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Abstract

The addition of extra dimensions to our four dimensional universe, which is suggested
in many theories, has drastic consequences for all physical behaviour in nature. By
evaluating compactification and brane theories, the differences in gravitational force,
volumes and mass in more dimensions become apparent. This can clearly be seen
when considering black holes. Other characteristics, such as the lifetime, Schwarzschild
radius and Hawking temperature, also depend on dimensionality. In the case that the
fundamental Planck scale is of order TeV black holes can be produced in the next
generation of particle colliders. The signatures of a black hole in detectors can be
predicted by assessing its decay and enlighten us on the dimensions of the universe.
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1 Foreword

In our daily experience we are very aware of the three spatial dimensions we live in. Even
adding a fourth dimension, time, is not considered surprising. However, when scientists
first came up with ground-breaking theories about higher dimensional space, it was put
aside as science fiction or a fabrication of great fantasy. Currently, these theories, which
result from the up-and-coming string theory, are beginning to be accepted as the next ma-
jor step for theoretical physics [1].

The idea of extra dimensions originates in the search for a unified theory of all forces in na-
ture. According to physicists, the electromagnetic force, the weak and the strong force and
the gravitational force were combined as one at the time of the Big Bang. For these forces
to merge, they would have to be the same strength in high energies. Gravity, however, is
found to be much weaker than the other forces [2].

Currently, a unification is sought in string theory. According to this theory, in which general
relativity and quantum mechanics are reconciled, the world is no longer described by inter-
action of particles but by the interaction of 1-dimensional objects, or strings. However, the
only way in which string theory will be consistent is for it to add six or seven dimensions to
our world [1].

In the first part of our paper we will review the consequences of these extra dimensions to
the world as we know it. The structural properties of the dimensions will be assessed by
studying compactification theories and brane theories and gravitational laws will be calcu-
lated for different numbers of dimensions. Furthermore, the Planck scale and its modifica-
tions in extra dimensions will be evaluated.

A very interesting consequence of the existence of extra dimensions is that the fundamen-
tal Planck scale might be lowered to TeV scale. This opens up the possibility that future
particle colliders can produce black holes. By evaluating black holes and their properties
in a more dimensional world we can examine whether black holes provide us with proof
that there are indeed extra dimensions in our universe. The second part of our study is
therefore devoted to black holes, their characteristics and the way they might be produced
and decay in particle colliders. We have carried out all calculations and derivations in both
sections ourselves, except for those where we refer to a certain reference.
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2 Introduction into extra dimensions

2.1 Introduction

Before we begin our journey through the physics of higher dimensions, we should ask our-
selves some questions. To begin with: what do we mean with a dimension?

You can define the number of spatial dimensions as the number of independent directions
along which you can travel. When we look around us, we see one direction in front of us,
one beside us and one above. We count three directions and the conclusion is rapidly
drawn that we must live in a 3-dimensional world. You can also define the number of di-
mensions as the (precise) number of coordinates you need to completely pin down a point
in space. Mathematicians walk yet another path. They use the notation (x, y, z) and add
a new symbol for every new dimension. We can visualize the three dimensions we just
counted by three coordinate axes. One extra dimension simply requires adding another
axis, independent of the first three axis. However, when extra dimensions come along we
better stop visualizing and continue with words and equations.

Everything around us suggests that we are living in three spatial dimensions. This state of
mind remains for almost every person on earth. A small group who is introduced to special
relativity discovers the combination of our three dimensions of space with one dimension of
time, forming the space-time continuum. In this construct space and time are inseparable.
This group of privileged people is offered time as the fourth dimension. Mathematically
speaking this means that you need four coordinates to describe an event in space-time.
There is an even smaller crowd of people who are considering even more spatial dimen-
sions. This last group consists of well educated people, most of them physicists. These are
normally not the kind of individuals who would believe in science fiction. What has gotten
into them? Why would they seriously consider extra dimensions that cannot even be seen?

First we have to note that even though other dimensions cannot be seen, their existence is
not ruled out. No physical theory states that there can only be three dimensions of space.
Still, many believe there should be more than that. The best motivation comes from the
search for the holy grail of physics: unification. Our heavyweight theory of today is the
Standard Model. This theory describes three out of four fundamental forces: the strong,
weak and electromagnetic forces. However, the Standard Model is not a complete theory.
It does not tell us how the gravitational interaction takes place at subatomic level. Currently,
the unification of all the fundamental forces into one theory is the main goal of physics: the
fusion of Einstein’s general relativity, which gives an accurate description of gravity, with
the standard model. The only serious candidate that can make this dream come true is
string theory. In this model of theoretical physics particles and forces are presented as tiny
extended object, strings. It appears that string theory can only be consistent if there are
many additional spatial dimensions, six or seven, depending on how you look at it.
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2.2 Newton’s law of Gravitation in more than four dimensions

As explained above, there are diverse reasons for the addition of extra dimensions to our
universe. The next step to take will be to look at physics in a world with more spatial
dimensions. Let us consider Newton’s gravitational force law. This icon of classical physics
tells us how the gravitational force, F (r), depends on the distance, r, between two massive
objects m and M :

F (r) =
GNmM

r2
(1)

With GN the gravitational proportionality constant.

Every grown-up multidimensional theory which includes gravity should reproduce this for-
mula. This will be a check point along the way. How this inverse square law depends on
distance is strongly linked with the number of spatial dimensions. This number tells us how
gravity diffuses as it spreads in space. Before we adjust our formula to more than three
spatial dimensions we should have some idea of how this spreading takes place.

As a descriptive explanation we picture the problem of watering a plant in a garden. We
distinguish between giving the plant the water through a nozzle or through a sprinkler.
Figure 1 depicts the differences between the two methods. When using the spout all the
water lands on the plant. While using the sprinkler, merely a part of the water will end up
on the plant. Futhermore, the distance between the sprinkler and the plant, matters as
well. With the nozzle this is not the case. The fundamental distinction between the two
watering methods is jumping to a higher dimension. The spout only gives water to a point
(one dimension), other than the sprinkler, which distributes the water on to a surface (two
dimensions). In general we can say that anything that is spread in more than one direction,
will have a lower impact on objects that are further away. Similarly, gravity will spread more
quickly with increasing distance.

Figure 1: Depiction of the difference of watering plants with a nozzle (left) and with a
sprinkler (right). When using a nozzle, all the water is poured onto one point, while the
water through the sprinkler is spread over a great area. This shows us that in a more
dimensional world, forces are diluted [3], pp 44 .

We will represent the strength of gravity by field lines (in analogy with the sprinkler: the wa-
ter flux). The line-density indicates the strength of the gravitational force at a given point.
Since gravity attracts all the surrounding mass isotropically, the field lines will go radially
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outwards. As you can see in figure two the same number of field lines intersect a sphere of
any radius. The fixed number of gravitational field lines is spread over a sphere’s surface,
therefore it has to decrease with the squared radius.

Figure 2: This figure shows that gravity (depicted by field lines) becomes weaker as a
function of the distance to the gravitational source. This dependence goes as 1/r2. As
you can see, this is caused by the fact that as the radius increases, the same amount
gravitational field lines pierce through a larger area [3]). pp45.

The mathematical description of the above is given by Gauss’ law, which, in a gravitational
field, gives the relation between the gravitational flux flowing out of a closed surface and
the mass enclosed by this surface. (see page 42 - 46 of [3]) We will use Gauss’ law, which
is stated below, to derive Newton’s law of gravitation in more than four dimensions (we are
taking space-time into account): ∫

surface

~g · d~S = −4πGNM (2)

where, ~g, is the the acceleration due to gravity, caused by a point mass, M and the integral
is over any surface which completely surrounds the mass.

We choose the surface around the point mass to be a sphere. The vector d~S is a unit
vector pointing radially out of the sphere, whereas the direction of ~g is the negative radial
direction, so (2) now reads: ∫

surface

−gdS = −4πGNM (3)

where g is the length of ~g. Notice the minus sign in the integral. This results from the fact
that ~g and d~S are antiparallel.

This integral is easy to solve, because we can extract g (it has the same value everywhere
on the surface) and the integral is just the surface area of a sphere.

−g

∫
surface

dS = −g · 4πr2 = −4πGNM (4)

To get (1) all there is left to do is to fill in Newton’s second law F = m · a with g as a and
we obtain the desired result.
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We are interested in expanding this relation to more dimensions. Assuming that (2) holds
for more than three dimensions we can easily rewrite (1) for d spatial dimensions in terms
of the surface of a (d− 1)-dimensional sphere (note: (d− 1)-spheres live in d dimensions).
Notice that if (2) holds in d spatial dimensions, then (4) must do so as well. For three
dimensions the integral on the left was just the surface area of a sphere, however, now that
we are in d dimensions it becomes the area of the surface of a (d−1)-sphere: Vd−1(r) (We
shall refer to this as their “volume”):

gVd−1(r) = 4πGNM ⇒ F =
4πGNmM

Vd−1(r)
(5)

So evaluating the volume of a (d − 1)-dimensional sphere leads us directly to Newtonian
gravity in d dimensions.

