
Greybody Factors
Hawking Radiation in Disguise

Jorge Escobedo

Master’s thesis

Supervisor: Prof. Dr. Jan de Boer

University of Amsterdam
Institute for Theoretical Physics

Valckenierstraat 65
1018 XE Amsterdam

The Netherlands

August 2, 2008





To my parents, Lucy and Jorge





Abstract

This master’s thesis deals with greybody factors of static and spherically symmetric
black holes in asymptotically flat spacetimes, with emphasis on the high frequency
limit. The first goal is to provide a pedagogical and thorough review of some recent
developments in the study of these objects in a semiclassical context. The second goal
is to motivate further investigation in this subject as a possible way to gain a better
understanding of quantum gravity. We first review an important string theoretical result
in the low frequency regime, which gave new insight into the microscopics of black holes.
To perform the computations at high frequency, we use the monodromy technique, first
introduced in this context by Motl and Neitzke. The results we obtain in this regime
are highly suggestive and drawing on the results at low frequency, it has been suggested
that they might be telling us something new about the quantum structure of black holes.
We conclude by presenting an attempt of using the monodromy technique to compute
the greybody factor at high frequency for a stringy black hole. The hope is that the
result in this case might be easier to realize in the context of string theory.
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Conventions

Unless otherwise specified, we work in units where ~ = c = kB = 1. We do not set
Newton’s constant to one, but denote it by Gd, indicating that it is its value in d

spacetime dimensions.

Any given spacetime metric is of the form ds2 = gµνdx
µdxν , where the signature of

gµν is (− + + +). Spacetime dimensions will be denoted by d, hence, the number of
spatial dimensions is d− 1.

For simplicity, we use the Gaussian unit system for electromagnetism, in which the
electrostatic constant appearing in Coulomb’s law is such that: K = 1

4πεo
= 1.

In d dimensions, the Einstein metric and the string metric are conformally related
by

gEµν = e−
4Φ
d−2 gSµν ,

where Φ is the dilaton field.

We use log to denote either the natural logarithm of a real number or the logarithm
of a complex number: the case at hand will be clear from the discussion in the body of
the thesis. We will only make a distinction between them when writing the definition
of the logarithm of a complex number z = |z|eiθ as

log z = ln |z|+ iθ.

This convention will proof to be handy when dealing with the analytic continuation of
some variables in the computation at high frequency.
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Introduction

Black holes are undoubtedly one of the most fascinating objects in physics. They are
predicted by Einstein’s theory of general relativity and their existence is now widely
supported by observational evidence. A black hole is a part of spacetime with a curva-
ture singularity in the center, where the laws of physics, as we know them, are no longer
valid. This singularity is hidden from the rest of the Universe by an event horizon, a
surface that can be thought of as the boundary of the black hole. Once an object crosses
the event horizon, i.e. falls into the black hole, timelike and spacelike directions switch
roles, meaning that the object will be forced to move forward in space, eventually hitting
the singularity. This is where black holes get their name from: since not even light can
escape from them, they are effectively “black”. But how do we properly describe the
spacetime singularities inside black holes? Understanding them might give us a clue of
how to deal with other important spacetime singularities, such as the Big Bang.

By studying quantum field theory in a black hole background, Hawking showed that
this behaves as a thermal system. It has associated thermodynamical quantities such
as an entropy and temperature. Furthermore, it emits radiation with a characteristic
blackbody spectrum, known as Hawking radiation. Thus, when quantum mechanics is
taken into account, black holes are in fact not black and they obey the laws of thermo-
dynamics. The spectrum of the radiation emitted by a black hole is that of a black body
exactly at the event horizon. However, as the initial radiation travels away, it will get
modified by the non-trivial spacetime geometry that the black hole generates around it.
Therefore, an observer located at infinity will measure a spectrum that differs from that
of a black body by a so-called greybody factor, a frequency- and geometry-dependent
quantity that “filters” the initial Hawking radiation. Within a semiclassical approxima-
tion, greybody factors can be studied by making use of Schrödinger-like equations to
study the scattering of a field by the black hole background. This method allows us to
compute the transmission and reflection coefficients of the black hole, in terms of which
we can define the corresponding greybody factor.

The thermal nature of black holes raises two deep questions:

• What are the microscopic configurations that a black hole entropy is counting?

• Is information lost once it falls into a black hole?

We will address their nature in the body of the thesis. However, we should point to the
fact that in order to solve these two puzzles, we need to go beyond the semiclassical
approximation and require a theory of quantum gravity. Roughly speaking, this is due
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2 Introduction

to the fact that the curvature of spacetime inside a black hole is so large that on very
small scales, gravitational effects will be as important as quantum effects.

But, why do we need a theory of quantum gravity? Modern theoretical physics relies
on two major theories: quantum field theory and general relativity. The former deals
with the world at very small scales and the latter with the world at very large scales.
Over the years, the validity of both theories within their respective regimes has been
tested beyond any shadow of doubt. However, it would be desirable to have only one
theory that describes all known particles and interactions and that, in the appropriate
limits, reproduces the predictions made by quantum field theory and general relativity.
Such a theory is given the name of quantum gravity and the search for it is one of
the most outstanding problems in theoretical physics. Usually, physical systems are
studied in regimes when only one of the above mentioned theories is relevant or by using
a semiclassical approximation like the one used by Hawking. In order to formulate a
theory of quantum gravity, physicists have to look for systems under extreme conditions,
in which gravitational and quantum effects are on the same footing. As we just explained
above, black holes satisfy this condition!1 This remarkable feature makes black holes
a unique testing ground for ideas and proposals coming from any theory of quantum
gravity.

Indeed, black holes have played a crucial role in the development of string theory,
nowadays our most promising candidate for a theory of quantum gravity. According to
it, the Universe is made up of tiny vibrating strings and higher-dimensional membranes
known as p-branes. In 1996, Strominger and Vafa gave a string theoretical derivation
of the Bekenstein-Hawking entropy. They constructed a special type of black hole,
namely a five-dimensional extremal black hole, using a special type of p-branes known
as Dp-branes. Their calculation was later generalized to other cases, showing that string
theory successfully accounts for the microscopic degrees of freedom that give rise to the
entropy of certain types of black holes.

Diverse studies of black holes in string theory followed the above derivation and
one of them was the study of greybody factors of a variety of black holes. In this
area, one of the most important results was that of Maldacena and Strominger, who
found that in the small frequency regime, the greybody factor of a specific type of black
hole could be exactly reproduced by computing the spectrum of a vibrating string and
measuring it at infinity. This was a remarkable result, because the greybody factor
initially calculated in a semiclassical approximation, could be exactly reproduced by a
quantum field theory, which is the one used to study the spectrum of a string. Therefore,
we see that one could obtain the same result from a theory with gravity and another
one without it! This work was one of the main motivations when Maldacena proposed
the AdS/CFT correspondence, a conjectured duality between a string theory defined in
(d+1) dimensions and a conformal field theory that lives in d dimensions. This duality
has been one the most important conceptual breakthroughs in theoretical physics in the
last years and it is now widely used not only to study the nature of quantum gravity,
but also as a computational tool for strongly coupled gauge theories.

1The other cases that satisfy this condition are the Big Bang and the very first moments after it.
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Motivation

We see that by studying greybody factors in a certain frequency regime, great progress
was made toward our understanding of string theory. One may ask if by studying
greybody factors in a different frequency regime we would be able to learn even more
about the quantum structure of black holes and, thus, about quantum gravity. Indeed,
motivated by some suggestive results, Motl and Neitzke have proposed that the study
of greybody factors at large frequency may reveal new and unexpected features of the
quantum nature of black holes. If correct, then greybody factors might help us in
resolving the information loss paradox arising from the thermal nature of black holes.

