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Abstract

Recently, new theories have been developed to solve the hierarchy
problem (i.e. why gravity is so much weaker than electromagnetism).
These theories use a higher dimensional spacetime. We review the
theoretical framework of these scenarios, their implications in short-
range gravity and collider experiments, and finally their cosmological
and astrophysical effects. We also place constraints on large extra
dimensions by using presented experimental data.
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1 Introduction

In our world we are used to specify events by telling where and when they
occur in our four dimensional spacetime. This seems beyond questioning. In
1919, however, a Polish mathematician named Theodor Kaluza challenged
the obvious - he suggested that the universe might not actually have three
spatial dimensions; it might have more. This may sound bizarre. In reality it
is very plausible. To see this, we can study a clothesline between two trees.
When looking from a far distance, you will easily see the long horizontal
extent of the line, but the thickness will be difficult to discern. Now imagine
that an ant would live on it. Would the poor animal then have just one
dimension in which to walk in? No! In reality the clothesline does have
thickness. By using binoculars you could zoom in on the line and see it.
The line has two different dimensions. One direction is long, extended, and
easily visible. The other is ‘curled up’ and harder to see. This idea was made
explicit and refined by the Swedish mathematician Oskar Klein in 1926. He
realized that the spatial fabric of our universe may have both extended and
curled-up dimensions. These curled-up dimensions are called compactified.

Figure 1: A curled-up dimension: from a distance we see a one-dimensional line.
If we zoom in on it we see a two-dimensional area.

If such extra dimensions exist, it seems clear that ordinary light and matter
cannot travel in these extra directions. Otherwise we ourselves would be able
to move in such a direction, which we know we cannot, or we would be able
to observe light entering or leaving our 3-dimensional space, resulting in an
apparent energy conservation violation. This gives a significant constraint
on the size of such extra dimensions, which would have to be smaller than
the shortest wavelength photon observed in experiments (10−18 m). Such
photons would otherwise be able to fit in the extra dimensions and disappear
from our ordinary world, taking their energy with them.

In the more traditional theories it was thought that the compactification
of the extra dimensions would be on the scale of the Planck length (10−35 m).
This would make it all but impossible to ever find direct empirical evidence
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of their existence. This changed when in 1998 Arkani-Hamed, Dimopoulos,
and Dvali (ADD) [1] [2] [3] postulated a scenario, which uses the string
inspired brane world hypothesis. In this model the world that we see is a
3-dimensional brane (the higher dimensional equivalent of a membrane in
3-dimensional space) in a higher dimensional bulk. Light and matter are
confined to the brane, whilst only gravity is allowed to propagate in the
bulk.

The motivation for this comes from string theory, where all particles are
described as vibrational modes of one-dimensional objects known as strings.
These strings can be either ‘open’ (much like a string on a guitar) or ‘closed’
(like a rubber band). It turns out that gravitons are solutions of closed
strings, while photons and such are all solutions for open strings, which in
this scenario would have their ends attached to the 3-brane (see figure 2).
Tension in the open strings keeps the photons caught on the brane, while
the closed string gravitons are free to roam the entire bulk.

Figure 2: The string theory view of a body trapped on the brane. Matter corre-
sponds to open strings, the ends of which are stuck on the brane. Graviton emission
can occur when open strings collide and form closed strings that are free to go into
the bulk. This picture was taken from http://physicsweb.org/

This scenario in fact allows for much larger extra dimensions than the
Planck length, since gravity, the only force affected, has only been tested
down to scales of a millimeter or so. This has aroused the attention of
experimental physicists, because now it might be possible to find proof of
such extra dimensions by looking for deviations in the behavior of gravity



1 INTRODUCTION 5

at short distances or energy conservation violations caused by gravitons
disappearing into the bulk.

In this paper we will look at the theoretical implications of the exis-
tence of flat large extra dimensions, and how these can be used to obtain
constraints on the size and number of extra dimensions from experimental
observations. To keep things simple we assume that all extra dimensions
are of the same size. Of course there are also some other theories (the most
important of them was proposed by Randall and Sundrum (RS-type) and
uses strongly warped extra dimensions), but these will not be considered in
this paper. A nice book [4] has been written by Brian Greene (an expert in
string theory); although mainly about string theory, it also contains relevant
information about extra dimensions.
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2 Theory

2.1 Gravitation in Extra Dimensions

Since in our model gravity is the only force which is able to propagate in
the extra dimensions, it is important to know how gravity behaves in higher
dimensional spaces.

Infinite extra dimensions

Before we can study how gravity behaves in compactified dimensions, we
must investigate how gravity would behave in an infinite d -dimensional
space. In our familiar 4-dimensional space-time gravity obeys Newton’s
law:

F = G4
m1m2

r2
. (1)

This law has the property that any integral over a closed surface of the
component of the gravitational field (F/m) normal to the surface, is always
equal to the enclosed mass times some constant (4πG4). If we demand that
gravity has this property in any space, then we find (observing the fact
that the gravitational field around a point mass must be isotropic) that the
gravitational force will be given by the following equation:

Fd = 4πG4
m1m2

V ol[Sd−2
r ]

, (2)

where V ol[Sn
r ] is the volume of a n-dimensional sphere with radius r. We

know that V ol[Sn
r ] = rnV ol[Sn]. Therefore we can rewrite equation 2 as

follows:
Fd = Gd

m1m2

rd−2
, (3)

where Gd is some new constant equal to 4πG4

V ol[Sd−2]
. The corresponding po-

tential function is given by:

{

Φ(r) = − Gd

(d−3)
M

rd−3 for d 6= 3

Φ(r) = GdM ln r for d = 3

This shows that there cannot be any extra dimensions, which are infinite,
since we know that, at least at macroscopic scales, gravity obeys an in-
verse square law. But to illustrate the major impact of this result, we will
investigate how this affects planetary orbits.

Consider a planet orbiting a star. An orbit always is limited to a single
two-dimensional plane. Therefore we can always describe the planet’s move-
ment by only two variables. For these we will take the distance r between
the two centers of masses and the angle φ.
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In any such system there are two conserved quantities: the energy E and
the angular momentum L:

E =
1

2
mṙ2 +

1

2
mr2φ̇2 +mΦ(r), (4)

and
L = mr2φ̇. (5)

We can eliminate φ̇2 by using equation 5:

E =
1

2
mṙ2 +

(1

2

L2

mr2
+mΦ(r)

)

. (6)

Figure 3: The potential functions for an orbiting planet in d dimensions, plotted
for d = 3, d = 4, d = 5 and d = 6. The gray parts indicate stable orbits. For d = 5
and d = 6 there are no truly stable orbits.

