π2

Γ(1/4)4

T

L
, (10.1)

whereas BDS with for large n and strong coupling predicts

ln〈WBDS
rec 〉 =

√
λ

4
T

L
, (10.2)

hence according to A-M the BDS ansatz needed to be revised for at least a
large number of gluons. This point about BDS failure appeared when the
exact computations of six gluon amplitudes were not known. At the same
time, motivated by duality between Wilson loops and MHV amplitudes for
4 gluons, Korchemsky and his collaborators postulated that this equality
holds at weak coupling for any number of gluons. This gave even more
motivation to evaluate the 6-cusp loop, MMHV

6 and the minimal surface for
six segments. The first two tasks where accomplished perturbatively up to
two loops and we will discuss these results in the next section.

10.2 6 MHV = 6 Wilson loop

It took some time and a lot of effort to compute the six-point amplitude
explicitly. Nevertheless, the 6-point MHV amplitude and a corresponding
Wilson loop were obtained almost at the same time. This allowed to be com-
pared immediately and check what kind of new information they carry. To
appreciate these results let us go through this systematically. We saw that
anomalous Ward identities govern a form of Wilson loops at weak coupling.
Moreover, the finite part of MHV scattering amplitudes also satisfies the
identities [22]. These two facts were used to constrain a finite form for six
gluons in both approaches (Wilson loops and MHVs). From the dilatation
Ward identity we know that 6-point functions have to depend on so-called
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10.2 6 MHV = 6 Wilson loop

invariant cross ratios. They are defined as invariant (under SO(2, 4)) com-
binations of yµi . For six gluons (or six cusps) there are three of them:

u1 =
y2

13y
2
46

y2
14y

2
36

u2 =
y2

24y
2
51

y2
25y

2
41

u3 =
y2

35y
2
62

y2
36y

2
52

(10.3)

The approach of two teams which were trying to compute a Wilson loop
and MHV was to achieve the following structures:

F
(MHV )
6 = F

(BDS)
6 +R(MHV )(u1, u2, u3), (10.4)

for a six gluon MHV, and

F
(Wil)
6 = F

(BDS)
6 +R

(Wil)
6 (u1, u2, u3), (10.5)

for a six-cusp Wilson loop. Functions R denote ”finite remainders”, pieces
that differ from BDS and do not vanish when ε→ 0. If the BDS ansatz was
right (for 6 gluons), both remainders should vanish.
The ”MHV team” [52] computed an even contribution2 to the two-loop pla-
nar MHV amplitude using unitarity methods for dual conformal integrals
[3]. Here, we are not able to present their computation in detail but we can
mention that there were 26 contributing box integrals which at the end had
to be evaluated numerically with some assumptions for gluon momenta. In
table 10.1 we present their numerical results for the remainder function eval-
uated at two loops for five configurations of momenta (so-called kinematical
points, see appendix F). As we see the function is nonvanishing and BDS
indeed fails already at six gluons. As we can expect, the 6-cusp Wilson loop
did not bring good news for BDS neither. The group of Korchemsky [14]
evaluated a two-loop contribution to

ln〈W [C6]〉 =
g2

4π2
CFω

(1) +
(
g2

4π2

)2

CFNω
(2) +O(g2) (10.6)

2The six-point amplitude consists of two kinds of terms. The first group contains odd
powers of the Levi-Civita tensor contracted with the external momenta. They flip sign
under the parity transformation which reverses helicities of gluons. These terms are of
order ε and do not contribute to R(MHV ). The remaining pieces are classified as even.
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6-gluon amplitude

kinematic point (u1, u2, u3) R
(2)
6

K(0) (1/4,1/4,1/4) 1.0937±0.0057
K(1) (1/4,1/4,1/4) 1.076±0.022
K(2) (0.547253,0.203822,0.881270) -1.659±0.014
K(3) (28/17,16/5,112/85) -3.6508±0.0032
K(4) (1/9,1/9,1/9) 5.21±0.10
K(5) (4/81,4/81,4/81) 11.09±0.50

Table 10.1: The remainder function for 6 gluon MHV amplitude.