The goal of this thesis is to review the concept of greybody factors in semiclassical
gravity and motivate their study in the high frequency regime as a possible way to
achieve a better understanding of black holes and quantum gravity. To do so, we
will present recent progress made in this area of research and thoroughly explain the
techniques used. In the end, we will try to give hints to possible connections of these
results to those that have been or can be obtained from string theory.

Outline

This thesis has been written assuming that the target audience is composed of master
students of theoretical physics. Hence, anyone with basic knowledge of general relativity
and quantum field theory will be able to read it. The outline of the thesis is as follows:

Part I

This part provides the basic background material necessary to understand the main
ideas of the thesis. It is included hoping that the thesis is as self-contained as possible
and, perhaps, that it can be used as a quick reference for someone who is just starting to
learn these subjects. In chapter 1, we start by giving a review of the basics of black holes
in four-dimensional Einstein’s gravity and present their causal structure schematically
by means of Penrose diagrams. In chapter 2, we introduce the analogy between black
holes and thermodynamics and explain what puzzles arise from it. Finally, we explain
the basics of black hole in string theory in chapter 3, giving an explicit example of a
five-dimensional black hole with three charges, first obtained by Horowitz, Maldacena
and Strominger.

Part II

In this part, the concept of greybody factors is introduced and we explain the main
tools used to compute them explicitly. First, the Klein-Gordon equation is solved in
two different black hole backgrounds in chapter 4. This will constitute the backbone
of the greybody factor computation. Then, in chapter 5, we explain the concept of
greybody factors and give their definition using black holes scattering theory. Finally,
we give a detailed explanation of the differences between the low and high frequency
regime computation.
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Part III

This part contains the computation of greybody factors for different black holes. As a
motivation, we show in chapter 6 and chapter 7 the greybody factor computation at low
frequency for the five-dimensional black hole mentioned above, both in the semiclassical
gravity and string theory context. Remarkably, the two results agree. This was one of
the precursors of the AdS/CFT correspondence.

In chapter 8 and chapter 9 we compute the greybody factors at high frequency for the
four-dimensional Schwarzschild and Reissner-Nordström black holes in asymptotically
flat spacetime. In the latter case, even though the results have been mentioned in the
literature, the computation has not been shown explicitly and we fill that gap. The
monodromy technique and steps involved in the calculations will be explained in detail.

In chapter 10, we present an attempt of an original computation. We apply the
monodromy technique to try to obtain the greybody factor at high frequency for the
five-dimensional black hole with three charges. Our motitavion to do so is that this
black hole has a well-known string theory description; hence, the semiclassical results
at high frequency might be more easily realized in this case than in the cases considered
in chapter 9.

We conclude by analyzing and discussing our results. Finally, the appendices contain
material that may help in clarifying parts of the thesis.



Part I

Black Holes

5





Chapter 1

Black holes in classical gravity

In this chapter, we review the basics of black holes in four-dimensional classical gravity,
including their general properties and causal structure. We include this chapter hoping
that the thesis is as self-contained as possible, since these are the type of black holes
for which we will be calculating greybody factors in the coming chapters. Excellent
references for further details are [1, 2]. For a complete and recent review of higher-
dimensional black hole solutions, the reader is refered to [3].

1.1 Schwarzschild black holes

In 1905, with his theory of special relativity, Einstein showed that we must consider
space and time on an equal footing. However, and maybe more importantly, in 1915
Einstein published his theory of general relativity, which completely changed our way
of looking at the Universe and our understanding of gravity. Using the mathematics
of Riemannian geometry, he showed that gravity can be regarded as the curvature of
spacetime due to the presence of matter or, equivalently, energy. In order to derive the
Einstein’s equation of general relativity, we consider the action S = SEH + SM , where

SEH =
1

16πG4

∫
d4x
√
−gR

is the Einstein-Hilbert action, which is the gravitational part of S, and

SM =
∫
d4x
√
−gLM

is the matter-energy fields term. The Lagrangian density LM used to define SM depends
on the problem at hand. Then, the total action we have to consider is

S =
1

16πG4

∫
d4x
√
−gR+

∫
d4x
√
−gLM .

By varying this action with respect to the inverse metric gµν and defining the energy-
momentum tensor Tµν as

Tµν =
−2√
−g

δS

δgµν
, (1.1)

7



8 Black holes in classical gravity

we find that Einstein’s equation of general relativity is

Rµν −
1
2
Rgµν = 8πG4Tµν , (1.2)

where Rµν is the Ricci tensor, R is the Ricci scalar (or scalar curvature) and gµν is the
metric tensor of the spacetime under study. G4 is Newton’s gravitational constant in
four dimensions; we use this notation for reasons that will become apparent in coming
chapters. This equation tells how the geometry of spacetime (left-hand side) reacts to
the presence of energy and matter (right-hand side). By taking the trace of (1.2) and
rearranging some terms, we can write

Rµν = 8πG4(Tµν −
1
2
Tgµν),

which is a completely equivalent equation. It is especially useful when finding solutions
in the vacuum, i.e. where Tµν = 0, since we can readily write the vacuum Einstein’s
equation in the very convenient form

Rµν = 0. (1.3)

Soon after the publication of this theory, physicists started working on finding so-
lutions of the equation of general relativity. It was Karl Schwarzschild who found the
first analytic solution in the vacuum. He considered a spherically symmetric, station-
ary body of mass M and found that the metric it generates, in spherical coordinates
(t, r, θ, φ), is given by

ds2 = −
(

1− 2G4M

r

)
dt2 +

(
1− 2G4M

r

)−1

dr2 + r2 dΩ2
2, (1.4)

where dΩ2
2 = dθ2 +sin2 θdφ2 is the metric on a unit 2-sphere S2. This solution is known

as the Schwarzschild metric and it can be shown that it is the unique vacuum solution
with spherical symmetry and that there are no time-dependent solutions of this form.
This is known as Birkhoff’s theorem (for a proof, the reader is referred to [1]). This
metric is asymptotically flat, i.e. far away from the black hole, as r → ∞, we recover
the Minkowski metric.

It is readily seen that the metric (1.4) is singular at r = 0 and r = 2G4M . The former
is a true singularity of spacetime, whereas the latter is not and is rather an artifact of
the choice of coordinates, as can be checked by computing an invariant quantity (e.g.
the curvature invariant scalar) and evaluating it at both points:

RµνρσR
µνρσ =

48G2
4M

2

r6
.

At r = 0 this scalar goes to infinity and we regard this point as a true singularity.
However, at r = 2G4M , this scalar has a finite value, as do all other scalars constructed
with the Riemann tensor; this suggests that this is not a true singularity and that it
appears to be so in (1.4) due to our bad choice of a coordinate system. By the defining
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the so-called tortoise coordinate r∗ = r+2G4M ln
(

r
2G4M

− 1
)

, we can write the metric

in a form in which we can clearly see that it is well-behaved at r = 2G4M .1

The radius r0 = 2G4M is called the Schwarzschild radius and the solution of (1.4) for
r < r0 is the metric that describes a Schwarzschild black hole. The spherical surface with
radius r0 is known as the event horizon and it has the remarkable property of dividing
the spacetime in two regions (r > r0 and r < r0) which are causally disconnected.
Having introduced this concept, we can give a general definition of a black hole as a
region of spacetime separated from infinity by an event horizon. In the Schwarzschild
case, objects located outside the event horizon will orbit the black hole as if it was
a body of mass M . Nothing too interesting in this region. However, once an object
hits and crosses the event horizon, it will never be able to escape the gravitational
force of the black hole. Once inside a black hole, timelike directions become spacelike,
and viceversa. This means that the lightcone of any object located at r < r0 will be
completeley tilted and the object will inevitably move toward the singularity at r = 0.
Therefore, not even light can escape from a black hole and the two spacetime regions
defined by the event horizon are causally disconnected.