2.2.1 The “volume” of a (d− 1)-dimensional sphere

We have been confronted with the surface or ”volume” of a hypersphere several times.
Let us look at this concept more precisely. A point in d-dimensional Euclidean space is
represented by (x1, x2, . . . xd). To evaluate the surface of a (d− 1)-dimensional sphere we
need its radius R, which is defined by the equation:

x2
1 + x2

2 + . . . + x2
d = R2 (6)

For a 0-dimensional sphere (6) reads x2
1 = R2, so x1 = ±R. A 0-dimensional sphere is

given by two points at +R and −R, living in a 1-dimensional world (We will not evaluate
the volume just yet, but we shall see later on that it is 2).

A 1-dimensional sphere is given by the equation x2
1 + x2

2 = R2. This is a circle in two
dimensions and its volume can be obtained by integrating a infinitesimal bit of the circle’s
circumference Rdφ over the entire circle:

V1 =
∫ 2π

0
Rdφ = 2πR (7)

The 2-dimensional sphere is what we commonly hold for a sphere and its surface is given
by x2

1 + x2
2 + x2

3 = R2. The volume of this sphere can also be obtained by integration,
only one more variable is needed, because there is a dimension more in this problem. We
must integrate the infinitesimal bit R sin(θ)dθ over half a circle (the other integral will take it
around the whole sphere). We obtain:

V2 =
∫ 2π

0
Rdφ

∫ π

0
R sin(θ)dθ = 4πR2 (8)

From all this we can make the generalization that the volume of a (d − 1)-sphere must
depend on r(d−1): Vd−1 = crd−1. Moreover from (5) we see that the gravitational force F
must depend on r−(d−1).
But how about the volume of spheres with dimensions higher than two? We will now derive
a formula for Vd−1 so we can plug that into equation (5). To do this we use a trick. We will
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evaluate the integral I given by:

I =
∫

all space

ddr e−r2

in two ways; in Cartesian coordinates and in polar coordinates.
In Cartesian coordinates we know that r2 = x2

1 + x2
2 + . . . + x2

d. Since the integral must be
over all space, which is from −∞ to +∞ for every variable xi with 1 ≤ i ≤ d, the integral I
becomes:

I =
∫ +∞

−∞
dx1dx2 . . . dxd e−(x2

1+x2
2+...+x2

d) (9)

This is the known integral
∫∞
−∞ dxe−x2

=
√

π in d dimensions. Hence, I =
√

π
d = π

d
2 .

Now take a look at the problem in polar coordinates. To evaluate the integral over all space
is the same as taking the volume of a (d− 1)-sphere as a function of r and integrating that
over all r (from 0 to ∞).

I =
∫ ∞

0
dr e−r2

Vd−1(r) (10)

We already know how Vd−1 depends on r and d (Vd−1 = c · rd−1, where c is a constant) so
we can fill this in the equation above.

I =
∫ ∞

0
dr e−r2

crd−1 (11)

We can solve this in terms of the Gamma function:

Γ(x) ≡
∫ ∞

0
tx−1e−tdt

if we substitute t = r2:

I =
c

2

∫ ∞

0
dt e−tt

d
2
−1 (12)

(Here we use that if t = r2, then dr = dt
2r and r = t

1
2 ) The integral is just the Gamma

function for x = d
2 and we already know from the Cartesian coordinates what the answer

should be.

I =
c

2
Γ(d/2) = π

d
2 (13)

This can be solved for c, which gives us a result for Vd−1:

Vd−1(r) =
2π

d
2

Γ(d
2)

rd−1 (14)

We can check this equation for d = 1, 2, 3 (remember: Γ(n) = (n−1)!, when n is an integer,
Γ(1/2) =

√
π and Γ(3/2) =

√
π/2). We find the results we ran into before and now we see
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why the volume of a 0-dimensional sphere equals two.

We have almost achieved our goal. We can substitute our expression for Vd−1 in equation
(5) to end up with the expression for F in a d-dimensional space:

F =
2πGNmMΓ(d

2)

π
d
2 rd−1

(15)

Now we have the gravitational force in more dimensions. With this we can evaluate the
behaviour of the world in more dimensions.

2.2.2 An application: Planetary orbits in higher dimensions

With the expression for the gravitational force in more dimensions we can check if there
can be stable planetary orbits in higher dimensions. In the case that the planetary orbits
are stable in more dimensions it is possible that the size of the extra dimensions can be
as large as our solar system, maybe even infinite. However, if planets cannot orbit stably
in a more dimensional world we will have to conclude that the extra dimensions have to be
smaller than astronomical scales. To do this analysis, we consider the total energy of the
planet:

E =
1
2
mv2 + V (r) (16)

where the gravitational potential V (r) is a function of r and changes when we vary the
amount of spatial dimensions. We can evaluate the potential by integrating the gravitational
force:

V (r) = −
∫ ∞

r
F (r)dr = k∗

1
(2− d)rd−2

(17)

where k∗ is a constant which is different for different dimensions: k∗ = 2πGNmMΓ( d
2
)

π
d
2

We

will include the (2− d) factor in k∗ and call it k. Note that k is always negative, since there
are at least three spatial dimensions in our universe.

Since we are considering planetary orbits, we can be satisfied with a 2-dimensional de-
scription of the orbit. We can therefore write ~r and ~v in terms of 2-dimensional polar
coordinates (r̂, θ̂). ~r becomes rr̂, while ~v (the time derivative of ~r) becomes ṙr̂ + rθ̇θ̂.
The angular momentum of the system must be constant, because we are looking at an
orbit.

~l = ~r × ~p = rr̂ ×m(ṙr̂ + rθ̇θ̂) (18)

l = 0 + r2θ̇ ⇒ θ̇ =
l

r2
(19)

If we fill in the potential and ~p = m(ṙr̂ + rθ̇θ̂) in (16) we get the expression:

E =
1
2
m(ṙr̂ + rθ̇θ̂)2 +

k

rd−2
(20)
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Working out the quadratic factor and filling in (19) for θ̇ we get:

E =
1
2
mṙ2 +

ml2

2r2
+

k

rd−2
(21)

We have now reduced the problem to a one-dimensional situation (there is only r-dependence)
and we have split (21) into two parts; one dependent on ṙ and associated with the kinetic
energy of the system and one dependent on r and associated with the potential of the
system. To see whether a planetary orbit is stable, consider the potential of the system in
different dimensions.

V (r) =
ml2

2r2
+

k

rd−2
(22)

When plotting this function for different dimensions it shows that the potential only has a
minimum value for (d−1) < 3. For higher dimensions than three there is either no extreme
value (for d = 4) or a maximum, which means that planetary orbits are not stable in higher
dimensions. They could exist, but the slightest knock would push the planets out of orbit.
The radial position of the planets could not be stable.

This result should not be too surprising, since we have never seen a deviation to the in-
verse square law on ordinary distances. We know that Newton‘s law behaves as 1

r2 so this
automatically leads to the conclusion that the number of spatial dimensions is three. Fur-
thermore the assumption that the extra dimensions are of infinite size seems very unlikely.
If they were, why would we be incapable of seeing them, or take a walk in them?

2.3 Compactification and Kaluza-Klein Reduction

To provide a reasonable explanation to the problem mentioned above, we can imagine the
extra dimensions are compactified, meaning they are curled up so small that we cannot
see them. In this section we will look at the first theory of compactification [2]. Another
explanation could be localisation, using entities called branes. Branes can be described
as surfaces on which numerous spatial dimension can be localised, see figure three. Their
characteristics make them interesting for string theory for matter and forces can be con-
fined to branes and branes can carry energy. The reason why we do not see the branes is
because their radius is much smaller than the world we live in, see figure four.
In the 1920s Theodor Kaluza and Oskar Klein tried to combine electromagnetism and
gravity in one covering geometrical scheme. To accomplish this, a curled-up fifth dimen-
sion was added to our universe [1].