One loop part ω1 was already studied in [42] and we saw it in chapter 8.
Unfortunately the two loop contribution ω2 turned out to be much more
difficult. Finally they also evaluated R

(Wil)
6 numerically for the same kine-

matical points. Their results are presented in table 10.2 which compares
them with MHV. We can clearly see not only a breakdown of BDS but also
serious evidence that their conjecture about the duality between Wilson
loops and MHVs at weak coupling might be true.

kinematic point RWil
6 −RWil

6 (K(0)) RMHV
6 −RMHV

6 (K(0))
K(1) ≤ 10−5 -0.018±0.23
K(2) -2.75533 2.753±0.015
K(3) -4.74460 -4.7445±0.0075
K(4) 4.09138 4.12±0.10
K(5) 9.72553 10.00±0.50

Table 10.2: Comparison of the remainder function for 6-point MHV and
6-cusp Wilson loop. At every kinematical point a value of R(K(0)) is sub-
tracted.

10.3 Minimal surface for six gluons

The ideal end of the six gluon story would be to find a minimal surface
attached to light-like segments in Fig. 10.2. Unfortunately this did not
appear to be an easy task. In our research project we tried to construct
a surface with such a boundary using many possible ansatzes and guesses
but none of them have (yet) turned out to be the right one. It is not worth
presenting all of our attempts here, however, if after reading this thesis one
feels inspired enough to try to solve the remaining puzzle, we will give some
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10.3 Minimal surface for six gluons

Figure 10.2: Time-like contour for six gluon amplitude

general hints and show where not to go. First of all there is no proof of the
Plateau problem in AdS5

3. This should not bother us too much since we
have already found one for 4 cusps. On the other hand, the existence of the
minimal surface we are looking for would not change the fact that we need
its explicit and analytical form. Assuming that it exists we would like to be
sure that the surface we will eventually find is unique. Naturally it has to
satisfy the Euler-Lagrange equation for either the Nambu-Goto or Polyakov
action. This is not all. It also has to be smooth everywhere except at the
cusps (”bulk” and interior). As an example, we found a surface (it was also
found in [4]) that satisfies the equation of motion but is not smooth where
it should be. It can be simply constructed by gluing two four-cusp solutions
together (see Fig. 10.3 and Fig. 10.4).

y0

y1

r

Figure 10.3: Minimal surface on
the light-like six contour from
”gluing” two four-cusp solutions.

y0

y1

r

Figure 10.4: Glued solutions for
4 cusps and the six-segment con-
tour.

Though it is smooth in the ”bulk” there is an additional gluing line which
3The existence of the minimal surface for given boundary.
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spoils the solution. Now if we wanted to evaluate its area, it would be simply
a sum of two 4-cusp solutions, whereas we would like to have a function of
the three invariant cross-ratios (to compare with BDS, Wilson loops etc.).
There are many similar interesting examples but we will leave them to the
interested reader for exploring on his/her own.
Summarising, the weak coupling results shed more light on relations between
Wilson loops and MHV amplitudes. It is very likely that there exists a
duality between these two objects (at least in planar theory with a large
number of colours). Simultaneously, the BDS ansatz turned out to be wrong
already for six gluons and we should reveal its construction again.
That was the last part of the review and though there is so much more to do
and to write about, we will just try to conclude and sketch what else might
be done and how.
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11
Conclusions and open questions