This can be interpreted as the energy equation for a one-dimensional
particle with mass m in a potential 1

2
L2

mr2
+mΦ(r). This potential has been

plotted for cases d = 3, d = 4, d = 5 and d = 6 (figure 3).
As one can see the potential has a minimum in the first two cases, indi-

cating the existence of a stable circular orbit. In the last case the potential
shows only a maximum. This tells us that the possibility of a circular orbit
exists, but that the tiniest disturbance will cause the planet to either fall
onto the sun, or be flung out of the solar system. For d larger than six the
plot will look similar to the one for d = 6. The plot for d = 5 shows no stable
positions either. In this case the potential function takes the following form:

1
2mL

2 − 1
2GdMm

r2
.
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Whether a system uses the upper or the lower line depends on the sign of this
expression. In the first case the planet will ultimately end up in the sun and
in second the planet will disappear from the solar system. Circular orbits
are possible, but only when the above expression is equal to zero and even
then they would not be stable. This shows us that in a higher dimensional
space our solar system would not be able to exist!

Compactified Extra Dimensions

Now that we know how gravity behaves in infinite spaces, we can investigate
how it behaves if some of the dimensions are compactified. The best way
to tackle this problem is what is known as the method of images. What
one basically does is to unroll the curled-up dimension, so that you have
an infinite space that repeats itself with a period of 2πR (where R is the
compactification radius), see figure 4. To find an expression for the force
that one particle ‘feels’ from a second particle, we just calculate the force it
feels from all the ‘images’ of the second particle using equation 3 and add
those together.

Consider two massive particles with masses m1 and m2 in a space with
the ordinary three extended spatial dimensions and n extra compactified
dimensions, all with radius R.

Figure 4: Using the method of images makes it easier to calculate the force between
two masses. The idea is to unroll the curled-up dimension to get a flat geometry,
which we are familiar with. Since R

3×S1 is a bit difficult to draw, the figure shows
R

1 × S1.

The expression for the force between the two particles now becomes (by
using the method of images):

F =
∑

i1∈Z

· · ·
∑

in∈Z

G4+n
m1m2

(r2 +
∑n

j=1(2πRij)
2)

n+2
2

r
√

r2 +
∑n

j=1(2πRij)
2
. (7)
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Here r is the ordinary distance in our 3-dimensional space. The last
factor is to compensate for the fact that not all the images work in the same
direction. From the symmetry of the situation you can tell that in the end
only a net force in the direction of ~r will remain. Each contribution to the
total force is multiplied by r√

r2+
∑n

j=1(2πRij)2
, which is the fraction of the

force working in the direction of ~r.
In the case that r << R the term with ij = 0 is for all j much larger

than all the other terms. We therefore regain equation 3.

F = G4+n
m1m2

rn+2
, for r << R.

Figure 5: With this picture one can visualize how gravity behaves in R
1 × S1. A

gravitational field is shown on a cylinder. At longer distances the field becomes
parallel and reduces back to the case of one-dimensional gravity.

On the other hand, for r >> R the terms become so closely packed,
that we may exchange the sums for integrals. What we get is

F = G4+nm1m2

∫ +∞

−∞

· · ·
∫ +∞

−∞

r

(r2 +
∑n

j=1(2πRij)
2)

n+3
2

di1 · · · din

= G4+nm1m2(
r

2πR
)n

r

rn+3

∫ +∞

−∞

· · ·
∫ +∞

−∞

1

(1 +
∑n

j=1 x
2
j )

n+3
2

dx1 · · · dxn.

We note that the multiple integral is just a constant for each n.

F = G4+n
Kn

Rn

m1m2

r2
, (8)

where

Kn =
1

(2π)n

∫ +∞

−∞

· · ·
∫ +∞

−∞

1

(1 +
∑n

j=1 x
2
j )

n+3
2

dx1 · · · dxn =
1

2n+1Γ(n+3
2 )π

n−1
2

.
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In the limit that the dimensions are tiny, gravity again obeys an inverse
square law. This in fact allows us to express the gravitational constant G4,
in terms of the gravitational constant in the bulk G4+n and the radius of
the compactified dimensions R,

G4 = G4+n
Kn

Rn
. (9)

A logical question to ask is: how much will gravity differ from the inverse
square law found in equation 8 if r approaches R? This is an important
question to ask if you want to verify such a theory experimentally.

Let us try to answer this question for the case n = 1. In this case a
computer algebra program like Mathematica is able to calculate both the
sum of equation 7 and the inverse square law found in equation 8. Therefore
we can get the relative difference. The result has been plotted in figure 6. It
looks like an exponential function, in section 3 we will see it is one indeed.
From the plot one can read that the force is approximately twice as strong
as the inverse square law predicts, at a distance of about two times R.

Figure 6: Relative deviation from the inverse square law. It looks like an expo-
nential function. This is important for testing gravity at short distances.



2 THEORY 11

2.2 Kaluza-Klein Reduction

Consider a particle moving around on a circle with radius R. Then its wave
function will be a periodic function with period 2πR, which implies that the
function can be written as

Ψ(x) =
∑

n∈Z

cne
inx

R .

This is guaranteed by Fourier analysis. If we let the momentum operator ~
i
∂
∂x

operate on this function, we find the following expression for the momentum:

~

i

∂

∂x
Ψ(x) =

∑

n∈Z

cn
~

i

∂

∂x
ei

nx
R =

∑

n∈Z

cn
~ n

R
ei

nx
R . (10)

We note that our function apparently was an eigenfunction of the momentum
operator. We conclude that p = n ~

R , n ∈ Z, which means that momentum is
quantized, and that the distance between two momentum levels is inversely
proportional to the radius R. This is also the way momentum would behave
in a single curled-up dimension.

Now we will have a look at a combination of the normal 3+1-dimensional
world with an extra, curled-up dimension (which we will label with a 5). We
will start by considering a massless, relativistic particle moving in these five
dimensions, and then explore the consequences it has for the four dimen-
sional world.

This particle has momentum p = (E/c, p1, p2, p3, p5) and it has to obey
the relativistic equation of motion

||p||2 = −E2/c2 + p2
1 + p2

2 + p2
3 + p2

5 = 0. (11)

However, from 4-dimensional special relativity theory, we learn that, for a
massive particle, the following equation must hold:

E2 − ~p2 = m2c4,

where ~p denotes the 3-dimensional momentum vector. If we now combine
this equation with equation 11 and reinterpret the result, we can conclude
that

p2
5 c

2 = m2c4 ⇐⇒ m =
|p5|
c

=
n ~

R c
, n ∈ N ∪ {0}. (12)

We started with a massless 5D particle, and we got a whole (infinitely large)
collection of 4D particle with some (quantized) mass in return. As we shall
see, this is not the only thing we might infer from a fifth dimension.

