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Summary

Deformation quantization is a way to quantize a classical mechanical system described by a Poisson
manifolds and characterized by its Poisson structure. In contrast to most methods of quantization,
where a Hilbert space of states with operators acting on it is somehow constructed, deformation
quantization allows for the definition of a non-commutative star product directly on the classical
phase space. This product then allows for the description of quantum behaviour in algebraic
terms.

As an introduction to the subject, the simplest star product is first considered. It is called the
Moyal product and was already known of in the 1940s as it naturally emerged in the Weyl-Wigner
correspondence of phase space distributions. When quantizing a classical theory, there is a certain
freedom of ordering of non-commutative operators. Two such orderings are discussed. Moreover,
the Moyal product is seen to correspond to the star product induced by a symmetric ordering.

After this, some symplectic theory is introduced as a natural framework for classical mechanics.
In particular, Hamilton’s equations of motion are cast in symplectic language. Anticipating a more
general theorem, every symplectic manifold is shown to carry a natural Poisson structure.

The concept of differential graded Lie algebra’s is defined and two examples are considered.
The Formality theorem, due to Maxim Kontsevich, is mathematical results formulated in terms of
these objects. It is interpreted, and leads to a one-one correspondence between formal deformations
of null Poisson structures and equivalence classes of star products. As for its application in physics,
it shows that every classical mechanical system can essentially be quantized uniquely.

Finally, an explicit formula for the construction of a star product is given. It is in terms of a
certain class of graphs, reminiscent of the calculation of transition amplitudes in field theory using
Feynman diagrams. This formula is applied to the constant Poisson structure. The corresponding
star product is found to be the Moyal product.
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1 INTRODUCTION

1 Introduction
In the beginning of the twentieth century, Max Planck theorized that electromagnetic energy
could only be emitted in quantized form. For this, he introduced the action quantum h now
known as Planck’s constant. This deep assumption allowed Planck to explain the ultraviolet
catastrophe, one of the big open problems of that time. A few years later, Albert Einstein used
Planck’s postulate to explain the photo-electric effect. The following twenty years led to the birth
of quantum mechanics through the works of most notably Niels Bohr, Werner Heisenberg and
Erwin Schrödinger. Quantum mechanics gave a remarkably accurate theoretical description of
the spectrum of the hydrogen atom [1].

Since it is at the basis of these three major breakthroughs1, it is clear that Planck’s postulate
was not some sort of trick, but an expression of a more fundamental theory. The question what
quantization actually entails, or how it should be done is therefore important. One could wonder
why quantization is necessary and if there is some sort of deeper principle underlying it. Also,
one could imagine different methods of quantization leading to different theories.

In this thesis, the first two questions will nót be pursued. For the necessity of quantization,
the reader will have to content himself with the very accurate empirical proof supporting the
quantum mechanical explanation of the above three major problems (again, see [1]); as for the
deeper principle, nature apparently is quantized. Instead, one of the methods of quantization is
studied in detail: quantization by deformation.

Quantization

A quantization is a recipe for associating a quantum system to any given classical system in a
consistent and reasonable manner. To make this recipe more clear, recall that quantum mechanics
is best described by self-adjoint operators acting on states in a Hilbert space [2]. However, a
fundamental quality of quantum mechanics that sets it apart from its classical counterpart is the
non-commutativity of certain of these operators. The most obvious example of this statement is
the position operator and momentum operator. Position and momentum cannot be simultaneously
measured, as is confirmed by experiments. This is a very odd thing in comparison to the classical
analogs of position and momentum, which are commutative functions on classical phase space [2].
This behaviour should be captured by any quantization.

However, it appears to be difficult to simply construct a Hilbert space suitable to describe a
given (quantum) system. The usual way to do quantum mechanics (in flat space) is by starting
with a classical system, and quantizing it: promoting smooth functions on the classical system
to operators and imposing the so-called canonical commutation relations (see for instance [3]).
This method is called canonical quantization and it is the one found in text books. Although this
method of quantization perfectly allowes one to do quantum mechanics in the sense that predicted
results agree well with experiments, it does not say anything about the foundational aspects of
quantization.

Now, normally one demands of a quantum theory to become classical when the quantum
constant ~ tends to zero, that is: when the parameters of the studied phenomenon are such that
quantum effects can be ignored. This requirement seems reasonable. It is called the correspondence
principle, and we want a quantization to satisfy this principle. Moreover, it leads to an important
remark: the quantum description of a physical phenomenon contains more information than the
classical one. This means that there are certain effects that only appear at the quantum level and
in the quantum description, nót in the classical theory [3]. An example is the phase transition

1For more information on the history and development of quantum mechanics, see further volumes of the series
[1].
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1 INTRODUCTION

known as Bose-Einstein condensation, which is due to the quantum statistics of bosons; classical
theories are not capable of describing this effect (see §7.6 of [4]).

Since a quantum description of a phenomenon is more accurate than the classical one, there
could be different quantizations satisfying the correspondence principle: different quantum systems
reducing to the same classical system when ~ tends to zero. Hence, there could be different methods
of quantization possible. This means that a choice has to be made, and it has to be motivated.
In the ideal case, however, one method of quantization is clearly superior to others and yields a
unique quantization.

To summarize: quantization is a recipe for associating a quantum system to every classical
system, such that non-commutative behaviour is captured, the canonical commutation relations
hold2 and the correspondence principle is satisfied.

Methods of quantization

There is a long history of studying methods of quantization, the roots of which can be traced back
to the work of Dirac and Weyl in the early twenties of the past century. Dirac noted a resemblance
between the classical Poisson bracket and the quantum commutator. He proposed to introduce
a product on classical phase space that captures this resemblance; this can be considered the
foundation of so-called star products that form the cornerstone of quantization by deformation
[6]. Weyl, on the other hand, was in search of an alternative formulation of quantum mechanics.
He proposed a correspondence between classical phase space distribution functions and quantum
mechanical operators. Also in this context, a star product is seen to emerge [7].

Another notable effort is functorial quantization. In this method, the idea is to construct a
covariant functor that assigns to each classical system (symplectic manifold) a quantum system
(Hilbert space). It turns out, however, that there does not exist a functor that yields a full
quantization as defined above. This is meant in the sense that in almost all imaginable classical
systems, not all classical observables can be given operator equivalents in a physically satisfying
manner. Equivalently: not all principles mentioned in the above definition of quantization can be
consistently incorporated in such a functor. See §4 of [8] for more details.

In the influential paper [9], published in 1978, it was proposed and motivated to look for
a quantization by means of deforming an already present structure. Since quantum mechanics
can be completely described in algebraic terms, in the article it was suggested to combine this
algebraic description with Dirac’s earlier mentioned intuition. This yielded the idea of deforming
the commutative algebra of smooth functions on a classical system (its phase space) into a non-
commutative one, thus effectively introducing a star product. This deformed algebra is then
capable of capturing the odd quantum behaviour of non-commuting operators.

For an overview of the birth and development of this method of quantization, see [10].

Why deformation?

Quantization by deformation, or simply deformation quantization, is the method of quantization
studied in this thesis. That this study is relevant can be seen by the following two arguments:

The first argument is Kontsevich’s proof of his Formality conjecture in 1997 [11]. A corollary
of this conjecture states that every classical system (described by a Poisson manifold) can be
uniquely3 quantized by deformation. Moreover, his method satisfies the correspondence principle

2As an added benefit of the canonical commutation relations, the Stone-von Neumann theorem - a certain
statement about uniqueness - is seen to hold (see [5]).

3Uniquely up to a certain equivalence.
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1 INTRODUCTION

ánd Dirac’s mentioned intuition. In a sense, Kontsevich has shown that deformation is a viable
approach to the problem of quantization: he has shown existence and uniqueness.

A second argument is that the correspondence principle motivates a deformation theoretical
approach. It is something that is also observed in other domains of physics. This rough analogy is
meant in the following sense. When studying physics, one notices that all processes are governed
by a small set of fundamental parameters: the constants of nature. Examples are the speed of
light c, Planck’s constant h and the gravitational constant G. The domain of physics that is used
to solve a particular problem is dependent on the relation between the problem’s parameters and
these constants of nature. In the case of relativistic particles, such as photons, one works in the
domain of Einstein’s theory of relativity. When considering objects that move much slower than
the speed of light, one works in the domain of Newton’s classical mechanics. Letting v denote the
object’s speed, this suggests that the value of the ratio v/c plays an important role. When this
ratio is negligeble, relativity is seen to reduce to classical mechanics. Although Einstein’s theory
is not built on a deformation theoretical footing, it can be considered as a deformation of classical
mechanics in this sense, just as the correspondence principle indicates for quantum mechanics: in
the first case space itself is deformed (it is curved), in the latter an algebraic structure is deformed.

These two arguments motivate the relevance and the study of deformation quantization.

Structure of the text

It is the goal of this thesis to develop the machinery to state Kontsevich’s Formality theorem,
and to give his explicit formula for a star product on an arbitrary Poisson manifold. As for every
mathematical theory, there is a simplest example. In this case, it is the Moyal product: the star
product that emerges from Weyl’s correspondece between classical phase space distributions and
quantum operators. Application of Kontsevich’s formula to again find this example is our final
goal.

In the first section of this thesis, the Moyal product will be discussed. This is done by defining
and studying the Weyl-Wigner correspondence. A star product naturaly emerges, which is later
seen to correspond to the constant Poisson structure. The Weyl-Wigner correspondence links
a commutative to a non-commutative theory. It is therefore a priori not clear that it is well-
defined. For this purpose, the question of ordering of quantum operators is considered. When no
inconsistencies can be found, two arguments - a physical, and a mathematical one - are given to
support the correspondence. It is proven up to equivalence, but a conclusive proof is outside the
scope of this text.

In the second section, the theory of symplectic geometry is developed. Definitions and examples
of symplectic manifolds are given, where the most notable one is the cotangent bundle M = T ∗Q
of an arbitrary smooth manifold Q. When the latter one is interpreted as configuration space
of a system, the first one is its phase space. Then it is shown that symplectic manifolds are a
natural framework to describe classical dynamics. In particular, Hamilton’s equations of motion
are reformulated in a symplectic language. Since Kontsevich’s statement is in terms of Poisson
manifolds, it is finally shown that every symplectic manifolds carries a natural Poisson structure.

In the third section, the definition of a star product on an algebra is given; this defines
deformation quantization. On a general Poisson manifold, it is natural to define the product on
the manifold’s Poisson algebra C∞(M) of smooth functions (M, {·, ·}). For reference and intuition,
the Moyal product should be kept in mind. A group action is then introduced on the set of possible
star products, yielding so-called gauge equivalence classes. It is shown that each equivalence class
contains a star product in which the Poisson bracket {·, ·} plays a prominent role. This is done
using Hochschild cohomology, which is explained in greater detail in the appendix. Then the
notion of differential graded Lie algebra is introduced. It is shown that the Hochschild cocomplex
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1 INTRODUCTION

is a first and important example. Finaly, Kontsevich’s Formality theorem and its corollary relevant
to deformation quantization are stated and explained.

The last section concludes this theis by describing Kontsevich’s explicit formula for the star
product on an open subset of Rd, hence locally on an arbitrary Poisson manifold. It is applied
to the Poisson structure with constant coefficients that corresponds to flat space. The associated
star product is again seen to be the Moyal product.

7



2 THE MOYAL PRODUCT

2 The Moyal product
Although the Moyal product was already known of in the 1940s, it was not defined to be a
star product in some sort of deformation theory. It rather emerged in the work of Groenewold
and Moyal as an alternative formulation of Schrödinger’s quantum theory: the so-called phase
space picture, where position and momentum are treated on equal footing; notice the resemblance
with Hamilton’s description of classical mechanics. In this picture, quantum states are described
by phase space distributions. These are functions that are quasiprobability distributions, which
means that locally they need not be positive semi-definite. For more information, see [7], [12],
[13].

Decades later, however, the Moyal product turned out to be the first and most elementary
example of a star product. It is the quantization by deformation of a Poisson manifold with a
constant Poisson structure. This represents the deformation of a classical commutative theory (the
algebra of smooth functions on the Poisson manifold) in the sense that it turns its commutative
product into a non-commutative one. This deformed algebra can then be interpreted and used as
the space of quantum operators, since it is capable of capturing non-commutative behaviour.

To anticipate on what is to come, let us first give the definition of a deformation in the
most general terms of category theory. As its most elementary example of a quantization by
deformation, the Moyal product should turn out to satisfy this definition.

Definition 2.1 (Deformation). Say X is an object in a certain category C. A deformation of X
is a family of objects Xε ∈ Obj(C) depending on a parameter ε such that Xε0 = X for a certain ε0.

In the case of the Moyal product, the objects will be associative unital algebras and the role of
parameter will be fulfilled by ~. 4

The general definition of a deformation quantization will be given in section 4. It is this
setting in which Kontsevich has solved the problem of existence and uniqueness of a deformation
quantization of an arbitrary Poisson manifold.[11] However intricate his solution may be, its
principle rests on deforming a product on an algebra, just as in the Moyal case. Similarities
can therefore be found. It will be useful to keep the Moyal product in mind when considering
the general case. Due to this introductory and relatively simple nature, definitions and basic
properties of the Moyal product will first be discussed.

Preliminaries

In this section only the classical configuration spaceQ = R is considered. Symplectic geometry (see
section 3) tells us that the associated classical phase space is given by the cotangent bundle of Q,
which will be denoted byM = T ∗Q and can be identified with R2 in this case. The (classical) state
of the system is fully determined by the pair (q, p) ∈ M of position and momentum. Observable
quantities like position, angular momentum and the hamiltonian can now be seen as smooth
functions of (q, p). Therefore, observables f are elements of the commutative algebra of smooth
function on phase space C∞(M) = {f : M −→ R | f is smooth}; they are interpreted as phase
space distributions (see [13]).

2.1 Weyl-Wigner correspondence

In this setting, a way to quantize the classical theory was first introduced by German physicist
HermannWeyl [7], and was later calledWeyl quantization in his honour. Actually, it shall be shown
that Weyl’s procedure leads to a complete and alternative formulation of quantum mechanics.

4Actually, this is just a simplification of notation: in physics, the parameter is i~/2.
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2 THE MOYAL PRODUCT

The idea is to associate a quantum operator Ŵ [f ] to every phase space distribution function
f ∈ C∞(M), and to do this by a one-one correspondence. The procedure relies heavily on the
invertible character of the Fourier transform on a certain class of ’nice’ functions.
Definition 2.2. The Weyl-Wigner correspondence consist of the following steps

1. Let a, b ∈ R, define the Fourier transform of f ∈ L2(R, µ) as

f̃(a, b) =
∫∫

dqdp exp [−i(ap+ bq)]f(q, p). (1)

2. Perform a formal substitution p→ p̂, q → q̂.

3. Then define
Ŵ [f ](q̂, p̂) =

∫∫
da

2π
db

2π exp [i(ap̂+ bq̂)]f̃(a, b) , (2)

which is known as the associated Weyl-operator.
The correspondence between the classical phase space distribution function f and the quantum

operator Ŵ [f ] is the before mentioned Weyl-Wigner correspondence. There are a few remarks to
be made about this definition.

1. For mathematical simplicity, the procedure is only defined for distribution functions f ∈
L2(R). Since this space is a Hilbert space, integration theory tells us that the Fourier
transform ánd its inverse are well-defined for square-integrable functions.5 The fact that this
definition is not yet satisfactory is seen by the fact that the harmonic oscillator’s hamiltonian
H(q, p) = c(q2 + p2) is not even included; nevertheless, the procedure can be extended to all
physical relevant functions[13].

2. It is know that the Fourier transform is a linear automorphism on the so-called Schwartz
space, defined as S(R) :=

{
f : R→ C

∣∣ f is smooth, supx |xkf (l)(x)| <∞∀ k, l ∈ N, ∀x ∈ R
}

[14].

3. However, although there is no problem with Fourier transforms on L2(R2), it is a priori not
clear that the total procedure of assigning an operator to a phase space distribution function
is well-defined. It links the commutative theory of phase space distribution functions with
the non-commutative one of quantum operators. In the latter case, different choices of
ordering yields different expressions due to non-commutativity. The point of ordering will
be adressed in section 1.4.

It shall presently be made plausible that this procedure also yields a (formal) one-one mapping
for less ‘nice’ functions, such as polynomials in q, p. However, for the moment there are two points
that first need addressing. First of all, the structure of the operator space is not yet clear.
Expressing the product of two associated operators in terms of the operator of some function of
the two phase space distributions will give information about the space’s product. This product
will be the Moyal product.6. Secondly, the aforementioned problem of ordering is dealt with: two
natural choices are presented and discussed. Moreover, these orderings lead to two possible star
products.

5To be precise, there is the following inclusion of dense spaces: the space Cc(R) of compactly supported continuous
functions (even the space of step functions) is dense in L2(R) (see [15], §4.3). The space of smooth bump functions
can be used to uniformly approximate functions in C∞c (R), the space of compactly supported smooth functions. The
smooth bump functions are dense in Cc(R) (see [16], §13); hence, the space of compactly supported smooth functions
is dense in L2(R). Moreover, it is contained in the space of Schwartz-functions S(R). So, Fourier transform and
inverse are well-defined.

6This function will turn out to be the star product of the two distributions.
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2 THE MOYAL PRODUCT

2.2 Introducing the star product

The development in [17] is followed. Let f, g ∈ C∞(M). The question is to find a function
h ∈ C∞(M) such that Ŵ [f ]Ŵ [g] = Ŵ [h]. Furthermore, it is desirable to express h in terms of f
and g. By definition, the left-hand side is

Ŵ [f ]Ŵ [g] =
∫
da

2π
db

2π exp [i(ap̂+ bq̂)]f̃(a, b)
∫
da′

2π
db′

2π exp
[
i(a′p̂+ b′q̂)

]
g̃(a′, b′) .

Mixing the integrals, the exponents can be but together by using a descendent of the Baker-
Campbell-Hausdorff formula [18]. It states that for two linear operators A, B that both commute
with their commutator [A,B], the following holds

expA expB = exp (A+B) exp [A,B]/2 . (3)

Implementing this equation yields

exp [i(ap̂+ bq̂)] exp
[
i(a′p̂+ b′q̂)

]
= exp

[
i((a+ a′)p̂+ (b+ b′)q̂)

]
exp

[
i~(ab′ − ba′)/2

]
.

Performing the shifts a 7→ a− a′, b 7→ b− b′ yields the requested expression

Ŵ [f ]Ŵ [g] =
∫
da

2π
db

2π exp [i(ap̂+ bq̂)]
(
f̃ ?~ g

)
(a, b) ≡ Ŵ [f ?~ g] , (4)

where the pseudo star-product f̃ ?~ g is defined as

(
f̃ ?~ g

)
(a, b) :=

∫
da′

2π
db′

2π f̃(a− a′, b− b′) exp
[
i~
(
(a− a′)b′ − (b− b′)a′

)
/2
]
g̃(a′, b′) . (5)

The Moyal product or star-product is then finally defined as the ordinary Fourier inverse of (5):

(f ?~ g) (q, p) := F−1[f̃ ?~ g] =
∫
da

2π
db

2π exp [i(ap+ bq)]
(
f̃ ?~ g

)
(a, b) .

Note that the star product depends on the classical variables (q, p), and that it defines a smooth
function on classical phase space; it is therefore a product on the algebra, so h ∈ C∞(M), which
is easily verified to be non-commutative. To obtain the product’s form as found in the papers
by Moyal and Groenewold ([12], [13]), it suffices to perform the substitutions a, a′ 7→ −i∂/∂p,
b, b′ 7→ −i∂/∂q under the inverse Fourier transform, and to remark that derivatives of smooth
functions commute; then

(f ?~ g) (q, p) = f(q, p) exp
[
i~
2

(←−
∂

∂q

−→
∂

∂p
−
←−
∂

∂p

−→
∂

∂q

)]
g(q, p) = (f · g) (q, p)+

∞∑
n=1

~nCn[f, g](q, p) (6)

where · will denote the commutative classical product and where

Cn[f, g](q, p) := 1
n!
( i
2
)n
f(q, p)

(←−
∂

∂q

−→
∂

∂p
−
←−
∂

∂p

−→
∂

∂q

)n
g(q, p) . (7)

There are a few remarks that can be made about this final form of the Moyal product:

1. Clearly f ?~ g = f · g +O(~).

10



2 THE MOYAL PRODUCT

2. With respect to the Moyal product, Ŵ is a homomorphism of algebras by (4):

Ŵ : (C∞(M), ?~) −→ (C∞(M), ·), where Ŵ [f ?~ g] = Ŵ [f ] · Ŵ [g] . (8)

3. The Moyal commutator is defined, then found to be

[f ?~ g] := f ?~ g − g ?~ f = i~{f, g}+O(~2) , (9)

where {·, ·} denotes the standard Poisson bracket on the Poisson algebra C∞(M). It is
interesting to note that apart from the O(~2), this is the precise form of Dirac’s intuition
about quantization mentioned in the introduction.[6]

4. The Moyal bracket is defined to be {f, g}~ := [f ?~ g]/i~ = {f, g} + O(~) . It can be
interpreted as Lie bracket on the space of Weyl-operators, although this fact is not proven
here.

5. Since Ŵ (·) is a linear operator, it follows that
[
Ŵ (f), Ŵ (g)

]
= Ŵ ([f ?~ g]). 7

These remarks allow for a few conclusions regarding the Moyal product.
First of all, since f ?~ g → f · g and {f, g}~ → {f, g} when ~→ 0, it is seen by the first three

remarks that the Moyal product indeed defines a deformation of the Poisson algebra C∞(R2) of
smooth functions on phase space. Note that the deformed object X is precisely this associative
algebra of smooth functions C∞(R2), the family of objects is the family of deformed algebras and
the formal parameter is indeed ~; hence, definition 2.1 is satisfied.

Secondly, for the space L2(R) of square-integrable functions the fourth remark shows that there
is a one-one correspondence between the classical product of phase space distribution functions and
the (quantum) Moyal product of associated operators. Furthermore, since the notion of commut-
ator is conserved, we have constructed a complete, alternative formulation of quantum mechanics,
one in terms of distribution functions on phase space. [17] This is because a quantum mechanical
system is fully determined by its C∗-algebra of operators. The Stone-von Neumann theorem then
gives the unique unitary representation of this algebra that respects canonical quantization: the
representation space is the Hilbert space in which we are familiar to do quantum mechanics [5].

Furthermore, let us deem the upcoming arguments in section 2.4 about the Weyl-Wigner
correspondence sufficiently plausible, and let us assume that it is also a (formal) bijection for
less ‘nice’ functions, such as polynomials. Then the fourth remark permits us to do ordinary
quantum physics as we are used to whilst using this alternative formulation of Weyl. This is
again because commutators are preserved: the non-commutative quantum mechanical behaviour
is exactly transferred to the classical phase space.