Let us look a bit closer at the Kaluza-Klein compactification. We will consider relativis-
tic particles to explain this compactification. First consider one relativistic particle in five
dimensions (four spacial and time) with mass M. The 5-momentum for this particle is:

p ≡ (
E

c
, p1, p2, p3, p4) (23)

From this 5-momentum we can derive an expression for the energy E in terms of its 4D
spatial-momentum and M . Special relativity tells us:

p(5) · p(5) = −E2

c2
+ p2

1 + p2
2 + p2

3 + p2
4 = m2c2 (24)
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Figure 3: The brane can be seen as a surface with three spatial dimensions. Trapped
on this surface are the electromagnetic, weak and strong forces and all the matter in the
universe. Gravitons, however, are able to leave the surface and move throughout the bulk.
The bulk is all the volume outside the brane.

Figure 4: The 2-dimensional surface looks 1-dimensional when its radius is small. For the
dancer the surface is small and she sees it as a one-dimensional rope. However, the ant
is small compared to the rope and it sees it as a 2-dimensional surface. That is why for us
we do not see the branes, their radius is much smaller than the world we live in.

The next step will be to write the previous in correct terms from which we acquire:

E2 = m2c4 + p̃2c2 + p2
4c

2 (25)

with p̃ the spatial momentum in 4D.
For futher analysis it is necessary to take the compactification into account. Take the fourth
spatial dimension, x4, compactified on a circle of radius R. Now we can express its energy
and 3D spacial momentum in terms of p4 and M .
When we compare this equation with the equation for the energy in 4D: E2

c2
= m2c2 + p̃2 we

see there is an extra term, p4, in the equation for five dimensions. This means that, since
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E, c, and p are the same for both 4D and 5D, the mass in 5D has to be smaller than the
mass in 4D to compensate for the extra factor p2

4. Assuming we are confined to four of the
five dimensions, the mass seems to be larger to us than it is in 5D.

Now we observe two particles in 5D instead of just one. x4 is still compactified on a
circle of radius R. Take the 5-momenta of the two particles to be p and p′. Then the
gravitational force between the particles, when they are at rest in 4D (so p equals zero)
and are separated by r � R, can be approximated by the semi-relativistic expression:

F (r) ' GN

c2

p · p′

r2
(26)

Let us consider this force in 5D, with the momentum of the particles in the x4 direction. We
would like to show that it will look like a combination of a gravitational force and an electro-
static Coulomb force. We may assume that the mass in 5D equals zero. Furthermore we
consider the momenta to be quantized. This results from the fact that the extra dimensions
are compactified. The dimensions are compactified on circles with perimeter 2πR. The
wavelengths have to fit a whole number of times (N ) on this circle: Nλ = 2πR. This means
that the wavelengths are quantized. The momentum is proportional to the wavelength:
p = h̄

λ . As a result we see that: p = Nh̄
R , the momentum is quantized.

First consider the inner product of the two momenta:

p · p′ = −EE′

c2
+

nn′h̄2

R2
(27)

We already know that: E2

c2
= m2c2 + p̃2 + p2

4 and p4 = nh̄
R . When you compare these

equations, we acquire an equation for the energy:

E =
|n|h̄c

R
(28)

We can write |n| in another way. We know the inner products of the 5-momenta and 4-
momenta, with the knowledge that the inner product of the 5-momenta is zero, you can
compare the two and get:

|n| = McR

h̄
(29)

Finally we can fill (27), (28) and (29) in into (26) to get an expression for F (r) in four
dimensions:

F (r) = −GNM ′M

r2
+

GNnn′h̄2

c2R2r2
(30)

The two assumed particles both have charges contributing to the Coulomb force. The
second part in (30) should be the Coulomb force. Therefore we have to compare it to the
known equation for Coulomb force, which is: Fc = qq′

4πε0r2 . Clearly, the charges only depend
on n and n′, because the other terms are constants. Therefore: q ∝ n and q′ ∝ n′.
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As we all know the gravitational force is attractive. The gravitational force in (30) has a
minus sign, which means that, minus stands for attraction. Now let us look at the second
term, the Coulomb force. The attraction or repulsion depends on n and n′. Suppose the
particles attract each other. This means that one n has a minus sign and so the Coulomb
force will have a minus in front and therefore will be attractive. On the other hand, when
the particles repel each other both have one or none minus sign, which means that there
will be no minus signs in front of the Coulomb force, and so it will be repulsive.

(26) shows the dependence on R, so we can calculate R in such a way that a particle
in five dimensions with one unit of momentum along x4 appears to have the elementary
charge of an electron. After we fill in the right values for the constants we get a value for R
of 1.8 · 10−34 m.

The search for unification, which began around 1860, when Maxwell came up with a bril-
liant theory of electromagnetism, inspired Theodor Kaluza and Oskar Klein to come up with
the compactification when they tried to combine electromagnetism and gravity in one cov-
ering geometrical scheme. To accomplish this, they needed the curled-up fifth dimension.
However, this theory cannot explain why gravity is so much weaker than the electromag-
netic force, nor can it be combined with quantum mechanics, which was rapidly developing
in their day [1].

2.4 Gravitational potential in n compactified dimensions

The result that Newton’s gravity and Coulomb’s electromagnetic force could be combined
in one expression is still promising for further unification. This provides a good reason to
consider the gravitational potential in more than one compactified dimension.

In section 2.2.1 en 2.2.2 we have derived Newton’s gravitational potential in d spatial di-
mensions (17):

V (r) = k
1

rd−2
(31)

where k = 2πGNmMΓ( d
2
)

(2−d)π
d
2

.

It is important to take in account the different variables for the dimensions. We have defined
d as the number of spatial dimensions: in our world d = 3. Furthermore we have n as the
number of extra spatial dimensions. The relation between d and n is: d + 1 = 4 + n.
We can express the potential in 4 + n space-time dimensions, using Gn+4: Newton’s grav-
itational constant in (n + 4) space-time dimensions:

V (r) = −Gn+4mM

rn+1
(32)

We now turn to the question what the gravitational potential would look like if the additional
n dimensions were compactified on to a circle with radius R. We can visualise the com-
pactification by considering a mass M on a cylinder. The length of the cylinder represents
the three unfolded spatial dimensions and the radius the n compactified dimensions. We
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can solve the problem using the method of images (just like the electrodynamic problem of
a point charge on a cylinder).
If we first imagine n to be one, we can unfold the extra dimension, so to get an infinite extra
dimension, with the mass M repeated every 2πR. (32) now becomes an infinite sum over
all the masses. The distance to the mass becomes

√
r2 + (b2πR)2 where b is an integer

going from −∞ to ∞. The potential becomes:

V (r) = −
∞∑

b=−∞

Gn+4mM

[r2 + (b2πR)2]
1
2

(33)

By generalising this to n compactified dimensions, we get an expression in terms of n
infinite sums:

V (r) = −
∞∑

b1=−∞
· · ·

∞∑
bn=−∞

Gn+4mM

[r2 + (b12πR)2 + · · ·+ (bn2πR)2]
n+1

2

(34)

In the limit of r � R these sums can be replaced by integrals. This is because the fractions
2πR are so small in comparison to r, that it can be approximated as infinitesimal. Now (34)
can be written as:

V (r) = −
∞∫

b1=−∞

· · ·
∞∫

bn=−∞

Gn+4mM

[r2 + (b12πR)2 + · · ·+ (bn2πR)2]
n+1

2

db1 . . . dbn (35)

To clean up this expression we divide the denominator by r2 and substitute xi = bi2πR
r to

get:

V (r) = −Gn+4mM

r(2πR)n

∞∫
x1=−∞

· · ·
∞∫

xn=−∞

1

(1 + x2
1 + · · ·+ x2

n)
n+1

2

dx1 . . . dxn (36)

Now we can change to polar coordinates using the volume of a (n−1) dimensional sphere
(Vn−1(ρ)) (I will use ρ for the radial variable, because we already have a different r in the
expression). The integral can be written as follows:

V (r) = −Gn+4mM

r(2πR)n

∫ ∞

0
Vn−1(ρ)

1

(1 + ρ2)
n+1

2

dρ (37)

If we now substitute u for ρ2, we can solve this in terms of the Beta function [16];

B(p + 1, q + 1) =
∫ ∞

0

updu

(1 + u)p+q+2
=

Γ(p + 1)Γ(q + 1)
Γ(p + q + 2)

(38)

Working out the integral and writing the Beta function in terms of Gamma-functions yields
the following result [16]:

V (r) = −
V(n−1)Gn+4mM

2Σn

1
r

(39)

Where V(n−1) is the volume of a n-dimensional unit sphere given by (14) and Σn is the
size of the extra dimensions (in this case Σn = (2πR)n). The equation looks just like the
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gravitational potential we know in 4D. This is what we would expect, since we are working
in the limit of r � R. To get the regular expression in 4D, we have to realise that:

Gn+4 =
2GNΣn

V(n−1)
(40)

So if we assume the extra n dimensions to be compactified on a circle, we obtain the
usual inverse square law for distances much greater than the size of the extra dimensions.
However, if we look at distances close to R, the approximation of a sum by an integral no
longer holds. Threfore we would expect the gravitational force to deviate from the inverse
square law and pick up an extra correction term:

V (r) ∼ 1
r
(1 + αe−

r
λ + . . .) (41)

Physicists trying to find extra dimensions by looking at the gravitational force are looking
for this extra term.