Next, we consider the gravitational force between two particles in our 5D
world. From the previous section, we recall the 5D law of gravity (equation
8):

Fg(r) = −
G5

8R

mm′

r2
.
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If we now suppose our particles to have zero velocity, we can write mm′ =
−p · p′/c2 and tidy up the formula a bit by writing G = G5/8R c2, in order
to obtain a formula that we suppose to be relativistically invariant:

Fg(r) = G
p · p′
r2

.

The reason we suppose this formula is relativistically invariant, is that we
assume that also in more than 4 dimensions, momentum is Lorentz invariant.
Proceeding from this point, we will again calculate the gravitational force,
but this time our particles will have momentum in the fifth dimension. Using
p · p′ = −mm′ c2 + p5 p

′
5 and p5 = n~

R we obtain

Fg(r) = G
(

− mm′

r2
c2 +

n n′

r2

~
2

R2

)

= − G5

8R

mm′

r2
+

G5 ~
2

8 c2 R3

n n′

r2
. (13)

If we look at this expression with a little more care, we discover something
rather amazing: we might, in fact, consider the 5D gravitational force as
the sum of two forces, one of which is always attractive (namely the first
term with the masses), and another one, which can be either attractive or
repulsive, depending on the signs of the momenta in the fifth direction. In
our 4D world, we know only two fundamental forces that fall off by 1/r2,
one of which is always attractive and one of which can be either attractive
or repulsive, namely the force of gravity and the electromagnetic (Coulomb)
force. So we will try to identify the terms in equation 13 with these two
forces.

However, there appears to be a small problem. If one wants the pa-
rameters to be in agreement with the well known experimental facts and
relative strengths of these forces, one would have to adjust the G and R
in the formula in a slightly inconvenient way. Let us calculate them. First
of all, we would like the G/8 R to be equal to G4. On the other hand, in
order to make the second term correspond to the Coulomb force, we need
G5 ~2

8 c2 R3 = e2

4 π ε0
, where e is the elementary charge unit. By demanding so, we

find

R =

√

4 π ε0 G4 ~2

e2 c2
= 1.9× 10−34 m, (14)

which is rather small; in fact, it is about the Planck length. That would not
be a problem per se, but it is one, if one is looking for large extra dimensions,
as we are: small extra dimensions cannot solve the hierarchy problem.

2.3 The Hierarchy Problem

It looks like there are (at least) two different fundamental energy scales
in nature. The electroweak scale mEW ∼ 1 TeV and the Planck scale
MPlanck = G

−1/2
N ∼ 1016 TeV (setting c = ~ = 1). This is a very big

difference. Why is gravity so much weaker than electromagnetism?



2 THEORY 13

This is called the hierarchy problem. In 1998 the ADD-scenario was
proposed to solve this problem. In fact it does not solve it completely,
because a new fundamental scale (namely R) is introduced. It gives just a
different perspective. Their idea was as follows. Take the electroweak scale
as the only fundamental (short distance) scale. The observed weakness of
gravity on distances > 1 mm is due to the existence of n ≥ 2 new compact
spatial dimensions. The Planck scale is not a fundamental scale. That this
scale is so big is just a consequence of the large size of the extra dimensions.
Only gravitons can freely propagate in the new dimensions.

In this ADD-scenario the claim is that gravity is so weak, because it
spreads its power over more than 4 dimensions.

Fundamental Constants in 4+n Dimensions

Three fundamental constants that are important, are the constant of gravity
G4, Planck’s constant ~ and the speed of light c. From Newton’s law we find
in 4 dimensions for the unit of G4, that [G4] =

m3

kg s2
. Form the uncertainty

principle we get [~] = m2 kg
s and of course [c] = m

s . A combination with unit
length, as well as with unit mass can be made from these constants. We call
them Planck’s length and Planck’s mass. First we will try to find out the
Planck length: [Lp] = m. We do not want kilograms, so we try G~. That

gives [G~] = m5

s3
. Dividing by c3 and taking a root gives the following result

for the Planck length in 4 dimensions:

LPlanck ≡ L4 =

√

G4 ~

c3
≈ 10−35 m. (15)

What about the Planck mass? By following a similar strategy we get without
much difficulty

MPlanck ≡ M4 =

√

~ c

G4
≈ 10−8 kg. (16)

Consider now 4+n dimensions. The constant of gravitation has not only
a different numerical value, but also a different unit. From Newton’s law in
4+n dimensions (see equation 3) we find

[G4+n] =
mn+3

kg s2
.

Again, we want to construct the fundamental length L4+n and the funda-
mental mass M4+n.

The rules of the game are as follows. We must find α, β and γ such
that the unit of Gα

4+n ~
β cγ equals meter or kilogram. We are going to work

out the mass. Writing this equation out will give us three equations (one
for kg, one for m and one for s) with three unknowns (α, β and γ):

(

mn+3

kg s2

)α (kg m2

s

)β (m

s

)γ

= kg1.
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We just have to solve the following system:







α(n+ 3) + 2β + γ = 0
−α+ β = 1
−2α− β − γ = 0

The only solution is

α =
−1
n+ 2

, β =
n+ 1

n+ 2
, γ =

1− n

n+ 2
.

In this way we find for the Planck mass in 4+n dimensions the following:

M4+n = G
−1

n+2

4+n ~
1+n
n+2 c

1−n
n+2 = n+2

√

h1+n

cn−1 G4+n
. (17)

For the Planck length in 4+n dimensions, we have to solve







α(n+ 3) + 2β + γ = 1
−α+ β = 0
−2α− β − γ = 0

By solving this system we get

L4+n = G
1

n+2

4+n ~
1

n+2 c
−3

n+2 =
n+2

√

G4+n ~

c3
. (18)

It would be nice to find a formula which relates the Planck mass in 4 dimen-
sions (M4) to the Planck mass in 4+n dimensions (M4+n). We have already
found a relation between G4 and G4+n in equation 9. By using this we can
rewrite our formula for M4:

M4 =
~

c

√

c3

~G4
=

~

c

√

c3 Rn

~Kn G4+n
.

On the other hand, from our formula for M4+n we can eliminate G4+n, and
plug it into this equation. The result looks complicated:

M4 =
~

c

√

c3 Rn Mn+2
4+n

~Kn c1−n ~n+1
.

When we tidy this up we find:

M2
4 =

cn

~n
2n+1Γ(

n+ 3

2
)π

n−1
2 Rn Mn+2

4+n . (19)

This equation can be used to analyze graviton emission into extra dimen-
sions.
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Graviton Emission into Extra Dimensions

In the ADD-scenario the claim is that the electroweak force is more funda-
mental than gravity. There is an important difference between these forces.
Electroweak forces have been probed at distances of order m−1

EW . On the
other hand gravitational forces have not been probed at distances of order
M−1

Pl . Gravity has yet not been measured on sub-millimeter scales.
The idea from the ADD-scenario to take M4+n ∼ mEW . By demanding

that R be chosen to reproduce the observedM4 we can find numerical values
for R, for different values of n, using formula 19,

M2
4 ∼ RnMn+2

4+n . (20)

We take M4+n = mEW ≈ 1 TeV and express R in terms of TeV−1. We
found already M4 ≈ 1016 TeV and therefore R is given by

R ∼ 10
32
n TeV−1.