2.3 Ordering

Quantum mechanics is a non-commutative theory in the sense that some quantum operators do
not commute [2]. On the other hand, operators in classical mechanics always commute. Since
the Weyl-Wigner correspondence links the two, it is not a priori clear that this procedure is well-
defined. This is due to the ordering of operators in quantum mechanics. As an example, consider
f ∈ C∞(M) given by f(q, p) = q · p = p · q. Its quantum analog, however, is not immediately
well-defined: f(q̂, /hp) = q̂p̂ = p̂q̂ + i~ 6= p̂q̂ = f(q̂, p̂).

7This equality actually implies a homomorphism of Lie algebras: the Lie bracket on the left (for the space
of quantum operators) is the commutator bracket, on the right the Lie algebra for the phase space distribution
functions is (L2(R), {·, ·}~); for definitions, see section 2.2.
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Following [19], two natural choices of ordering will be discussed: the standard (or naive)
ordering and the symmetric or Weyl-Moyal ordering. It will be shown that the two can be linked
by a bijective linear map. Furthermore, the symmetric ordering will be shown to yield exactly
the same product as the Weyl-Wigner correspondence (hence the ordering’s name): the Moyal
product. This proves that the correspondence is a well-defined quantization.

2.3.1 Standard ordering

The naive quantization procedure would be the following:

Definition 2.3 (Naive quantization). The linear operator QN : C[q, p] −→ Diffop(R) is defined
by

1 7→ QN (1) := 1 q 7→ QN (q) := q̂

p 7→ QN (p) := p̂ qn · pm 7→ QN (qn · pm) := q̂np̂m ,

where C[q, p] is the ring8 of complex polynomials of two variables and Diffop(R) denotes the space
of differential operators with polynomial coefficients in the space C∞(R,C), i.e. an element D ∈
Diffop(R) takes the form D =

∑N
k=0 fk∂

k/∂qk where f0, · · · , fN ∈ C[q].

Firstly, note that the map QN is well-defined since it is defined on a basis of the ring C[q, p]; it
is extended to the entire ring by C-bilinearity. Furthermore, note that QN is bijective since its
inverse is evidently well-defined.

Secondly, note that applying this procedure to the aforementioned example f(q, p) = q ·p = p·q
would yield QN (p · q) = QN (q · p) ≡ q̂p̂ = p̂q̂ + i~ 6= QN (p)QN (q). This means that QN is not
a homomorphism of algebras. Note however that classically, so when ~ → 0, this map ís a
homomorphism.

Using naive quantization, it is possible to construct an associative non-commutative product
on C[q, p] that almost satisfies the correspondence principle. The idea is to pullback the non-
commutative associative multiplication int the space of differential operators Diffop(R) to the
ring C[q, p] using the bijective map QN [19].

First of all let f ∈ C[q, p], φ ∈ C∞(R,C) and recall the actions of q̂ and p̂: q̂φ(q) = q · φ(q)
and p̂φ(q) = (~/i)(∂φ/∂q). Write f =

∑∞
n,m=0 an,mq

n · pm where an,m ∈ C. Since QN (f) yields a
differential operator, we can apply it to φ:

QN (f)(φ) =
∞∑

n,m=0
an,mQN (qn · pm)(φ) =

∞∑
n,m=0

an,mq̂
np̂m(φ)

=
∞∑

n,m=0

(~
i

)m
an,m q̂

n ∂
mφ

∂qm
=
∞∑
m=0

(~
i

)m( ∞∑
n=0

an,mq̂
n

)
∂mφ

∂qm
.

The first equality holds, for QN is a linear operator. Now note the following identity:

1
r!
∂rf

∂pr

∣∣∣∣
p=0

= 1
r!

∞∑
n=0

an,r (r!) qn =
∞∑
n=0

an,rq
n .

Using the definition of the action of the operator q̂, we see that the previous two equations yield

QN (f)(φ) =
∞∑
m=0

(~/i)m

m!
∂mf

∂pm

∣∣∣∣
p=0

∂mφ

∂qm
(10)

This expression is at the basis of the following proposition.
8For an introduction into groups and rings, see for example [25].
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Proposition 1. Let f, g ∈ C[q, p] and φ ∈ C∞(R,C). Then

f ?N g := Q−1
N

(
QN (f)QN (g)

)
=
∞∑
m=0

(~/i)m

m!
∂mf

∂pm
∂mg

∂qm
= exp

(
(~/i) ∂p ⊗ ∂q

)(
f, g

)
(11)

defines an associative non-commutative product on the ring C[q, p].

Proof. The proof of the formula is a lengthy calculation using the above expression; it is omitted.
Since QN is a bijective linear mapping, it is clear that the associativity of the product in Diffop(R)
directly carries over to ?N ; in a sense, these two products are the same. The first product is in
general non-commutative, so the same holds for ?N .

In the classical limit when ~ tends to zero, only keeping terms up to and including O(~1) yields

f ?N g = f · g − i~∂f
∂p

∂g

∂q
+O(~2) ,

which is almost the aforementioned intuition of Dirac [6]: the derivatives in the term i~ should
equal the classical Poisson bracket, which is

{f, g} = ∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
.

Finally, note that QN ís a homomorphism of algebras with respect to the star product ?N : for
all f, g ∈ C[q, p], it follows immediatelly from 11 that QN (f ?N g) = QN (f)QN (g). This means
that although the correspondence principle is not exactly satisfied, QN does define a complete
quantization by deformation.

2.3.2 Weyl-Moyal ordering

To construct a deformation quantization that also satisfies the correspondence principle, a more
symmetric operator might be able to yields the Poisson bracket in the classical limit. An operator
symmetric under the exchange q̂ ↔ p̂ could be used; let’s call it QS . The definition for this
quantization procedure is then

Definition 2.4 (Symmetric quantization). The linear operator QS : C[q, p] −→ Diffop(R) is
defined on the basis of monomials of the ring C[q, p] by

1 7→ QS(1) := 1 q 7→ QS(q) := q̂

p 7→ QS(p) := p̂ qn · pm 7→ QS(qn · pm) := Sn,m(q̂, p̂)

where by definition Sn,m(q̂, p̂) is a polynomial expression in q̂, p̂ symmetric under the exchange
(q̂, n)↔ (p̂,m). The operator is extended to the whole ring by C-bilinearity.

For the operator QS to be well-defined, an explicit expression of Sn,m(q̂, p̂) is needed.
Since Sn,m(q̂, p̂) has a symmetry property, the idea is to exploit the properties of Newton’s

binomium. Consider the operator-valued function f(x, y) := (xq̂+yp̂)n+m, which can be expanded
as f(x, y) = · · · + Wn,m(q̂, p̂)xnym + · · · by the binomium, where Wn,m is the sum of all

(n+m
n

)
different orders in which one can multiply n q̂’s and m p̂’s; in particular, Wn,m is symmetric under
(q̂, n)↔ (p̂,m).

Now, the crucial step here is to remark that by taking an appropriate derivative of f and by
putting x, y = 0, only Wn,m(q̂, p̂) is left. To be precise

∂n+m

∂xn∂ym

∣∣∣∣
x,y=0

f(x, y) = n!m!Wn,m(q̂, p̂) =: (n+m)!Sn,m(q̂, p̂) , (12)

13



2 THE MOYAL PRODUCT

where in the last line Sn,m(q̂, p̂) is explicitly defined. Since QS is now fully given on a basis of
the ring C[q, p], its definition again extends to the entire ring by C-bilinearity. Rewriting and
generalising Sn,m(q̂, p̂) yields

Sn,m(q̂, p̂) = ∂n+m

∂xn∂ym

∣∣∣∣
x,y=0

(xq̂ + yp̂)n+m

(n+m)!

= ∂n+m

∂xn∂ym

∣∣∣∣
x,y=0

∞∑
k+l=0

(xq̂ + yp̂)k+l

(k + l)! = ∂n+m

∂xn∂ym

∣∣∣∣
x,y=0

exp [xq̂ + yp̂] ,

where the second equality holds since all terms with powers of x strictly smaller than n and/or
powers of y strictly smaller than m vanish due to the derivative, whereas all the strictly higher
powers vanish due to the evaluation x, y = 0; so this only leaves Sn,m(q̂, p̂).

Note that in the last equality a generating function is found for all the symmetrized forms
Sn,m(q̂, p̂) of the monomials q̂np̂m. In particular, this generating function is itself symmetric under
the exchange (q̂, n)↔ (p̂,m), so QS(exp [xq + yp]) = exp [xq̂ + yp̂].

In conclusion: QS is a well-defined, symmetric linear operator.
By again invoking the Baker-Campbell-Hausdorff formula (3) and by noting that q̂ and p̂

commute with their commutator, it is clear that

QS(exq+yp) = exq̂+yp̂ = exp [~xy/2i]exq̂eyp̂ = exp [~xy/2i]QN (exqeyp)
= exp [~xy/2i]QN (exq+yp) = QN (exp [~xy/2i](exq+yp)) .

So there is a map N : C[q, p] → C[q, p] defined by f 7→ Nf := exp
[
(~/2i) ∂2/∂q∂p

]
f under

the usual correspondence x 7→ ∂/∂q, y 7→ ∂/∂p; this map is linear. If Nf = 0 the power series
representation of the exponential shows that f = 0, soN is injective; also, one can quickly convince
oneself that this map is surjective, since C[q, p] is the ring of polynomials of all orders in q, p. This
means N is the bijection linking the two orderings above by

QN (Nf) = QS(f) for all f ∈ C[q, p] .9 (13)

Since a bijection between the naive and the symmetric ordering has been found, it is possible
to give the analogous proposition to 1:

Proposition 2. Let f, g ∈ C[q, p] and φ ∈ C∞(R,C). Then

f ?S g := Q−1
S

(
QS(f)QS(g)

)
=
∞∑
m=0

(i~/2)m

m!

m∑
k=0

(
n

k

)
(−1)m−k ∂mf

∂qkpm−k
∂mg

∂qm−kpk
(14)

defines an associative non-commutative product on the ring C[q, p]. Moreover, this product is seen
to be isomorphic to the product ?N of naive quantization via the linear bijective map N :

N(f ?N g) = (Nf) ?S (Ng) for all f, g ∈ C[q, p] . (15)

Proof. The formula follows directly from (11) by substituting N and expliciting. Since it was
shown that QN (Nf) = QS(f) for all f ∈ C[q, p], the isomorphism of the two star products follows
directly from proposition 1. The associativity of the product in Diffop(R) again carries over to
?S , since QS = QN ◦ N is a bijection. Hence, ?S is an in general non-commutative product on
C[q, p].

9Note that N ’s inverse is given by N−1 = exp [−(~/2i) ∂2/∂q∂p], so QN (f) = QS(N−1f) for all f ∈ C[q, p].

14



2 THE MOYAL PRODUCT

Again note that equation (14) implies that QS is a homomorphism of algebras with respect to
?S : for all f, g ∈ C[q, p] we haveQS(f?Sg) = QS(f)QS(g). This time, however, the correspondence
principle is satisfied:

f ?S g = f · g + i~
2 {f, g}+O(~2) . (16)

We can now conclude that QS defines a deformation quantization on the ring of polynomials
C[q, p] in the sense that to every function in the ring, it associates a differential operator that acts
on the space C∞(R,C). A star product ?S is found that captures the non-commutative behaviour
of these differential operators, and transfers it back to the ring C[q, p]. Moreover, this star product
satisfies the correspondence principle.

2.4 Weyl-Wigner is one-one

Although it is beyond the scope of this thesis to prove rigorously that Weyl-Wigner is a one-one
correspondence, it is however possible to give some arguments that make it plausible. What’s
more important is that proposition 2 allows us to link the Moyal product of the Weyl-Wigner
correspondence to the the star product ?S of the symmetric quantization method in the previous
section.

Two arguments will be given to support the statement that the Weyl-Wigner correspondence
and the symmetric quantization yield the same operators. The first is an argument based on a
physical reasoning. The second is making the above mentioned link between Moyal product and
?S explicit, which is a mathematical argument

It is important to note that the arguments given below should be read as a motivation for
defining the Weyl-Wigner correspondence as it is. They motivate a formal manipulation of ex-
pressions that do not necessarily represent well defined mathematical objects, but dó represent
physical quantities of interest.

2.4.1 A physicist’s point of view

In quantum mechanics it is important to be able to calculate means and expectation values of
position, momentum, energy and other functions of q̂, p̂. Once a smooth function representing
a physical and measurable quantity is given, its expectation value is calculated by integrating
over the total system with respect to a certain weight function: the absolute square of the wave
function, that plays the role of probability distribution.

In general, measurable quantities encountered in physics are polynomials or analytic func-
tions10; in particular they are smooth. The Fourier transform of such polynomials in C[q, p] such
as position q̂ or momentum p̂ is in general not well-defined. This is due to the fact that integrating
over the whole of R2 yields infinities. However, one need not integrate over the whole of R2 per
se, but only over the total system to obtain expectation values. Since we live in a finite world,
one can restrict these polynomials to a certain compact domain. For example q̂ −→ q̂1[−n,n]2 for
a certain n ∈ N. As was explained in the footnote that accompanied the definition of the Weyl-
Wigner correspondence, the space of compactly supported smooth functions C∞c (R2) is contained

10To be precise: analycity of a function f : R2 → C implies ∀(q, p) ∈ R2,∃U ⊂ R2 open around (q, p) : f(q, p) =∑∞
n+k=0 an,kqnpk = limN→∞

∑N

n+k=0 an,kqnpk. Hence, one could be tempted to prove the bijectiveness for monomi-
als of finite order (as was the author at first), and then take limits to obtain the result for all analytic functions.
However, one actually needs to verify commutation of taking the limit (to obtain the sought after infinite sum of
monomials) and applying the linear operator Ŵ (·); this limit appears in the above definition of analycity. The
bigger problem is that monomials are not integrable, and certainly not square-integrable as is required by definition
2.2. This approach does not work.
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2 THE MOYAL PRODUCT

in the Schwartz space S(R2). On this space, the Fourier transform is a linear automorphism so in
particular, it is well defined.

From this point of view, one need not worry about infinities and convergence. Expectation
values of physically measurable functions are well defined.

2.4.2 A mathematical argument

Recall that the Weyl-Wigner correspondence associates a quantum operator Ŵ [f ] to a phase
space distribution function f ∈ L2(R2). This means that f is a function of classical position q and
momentum p. The restriction of the space of functions was for mathematical simplicity, in the
general settng f ∈ C∞(M) the algebra of smooth functions on phase space M = R2. In section
2.2, the Moyal product ?~ was found to be a non-commutative product on the algebra C∞(M).
Moreover, with respect to this product, it was noted that Ŵ is a homomorphism of algebras:

Ŵ : (C∞(M), ?~) −→ (C∞(M), ·), where Ŵ [f ?~ g] = Ŵ [f ] · Ŵ [g] (17)

by virtue of equation (4).
On the other hand, symmetric quantization also yielded a homomorphism of algebras: QS ,

which was defined in equation 2.4 as

QS : (C[q, p], ?S) −→ Diffop(R), where QS(f ?S g) = QS(f)QS(g) . (18)

Proposition 2 gives an expression for f ?S g. It will now be shown that this expression is exactly
the same as the one found for the Moyal product of f and g, in equation (6). Let f, g ∈ C[q, p],
consider the expression from proposition 2:

(f ?S g)(q, p) =
∞∑
m=0

(i~/2)m

m!

m∑
k=0

(
n

k

)
(−1)m−k ∂

mf(q, p)
∂qkpm−k

∂mg(q, p)
∂qm−kpk

=
∞∑
m=0

(i~/2)m

m!

m∑
k=0

(
n

k

)
f(q, p)

(←−
∂

∂q

−→
∂

∂p

)k
(−1)m−k

(←−
∂

∂p

−→
∂

∂q

)m−k
g(q, p)

=
∞∑
m=0

(i~/2)m

m!

m∑
k=0

(
n

k

)
f(q, p)

(←−
∂

∂q

−→
∂

∂p
−
←−
∂

∂p

−→
∂

∂q

)m
g(q, p)

= f(q, p) exp
[
i~
2

(←−
∂

∂q

−→
∂

∂p
−
←−
∂

∂p

−→
∂

∂q

)]
g(q, p)

= (f ?~ g)(q, p) .

In conclusion: for all f, g ∈ C[q, p], we have f ?S g = f ?~ g . This means that although the
Moyal product is only defined on L2(R2), apparently its definition also work for functions in the
ring C[q, p]. Since symmetric quantization is well-defined, we see now that the Weyl transform of
polynomial functions, such as the harmonic oscillator hamiltonian, are also well-defined. Moreover,
symmetric quantization is in one-one correspondence with naive quantization which is a bijective
quantization.

The found relations for both star products that turn the mappings in homomorphism are

Ŵ [f ?~ g] = Ŵ [f ]Ŵ [g] and f ?S g = Q−1
S

(
QS(f)QS(g)

)
for all f, g ∈ L2(R2) ∩ C[q, p] .

This means that (
Ŵ ◦Q−1

S

) (
QS(f)QS(g)

)
= Ŵ [f ]Ŵ [g] (19)
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In total: the Weyl-Wigner correspondence yields a well-defined quantization by introducing
a star product on the algebra C[q, p] of polynomial functions of phase space. Although the star
products ?N and ?S are seen to be formaly equivalent by equation (15), the Moyal star product
?~ and symmetric star product ?S are seen to be exactly the same by the above boxed equation.
Hence, also the Moyal product is a symmetric operation, and it is seen to be equivalent to ?N via
QS = QN ◦N which is bijective. This is a strong argument for Ŵ ’s invertibility is. However, to
make this proof precise, the space Ŵ acts on needs to be defined exactly, as well as some more
properties. As announced earlier, this lies outside the scope of this text.

17
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3 Symplectic geometry: a framework for classical mechanics
The second part of this thesis is devoted to showing that symplectic geometry is a natural category
to work in when it comes to classical mechanics. To this extent, the first section discusses the
basics of the theory of symplectic geometry. In particular, it is shown that hamiltonian classical
mechanics can be fully described by this theory. In the second section, Poisson manifolds are
defined since Kontsevich’s theorem is stated in these terms. It is shown that symplectic manifolds
carry a natural Poisson structure. This proofs the claim that deformation quantization - which
is expressed in terms of Poisson manifolds - has physical relevance, since almost all hamiltonian
classical mechanical systems can be described by the symplectic formalism.

3.1 Classical mechanics as symplectic theory

Throughout this section, definitions and mathematical statements as found in chapters of the
lecture notes [21] will be followed, unless specified otherwise; physical interpretation is added by
the author. It is assumed that the reader is familiar with the basic theory of smooth manifolds as
found in for example [16]. Nevertheless, some aspects of the theory will be recalled when needed.

3.1.1 Some symplectic theory

Let M be a smooth manifold without boundary. A 2-form ω ∈ Γ∞(Λ2T ∗M) on M is a smooth
section of the second exterior product of the cotangent bundle T ∗M . This means that for all
p ∈ M , the map ωp : TpM × TpM → R is bilinear and skew-symmetric. In symplectic theory, a
particular type of 2-form is associated to a smooth manifold, turning it into a so-called symplectic
manifold; this particular type of 2-form is also called symplectic. It is defined in the following
way:

Consider a real vector space V of dimension m. Let Ω : V × V → R be a bilinear, skew-
symmetric11 map. There is the following theorem:

Theorem 1. There exists a basis {u1, . . . , uk, e1, . . . , en, f1, . . . , fn} of V , such that Ω(ui, v) = 0,
Ω(ei, ej) = 0 = Ω(fi, fj) and Ω(ei, fj) = δi,j for all i, j and for all v ∈ V .

Note that pictorially, this means that for all u, v ∈ V

Ω(u, v) =
[

u
] 0 0 0

0 0 1

0 −1 0


v
 (20)

Definition 3.1 (Nondegeneracy). If the linear map Ω̃ : V → V ∗, defined by v 7→ Ω(v, ·) is
bijective, then Ω is called symplectic or nondegeneratie; also, (V,Ω) is called a symplectic vector
space.

A few remarks can be made about this definition:

1. When Ω̃ is bijective, in particular ker(Ω̃) = {0}. Denote U = span{u1, . . . , uk}. Since for
all i ∈ {1, . . . , k}, v ∈ V , the above theorem states that Ω(ui, v) = 0, a trivial kernel means
that dim(U) = k = 0. Hence dim(V ) = 2n and the manifold’s dimension is seen to be even.

11Skew-symmetry means that for all u, v ∈ V, Ω(u, v) = −Ω(v, u).
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2. The symplectic vector space (V,Ω) has B = {e1, . . . , en, f1, . . . , fn} as skew-orthonormal
basis. Since Ω(ei, ej) = 0 = Ω(fi, fj) and Ω(ei, fj) = δi,j for all i, j ∈ {1, . . . , n}, it is called
a symplectic basis. Pictorially, this means that for all u, v ∈ Ω

Ω(u, v) = ut
[

0 1

−1 0

]
v (21)

3. It can be show that the above definition of Ω being nondegenerate is equivalent to the
following one found in [20]:

Ω(v, w) = 0 for all w ∈ V implies v = 0 . (22)

Definition 3.2 (Symplectic Manifold). The pair (M,ω) of smooth manifold M and 2-form ω ∈
Γ∞(Λ2T ∗M) is called a symplectic manifold if dω = 0 and if ωp is symplectic as defined above for
all p ∈M ; the form is said to be closed and nondegenerate respectively.

Examples

1. The first example of a symplectic manifold is the trivial one: consider M = R2n with chart
(R2n, x1, . . . , xn, y1, . . . , yn) and symplectic form ω0 =

∑n
j=1 dx

j ∧ dyj . Since d2 = 0, it is
clear that ω0 is closed. To see that it is also nondegenerate, fix a p ∈ M and consider the
mapping

ω̃0,p : TpM −→ T ∗pM, ap 7→
(
ω̃0,p(ap) := ω0,p(ap, · ) : TpM −→ R, bp 7→ ω0,p(ap, bp)

)
.

Note that the set Bp =
{
∂/∂x1|p, . . . , ∂/∂xn|p, ∂/∂y1|p, . . . , ∂/∂yn|p

}
of tangent vectors

forms a basis of TpM for all p ∈ M . Denote ∂/∂xi|p = ∂xi |p, ∂/∂yi|p = ∂yi |p and observe
that

ω̃0,p(∂xi |p) = ω0,p(∂xi |p, · ) = dyi|p and ω̃0,p(∂yi |p) = −dxi|p . (23)

By bilinearity of ω0, this yield for a general ap =
∑n
i=1 αi∂

x
i |p + βi∂

y
i |p ∈ TpM

ω̃0,p(ap) =
n∑
i=1

βidy
i|p − αidxi|p . (24)

Using the equivalent definition of nondegeneracy given in remark 3, assume that ω̃0,p(ap)(v) =
ωp(ap, v) = 0 for all v ∈ TpM . Evaluating ω̃0,p(ap) on the basis Bp of TpM shows that this
implies αi = 0 = βi for all i ∈ {1, . . . , n} whence ap = 0. Thus, ω0 is nondegenerate and we
conclude that (M,ω0) is a symplectic manifold. Note that Bp is a symplectic basis for TpM
for all p ∈M .