For ordinary objects, r0 is much smaller than the physical radius or size of the object;
in such cases, we need not worry about the event horizon because the Schwarzschild
metric does not apply since we are no longer in emtpy space. On the other hand, if
an object undergoes gravitational collapse, eventually its physical radius will be smaller
than r0 and it will form a black hole; the empty space surrounding it, both inside and
outside the event horizon, is correctly described by the Schwarzschild metric. Hence,
(1.4) can be used to describe the empty space outside a star, a black hole or a planet,
as well as the interior of a black hole. We present below the Penrose diagrams for the
full Schwarzschild metric and a realistic Schwarzschild black hole (if the reader is not
familiar with Penrose diagrams, see Appendix A).

I -

I+

I -

i0 i0

r = 0

r =
 2

GM

r = 2GM

I+

r = 0 i-i-

i+ i+ r = constant

t = constant

Figure 1.1: Penrose diagram for the full Schwarzschild metric.

1It is worth mentioning that these still are not the best coordinates to study the full Schwarzchild
metric. The appropriate ones are called Kruskal coordinates. See [1].
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i+

i

I

I+

-

-

i
0

r = 0

r = 0

Figure 1.2: Penrose diagram for a realistic Schwarzschild black hole. The shaded region
contains the matter of the collapsing star.

Finally, we should mention that the Schwarzschild metric is easily generalized to
higher dimensions. More specifically, the Schwarzschild metric in d = 4 + n dimensions
is given by

ds2 = −
[
1−

(r0

r

)n+1
]
dt2 +

[
1−

(r0

r

)n+1
]−1

dr2 + r2 dΩ2
n+2, (1.5)

where, again, r0 is the event horizon.

1.2 Reissner-Nordström black holes

The Reissner-Nordström metric is generated by a spherically symmetric, electrically
charged object of mass M and charge Q. Such a solution is not extremely relevant to
realistic astrophysical situations because in the real world, an electrically charged black
hole would quickly discharge via Schwinger pair production, but it is very interesting
from a theoretical perspective. In order to find the corresponding solution, we cannot
use (1.3), since we are no longer in vacuum. This is due to the fact that Q will generate a
nonzero electromagnetic field, which acts as a source of energy-momentum. In order to
write the action, we consider the Einstein-Hilbert action plus the action due to energy-
matter fields. In this case, the Lagrangian density for the energy-matter fields is that
of electromagnetism, namely

LM = −1
4
FµνF

µν ,

so that
SM = −1

4

∫
d4x
√
−gFµνFµν , (1.6)

where Fµν is the electromagnetic field strength tensor defined in terms of electromagnetic
vector potential Aµ, as

Fµν = ∂µAν − ∂νAµ. (1.7)
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Hence, the action to be considered in the Reissner-Nordström case is

SRN =
∫
d4x
√
−g
(

R

16πG4
− 1

4
FµνF

µν

)
, (1.8)

and using (1.1), we find that the energy-momentum tensor for electromagnetism is

Tµν = FµρF
ρ
ν −

1
4
gµνFρσF

ρσ. (1.9)

Assuming some general form for the metric and Tµν , that take into account the
spherical symmetry of the source, it is possible to find the metric gµν . We will not
go through the details of the derivation, but only give the final result. The Reissner-
Nordström metric is given by

ds2 = −∆dt2 + ∆−1dr2 + r2 dΩ2
2, (1.10)

where

∆ = 1− 2G4M

r
+
G4(Q2 + P 2)

r2
.

This metric is also asymptotically flat and if Q = P = 0, we recover the Schwarzschild
metric. In the last expression, Q is the total electric charge of the black hole and P its
total magnetic charge. It is a well-known fact that magnetic monopoles have not been
observed in nature, but nothing prevents us from considering them for purely theoretical
purposes. However, in what follows, we will set P = 0, so that

∆ = 1− 2G4M

r
+
G4Q

2

r2
.

Since we are only considering electric charge, in this case the electromagnetic vector
potential is given by

Aµ = (−Q
r
, 0, 0, 0) (1.11)

and the eletric field associated with the solution is found using (1.7) as

Er = Frt = ∂rAt − ∂tAr =
Q

r2
.

As in the Schwarzschild case, the Reissner-Nordström metric (1.10) has a true sin-
gularity at r = 0, as can be checked by computing the invariant scalar

RµνR
µν =

4Q
r8
.

We now want to find the horizon structure; in order to do so, we use the fact that in the
chosen coordinates system, the event horizon can be located using the criterion grr = 0.
(For a derivation of this criterion, see [1].) By reading off the r-r component of the
metric, we see that grr = ∆−1, so grr = ∆. Thus, the equation that we have to solve is

∆ = 1− 2G4M

r
+
G4Q

2

r2
= 0
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and the corresponding solutions are

r± = G4M ±
√
G2

4M
2 −G4Q2. (1.12)

By plotting ∆ as a function of r in Figure 1.3, we see that depending on the relative
values of G4M

2 and Q2, the Reissner-Nordström metric can have one, two or no event
horizons at all. Therefore, we will have three possibilities for the metric, each of which
corresponds to a specific type of black hole.

rr rG M +-

Delta(r)

G M   <  Q2 2

G M   =  Q2 2

G M   >  Q2 2

4

4

4

4

Figure 1.3: Dependence of ∆ on the relative values of G4M
2 and Q2.

Let us consider each case separately:

• G4M2<Q2

In this case, (1.12) does not hold because ∆ is always positive. This means that
there is no event horizon and therefore the metric is completetly regular all the
way to r = 0, which is still a true singularity. Moreover, the non-existence of
an event horizon implies that the singularity at r = 0 is not hidden from us;
such a singularity is called a naked singularity. In 1969, Roger Penrose made a
conjecture called cosmic censorship, which states that naked singularities, apart
from the one at the Big Bang, do not exist. This conjecture is based on the fact
that if a naked singularity existed, things happening at the singularity itself would
influence our universe. Since the laws of physics (as we know them) break down
at the singularity, we would lose predecitive power and would not be able to say
anything about the future. Although this conjecture has not been proven, several
thourough studies of collapsing bodies indicate that naked singularities do not
form in such processes (see [2]). Another way of looking at this case is by noticing
that the condition G4M

2 < Q2 implies, roughly speaking, that the total energy
of the black hole is less than the energy contribution from the electric field. Thus,
this case is considered to be unphysical and we will not consider it for further
analysis. The Penrose diagram for this case is presented in Figure 1.4, from which
we readily see that the metric has a naked singularity at the origin.
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r = 0

i+

i

I

I+

-

-

i0

Figure 1.4: Penrose diagram for the case G4M
2 < Q2.

• G4M2>Q2

In this case, (1.12) holds and we have two horizons located at

r+ = G4M +
√
G2

4M
2 −G4Q2 (outer horizon)

and
r− = G4M −

√
G2

4M
2 −G4Q2 (inner horizon).