We tried to lead the reader through the shortest possible path to one of the
frontiers of research in the AdS/CFT correspondence: computation of gluon
scattering amplitudes at strong coupling. Whether this has been achieved
in a clear and understandable way or not can only be decided by the reader.
Nevertheless, we can conclude and briefly summarise wha we have done and
what still needs to be done.
Staring almost from scratch, we presented necessary background informa-
tion to study gluon scattering amplitudes in planar N=4 SYM from weak
to strong coupling. Most of the results presented in this thesis (especially
those at strong coupling) are not older than one year and they are still in
they evolutionary stage. Therefore it was important to clarify the ideas and
motivations which led to them. We tried to be as explicit as possible but on
the other hand we did not want to make the reader drown in the cumbersome
details. According to us this approach will later allow the reader to easily
embark on research in strong or weak coupling gluon scattering amplitudes.
In addition, some basic and easy to follow computations were presented. We
hope that studying them will give insights into the logic being used in more
advanced calculations in the literature.
To conclude about the physics content of this thesis, we started from the
BDS proposal for colour-ordered, planar MHV amplitudes in the N=4 SYM
theory. Its construction allowed us to write it at strong coupling as well. This
linked gluon scattering amplitudes to string theory through the AdS/CFT
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correspondence. The computation of Alday and Maldacena based on eval-
uation of a Wilson loop at strong coupling, confirmed not only the BDS
ansatz for four gluons but also predictions for strong coupling behaviour
of the anomalous dimensions. Then the Wilson loop along the four-cusp
light-like contour was evaluated at weak coupling, and surprisingly turned
out to be equal to corresponding MHV amplitude. This led to a proposal
for a duality between Wilson loops and MHV amplitudes at weak coupling.
After more precise studies people realised that the dual conformal symmetry
completely fixes forms of 4 and 5 point amplitudes and Wilson loops. The
results for more are urgently needed. In the meantime, Alday and Malda-
cena pointed out that according to their approach of computing minimal
surfaces in AdS, BDS must fail for a large number of gluons. This turned
out to be the case already at n = 6. The results of the two groups working
on 6-cusp Wilson loops and 6-gluon MHVs confirmed failure of the BDS
ansatz. Nevertheless the duality between the two weak coupling approaches
survived.
Finally, there are many open questions which can become interesting paths
of research. We will list them and comment on possible solutions.

11.1 Open questions

• The minimal surface.
The problem of finding an explicit solution for the minimal surface in
AdS for six light-like segments remains unsolved . The only possilbe
way to solve it: just find the solution.

• The BDS ansatz and loop equations.
Since we agreed that BDS is wrong, what is the way to correct it?
There is no too much progress in the literature however; since the
duality between MHVs and Wilson loops seems to be there, the loop
equations might give some interesting relations similar to the iterative
one. We tried to pursue this topic as well but the main difficulty was
related with an application of the Makeenko-Migdal equation into the
light-like Wilson loop. Clarifying these issues will definitely shed more
light on the subject.

• T-duality.
One could repeat the T-duality applied to a string amplitude for su-
perstrings at weak coupling. If there exists the duality between dual
Wilson loops and scattering amplitudes, we should be able to see it
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from string theory as well.

• Strings and MHV.
Finally, the computation of Alday and Maldacena was ”blind” for
gluons’ helicities (so important for MHV). It would be good to have
a strong coupling computation which explicitly contains these struc-
tures.
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Part IV

Appendices
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A
The Anti-de Sitter space

Anti-de Sitter (acronym AdS) space is a solution of the Einstein’s equations
in a vacuum cosmological constant Λ

Rµν =
(

1
2
R+ Λ

)
gµν (A.1)

for maximally symmetric space-time (highest possible number of Killing vec-
tors) and attractive (negative) cosmological constant, the solution describes
a hyperbolic space. This can be analysed in the context of homogeneous
spaces defined by quadrics in a vector space. Well known example is (n)-
sphere embedded in Euclidean Rn+1:

X2
0 + · · ·+X2

n = R2 (A.2)

positive curvature of a sphere is proportional to the inverse of R2. In gen-
eral quadric equations, R sets the natural length scale in corresponding
spaces. In this way, we can construct n-dimensional Anti-de Sitter space,
as quadric with a negative curvature

X2
0 +X2

n+1 −
n∑
i=1

X2
i = −R2 (A.3)

Embedded in flat manifold with metric:

ds2 = −dX2
0 − dX2

n+1 +
n∑
i=1

X2
i (A.4)
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The Anti-de Sitter space

By the construction, AdS is homogeneous and isotropic space with SO(2, n−
1) isometry (Poincare transformations in embedding space).

A.1 Coordinates

As any geometrical object AdS can be studied in any convenient coordinates.
However, few of them are of special interest for physical purposes.

A.1.1 Global coordinates

We can easily check that quadric condition (A.3) is satisfied when we sub-
stitute

X0 = R coshρ cosτ Xn+1 = R coshρ sinτ Xi = R sinhρ Ωi (A.5)

where Ωi ale the standard coordinates on Sn−1 and
∑n

i=1 Ω2
i = 1.