2. Let Q be a smooth manifold, for instance the configuration space of a certain system. Its
cotangent bundle M = T ∗Q ≡ ∪p∈Q{p} × T ∗pQ carries a natural structure of symplectic
manifold as follows. Let {(Uα, φα)α∈A} be an atlas of Q and (U , x1, . . . , xn) a chart centered
at p ∈ Q with coordinate functions xi : U → R. Since {dx1|p, . . . , dxn|p} is a basis for T ∗pQ,
for every ξ ∈ T ∗pQ there exist {ξ1, . . . , ξn} ∈ R such that ξ =

∑n
j=1 ξ

jdxj |p.
This induces a smooth map F : T ∗U → R2n defined by (x, ξ) 7→ (x1, . . . , xn, ξ1, . . . ξn) which
is a chart for T ∗U centered at (x, ξ). It allows for the construction of an atlas for T ∗Q
and equips it with a smooth manifold structure of dimension twice the dimension of Q.
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Smoothness comes from the fact that transition mappings are smooth: let (U , x1, . . . , xn),
(V, y1, . . . , yn) be two charts and p ∈ U ∩ V, then if ξ ∈ T ∗pQ

ξ =
n∑
j=1

ξjdxj |p =
∑
i,j

ξi

(
∂xj

∂yi

)
dyi|p =:

n∑
i=1

ξ̃idyi|p where ξ̃i :=
n∑
j=1

ξj
(
∂xj

∂yi

)
is smooth .

(25)
One can define a symplectic 2-form on the cotangent bundle both globally and locally; in
both ways it can be shown to be intrinsic, i.e. independent of choice of coordinates. Due
to this property it is called the canonical symplectic form. We’ll follow the local definition
according to [21].
On the aforementioned chart (T ∗U , x1, . . . , xn, ξ1, . . . ξn), define α :=

∑n
j=1 ξ

jdxj |p. Consider
a point p ∈ T ∗Q in an overlapping of charts as before. By using the transition functions as
defined in 25, one sees that

αU ≡
n∑
j=1

ξjdxj |p =
∑
i,j

ξi

(
∂xj

∂yi

)
dyi|p =

n∑
i=1

ξ̃idyi|p ≡ αV .

Hence, α is independent of choice of coordinates and for this reason, it is called the tautolo-
gical 1-form. Now, ω := −dα defines the canonical symplectic 2-form. In local coordinates
(on U), it looks like ω =

∑n
j=1 dx

j ∧ dξj , which is the expression of the 2-form on the
trivial symplectic manifold in the first example. This specific expression of ω will later on
prove to be important. Clearly, ω is closed, nondegenerate and skew-symmetric, turning
(M = T ∗Q,ω) into a symplectic manifold.

Anticipating on what is to come, recall that the dynamics of a classical mechanical system are
determined by the hamiltonian function, which will be H ∈ C∞(M,R) =: C∞(M) whereM = T ∗Q
is the cotangent bundle of the configuration space Q; now H is in fact the infinitesimal generator
of time translation. It will be shown that there is a unique vector field XH associated to the
hamiltonian, whose flow controls the dynamics of the system. Since a symplectic manifold (phase
space) is defined as a pair of manifold and 2-form, it is important that this evolution leaves the
2-form invariant12. The following definition says when two symplectic manifolds are essentially
the same.

Definition 3.3 (Symplectomorphism). Let (M1, ω1), (M2, ω2) be two symplectic manifolds of
dimension 2n. If there is a smooth map ϕ : M1 → M2, it is called a symplectomorphism if
ϕ∗ω2 = ω1

13. Also, M1 and M2 are the same as symplectic manifolds when ϕ is a symplectic
diffeomorphism, i.e. both ϕ and ϕ−1 are symplectomorphisms and bijections.

A hamiltonian system is a triple (M,ω,H), where H ∈ C∞(M) is a smooth function called the
hamiltonian function. Before accepting such a triple as a physical system, one needs to verify the
invariance of ω under the flow induced by H, i.e. the invariance of the symplectic structure on
the manifold under the dynamical evolution. For this, the concepts of isotopy and Lie derivative
are needed.

Definition 3.4 (Isotopy). Let M be a smooth manifold, ρ : M × R → M a smooth map and set
ρt(p) := ρ(p, t). This map is called an isotopy if

12As was noted by J. de Boer, the phase space of a system subject to time-dependent constraints is in general also
dependent on time. In this case, the symplectic structure need not be conserved. However, this type of problems
falls outside the scope of this thesis.

13Note that in the (physical) literature, such a mapping is also known as a canonical transformation, see [20].
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1. For t = 0, ρ0 = 1M ,

2. ∀t ∈ R, ρt : M →M is a diffeomorphism.

Given an isotopy ρ, one can build a time-dependent vector field or equivalently a family of
vector fields {Xt, t ∈ R} in the following manner. Define for all p ∈M

Xt(p) = d

ds
ρs(q)

∣∣
s=t where q = ρ−1

t (p) ∈M (26)

which is equivalent to defining dρt/dt = Xt ◦ ρt by definition of an isotopy. Note that his corres-
ponds with the flow c(t) of a vector field Y defined by ċ(t) = Yc(t). Conversely, given a family of
vector fields on a (compact) manifold M , one can construct an isotopy (see [21], p.35)

Definition 3.5 (Exponential map). When Xt = X, ∀t ∈ R the associated isotopy is called the
exponential map or the flow of X. It is denoted by αX(t) = exp tX.

As a consequence, {exp tX : M → M
∣∣ t ∈ R} is the unique smooth family of diffeomorphisms

satisfying

1. exp (tX)
∣∣
t=0 = 1M ,

2. d
dt

(
exp tX

)
(p) = X

(
(exp tX)(p)

)
∀p ∈M, t ∈ R.

Using the concept of exponential map, the Lie derivative can now be defined. Recall that
on a smooth manifold M of dimension m, k-forms are sections of the kth exterior power of the
cotangent bundle Λk(T ∗M) =

∐
p∈M{p} × Λk(T ∗pM). The triple (Λk(T ∗M), π,M) has a natural

vector bundle structure, where π : Λk(T ∗M) → M, α 7→ π(α) = p when α ∈ Λk(T ∗pM) is the
projection map [16].

Since we are interested in smooth manifolds, only smooth sections of this bundle matter for
the moment; denote these by Ωk(M) := Γ∞

(
ΛkT ∗M

)
and note that Ω0(M) = C∞(M) the smooth

functions on M . Since (smooth) k-forms can be added and multiplied by constants and smooth
functions, this space has a natural structure of vector space. Adding the wedge-product ∧ as
operation, the space Ω∗(M) :=

⊕n
k=0 Ωk(M) is seen to be a graded algebra with respect to the

gradation of forms [16].
On every smooth manifold M there exists a unique and intrinsically defined concept of anti-

derivation (of degree 1) that is compatible with the gradation of Ω∗(M) (see [16], §19): it is called
the exterior derivative and it is defined as follows:

Definition 3.6 (Exterior derivative). The exterior derivative on a smooth manifold M is an
R-linear map d : Ω∗(M)→ Ω∗(M) such that

1. ∀ω ∈ Ωk(M), τ ∈ Ωl(M), d(ω · τ) = (dω) · τ + (−1)kω · (dτ),

2. d ◦ d = 0,

3. ∀f ∈ C∞(M), X ∈ X (M) then (df)(X) = X ◦ f .

Note that d being an antiderivation of degree 1 means that if ω ∈ Ωk(M) then dω ∈ Ωk+1(M);
exterior derivation is seen to increase the degree of a k-form by 1.

Both the wedge product and the exterior derivative have the property of commutation with
the pullback by a smooth map. Furtermore, the pullback of a smooth k-form by a smooth map is
again a smooth k-form [16].
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The Lie derivative is defined for smooth vector fields, so for smooth sections of the tangent
bundle over M ; denote this vector space by Γ∞(TM) := X (M). The Lie derivative of Y ∈ X (M)
(or ω) with respect to X ∈ X (M) is a measure for the extent in which the vector field Y (or the
k-form ω) flows like X. This is a bit vague. Here are two definitions, one in terms of vector fields
and one in terms of smooth k-forms.

Definition 3.7 (Lie derivative).

1. Let Xt = X, ∀t ∈ R a family of smooth vector fields. The Lie derivative of ω ∈ Ωk(M)
with respect to the vector field X is the operator LX : Ωk(M) → Ωk(M), ω 7→ LXω :=
d
dt

(
exp tX

)∗
ω
∣∣
t=0.

2. Let X,Y ∈ X (M). The Lie derivative of the vector field Y with respect to the vector field X
is defined as their Lie bracket, so LX : X (M)→ X (M), Y 7→ LXY := [X,Y ] = XY − Y X.

These definitions only hold for the Lie derivative with respect to time-independent vector fields.
In the time-dependent case, it is not clear wether or not the above definitions work correctly since
the relation between the vector field’s time parameter and the flow’s time parameter is not clear.
In any case, by Picard’s theorem, a time-dependent vector field’s flow exists locally [21]. Hence in
a neighbourhood of any point p ∈M , for sufficiently small t, there is an associated (local) isotopy
ρt consisting of diffeomorphisms satisfying the properties in definition 3.4. It is therefore possible
to define the Lie derivative of a k-form ω with respect to a time-dependent vector field Xt as

LXt := d

dt
(ρt)∗ ω

∣∣
t=0 . (27)

Note that this reduces to the original definition for a time-independent family {Xt = X , ∀t ∈ R}
by definition of the exponential map.

Definition 3.8 (Inner product). The inner product of a k-form ω ∈ Ωk(M) and a smooth vector
field X ∈ X (M) is defined as the contraction of the two. To be more precise:

iX : Ωk(M)→ Ωk−1(M), ω( · , . . . , ·︸ ︷︷ ︸
k times

) 7→ ω(X, · , . . . , ·︸ ︷︷ ︸
k−1 times

) .

It is now possible to state two important formula’s [21]

Proposition 3 (Cartan’s magic formula).

1. For X ∈ X (M), ω ∈ Ωk(M) we have LXω = iXdω + diXω
14.

2. Let {Xt, t ∈ R} a family of smooth vector fields, ρt the associated (local) isotopy. Then
d

dt

(
ρt
)∗
ω = ρ∗tLXtω . (28)

Some remarks about this proposition and the preceding definitions:

1. Note that for f ∈ Ω0(M) = C∞(M), Cartan’s formula yields LXf = df(X) ≡ iXdf .

2. It follows from the definition (or from Cartan) that LXdω = dLXω.

3. The Lie derivative is a derivation, i.e. an R-linear map such that for ω ∈ Ωk(M), τ ∈ Ωl(M)
we have that LX(ω ∧ τ) = (LXω) ∧ τ + ω ∧ (LXτ).

4. The inner product is an anti-derivation, i.e. an R-linear map such that for ω ∈ Ωk(M),
τ ∈ Ωl(M) we have that iX(ω ∧ τ) = (iXω) ∧ τ + (−1)kω ∧ (iXτ).

14For a proof of this remarkable formula, see [22] pages 476, 477.
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3.1.2 Hamiltonian vector fields

After this intermezzo on symplectic theory, it is now possible to construct Hamiltonian vector
fields and to find Hamilton’s equations, showing symplectic theory to be a framework for classical
mechanics.

Let (M,ω) be a smooth symplectic manifold and H ∈ C∞(M) a smooth function; then dH ∈
Ω1(M) is a smooth 1-form. Since the 2-form ω is nondegenerate, there is exactly one smooth
vector field XH ∈ Γ∞(TM) = X (M) such that iXH

ω = ω(XH , ·) = dH. A vector field that
satisfies this property is called a hamiltonian vector field associated to the hamiltonian function
H.

To be more precise, recall that for a smooth vector field Y ∈ X (M) one can construct a real
R-linear function[16]

dH(Y ) : M → R by pointwise defining (dH)(Y )p := (dH)p(Yp) ,

where (dH)p : TpM → R is linear; R-linearity means that for f ∈ C∞(M), (dH)(fY )p = (f ·
dH(Y ))p. 15 Furthermore, recall that ω is bilinear and that it is nondegenerate. These two
properties allow for the construction of the vector field XH by assigning the one tangent vector in
TpM to (XH)p such that ωp((XH)p, Yp) = (dH)p(Yp) holds for all Yp ∈ TpM ; since dH is smooth,
XH is smooth as well.

Or: since {TpM}p∈M is a collection of vector spaces, the above process should be carried out
on a frame {(∂/∂x1), . . . , (∂/∂xn)} of the tangent bundle TM ; this completely determines XH on
TM by bilinearity and non-degeneracy of ω.

There are two observations one can make about this construction:

1. X ∈ X (M) is hamiltonian ⇐⇒ iXω is exact.

2. The Lie derivative of a hamiltonian function H with respect to its hamiltonian vector field
XH is zero. Explicitly:

LXH
H = iXH

dH + diXH
ω = iXH

iXH
ω + 0 = 0 , (29)

where the first equality holds by Cartan’s formula, and the second by skew-symmetry of ω.
Note that LXH

H = 0 means that each integral curve {ρt(x) | t ∈ R} of XH , where x ∈ M ,
is contained in a level set of H. Denote H(x) for the level set of H that contains x. The
above means that H(x) = ρ∗tH(x) = H(ρt(x)) for all t ∈ R [21].
Physically, one can state this as the well known result that the dynamical evolution of a
classical mechanical system makes particules travel around the level curves of the (time-
independent) Hamiltonian governing the system.

Now assuming M to be compact, the remark after definition 3.4 of isotopy states that there
exists a family of diffeomorphisms - an isotopy of M - that is generated by XH , say {ρt : M →
M, t ∈ R}, such that

1. ρ0 = 1M ,

2. For all t ∈ R, dρt

dt ◦ ρ
−1
t = XH or equivalently dρt

dt = XH ◦ ρt.

Proposition 4. This family of maps is in fact a family of symplectic diffeomorphisms. Equival-
enty, every ρt preserves ω, so ρ∗tω = ω for all t ∈ R.

15Explicitly: (dH)(fY )p = (dH)p(f(p)Yp) = f(p)(dH)p(Yp) = (f · dH(Y ))p by pointwise definition.
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Proof. By the above, ρ0 = 1M so by functoriality of the pullback ρ∗0 ω = ω. Furthermore, first
using the second result of proposition 3 and then the Cartan magic formula, one sees that

d

dt
ρ∗t ω = ρ∗t LXH

ω = ρ∗t
(
iXH

dω + diXH
ω
)

(Cartan)

= ρ∗t
(
iXH

0 + ddH
)

= ρ∗t
(
0 + 0

)
= 0 ,

where the third equality follows by closedness of ω and by the defining property of XH . It follows
that, indeed, for all t ∈ R there holds ρ∗t ω = ω.

It is important to note that the closedness of the 2-form ω is needed to proof the above
proposition. Equivalently: due to the closedness of ω, the family of diffeomorphisms generated
by the hamiltonian vector field XH leaves the symplectic structure on (M,ω) invariant. The
mathematical requirement that dω = 0 is seen to gain physical relevance: without this requirement,
the phase space of the system under consideration need not be time-independent.

By the above proposition, every smooth function f ∈ C∞(M) on (M,ω) induces a family of
symplectic diffeomorphisms [21]. This means that the evolution of a symplectic system governed
by the hamiltonian function H leaves the system itself invariant. Note in particular that the
evolution is given by diffeomorphisms, so that it is seen to be reversible. This coincides with the
notion of invertible evolution known from classical mechanical system where the Hamiltonian is
time-independent.

3.1.3 Hamilton’s equations

Following the brief description in [21], consider a Hamiltonian system (M,ω0, H) consisting of

• the symplectic manifold M = (R2n, q1, . . . , qn, p1, . . . , pn) ,

• the symplectic 2-form ω0 =
∑n
j=1 dq

j ∧ dpj , and

• the hamiltonian function H ∈ C∞(M).

The triple (M,ω0, H) represents the phase space of a classical mechanical system consist-
ing of n particules with positions qi and momenta pi16. Denote ρt = (q(t), p(t)) where q(t) =
(q1(t), . . . , qn(t)) and p(t) = (p1(t), . . . , pn(t)). This curve is an integral curve of the associated
hamiltonian vector field XH if for all i ∈ {1, . . . , n} and for all t ∈ R

dqi(t)
dt

= XH

(
qi(t)

)
and dpi(t)

dt
= XH

(
pi(t)

)
.

Note that the tangent vectors Bx = {∂/∂q1|x, . . . , ∂/∂qn|x, ∂/∂p1|x, . . . , ∂/∂pn|x} form a basis of
TxM for all x ∈ M . So in particular, B∗x = {dq1|x, . . . , dqn|x, dp1|x, . . . , dpn|x} forms a basis of
T ∗xM, ∀x ∈M . This basis is called the dual basis, since (dzi)(∂/∂yj) = δi,jδz,y where z, y ∈ {q, p}.

By construction of XH , the inner product of ω0 with XH is equal to dH, so iXH
ω0 = dH. Now

iXH
ω0 =

n∑
j=1

iXH

(
dqj ∧ dpj

)
=

n∑
j=1

[
(iXH

dqj) ∧ dpj − dqj ∧ (iXH
dpj)

]

dH =
n∑
j=1

(
∂H

∂qj
dqj + ∂H

∂pj
dpj
)
.

16Actually, one could take R6n to represent n particules in R3 with positions ~qi = (qx
i , qy

i , qz
i ) and momenta

~pi = (px
i , py

i , pz
i ). However, this only complicates notation whilst not adding much to the idea.
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By evaluating both iXH
ω0 and dH on the aforementioned basis of vector fields B, one sees that

For all j ∈ {1, . . . , n} : iXH
dqj = ∂H

∂pj
and iXH

dpj = −∂H
∂qj

.

This yields

XH =
n∑
j=1

(
∂H

∂pj

∂

∂qj
− ∂H

∂qj

∂

∂pj

)
17 .

Since ρt is an integral curve, Hamilton’s equations are found:

dqj(t)
dt

= XH ◦ qj(t) = ∂H

∂pj
and dpj(t)

dt
= XH ◦ pj(t) = −∂H

∂qj
. (30)

In conclusion, the symplectic formalism developped in the previous paragraphs leads to the
same equations for a classical mechanical system as Hamilton’s principle of least action. Note that
for now, this is only shown for the trivial symplectic manifold M = R2n. However, an important
theorem due to Darboux (see [21], §8) states that locally every symplectic manifold looks like the
trivial one. More formally:

Theorem 2 (Darboux’s theorem). Let (M,ω) be a symplectic manifold. Then for every p ∈ M
we can find a coordinate system {U , x1, . . . , xn, y1, . . . , yn} centered at p such that on U we have
ω0 =

∑n
j=1 dx

j ∧ dyj. This collection of coordinate systems forms an atlas of (M,ω).

The most important consequence of this theorem is that if a certain property holds locally, i.e.
on (U ⊂ R2n,

∑
dxj ∧ dyj), it also holds globally. This result shows in particular that Hamilton’s

equations are valid on every symplectic manifold (M,ω). This observations allows for the treat-
ment of all classical systems described by symplectic manifolds using symplectic theory; hence its
importance.

3.2 Poisson manifolds

Having set up a formalism for symplectic manifolds that is shown to be applicable to classical
mechanics, it is important to note that Kontsevich’s theorem is stated in terms of Poisson manifolds
[11]. In this section, they are defined and it is shown that every symplectic manifold carries a
natural Poisson structure, i.e. symplectic manifolds are a particular case of elements of the greater
category of Poisson manifolds.

First of all, a few definitions are needed (following [23]), in particular the concept of a Lie
algebra.

Definition 3.9 (Lie & Poisson algebra).

1. A (real) Lie algebra is a real vector space V equipped with a skew-symmetric bilinear operation
[·, ·] : V × V → V called the Lie bracket, that sends (f, g) 7→ [f, g] and satisfies the Jacobi
identity [

[f, g], h
]

+
[
[g, h], f

]
+
[
[h, f ], g

]
= 0 ∀f, g, h ∈ V . (31)

2. A (real) Poisson algebra is a real vector space P equipped with two products: a commutative
product

P × P → P, (f, g) 7→ fg

17Note that one recognizes the classical Poisson bracket: XH(·) = {H, · }.
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that makes P into a commutative algebra; and the Poisson bracket

{·, ·} : P × P → P, (f, g) 7→ {f, g}

that makes P into a real Lie algebra. These two product are related by a compatibility rule

{fg, h} = f{g, h}+ {f, h}g ∀f, g, h ∈ P , (32)

called the Leibniz rule. Note that this rule is a generalization of the ordinary product rule
for differentiation.

Examples

1. Let M be a smooth manifold. The space V = (Γ∞(TM), [·, ·]) of smooth vector fields
on M , equipped with the commutator bracket as Lie bracket, is a first example of a Lie
algebra. Skew-symmetry and bilinearity of [·, ·] are clear and the Jacobi identity follows
from a straightforward calculation.

2. Let M again be a smooth manifold. Then P = (C∞(M), {·, ·} ≡ 0) is a first albeit trivial
example of a Poisson algebra, where the commutative product is just the multiplication of
two smooth function (which is again smooth).

3. Let (M,ω) be a symplectic manifold. Define {f, g} := ω(Xf , Xg) for f, g ∈ C∞(M). Here,
Xf and Xg are the associated hamiltonian vector fields of f and g respectively, as defined in
subsection 3.1.2. The rest of this section is devoted to showing that with these definitions
P = (C∞(M), {·, ·}) carries the structure of Poisson algebra.

Definition 3.10 (Poisson manifold[23]). Let M a smooth manifold, A = C∞(M) its algebra of
smooth functions. Then M is a Poisson manifold if A is a Poisson algebra with (f, g) 7→ fg the
commutative product, and with a Poisson bracket {·, ·} : A⊗A→ A defined as follows. Since {·, ·}
must satisfy the Leibniz rule, it comes from a skew-symmetric bivectorfield. So ∃α ∈ Γ∞(Λ2TM)
such that {f, g} = α(df, dg) for all f, g ∈ A. Furthermore the Jacobi identity must hold.

Let’s check explicitly that this bracket satisfies the Leibniz rule:

Leibniz Let f, g, h ∈ A, then {fg, h} = α(d(fg), dh) = α(df · g + (−1)0f · dg, dh) since d is
an anti-derivation of degree 1 and f a 0-form. By bilinearity of α, this yields {fg, h} =
α(df, dh)g + fα(dg, dh) = {f, h}g + f{g, h} which establishes the Leibniz rule.