We use 10−16 TeV−1 ↔ 1016 TeV↔ 10−35 m to write R in meters:

R ∼ 10
32
n
−19 m. (21)

Now we can give estimates of R for different n:

n 1 2 3 4 5 6

R (in m) 1013 10−3 10−8 10−11 10−13 10−14

The case of n = 1 is empirically excluded, since it would imply deviations
from Newtonian gravity over solar system distances. For all n ≥ 2, however,
nothing yet can be concluded, because there are no experimental results
about gravity on sub-millimeter scales. In contrast to gravity, the other
forces from the Standard Model have been accurately measured at very
small distances.

We will now take a closer look at a collision process, in which gravitons
can be produced and emitted into the extra dimensions. Let E be the total
energy in the center of mass system. We will show that the total number of
Kaluza-Klein graviton-excitations is of order (ER)n.

As we found earlier their momentum is quantized: p = ~
Rk. By using

E2 = p2c2 (and setting again c = ~ = 1) we see that the total energy squared
is of the form

E2
total ∼

k2
1

R2
+

k2
2

R2
+ . . .+

k2
n

R2
(22)

Conservation of momentum in each compactified extra dimension, gives that
after a collision we can expect two gravitons in the extra dimensions. The
momentum in the n dimensions was zero before the collision, so it must
be zero after the collision (but we are just making an approximation so we
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do not need this factor two). The energy of the produced Kaluza-Klein
gravitons must be smaller than the total energy. Therefore equation 22
becomes:

ER &

√

k2
1 + k2

2 + . . .+ k2
n (23)

The righthand side scales as a (hyper-)volume and therefore we find that
the number of graviton-excitation that could be produced in a collision is
approximated by (ER)n.

N(graviton excitations) ∼ (ER)n (24)

This can be a relatively large number. Knowing the number of possibilities
is not enough for a complete analysis. We must also know the probability
that a single graviton will be produced to say something sensible about the
process. In particle physics we usually do not speak about probabilities, but
about cross sections. Can we estimate the cross section σ for the production
of a single KK-particle? A cross section is an area and since the Planck
length is the only fundamental quantity with dimension length it looks that
our cross section is of order L2

Planck (this kind of argumentation is strange,
but works surprisingly often in physics). By looking back at the formulas
that we found we see that

σ(single graviton) ∼ L2
Planck = G4 =

1

M2
4

. (25)

Now we can give a rough estimate of the total cross section:

σ(total) ∼ 1

M2
4

(ER)n. (26)

We rewrite this by using the relation between the Planck mass in 4 dimen-
sions and the Planck mass in 4+n dimensions (equation 20):

σ(total) ∼ 1

E2
(

E

M4+n
)n. (27)

This shows that the probability of creating a Kaluza-Klein graviton is in-
dependent of the radii of the extra dimensions! It depends only on the
total energy in the center of mass system and the fundamental mass in 4+n
dimensions.
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3 Constraints from Short-Range Tests of Gravity

Although gravity was the first of the fundamental forces of nature to be
captured in a mathematical model, the inverse square law is the most in-
accurately tested one. Until quite recently the inverse square law had only
been tested on distances larger than 1 cm. This is mainly due to the weak-
ness of gravity, compared to the other fundamental forces. At short ranges
electromagnetic forces and acoustic vibration outweigh gravity by many or-
ders of magnitude.

Recently, there has been a renewed interest in tests of gravity on short-
range scales due to developments in theoretical particle physics. Many recent
models trying to unify gravity and the other fundamental forces have pre-
dicted effects on gravity in the sub-millimeter range. One of those effects
is the deviation from the inverse square law, which we discussed earlier in
section 2.1.

In these experiments, the deviation from the inverse square law is mod-
eled as a Yukawa interaction. The potential energy due to gravity and an
additional Yukawa force is given by:

V (r) = −G4
m1m2

r
[1 + α exp(−r/λ)], (28)

where α is the strength of the new interaction relative to gravity and λ
is the range of the interaction. The Yukawa potential is usually used to
describe interactions mediated by massive particles (like the strong nuclear
force). In fact deviation from the inverse square law found in section 2.1
may be seen as such an interaction. As shown in section 2.2 gravitons
traveling into the bulk manifest themselves as particles with mass in our
three dimensional world. Naturally the gravitons with the lowest mass -
and thus the longest range interaction - will be the first to be encountered
when probing gravity at shorter ranges. This gives us a range λ of R, the
radius of the extra-dimensions and a relative strength α of 2n. (The graviton
with the lowest mass is one traveling into the bulk with only one quantized
unit of momentum. For every extra dimension this momentum can be in
two directions, giving us a total of 2n particles and an equal number of extra
Yukawa interactions).

To date, none of the experimental groups have reported any results
showing any significant deviations from the inverse square law. In the ab-
sence of any such deviations results are reported as what part of the α− λ
parameter space their experiment has eliminated. Thus reports are usually
shown in plots like the one in figure 9.

3.1 Problems in Testing Gravity at Very Short Distances

The most apparent problem is the weakness of gravity as a force. Moreover,
it rapidly decreases as the experimental setups become smaller, because as
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one always needs to use test masses, an experiment has a minimum range
at which it can measure gravity. If you want to measure gravity at a shorter
range, you will have to downscale your experiment. This causes a significant
decrease in the maximum measurable force. Since, when you scale down by
a factor A, both test masses will scale down by a factor A3 reducing the
gravitational force between them by a factor A6. This is hardly compensated
by the fact that the minimum range is also reduced by a factor A increasing
the maximum measurable force by a factor A2, reducing the total decrease
in strength to a factor A4.

In the case of Yukawa forces there is another problem. Because the
strength of these forces decreases exponentially with the distance, the force
from a Yukawa interaction on a single particle will be dominated by nearby
mass, while the effect from more distant mass can be neglected. In an exper-
iment this means that only a part of the test masses effectively contributes
to the strength of the Yukawa interaction, while normal inverse square law
gravity uses the entire mass. This reduces the effective relative strength of
the Yukawa interaction. To minimize this problem the test masses of exper-
iments designed to detect Yukawa interactions are ideally heavy thin plates
concentrating as much mass as possible at the closest range.

Because of the weak nature of gravity it becomes extremely important to
eliminate all background effects. These included electrostatic en magnetic
effects. Further problems are caused by acoustic and seismic vibrations.
When these effects have been sufficiently suppressed the next problem in
line is thermal noise.