2.4.1 The exact gravitational potential for n = 1

We can check that the expression for the potential satisfies our expectations by taking
n = 1. With this we can work out (34). If we calculate the limit of r � R we want to find the
1
r potential, while taking the other limit (R � r) we would expect the potential derived in
section 2.2.2, for we are looking at such small distances that the extra dimensions appear
very large. For n = 1 (34) becomes:

V (r) = −
∞∑

b=−∞

G4+1mM

r2 + (b2πR)2
(42)

Now we divide the denominator by 2πR and use the identity:

∞∑
m=−∞

1
m2 + a2

=
π

a
coth(πa) (43)

to get:

V (r) = −G4+1mM

2rR
coth

(
r

2R

)
(44)

We will first check the limit R � r, so we need the limit limx↓0 coth x = 2+x2

2x . Here we can
forget about the quadratic term, because in this case it would be extremely small.

V (r) = −G4+1mM

r2
(45)

which is exactly what we had expected!
Using the limit limx→∞ coth x = 1 we obtain the potential in the limit r � R:

V (r) = −G4+1mM

2Rr
(46)
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which is exactly (39) for n = 1.
As a result we see that for n = 1 the potential satisfies our physical expectations. Further-
more the exponential power in (41) can be obtained by the first order correction to equation
(47).

V (r) = −G4+1mM

2Rr
(47)

We can calculate the correction term on (47) by keeping the first correction term of the
approximation we made to get from (44) to (47). To simplify matters, we write

V (r) ∼ 1
r

coth
(

r

2R

)
(48)

When we write out coth and multiply by e
−r
2R we obtain

V (r) ∼ 1
r

(
1 + e

−r
R

1− e
−r
R

)
(49)

In the limit where r � R, the term e
−r
R goes to zero. This is where we made the approxi-

mation

V (r) ∼ 1
r
(1 + e

−r
R )(1 + e

−r
R + . . .) (50)

Working away the brackets and omitting the last term leaves us with

V (r) ∼ 1
r
(1 + 2e

−r
R ) (51)

2.4.2 The Planck scale

To find the scale at which gravity becomes a strong force, the fundamental units GN , h̄ and
c can be combined into a new quantity with units of mass and another with units of length.
This can be done by dimensional analysis. These quantities are called the Planck mass
(Mp) and the Planck length (lp):

Mp ≡
√

h̄c

GN
= 2, 2 · 10−8kg ∼ 1, 2 · 1028eV (52)

and

lp ≡
√

h̄GN

c3
= 1, 6 · 10−35m (53)

We see from (52) that Newton’s gravitational constant is inversely proportional to the
Planck mass (squared) and thus also related in this way to a concept called Planck en-
ergy (remember that we can convert between energy and mass just by putting in a c2).
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Before we continue our analysis it may be wise to look deeper into some concepts from
high energy physics. In this branch of physics, people always talk about physical processes
taking place at a certain energy scale. What is meant is related to the following.

In quantum mechanics there is a concept called the uncertainty principle. This principle
states that the product of the uncertainties in the measurements of position and momen-
tum must exceed Planck’s constant. In other words, when you know everything about the
position of a particle, you know almost nothing about its momentum. Particle physicists
work with processes occurring at very small (read: relatively precise known) distances.
Consequently these processes must contain very high momenta. In special relativity en-
ergy and momentum are related. When momenta are high the energies are high too. In
conclusion we can say that you can only explore short distances by making use of high en-
ergies. Moreover, we can state that working at different distance scales requires working
at different energies. We can convert an energy scale into a corresponding length scale
with the formula E = hc

λ . This length scale illustrates the range of the associated force.

There is another way to come to the same conclusion. Picture the following. Only particles
whose wave functions vary over small scales will be affected by short distance physical
processes. However according to the de Broglie relation, particles whose wave function
involve short wavelengths also have high momenta. Therefore de Broglie would also have
us conclude that you need high momenta, and hence high energies, to be sensitive to the
physics of short distances (see page 143 of [3]) .

In nature there are at least two fundamental energy scales. On the one hand we have
the electro-weak energy scale (∼ 103 GeV ). This scale appears in the Standard Model.
Current experiments in particle accelerators are operating around this energy. When the
Large Hadron Collider (LHC) is launched in 2007 at CERN we will be able to do experi-
ments above the weak scale energy. On the other hand there is the Planck scale (∼ 1018

GeV ) which is much higher and related to gravity. We already saw that Newton’s gravi-
tational constant is inversely proportional to Planck energy. Gravity is weak because the
Planck scale energy is large. Moreover, the Planck scale energy is the amount of energy
that particles would need to have, for gravity to be a strong force. As told before we can
convert an energy scale into a corresponding length scale which tells us about the range
of the force in question. The enormous gap between the two energy scales bothers a lot
of physicists. The existence of this gap is formulated as the hierarchy problem.

The supporters of the Grand Unified Theory would like to combine all physics in one the-
ory. However, you can expect particles that experience similar forces, to be somewhat
similar. The enormous desert in between the two energy scales does not help them much.
For example, this gap results in a huge dissimilarity in the mass of the particles (we can
convert between energy and mass with Einstein’s formula). Therefore many physicists are
determined to solve this mystery.

However, there is a way out of the hierarchy problem. If we assume extra compactified
dimensions, we could obtain a new expression for the Planck length and the Planck mass
in (n + 4) dimensions. As we shall see the Planck scale can become much weaker, even
down to the TeV scale, which can be tested in near future collision experiments. We see
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that extra dimensions provide a solution to the hierarchy problem.
Now we know that Newton’s constant has different units in more dimensions. In 4 dimen-
sions (that is: three spatial and one time dimension) it has units of m3s−2kg−1. In (n + 4)
dimensions G4+n has units of mn+2s−2kg−1. You can easily check that the Planck length
then becomes:

lp =
(

h̄G4+n

c3

) 1
n+2

(54)

Next we can find an expression for the Planck mass in 4D (52) in terms of the Plank mass
in (4 + n)-dimensions M4+n, given by:

M4+n =
(

h̄(n+1)

c(n−1)G4+n

) 1
n+2

(55)

Filling in Gn+4 from (40) in (55) and using (52) works out to (we will denote Mp as M4 for
the 4 dimensional Planck mass to avoid confusion):

M2
4 =

(
M4+n

)n+2 2Σn

Vn−1

cn

h̄n (56)

With this result we can work out the size of the extra dimensions for gravity to become
strong at the electro-weak scale as a function of the number of extra dimensions n.
This allows us to make the first step in calculating the actual size of the extra dimensions.
As in the theory developed by Arkhani, Dimopoulos and Dvali (often referred to as the
ADD-model) [2] we assume M4+n = mEW ≈ 1TeV. Furthermore, from measurements we
know M4 = 1016TeV. By rewriting (55), using the above numbers and exctracting Rn from
Σn, we obtain:

R =
10

32
n

2 n

√
π

n−1
2 Γ(n+1

2 )
TeV −1 (57)

Notice that this has dimensions TeV −1. This results from the convention to set h̄ = c = 1.
To express R in meters we use E = 2πh̄c

λ , this gives us:

R =
1.98

2 n

√
π

n−1
2 Γ(n+1

2 )
10

32
n
−19m (58)

For n < 7, which are the relevant extra dimensions for our purpose, the factor in front of
10

32
n
−19 gives a factor ∼ 0.5. We only want to get an indication of the size of the possible

extra dimensions, so we can leave this factor outand simply write:

R ∼ 10
32
n
−19m (59)

We can use this expression to calculate the size of the extra dimensions:

n 1 2 3 4 5 6
R(m) 1013 10−3 10−9 10−11 10−13 10−14
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In this table we can see that if n = 1 the size of the extra dimension is comparable to
distances in our solar system. However, as we have assessed in section 2.2.2, planetary
orbits are not influenced by the quantum gravity effects we would expect if r ∼ R. There-
fore the possibility that n = 1 is excluded.