The condition for this bracket to satisfy the Jacobi identity can be reformulated as follows:

Jacobi Let again f, g, h ∈ A, then
{
{f, g}, h

}
= α

(
dα(df, dg), dh

)
. Now, in local coordinates {xi}

the bracket of two functions f, g reads {f, g} = αij∂if∂jg where ∂if := ∂f/∂xi. Keeping in
mind that the bivectorfield’s coefficients need not be constant, we find{
{f, g}, h

}
= αij∂i

(
αkl∂kf∂lg

)
∂jh = αijαkl (∂ikf∂lg + ∂kf∂ilg) ∂jh+ αij(∂iαkl) ∂kf ∂lg ∂jh{

{g, h}, f
}

= αij∂i
(
αkl∂kg∂lh

)
∂jf = αijαkl (∂ikg∂lh+ ∂kg∂ilh) ∂jf + αij(∂iαkl) ∂kg ∂lh ∂jf{

{h, f}, g
}

= αij∂i
(
αkl∂kh∂lf

)
∂jg = αijαkl (∂ikh∂lf + ∂kh∂ilf) ∂jg + αij(∂iαkl) ∂kh ∂lf ∂jg .

Observing that αij = −αji and that the expressions without derivatives of αij are invariant
under switching {ij} ↔ {kl}, one concludes that adding the above three terms on the left
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yields zero. For the Jacobi identity to hold, the remaining three terms on the right need to
sum up to zero as well. This translates into the condition

αij(∂iαkl) ∂kf ∂lg ∂jh+ αij(∂iαkl) ∂kg ∂lh ∂jf + αij(∂iαkl) ∂kh ∂lf ∂jg = 0

which is equivalent to the vanishing of the so-called Schouten-Nijenhuis bracket18:

αij(∂iαkl) ∂j ∧ ∂k ∧ ∂l =: [α, α]SN = 0 . (33)

This bracket plays an important role in Kontsevich’s Formality theorem in the next section.
When [α, α]SN = 0, so when the Jacobi identity holds, {·, ·} is indeed seen to define a Poisson
bracket on A since α is by assumption bilinear and skew-symmetric.

It is now possible to show that the algebra of smooth functions C∞(M) of a symplectic manifold
(M,ω) can be equipped with a Poisson bracktet, turning it into a Poisson manifold. For this, recall
that by nondegeneracy of the symplectic 2-form ω, there is a unique vector field Xf ∈ X (M)
assigned to each f ∈ C∞(M) such that iXf

ω = ω(Xf , ·) = df . Using this fact, a bracket is defined
as follows:

{·, ·} : C∞(M)× C∞(M)→ C∞(M), (f, g) 7→ {f, g} := ω(Xf , Xg) . (34)

Proposition 5. The bracket defined above is in fact a Poisson bracket: it is a skew-symmetric
bilinear mapping (i) that satisfies both the Leibniz rule (ii) and the Jacobi identity (iii).

Proof.

(i) Since ω is a skew-symmetric bilinear mapping, the bracket is as well.

(ii) Let f, g, h ∈ C∞(M), hence by the commutative product also fg ∈ C∞(M). Now, let Xfg be
the hamiltonian vector field corresponding to fg, so ω(Xfg, ·) = d(fg) = df · g+ (−1)0f ·dg.
By bilinearity and skew-symmetry

{fg, h} ≡ ω(Xfg, Xh) = d(fg)(Xh)
= df(Xh) · g + f · dg(Xh) = ω(Xf , Xh) · g + f · ω(Xg, Xh)
≡ {f, h}g + f{g, h} .

Hence, the bracket satisfies the Leibniz rule.

Now, proving the Jacobi identity is always a somewhat laborious exercise. The proof found
in [24] is actually quite elegant, so this is the one that will be followed. For the elegance to
become apparant, however, three auxiliary results are needed. All of them can be proven in a
quite straightforward manner from their definitions, so these proofs are only indicated or omitted.

Proposition 6 (Auxiliary results). Let (M,ω) a symplectic manifold and let f, g ∈ C∞(M). Then

1. X{f,g} = −[Xf , Xg]19;

2. [LXf
,LXg ] = L[Xf ,Xg ] or equivalently, the Lie derivative is a Lie algebra homomorphism;

3. {f, g} = iXgdf = LXgf since by Cartan LXf
g = iXf

dg.
18See §3.2 of [30] for more information.
19The proof of this uses i[X,Y ]ω = dω(Y, X) for all X, Y ∈ X (M) (see [21]).
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Now for the proof of the Jacobi identity:

Proof.

(iii) Let f, g, h ∈ C∞(M) then consider

{
{f, g}, h

}
+
{
{h, f}, g

} (3)= LXh
{f, g}+ LXg{h, f}

(3)= LXh
LXgf − LXgLXh

f

= [LXh
,LXg ]f (2)= L−[Xg ,Xh]f

(1)= LX{g,h}f
(3)=
{
f, {g, h}

}
.

Hence
{
{f, g}, h

}
+
{
{g, h}, f

}
+
{
{h, f}, g

}
= 0 for all f, g, h ∈ C∞(M), so this establishes

Jacobi.

Finally, the work done in this section is summarized in the following theorem:

Theorem 3. Every symplectic manifold (M,ω) carries a natural structure of Poisson manifold.
The Poisson algebra is P = (C∞(M), {·, ·}), where the bracket is defined as {·, ·} : C∞(M) ×
C∞(M)→ C∞(M), (f, g) 7→ {f, g} := ω(Xf , Xg).

In conclusion: it is now proven that symplectic manifolds are a special case of Poisson man-
ifolds, on which the general result of Kontsevich as found in [11] applies. Furthermore, it was
shown that for a hamiltonian system, specified by a triple (M,ω,H), Hamilton’s equations of
classical mechanics hold. Therefore, classical mechanics can indeed be described in terms of Pois-
son geometry. This concludes the development of symplectic and Poisson theory for the purposes
of this thesis.
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4 General statement of deformation quantization
In this third part, the way will be cleared to state Kontsevich’s formality theorem. For this
purpose, the problem of quantizing a classical theory in general is discussed in the preliminaries,
following a classic article by [8] about functorial geometric quantization. Afterwards, given a
Poisson manifold (P, {·, ·}) associated to a certain classical mechanical system, its quantization by
deformation is defined and discussed.

The object being deformed is the product of the algebra A = C∞(P ) of smooth functions on
the manifold. We are only interested in products up to equivalence under a certain group action.
Hochschild (co)homology measures to great extent the deformation of an algebra and captures
this equivalence. The second section discusses definitions, small proofs and statement of results
about the group action, the Hochschild complex and its cohomology.

Finally, in the third section, Kontsevich’s theorem is formulated in terms of the differential
graded Lie algebra (DGLA) structure of the Hochschild complex and its cohomology. The explicit
formula for finding a star-product on a given manifold is stated. It is then shown in the last section
that by applying this formalism to the trivial Poisson structure, the Moyal product is found once
more.

4.1 Deformation quantization

4.1.1 Preliminaries: quantization in general

Following [8], let’s take a step back for a moment and consider a classical mechanical system
described by the symplectic manifold (M,ω), which is the total phase space. In section 3.1.1,
symplectomorphisms were defined as maps leaving the symplectic structure of a manifold invariant.
The symplectic category S = {symplecticmanifolds, symplectomorphisms} is formed by these
objects and maps; it can be used to describe classical mechanics.

Quantum mechanical systems however, are described by a Hilbert space of states. The corres-
ponding class of maps that leave the Hilbert structure invariant are unitary transformations, since
they leave the inner product invariant. Together, these objects and maps define the unitary cat-
egory U = {hilbert spaces, unitary transformations}. A reasonable definition of a quantization
of a classical theory would therefore be a covariant functor F : S −→ U satisfying:

1. To every symplectic manifold (M,ω) is associated a Hilbert space F(M,ω) = (F [M ],F [ω]).
In this space, F [ω] : F [M ]×F [M ] −→ C is the inner product.

2. To every symplectomorphism ϕ : (M,ωM )→ (N,ωN ) is associated a unitary transformation
F [ϕ] : F(M,ωM )→ F(N,ωN ).

The question is, however, if it is possible to find a functor consistent with Schrödinger’s theory
of quantum mechanics. In 1946, it was shown by Groenewold in [13] that it is not possible to
find a full quantization, meaning that not every smooth function in C∞(M) can be quantized
consistently: he showed that it is not possible to send the classical Poisson bracket of any two
functions onto their quantum commutator (their Lie bracket) [30]. This results is known as
Groenewold’s no-go theorem.20 It is partially for this reason that it was proposed by the authors
of the influential paper [9] to instead look for an approach by deformation theoretical means.
Their idea is to realize quantum mechanics in an autonomous manner, directly on classic phase

20Still another approach is the one taken by Abraham and Marsden (see [20]), to obtain a ‘reasonable’ quantization
using representation theoretical means. For this, an irreducibility requirement on representations is necessary so as
to not violate Heisenberg’s uncertainty principle. Including this irreducibility criterion also yielded inconsistencies.
For a discussion on this approach, see §4 of [8].
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space, by deforming its product to be non-commutative. As a result, since the mapping of brackets
need only be satisfied up to O(~2) so as to find classical mechanics in the limit where ~ tends to
zero, the inconsistencies are resolved. Moreover, by the Stone-von Neumann theorem, a unitary
algebra representation satisfying the canonical commutations yields a unique Hilbert space (the
representation space), up to unitary equivalence. This Hilbert space contains the regular quantum
states and expectation values can be calculated by virtue of its inner product[5].

The physical inspiration for deformation theory is that different domains of physics are linked
by deforming their algebraic structure encoded by certain parameters. As an example, consider
relativistic mechanics where the important parameter is c, the speed of light. When it tends to
infinity, or equivalenty, when v/c� 1, Einstein’s theory reduces to Newton’s classical mechanics.

The authors of the aforementioned paper imagined a similar construct in quantum mechanics:
when the characteristic paramater ~ goes to 0, quantum mechanics reduces to classical mechanics.
This can equivalently be stated as S/~ � 1 where S denotes the classical action of the system
under consideration. So in this case, ~ is to be considered as a deformation parameter in the sense
of definition 2.1; note that this was already mentioned in relation to the Moyal product in the
introduction of section 2.

4.1.2 Definition of deformation quantization

Let us now pursue the above sketched idea; this will be done by following the structure of [23].
Let (P, {·, ·}) be a Poisson manifold, denote A = C∞(P ) its algebra of smooth functions. This

is the algebraic structure that is to be deformed. In section 3.2 it was shown that (A, {·, ·}) is
indeed a Poisson algebra. Moreover, all classical mechanical systems that can be described in the
symplectic formalism carry a Poisson structure. The discussion about deformation in the previous
section suggests that for two functions f, g ∈ A we would want something like

f ? g = f · g + i~
2 {f, g}+O(~2) , (35)

where ? denotes the star product that results from deforming the algebra A. 21

This can be seen from the fact that this proto-star product can be related to canonical quant-
ization, in which smooth functions are simply promoted to operators and where the brackets
correspond via i~{·, ·} ←→ [·, ·]. Up to O(~2), this structure is already present in the above
formule, which is clear from the so-called star commutator

[f, g]? := f ? g − g ? f = i~
2 ({f, g} − {g, f}) +O(~2) = i~{f, g}+O(~2) .

Expanding on the above intuition, the sought after deformation of the algebra A = C∞(P )
now lies in the following definition of a star product on it [23]:

Definition 4.1 (Star product). A deformed product or star product is an associative, ~−adic
continuous, C[[~]]-bilinear product

? : A[[~]]×A[[~]] −→ A[[~]] ,

that takes values in the algebra of formal22 power series in ~. It is defined explicitly on A as

f ? g :=
∞∑
n=0

Bn(f, g) ~n for all f, g ∈ A (36)

21According to [23], this intuition can already be found in early work of Dirac (see [6]), although he did not state
the fact that this is up to O(~2); presumebly, though, he had it in mind.

22Formal means that there is not necessarily a notion of convergence in A[[~]], nor reason to worry about it. The
powers of ~ are used to index contributions of the bidifferential operators per order of magnitude.
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and extended to A[[~]] by C[[~]]-bilinearity. Furthermore, in zeroth order the star product reduces
to the commutative product, so f ?g

∣∣
~=0 = f ·g. The Bn : A×A −→ A are bidifferential operators

on A, so they are differential operators in both arguments.

There are some remarks to be made about this definition:

1. First of all, the star product is defined on A. The extension to formal power series by
C[[~]]-bilinearity is given by( ∞∑

k=0
fk~k

)
?

( ∞∑
l=0

gl~l
)

=
∞∑
n=0

 ∑
k+l+m=n

Bm(fk, gl)

 ~n , where fk, gl ∈ A .

This extension is done so as to be able to relax the requirement on the mapping between
classical Poisson brackets and quantum commutators: instead of a direct mapping, only the
correspondence principle is to be satisfied.

2. Again by C[[~]]-bilinearity, the associativity on A extends to the algebra of formal power
series. Explicitly, this means for f, g, h ∈ A that

(f?g)?h = f?(g?h) or
∑

k+l=n
Bk(Bl(f, g), h) =

∑
k+l=n

Bk(f,Bl(g, h)) ∀n ∈ N∪{0} . (37)

3. The fact that the star product should reduce to the ordinary commutative product in zeroth
order means B0(f, g) = f · g. It allows for the notation

f ? g := f · g +
∞∑
n=1

Bn(f, g) ~n

which shows the deformative nature of the product more clearly: lim~→0 f ? g = f · g.

4. The Bn could just be bilinear operators. However, bidifferential operators are ‘local’ in
the sense that derivation in a point only depends on a (arbitrarily) small neighbourhood
about that point (cf. the concept of germ, see [16]). Hence, the differential aspect of these
operators encodes locality from a physical point of view [30].

5. Although this remark will not be discussed in more detail in this thesis, the claim that the
star product be ~-adic continuous is still relevant. It entails the following: to talk about
continuity, a topology is needed. Take an element f =

∑∞
n=0 fn ~n ∈ A[[~]] = C∞(M)[[~]].

The order ord(f) is defined as the smallest n ∈ N ∪ {0} for which fn 6= 0; if f ≡ 0 then
ord(f) :=∞. Using this function, a metric can be defined on A[[~]] by

d : A[[~]]×A[[~]] −→ [0, 1], (f, g) 7→ d(f, g) =
{

2−ord(f−g) iff 6= g

0 iff = g

It can be shown that the collection of open balls T = {B(f ≡ 0, r) | r ∈ [0, 1]} induces
a topology that is Hausdorff. It is called the ~-adic topology on A[[~]]. The assertion in
definition 4.1 is, thus, that applying the star product is a continuous operation with respect
to this ~-adic topology.[19] This essentially means that the product is continuous in every
order of ~, an assumption usually made in physics.

6. By the universal property of tensor products (see [25], 1 chapter XVI), C[[~]]-bilinearity of
the star product ? implies that the following diagram commutes
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A[[~]]×A[[~]] A[[~]]

A[[~]]⊗C[[~]] A[[~]]

?

ι
?̄

which reads as ? = ?̄ ◦ ι. By definition of the tensor product, we have ι(a, b) := a ⊗C[[~]] b
for a, b ∈ A[[~]]. So equivalently, the notation using the tensor product space and the star
product ?̄ could be used; this emphasizes the fact that ? is a C[[~]]-bilinear product.

As was mentioned in the introduction, quantization idealy associates a unique quantum system
(star product) to a classical system (Poisson bracket). It is therefore important to keep in mind
that our goal essentially is to relate a Poisson structure to a star product in a one-one manner.
This goal will be clarified step-by-step as we proceed.

Now, using both the associativity on A[[~]] and the second remark, a relation between these two
can be shown: the antisymmetric part of B1 is seen to carry the structure of Poisson bracket [23].
This means that even when the manifold M carries no Poisson structure, its algebra C∞(M) can
be given one by defining B−1 as bracket; hence, it is turned into a Poisson manifold.23 Conversely,
whenM already carries such a structure, it would be natural to ask for B−1 ≡ { , }. However, note
that the symmetric part B+

1 need not be zero. The relation between B+
1 and Poisson brackets is

discussed in more detail in the next section.
The above leads naturally to the following definition of quantization of a Poisson manifold:

Definition 4.2 (Quantization by deformation). A quantization by deformation of a Poisson man-
ifold (P, {·, ·}) is a star product as in definition 4.1 on its algebra of smooth functions C∞(P ), such
that the equality B−1 (·, ·) = {·, ·} between differential operators holds.

To make all this precise, let’s prove the assertion that B−1 carries the structure of Poisson
bracket:

Proposition 7. The antisymmetric part of the bidifferential operator B1 is a Poisson bracket on
C∞(P ).

Proof. Let us first split B1 in its symmetric and antisymmetric parts as follows

∀f, g ∈ A : B1(f, g) ≡ B−1 (f, g) +B+
1 (f, g)

≡ 1
2
(
B1(f, g)−B1(g, f)

)
+ 1

2
(
B1(f, g) +B1(g, f)

)
.

So by definition, B−1 is antisymmetric. Using the star product’s associativity as made explicit in
the second remark after definition 4.1, both the Leibniz rule and the Jacobi identity can be shown.
Consider the associativity condition (37) for n = 1, 2, this reads

B1(fg, h) +B1(f, g)h = B1(f, gh) + fB1(g, h)
B2(fg, h) +B1(B1(f, g), h) +B2(f, g)h = B2(f, gh) +B1(f,B1(g, h)) + fB2(g, h) .

Including the two cyclic permutations of the first equation, this yields after some manipulation

B−1 (fg, h) = fB−1 (g, h) +B−1 (f, h)g
23One could also define {f, g} = B1(f, g) − B1(g, f) as is done in [28] to turn C∞(M) into a Poisson manifold.

Since this only differs from our definition by a factor 2, it is just a matter of taste which definition to use.
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where the Leibniz rule has been found explicitly. Using this rule, and adding the six permutations
of the second equation above yields the Jacobi identity for B−1 . Explicitly:

B−1 (B−1 (f, g), h) +B−1 (B−1 (g, h), f) +B−1 (B−1 (h, f), g) = 0 ∀f, g, h ∈ A .

Thus, B−1 can be considered a Poisson bracket on A = C∞(P ).

4.2 Equivalence of products

In the previous section, it was shown that the antisymmetric part of the first order bidifferential
operator of a star product on C∞(M) carries a Poisson structure. When deforming Poisson
manifolds (P, {·, ·}), it would therefore be natural to ask for B−1 ≡ { , }. Note that from now on,
M denotes a generic smooth manifold whereas P denotes a Poisson manifold.

First of all, a group action will be introduced on A[[~]] = C∞(P )[[~]] to explore the relation
between star products on Poisson manifolds and their Poisson structure. Then, using the first
Hochschild cohomology group of the algebra C∞(P ), it will be shown that each equivalence class of
star products induced by this action contains deformations as in definition 4.2 for which B+

1 ≡ 0.
In other words: by introducing this equivalence we need only consider natural quantizations of
Poisson manifolds, those for which B1(·, ·) ≡ {·, ·}. Again, the brief description in [23] will be
elaborated on.

4.2.1 A group action

To construct an action on A[[~]], recall the definition of a star product on A = C∞(P ): let f, g ∈ A,
the product was defined as

f ? g = f · g +
∞∑
n=1

Bn(f, g) ~n

where Bn : A×A −→ A are linear bidifferential operators, and the product was to be associative.
Now, choosing an other family {B̃n}n∈N of bidifferential operators will result in a different star
product. Since composing linear differential operators yields again a linear differential operator,
let’s consider the following mapping

D : A −→ A[[~]], f 7→ D(f) := f +
∞∑
n=1

Dn(f) ~n (38)

where the Dn : A −→ A are again linear differential operators; in particular, D is itself a linear
mapping. This map can be uniquely extended to the whole of A[[~]] by asking for C[[~]]-linearity.
The idea is to construct new star products on A[[~]] by first applying such a mapping on both
functions, then the original star product. Explicitly:

∀f, g ∈ A define f ?D g := D(f) ? D(g) . (39)

The above defines a star product since ? is a star product and since D is a linear differential
operator. Note that the requirement that f ?D g

∣∣
~=0 = f · g of definition 4.1 is met: setting

D0 = 1 makes the product reduce to the commutative product in the classical limit.

Definition 4.3 (Gauge action). A mapping D : A[[~]] −→ A[[~]] is called a gauge action if it is
a C[[~]]-linear mapping of the form (38) where explicitly D0 = 1. The collection of gauge actions
is denoted by G. In the physics literature, such a gauge action is often called a field redefinition.
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Notice that D can be inverted if and only if D0 can be inverted, since all the information about
f ∈ A is already present in

lim
~→0

D(f) = D0(f) = f .

By definition D0 = 1, so all gauge actions are invertible. Their collection G is now seen to have
nice properties under composition: those of a group.

Proposition 8. The collection of gauge actions G forms a group under composition of maps,
with identity element the identity mapping 1 : A[[~]] −→ A[[~]], f 7→ 1(f) := f . This group is
denoted by G = (G, ◦,1).

Proof.

Composition Denote µ : G × G −→ G the composition. Let D1, D2 ∈ G, then for f ∈ A[[~]]

µ(D1, D2)(f) ≡ (D1 ◦D2)(f) = D1 ◦
( ∞∑
n=0

D2,n(f) ~n
)

=
∞∑
m=0

D1,m ◦
( ∞∑
n=0

D2,n(f) ~n
)
~m =

∞∑
k=0

( ∑
m+n=k

(D1,m ◦D2,n)(f) ~m+n
)

=
∞∑
k=0

( ∑
m+n=k

(D1,m ◦D2,n)(f)
)
~k =:

∞∑
k=0

Dk(f) ~k ,

where the {Dk}∞k=0 form a new family of linear differential operators. Note that since all
the power series are formal and by C[[~]]-linearity, it is permitted to take operators inside
infinite sums. Furthermore,

∑
m+n=0D1,m ◦D2,n = D1,0 ◦D2,0 = 1, so indeed D0 = 1.

Hence µ(D1, D2) ≡ D := 1 +
∑∞
k=1Dk ~k is again an element of G.

Neutral element The identity mapping 1 : f 7→ f, A[[~]] −→ A[[~]] is the neutral element under
composition: for all D ∈ G, D ◦ 1 = D = 1 ◦D.

Inverse It was already noted that the requirement of D0 being invertible suffices for the entire
operator to be invertible; denote it’s inverse by E. An explicit formula is

E0 = 1 , En = −
n−1∑
m=0

EmDn−m ∀n > 0 , (40)

which is easily verified by an explicit calculation.

Associativity Finally, associativity follows from the fact that composition of maps is associative.

We conclude that G = (G, ◦,1) is a group.

In the above equation (39) a new star product ?D is defined by choosing someD ∈ G. Although
this does define a star product, it does not tell us much about the one we had. It is therefore
interesting to use the group structure of G = (G, ◦,1) to again invert the operator D after taking
the product ?D: the total operation will be called a gauge transformation.

For this purpose, let G ×A −→ A[[~]] be the action of G on A defined as

(D, f) 7→ D · f := D(f) = f +
∞∑
n=1

Dn(f) ~n

and extended by C[[~]]-linearity to A[[~]]; note that this is the same construction as in equation
(38), in particular, D is a linear mapping. By the above, it is now clear that this indeed defines
an action on A[[~]], whence the name gauge action is justifed. This leads to
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Definition 4.4 (Gauge transformation). Fix a D ∈ G, let E be its inverse. A new star product
?̃ is defined on A[[~]] as follows: for f, g ∈ A[[~]], set f?̃g = D ◦

(
E(f) ? E(g)

)
.