The metric is singular at both these radii and we can see from the figure above
that ∆ takes negative values inside the two vanishing points r±. In order to study
the global properties and causal structure of the spacetime generated in this case,
we could perform a clever change of coordinates, in which the metric would be
related by a conformal transformation d̃s

2
= ω2ds2 to the original metric, and

draw the Penrose diagram. We will skip such steps and merely give the diagram
in Figure 1.5. The outer horizon r+ behaves just like the horizon at r0 in the
Schwarzschild metric: once an object crosses this radius, timelike and spacelike
coordinates switch roles and the object will inevitably move in the direction of
decreasing r. This means that eventually, the object will hit the radius r−; an
interesting thing happens there: timelike and spacelike coordinates switch roles
again. Therefore, once the object has crossed the inner horizon r−, it need not
hit the singularity at r = 0 and can in fact move away from it, in the direction of
increasing r.2 If this is the case, once it crosses r−, the direction of increasing r
becomes a timelike direction (just as the direction of decreasing r was a timelike
direction when going into the black hole) and so, eventually, the object will be
spit out of the black hole past r+. This would be much like emerging from a white

2Hence, strictly speaking, the outer horizon is an event horizon, whereas the inner horizon is a
so-called Cauchy horizon.
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hole into the rest of our universe. Once outside the black hole, one could choose
to move away from it or go back into it; however, this time it would be a different
black hole than the first one.

i

I
-

-

i+ i+

i+i+

i -

i -i -

I -

I - I -

I+I+

I+ I+

i0i0

i0i0

r = 0

r = 0

r- r-

r- r-

r- r-

r+ r+

r+ r+

r+ r+

r+ r+

r = constant 
     surface

timelike trajectory

Figure 1.5: Penrose diagram for the case G4M
2 > Q2.

• G4M2 = Q2

This is the case when a black hole has the maximal charge allowed given its mass.
Black holes arising from this condition are called extremal Reissner-Nordström
black holes. This type of black hole plays a crucial role in the context of su-
pergravity and string theory. The reason for this is that in such supersymmetric
theories, extremal black holes leave a number of supersymmetries unbroken, which
is a helpful feature when doing calculations. It must be noted that this solution
is highly unstable, since adding even a very tiny amount of mass to the black hole
would bring it to the previous case. As can be seen from (1.12) and Figure 1.3,
there is only one event horizon, located at r = G4M . Once an infalling object
crosses this horizon, it need not move in the direction of decreasing r and can avoid
the singularity, eventually crossing the event horizon in the direction of increasing
r. The Penrose diagram is shown below.

Finally, note that the metric (1.10) could also be written as

ds2 = −∆ dt2 + ∆−1 dr2 + r2 dΩ2
2, (1.13)
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i0

r = 0
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r = infinity

r =
 G

M

Figure 1.6: Penrose diagram for the case G4M
2 = Q2.

with
∆ =

(
1− r+

r

)(
1− r−

r

)
.

This form is more convenient because higher-dimensional Reissner-Nordström solutions
are usually written in this fashion. More specifically, the Reissner-Nordström metric in
d = 4 + n dimensions is given by

ds2 = −∆ dt2 + ∆−1 dr2 + r2 dΩ2
n+2, (1.14)

where

∆ =
[
1−

(r+

r

)n+1
] [

1−
(r−
r

)n+1
]

and r+ and r− are again the event horizons.

1.2.1 Extremal Reissner-Nordström black holes

A remarkable feature of these extremal black holes is that we can find exact solutions
to the coupled Einstein-Maxwell equations arising after varying the action (1.8). In
fact, such solutions can be found for any number of extremal black holes in a stationary
configuration, i.e. a multi-extremal-black hole metric. In order to obtain these solutions,
let us first rewrite the metric (1.10) in the case at hand. Using the extremality condition
G4M

2 = Q2, it takes the form

ds2 = −
(

1− G4M

r

)2

dt2 +
(

1− G4M

r

)−2

dr2 + r2 dΩ2
2.
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We now shift the radial coordinate and define a new one as

ρ = r −G4M (1.15)

and write the metric in terms of it. It is straightforward to obtain

ds2 = −H−2(ρ)dt2 +H2(ρ)
(
dρ2 + ρ2 dΩ2

2

)
, (1.16)

where
H(ρ) = 1 +

G4M

ρ
. (1.17)

This metric is, obviously, also asymptotically flat. It must be noted that in virtue
of (1.15), the horizon is now located at ρ = 0 and these new coordinates only cover
the region outside the horizon. These are called isotropic coordinates and in them,
the spatial part of the metric is conformally flat and as such, it has manifest SO(3)
symmetry. Hence, we can write (1.16) in the usual Cartesian coordinates as

ds2 = −H−2(~x)dt2 +H2(~x)
(
dx2 + dy2 + dz2

)
, (1.18)

where H is now
H = 1 +

G4M

|~x|
.

Furthermore, using the extramality condition written as
√
G4M = Q and the fact that

r = ρ+G4M , we can write the electromagnetic vector potential (1.11) as

Aµ = (−
√
G4M

ρ+G4M
, 0, 0, 0)

and using (1.17), the timelike component A0 (which is just the electrostatic potential)
and H are related by √

G4A0 = H−1 − 1. (1.19)

Let us now forget for a moment that we know that H was defined as in (1.17). If we
solve the coupled Einstein-Maxwell equations for the metric (1.18) and the electrostatic
potential (1.19), requiring that H is a time-independent function, we find that H obeys
Laplace’s equation

∇2H = 0,

where ∇2 = ∂2
x + ∂2

y + ∂2
z . Therefore, H is a harmonic function and it has the general

form

H = 1 +
N∑
a=1

G4Ma

|~x− ~xa|
,

for a set of N spatial points defined by the vectors ~xa, which describe the location of N
extremal Reissner-Nordström black holes with masses Ma and charges Qa =

√
G4Ma.

We have thus checked that the metric at hand in fact describes a stationary configuration
of multi-extremal Reissner-Nordström black holes. (The stationary condition is what
led us to require that H was a time-independent function.) If we only consider one
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black hole located at the origin of our coordinate system, we recover (1.17) and then
the metric describes a single Reissner-Nordström black hole (as we had been naively
thinking before this analysis).

Finally, let us see what is the geometry of this extremal black hole near the horizon
at ρ = 0. First, we write the metric (1.16) explicitly in terms of ρ as

ds2 = −
(

ρ

ρ+G4M

)2

dt2 +
(

1 +
G4M

ρ

)2 (
dρ2 + ρ2 dΩ2

2

)
.

So, near the horizon (ρ = 0), the metric takes the form

ds2 ρ→0−→ − ρ2

G2
4M

2
dt2 +

G2
4M

ρ2

2

dρ2 +G2
4M

2 dΩ2
2.

Now, we define yet another coordinate as

ω =
G2

4M

ρ

2

,

so that dρ2 = (ρ2/ω2) dω2. With this new coordinate, we finally obtain the near-horizon
metric

ds2 ρ→0−→ G2
4M

2

ω2

(
−dt2 + dω2

)
+G2

4M
2 dΩ2

2,

which has the form

ds2 =
r2

0

r2

(
−dt2 + dr2

)
+ r2

0 dΩ2
2.

This is known as the Bertotti-Robinson metric and it is readily seen that it consists
of two spaces, namely AdS2 and S2. Therefore, we have found that the near-horizon
geometry of the extremal Reissner-Nordström black hole is just AdS2×S2, i.e. the direct
product of a two-dimensional Anti-de Sitter spacetime and a 2-sphere with radius G4M .