We have now calculated how properties as gravity and potential change as the number of
dimensions changes. We have also assessed the structure extra dimensions might have.
Furthermore we have found a relation between Mp and the number of extra dimensions
n. By increasing n the Planck scale can be lowered to 1 TeV, providing a solution for the
hierarchy problem. This alteration in gravity in more dimensions has numerous possible
consequences, one of which is the production of black holes in future colliders. In the next
section we will evaluate this production and look at some fascinating properties of black
holes.
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3 Black holes and extra dimensions

3.1 Properties of black holes

A black hole is a region of space that has such a concentration of mass or matter that noth-
ing inside its event horizon can ever escape, due to enormous force of gravity. Not even
light has a speed fast enough to escape the gravitational field [16]. A black hole consists
of an event horizon and a gravitational singularity. A singularity is a point in space-time at
which the laws of nature lose validity. The singularity has an infinitely small volume and an
infinitely large mass. Here time and space cease to exist [15].
A black hole is defined by merely three characteristics: mass, charge, and angular mo-
mentum. Other information, for example about the mass that has fallen into the black hole
is lost behind the event horizon. This phenomenon is called the no-hair theorem [15]. All
other properties can be derived from these three characteristics.

As is shown in the previous chapter, things change drastically when we look at phenom-
ena on the level of the Planck scale. In this case quantum gravity becomes important and
black holes of this scale are considered totally different from astrophysical black holes. In
this chapter we will assess a number of important qualities of black holes. First we will
do this for black holes in four dimensions. Then we will investigate black holes in extra
dimensions. However, most of the properties in four dimensions hold for black holes in
extra dimensions, sometimes varying only by a constant.

3.1.1 Escape velocity

For any given gravitational field and a given position, the escape velocity is the minimum
speed an object needs to have in order to move away indefinitely from the source of the
field. The object is assumed to be influenced by no forces except for the gravitational field.
The energy required to take an object from the surface of a planet to infinity is given by the
integral of the gravitational force:

E = −
∞∫

R

−GNMm

r2
dr =

GNMm

r
(60)

To calculate the escape velocity, the energy here calculated has to be equal to the kinetic
energy:

1
2
mv2

esc =
GNMm

r
(61)

This gives an escape velocity:

vesc =

√
2GNM

r
(62)
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3.1.2 Event horizon

The surface of a black hole is the so-called event horizon, an imaginary surface surrounding
the mass of the black hole. When an object has crossed the event horizon it cannot escape,
for it would have to travel with a speed greater than the speed of light. Objects that cross
the event horizon will experience spaghettification [16], which means the object will be
distorted, because the parts of the object closer to the singularity experience a stronger
attraction than those parts further away. Consequently the object will be stretched radially
with respect to the black hole. Furthermore, all parts of the object are pulled in the direction
of the singularity, which results in the compression of matter in directions perpendicular to
this axis.
The radius of the event horizon can be calculated with the use of (62) with vesc = c. This

gives: RH = 2GNM
c2

, more commonly written in terms of the Planck mass Mp ≡
√

h̄c
GN

instead of GN :

RH =
2h̄M

M2
p c

(63)

3.1.3 Hawking radiation

In 1974, Steven Hawking published the theoretical argument for the existence of the radi-
ation of black holes [5]. He showed that a black hole can emit thermal radiation, called
Hawking radiation. As we have just learned, black holes are sites of immense gravita-
tional attraction into which surrounding matter is drawn by gravitational forces. Classically
nothing can ever escape the black hole. However, using quantum mechanics and classi-
cal gravity Hawking concluded that black holes emit particles in a thermal spectrum. He
explained the emission of particles as follows: the vacuum surrounding the black holes is
filled with virtual pairs of particles, one with positive energy and one with negative energy.
Virtual particles are particles which can exist only for a short amount of time. Creation out
of nothing is possible as long as the uncertainty principle is not violated. In the presence
of the strong gravitational field of the black hole the virtual pairs are ripped apart to form a
real pair. Now one particle, the one with negative energy, will fall into the black hole while
the other is emitted. This cannot be inverted, because real particles only have positive
energies.
A black hole radiates particles as a black body with a specific temperature. Before calcu-
lating this temperature, called the Hawking temperature, the acceleration due to gravity at
the horizon of the black hole needs to be determined. This can be done by equalising the
resulting force and the gravitational force with R = RH . This gives:

a =
GNM4

P c2

4h̄M
=

c3M2
p

4h̄M
(64)

From this we see that T depends only on GN and M through the acceleration. Assuming
T ∼ a T can be found by dimensional analysis. The equation for T is then:

T =
h̄c3

32πkMGN
(65)
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Figure 5: An impression of pair creation at the Schwarzschild radius of a black hole. A
virtual pair is created and then ripped apart. Consequently, one particle falls into the black
hole and the other is radiated as Hawking radiation [5].

From this formula we can conclude that when the mass of a black hole decreases as its
temperature increases.

3.1.4 Lifetime

We have just discussed that from the vitual pair the particle with the negative energy will
fall into the black hole. Since energy equals mass, the black hole will lose mass when
the particle falls in. Due to the Hawking radiation the black hole will steadily lose mass.
Therefore the black hole has a certain lifetime which can be calculated. First we need the
luminosity of the radiation of the black hole:

luminosity =
dE

dt

1
A

(66)

We can assume that the luminosity obeys the Stephan-Boltzmann Law: luminosity =
σeT 4 with e = 1 for a black body, (66). When combining this law with E = Mc2 and

A = 4πR2
H = 16πG2

Nm2

c4
, we find the following equation:

∫
16h̄4c6t

324π3k4G2
dt =

∫
M2dM (67)

After integrating (67) we acquire an integration constant, as usual. When the mass is zero
the lifetime has to be zero too. This is only the case when the integration constant equals
zero. Rewriting (67) gives a lifetime of:

τ =
M3324π3k4G2

48h̄4c6
(68)
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3.1.5 Specific heat

The specific heat can be calculated from (65). Assuming that the total energy of a black
hole is E = Mc2 (65) can be rewritten as E = h̄c5

32πkGNT . Now taking the derivative to T we
obtain a formula for the specific heat:

Cv = − h̄c5

32πkGNT 2
(69)

The result for the specific heat is negative, which is very surprising. When energy is re-
moved from the black hole T increases in stead of decreases as we are used to with
respect to all other objects in nature.

3.1.6 Entropy

A black hole which does not possess entropy would violate the second law of thermody-
namics. When mass falls into the black hole, the entropy of this mass is lost, however,
since the total entropy always has to increase, the black hole has to have an entropy in-
crease to compensate for the loss of entropy of the infalling mass. The entropy of a black
hole has a special feature, namely that the black hole entropy is the maximal entropy that
can be squeezed within a fixed volume.
The entropy can be calculated with the use of the first law of the thermodynamics: dS = dE

T .
Now we can fill in the already known total energy (E = Mc2) and (65) to get integrals over
the mass and entropy. When worked out, we obtain:

S =
16πkGN

h̄c
M2 (70)

Expression in Planck length and Schwarzschild radius gives:

S =
4πkl2pc

4R2
HM4

p

h̄4 (71)

3.1.7 Properties in extra dimensions

It is time to study the properties that are different in extra dimensions.
Let us start with the escape velocity. Again we equalise the kinetic energy to the energy
that is required to take an object off a surface to infinity. However the latter energy differs
in several dimensions because the gravity in extra dimensions is different. The gravity in

extra dimensions equals: Fg = −G
(D)
N Mm

rn+2 , in which G
(D)
N is the gravitational constant in d

dimensions.
Thus we come to the following equation:
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−
∞∫

R

−
GD

NMm

rn+2
dr =

1
2
mv2

esc (72)

Working out the integral and arranging to v results in the escape velocity:

vesc =

√√√√ 2G
(D)
N M

(n + 1)Rn+1
H

(73)

Another equation for the escape velocity also has consequences for the Schwarzschild
radius. That is why we will calculate this again. We equal the speed of light to (73):

RH = (
2G

(D)
N M

(n + 1)c2
)

1
n+1 (74)

The Planck mass in four dimensions can be expressed in the Planck mass in d dimensions
and the volume of the extra dimensions: M2

p = (M (D)
p )n+2V . With this we can rewrite RH

as follows:

RH = (
2 h̄c

(M
(D)
p )(n+2)V

(D)
M

(n + 1)c2
)

1
n+1 (75)

The Hawking radiation also differs in extra dimensions. Hawking calculated an expression
for the temperature which a black body would have if it radiates the same as a black hole
with mass M does. To estimate this so-called Hawking temperature we use dimensional
analysis. We obtain:

kBT =
(n + 1)
(4π)

h̄c

RH
(76)

or by filling in the Schwarzschild radius:

kBT = C
G

(D)
N MBH

(2G
(D)
N MBH

(n+1)c2

1
n+1

)
(n+2)