This product is associative and C[[~]]-bilinear since D, E and ? are. Furthermore, B0 = D0 =
E0 = 1 which entails f?̃g|~=0 = f · g, so it is a star product as in definition 4.1 indeed. Explicitly:

f?̃g = f · g +
∞∑
n=1

Cn(f, g) ~n where Cn(f, g) =
∑

m+k+l+j=n
Dm ◦Bk

(
El(f), Ej(g)

)
. (41)

Note that ?̃ is the one operator that makes the following diagram commute:

A[[~]]×A[[~]] A[[~]]

A[[~]]×A[[~]] A[[~]]

?

?̃

E × E D

To quote [23], all this can be interpreted as follows:

Given a star product ?, which is determined by a family of linear bidifferential oper-
ators {Bn}n≥0, and a gauge action D ∈ G we can think of D as a formal change of
coordinates, and call ?̃ = D(?) the star product in the new coordinates.

Star products that can be linked by a gauge transformation are called formally equivalent (see
§5 of [19]). Note that the naive star product ?N and symmetric star product ?S encountered in
section 2.4.2 are formally equivalent in this sense. As for the Moyal product ?~, it was seen to
be exactly the same as the symmetric star product ?S (so formally equivalent under the identity
mapping).

The action of gauge transformations induces an equivalence relation on star products. The
corresponding equivalence classes of star products play a prominent role in examing the uniqueness
of deformation quantization. They appear in the corollary of Kontsevich’s Formality theorem that
is discussed in section 4.3.3.

4.2.2 Hochschild complex & cohomology

In the previous section, an action of gauge equivalence on the set of star products was construc-
ted. To show that in each equivalence class of this action are star products for which B+

1 ≡ 0,
Hochschild (co)homology is a great tool. It is a (co)homology theory for associative algebra’s and
was introduced in 1945 by mathematician Gerhard Hochschild in the classic paper [26]. For some
background information, proofs and generalities, especially regarding the interpretation of this
particular homology theory, see the appendix.
Definition 4.5 (Hochschild cocomplex). Let A = C∞(M) be the associative R-algebra of smooth
real functions on a smooth manifold M . For n ≥ 0, define the Hochschild chains with coefficient
bimodule A itself (see appendix) as

Cn(A,A) =
{
φ : An −→ A |φmultilinear, differential operator

}
where by definition A0 ≡ R, so C0(A,A) = Hom(R, A). The chains {Cn(A,A)}n≥0 are linked by
the differentials dn : Cn(A) −→ Cn+1(A) that are defined as

dn(φ)(a1, . . . , an+1) :=


aφ− φa for n = 0
a1 φ(a2, . . . , an+1) + (−1)n+1φ(a1, . . . , an) an+1

+
∑n
j=1(−1)jφ(a1, . . . , (aj aj+1), . . . , an) for n > 0
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for a, a1, . . . , an+1 ∈ A. Then, (C∗(A,A), d∗) is the Hochschild complex of the algebra A.

In the appendix, it is shown that dn+1 ◦ dn = 0 holds for any arbitrary k-algebra A, where k
is a commutative ring, on the condition that the φ ∈ Cn(A,A) are only asked to be multilinear.
In this case however, only results on the Hochschild cohomology groups of the associative algebra
A = C∞(M) are needed where M is a smooth manifold. It turns out that dn+1 ◦ dn = 0 still holds
in that category when the functions are taken to be differential operators.

The Hochschild cohomology groups24 are now defined in the normal way as

Hn
Hoch(A) := Hn

Hoch

(
C∗(A,A), d∗

)
= ker (dn : Cn(A,A) −→ Cn+1(A,A))

im (dn−1 : Cn−1(A,A) −→ Cn(A,A)) . (42)

Furthermore, one can prove that for a smooth manifold M where its algebra of smooth func-
tions is denoted by A = C∞(M) as before, its Hochschild cohomology is given by Hn

Hoch(A) =
Γ∞(ΛnTM) (see for instance [27]). This is the algebra of smooth multivector fields on M .
When relating Kontsevich’s Formality theorem to deformation quantization, this result will be
of great importance, since a Poisson structure (classical system) is defined by a smooth bivector-
field α ∈ Γ∞(Λ2TM) (see definition 3.10 in section 3.2). This importance will be explained in
section 4.3.3.

It is now time to link the first order bidifferential operator B1 : A⊗A −→ A of a star product
to the second Hochschild cohomology group of C∞(M). By the above, this group is isomorphic
to the space of smooth bivectorfields H2

Hoch(C∞(M)) = Γ∞(Λ2TM). Note that B1 ∈ C2(A,A).
Recall that the associativity condition of star products imposes relations per order of ~. In first
order

∀f, g, k ∈ A : B1(fg, k) +B1(f, g)k = B1(f, gk) + fB1(g, k) . (43)
Comparing this to definition 4.5 of the Hochschild chains, yields

∀f, g, k ∈ A : d2(B1)
(
f, g, k

)
= fB1(g, k)−B1(fg, k) +B1(f, gk)−B1(f, g)k = 0 ,

so B1 is closed in the Hochschild complex: the closedness of a bidifferential operator in Hochschild
cohomology is equivalent to its associativity condition. Furthermore, applying a gauge transform-
ation to ?, equation (41) for n = 1 yields the transformed first order differential operator

C1(f, g) = B1(f, g)−
[
fD1(g)−D1(fg) +D1(f)g

]
where f, g ∈ A ,

since E1 = −E0 ◦D1 = −D1 by equation (40). Therefore, we have

(B1 − C1)(f, g) = d1(D1) (f, g) for all f, g ∈ A .

This expression is seen to have the structure of a Hochschild 1-coboundary, hence d2(B1−C1) = 0.
This is important, since it means that B1 and all first order operators C1 of formally equivalent
star products are the same element (i.e. the same cohomology class) in the second Hochschild
cohomology group H2

Hoch(A). Consequently, up to gauge equivalence, the first order operator of
a star product is a Hochschild cohomology class.

Moreover, B1 −C1 is symmetric in f, g : (B1 −C1)(f, g) = (B1 −C1)(g, f). Hence, any gauge
transformation only affects the symmetric part of B1. Splitting B1 and C1 in their symmetric and
antisymmetric parts as in the proof of proposition 7, it becomes clear that

C1(f, g) = C−1 (f, g) + C+
1 (f, g) = B−1 (f, g)︸ ︷︷ ︸

antisymmetric

+
[
B+

1 (f, g)−
(
fD1(g)−D1(fg) +D1(f)g

)]︸ ︷︷ ︸
symmetric

.

24Actually, they have the structure of R-module; this is shown in the appendix.
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Since B1 is a linear bidifferential operator, so is B+
1 . The assertion that there always is a linear

differential operator D1 (i.e. a formal sum of linear differential operators D ∈ G) such that
the symmetric part in the above equation vanishes is non-trivial. It amounts to stating that
B+

1 is a Hochschild 1-coboundary, which means that there is an element K ∈ C1(A,A) such that
B+

1 = d1(K). The Hochschild-Kostant-Rosenberg theorem (see §4 of [27]) says that this statement
is true on Rd, hence locally on a manifold. Then, by choosing a partition of unity, we may finally
apply D1 to any smooth function on the entire manifold M [30].

Assembling all the information, this shows the following equivalent statements:

Theorem 4.

1. Any gauge equivalence class of star products contains at least one representative for which
the first order operator B1 is antisymmetric;

2. A Poisson manifold (P, {·, ·}) can be quantized with B−1 = { , } as in 4.2 if and only if it can
be quantized with B1 = { , }25;

3. The antisymmetric part of B1 is invariant under gauge transformations;

The above result entitles us to only consider natural quantizations of a Poisson manifold, those
for which B1 = { , }. In the rest of this thesis, the attention will be restricted to this class of star
products.

Remark

Note however that this only determines the representative of an equivalence class of star products
up to O(~2); gauge transformations can still change higher order contributions of this repres-
entative. This will play an important role in the statement about uniqueness following from
Kontsevich’s Formality theorem in section 4.3.3.

4.3 Formulation of Kontsevich’s theorem

The Formality conjecture that Kontsevich proved in 1997 in [11], is an assertation about differential
graded Lie algebra’s (DGLA). He showed that two objects are quasi-isomorphic as DGLAs. The
concept of quasi-isomorphism is very intricate, so for details the reader is referred to the original
[11] or the excellent [30]. In this thesis, only an approximate definition is given. The two objects
that are quasi-isomorphic are the Hochschild cocomplex on the one hand, and its cohomology
complex on the other hand. From this theorem, Kontsevich deduced a result on star products
that we are interested in: one about classification.

First of all, the definition of a DGLA is given. It is shown that when such a structure is present
on a complex g, it naturally induces a DGLA structure on its cohomology complex. Then, after
introducing a so-called degree shift, it is proven that the Hochschild cocomplex is a first example
of such a DGLA, whence its cohomology complex is one as well. After this, Kontsevich’s Formality
theorem is stated as in [11], including the corollary relevant for deformation quantization. These
results are discussed and interpreted.

25It is interesting to note that a Poisson bracket can also be defined on C∞(M) by {f, g} := B1(f, g)−B1(g, f),
as is done in for example [28]. By definition, it is immediately skew-symmetric for B1’s symmetric part falls out.
Since gauge transformations only affect the symmetric part of B1, this construction yields the same equivalence
classes under their action. Therefore, it is just a matter of taste (and a factor) which definition to follow.
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4.3.1 Differential graded Lie algebra

Following [29], first of all the definition of this structure:
Definition 4.6 (DGLA). A differential graded Lie algebra over a field K of characteristic zero is
a complex

g =
⊕
k∈Z

gk , d : gk −→ gk+1 , d2 = 0

that is also a graded Lie algebra with respect to the same gradation, with bracket

[ , ] : gk × gl −→ gk+l

that satisfies the requirements
1. ∀xi ∈ gsi: [x1, [x2, x3]] + (−1)s1(s2+s3)[x2, [x3, x1]] + (−1)s3(s1+s2)[x3, [x1, x2]] = 0

2. ∀xi ∈ gsi: [x1, x2] = (−1)1+s1s2 [x2, x1] .
Finally, there is a compatibility axiom relating the differential and the bracket:

∀xi ∈ gsi : d[x1, x2] = [dx1, x2] + (−1)s1 [x1, dx2] .

It will presently be shown that the Hochschild cocomplex indeed carries all the structure
required for a differential graded Lie algebra. This is a labourious exercise, so let us first of all
proof the claim that a DGLA structure on a given complex naturally induces a DGLA structure
on its cohomology complex [30].
Theorem 5 (Induced DLGA). Let g =

⊕
k∈Z g

k be a differential graded Lie algebra with differ-
ential d : gk −→ gk+1 and Lie bracket [ , ]g : gk × gl −→ gk+l. When equipped with the naturally
induced Lie bracket [ , ]H and zero differential δ ≡ 0, its cohomology complex H :=

⊕
i∈ZHi(g) has

a natural structure of DGLA.
Proof. Since g is a complex, its cohomology is naturally defined as

Hi(g) := Ker(d : gi −→ gi+1)
/
Im(d : gi−1 −→ gi) (44)

which equips H with the structure of graded vector space. Furthermore, a Lie bracket [ , ]H can
be defined on the cohomology classes as follows: for |a| ∈ Hk(g) and |b| ∈ Hl(g) set[

|a|, |b|
]
H

:=
∣∣∣[a, b]g∣∣∣ . (45)

We must verify that this is a well-defined graded Lie bracket. Let ã ∈ |a|, b̃ ∈ |b| be other
representatives of the respective cohomology classes. This means that ã = a+ dα and b̃ = b+ dβ
for certain α ∈ gk−1 and β ∈ gl−1. Their bracket yields[

|ã|, |b̃|
]
H
≡
∣∣∣[ã, b̃]g∣∣∣ =

∣∣∣[a+ dα, b+ dβ
]
g

∣∣∣ =
∣∣∣[a, b]g∣∣∣+ ∣∣∣[dα, b]g∣∣∣+ ∣∣∣[a, dβ]g

∣∣∣+ ∣∣∣[dα, dβ]g
∣∣∣ .

The compatibility axiom of the DGLA reduces in cohomology to |d[a, b]g| = |0|. This yields:∣∣∣[dα, b]g∣∣∣ = −(−1)k−1
∣∣∣[α, db]g∣∣∣ = |0|

since |b| ∈ H l(g) which means db = 0, so [α, db]g = |0|. The exact same reasoning yields |[a, dβ]g| =
|0|. Furthermore, |[dα, dβ]g| = |d[α, dβ]g| = |0|, so we obtain[

|ã|, |b̃|
]
H
≡
∣∣∣[ã, b̃]g∣∣∣ =

∣∣∣[a, b]g∣∣∣ ≡ [|a|, |b|]
H

(46)

whence the bracket is independent of representative and therefore well-defined. It inherits the
graded Lie bracket structure from [ , ]g. Furthermore, since the differential δ of the cohomology
complex is defined to be identically zero, H is a DGLA indeed.
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4.3.2 Hochschild cocomplex as DGLA: a degree shift

Let us proof that the Hochschild cocomplex is a first example of DGLA. Following definition 4.6,
a graded Lie bracket is needed. This means that the bracket must satisfy graded antisymmetry
and the graded Jacobi identity. Furthermore, the present differential structure on the cocomplex
should be compatible with this Lie bracket.

In this section, such a bracket will first of all be defined. It is then shown that for the
cocomplex to be a graded Lie algebra, it needs to be shifted by one degree; this will presently be
made precise. After this, graded antisymmetry and the graded Jacobi identity are shown. Finally,
a lemma suggested by [29] is proven to verify that the compatibility axiom holds.

We now equip the Hochschild cocomplex with a bracket, defined for φi ∈ Cki(A,A) as

[φ1, φ2] = φ1 ◦ φ2 − (−1)k1k2φ2 ◦ φ1 , (47)

which is called the Gerstenhaber bracket [29]. The circle operation ◦ is known as the Gerstenhaber
product. It builds a k1 + k2 − 1-cochain out of a k1-cochain and a k2-cochain: for xi ∈ A

(φ1◦φ2)(x1, . . . , xk1+k2−1) :=
k1∑
j=1

(−1)(j−1)k1φ1(x1, . . . , xj−1, φ2(xj , . . . , xj+k2−1), xj+k2 , . . . , xk1+k2−1)

It is important to note that the Gerstenhaber bracket eats two elements - one of degree k1, the
other of degree k2 - and produces an element of degree k1 + k2 − 1. Comparing this to the
definition of a DGLA above shows that this does not define a graded Lie algebra, for we want
deg(f)+deg(g) = deg([f, g]). To remedie this, a degree shift on the cocomplex is needed. However,
there are two natural gradings:

1. the homological degree (deg): the grading induced by the chain complex d;

2. and the dimension of the function (dim): the number of slots a function has.

It is the homological degree that is to be shifted. This is defined as follows:

Definition 4.7. The kth degree shift of a complex C•, denoted by C•[k], is defined as (C•[k])n :=
Cn+k. Then, the dimension of an element f ∈ CnHoch[k](A,A) is dim(f) = n+ k and its degree is
deg(f) = n. The index of the differential operators is shifted accordingly, so dn : Cn[k](A,A) −→
Cn+1[k](A,A).

As will be shown presently, shifting the degree of the Hochschild cocomplex by 1 will adjust
the Gerstenhaber bracket in such a way as to turn the shifted cocomplex into a graded Lie algebra.
As an added benefit, the compatibility axiom for differential operator and bracket can then be
seen to hold, giving the complex the additional structure of a differential graded Lie algebra.

To show the impact of such a degree shift, we’ll define a so-called circle-i operation in terms of
which the Gerstenhaber product can be written26. In turn, the Lie bracket is defined as a sum of
two Gerstenhaber products in equation 47. This links the circle-i operations and the Lie bracket
[29].

To show the effect of such a shift and to clarify what is at stake here, we’ll juxtapose the
circle-i operations for the unshifted and shifted case to show the incongruency in gradation:

By definition, the circle-i operations take f ∈ Cn(A,A), g ∈ Cm(A,A) and build a f ◦i g ∈
Cn+m−1(A,A) for 1 ≤ i ≤ n.

26This product is in fact a signed sum of circle-i operations. Note that this operation looks a lot like the
decomposition of the Hochschild differential in terms of partial operations, see the appendix.
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Unshifted Consider two elements of the unshifted Hochschild cocomplex, e.g. f ∈ Cn(A,A),
g ∈ Cm(A,A); this means that for both functions, their dimension and homological degree
are the same, so for example dim(f) = n = deg(f). The circle-i operation now builds a
function of dimension dim(f) + dim(g)− 1 = n+m− 1 as follows:

f ◦ig(a1, . . . , an+m−1) = f(a1⊗. . .⊗ai−1⊗g(ai⊗. . .⊗ai+m−1)⊗ai+m⊗. . .⊗an+m−1) , (48)

where a1, . . . , an+m−1 ∈ A and i ∈ {1, . . . , n}. Hence, f ◦i g ∈ Cn+m−1(A,A). The problem,
now, is that deg(f ◦i g) = n+m− 1 6= n+m = deg(f) + deg(g), so the homological degree
is seen to mismatch: the unshifted Hochschild cocomplex is not a graded Lie algebra.

Shifted After shifting the Hochschild cocomplex with 1 degree in total, take f ∈ Cn[1](A,A),
g ∈ Cm[1](A,A). Recall that this means that dim(f) = n + 1 but its homological degree
still is deg(f) = n. The circle-i operation in this case constructs a functions of dimension
dim(f) + dim(g)− 1 = (n+ 1) + (m+ 1)− 1 = n+m+ 1:

f ◦ig(a1, . . . , an+m+1) = f(a1⊗. . .⊗ai−1⊗g(ai⊗. . .⊗ai+m)⊗ai+m+1⊗. . .⊗an+m+1) , (49)

where a1, . . . , an+m+1 ∈ A and i ∈ {1, . . . , n + 1}. But due to the shift, although the
dimension of f ◦i g is n+m+ 1, its degree is n+m. This means f ◦i g ∈ Cn+m[1](A,A) so
indeed deg(f ◦i g) = deg(f) + deg(g).

In conclusion: by shifting the degree of the Hochschild cocomplex by 1, the gradations are seen
to match since we now have deg(f) + deg(g) = deg([f, g]) for all homogeneous elements f, g. It is
now possible to state

Theorem 6 (Hochschild cocomplex). The 1st degree shifted Hochschild cocomplex (C∗[1](A,A), d∗)
endowed with the Gerstenhaber bracket [ , ] is a differential graded Lie algebra (C∗[1](A,A), d∗, [ , ]).
For f ∈ Cn[1](A,A), g ∈ Cm[1](A,A), the bracket is defined in (47) in terms of the Gerstenhaber
product. Explicitly, these definitions are

[f, g] = f ◦ g − (−1)nmg ◦ f and f ◦ g =
n+1∑
i=1

(−1)(i−1)mf ◦i g (50)

where ◦i denotes the shifted circle-i operation defined above.

Proof. In definition 4.5, the Hochschild cochains Cn[1](A,A) = Cn+1(A) are only defined for n ≥
−1. To fit definition 4.6 of DGLA, the cocomplex needs to be extended to the negative integers.
This is most easily done by setting Cn[1](A,A) := 0 (n < −1) for the cochains and by putting
dn ≡ 0 (n < −1) for the differentials linking them; we so obtain the complex (C∗[1](A,A), d∗) =
(
⊕
k∈ZC

k[1](A,A), dk). It is shown in the appendix that this indeed defines a complex (i.e. that
d2 = 0), hence the first part of the definition of DGLA is satisfied.

Let us now turn to the aspect of Lie algebra. First we’ll consider the graded antisymmetry:
let φi ∈ Cki [1](A,A), then for the Gerstenhaber bracket

[φ1, φ2] (47)= φ1 ◦ φ2 − (−1)k1k2φ2 ◦ φ1

= (−1)1+k1k2φ2 ◦ φ1 − (−1)1+2k1k2φ1 ◦ φ2

= (−1)1+k1k2
(
φ2 ◦ φ1 − (−1)k1k2φ1 ◦ φ2

) (47)= (−1)1+k1k2 [φ2, φ1]

Note that the graded antisymmetry follows directly from the bracket’s definition. In particular,
the definition of the Gerstenhaber product as in the statement of the theorem is irrelevant for this
part of the proof; this will also hold for the Jacobi identity.
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For the proof of the graded Jacobi identity, note that the Gerstenhaber bracket is associative27:[
φ1, [φ2, φ3]

]
= φ1 ◦ [φ2, φ3]− (−1)k1(k2+k3)[φ2, φ3] ◦ φ1

= φ1 ◦
(
φ2 ◦ φ3 − (−1)k2k3φ3 ◦ φ2

)
− (−1)k1(k2+k3)(φ2 ◦ φ3 + (−1)k1(k2+k3)φ3 ◦ φ2

)
◦ φ1

= φ1 ◦ φ2 ◦ φ3 − (−1)k2k3φ1 ◦ φ3 ◦ φ2 − (−1)k1(k2+k3)φ2 ◦ φ3 ◦ φ1

+ (−1)k1(k2+k3)φ3 ◦ φ2 ◦ φ1

The other two requested double commutators can be obtained by permuting (1→ 2, 2→ 3, 3→ 1)
and (1 → 3, 2 → 1, 3 → 2) respectively28. Adding the weighted signs as in the definition of the
graded Jacobi identity yields[

φ1, [φ2, φ3]
]

+ (−1)k1(k2+k3)[φ2, [φ3, φ1]
]

+ (−1)k3(k1+k2)[φ3, [φ1, φ2]
]

=φ1 ◦ φ2 ◦ φ3 − (−1)k2k3φ1 ◦ φ3 ◦ φ2 − (−1)k1(k2+k3)φ2 ◦ φ3 ◦ φ1 + (−1)k1(k2+k3)+k2k3φ3 ◦ φ2 ◦ φ1

+ (−1)k1(k2+k3)(φ2 ◦ φ3 ◦ φ1 − (−1)k3k1φ2 ◦ φ1 ◦ φ3 − (−1)k2(k3+k1)φ3 ◦ φ1 ◦ φ2

+ (−1)k2(k3+k1)+k3k1φ1 ◦ φ3 ◦ φ2
)

+ (−1)k3(k1+k2)(φ3 ◦ φ1 ◦ φ2 − (−1)k1k2φ3 ◦ φ2 ◦ φ1 − (−1)k3(k1+k2)φ1 ◦ φ2 ◦ φ3

+ (−1)k3(k1+k2)+k1k2φ2 ◦ φ1 ◦ φ3
)
.