Chapter 2

Black holes thermodynamics

When quantum field theory is taken into account, black holes are in fact not black
and behave as systems with characteristic thermodynamical properties. This remark-
able feature raises new and fascinating questions about our understanding black holes.
Moreover, the thermal nature of black holes stresses the need for a theory of quantum
gravity. In this chapter, we explain how all this comes about.

2.1 Analogy between black holes and thermodynamics

The fact that clasically nothing can come out of a black hole poses an apparent problem.
Let us make the following though experiment: imagine we had a system with a given
entropy and that somehow we are able to measure the entropy of the entire Universe.
We then take such system and throw it into a black hole. The system will vanish from
our view and will eventually hit the singularity. This means that if we were to measure
the entropy of the Universe again, we would find that it is less than the entropy we
measured before throwing the system into the black hole. This would violate the second
law of thermodynamics, which is one of the most time-honored laws in physics. In 1973,
Bekenstein [4] made the bold conjecture that black holes have an intrinsic entropy.
Going back to our situation above, if we associate an entropy Sbh to the black hole and
label the entropy of the rest of matter and energy in the Universe as Sext, then the total
entropy would be non-decreasing

d(Sbh + Sext)
dt

≥ 0

and hence we would avoid a violation of the second law of thermodynamics. Part of
the movitation to make such conjecture came from Hawking’s area theorem [5], which
states that in any physically allowed process, the total area of all black holes in the
Universe cannot decrease. This statement closely resembles that of the second law
of thermodynamics for the entropy, which in fact led Bekenstein to propose that the
entropy of a black hole should be proportional to its area.

These arguments suggest a close analogy between the laws of thermodynamics and
the laws governing the physics of black holes. In 1973 [6], the four laws of black holes
mechanics were proposed, which bare a remarkable similarity to the laws of thermody-
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namics, if the surface gravity1 κ and the area A of a black hole (the area of a black hole
is the area of its event horizon) are like a temperature and an entropy, respectively. The
laws are:

• Zeroth law: The surface gravity κ is constant over the horizon of a stationary
black hole.

• First law: It is stated as

dM =
κ

8πG4
dA+ Ω dJ + Φ dQ, (2.1)

where Ω is the angular velocity, J is the angular momentum and Φ is the electro-
static potential.

• Second law: The horizon area of the black hole must be nondecreasing in any
physically allowed process.

dA ≥ 0

• Third law: It is impossible to achieve κ = 0 via a physical process.

Although the analogy between black holes and thermodynamics looks nice, it was no-
ticed at the time that it was inconsistent. The reason is the following: if black holes had
a temperature, we would expect them to radiate with a characteristic Planck spectrum;
however, by definition, black holes do not radiate, since nothing can come out of them.
This posed an interesting problem and physicists in favor of the analogy argued that
quantum mechanical effects had to be taken into account in order to solve it.

In 1975, Hawking [7] made the remarkable discovery that black holes do in fact
radiate and made the analogy consistent; thus, the radiation emitted by a black hole
is known as Hawking radiation. His semiclassical calculation consisted in studying
quantum fields in a classical black hole background, finding that a black hole emits
particles with a characteristic blackbody spectrum given by

Γ(ω) =
1

eβω − 1
d3k

(2π)3
.

This result was first derived for massless scalar fields, but it was later generalized to
massive and fermionic fields. From the above result, we can directly obtain the black
hole temperature (known as the Hawking temperature) as the inverse of β.2 The result
is

TH =
κ

2π
(2.2)

(see Appendix B for a derivation of this result given a quite general metric). Now
that we have the temperature associated with the black hole, we can make the analogy
complete by replacing (2.2) in (2.1) and recalling that the first law of thermodynamics

1The surface gravity is defined as the acceleration needed to keep a particle stationary at the horizon.
2Recall that we are working in units where kB = 1, so that β = 1

T
.
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is dU = TdS + dW , from which we find the entropy of the black hole. It is called the
Bekenstein-Hawking entropy and it is given by

Sbh =
A

4G4
,

confirming Bekenstein’s early conjecture about the relation between the entropy and
the area of a black hole. Although the above result was obtained in four dimensions, it
generalizes to any number of dimensions as

Sbh =
Ad
4Gd

, (2.3)

where Gd is the d-dimensional Newton constant. Furthermore, this result is universal:
it is valid for any type of black hole.

Therefore, we see that black holes are indeed thermal systems which obey the laws
of thermodynamics. However, this realization leads to two profound puzzles: the mi-
croscopic description of black holes and the information loss paradox. The search for
their resolutions has driven a good part of research in theoretical high energy physics
over the last three decades. Since a black hole is a region of spacetime where quantum
mechanics and gravity are on equal footing, it seems clear that in order to solve the
puzzles, we need a theory of quantum gravity. In the coming sections, we will quickly
review their nature and the progress that has been made toward their possible solutions.

2.2 The holographic principle

The reader may have noticed that the entropy of a black hole behaves very differently
from that of a normal physical system. More specifically, from the result we just pre-
sented, we see that the entropy of a black hole scales with its area, whereas that of a
thermodynamical system scales with its volume. That is, in thermodynamics, the en-
tropy is an extensive quantity. To remind the reader why this is the case, let us consider
the following example. Consider a system composed of V cubes of unit volume, hence,
the total volume of the system is V . Each of the cubes can be in one of two states (spin
up or down, for example); therefore, the number of states accesible to each cube is 2.
Given that we have V cubes, the total system will have the following number of possible
configurations

Ω = 2V ,

so that the entropy of the system is given by

S = ln Ω = V ln 2.

In 1993, ’t Hooft [8] investigated this difference and came to a remarkable conclusion,
namely, that at Planckian scales, the world is not three-, but two-dimensional. Let us
give a simplified version of his arguments. Consider a system with energy E contained
in a sphere of volume V and radius R, in which each unit volume has two accesible states
(just like in our example above). The energy contained in the sphere is such that the
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Schwarzschild radius of the system is smaller than its physical radius, i.e. 2G4E < R;
this means that the density inside the volume is not allowed to be too large, otherwise
it would collapse and form a black hole. ’t Hooft showed that the entropy of the system
is bounded from above by

S ≤ πR2

G4
=

A

4G4
,

so that the maximum entropy that it can have is that of a black hole that fills the
entire volume V . This result is counterintuitive: its suggests that the entropy of a given
system does not scale with its volume, but rather with its area. Why is this so? The
field theoretical system that ’t Hooft considered is built on two assumptions: that at
Planckian scales the degrees of freedom are discrete and that the evolution of the system
must be reversible in time. When one tries to calculate the number of accesible states of
the system, it seems that we do an over-counting. According to ’t Hooft, this is due to
the fact that most of the possible states in the field theory have such a high energy, that
they would collapse to form a black hole before they can influence the evolution of the
system. So, it seems as if when we take into account gravitational physics, the number
of degrees of freedom of the system is reduced. Therefore, the number of accesible
states of the system grows exponentially with the area instead of the volume. In turn,
this explains why the entropy of the system scales with the area. This is known as the
holographic principle: in order to describe the physics inside a given volume V , it is
enough to know the degrees of freedom on its surface A.

The AdS/CFT correspondence [9] in string theory is to date the most successful
realization of the holographic principle. It relates string theory in a (d+ 1)-dimensional
space to a conformal field theory in a d-dimensional space. We will explain a little more
about it in chapter 7.

2.3 Microscopic description of black holes

As we know from statistical mechanics, the thermodynamical entropy of a system is
counting the number of microscopic configurations that give rise to the same macroscopic
properties. As one might expect, in order to perform this counting, we need to know
what are the microscopic degrees of freedom of the system.