Coordinates ρ, τ and Ωi give rise to induced metric on AdS

ds2 = R2
(
− cosh2ρ dτ2 + dρ2 + sinh2ρ dΩ2

n−1

)
(A.6)

For the limit ρ→ 0 we have approximately

ds2 = R2(−dτ2 + dρ2 + ρ2dΩn−1
2) (A.7)

what makes transparent that S1 × Rn−1 is the topology of AdS. One more

Figure A.1: AdSn has the topology of S1 × Rn−1. Picture shows AdS1+1

embedded in 2+1 dimensions

important point is, that (A.6) contain closed time-like curves around the
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A.1 Coordinates

”waist”. Naturally, we want to avoid this fact in physics and in most of
the literature, take the universal cover of anti-de Sitter space to cure this
problem. In the language of the parameters this means ranging τ from −∞
to +∞.

A.1.2 Poincare coordinates

Poincare coordinates z, −→x , t visualize AdS as a half plane. They ale related
to global via:

X0 =
1
2z

(
z2 +R2 +−→x 2 − t2

)
Xi =

Rxi

z

Xn = − 1
2z

(
z2 −R2 +−→x 2 − t2

)
Xn+1 =

Rt

z
(A.8)

−→x contains n − 1 components and z ∈ 〈0,∞) hence the metric induced on
half plane has a boundary at z = 0 :

ds2 =
R2

z2

(
dz2 − dt2 + d−→x 2

)
(A.9)

We can clearly see not only the Poincare symmetry (x
′µ → λµνxν + aµ) but

also SO(1,1) scale invariance under (z, t,−→x ) → (λz, λt, λ−→x ). Therefore,
many papers about physics in AdS refers to modified Poincare coordinates
where z → R2

r which brings the metric to the form:

ds2 =
R2dr2

r2
+
R2

r2

(
−dt2 + d−→x 2

)
(A.10)

The second line emerged after rescaling the parameters by R.
After T-duality in the text we did use the relation of dual Poincare coordi-
nates to the dual embedding ones

Y i =
yi

r
, Y−1 + Y4 =

1
r
, Y−1 − Y4 =

r2 − y2
0 + yiy

i

r
(A.11)
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B
Explicit BDS ansatz for 6 and 8 gluons

In order to see how the BDS formula works, we can write it explicitly for 6
and 8 gluon amplitudes. If will be important to notice, what are the variables
in this expansion. The area of the proper (unique) minimal surface also has
be the function of all of them.

B.1 BDS for 6 gluons

FBDS6 =
1
2

Γcusp(a)
6∑
i=1

[
− ln

(
x2
i,i+2

x2
i,i+3

)
ln

(
x2
i+1,i+3

x2
i,i+3

)
+

+
1
4

ln2

(
x2
i,i+3

x2
i+1,i+4

)
− 3

2
Li2

(
1−

x2
i,i+2x

2
i−1,i+3

x2
i,i+3x

2
i−1,i+2

)]
(B.1)

Explicitly:

FBDS6 =
1
2

Γcusp(a) (1 + 2 + 3) (B.2)

111



Explicit BDS ansatz for 6 and 8 gluons

1 =
6∑
i=1

[
− ln

(
x2
i,i+2

x2
i,i+3

)
ln

(
x2
i+1,i+3

x2
i,i+3

)]
= −

[
ln

(
x2

1,3

x2
1,4

)
ln

(
x2

2,4

x2
1,4

)

+ ln

(
x2

2,4

x2
2,5

)
ln

(
x2

3,5

x2
2,5

)
+ ln

(
x2

3,4

x2
3,6

)
ln

(
x2

4,6

x2
3,6

)
+ ln

(
x2

4,6

x2
4,1

)
ln

(
x2

5,1

x2
4,1

)

+ ln

(
x2

5,1

x2
5,2

)
ln

(
x2

6,2

x2
5,2

)
+ ln

(
x2

6,2

x2
6,3

)
ln

(
x2

1,3

x2
6,3

)]
(B.3)

2 =
6∑
i=1

1
4

ln2

(
x2
i,i+3

x2
i+1,i+4

)
=

1
4

[
ln2

(
x2

1,4

x2
2,5

)
+ ln2

(
x2

2,5

x2
2,6

)