Expliciting all the factors of −1 yields expressions like (−1)2k1k3+k1k2 = (−1)k1k2 . After making
these simplifications in the second and third row of the above equation, it is finally apparent that[
φ1, [φ2, φ3]

]
+ (−1)k1(k2+k3)[φ2, [φ3, φ1]

]
+ (−1)k3(k1+k2)[φ3, [φ1, φ2]

]
=φ1 ◦ φ2 ◦ φ3 − (−1)k2k3φ1 ◦ φ3 ◦ φ2 − (−1)k1(k2+k3)φ2 ◦ φ3 ◦ φ1 + (−1)k1(k2+k3)+k2k3φ3 ◦ φ2 ◦ φ1

+ (−1)k1(k2+k3)φ2 ◦ φ3 ◦ φ1 − (−1)k1k2φ2 ◦ φ1 ◦ φ3 − (−1)(k1+k2)k3φ3 ◦ φ1 ◦ φ2 + (−1)k2k3φ1 ◦ φ3 ◦ φ2

+ (−1)k3(k1+k2)φ3 ◦ φ1 ◦ φ2 − (−1)k1k2+k3(k1+k2)φ3 ◦ φ2 ◦ φ1 − φ1 ◦ φ2 ◦ φ3 + (−1)k1k2φ2 ◦ φ1 ◦ φ3 = 0 .

Although, admittedly, it can take some time to see the pairwise cancellation that yields Jacobi.
It was already shown above that the gradation of homogeneous elements is respected by the

Lie bracket due to the degree shift. We therefore conclude that de Hochschild complex is a graded
Lie algebra. Moreover, the compatibility axiom now is valid. For its proof, the aforementioned
lemma found in [29] must first be shown:

Lemma 4.1 (Niesser). Let µA : A⊗A −→ A be the associative algebra multiplication in A; note
that µA ∈ C1[1](A,A). Then for f ∈ Cn[1](A,A) we have dn(f) = [µA, f ].

Proof. This follows from a straightforward computation. Note that dim(µA) = 2, deg(µA) = 1
and that dim(f) = n + 1, deg(f) = n. Thanks to equation (47), symbol calculus suffices for the
bracket:

[µA, f ] = µA ◦ f − (−1)1·nf ◦ µA
(50)=

2∑
i=1

(−1)(i−1)nµA ◦i f − (−1)n
n+1∑
j=1

(−1)(j−1)1f ◦j µA

= (−1)n
[
µA ◦2 f +

n+1∑
j=1

(−1)jf ◦j µA + (−1)n+2µA ◦1 f
]
.

27See for example §1.2 of [29].
28Or we can apply the cycles (123) and (132) respectively.
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Comparing this expression to the differential dn(f) and applying it to a1, . . . , an+2 ∈ A yields

(dnf)(a1, . . . , an+2) = a1 f(a2, . . . , an+2)− (−1)n+1f(a1, . . . , an+1) an+2

+
n+1∑
j=1

(−1)jf(a1, . . . , aj−1, aj aj+1︸ ︷︷ ︸, aj+2, . . . , an+2) ,

where aj aj+1 = µA(aj , aj+1) by definition of µA. Furthermore, note that for the same reason also
a1 f(a2, . . . , an+2) = µA(a1, f(a2, . . . , an+2)) = (µA ◦2 f)(a1, . . . , an+2). Rewriting the remaining
two terms in the above expression, using µA in the same manner, shows that indeed [µA, f ] = dn(f)
for all f ∈ Cn[1](A,A).

Now for the remainder of the proof of theorem 6:
Consider φi ∈ Cki [1](A,A). Using the previous lemma (i), the graded Jacobi identity (ii) and
graded antisymmetry (iii), it is then clear that

[dφ1, φ2] + (−1)k1 [φ1, dφ2] (i)=
[
[µA, φ1], φ2

]
+ (−1)k1

[
φ1, [µA, φ2]

]
. (51)

Furthermore, the last term can be expanded using (ii) as

(−1)k1
[
φ1, [µA, φ2]

] (ii)= (−1)k1

(
−(−1)k1(1+k2)[µA, [φ2, φ1]

]
− (−1)k2(k1+1)[φ2, [φ1, µA]

])
(iii)= (−1)k1k2

[
µA, [φ2, φ1]

]
−
[
[µA, φ1], φ2

]
since

[
φ2, [φ1, µA]

]
= (−1)1+k1

[
φ2, [µA, φ1]

]
= (−1)1+k1(−1)1+(k1+1)k2

[
[µA, φ1], φ2

]
by the graded

antisymmetry; this reduces to the last line of the previous equation by carefully keeping track of
all the minus signs. Finally, combining the last expression with equation (51) yields

[dφ1, φ2] + (−1)k1 [φ1, dφ2] (51)=
[
[µA, φ1], φ2

]
+ (−1)k1k2

[
µA, [φ2, φ1]

]
−
[
[µA, φ1], φ2

]
(iii)= (−1)2k1k2

[
µA, [φ1, φ2]

]
= d([φ1, φ2]) .

In total, this amounts to [dφ1, φ2] + (−1)k1 [φ1, dφ2] = d([φ1, φ2]) whence the compatibility ax-
iom is valid. We conlude that with the introduced degree shift, the Hochschild cocomplex
(C∗[1](A,A), d∗, [ , ]) endowed with differential and Gerstenhaber bracket is indeed a DGLA.

4.3.3 The Formality theorem

As was stated earlier in this section, it was shown in [27] that for a Poisson manifold P with Poisson
algebra A = C∞(P ) the Hochschild cohomology complex of A is isomorphic to the (graded space
of) smooth n-multivectorfields on P , so Hn

Hoch(A) ∼= Γ∞(ΛnTP ). Again, to give this object the
structure of DGLA, the chain needs to be extended to all n ∈ Z. Since the Hochschild cocomplex
was already extended by setting CnHoch(A,A) := 0 for all n < 0, it follows that Hn

Hoch(A) = 0 for
n < 0.

Theorem 5 now says that the Hochschild cohomology complex indeed carries the structure of
DGLA. Recall that the differential in the induced case is identically zero δ ≡ 0. The bracket [ , ]H
is the one induced by the Hochschild cocomplex’s Lie bracket, which is the Gerstenhaber bracket
[ , ]G, but up to cohomology. So [ , ]H = |[ , ]G|. For the space of smooth multivectorfields, it is the
earlier mentioned Schouten-Nijenhuis bracket that plays the role of Lie bracket (see §3.2 of [30]).
Hence, this bracket is transferred to the Hochschild cohomology complex by isomorphism, so

[ , ]H = |[ , ]G| = [ , ]SN . (52)
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For more detailed information about this bracket, see [30] or the original article [11].
Before stating the Formality theorem, one more definition is needed [30]:

Definition 4.8 (Formal (DLGA)). A differential graded Lie algebra is called formal if it is quasi-
isomorphic to its cohomology, regarded as a DGLA with zero differential and the induced bracket.

The precise definition of a quasi-isomorphism is quite elaborate and is a statement about
a more general category of objects called L∞-algebras. To give an approximate definition: a
quasi-isomorphism is a morphism (structure-preserving mapping) that induces isomorphism in
cohomology. This means that the DGLA structure of complex and cohomology complex are
preserved, and the induced cohomology groups are isomorphic. For a DGLA to be formal a lot
of requirements need to be met.

It is now possible to state Kontsevich’s result:

Theorem 7 (Formality Theorem (Kontsevich 1997)). Denote by C := (C∗[1](A,A), d∗, [ , ]G) the
Hochschild cocomplex endowed with differential and Gerstenhaber bracket. It is quasi-isomorphic
to its cohomology complex H := (H∗Hoch[1](A,A), δ ≡ 0, [ , ]H = |[ , ]G| = [ , ]SN ) as DGLAs. In
other words: the Hochschild cocomplex C is formal.

The original proof can be found in [11]. Also, [30] presents a very detailed digression of the
proof including all mathematical details which could not be included in this thesis.

Now, the claim is that this theorem is related to the quantization problem by deformation. To
see this relation, let us recall the two objects that need to be linked:

1. On the one hand, there is a classical mechanical system described by a Poisson manifold
P . In most of the cases, this represents the classical phase space of the system. Recall that
by definition 3.10, P is Poisson if and only if its algebra of smooth functions A = C∞(P )
carries the structure of Poisson algebra, that is: there is a skew-symmetric, bilinear bracket
{ , } : A ⊗ A −→ A on A that satisfies both the Jacobi identity and the Leibniz rule.
This last requirement means that such a bracket comes from a skew-symmetric bivectorfield
α ∈ Γ∞(Λ2TM) [23]. This is the Poisson structure characterizing the manifold. The bracket
is then defined as:

{ , } : A⊗A −→ A, (f, g) 7→ {f, g} := α(df, dg) . (53)

It was shown in section 3.2, that the Jacobi identity is identical to the vanishing of the
aforementioned Schouten-Nijenhuis bracket of α: [α, α]SN = 0 ∈ Γ∞(Λ3TM). Recall that
for any symplectic structure this bracket always vanishes, as was shown in section 3.
The Hochschild-Kostant-Rosenberg theorem states that the Hochschild cohomology groups
are isomorphic to the space of smooth multivector fields Hn

Hoch[1](A,A) ≡ Hn+1
Hoch(A,A) ∼=

Γ∞(Λn+1TP ) [27]. This means that the Poisson structure α is contained in a cohomology
class of the cochain H1

Hoch[1](A,A) of the cocomplex H.

2. On the other hand, classical systems are quantized by the introduction of a star product as
in definition 4.1. Recall that this is a C[[~]]-bilinear mapping29

A[[~]]⊗A[[~]] −→ A[[~]], (f, g) 7→ f ? g := f · g
∞∑
n=1

Bn(f, g) ~n . (54)

This means that ? ∈ C1[1](A[[~]], A[[~]]). Star products were classified up to equivalence
under gauge transformations, that is, the action of formal sums D = 1 +

∑∞
n=1Dn~n of

29For the tensor product notation, see the third remark after the star product’s definition.
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linear differential operators: star products ?̃ and ? are called formally equivalent ?̃ ∼ ? when
they are linked by D(f?̃g) = D(f) ?D(g). Recall that it was shown in section 4.2.2 that the
first order bidifferential operator B1 of a star product is contained in the same Hochschild
cohomology class of H1

Hoch[1](A,A) as all first order operators C1 of formally equivalent star
products: gauge transformations respect the cohomology structure.

Kontsevich’s Formality theorem links the Hochschild complex C and its cohomology complex
H. However, star products are formal deformations of the regular ‘zeroth order’ (i.e. commutative)
product - they are formal power series of bidifferential operators in ~ - whereas α remains the
regular ‘zeroth order’ Poisson structure. With a relation between the two in mind, this suggests
also considering formal deformations of Poisson structures. They are defined as follows [23]:

Definition 4.9 (Poisson structures).

1. A (null) Poisson structure on a smooth manifold M is a skew-symmetric bivectorfield α ∈
Γ∞(Λ2TM) that satisfies the ‘Jacobi identity’ in the sense that [α, α]SN = 0.

2. A formal deformation of the null Poisson structure is a formal bivectorfield

α(~) =
∞∑
j=1

αj ~j ∈ Γ∞(Λ2TM)[[~]] (55)

such that [α(~), α(~)]SN = 0 ∈ Γ∞(Λ3TM)[[~]]. Note that formal refers to the fact that the
power series is formal, i.e. one need not worry about convergence.

Just as the notion of formal equivalence between star products (i.e. formal deformations of the
commutative structure), there is also a notion of formal equivalence between formal deformation
of the null Poisson structure of a Poisson manifold P . The equivalence classes are to be taken with
respect to the action by formal paths in the diffeomorphism group of P , starting at the identity
1P . This is meant in the following way [30]:

The set of Poisson structures S = {α ∈ Γ∞(Λ2TP ) | [α, α]SN = 0} is acted on by the diffeo-
morphism group Diff(P ) of P by pushforward:

Diff(P )× S −→ S, (φ, α) 7→ αφ := φ∗ α . (56)

Since the pushforward is a covariant functor, this indeed defines an action. It can be extended to
the collection of formal deformations of the null Poisson structure on P , which will be denoted by

FP =
{
α(~) =

∞∑
j=1

αj ~j ∈ Γ∞(Λ2TP )[[~]]
∣∣∣∣ [α(~), α(~)]SN = 0

}
Note that in the following, formal will mean that formal power series are considered.

To extend the action in equation (56) from S to FP , consider ‘paths’ of formal diffeomorphisms
of P that start at the identity 1P diffeomorphism. Thus, these paths are formal power series of
diffeomorphisms. They are of the form

φ~(X) = exp (~X) where X =
∞∑
k=0

Xk ~k a formal vectorfield, so Xk ∈ Γ∞(ΛkTP ) .

Since a group structure is needed to define an action, consider the set of exponentials of formal
vector fields on P , denoted by VP . The product of two such exponentials is defined by the
Baker-Campbell-Hausdorff formula [18]

exp (~X) ◦ exp (~Y ) = exp
(
~X + ~Y + 1

2~[X,Y ] + 1
12
(
[X, [X,Y ]] + [[X,Y ], Y ]

)
+ · · ·

)
, (57)
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which yields an object that is again in VP ; the Lie bracket is again the Schouten-Nijenhuis bracket.
One can check that this indeed satisfies the axioms of a group. To extend the action in equation
(56) to the whole of FP , define

VP ×FP −→ FP ,
(
φ~(X), α(~)

)
7→ exp (~X)∗ α(~) :=

∞∑
m=0

( ∞∑
i+j+k=m

(
LXi

)j
αk

)
~m , (58)

where LXi is the Lie derivative on bivector fields. Again, since the pushforward is a covariant
functor, equation (58) indeed defines an action on FP . The equivalence classes induced by this
action are the mentioned classes of formal deformations of the null Poisson structure.

Remark

Note that every null Poisson structure α(0) ∈ Γ∞(Λ2TP ) on P can be associated with a formal
deformation by choosing the ‘path’ α(~) = α(0) · ~ ∈ Γ∞(Λ2TM)[[~]].

As a corollary to his Formality theorem, Kontsevich proved in [11] a statement about deform-
ation quantization:

Theorem 8 (Classification of quantization). LetM be a smooth manifold, A = C∞(M) its algebra
of smooth functions. There is a natural one-to-one correspondence between star products on M
modulo gauge equivalence [?π] and equivalence classes of deformations [π(~)] of the null Poisson
structure on M .

A few remarks and conclusions regarding this final theorem:

1. The Formality theorem links the Hochschild complex C of the smooth manifold M and the
space of smooth multivector fields on M . However, for an element in C1[1](A[[~]], A[[~]]) to
be a star product, restrictions such as associativity must hold. Moreover, in zeroth order
the product must reduce to the regular commutative product and the operators are to be
bidifferential ones. This means that for deformation theoretical purposes, one must consider
a subDGLA of C that contains only these elements. The same holds for the space of smooth
multivector fields: formal deformations α(~) of the null Poisson structure have vanishing
Schouten-Nijenhuis bracket. Also in this case, a subDGLA of H is to be considered. For
details about these structures, see §3 of [30].
Then, theorem 8 was proven by Kontsevich as a consequence of the Formality theorem. One
considers formal power series of the mentioned subDGLAs, takes the cochains in first order
and modulo formal equivalence. This amounts to:

C̃1[1]
(
C∞(M)[[~]], C∞(M)[[~]]

)/
G ←→ Γ̃∞(Λ2TM)[[~]]

/
VP (59)

where the quotients are to be read as ‘module the action of’, and the˜denotes that the men-
tioned subDGLAs are to be considered. It should be noted, however, that the isomorphism
Hn
Hoch(A) ∼= Γ∞(ΛnTM) due to Hochschild-Kostant-Rosenberg [27] is of key importance in

this result.

2. As was noted in the remark prior to the theorem, every null Poisson structure α(0) can be
associated to a formal deformation by choosing the path α(~) = α(0) · ~. By theorem 8, its
equivalence class of formal deformations [α(~)] is in a canonical one-to-one correspondence
with a well-defined gauge or formal equivalence class of star products [?α]. Hence, choosing
a representative of the equivalence class, the Poisson structure α comes from a natural star
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product, one for which B1 = { , }. This makes that Dirac’s intuition (the correspondence
principle) is satisfied:

For all f, g ∈ C∞(M) : lim
~→0

[f ?α g]?
i~

≡ f ?α g − g ?α f
i~

= α(df, dg) = {f, g} .

Conversely, given a certain class of star products [?π], it corresponds to a class of deform-
ations [π(~)]. The Poisson bracket on A associated with ?π then equals coefficient π1 of
π = π1 ~ + π2 ~2 + . . . : for f, g ∈ C∞(M) we put {f, g} = π1(df, dg). This indeed defines a
Poisson bracket since [π(~), π(~)]SN = 0 by definition 4.9 of formal deformations of the null
Poisson structure.

In conclusion: theorem 8 states that, up to formal equivalence, to every classical system
(Poisson manifold P with Poisson structure α) a unique quantum system (star product ?α) can
be associated in a canonical way. Hence, deformation quantization is a well-defined and unique
quantization procedure. The formal equivalence translates into a freedom in choosing the sym-
metric part of the first order bidifferential operator B+

1 of the star product, as well as a freedom
in higher order (in terms of ~) contributions to the star product ánd to the formal deformation
of the null Poisson structure. Kontsevich’s Formality theorem is at the base of this relation that
gives a positive answer to the question if deformation quantization is a viable approach to the
quantization problem. However, it would be interesting to further examine the remaining freedom
in higher order terms of ~ and the symmetric part of the first order bidifferential operator.
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5 Kontsevich’s formula

5.1 The setting

As was seen in section 3.2, a Poisson structure α ∈ Γ∞(Λ2TM) on a smooth manifold M defines
a Poisson bracket as in equation (53). In [11], Kontsevich gave an explicit universal formula that
allows for the construction of a star product associated to this Poisson structure. This formula
is defined in local coordinates and, hence, only works when M is an open in Rd. A globalization
procedure is given in [31] to extend this construction to arbitrary Poisson manifolds.

This section describes Kontsevich’s construction of a local star product on C∞(M) where
M ⊂ Rd open, for a certain Poisson structure α given in local coordinates. Then, the construction
is applied to the Poisson structure corresponding with the regular Poisson bracket; this is the
constant structure corresponding to flat space. Kontsevich’s formula is seen to yield the Moyal
product as associated star product.

Recall definition 36 of the star product of f, g ∈ C∞(M)

f ? g := f · g + ~ {f, g}+
∞∑
n=2

Bn(f, g) ~n . (60)

Anticipating on what is to come, Kontsevich’s formula is the following

f ?K g = f · g +
∞∑
n=1

( ∑
Γ∈Gn,2

wΓBΓ,α(f, g)
) ~n

n! , (61)

where Gn,2 is a suitable subset of the collection of graphs of n+ 2 vertices; this subset indexes the
bidifferential operators BΓ,α and their weights wΓ. These are the objects that will be constructed
in this section. The development as found in [23] and [30] is followed closely.

5.1.1 Admissable graphs

For all n ∈ N, Gn,2 denotes the collection of admissable graphs that index the bidifferential
operators that appear in the star product ?K in nth order of ~; this is clear from equation (61)
above. For a graph Γ ∈ Gn,2, we write |Γ| = n its order.

Only oriented, finite graphs appear in the star product. Following a definition by Serre [32]:

Definition 5.1. An oriented, finite graph Γ consists of two sets EΓ, VΓ (edges and vertices) and
two maps φ : E → E, ι : E → V with the following rules, nomenclature and interpretation:

1. An e ∈ E is called a directed edge, φ(e) := ē is the reverse edge.

2. ∀e ∈ E we have ¯̄e = e, so reversing the reverse edge yields the initial one.

3. ∀e ∈ E, φ(e) := ē 6= e: an edge can’t be its reverse edge.

4. Also, ι(e) is the initial vertex and τ(e) := ι(ē) the terminal vertex: the direction of the edge
e is from ι(e) to τ(e).

The bidifferential operators act on two functions f, g ∈ C∞(M). Kontsevich’s construction is
local, so suppose that local coordinates are chosen. The interpretation of the admissable graphs
is that they index with respect to which of these coordinates f and g are to be differentiated. The
properties that a star product must satisfy by definition 4.1 impose conditions on the different
ways in which this process of differentiation can be carried out; it is most notably the associativity
condition of ?K that imposes conditions.

The set Gn,2 of admissable graphs of order n is defined as follows:
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Definition 5.2 (Admissable graphs). An admissable graph of order n is an oriented, finite graph
consisting of n+ 2 vertices VΓ = {1, . . . , n, L,R}, 2n edges EΓ = {i1, j1, i2, j2, . . . , in, jn} and two
maps φ : EΓ → EΓ (reversal), ι : EΓ → VΓ (initial vertex) that satisfy for all k ∈ {1, . . . , n}:

1. We have ι(ik) = k = ι(jk): this means that ik, jk both start at vertex k.

2. Again denoting φ(a) := ā for an a ∈ EΓ, we have ι(īk) 6= ι(j̄k): the two edges ik, jk starting
at vertex k end at different vertices.

3. There are no loops: ι(īk) 6= k 6= ι(j̄k).

The set of admissable graphs of order n is denoted by Gn,2, the total set of admissable graphs of
finite order by G = ∪n∈NGn,2. Note that by item 2, #Gn,2 = (n(n+ 1))n.

The {BΓ,α} being bidifferential operators, keep in mind that the vertex L encodes the left
entry of this operator, R the right entry. The direction of edges determines on which vertex
is being acted. We consider two examples of such admissable graphs. These will illustrate the
characteristics of this type of graph and allow for the description of the algorithm used to associate
a bidifferential operator BΓ,α to a graph Γ ∈ G. The left graph will be denoted by Γa, the other
by Γb.

1 2

L R

i1

j1

j2 i2

1

2

3

L R

i1

j1

i2

j2

i3 j3

Figure 1: Admissable graphs Γa (left) and Γb.

Algorithm to assign BΓ,α to Γ ∈ G

Let f, g ∈ C∞(M). The bidifferential operator will be of the form BΓ,α(f, g) = . . . f ⊗ . . . g.

1. Write αikjk for vertex k; write f on the left side of the tensor product, g on the far right.

2. Place a ∂ik directly before the vertex where ik ends; the same for jk. If an edge ends at L
or R, write the differential before f or g respectively.

Since differential operators commute when acting on smooth functions, their order is sufficiently
characterized by the above procedure. Furthermore, since the graphs are finite, this algorithm is
well-defined.
To clarify this procedure, we consider the above shown examples in which Einstein’s convention
is assumed: repeated indices are to be summed over.

(Graph Γa) First of all, |Γa| = 2 since Va = {1, 2, L,R}. We have edges i1 = (1, L), j1 = (1, R),
i2 = (2, R) and j2 = (2, L). Note that all edges end at L or R: although not required by
definition 5.2, this is a special case that will turn up in the next section when examining the
Moyal product30.