The no-hair theorem in classical gravity states that a black hole solution is uniquely
characterized by its three conserved charges: mass, charge and angular momentum.
That is, black holes have no hair.3 Physically, this means that once the black hole is
formed, external observers cannot retrieve information about the type of matter that
collapsed to form it. Therefore, in this context it seems that the black hole has only
one state, i.e. its classical phase space is zero dimensional. The entropy we expect it to
have is then

S = ln 1 = 0.

However, as we saw in the previous section, black holes do have a non-vanishing
entropy. Then, the obvious question is: what are the microscopic degrees of freedom

3Strictly speaking, this theorem has not been proven for all types of black holes, but for our discussion
this fact is not relevant.
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that give rise to the Bekenstein-Hawking entropy?

S = ln Ω.

For example, for a black hole of one solar mass, the entropy is S ∼ 1018, hence, the
number of microscopic configurations goes as Ω ∼ e1018

. We thus see that the classical
and quantum pictures of black holes are extremely different (see Figure 2.1 for a pictorial
representation).

Figure 2.1: Classical and quantum descriptions of a black hole.

String theory is nowadays the most promising candidate for a theory of quantum
gravity and, thus, we should expect it to provide an answer to the above question. In
1996, Strominger and Vafa [10] gave a string theoretical derivation of the Bekenstein-
Hawking entropy of a certain class of five-dimensional black holes. Starting from such
work, many more calculations have been done for other types of black holes and all have
found exact agreement with the semiclassical computation of the Bekenstein-Hawking
entropy. All these results show that string theory can successfully explain the statistical
origin of the gravitational entropy of black holes.

2.4 The information loss paradox

Before explaining the second problem arising from the thermal nature of black holes,
let us review some basic quantum mechanics. Let H be the infinite dimensional Hilbert
space spanned by the orthonormal pure quantum states |ψi〉, which are solutions of a
quantum mechanical equation. The density matrix for a given pure quantum state |ψa〉
is

ρpure = |ψa〉〈ψa|.

Then, we can naturally introduce mixed quantum states as statistical ensembles of pure
states. In this case, the density matrix is given by

ρmixed =
∑
a

pa|ψa〉〈ψa|,

where pa are the probabilities of each pure state |ψa〉 in the ensemble. The density
matrix of mixed states is particularly useful to describe thermal systems. For a system
at finite temperature T , the probabilities pa are proportional to Boltzmann factors
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e−βEa , so that

ρmixed =
∑
a

e−βEa∑
a e
−βEa |ψa〉〈ψa|.

Consider now an operator U that acts on elements of H as |ψb〉 = U |ψa〉, such that
〈ψb| = 〈ψa|U †. Given that 〈ψi|ψj〉 = δij , we get that

1 = 〈ψb|ψb〉 = 〈ψa|U †U |ψa〉 ⇒ U †U = 1.

Therefore, by demanding orthonormality of the elements of H, we have come to the
conclusion that U has to be a unitary operator. That is, in any physical process con-
sistent with quantum mechanics, we have to require that the evolution be unitary. In
terms of the density matrices for pure and mixed states, this statement can be written
as

ρmixed 6= UρpureU
†,

which says that in a theory with unitary operators, a pure state cannot evolve into a
mixed state.

Let us now go back to our discussion of the second problem arising from the ther-
mal nature of black holes and make the following thought experiment. Take a pure
quantum state and throw it into a black hole; this will infinitesimally increase its mass
and will start radiating againg. Once the black hole has radiated all its mass, it will
have evaporated and all there will remain is thermal radiation, which is described by
a mixed quantum state. That is, the black hole acts like a system that transforms
pure quantum states into mixed quantum states. As we saw above, this process is not
allowed by quantum mechanics because it violates unitary evolution. This is known as
the information loss paradox: by studying quantum fields in a classical background, we
have obtained a result that is not allowed by one of our starting theories.

Over the years, several attempts have been made to solve the paradox. More recently,
Mathur gave a string theoretical proposal that has provided more insight into a possible
resolution. It is known as the fuzzball proposal for black holes [11, 12] and it based on
the AdS/CFT correspondence. According to it, one can construct microstate black hole
geometries from quantities obtained in a quantum field theory; since any process on the
field theory side is unitary, then one would expect that any process in the black hole
geometry should also respect unitarity. The problem with this proposal is that it is not
clear yet if the above mentioned microstate geometries represent the typical black hole
microstates that account for the Bekenstein-Hawking entropy.



Chapter 3

Black holes in string theory

We now give a short introduction to the basic ideas of string theory and the construction
of black holes within this framework. Given that this is not the main subject of the
thesis, we will only mention the facts that are more relevant to our discussion in coming
chapters about the computation of greybody factors of a certain type of black holes in
string theory. Excellent and more complete references are [13, 14, 15, 16].

3.1 String theory

The two pillars of modern theoretical physics are quantum field theory and general rela-
tivity. The former deals with the world at very small scales and describes all elementary
particles and their interactions (electromagnetic, weak and strong force), whereas the
latter deals with the world at very large scales and describes how mass and energy
deform spacetime (gravitational force). Both theories have been successfully confirmed
experimentally within their specific domains of validity, making them universally ac-
cepted. However, it would be desirable to have only one theory that, in the appropriate
limits, describes all phenomena that the two theories above do. In other words, it is
conceptually appealing and elegant to unify quantum field theory and general relativity
in a single theory, namely, a theory of quantum gravity. Black holes play a crucial role
in the development of such a theory because in them, gravitational and quantum effects
are equally important, due to the very large curvature of spacetime. Therefore, they
provide an excellent testing ground for ideas and proposals concerning quantum gravity.

String theory is nowadays the most promising candidate for a theory of quantum
gravity. The conceptual starting point of the theory is to consider that the fundamental
constituents of the Universe are not point-like particles, but fundamental strings. Upon
quantization of one of this fundamental strings, it can be shown that all elementary
particles of the Standard Model appear as vibrational modes. Moreover, string theory
naturally includes a massless spin-2 particle, the graviton, which is the quanta of the
gravitational field. Strings can be open or closed and, as they propagate in spacetime,
the concept of worldline of a particle is generalized to that of a worldsheet (see figure
below). Hence, we can define the worldsheet of a p-dimensional object as the (p + 1)-
dimensional worldvolume that it sweeps out as it moves in spacetime. Obviously, in
the case of the strings p = 1. The points on the worldsheet are parametrized by the
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σ
X
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2

Figure 3.1: From left to right, worlsheets of a particle, open string and closed string.

coordinates (τ, σ), which are timelike and spacelike, respectively. When σ is periodic,
it describes a closed string; if it covers a finite interval, it describes an open string.

We use the functions Xµ(τ, σ) to embed the worldsheet in spacetime; they obey
the wave equation ∂α∂

αXµ = 0.1 In order to solve this equation, we need to specify
boundary conditions; the possibilities are:

• Closed string
Xµ(τ, σ) = Xµ(τ + π, σ)

• Open string with Neumann boundary conditions

∂Xµ

∂σ
= 0 at σ = 0, π

• Open string with Dirichlet boundary conditions

Xµ|σ=0 = Xµ
0 and Xµ|σ=π = Xµ

π

With these, the most general solution of the wave equation that satisfies the closed
string boundary conditions is given by

Xµ
R =

1
2
xµ + `2s p

µ(τ − σ) + i
`s√

2

∑
n6=0

1
n
αµn e

−2in(τ−σ)

Xµ
L =

1
2
xµ + `2s p

µ(τ + σ) + i
`s√

2

∑
n6=0

1
n
α̃µn e

−2in(τ+σ),

for the open string with Neumann boundary conditions

Xµ = xµ + 2 `2s p
µτ + i

√
2 `s

∑
n6=0

1
n
αµn e

−inτ cosnσ

1We have not said what is the range of values of µ. In Figure 3.1, we are only showing three spatial
coordinate, i.e. µ = 0, 1, 2, but nothing we are saying restricts us to this choice. Thus, in general
µ = 0, . . . , d− 2.
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and for the open string with Dirichlet boundary conditions

Xµ = xµ + 2 `2s p
µτ + i

√
2 `s

∑
n6=0

1
n
αµn e

−inτ sinnσ.