(77)

with C a constant.
We already know from the calculations in four dimensions that power equals the luminosity
times the area of the sphere. In more dimensions: luminosity = σ(D)T 4

(D). We can use
the area as computed in chapter one (14) for a (d − 1)-dimensional sphere. However,
we have now added the dimension of time to the spatial dimensions. Therefore we must
replace (d − 1) with (d − 2). Furthermore, for further analysis it is useful to define an
expression for the number of extra dimensions which could exist next to the four known to
us. We therefore define that the total amount of dimensions equals the number of extra
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dimensions and the four space-time dimensions, d = 4 + n. After integrating we obtain an
equation for the mass. Leaving out the constants we get the following proportionality [6]:

τ (D) ∼ 1

M
(D)
P

M

M
(D)
P

n+3
n+1

(78)

The entropy in extra dimensions can be calculated with the help of the first law of the
thermodynamics, just as we did in four dimensions. From the formula for the temperature
(76) we can get an equation for M with respect to T . After integrating with respect to S
and M we obtain a formula for the entropy [6]:

S(D) = S(
R

RH
)(

n
n+1

) (79)

Now we have the Schwarzschild radius, the Hawking temperature, the lifetime and the
entropy in extra dimensions. To compare these with the ones in four dimensions we need
all the equations in terms of the Planck mass; for those equations, see [6]. Then we
can obtain the proportionality with respect to the mass and the Planck mass for all the
equations. Comparing those proportionalities for four dimensions and extra dimensions
gives the following results [6].
For the Schwarzschild radius we see that:

RH < R
(D)
H (80)

This means that a black hole -when its not too big- will be larger in the world of extra
dimensions than in the ‘normal’ world.
For the Hawking temperature we acquire:

T > T (D) (81)

The Hawking temperature is smaller in extra dimensions.
For the lifetime we achieve:

τ < τ (D) (82)

This means that a black hole will live longer in extra dimensions.
Finally, for the entropy we attain:

S < S(D) (83)
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3.2 Black hole production in particle colliders

Motivated by string theory and in attempts to solve the hierarchy problem many ideas have
been proposed that assume the existence of extra dimensions in the universe. One of
these ideas, formed in 1998, no longer treated the extra dimensions as Planck-length-size
dimensions. It was postulated that extra dimensions could be as large as 1 mm if the fields
of matter are confined to the four dimensional surface of a brane and only gravity alters as
a result of the extra dimensions [9]. In earlier performed measurements the gravitational
interactions and forces were measured down to a certain length scale, which matched the
upper limit of the size of the so-called “large extra dimensions”. If dimensions of these
sizes would exist we would encounter a different gravitational behaviour on scales smaller
than the size of the extra dimensions. In other words the gravitational force would then
have a different dependence on r and, as the amount of extra dimensions increases, the
fundamental Planck scale will be lowered down to the TeV scale, solving the hierarchy
problem. These values that will soon be accessible in high energy colliders [6].

An important and interesting consequence of lowering the Planck scale is the production
of TeV-mass black holes, a result of the modification of the gravitational forces on scales
smaller than the radius of extra dimensions. This phenomenon might appear in the next
generation of particle accelerators. As P. Kanti explains in [8] , when the impact param-
eter b of a collision is smaller than or equal to the Schwarzschild radius, that corresponds
to the centre-of-mass energy

√
s of the two particles, strong gravitational effects will rule,

resulting in the formation of a black hole. The existence of extra dimensions is of great
advantage for the production of black holes. Not only does it result in a lowered Planck
scale, “it also allows the Schwarzschild radius to be significantly increased, thus making
the condition b < RH distinctly easier to satisfy” [9].

Similar to the 4-dimensional case, black holes are formed when matter on the brane caves
in under gravitational forces. If the Schwarzschild radius is much larger than the radius of
the extra dimensions the black hole will act like a 4-dimensional object, obeying the clas-
sical description and forces. The influence of the extra dimensions is then negligible. In
the case that the Schwarzschild radius is smaller than the radius of the extra dimension,
the small black hole will be a higher dimensional object behaving in a drastically different
manner than the mentioned case [6], [8], [section 3.1].

3.2.1 The cross-section

The cross-section of the production of black holes is given by the geometrical cross-section

σ ∼ πb2 ∼ πR2
H (84)

with b the impact parameter, which gives the distance between the nullplanes of the parti-
cles. See figure six.
According to Hossenfelder [5] the accuracy of the formula for the cross-section has been
argued, but seems to be useful for energies up to about 10M

(D)
p with M

(D)
p the new funda-

mental scale ∼ 1 TeV . The produced black hole will have an angular momentum, unless
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Figure 6: Impression of a particle collision of two particles p. When these particles have
sufficient energies, they will be able to come within the 2RH that matches their energy. The
impact parameter b should be sufficiently small for a black hole to be formed [?].

the impact parameter is zero and the particles collide head on. Generally, an angular
momentum will arise of

J =
1
2
Mb (85)

Hossenfelder also mentions that when two point particles collide head on a black hole will
always be formed, due to General Relativistic arguments. However, when the energies of
the particles are small, the uncertainty relation causes the wave functions of the particles
to be stretched out and the production of a black hole will be impossible.

The amount of energy and matter trapped within the event horizon of the black hole need
to be known to calculate the mass of the formed black hole. The cross-section in high
energy limits is governed by large impact parameters, b ≤ RH , and therefore Giddings and
Thomas [7] conclude that the mass should be in the order of the centre-of-mass energy

< M >≤
√

s (86)

From this we can see that the cross-section increases with s to a power in which the num-
ber of dimensions contributes.

To achieve black hole production in particle colliders, energies must exceed the TeV scale,
a condition that can only be met in hadron colliders. A proton consists of components called
partons. To assess proton-proton collisions we must consider all possible combinations of
partons within the protons that will produce enough energy to produce a black hole. The
cross-section of a proton-proton collision forming a black hole will therefore contain so
called parton distribution functions fi(x), which represent the chance of finding a parton
with a fraction x of the total momentum of the proton. Thomas and Giddings [7] have
deceived that the cross-section for such a collision then becomes

σpp→BH ≡
∑
i,j

1∫
τm

dτ

1∫
τ

dx

x
fi(x)fj(

τ

x
)σij(τs) (87)

In this function τ = xixj is the squared fraction of the parton-parton centre-of-mass energy,
x is the parton momentum fraction,

√
s is the centre-of-mass energy,

√
τms is the minimum
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centre-of-mass energy for which the parton collision will produce a black hole. The mass
of the black hole is assumed to be around

√
τs [7], [8].

3.2.2 Black hole factories

The Large Hadron Collider (LHC) is now being developed and testing will begin there in
September 2007. This collider, with a centre-of-mass energy of 14 TeV presents us with
the first opportunity for the production of black holes if the Plack mass is indeed of TeV
scale [5]. The number of black holes produced in the LHC NBH in one year equals

NBH = Lσpp→BH (88)

with L = 1033cm−2s−1 the estimated luminosity for the LHC [5]. With a centre-of-mass
energy of 14 TeV this gives a NBH of 109 per year, which results in a black hole production
frequency of 1 Hz [5]. In this case the LHC would become a “black hole factory”. This pro-
cess has encouraged many physicists to study the topic of black holes with TeV masses.
However, as the authors in [11] explain, the production of black holes in next generation
colliders like the LHC could be very unlikely for they claim that the minimal amount of en-
ergy required for the production of black holes will be significantly increased as a result of
the generalized uncertainty relation.

3.2.3 Black hole production in cosmic rays

As described above, the consequences of the existence of extra dimensions on the Planck
mass open up the opportunity for the production of black holes. This effect could not only
be apparent in particle colliders but also in high energy collisions of cosmic ray particles
with particles in the earth’s atmosphere. The energies of these Ultra High Energetic Cos-
mic Rays (UHECRs) have been measured up to 108 TeV, a value which seems extremely
large. However, the particles in the cosmic rays collide with inert particles in our atmo-
sphere. In general, particles in these cosmic rays have an energy of about 107 TeV, which
can be converted to a centre-of-mass energy of

√
2Em = 100 TeV, an energy sufficient for

the study of black holes with TeV masses [5], [8].

According to astrophysics only massive black holes exist, for just objects heavier than
several sun masses are able to complete all stages of stellar evolution [9]. However fas-
cinating these creations are, it seems that small black holes are far more interesting for
modern physics, due to their relation to extra dimensions and their radically modified be-
haviour. Hawking radiation, for example, which was clarified in the previous section, is a
process only perceivable from small black holes.