30The product coming from a constant Poisson structure, i.e. one independent of the local coordinates.
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By step one of the algorithm, replacing the vertices yields αi1j1αi2j2f ⊗ g. Then, the dif-
ferential operators are to be placed. For example, edge i1 ends at L, so ∂i1 is put directly
before f . On the other hand, edge i2 ends at R so ∂i2 is placed before g at the right side of
the tensor product. Finally:

BΓa(f, g) =
(
αi1j1αi2j2∂j2∂i1 ⊗ ∂i2∂j1

)(
f, g

)
= αi1j1αi2j2

(
∂j2∂i1f

) (
∂i2∂j1g

)
.

(Graph Γb) Now |Γb| = 3 since Vb = {1, 2, 3, L,R}. We thus obtain three times the Poisson
structure: αi1j1αi2j2αi3j3f⊗g. We have edges i1 = (1, 2), j1 = (1, L), i2 = (2, L), j2 = (2, 3),
i3 = (3, L) and j3 = (3, R). This time, edge i1 ends at 2, so it yields a differential operator ∂i1
in front of Poisson structure αi2j2 . Note that this fact is non-trivial in case of a non-constant
Poisson structure. In total:

BΓa(f, g) =
(
αi1j1∂i1α

i2j2∂j2α
i3j3∂i3∂i2∂j1 ⊗ ∂j3

)(
f, g

)
=
(
αi1j1∂i1α

i2j2∂j2α
i3j3∂i3∂i2∂j1f

) (
∂j3g

)
.

For the general formula assigning to a graph Γ ∈ G its bidifferential operator BΓ,α, see [11].

5.1.2 The weights wΓ

The procedure that assigns a weight to every differential operator is somewhat more intricate to
define. It seems that Kontsevich arrived at these weights by building his proof for the Formality
theorem in its most general setting in §6 of [11]. His construction is too involved to fall within
the scope of this thesis. However, the weights are needed to treat the constant Poisson structure
as an example (and for the sake of completeness), which will yield the Moyal product.

Now, to describe deformation quantization, only corollary 8 is relevant. Therefore, only a
recipe to calculate these weights in the setting of deformation quantization is given due to the
advanced level of this construction. For questions regarding motivation, interpretation or a more
detailed explanation, the reader is referred to §6 of the original article [11], the detailed and more
readable §5 of [30], or the treatment of a particular case concerning Lie algebra’s in [33].

Given Γ ∈ Gn,2 an admissable graph, the correspondening weight wΓ is calculated by integrat-
ing a certain 2n-form over the upper half-plane H = {z ∈ C | =(z) > 0} endowed with the so-called
Lobachevsky or Poincaré or hyperbolic metric. Following [23], the recipe is the following:

Recipe to calculate wΓ

Denote Cn(H) = {(p1, . . . , pn) ∈ Hn | pi 6= pj iff i 6= j} for n ≥ 1. For p 6= q ∈ H, we want to define
a function φ that gives an angle between 0 and 2π. This is done as follows:

1. Let l(p,∞) be the vertical line in H through p to ∞.

2. Let l(p, q) be the unique geodesic joining31 p and q.

3. Denote the angle from l(p,∞) to l(p, q), measured counter clockwise, by φ(p, q). This defines
a smooth map φ : C2(H) −→ S1. It is made explicit by Kontsevich in [11] to simplify
calculations using a ‘trick with logarithms’ as

φ : Cn(H) −→ S1, (p, q) 7→ φ(p, q) := Arg
(
q − p
q − p̄

)
= 1

2i log (q − p)(q̄ − p)
(q − p̄)(q̄ − p̄) . (62)

31A geodesic is the shortest (with respect to some metric) line joining two points. In hyperbolic geometry as
described on the upper half-plane H, the unique geodesic between p, q ∈ H is either a vertical line (iff <(p) = <(q))
or a circular arc connecting both points. For proofs or a detailed introduction to hyperbolic geometry, see the
excellent [34].
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This map can be extended to p 6= q ∈ H t R =: H by continuity, which will be necessary
later on. See figures 2 and 3 below for an example and interpretation.

Figure 2: Associating geodesics and angles to a graph of order 2 [28].

Using this angle map, a 2n-form βΓ can be defined on Cn(H) using its differential:

βΓ(u1, . . . , un) :=
∧
l∈EΓ

dφ
(
uι(l), uτ(l)

)
, (63)

where u1, . . . , un ∈ Cn(H) and the wedge product is taken in the order i1, j1, i2, j2, . . . , in, jn.
Recall that ι(l) denotes the initial vertex of edge l, and τ(l) its terminal vertex. Furthermore, let
uL = 0 and uR = 1. Finally, the weight wΓ is defined as a multiple of the integral of this 2n-form
over the whole of Cn(H). To be precise:

wΓ := 1
(2π)2n

∫
Cn(H)

βΓ , (64)

where the orientation on Cn(H) is the one induced by H.32

Figure 3: The two types of geodesics in H (left)[34]; the angle φ(p, q)[33].

In [11], Kontsevich then proved the following:

Theorem 9.

1. The integral in (64) is absolutely convergent for all Γ ∈ G.
32For information about integrating forms over smooth manifolds, see [16] or [22].
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2. Let α be a Poisson bivectorfield on a domain M in Rd. For f, g ∈ C∞(M), the formula

f ?K g = f · g +
∞∑
n=1

( ∑
Γ∈Gn,2

wΓBΓ,α(f, g)
) ~n

n! (65)

defines an associative star product on M . Under a change of coordinates, a formally equi-
valent star product is obtained: one related to ?K by a gauge transformation as in equation
(41).

In particular: a change of coordinates respects the action of the group G of formal sums of
linear differential operators on the set of star products as defined in section 4.2.1. This theorem
is important since it not only establishes associativity, but also allows for changing coordinates to
simplify calculating weights of operators.

5.2 Example: the Moyal product

Using the machinery from the previous section, it is now possible to construct a star product for the
Poisson structure αij with constant coefficients on an open M in Rd. This structure corresponds
to the usual Poisson bracket known from classical mechanics. Kontsevich’s construction should,
up to formal equivalence, yield the Moyal product as described in equation (6) in section 2.

Before constructing the Moyal product, consider the graph Γb of third order for which the
associated operator BΓ,α was calculated. Recall that there were edges ending in vertices other
than L or R. Now, a Poisson structure with constant coefficients is considered. It is clear that
in this case, all contributions from such edges are zero, since they contain a term ∂iα

jk = 0. At
order n, the only admissable graphs that contribute are the ones where every vertex k has one
edge ending in L and one edge ending in R; this leaves 2n graphs.

5.2.1 Orders n = 0, 1

There is only one graph of order 0, which contributes f · g, as is expected by the correspondence
principle. Let us now consider the admissable graphs of order 1. By the above, there are only two
such graphs (denoting i1 ≡ i, j1 ≡ j):

1

L R

i j

1

L R

j i

Figure 4: Graphs Γ1 (left) and Γ2

The graphs differ in switching the two edges. Recall that uL = 0 and uR = 1. Following the
algorithm for assigning operators and for determining weights, we have for graph Γ1

BΓ1(f, g) = αij
(
∂if
) (
∂jg
)

and wΓ1 = 1
(2π)2

∫
H
dφ(u, 0) ∧ dφ(u, 1)
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where f, g ∈ C∞(M). Denote φ(u, 0) = φ0(u) and φ(u, 1) = φ1(u). First of all, by Kontsevich’s
trick with logarithms, φ can be calculated explicitly as in (62). We obtain for φ0(u)

φ0(u) = Arg
(0− u

0− ū

)
= Arg

(
u2

|u|2

)
= Arg(u2) = 2Arg(u) ,

and for φ1(u) the same equation yields

φ1(u) = Arg
(1− u

1− ū

)
= Arg

(1− u
1− u

)
Arg

(
(1− u)2

|1− u|2

)
= Arg((1− u)2) = 2Arg(1− u) .

Theorem 9 allows for a change of variables to simplify the integration. This is done by changing
from cartesian coordinates {x = <(u), y = =(u)} on the whole of the extended H = {z ∈
C | =(z) ≥ 0} to {φ0(u) = φ(u, 0), φ1(u) = φ(u, 1)}. We claim that the integration domain is now
given by R = {0 ≤ φ0(u) ≤ φ1(u) ≤ 2π}. This is seen as follows:

Fix φ0(u) ≡ α ∈ [0, 2π]. By the above equation, this means that α = 2Arg(u), so the set of
complex numbers corresponding to the equation φ0(u) = α is given by

Sα = {u ∈ C | 2Arg(u) = α} = {ur = r exp (iα/2) | r ∈ (0,∞)} .

Note that Sα ⊂ H for all α ∈ [0, 2π]. Therefore, R indeed yields the correct integration domain.
Denoting the new integration variables by φ0(u) = φ0, φ1(u) = φ1, the integral yields

wΓ1 = 1
(2π)2

∫
H
dφ0(u) ∧ dφ1(u) = 1

(2π)2

∫
R
dφ0 dφ1

= 1
(2π)2

∫ 2π

0

(∫ 2π

φ0
dφ1

)
dφ0 = 1

(2π)2dφ0

∫ 2π

0
(2π − φ0)dφ0 = 1

2 .

To calculate the weight associated to graph Γ2, recall that it only differs from Γ1 by switching
the edges. By antisymmetry of the wedge product, its weight therefore only differs by a minus
sign:

wΓ2 = 1
(2π)2

∫
H
dφ1(u) ∧ dφ0(u) = − 1

(2π)2

∫
H
dφ0(u) ∧ dφ1(u) = −wΓ1 = −1

2 .

Now, the first order bidifferential operator B1 contributing to the star product ?α, acting on
f, g ∈ C∞(M) is found to be

B1(f, g) =
∑

Γ∈G1,2

wΓBΓ,α(f, g) = wΓ1BΓ1,α(f, g) + wΓ2BΓ2,α(f, g)

= 1
2
(
αij
(
∂if
) (
∂jg
)
− αji

(
∂jf

) (
∂ig
))

= αij
(
∂if
) (
∂jg
)

= {f, g} ,

where the fourth equation is valid due to antisymmetry αij = −αji.

5.2.2 Using prime graphs

The explicit form of Kontsevich’s star product as given in equation (61) indicates that the product’s
expressions can be written as an exponential if all operators Bn could be written as Bn

1 for
some ‘prime’ operator B1. This approach can be used to calculate the higher order terms of
the star product ?α where αij is a Poisson structure with constant coefficients. The principle of
decomposing graphs in terms of such prime graphs can be used in a more general setting, see [33].
Following [23], the method is applied to αij to re-obtain the Moyal star product.

Consider a general admissable graph of order n, of which there are 2n:
To decompose graphs in terms of prime graphs, a composition on the collection G of admissable
graphs is needed. It is defined by [23] as follows:
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1 2 . . . n

L R

i1
j1

i2 j2in

jn

Figure 5: General graph Γn of order n.

Definition 5.3. Let Γ ∈ Gm,2, Γ′ ∈ Gk,2 be two admissable graphs. Their composition Γ · Γ′ ∈
Gm+k,2 is defined as the admissable graph obtained by putting together the two graphs, relabeling
the vertices of Γ′ from 1, 2, . . . , k to m+1,m+2, . . . ,m+k and identifying the two vertices labeled
L and R. For n ∈ N, n · Γ = Γ · . . . · Γ︸ ︷︷ ︸

n times
.

Equipped with this composition and with the unique graph Γ0 of order 0 as identity element,
the set of admissable graphs is seen to have the structure of a semigroup33; it is denoted by
A = (G, ·,Γ0). Note that this semigroup is in general not abelian.

As an example, consider the composition of the earlier mentioned admissable graphs Γ1 and
Γ2:

1

L R

i j

1

L R

j i

Figure 6: Graphs Γ1 (left) and Γ2

Their composition Γ1 · Γ2 is seen to be the earlier considered admissable graph Γa:

1 2

L R

i1

j1

j2 i2

Figure 7: The composition Γ1 · Γ2 = Γa

The key fact to note is that graph Γa is in fact one of the graphs of order 2 that dó contribute to
the star product ?α associated to the Poisson structure with constant coefficients α. Moreover,
the set P̃ = {Γ1,Γ′1} generates all the contributing graphs under the above defined composition;
it is called the set of generating graphs.

33A semigroup is a triple (S, ·, eS) satisfying all group axioms but the inverse axiom.

53



5 KONTSEVICH’S FORMULA

However, as was noted before, both graphs are linked by switching edges. More formally:
there is a natural S2-action on the set P̃ of generating graphs

S2 × P̃ −→ P̃, (σ,Γ) 7→ σ · Γ (66)

where e ∈ S2 leaves the graphs intact and (12) switches edges, thus effectively switching graphs.
In the case of a constant Poisson structure, P = P̃/S2 = {[Γ1]}: there is only one prime graph.

Let us now calculate the higher order terms of f ?α g = f · g+ ~{f, g}+O(~2). For all n ∈ N,
denote by Γn the unique graph of order n for which all edges ik end in L, and all edges jk end in
R (it is in fact this graph that is depicted in figure 5). When calculating the weight of the two
graphs of order 1, it was seen that switching edges yielded a minus sign due to antisymmetry of
the wedge product. However, due to skew-symmetry of αij , this sign was again absorbed. In an
analogous manner, when switching edges ik and jk with k ∈ {1, . . . , n} in the graph Γn, a minus
sign is picked up and again absorbed by αij . Hence:

∀f, g ∈ C∞(M) : Bn(f, g) =
∑

Γ∈Gn,2

wΓBΓ,α(f, g) = 2nwΓnBΓn,α(f, g)

= 2n

(2π)2n

(∫
Cn(H)

βΓn

)(
αi1j1 . . . αinjn

)(
∂i1...inf

)(
∂j1...jng

)
,

where ∂i1...in = ∂i1 . . . ∂in . Examing the defining equation (63) of βΓn , it is possible to decompose
the integral into n times the same integral, for all edges ik end at L (where uL = 0) and all edges
jk end at R (where uR = 1); this yields

2nwΓn = 2n

(2π)2n

∫
Cn(H)

βΓn =
( 2

(2π)2

)n ∫
Cn(H)

n∧
k=1

(
dφ0(uk) ∧ dφ1(uk)

)
=

n∏
k=1

( 2
(2π)2

∫
H
dφ0(uk) ∧ dφ1(uk)

)
=

n∏
k=1

2wΓ1 =
(2

2

)n
= 1 .

Inserting this result into the equation for bidifferential operator Bn and plugging that expression
into the Kontsevich formula (61) yields

f ?K g = f · g +
∞∑
n=1

(
αi1j1 . . . αinjn

)(
∂i1...inf

)(
∂j1...jng

) ~n
n!

= exp (~αij∂i ⊗ ∂j)(f, g) = exp (~2wΓ1βΓ1)(f, g) .

Switching to the convention maintained by physicists by substituting ~ 7→ i~/2 and by choosing
the coefficients in αij so as to obtain the regular Poisson brackets in first order (so |αij | = 1), the
Moyal product as in equation (6) in section 2 is seen to emerge:

f ?K g = exp (~αij∂i ⊗ ∂j)(f, g) = f exp
[
i~
2
(←−
∂i
−→
∂j −

←−
∂j
−→
∂i
)]
g = f ?~ g . (67)

This result completes the Moyal product example, and thus the treatment of Kontsevich’s
explicit formula for associating a star product to a given Poisson structure.
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A Hochschild (co)homology
In section 4.2.2, the first Hochschild cohomology group of A = C∞(M) was used to show that
every manifold that admits a quantization as in definitions 4.2, also admits a natural quantization.
Here A is the R-linear algebra of smooth functions on the smooth manifold M . However, this
is a particular case of Hochschild theory. In this appendix, it will be shown that Hochschild
(co)homology can be defined for any associative unital k-algebra R, where k is a commutative
ring. All results will be proven for homology. Definitions and results for cohomology are only
stated, since they can be obtained in a similar manner. The article [35] will be followed, where
the subject is studied in greater depth. For more information on groups and rings, aswell as
algebras, see for example [25].

A.1 Algebras and bimodules

Every homology theory relies on some structured space to supply coefficients. In singular homo-
logy, for example, this space is a group. In the Hochschild case, it turns out that the appropriate
coefficient spaces are bimodules over the k-algebra that is under consideration. First of all, some
preliminary definitions and results.

Definition A.1. Let k be a commutative ring. An associative unital k-algebra can be defined in
two ways:

1. As a ring R equipped with a ring homomorphism f : k −→ R such that f(k) ⊂ Z(R). Here,
Z(R) denotes the center of R: the collection of elements that commute with all elements in
R with respect to ring multiplication;

2. As a k-module R equipped with a multiplication µ : R×R −→ R compatible with the module
structure:

∀λ ∈ k, ∀a, b ∈ R : λ(a · b) = (λa) · b = a · (λb) (for a left k-module) .

Note that these two definitions are equivalent. We’ll call such an algebra simply a k-algebra.

Definition A.2. Let R be a ring. An R-module is an abelian group (M,+, 0) equipped with a
unital (sending identity to identity) ring homomorphism

φ : R −→ End(M) ,

which is equivalent to having a linear action R×M −→M . Note that this is in fact a left action
defining a left R-module.

From now on, k denotes a commutative ring.

Definition A.3. A bimodule M over a given k-algebra R is a k-module together with two com-
muting k-linear actions of R on M , one to the left and one to the right:

l : R×M −→M and r : M ×R −→M .

Commutativity means that ∀s, t ∈ R,m ∈M : r(t)
[
l(s)(m)

]
= l(s)

[
r(t)(m)

]
; or (s·m)·t = s·(m·t).

An R-bimodule M of which the actions coincide is called symmetric: this reads r ·m = m · r for
all r ∈ R, m ∈ M . Note that this implies (r′r) ·m = (rr′) ·m for all r, r′ ∈ R, m ∈ M ; this is a
very restrictive condition on R, close to commutativity.
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Before defining the Hochschild homology, let’s first consider some examples of bimodules.

Examples

1. The easiest but surpisingly important example is taking the k-algebra R itself as bimodule.
By definition (A.1), it is both a left and right k-module, where the action is just ring
multiplication. Commutativity of the left and right actions is given by associativity of the
multiplication. This choice of bimodule will be made for Hochschild homology in the main
text.

2. Let M a right R-module, N a left R-module where R is a k-algebra. Denote M ⊗k N their
tensor product. By definition, it comes equipped with a k-bilinear map

ι : M ×N −→M ⊗k N, (m,n) 7→ ι(m,n) = m⊗k n

through which all k-bilinear maps from M ×N to some other linear space factor; this is the
universal property of tensors.
The claim is that M ⊗k N is an R-bimodule. 34

Proof. First of all, M ⊗k N is both a left and right k-module. This follows from the fact
that M is a right and N a left R-module (hence also a k-module) and furthermore their
tensor product M ⊗k N is by definition k-linear.
Secondly, we need two commuting k-linear actions of R on M ⊗k N . Since M and N come
equipped with such structures, it is natural to use these:

l : R×M ⊗k N −→M ⊗k N, (s,m⊗k n) 7→ m⊗k s · n
r : M ⊗k N ×R −→M ⊗k N, (m⊗k n, t) 7→ m · t⊗k n

By virtue of the above and the tensor product’s properties, it is clear that the above equations
define k-linear actions. Let’s verify explicitly that these two actions commute. For s, t ∈ R,
m⊗k n ∈M ⊗k N

l
(
s, r (m⊗k n, t)

)
= l

(
s,m · t⊗k n

)
= m · t⊗k s · n

r
(
l (s,m⊗k n), t

)
= r

(
m⊗k s · n, t

)
= m · t⊗k s · n ,

which shows that l ◦ r = r ◦ l. The two k-linear actions commute and we conclude that
M ⊗k N is an R-bimodule indeed.

A.2 Hochschild homology

After having considered two examples of coefficient spaces, we’ll go on to define the Hochschild
homology complex and its homology. Let R be a k-algebra as before, and M an R-bimodule; note
that all tensor products are to be taken over k, so ⊗ ≡ ⊗k.

Define Cn(R,M) = M ⊗ R⊗n, denote by bn : Cn(R,M) −→ Cn−1(R,M) the nth differential
operator; take C0(R,M) := M , C−1(R,M) = {0} and b0 ≡ 0. This yields the complex

. . .
b4−→M ⊗R⊗3 b3−→M ⊗R⊗2 b2−→M ⊗R b1−→M

b0−→ {0} ,
34This is exercise 2 of [36].
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where the boundary operator puts adjacent symbols together, summing them alternatingly. A
tensor in M ⊗R⊗n is written as (m, a1, . . . , an) where m ∈M , ai ∈ R. As an example, the action
of b3 is

b3(m, a1, a2, a3) = (m · a1, a2, a3)− (m, a1a2, a3) + (m, a1, a2a3)− (a3 ·m, a1, a2) .

Note that this is well-defined since M is an R-bimodule.
Before defining Hochschild homology (in the usual way), the name complex needs justification.

Proposition 9. The chain (C∗(R,M), b∗) defines a complex, i.e. bn−1 ◦ bn = 0 for all n > 0.

Proof. Define an operator d(n)
i : M ⊗R⊗n −→M ⊗R⊗(n−1) for all 0 < i < n by

d
(n)
i (m, a1, . . . , ai, ai+1, . . . , an) =


(m · a1, a2, . . . , an) for i = 0
(m, a1, . . . , ai−1, aiai+1︸ ︷︷ ︸

ith copy of R

, ai+2, . . . , an) for 0 < i < n

(an ·m, a1, . . . , an−1) for i = n .

It is now clear that bn =
∑n
i=0(−1)i d(n)

i . From now on we omit the superscript (n), this number
will be clear from the context. We now claim that

di ◦ dj = dj−1 ◦ di for all 0 ≤ i < j ≤ n . (68)

This can be easily seen by writing out explicitly and is left to the reader.
For the sake of completeness, we’ll now prove bn−1 ◦ bn = 0 by induction on the gradation of

the boundary operator. The above result is key in this proof.

(k = 1) By definition b0 ◦ b1 = d0 ◦ (d0 − d1) = d0 ◦ d0 − d0 ◦ d1
(68)= d0 ◦ d0 − d0 ◦ d0 = 0.

(k ≤ n− 1) Assume that for all k ≤ n− 1 we have bk−1 ◦ bk = 0.

(k = n) Note that the number of terms in bn−1 ◦ bn is equal to n (n+ 1) which is even; by using
(68), pairwise cancellation will be obtained. First of all

bn−1 ◦ bn =
(
d0 − d1 + . . .+ (−1)n−2dn−2 + (−1)n−1dn−1

)
◦
(
d0 − d1 + . . .+ (−1)ndn

)
= bn−2 ◦ bn−1 + (−1)n−1dn−1 ◦ bn + (−1)nbn−2 ◦ dn
= 0 + (−1)n−1[dn−1 ◦ bn − bn−2 ◦ dn

]
by the induction hypothesis .

Note that there are (n+ 1) + (n− 1) = 2n terms left, again an even number. Now

dn−1 ◦ bn − bn−2 ◦ dn =
[(
dn−1 d0 − d0 dn

)
+
(
dn−1 d1 − d1 dn

)
+ . . .