+ ln2

(
x2

3,6

x2
4,1

)
+ ln2

(
x2

4,1

x2
5,3

)
+ ln2

(
x2

5,2

x2
6,3

)
+ ln2

(
x2

6,3

x2
1,4

)]
(B.4)

3 = −3
2

6∑
i=1

Li2

(
1−

x2
i,i+2x

2
i−1,i+3

x2
i,i+3x

2
i−1,i+2

)
= −3

2

[
Li2

(
1−

x2
1,3x

2
6,4

x2
1,4x

2
6,3

)

+Li2

(
1−

x2
2,4x

2
1,5

x2
2,5x

2
1,4

)
+ Li2

(
1−

x2
3,5x

2
2,6

x2
3,6x

2
2,5

)
+ Li2

(
1−

x2
4,6x

2
3,1

x2
4,1x

2
3,6

)

+Li2

(
1−

x2
5,1x

2
4,2

x2
5,2x

2
4,1

)
+ Li2

(
1−

x2
6,2x

2
5,3

x2
6,3x

2
5,2

)]
(B.5)

B.2 BDS for 8 gluons

F8 =
1
2

8∑
i=1

g8,i = (1 + 2 + 3) (B.6)

g8,i ≡ −
3∑
r=2

ln

(
x2
i,i+r

x2
i,i+r+1

)
ln

(
x2
i+1,i+r+1

x2
i,i+r+1

)
+D8,i + L8,i +

3
2
ζ2 (B.7)

1 = −
8∑
i=1

[
ln

(
x2
i,i+2

x2
i,i+3

)
ln

(
x2
i+1,i+3

x2
i,i+3

)
+ ln

(
x2
i,i+3

x2
i,i+4

)
ln

(
x2
i+1,i+4

x2
i,i+4

)]
(B.8)

2 =
8∑
i=1

1
4

ln2

(
x2
i,i+3

x2
i+1,i+4

)
(B.9)
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B.2 BDS for 8 gluons

3 = −3
2

8∑
i=1

Li2

(
1−

x2
i,i+2x

2
i−1,i+3

x2
i,i+3x

2
i−1,i+2

)
(B.10)
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C
Polylog’s and all that..

Euler’s identity

Li2(z) = −Li2(1− z)− log(z) log(1− z) +
π2

6
(C.1)

Handy relations

Li2(0) = 0, Li2(1) = ζ2 =
π2

6
, Li2(z) =

∞∑
k=1

zk

k2
(C.2)

Li2(1 + z) + Li2(1 + x−1) = −1
2

ln2(−z) (C.3)

Euler’s Γ function
Γ(n+ 1) =

∫ ∞
0

tne−tdt (C.4)

it satisfies Γ(n+ 1) = nΓ(n) = n! and Γ(1/2) =
√
π.

Euler’s β function

β(µ, ν) =
∫ 1

0
xµ−1(1− x)ν−1dx =

Γ(µ)Γ(ν)
Γ(µ+ ν)

(C.5)
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Polylog’s and all that..

Euler’s hypergeometric function can be represented as an integral for <c >
<b > 0

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− tz)−adt (C.6)

in the paper [1] it was expanded for small ε < 0 as

2F1(
1
2
,− ε

2
;
1− ε

2
; b2) = 1+

1
2

ln(1−b2)ε+
1
2

ln(1−b) ln(1+b)ε2+o(ε3) (C.7)
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D
Wilson loops and interaction potentials

To understand how Wilson loops work we can try to find a simple Coulomb’s
potential between two charges excited along the loop C. Taking a rectangular
C and computing only the depicted propagator1 we can recover for T >> R

Figure D.1: From a rectangular loop we can obtain information about po-
tential between two charges

< W [C] >= e−V (R)T ln < W [C] >= −V (R)T (D.1)
1other gives the divergent terms
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Wilson loops and interaction potentials

where V (R) is the potential. Taking the standard, free Yang-Mills theory
with a photon propagator

Gµν(x− y) =
1

4π2

δµν
(x− y)2

(D.2)

We use the formula (4.4) with coupling constant e and parametrising upper
bar by z(s) = (R, Ts) and the lower z(t) = (0, T s), where 0 ≥ s, t ≤ 1.
What remains to compute, is the integral

e2

2

∮
C
dxµ

∮
C
dyνGµν(x− y)