In the previous equations, xµ is the position of the center of mass of the string and pµ

is its total momentum. We have also introduced the string length `s, which is related
to the string tension T and the open string Regge slope parameter α′ by2

T =
1

2πα′
and `2s = α′.

Note also that the mode expansion of the closed string has right- and left-movers, which
appear naturally when solving the wave equation for those boundary conditions. In the
case of the open string, right- and left-movers combine to form standing waves.

Upon quantization, the modes αµn are interpreted as creation (for n < 0) and anni-
hilation (for n > 0) operatos that satisfy the commutation relation

[αµm, α
ν
n] = mηµνδm+n,0.

They allow us to define a number operator N as

N =
∞∑
n=1

α−n · αn,

which in turn is used to find the spectrum of the string from the following mass-shell
conditions

Open string → α′M2 = N − 1

Closed string → α′M2 = 4(N − 1), (3.1)

where M is the mass of the state at level N . Consistency of the theory (namely, that
there are no negative-norm states) requires that the number of spacetime dimensions be
d = 26. It is easy to check that the number of states of a free string grows as Ω ∼ e

√
2πM ,

so that its entropy goes as
Sstring = ln Ω =

√
2πM.

The above discussion corresponds to the free bosonic string and it has two major
drawbacks. The first is that the vacuum is unstable due to the presence of the tachyon,
a state of the spectrum with negative mass-squared (corresponding to N = 0 in the
above mass-shell conditions). The second is that, since the world is also made up of
fermions, string theory has to include them in the framework. This is accomplished by
using the concept of supersymmetry, or SUSY, a proposed symmetry that relates bosons
and fermions. The resulting theory is known as superstring theory (usually, when people
talk about string theory, they are referring to superstring theory, as we will do in the

2We should note that in part of the literature, a string lenght scale ls is introduced instead of the
string length `s that we are using in this thesis. The difference is that ls relates to the Regge slope as
1
2
l2s = α′.
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rest of this thesis). There are two basic approaches to incorporate SUSY into string
theory

• The Ramond-Neveu-Schwarz (RNS) formalism, which is supersymmetric on the
string worldsheet.

• The Green-Schwarz (GS) formalism, which is supersymmetric on the background
spacetime geometry.

Once SUSY is taken into account, the number of spacetime dimensions that makes the
theory consistent reduces to d = 10.

It is well-known that when we try to incorporate gravity into quantum field theory,
the result is a theory that is non-renormalizable. String theory successfully deals with
this problem by smearing out the interaction points in a Feynman diagram of a quan-
tum field theory process. Schematically, these points are replaced by a surface that is
generated by the intersection of the worldsheets of interacting strings (see Figure 3.2).

Figure 3.2: The same Feynman diagram in quantun field theory and in string theory

As we have seen, string theory predicts the existence of extra spatial dimensions.
This is a radical departure from the classical picture of the world we live in. The extra
five spatial dimensions3 are taught of as being curled up at very small scales, so that
their existence is not detectable unless we go to extremely high energies. The geometry
of these extra dimensions plays a crucial role in string theory; for example, they are
responsible for determining the values of the universal physical constants.

Given that string theory predicts extra spatial dimensions, it naturally includes
higher-dimensional objects called p-branes. The letter p refers to the number of spatial
directions in which the object extends; so, for example, a point is a 0-brane, a string is a
1-brane, the worldsheet of a string is a 2-brane, and so on. As we mentioned previously,
a p-brane sweeps out a (p+1)-dimensional worldvolume as it moves in spacetime. What

3They are six when one studies M-theory, an eleven-dimensional theory that limits to the five known
ten-dimensional superstring theories, which in turn are related to each other by dualities.
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role do these objects play in string theory? Recall that open strings can have either
Neumann or Dirichlet boundary conditions. In the first case, there is no momentum
flow at either end of the string as can be seen easily from the definition of the boundary
conditions. However, in the second case, the ends of the string are fixed in some of the
spatial dimensions and this implies that energy can flow from one or both ends of the
string. But where does the energy flow to? It turns out that open strings are forced to
end in higher-dimensional objects called Dp-branes (D is just short for Dirichlet and p

is again the number of spatial dimensions of the object). Then, Dp-branes specify the
boundary conditions in each spacetime dimension for the ends of open strings attached
to them: they are Dirichlet boundary conditions for directions perpendicular to the Dp-
brane (they cannot detach from it) and Neumann boundary conditions for directions
parallel to Dp-brane (they are free to move on it).

In 1995, Polchinski [17] showed that Dp-branes are non-perturbative dynamical ob-
jects that can fluctuate and move in spacetime. One can study the dynamics of Dp-
branes by using the two-dimensional quantum field theory defined on the open string.
This is physically easy to understand because, since open strings are attached to Dp-
branes, any fluctuation on the latter should be somewhat reflected on the former. In this
way, it is possible to understand non-perturbative phenomena (brane) by making use
of well-known perturbative techniques (string). Moreover, Dp-branes also interact with
closed strings, for example gravitons, meaning that they also interact gravitationally
(see Figure 3.3) .

Figure 3.3: On the left, open strings with ends on the same or on different D2-branes. On the
right, a graviton interacting with a D2-brane.

Finally, let us give a set of relations between different classical constants and the
ones that appear in string theory. The string coupling constant gs that appears in
perturbative expansions in string theory is uniquely determined by the value of the
dilaton field Φ by the relation

gs = eΦ.
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This coupling constant plays the same role as the different coupling constants in ordinary
quantum field theory, i.e. they determine the strength of the interaction between strings.
The ten-dimensional Newton constant is related to the string coupling constant and the
string length by

16πG10 = (2π)7g2
s `

8
s, (3.2)

in terms of which we can compute any d-dimensional (for d < 10) Newton constant as

Gd =
G10

(2π)10−dV10−d
, (3.3)

where (2π)10−dV10−d is the volume of the compactified extra dimensions (the factors
of 2π are included for unit convenience). We can now define the d-dimensional Planck
length `d as

16πGd = (2π)d−3`d−2
d . (3.4)

Moreover, we see that the string length and the Planck length in d dimensions are
related by

V10−d `
d−2
d = g2

s `
8
s. (3.5)

3.2 Supersymmetry and BPS states

As we explained in the previous section, string theory is a supersymmetric theory. For
completeness, let us quickly review some basic supersymmetry concepts. Supersym-
metry, or SUSY, is a proposed symmetry that relates bosons to fermions. In 1975,
Haag,  Lopuszański and Sohnius [18] proved that it is the only possible extension of the
known spacetime symmetries of particle physics. Supersymmetry is the extension of
the Poincaré symmetry algebra by introduction of anticommuting symmetry generators
Q which transform under spinor representations of the Lorentz group, i.e. these new
generators are spinors and carry half-integer spin. Hence, supersymmetric theories have
conserved spinorial currents, which are generated by the supercharges Qα.