As experiments approach the 1 µm mark a new problem surfaces. At
this ranges Casimir and Van der Waals forces quickly become dominant over
gravity making it increasingly difficult to distinguish forces of gravitational
strength. This will be the next big hurdle to take if experiments are to probe
gravity at ranges below 1 µm.

3.2 Experiments Measuring Short-Range Gravity

Currently there are two types of experiments to measure gravity at short
distances: classical gravitation (low frequency) and high frequency exper-
iments. In this section we shall look at one (simple) example of both of
them.

Classical Gravitation Experiments

This type of experiments, using torsion balances, has been around for over
two centuries. One of the first persons to use such a technique was Cavendish,
who used a torsion balance to measure gravity at a range of 10 cm in 1798.
Nowadays there are two experimental groups using torsion balance tech-
niques:
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• One group at the University of California at Irvine using a 2-5 cm
cryogenic torsion pendulum [5]

• The Eöt-Wash group at the University of Washington [6].

We will now take a closer look at the latter.

Figure 7: Scale drawing of the Eöt-Wash experimental setup. (source: Ref.
[6])

The setup of this experiment (also see figure 7) consists a 1 mm thick
aluminium disk with ten evenly spaced holes suspended from a torsion fiber
acting as detection mass and a stack of two copper disks with similar holes
in them serving as a source mass. When the source mass is rotated, breaking
the symmetry, a torque is induced on the detection mass via a gravitational
interaction. The lower of the two copper disks, which is slightly thicker, is
offset by 18 degrees. This largely cancels out the torque caused by ordinary
inverse square law gravity, leaving only the torque due to a possible Yukawa
force, which effectively only ‘feels’ the top disk. The source rotates approx-
imately once every two hours, torquing the detection mass ten times per
revolution. The angular offset of the detection mass is measured by using
an optical readout.

To shield against electrostatic backgrounds a piece of 20 µm thick beryllium-
copper foil is stretched out between the source and detection mass. To fur-
ther improve conduction the detector, source and foil are coated with a thin
layer of gold. To exclude magnetic backgrounds the materials used are se-
lected to be specifically non-magnetic. Vibrations due to the source drive
can easily be recognized as the measured signal is ten times as frequent as
the rate of rotation. External vibrations (such as footsteps) are suppressed
by ‘normal’ dampening methods. Since thermal noise is of a smaller mag-
nitude than other effects, no special steps (such as cryogenic cooling) were
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taken to reduce it.
This experiment has measured gravity down to distances of about 200

µm. No anomalous deviations from standard gravity were found. The con-
straints on α and λ resulting from this experiment are shown in figure 9 as
Washington.

Future improvements to this setup include thinner disks made of denser
materials to increase or maintain the test mass while reducing the scale
of the experiment. The hole arrangements have been further optimized to
measure Yukawa interactions and cancel standard gravity. Better isolation
and a thinner electrostatic shield should allow for smaller mass separations.
The projected limits for this technique are shown in figure 10.

High Frequency Resonance Techniques

While experiments using torsion balances are attractive from a thermal noise
point of view because of the low operating frequencies and high mechanical
quality factors, their sensitivities are usually limited by low frequency noise,
which also limits the test mass separations. Recently, there have been several
groups developing techniques using high frequency resonance techniques,
which have shown promise of operating at smaller test mass separations.
The three experimental groups using high frequency resonance techniques
are:

• The group of J.C. Price at the University of Colorado, Boulder.([7]-[9])

• The group of S. Schiller at the University of Düsseldorf. [10]

• The group of A. Kapitulnik at Stanford University.[11]

We shall take a closer look at the torsional oscillator experiment from the
Colorado group.

The source mass is a 305 µm thick plate, which is driven at a natural
resonance frequency of the detection mass of about 1 kHz. This induces a
torque on the detection mass via a gravitational interaction. The detection
mass itself consists of a 195 µm thick tungsten torsion oscillator (see figure
8). At the resonance mode of interest the two rectangular areas counter
rotate. The benefit of operating at a resonance frequency is twofold. First
it gives an optimal response of the detector, which is measured using an
inductive device on the second rectangle. Secondly it reduces the effects of
vibrational noise.

Between the source and detection mass there is a 60 µm stiff conducting
plate of gold-plated sapphire wafer acting as an electrostatic shield and also
as a shield against acoustic vibrations. Naturally all materials used in this
experiment are non-magnetic to minimize magnetic backgrounds. To further
reduce acoustic backgrounds the experiment is performed in vacuum. To re-
duce backgrounds due to external vibrations the test mass and shield mount
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Figure 8: Central components of Colorado experiment. Figure is to scale.
(source: Ref. [9])

are suspended from vibration isolation stacks consisting of solid brass disks
connected by wires under tension. This system reduces external vibrations
at 1 kHz by 20 orders of magnitude.

With electromagnetic, acoustic, and vibrational backgrounds sufficiently
suppressed, the thermal noise becomes the limiting factor. Thermal noise is
reduced by a process of annealing. Before installation the detector is heated
to about 1300 degrees Celsius. When it gently cools down it will naturally
end up in a (from an energy perspective) stable state, which greatly reduces
thermal noise.

In the current experiment the minimum test mass separation is approx-
imately 100 µm, mainly due to the thickness of the electrostatic shield. To
date this experiment has yielded no signal above thermal noise. From this
we get the limits shown in figure 9 as the curve marked Colorado. Currently
thinner test masses and a thinner shield are developed possibly reducing
the test mass separation by a factor 2, yielding the limit shown in figure
10. Plans exist for a cryogenic version of this experiment operating at 4 K,
which could increase sensitivity by another factor 40.
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3.3 Results and Constraints on Extra Dimensions

Figure 9: α-λ Parameter space for deviation from the inverse square law.
The area above and to the right of the bold curves is currently excluded by
experimental results. This plot was taken from ref. [12]

The results of all current experiments are shown in figure 9. Black
curves are published results and blue lines are results available in preprints.
Also shown are some of the expected effects from different new theories. The
one we are interested in is the line labeled ‘compact dimensions’. This line
shows the strength of an extra Yukawa interaction in the case of two extra
dimensions. This excludes values of R larger than about 150 µm. The limits
for more dimensions are a bit more stringent, because the relative strength
of the Yukawa interaction should be larger.
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The red curves in Figure 10 show the results as they are expected from
future improvements to the experimental setups. The projected limit for R
in the case of two extra dimensions is about 35 µm.

Figure 10: Project limits on short-range Yukawa force for currently running
experiments. This plot was taken from ref. [12]
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4 Colliders, Cosmology and Astrophysics

In this section ideas and methods used in particle colliders, cosmology and
astrophysics will be presented, as well as constraints on the size of large
extra dimensions obtained from experiments in these fields. Colliders pro-
vide relatively weak bounds, but the results are more reliable than from
cosmology and astrophysics.