As we have seen, the addition of dimensions to the four dimensions known to man could
result in a considerably lower Planck mass on small scales, opening up the possibility of
producing TeV mass black holes in future particle colliders. By increasing the experimental
energies in colliders, the Schwarzschild radius of the black holes will grow. As a result
increasingly more processes in collider experiments will fall within the event horizon and
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therefore become invisible. The creation of black holes could consequently mean the end
of particle physics [7]. On the other hand, by examining the possible production and evap-
oration of these collision produced black holes, which will be discussed in the next section,
knowledge of the dimensionality of our universe can be gained, maybe even revealing the
dimension’s structures or adding to information about the quantum gravity effects apparent
on small scales.
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3.3 The decay of sub-millimeter black holes

In the previous section the production of black holes in particle colliders is discussed. This
section will evaluate the decay of the produced black hole. It will also assess the signatures
in particle colliders which inform us a black hole was formed. In the final part of this section
we will look into methods by which the dimensionality of space can be calculated from the
mass and temperature of the formed black hole.

3.3.1 Decay stages

When a black hole has been formed, it will start decaying immediately. The black hole will
undergo four stages, in which the black hole will lose mass by emitting gravitational, gauge
and Hawking radiation. Gravitational radiation is the emission of gravitons onto the brane
as well as into the bulk. When the black hole emits gauge radiation, it emits force carrying
particles onto the brane. When a particle one of a pair of virtual particles gets sucked into
the black hole the other one seems to be emitted by the black hole onto the brane as well
as into the bulk, this process is called Hawking radiation [13]. The energy of the emitted
Hawking radiation is determined only by the temperature of the black hole.

The first stage is called the balding phase. In this phase the black hole looses hair. This
means that by emitting classical gravitational (gravitons) and gauge radiation (force carry-
ing particles) it looses its multipole moments, which are the coefficients of an expansion of
the potential [7].

As mentioned in section 3.2.1, when two particles collide into each other to form a black
hole, they will generally not crash head on. Therefore the black hole will get extra angu-
lar momentum and the radius will be asymmetric. The multipole moments correspond to
this excess angular momentum and the asymmetric radius. The energy of the radiation is
related to the oscillation frequency of the multipole moments. The Schwarzschild radius
determines both the time the balding phase takes and the oscillation frequency of the mul-
tipole moments by τb >∼ rh and ω ∼ 1/rh [7].

Giddings and Thomas suggest by calculation that gravitational radiation is more abundant
than gauge radiation in the balding phase and in the large mass limit the gauge radiation
can be neglected. During the balding phase the mass is decreased by 16% by emission of
gravitational energy in the four dimensional case. This percentage should be an indication
of the amount of mass lost in case of extra dimensions [7]. However, when the initial mass
of the black hole is in the vicinity of the fundamental Planck mass, the above approximation
of the decrease in mass might need quantum corrections. Also, a more substantial part of
the radiation can then be gauge radiation.
Gauge charges in the black hole resulting from the initial particles will be shed by Schwinger
emission during or just after the balding phase [7]. A spinning Kerr solution, which in gen-
eral relativity gives the curvature of space-time around a spinning body with mass, like a
black hole [21], now represents the black hole [7].

After the black hole has lost its hair and gauge charges it will start evaporating during two
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phases, emitting semi-classical Hawking radiation. The particles are radiated along the
brane and into the bulk (gravitons only). However, the amount of particles emitted into the
bulk is negligible compared to the amount emitted along the brane.

This approximation can be explained by noting that the wavelength of the radiation is given
by λ = 2π/TH . Consequently, the radius of the black hole is smaller than the wavelength of
the radiation. The black hole can thus be seen as a point source which in majority radiates
s- waves. Therefore the black hole will evenly decay into bulk particles and brane particles.
Since the amount of brane particles is a lot higher than the amount of bulk particles, the
majority of the decay products will be Standard Model particles which can be detected [10].

Other simplifications are made, namely it is assumed that the emitted particles are only
Standard Model particles [7] and that there is no recoil [14]. According to Newton’s third
law, when the black hole emits a particle, the black hole will feel a force from that particle.
This becomes important at the end of the evaporation when the black hole is light. How-
ever, the recoil effects are neglected. These approximations simplify the evaluation of the
decay of the black hole.

The first phase of evaporation is the spin-down phase. In this phase the intrinsic angular
momentum, spin, is lost by emitting Hawking radiation. This happens by emitting parti-
cles with spin ∼ 1 and with an energy of E ∼ 1/rh [7]. During the spin-down phase in
four dimensions, about a quarter of the total mass is lost. When the black hole has gone
through the balding phase and the spin-down phase it is round and smooth and charac-
terised merely by its mass [13].

The Schwarzschild phase is the second evaporation phase, during which the remaining
mass evaporates. This phase takes longer than the spin-down phase. The majority of
the particles emitted during the Schwarzschild phase have energies 1/rh of order of the
Hawking temperature TH . The entropy of the initial black hole is determined by the amount
of particles emitted in all phases [7].

It is not yet known what will happen after the evaporation phase. When the black hole
reaches the mass in n dimensions the so-called Planck phase will start. When this hap-
pens a semi-classical description is not sufficient and a theory of quantum gravity is indis-
pensable. In this last phase the black hole is assumed to decay totally by radiating Planck
or string scale particles, or the decay stops and a stable relic is left [5]. Most experts say
that nothing can be said about the Planck phase until there is a theory of quantum gravity,
but they assume that the black hole will evaporate completely. This being said, another
possibility, namely that of a black hole relic, is assessed in more detail in the next subsec-
tion.

3.3.2 Planck phase

According to Hossenfelder [5] the difficulties in the Planck phase are linked to the black
hole information paradox. When a particle in a pure quantum state is sucked into a black
hole, the black hole’s mass will increase. If we wait until the black hole has decreased to
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Figure 7: The different phases through which a black hole decays are depicted above. First
the black hole is formed, after which the balding phase begins. The third picture portrays
the evaporation phase, in which the spin is lost and the mass decreases. Finally, the black
hole enters the Planck phase, which still remains a mystery.

its original mass by Hawking radiation, there will be a black hole of mass M and a mixed
quantum state (thermal radiation) as opposed to the black hole of mass M and the pure
quantum state we started with. A transformation from a pure state to a mixed state results
in information loss. Thermal radiation has no properties except for temperature, whereas
a pure quantum state has a lot more properties. Hence, there seems to be a loss of infor-
mation, which according to Liouville’s theorem is not possible. This is called the black hole
information paradox [19].

Several solutions have been given, but all are yet to be proven. In the case of a sub-
millimeter black hole a possible solution would be that the black hole does not decay com-
pletely but that a relic is left. Another possibility is that the information somehow escapes
the black hole, but it is uncertain how this should happen. [5]

According to Hossenfelder [5], the diameter of the black hole should be a whole number of
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times half the wavelength (1/2N , with N an integer) of the emitted particles. As the atten-

Figure 8: From Hossenfelder’s article we learn that the wavelength of the radiation should
precisely fit into the Schwarzschild diameter, according to 2RH = 1/2Nλ.

tive reader will notice, this is contrary to what Dimopoulos and Landsberg [7] claim. The
lowest energy state is reached when the diameter is half of the emitted particles’ wave-
length. The diameter decreases during decay, therefore the energy of the lowest energy
state will increase. When the mass approaches the Planck mass, the lowest energy will
be higher than the total energy of the system, and thus the particles cannot be emitted.
The decay process will stop at this point and we are left with a black hole remnant. This
remnant could be detected either as missing energy or if the relic is charged it could be
detected by a detector [5].

However, most authors doubt the possibility of a relic as the final state of the black hole.
Since there is no theory of quantum gravity, a lot can be possible and it is assumed that
problems such as the information loss paradox can be solved once the quantum gravity
theory is complete.

3.3.3 Decay particles

If black holes are formed in particle colliders, we can detect them by looking at the decay
products. The production of a black hole is believed to give an explicit signal, due to the
high amount of energy involved. We will detect a large quantity of emitted particles in com-
parison with Standard Model events and see a high sphericity due to the high number of
radiated particles and because the black hole can be seen as a point radiator [7, 5]. When
a black hole is produced other high energy events will get swallowed by the black hole,
thereby giving a clear signal that a black hole is formed and reducing the background [5].

The average amount of particles emitted during the decay of the black hole, is the ini-
tial black hole mass divided by the energy of each emitted particle: 〈N〉 = 〈MBH/E〉.
Dimopoulos and Landsberg [10] derived a formula for the average amount of radiated
particles:

〈N〉 =
2
√

π

n + 1
(
MBH

M
(D)
P

)
n+2
n+1 (

8Γ(n+3
2 )

n + 2
)

1
n+1 (89)

This formula is consistent only when time evolution is neglected and when the initial mass
of the black hole is far greater than the Hawking temperature. Time evolution can be ig-
nored because most of the decay particles are emitted at the beginning when the initial
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mass and temperature have not significantly changed. The amount of radiated particles is
shown as a function of MH/M

(D)
P in figure nine. [10] for different numbers of extra dimen-

sions n.