+ (−1)n−2(dn−1 dn−2 − dn−2 dn
)]

+ (−1)n−1dn−1 dn−1 + (−1)ndn−1 dn
(68)= 0 + (−1)n−1[dn−1 dn−1 − dn−1 dn

] (68)= 0 .

So, indeed, bn−1 ◦ bn = 0 for all n ≥ 1.

In conclusion: (C∗(R,M), b∗) is indeed a complex.
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Letting M ⊗ R⊗n have homological degree n, we can now define the Hochschild homology of
the k-algebra R with coefficients in the R-bimodule M . This is the usual definition for homology:

For all n ≥ 0 Hn(R,M) := Hn(C∗(R,M)) = ker (bn : Cn(R,M) −→ Cn−1(R,M))
im (bn+1 : Cn+1(R,M) −→ Cn(R,M)) . (69)

Now, about the structure of these objects. They are not only abelian groups, but also k-
modules in general and even R-modules when R is commutative. This is a straighforward veri-
fication using definition A.2. Let’s calculate the zeroth homology group to get some intuition
about this specific homology theory. Since b0 ≡ 0, ker(b0) = M . Furthermore, we see that for
m ∈M, r ∈ R we have

b1(m, r) = m · r − r ·m,

so im(b1) = 〈m · r − r ·m |m ∈ M, r ∈ R〉 =: [R,M ] where [R,M ] is the k-module generated by
the commutator of both actions. This yields in total

H0(R,M) = M/[R,M ] = M / 〈m · r − r ·m |m ∈M, r ∈ R〉 .

This result has a nice interpretation: when R is commutative, [R,M ] is in fact an R-module.
Then, the zeroth homology group can be seen as the symmetrized R-bimodule ofM ; in particular,
finding H0(R,M) = M for a particular choice of R and M means that the bimodule M is sym-
metric, i.e. the left and right actions coincide. This means that the zeroth Hochschild homology
group of a commutative k-algebra R measures to what extent its coefficient bimoduleM acts on it
in a symmetric way. In particular: the algebra C∞(P ) considered in the main text - the R-algebra
of smooth functions on a smooth manifold P - is commutative.

Let’s now consider a particular choice of bimodule that is usually made in Hochschild homology.
As we have seen in the first section of this appendix, R is an R-bimodule in its own right.

Definition A.4. Let R be a k-algebra, take R as R-bimodule with as k-linear action the left
and right multiplication of the algebra. The nth Hochschild homology group of R is defined as
HHoch,n(R) := Hn(C(R,R)).

This means that for each n ≥ 0 we have a functor HHoch,n from the category of pairs of k-algebra
and bimodule over this algebra, to the category of k-modules. This is meant in the following
sense:

Let (R,M) and (R′,M ′) be such pairs, so R and R′ are k-algebras, M is an R-bimodule
and M ′ an R′-modules; the latter two are the coefficient spaces. These pairs define the objects
of the category, now we need morphisms between these objects. Since these morphism need to
preserve the object’s structure, let α : R −→ R′ be a map of k-algebras. This means that α
is a k-linear ring homomorphism, which is the type of map that respects the structure of the
k-algebras. Furthermore, let ϕ : M −→ M ′ be a map of R-bimodules. It is important to note
that although M ′ is an R′-bimodule, it can be interpreted as an R-bimodule via the map α in the
following way: for s ∈ R, m′ ∈ M ′, s ·m′ := α(s) ·m′. On the other hand, for ϕ to preserve the
R-bimodule structure, it should be a k-linear homomorphism of groups that respects both actions
(equivariance)

∀s, t ∈ R, m ∈M : ϕ(s ·m) = α(s) · ϕ(m) and ϕ(m · t) = ϕ(m) · α(t)

and the k-linear left and right actions should commute, so

∀s, t ∈ R, m ∈M : ϕ
(
(s ·m) · t

)
= ϕ

(
s · (m · t)

)
or

(
α(s) · ϕ(m)

)
· α(t) = α(s) ·

(
ϕ(m) · α(t)

)
.
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Such a pair of maps (α,ϕ) between pairs (R,M), (R′,M ′) is a morphism in this category.
We’ll show that associated to every pair of objects (R,M), (R′,M ′) and morphism (α,ϕ)

between them, there is an induced map in homology Hn(α,ϕ) : Hn(R,M) −→ Hn(R′,M ′),
turning Hn into a functor. Consider (α,ϕ) as above. It induces a natural map between complexes
Γ∗ : C∗(R,M) −→ C∗(R′,M ′), which means that for all n ≥ 0 the following diagram commutes

. . . Cn+1(R,M) Cn(R,M) Cn−1(R,M) . . .

. . . Cn+1(R′,M ′) Cn(R′,M ′) Cn−1(R′,M ′) . . .

bn+2 bn+1 bn bn−1

Γn+1 Γn Γn−1
b′n+2 b′n+1 b′n b′n−1

where Γn := ϕ ⊗ α⊗n : M ⊗ R⊗n −→ M ′ ⊗ R′⊗n. To see that this diagram is commutative, let
m ∈M,a1, . . . , an ∈ R and consider(

Γn−1 ◦ bn
)

(m, a1, . . . , an) =
[
ϕ(m) · α(a1), α(a2), . . . , α(an)

]
+
[
α(an) · ϕ(m), α(a1), . . . , α(an)

]
+
n−1∑
i=1

(−1)i
[
ϕ(m), α(a1), . . . , α(ai−1), α(ai)α(ai+1), α(ai+2), . . . α(an)

]
=
(
b′n ◦ Γn

)
(m, a1, . . . , an) .

So indeed, for all n ≥ 0 we have Γn−1 ◦ bn = b′n ◦ Γn whence the diagram is commutative.
Now, the natural map of complexes Γ∗ induces the sought after map in homology which turns

Hn in general, and HHoch,n in particular, into a covariant functor. There is a general construction
to this extent, which can be found in chapter IV of [37], for example. This map can be denoted
by

Hn(α,ϕ) : Hn(R,M) −→ Hn(R′,M ′) . (70)

A.3 Hochschild cohomology

Although very similiar, the relevant definitions of Hochschild cohomology are given in this section.
This is not only for the sake of completeness, but also since it is this variant of Hochschild’s theory
that is used in the main text. Furthermore, the Hochschild cocomplex plays a prominent role in
Kontsevich’s Formality theorem, in section 4.3.

Definition A.5. Let R be a k-algebra, M an R-bimodule. A cocomplex is defined as C0(R,M) :=
M = Homk(k,M) and for n ≥ 1

Cn(R,M) := Homk(R⊗n,M) = {f : R⊗n −→M | f is k-multilinear} . (71)

The codifferential operator β is defined analogously to the differential operator b: it puts adjacent
symbols together, summing these contributions alternatingly. Note, however, that β raises the
cohomological degree, so the cocomplex looks like

M
β0−→ Homk(R,M) β1−→ Homk(R⊗2,M) β2−→ Homk(R⊗3,M) β3−→ . . .

As an example, consider β2: let f ∈ Homk(R⊗2,M) and a1, a2, a3 ∈ R. Then we have

β2(f)(a1, a2, a3) = a1f(a2, a3)− f(a1a2, a3) + f(a1, a2a3)− f(a1, a2) a3 .

It can be shown in the same manner as above that βn+1 ◦ βn = 0 so that the above indeed
defines a (co)complex. The cohomology groups, that can again be interpreted as k-modules, are
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defined in the usual way and denoted by Hn(R,M) = Hn(C∗(R,M)). Again, one speaks of
Hochschild cohomology groups when the special case of M = R is considered. However, due
to the fact that the codifferential operator raises the homological degree, this yields a functor
Hn. It’s construction is completely analogous to that of Hn, a part from the fact that for pairs
(R,M), (R′,M ′) this time ϕ : M ′ −→ M whilst still α : R −→ R′. This leads to a contravariant
functor, which means that the direction of the induced map in cohomology is opposite:

Hn(α,ϕ) : Hn(R′,M ′) −→ Hn(R,M) .

Having finished the general setting, let us now put [35] aside and do some interpretating.

Zeroth degree

Let m ∈ M , r ∈ R, then we have H0(R,M) = {m ∈ M | r ·m = m · r , ∀r ∈ R}. Just as in the
homological case, the zeroth cohomology group is seen to be a measure for the symmetry of R’s
actions on the bimodule M . In particular, when M = R, it is seen to encode the commutativity
of the algebras product since then

H0(R,R) = {z ∈ R | r · z = z · r , ∀r ∈ R} ≡ Z(R) .

The last equality means that the zeroth cohomology group is equal to the center Z(R) of R.

First degree

The first Hochschild cohomology group plays an important role in the gauge action on the collec-
tion of star products in section 4.2.2. By definition

H1
Hoch(R) = ker(β1 : Homk(R,M) −→ Homk(R⊗R,M))

im(β0 : M −→ Homk(R,M))

where for f ∈ Homk(R,M) and a1, a2 ∈ R we have

β1(f)(a1, a2) = a1 · f(a2)− f(a1 a2) + f(a1) · a2 ,

which is in particular symmetric in a1, a2 if and only if the product on R is commutative.
Now, suppose f ∈ ker(β1) so β1(f) = 0. By the above, this means that for all a1, a2 ∈ R we

have
f(a1 a2) = a1 · f(a2) + f(a1) · a2.

But this is just the Leibniz rule! Let us therefore return to the setting in the main text. Consider
M a smooth (Poisson) manifold and set R = C∞(M) its R-algebra of smooth functions. We were
in the particular case of Hochschild cohomology, so the bimodule that figures as coefficient space
is just C∞(M) itself. Let B : C∞(M) −→ C∞(M) an element of C1(R) (so it is an R-linear map)
and f, g smooth real functions on M . Then, the above equation reads

B(f, g) = fB(g) +B(f)g .

Again the Leibniz rule, but this time it can be given a nice interpretation: every element of
Homk(C∞(M), C∞(M)) that is closed in Hochschild cohomology is a derivation on the algebra
C∞(M) of smooth functions.
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Second degree

Lastly the second Hochschild cohomology group. Let f ∈ Homk(R ⊗ R,M) and a1, a2, a3 ∈ R.
Applying the codifferential to f yields

β2(f)(a1, a2, a3) = a1 · f(a2, a3)− f(a1 a2, a3) + f(a1, a2 a3)− f(a1, a2) · a3 .

Again taking an f ∈ ker(β2), we obtain

f(a1 a2, a3) + f(a1, a2) · a3 = a1 · f(a2, a3) + f(a1, a2 a3) .

Let us return to the setting used in the main text, where M = R and the M ’s actions are just
algebra multiplication. Denoting this multiplication by µR : R⊗R −→ R, the above translates to

f
(
µR(a1, a2), a3)

)
+ µR

(
f(a1, a2), a3

)
= µR

(
a1, f(a2, a3)

)
+ f

(
a1, µR(a2, a3)

)
.

Rewriting this expression in terms of the Gerstenhaber bracket [ , ] introduced in section 4.3.1,
one can recognize a particular case of lemma 4.1 used in the same section: here f ∈ C1[1](R,R),
which is equal to C2(R,R) = Homk(R⊗R,R), and

β2(f)(a1, a2, a3) = [µR, f ](a1, a2, a3) .

In turn, the Gerstenhaber bracket is related to the differential graded Lie algebra structure of the
Hochschild cohomology complex, which plays a prominent role in Kontsevich’s Formality theorem.

These three examples demonstrate that the Hochschild (co)homology groups encode a lot of
information about associative algebras. Their cohomology complex is even seen to carry a differ-
ential graded Lie algebra structure. It should therefore be no surprise that Hochschild cohomology
naturaly presents itself in the study of deformation theory in general, where DGLAs play an im-
portant role, and the study of deformation quantization in particular, in which associative algebras
are deformed.
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Populaire samenvatting
Kwantummechanica is ontwikkeld in het begin van de twintigste eeuw om sommige tekortkomingen
van Newton’s klassieke mechanica te ondervangen. Ook de speciale en de algemene relativiteit-
stheorie zijn ontwikkeld met dit doel. Waar deze laatste twee vooral bedoeld zijn om beweging
met extreem hoge snelheden correct te beschrijven, is kwantummechanica juist bedoeld voor het
beschrijven van hele kleine fenomenen, zoals de werking van atomen of zelfs subatomaire deeltjes.

Deze scriptie gaat over het verband tussen klassieke kwantummechanica. Aangezien deze laat-
ste niet in het middelbaar onderwijs behandeld wordt, geef ik hier eerst een voorbeeld dat New-
ton’s mechanica niet goed kan beschrijven. Kwantummechanica blijkt dit wel correct te kunnen.
Daarna bekijken we een van de tegenintuïtieve voorspellingen die kwantummechanica doet. Ter
afsluiting ligt ik nog iets gedetailleerder toe welk relatie tussen klassieke en kwantummechanica
ik nu precies bestudeerd heb ik deze scriptie.

Laten we eerst een voorbeeld bekijken dat Newton’s mechanica niet correct beschrijft: het
waterstofatoom. Dit atoom bestaat uit een kern met één positief geladen proton, en uit één
negatief geladen elektron dat om de kern cirkelt. Dit doet denken aan een miniatuurvariant van
Aarde en maan: het proton fungeert als middelpunt waar het elektron als maan omheen cirkelt.
Analoog aan de elliptische baan die de maan beschrijft om de Aarde, kan je je afvragen welke baan
dit elektron beschrijft relatief tot de kern. Wanneer we hiervoor klassieke mechanica aanwenden,
blijkt dit te voorspellen dat het atoom al na een fractie van een seconde instort! Immers, net
als bij magneten trekken positieve en negatieve lading elkaar aan: het elektron cirkelt door deze
aantrekking steeds dichter naar het positief geladen proton, totdat ze op elkaar belanden.

Daarentegen lees jij nog steeds deze samenvatting, en draait de wereld gewoon door. Oftewel,
van deze theoretische voorspelling blijkt in de werkelijkheid niets te kloppen. We zijn aanbeland
bij een tegenspraak. Dat wil zeggen: we hebben aangenomen dat de baan van het elektron
in een waterstofatoom net als de baan van de Aarde correct te beschrijven is met behulp van
klassieke mechanica, maar dit leidt tot instortende atomen: non-sense. Dientengevolge moeten
we concluderen dat er een ander soort mechanica nodig is om atomen te beschrijven; de huidige
voldoet niet in het domein van atomen.

Deze andere mechanica blijkt kwantummechanica te zijn. Het is een veralgemenisering van
klassieke mechanica, in de zin dat het meer effecten en fenomenen correct beschrijft. Denk bij wijze
van voorbeeld aan het hiervoor genoemde waterstofatoom: kwantummechanica voorspelt diens
gedrag. En dan niet alleen de baan van het elektron om het proton, maar ook wat er gebeurt als
men licht schijnt op het atoom, of als het extreem wordt afgekoeld. Er zijn vele experimenten
gedaan waarbij waterstofatomen werden bestookt met licht, onder de meest extreme temperaturen,
en de theoretische voorspellingen van de kwantummechanica blijken zeer nauwkeurig overeen te
komen met de gedane metingen.

Kwantummechanica blijkt dus een ‘correctere’ theorie te zijn in zekere zin. Echter, het doet ook
een aantal vreemde en tegenintuïtieve voorspellingen. Het boek Alice in Quantumland, geschreven
door Brits natuurkundige Robert Gilmore, illustreert deze vreemde gedragingen aan de hand van
een allegorie gebaseerd op Lewis Carroll’s Alice in Wonderland. Laten we één van deze voorbeelden
bekijken: het onzekerheidsprincipe van Heisenberg35.

Stel je voor dat je een voetbal een flinke trap geeft. Klassieke mechanica beschrijft dan
nauwgezet de baan van de bal. Om precies te zijn: wanneer een vriend op het moment dat
jij de bal lanceert een stopwatch aanzet, vertelt Newton’s mechanica ons op elk volgend tijdstip
waar de bal in de lucht is (positie) en hoe hard deze gaat (snelheid, of liever: impuls). Dit kunnen
we ook meten: de bal is duidelijk zichtbaar in de lucht, en met wat mooie apparatuur is zijn

35Werner Heisenberg (1901-1976), Duits natuurkundige, was een van de grondleggers van de kwantummechanica.
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snelheid nauwkeurig te achterhalen. Oftewel, positie en impuls zijn gelijktijdig en nauwkeurig
meetbaar.

In kwantummechanica blijkt dit niet zo te zijn. Dit is wegens het eerder genoemde onzeker-
heidsprincipe van Heisenberg. Beschouw wederom het rondcirkelende elektron in een watersto-
fatoom. Dit principe zegt dan dat diens positie en impuls niet tegelijk meetbaar zijn. In meer
formele taal: de positie- en impulsoperator commuteren niet. Dit betekent dat het meten van de
één invloed heeft op de ander. Klassiek gezien is dit heel vreemd. Dit zou in het voetbalvoorbeeld
betekenen dat meten (lees: zien) waar de voetbal is, spontaan zijn snelheid zou veranderen. Of
omgekeerd, dat het vastliggen van de snelheid van de voetbal ervoor zorgt dat het ding ineens
vijf meter verplaatst is. Geen voetbalwedstrijd zou ooit hetzelfde zijn. Vandaar ook de naam:
onzekerheidsprincipe.

Op atomaire schaal blijkt dit principe echter wel te gelden. Het wordt geïllustreerd door
onderstaande tekening36, eveneens gebaseerd op het boek Alice in Quantumland. In het midden
staat een verwarde Alice die het hele kwantumgebeuren waarneemt. Links zien we een chaotisch
bewegend elektron dat versnelt, afremt, van richting verandert; er valt geen touw aan vast te
knopen. Kortom, zijn snelheid (impuls) is niet goed te bepalen. Tegelijkertijd is zijn positie op
elk moment van de tijd helder: hoewel het in de praktijk misschien lastig is het elektron te volgen,
zien we duidelijk waar het zich bevindt. Aan de rechterkant van Alice zien we het omgekeerde
geval. Een groot, uitgesmeerd, bijna stilstaand elektron neemt alle ruimte in. Aan de ene kant
is zijn snelheid goed te bepalen - het staat immers stil. Aan de andere kant zijn zijn contouren
zo onduidelijk en is het zo verspeid over de ruimte, dat spreken over de ‘positie’ van het elektron
weinig zin meer heeft.

Figure 8: (v.l.n.r.) een chaotisch bewegend elektron, Alice, een stilstaand en uitgespreid elektron.

Ter herhaling: bij het beschrijven van kwantummechanische fenomenen die plaatshebben op
atomaire schaal, zijn positie en impuls niet gelijktijdig meetbaar. De positie- en impulsoperator

36Gemaakt door Lou Ripoll. Merci à toi, Lou.
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commuteren niet. Dit feit staat bekent als de kanonieke commutatierelaties, en het ligt aan de
basis van bijna al het tegenintuïtieve in de kwantummechanica.

Nu we een kijkje hebben gehad in de vreemde kwantumkeuken, zijn we geïnteresseerd in een
theorie om dit alles te beschrijven en, belangrijker, om al dit geks correct te voorspellen. Het
blijkt echter nogal lastig te zijn om zomaar met een kwantumtheorie op de proppen te komen.
Meestal begint men daarom met een klassieke theorie, om deze vervolgens te kwantiseren. Wat dit
kwantiseren inhoudt, is ervoor zorgen dat kwantumfenomenen die bij experimenten waargenomen
zijn, correct beschreven worden. Het zorgt er bijvoorbeeld voor dat de eerdergenoemde kanonieke
commutatierelaties gelden. Dit betekent niets anders dan dat positie en impuls niet gelijktijdig
meetbaar zijn, zoals we hiervoor al zagen. Aangezien kwantummechanica nauwkeuriger is dan
Newton’s mechanica is niet duidelijk op welke manier dit kwantiseren moet gebeuren.

In deze scriptie heb ik gekeken naar één van de manieren om een klassieke theorie te kwantis-
eren, zogeheten kwantisatie door deformatie. Hiervoor heb ik allereerst symplectische geometrie
bestudeerd: een wiskunde formalisme dat klassieke mechanica in een algemeen jasje steekt. Het
voordeel van dit jasje is dat allerlei lastige systemen goed te beschrijven zijn. Het wegschieten van
een voetbal over een veld is redelijk eenvoudig, maar ook beweging op gekromde oppervlakken
(zogeheten variëteiten) zoals een bol of een cilinder is zo te vangen. Deze gekromde structuur
wordt vervolgens gedeformatiekwantiseerd door een zogeheten sterproduct ? te introduceren. Dit
is een ander soort product dan het reguliere, dat we gebruiken om bijvoorbeeld vijf maal zeven
uit te rekenen. Merk op dat 5 × 7 = 35 = 7 × 5, wat betekent dat 5 en 7 commuteren ten op-
zichte van regulier vermenigvuligen; in beide volgorden is hun product gelijk aan 35. Echter, ten
opzichte van het sterproduct commuteren positie r en impuls p niet. Oftewel, r ? p 6= p ? r. Dit is
precies het vreemde kwantumgedrag wat we hierboven zagen. Dankzij dit sterproduct zijn andere
kwantumfenomenen ook te beschrijven.

De Russisch wiskundige Maxim Kontsevich heeft in 1997 een stelling bewezen waaruit volgt
dat elk klassiek systeem (symplectische variëteit in jargon) te deformatiekwantiseren valt tot één
kwantumsysteem door definitie van zo een sterproduct.37 Ik heb deze stelling en zijn gevolgen on-
derzocht. Daarnaast geeft Kontsevich een formule om op elk oppervlak (variëteit) het bijbehorende
sterproduct te vinden. Deze berekening gaat met behulp van grafieken en ik heb de formule op het
makkelijkste voorbeeld, het platte vlak, toegepast. Dit levert het zogeheten Moyalproduct, dat
in de jaren ’40 al bekend was bij onder andere Nederlands natuurkundige Hip Groenewold. Ter
introductie tot het onderwerp zijn de eigenschappen van dit product onderzocht en beschreven.

Kwantisatie door deformatie blijkt een goede manier te zijn om aan een klassiek systeem een
kwantummechanisch systeem te associëren. Dankzij Kontsevich’ bewijs is zo een associatie voor
elk klassiek systeem mogelijk. Bovendien is de toekenning in zekere zin ‘uniek’. Dit zijn twee sterke
argumenten ter ondersteuning van deze kwantisatiemethode. Echter, deformatiekwantisatie blijft
één van de methoden. Aangezien de natuurkunde een empirische wetenschap is, zal een experiment
op een of andere manier uitsluitsel moeten geven; that’s just how the cookie crumbles.

Erg intuïtief is kwantummechanica in ieder geval niet, want zoals Niels Bohr38, één van de
pioniers van de kwantummechanica, al zei:

Anyone who is not shocked by quantum theory has not understood it.39

37Er zijn hierbij een aantal details in overweging te nemen, de relatie is niet direct een staat tot een.
38Niels Bohr (1885 - 1962), Deens natuurkundige, speelde een belangrijke rol in de ontwikkeling van de kwantum-

mechanica.
39Uit Alice in Quantumland, Robert Gilmore, Sigma Press, 1994, Wilmslow.
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