4.1 Constraints from Particle Colliders

A possibility of experimental signatures of large extra dimensions is the
appearance of Kaluza-Klein excitations (which we have studied in section
2.3) at high energy particle colliders.
Particle colliders are in fact the finest microscopes that we have ever build.
Why not use them to explore large extra dimensions?

The large extra dimensions that are felt only by gravity can reveal them-
selves through the emission of gravitons into the bulk. This emission is an-
other way of describing the process of graviton ‘evaporation’, an apparent
loss of energy.

At the moment the greatest energies obtained in particle colliders are
∼ 1 TeV. Bounds on the radii of the extra dimensions can be found by
analyzing high energetic collisions, thereby looking for a violation of the law
of conservation of energy (or momentum). When we find something like
this, it is a very acceptable possibility that some energy, in the form of KK
gravitons, has escaped into the bulk.

We will present an overview of the experiments done with colliders that
are relevant for testing the ADD model and providing bounds on R. There
are two classes in which we can divide the governing processes at accelera-
tors. In the first class we have the direct production of Kaluza-Klein gravi-
tons and in the second the so called virtual graviton exchange processes. We
will explore these two in more detail.
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Direct Production of Kaluza-Klein Gravitons

An important process of this kind is the collision of a proton and an an-
tiproton (or in general a particle and its antiparticle). This will produce a
jet of particles plus a graviton (GKK), which will be emitted into the bulk.

Figure 11: A collision between a proton and an antiproton can produce, for ex-
ample, a single jet of matter particles plus graviton emission into the bulk. Such
collisions might be seen in high-energy physics experiments. This picture was taken
from http://physicsweb.org/

In a formula:

proton+ antiproton→ jet of particles+GKK .

There can be many different kinds of particles in the jet. We do not
specify them, because in different collision different particles are made. This
kind of pp̄ collisions have been studied at the Tevatron collider (at Fermilab,
near Chicago) and give certain constraints. From the DØ detector (run
I) we get 1.1 TeV as a lower bound for the fundamental mass in 4 + n
dimensions. This result is almost independent of n. More details can be
found in [13].

Another process in which Kaluza-Klein gravitons are produced is the
electron-positron annihilation. The idea of electron-positron colliders (like
LEP II at CERN) is to let an electron annihilate with a positron, thereby
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emitting a photon:
e+e− → γ + 6ET ,

where 6ET stands for missing energy. We can check afterwards if the energy
of the emitted photon equals the total energy before the collision.

If there are really extra dimensions and the collision is energetic enough
to produce a Kaluza-Klein graviton, then this graviton will be emitted into
the bulk and again we will be left with an apparent loss of energy. Exper-
iments done at CERN (LEP II electron-positron collider) exclude a funda-
mental Planck mass in 4+n dimensions smaller than 1.45 TeV for n = 2 and
0.6 TeV for n = 6. For a summary of LEP results on graviton emission, see
[14].

Virtual Exchange of Kaluza-Klein Gravitons

These processes are more model dependent than direct KK graviton pro-
duction. Reaction formulas are of the form:

particle+ antiparticle→ e+e− or γγ.

More specific, Kaluza-Klein gravitons are formed and subsequently decay to
other degrees of freedom on our brane:

q q → GKK → e+e− ,

where q is a particle and q its antiparticle. Results from the Tevatron collider
for the lower limit are ∼ 1 TeV. A more extended explanation of this rather
advanced topic can be found in [15] and [16].

Intermezzo: Production of Micro Black Holes

Is it really realistic to create micro black holes?

Is it dangerous to create black holes in a laboratory?

How will you know if you have created one?

What could you do with it if you made one?

These are questions that speak to the imagination.

We will look the process of the creation of micro black holes in elementary
particle collisions. As we have seen, in the ADD-scenario the observed weak-
ness of gravity at long distances is due the existence of extra sub-millimeter
dimensions. In the standard 4-dimensional theory we must have very high
energies to let gravity compete with electromagnetism. This can be seen
from the laws:

FEM =
1

4πε0

q1 q2
r2

FGravity = G4
m1 m2

r2
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Let us consider two protons. How much more powerful is the electromag-
netical force between them? The mass of a proton is 1.66 10−27 kg. We can
take a distance of one meter (in does not matter). Filling in the numbers
gives:

FEM ≈ 9× 109(1.6× 10−19)2 ≈ 2.3× 10−28 N

and
FGravity ≈ 6.67× 10−11(1.66× 10−27)2 ≈ 1.8× 10−64 N.

The electromagnetic force between two protons is 64 − 28 = 36 orders of
magnitude stronger than the gravitational force. What we can do with
accelerators, is to make the mass of the protons bigger by speeding them
up. If we want to let gravity be as strong as electromagnetism we must
accelerate the protons to 1018 times their rest mass, and since the rest mass
is 931 MeV this is approximately 1018 GeV. The only problem is that 1018

GeV is some 15 orders of magnitude beyond the experimental borders. If
there are no extra dimensions we will probably never be able to produce
black holes in a laboratory. With extra dimensions things are very different.
Our fundamental mass is of order 1 TeV, depending on the number and the
radii of the extra dimensions. This means that if we accelerate a proton to
1 TeV gravity is as strong as electromagnetism.

When FGravity > FEM strange things happen. For example two protons
can stick together, held together by gravity witch is stronger than electro-
magnetic repulsion. The argument that light will not be able to escape when
gravity is stronger than electromagnetism, is a very naive one, because the
coulomb force does not work on photons. Nonetheless calculations carried
out by experts, imply that it should be possible to create micro black holes
in this way (i.e. by letting particles collide at extremely high speeds). If
M4+n is not very high this may happen in the nearby future. The Large
Hadron Collider (LHC) is under construction and will be operational within
a couple of years. Expectations are that the LHC will work at about 7 TeV.
Machines producing even higher energies of 10−100 TeV seem already tech-
nically possible. The limitation is the cost. Gravity is either really weak,
or is strong but diluted by extra dimensions. In the latter case we will find
microscopic black holes in colliders!

We will now try to answer the four questions which were presented at
the beginning of this intermezzo.

It may be possible to create micro black holes if the ADD-scenario is
correct and if the fundamental Planck mass is reachable by colliders. It is not
dangerous to create such black holes. Theoretically their lifetime is of the
order of 10−30 sec (they evaporate by emitting Hawking-radiation). Further-
more, if micro black holes can be created in a collider, then already billions
and billions of them have been formed in the atmosphere by extremely rela-
tivistic particles. A correct answer to the question how we could detect such
a black hole is: by looking at the Hawking-radiation it emits. Although this
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answer may be not completely satisfactory (or even completely not satisfac-
tory), we will not discuss it any further. This would go beyond the purpose
of this paper. At the internet (for example http://www.arxiv.org/) many
articles about micro black holes can be found. If we would be able to make
such a black hole, many research could be done on it. Besides discovering
extra dimensions, we could test Hawking-radiation, thereby exploring the
last stages of black hole evaporation. Other interesting things are quantum
gravity and the information loss problem, which shall not be discussed here.