=
e2

4π2

∫ 1

0
dsdt

ż(s) · ż(t)
[z(s)− z(t)]2

=
e2

4π2

∫ 1

0
dsdt

1
(s− t)2 + (RT )2

(D.3)

substitution u = 1
2(s+ t) and v = s+ t which gives dsdt = dudv and reduce

it to
2e2

4π2

∫ 1

0
du

∫ 1

0

1
v2 + (RT )2

=
2e2

4π2

T

R
arctan(

T

R
) (D.4)

The assumption T >> R means we need a value of x arctan(x) for very large
x. This can be easily checked that the correct form is x arctan(x) ≈ xπ2 ,
hence we obtained the Coulomb’s potential between two charges

V (R)T =
e2

4πR
T (D.5)

1.0 1.5 2.0 2.5 3.0 3.5 4.0
R

1.0

1.5

2.0

2.5

3.0

3.5

V HRL

Figure D.2: Coulomb’s potential from rectangular Wilson loop
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E
Equations of motion in AdS

The equations of motion for the Nambu-Goto action

∂1

(
∂1r(1− (∂2y0)2) + ∂2r∂1y0∂2y0

r2
√

()

)

+∂2

(
∂2r(1− (∂1y0)2) + ∂1r∂1y0∂2y0

r2
√

()

)
= −

2
√

()
r3

(E.1)

∂1

(
−∂1y0(1 + (∂2r)2) + ∂2r∂1r∂2y0

r2
√

()

)

+∂2

(
−∂2y0(1 + (∂1r)2) + ∂2r∂1r∂1y0

r2
√

()

)
= 0 (E.2)

where√
() ≡

√
1 + (∂1r)2 + (∂2r)2 − (∂1y0)2 − (∂1y0)2 − (∂1r∂2y0 − ∂2r∂1y0)2

(E.3)

For the dimensional regularisation, the equations has to be solved for the
action

S ∼
∫
Lε=0

rε
(E.4)
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Equations of motion in AdS

this modify the previous case to

∂1

(
∂1r(1− (∂2y0)2) + ∂2r∂1y0∂2y0

r2+ε
√

()

)

+∂2

(
∂2r(1− (∂1y0)2) + ∂1r∂1y0∂2y0

r2+ε
√

()

)
= −

(2 + ε)
√

()
r3+ε

(E.5)

∂1

(
−∂1y0(1 + (∂2r)2) + ∂2r∂1r∂2y0

r2+ε
√

()

)

+∂2

(
−∂2y0(1 + (∂1r)2) + ∂2r∂1r∂1y0

r2+ε
√

()

)
= 0 (E.6)
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F
Kinematical points

In chapter 10 we used special configurations of momenta for which the re-
minder function in [52] was evaluated. They are called kinematical points
and are defined below.
For six momenta we have nine dual distances between vertices on the hexag-
onal Wilson loop (or nine points in dual parametrisation of box integrals):

K = {y2
13, y

2
14, y

2
15, y

2
24, y

2
25, y

2
35, y

2
26, y

2
36, y

2
46} (F.1)

From the conservation of momenta there are only 8 independent left. Nat-
urally, in four dimensions, there are at most four linearly independent mo-
menta. Therefore, the Gram determinant of any five out of six momenta
vanish

det(ki · kj) = 0, i, j = 1, . . . , 5 (F.2)

These are the constraints for momenta in a scattering process of six particles
(this can be naturally generalised to any number). Now the kinematical
point is a configuration of momenta which is either compatible with Gram
constraint or not. In chapter 10 we showed only six points where four
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Kinematical points

satisfied Gram constraint and two K(4) and K(5) not1. They are:

K(0) : si,i+1 = −1, si,i+1,i+2 = −2

K(3) : si,i+1 = −1, s123 = −1/2, s234 = −5/8, s345 = −17/14

K(4) : si,i+1 = −1, si,i+1,i+2 = −3

K(5) : si,i+1 = −1, si,i+1,i+2 = −9/2, (F.3)

where generalised Mandelstam variables are

si...j = (ki, . . . , kj)2, ij = mod(n). (F.4)

1notation like in the article
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