Figure 9: In this figure the number of emitted particles is depicted as a function of the
mass of the black hole. The three curves show this number for two, four and six extra
dimensions. This has been calculated with (89).

Approximating that the black hole will decay into Standard Model particles only, we can
calculate the probability of a specific type of particle being emitted. There are about sixty
Standard Model particles of which six are leptons, three are neutrinos and one is a photon.
Thus the approximate percentage of emitted leptons is 10%, of neutrinos is 5% and of emit-
ted photons is 2% [10]. The energy of one particle will be of order hundred GeV [7]. Most
of the radiated particles will be emitted during the spin-down and Schwarzschild phase [7].

If new physics particles exist and they have a mass of about 100 GeV, i.e. a light Higgs
particle, these could be radiated with a probability of 1% times the number of quantum de-
grees of freedom [12]. This method of finding new physics could be easier than by direct
particle collision, because the probability of being produced is only slightly related to the
particle’s mass and the production rate could be higher [12].

According to Giddings and Thomas, at variance with what Dimopoulos and Landsberg say,
about fifty particles will be emitted for a 10 TeV black hole in ten dimensions (n = 6) in
the spin-down and Schwarzschild phases. The energy of these particles will be along the
scale of the Hawking temperature of the black hole at the start of the evaporation [7]. The
percentages of radiated particles with different spin rely on the grey body factors. The per-
centages for emitted particles with spin 0, spin 1

2 , spin 1 and spin 2 are 42%:40%:16%:2%
respectively in four dimensions. The number of hadrons emitted compared to the number
of leptons and photons emitted is approximately 5:1 and 100:1, respectively [7].
Grey body factors cause objects to radiate differently from the Planck spectrum they would
emit if they were totally black [20]. They also change the ratios of the emitted particle
species. The grey body factors for more dimensions should be evaluated experimentally
to acquire a more precise approximation of the above mentioned percentages in extra di-
mensions space [7]. Especially for energies in the low and moderate part of the emitted
energy spectrum, which is where the majority of the particles are radiated, the grey body
factors are significant and change the distinct black hole spectrum making it more difficult
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to identify the event as black hole production [8].

Kanti [13] finds a remarkable fact by assessing the emission rates and grey body factors
for all species of particles. The ratio of the different particles which are emitted, changes
for various numbers of extra dimensions. This is caused by the dependence of the grey
body factors and the emission rates on the number of extra dimensions and on the spin
[13, 18]. For six extra dimensions, for instance, most of the particles emitted are force
carrying particles. Kanti therefore concludes that the number of extra dimensions can be
calculated by the amount and class of the emitted Hawking radiation [13].

Figure 10: This image shows the different ratios of emitted particle species (spin 0, spin
1/2 and spin 1 particles) for different numbers of extra dimensions. Left for n = 0, middle
for n = 2 and right for n = 6 [13].

Giddings and Thomas assume that the black hole will evaporate completely in the Planck
phase thereby emitting particles with energies of the order of the Planck or string scales.
By detecting these particles we could acquire more knowledge of this last phase of black
hole decay [7].

3.3.4 Calculating the dimensionality

Only about 5 % of the energy will be missing, because only 5 % of the decay products are
neutrinos. Since there is such a small amount of decay particles, there are a lot of black
holes produced that decay with no missing energy. It is easiest to work only with these
events when the mass is calculated [10]. The mass can be determined by adding the
energies of all the emitted particles [5, 14].

The initial temperature of the black hole is determined by fitting the Planck spectrum to the
energy spectrum of the decay products. When quarks or gluons are emitted by the black
hole, this will result in jets. It is predicted that this will occur a lot [10]. The temperature is
best determined from electrons and photons in the final state (at the end phase of the jet)
for they have very little background and even at high energies their resolution is still very
high. By obtaining both the initial mass and temperature, it can be verified that the events
detected are truly black hole decay products [10].
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The signatures for black hole production in particle colliders will, in summary, be the fol-
lowing.
- Very high production rates, possibly as high as 1 every second and very large total cross
sections (see section 3.2.2).
- The number of extra dimensions and their geometry characterizes the rate with which the
parton cross sections grow with energy (see section 3.2.1).
- The amount of emitted particles is high.
- The hadron to lepton ratio of the emitted particles will be about 5:1.
- There might be black hole remnants or particles emitted in the Planck phase with energies
as high as the order of the fundamental Planck scale.
- The black hole will radiate like a point radiator and will have high multiplicity thus the
events are highly spherical.

When all of these signatures are taken into account as well as the above mentioned approx-
imations of establishing the initial mass through events with no missing mass and looking
only at electrons and photons for the temperatures, it is possible to search for black hole
production with very little background [7].

The number of extra dimensions can be calculated once we know the black hole’s mass
and temperature. We have evaluated the formula we need to obtain this number in section
(3.1.7).

kBT = C
G

(D)
N MBH

(2G
(D)
N MBH

(n+1)c2

1
n+1

)n+2

(90)

The methods mentioned above to determine the initial mass and temperature are based on
approximations. It is not known how much these simplifications will effect the determination
of the mass and the temperature of the black hole. Many authors are positive and state
that the approximations are valid [7, 10], others are more critical and are searching for
other methods to determine the dimensionality [14, 18]. Theoretical incertitudes include
the time evolution, grey body factors, the events during Planck phase, the approximations
that all particles are Standard Model particles, the assumption that no particles are radi-
ated into the bulk and that there is no recoil [5, 14]. Experimental doubts result from the
background and the ambiguity when the number of decay products is small.

Harris et al. [14] do not believe that the negligence of time evolution is correct and that
(90) will lead to a correct result. Therefore, they propose a different model for calculating
the number of extra dimensions. In this model they calculate the temperature of the black
hole for each point in time a particle was emitted [14]. A simulation was done using this
model to evaluate the precision with which the dimensionality and the fundamental Planck
scale can be established [5]. This resulted in a precision of 15% of the calculation of the
fundamental Planck mass and an accuracy of ± 0.75 when calculating the dimensionality
of space [14].
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As discussed in the previous section, if the fundamental Planck scale is of the order of a
TeV the LHC could be a black hole producer. This means that by this time next year the
existence of extra dimensions could be a fact.
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4 Conclusion

An important goal of physicists today is to find a theory which unifies all theories of nature.
To do so we must first find an explanation why gravity is so much weaker than other forces.
In attempts to solve this so-called hierarchy problem physicists have come up with numer-
ous extravagant theories and ideas. Some of them include an addition of extra dimensions
to our universe, a model with which the gravity scale is lowered to TeV scale. Extra dimen-
sions could be compactified or localised, changing the physical behaviour of matter and
energy on scales the size of the extra dimension.

As we have analysed in the beginning of part 2 black holes act differently when adding di-
mensions to the four dimensions we know. In a world with extra dimensions the Schwarzschild
radius of black holes turns out to be larger than in four dimensions. The dimensionality also
influences the lifetime, Hawking temperature and entropy of a black hole.

In the four dimensional space-time continuum the Planck scale is much higher than the
scale of all other forces of nature. In this case the production of black holes in colliders
is impossible, due to the extremely high energies needed for formation, which cannot be
achieved in experiments on earth. Adding extra dimensions could lower the fundamen-
tal Planck scale, hopefully even down to the TeV scale, making gravity stronger on small
scales. If this is the case black holes might be produced by centre-of-mass energies not
much larger than this scale in particle accelerators. Therefore, the observability of black
hole production at future colliders depends strongly on the dimensionality of space.

Once black holes are formed they will start radiating immediately. The evaporation begins
with balding, after which the black hole loses its spin. During the Schwarzschild phase the
black hole sheds its mass until its mass equals the Planck mass. What follows is a much
discussed topic and remains a mystery today. By evaluating the emitted particles and the
spectrum they make, the temperature and mass of the black hole can be determined. By
using these characteristics we could assess the dimensionality of the universe. However,
the precision of these calculations must be scrutinized for they contain many approxima-
tions and assumptions.

Experimentally, black holes have yet to be formed. Next year the first particle collider will
be launched with an energy scale sufficiently high to reach the fundamental Planck scale
in more dimensions. Physicists will be on the look out to detect black holes signatures,
proving their presence and consequently the existence of extra dimensions. Whether these
black holes will truly be formed, only the (near) future can tell.
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