4.2 Cosmological Aspects

There are various types of cosmological constraints on the size of extra
dimensions. Constraints arise from, among other things, inflation models
and Big-Bang Nucleosynthesis (BBN), so we will start by shortly introducing
these subjects.

In order to explain the extremely homogeneous cosmic microwave back-
ground (CMB) and the flatness problem, physicists believe that at a very
early stage, the universe must have blown up exponentially (see for instance
[17]). This is called inflation. Subsequently, to provide the energy needed for
inflation, the inflaton field has been introduced and quite generally accepted.
This inflaton field (that somehow just happened to be there already) must
have decayed, thereby supplying the requisite energy. As a consequence, ob-
jects that otherwise would seem to be without causal relation (because they
are too far away from each other to effectively influence each other within
the age of the universe), can have been close enough to each other (before
the inflation), so that they have come into equilibrium. This would explain
the homogeneity of the cosmic microwave background (CMB). The flatness
problem is solved, because inflation (as opposed to normal expansion) causes
the curvature of the universe to diminish.

After that the inflaton field has decayed, the remaining energy has re-
heated the universe, a process accompanied by the copious production of all
types of particles, including KK gravitons. Following this period of reheat-
ing, the universe cooled down again, and this time it cooled enough to make
the existence of baryons, and later even small nucleons, possible. This pro-
cess is called Big-Bang Nucleosynthesis (BBN), and the temperature range
at which it could occur is quite narrow.

During this whole process of cooling and reheating and cooling again,
but especially during the reheating epoch, lots of KK gravitons must have
been produced. The existence of these KK gravitons has two consequences:
they have absorbed energy, that thus could not be used for other purposes;
and they will decay themselves as well, providing energy at sometimes ‘un-
wanted’ moments.

Many of the following constraints are in fact constraints on the so-called
normalcy temperature T∗. This is the temperature below which physics has
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to be predominantly ‘normal’, i.e., the exotic consequences of the extra
dimensions must be negligible, and above which the evolution of the universe
must be considered non-standard, and thus mainly unknown. Usually, an
upper bound for T∗ is derived, which depends on M4+n. However, there
must have been time and energy enough for the universe to evolve the way
it has (think, for instance, of the nucleosynthesis), and this provides a model
dependent lower bound. T∗ & 100 MeV may be considered quite safe and
will be used to calculate the constraints on M4+n, see [18].

It must be said, however, that assuming the compact dimensions to have
other geometrical properties (for instance warped instead of flat), may often
give very different results (generally much less stringent).

Expansion and Cooling

The energy density ρ in the universe has mainly decreased since the Big-
Bang. Adopting the ADD-scenario, there are two possible ways of cooling:
the normal (adiabatic) expansion, and ‘evaporation’ of gravitons into the
extra dimensions. Observations show, however, that expansion must have
been (and is) the dominant mechanism for most of the time, and so com-
paring the different rates of cooling might give some constraint on T∗.

The cooling rate due to expansion follows quite easily from the thermo-
dynamic identity dU = T dS−p dV +µ dN : we suppose dS, p and dN to be
zero (because of the reversibility of the process, the fact that massive par-
ticles do not have a (considerable) pressure and the negligible spontaneous
production of particles, respectively), so we just keep dU = 0. Then we plug
in U = ρV , so dU = ρ dV + V dρ, and, supposing a sphere, finally we add
V = 4/3 πa3 and dV = 4πa2da. After some rearranging, this leads to:

dρ

dt

∣

∣

expansion
∼ −3ρH ∼ −T 4 T

2

MP
,

where H is the Hubble parameter H = ȧ
a ∼ T 2/MP . The cooling rate due

to evaporation can be estimated by dimensional analysis and reads [3]:

dρ

dt

∣

∣

evaporation
∼ − Tn+7

Mn+2
4+n

.

Since both mechanisms are temperature dependent, this leads indeed to a
constraint upon T∗, since we want the expansion to dominate the evaporation
for all time after T = T∗:

−T 4
∗

T 2
∗

MP
& − Tn+7

∗

Mn+2
4+n

⇐⇒ T∗ . M4+n

(

M4+n

MP

)
1

n+1

. (29)

Filling in T∗ = 100 MeV and various values of n, we obtain the following
results:
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n 2 3 4 5 6

M4+n (TeV) 10 1 0.2 0.07 0.03

So especially for high values of n, this bound is not very stringent. We will
derive much more stringent bounds later on.

Over-closure of the Universe

The energy density of the gravitons ρgrav at temperature T∗ behaves like [3]:

ρgrav ∼ T∗ × ngrav ∼
Tn+5
∗

Mn+2
4+n

MP ,

where ngrav is the number density of the gravitons, i.e. the number of
gravitons per unit space. Due to cosmic expansion, this energy density will
decrease, since the same amount of energy has to be spread out over a larger
space. It appears, however, that there is a difference between radiation and
(non-relativistic) matter: whereas the matter density decreases proportion-
ally to the increase of the volume (ρmatter ∼ ( a

a0
)−3 ∼ T−3), the density of

radiation decreases even faster: ρrad ∼ ( a
a0
)−4 ∼ T−4. This is because of the

red-shift: as space expands, the wavelength of a photon will expand with
the same rate. Since gravitons can be considered as massive 4D particles,
their density decreases as

(

a
a0

)−3 ∼ T−3. So,
ρgrav

T 3 is invariant. Now we can
put a lower bound to ρgrav by demanding that

ρgrav
T 3

.
ρcrit
T 3

∼ 3× 10−12 TeV,

where ρcrit is the critical density and ∼ 3×10−12 TeV the present day value
for the density temperature rate. The critical density is that density, for
which the expansion of the universe leads to an equilibrium (that is, after
an infinite time, the universe will have a positive, finite size and will neither
expand nor contract). Another feature of the critical density is, that it
will cause the universe to be flat. Since observations show that the energy
density is lower than the critical density, this gives us

ρgrav
T 3
∗

∼
( T∗
M4+n

)n+2
MP . 3× 10−12 TeV

→ T∗ .

(

3× 10−12 TeV

MP

)
1

n+2

M4+n. (30)

Now we can create a table similar to that in the previous section:

n 2 3 4 5 6

M4+n (TeV) 760 32 3.9 0.9 0.3

Note that these constraints are much stronger than the ones in the previous
table, in particular for n = 2, the bound is very strong.
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Present Day Decay to Photons

KK gravitons cannot decay very easily, and consequently, they have large
life times τ [3]:

τ(E) ∼ M2
P

E3
&
M2

P

T 3
∗

∼ 10−38 TeV−1 ∼ 108 yr,

where E is the graviton’s energy. That implies that a significant part of
the gravitons formed in the early universe still exists and therefore decays.
That means that we should be able to measure distortions in the diffuse
gamma spectrum. These distortions, however have as yet not positively
been identified, and therefore must be very small. This induces again a
bound on T∗ (as derived in [3]):

T∗ . 10
6n−15
n+5 MeV ×

(

M4+n

TeV

)
n+2
n+5

(31)

And this leads to by far the strongest constraints so far:

n 2 3 4 5 6

M4+n (TeV) 18× 103 398 32 5.2 1.3

These values, however, are extremely model dependent, and especially sen-
sitive to the possible existence of other ‘parallel’ branes.

Cosmic Rays

Apart from the cosmic microwave background, we receive other radiation:
the cosmic rays. Its energy spectrum is of an enormous width (roughly from
1 to 1010 GeV), and has a striking form: there appears to be a sort of hard
to explain surplus beginning at energies of a few TeV (see figure 12). It has
been suggested that this surplus is caused by the production of gravitons at
particle collisions (mainly pp → pp + GKK) in the atmosphere [19]. These
gravitons are not detected, and so lead to ‘missing’ energy.
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Figure 12: The cosmic ray spectrum f(E). Note the surplus (the area to
the right of the green line, indicated with ‘knee’) beginning at a few TeV.
(source: http://astro.uchicago.edu/∼ smoneil/pics/background/spec.gif)

Thus, a surplus of particles with (relatively) low energies is found. This
means, however, that the problem is in fact shifted to regions of higher en-
ergies, where a corresponding shortage of particles should be found. But
because of the decreasing accuracy of the measurements at higher energies
and the partly unknown influences of other effects (such as extra-galactic
particles), it is not possible to say something sensible about it. Fitting curves
based on various energies and a different number of extra dimensions, leads
to the suggestion that there will be four extra dimensions with energies of
about 8 TeV, although other possibilities are by no means excluded. How-
ever, this is all still highly speculative and so should be investigated further.
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4.3 Astrophysical Constraints

If the ADD picture is right, then there are a lot of Kaluza-Klein gravitons
produced in systems like the sun or a supernova (because of the high tem-
peratures of these systems). Energy will leak from the system into the bulk,
because of these gravitons. The number of produced gravitons is constrained
by observations. We will examine constraints provided by observations of
the sun, red giants and a supernova 1987A.

The probability that a process where a KK graviton is produced will
happen, is given by the corresponding cross section. In formula 27 we already
saw that

σ ∼ 1

E2
(

E

M4+n
)n.

In astrophysical applications temperature is the dominant factor of the en-
ergy of a system, E∼ T. This suggests that the cross sections for each process
contains the factor T n/Mn+2

(4+n), which already has the correct dimensions for
a cross section. The cross sections of the processes we will study next, are in
fact more complicated. A derivation of these cross sections will go beyond
the purpose of this paper. Detailed cross sections and derivations of the
listed bounds below can be found in [3].

The Sun and Red Giants

The core temperature of the sun is ∼ 1 keV (∼ 1.1× 107 K). The relevant
particles in equilibrium are electrons, protons and photons. In this situation
the two most important processes which produce KK gravitons (GKK) are:

• Gravi-Compton scattering: γ + e→ e+GKK

• Photon fusion: γ + γ → GKK

The observed rate at which the sun releases energy per unit mass per unit
time is: ε̇obs ∼ 1 erg g−1 s−1 ∼ 10−45 TeV. This puts a constraint on the
release of gravitons into the bulk. The Photon fusion gives the strongest
bound:

M4+n & 10
18−6n
n+2 GeV. (32)

From this we obtain the following bounds:

n 2 3 4 5 6

M4+n (GeV) 30 1 0.1 0.02 0.006

R(m) 1 5× 10−4 1× 10−5 1× 10−6 2 ×10−7

This is still a very weak bound if we compare it with the pervious results.
The temperatures of red giants are somewhat larger, T ∼ 10 keV, but this
also does not give us a strong bound.



4 COLLIDERS, COSMOLOGY AND ASTROPHYSICS 34

SN1987A

In 1987 we observed (on earth) a supernova type II, SN1987A for short.
According to the standard theory of type-II supernovae, most of the ∼ 1053

ergs of gravitational binding energy released during the core collapse, is
carried away by neutrinos. This hypothesis was essentially confirmed by
the measurement of neutrino fluxes from SN1987A by Kamiokande [20] and
IMB [21]. If there are extra dimensions, then also KK gravitons, which are
produced during a supernova, will carry away some energy. This can only be
a limited fraction of the total energy, because otherwise it would contradict
the neutrino observations. Therefore we can obtain a lower bound forM4+n.
After the core collapse of SN1987A the resulting neutron star had a core
temperature of ∼ 30MeV. This is significantly higher than the temperature
of the sun, therefore we expect a stronger bound. The two most dominating
processes in supernova are:

• Gravi-Primakoff process: γ + EM field of nucleus Z→ GKK

• Nucleon-Nucleon Bremsstrahlung: N +N → N +N +GKK

The Nucleon-Nucleon Bremsstrahlung gives the strongest bound:

M4+n & 10
15−4.5n

n+2 TeV. (33)

This lead to much more stronger constraints:

n 2 3 4 5 6

M4+n (TeV) 30 2 0.3 0.08 0.03

R(m) 1× 10−6 1× 10−9 6× 10−11 8× 10−12 2× 10−12

Other Possibilities

In a supernova core collapse, massive KK gravitons would be produced with
average velocities w 0.5 c, therefore many of them are gravitationally re-
tained by the supernova core. Thus, every neutron star would have a halo
of KK gravitons which decay into photons and some other particles, on time
scales w 109 years. Observations from EGRET (Energetic Gamma Ray
Experiment Telescope), of nearby neutron stars, lead to the stringent con-
straint M(4+2) & 90 TeV, for n = 2, as can be found in [22]. More exotic
models predict even higher lower bounds for M4+n.

The problem with the bounds obtained by astrophysics is that they are
not very reliable. This is because of uncertainties in the observed data. Also
there are different models which describe the same phenomenon. It seems
that the higher the predicted lower bound, the less reliable it is.
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5 Conclusions

We have seen that the ADD-scenario gives a different perspective to the
hierarchy problem. Experiments can test this relatively new scenario. There
is no evidence that extra dimensions exist. However, large extra dimensions
cannot be excluded, but experiments do place constraints on their sizes.
The results, which were discussed in this paper, are summarized in the plot
below. The subject of large extra dimensions is still a very active field of
research.

1 2 3 4 5 6
n

1010

105

100

10-5

10-10

R in m

SN1987A
sun
decay to photons
overclosure
expansion and cooling
short-range gravity
particle collider
hierarchy

Figure 13: In this plot we present an overview of the discussed constraints
on R.
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