We will focus on supersymmetry in d = 4 dimensions, where, in general, we can
consider a theory with N supersymmetries, which give a total of 4N supercharges.4

Thus, the supersymmetry generators QIα carry two indices: I = 1, ...,N labels the
supersymmetry and α = 1, 2, 3, 4 labels the four components of each spinor supercharge.
The most general N -extended SUSY algebra allowed by Lorentz invariance is{

QIα, Q
J
β

}
= −2δIJPµΓµαβ − 2iZIJδαβ{

Pµ, QIα
}

=
[
ZIJ , QKα

]
=
[
ZIJ , Pµ

]
=
[
ZIJ , ZKL

]
= 0

where Pµ is the four-momentum, Γµ are the usual Dirac matrices, which represent the
Clifford algebra

{Γµ,Γν} = 2ηµν ,
4In any number of dimensions the ratio of the number of supercharges to the smallest spinor repre-

sentation gives the number of supersymmetries N .
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Q ≡ Q†Γ0 (with Q† the hermitean conjugate of Q) and Z is the antisymmetric central-
charge matrix. As we can see from the above algebra, the central charges ZIJ are
conserved quantities (electric and magnetic charges) that commute with all the other
generators. They only appear in theories with extended supersymmetry, i.e. theories
with more supersymmetry than the minimal N = 1 case.

To see the effect of the central-charge matrix, let us restrict the algebra to the space
of particles with mass M > 0 in their rest frames. Then, the algebra takes the form{

QIα, Q
†J
β

}
= 2MδIJδαβ + 2iZIJΓ0

αβ.

By a tranformation of the form Z → UTZU , where U is a unitary matrix, we can bring
Z to the canonical form

Z =


0 Z1 0 0
−Z1 0 0 0 . . .

0 0 0 Z2

0 0 −Z2 0
...

. . .


with |Z1| ≥ |Z2| ≥ ... ≥ 0. The structure of implies that the 2N × 2N matrix(

M Z

Z† M

)

should be positive semidefinite. This implies in turn that the eigenvalues of the matrix
have to be nonnegative, i.e. M ± |Zi| ≥ 0. Therefore, the mass is bounded from below
by the central charges

M ≥ |Zi|.

This is known as the Bogomolny-Prasad-Sommerfeld (BPS) bound. As a consequence
of it, we see that massless states must be neutral. States that satisfy M = |Zi| are called
BPS states and they belong to a short supermultiplet or BPS representation. These
states are important because, due to energy and charge conservation, they are stable at
any point in the moduli space of a theory. This means that when one changes the value
of a modulus in the theory, the density of BPS states will remain the same.

3.3 Correspondence between black holes and strings

In 1993, Susskind [19] proposed an interesting approach to study black holes in string
theory. Let us explain the line of reasoning using a four-dimensional Schwarzschild black
hole. In string theory, the string coupling gs is not a constant but a variable quantity.
Then, let us consider a highly excited, free string state (gs = 0); if we increase the string
coupling, gravity will come into play because Newton’s constant grows as G4 ∼ g2

s `
2
s
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and the string will decrease in size.5 If the mass Ms of the string is sufficiently large,
we should expect that as we keep increasing the coupling, eventually the lentgh of the
string will decrease below its Schwarzschild radius; we could then effectively think of the
string as a black hole. Conversely, if we start with a black hole (gs � 1) and decrease
the coupling, the radius of the black hole r0 = 2G4Mbh will also decrease and eventually
become smaller than the lenght of a string. Susskind suggested that we should think of
this final state as a highly excited string state.

Black hole

Highly excited string state

g = 0s

g  >> 1s

g  s

g  s

Figure 3.4: Correspondence between a highly excited string state and a black hole. We see
that the transition from one picture to the other occurs as we vary the string coupling gs

The above proposal seems to be perfectly consistent. However, there is a problem. If
we compute the entropy of a single string (weak coupling) and the Bekenstein-Hawking
entropy of a black hole (strong coupling), we will find that they both grow as different
powers of the mass. Namely, in d spacetime dimensions, we have that

Sstring ∼Ms ∼
√
N

Sbh ∼M
d−2
d−3

bh , (3.6)

whereN is again the excitation level of the string introduced in the previous section. The
result for Sstring can be derived by computing the number of states of a free string and
taking its logarithm, whereas Sbh can be obtained from purely geometrical arguments.

The resolution to the above problem was given by Horowitz and Polchinski [20].
The idea is the following: as the transition from a highly excited string state to a black
hole, and viceversa, occurs, the masses Ms and Mbh should obviously be the same. Let
us consider a free (gs = 0), highly excited string state; as we said above, the mass Ms

of the string should be large so that it eventually forms a black hole. Equivalently, this
means that we need to look at a string state for large N (also obvious because we are
dealing with a highly excited state of the string). Therefore, from (3.1), we have that

Ms ∼
√
N

`s
.

Now, let us turn our attention to the black hole picture. Again, we will use a four-
5From (3.2) and (3.3), we see that the four-dimensional Newton constant goes as G4 ∼ g2

s `
2
s, because

the volume of the compactified spatial dimensions V6 is proportional to `6s.
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dimensional Schwarzschild black hole. Hence, the mass of the black hole goes as

Mbh ∼
r0

G4
.

So, we see that the ratio of the masses depends on gs

Ms

Mbh
∼ g2

s .

This means that the masses of the string and the black hole cannot be equal for all
values of the string coupling. Therefore, in order to match the two masses, we have
to choose a value of gs at which they should be equal. The natural choice is the value
of the string coupling at which the transition occurs, i.e. the string forms a black hole,
or viceversa. Obviously, this happens when the horizon of the black hole is of order of
the string length (or viceversa, depending on what was our initial picture). So, when
r0 ∼ `s, we have that the mass of the black hole is equal to that of the string and, from
the above equations, we get

Mbh = Ms ∼
`s
G4
∼
√
N

`s
.

This last equation is the solution to the mismatch of the entropies in (3.6). Indeed,
now that we have the mass of the black hole, it is straightforward to see that as the
transition occurs, the entropy of the black hole will go as

Sbh ∼
r2

0

G4
∼ `2s
G4
∼Mbh ∼

√
N.

So, the Bekenstein-Hawking entropy of the black hole is comparable to the string entropy
given in (3.6).

Although we have used a Schwarzschild black hole to explain the resolution of the
problem, all we have said is easily generalized to Reissner-Nordström black holes [20].
The main difference is that in the charged case, some of the charges that appear in
the black hole solution are not carried by single strings. Instead, they are carried by
D-branes. Therefore, in the case of Reissner-Nordström black holes, the free string
state (gs = 0) is replaced by a state of strings and D-branes (gs � 1). The reasoning
goes as follow. Given that string theory predicts extra dimensions of space, we have
to compactify 10 − d of them in order to obtain a d-dimensional black hole. When we
do that, the resulting black hole will have charges coming from three sources: internal
momentum in a given compact direction, strings winding around the compact directions
and D-branes winding around the compact directions. However, even in that case, the
size of the black hole becomes smaller when the string coupling decreases, so that we
can still the match entropy of the black hole picture (gs � 1) to that of a typical state
of strings and D-branes (gs � 1). Again, the transition happens when the size of the
black hole is of the order of the string length.

We are finally in a position to give a more precise statement of the correspondence
principle between black holes and strings:
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1. Given a black hole, if the curvature at its horizon becomes greater than scale set
by the string length, the typical black hole state becomes a typical state of strings
and D-branes with the same conserved charges.

2. As the transition from one picture to the other occurs, the mass changes by at
most a factor of order unity.

The above black hole-string correspondence proposed by Susskind and refined by
Horowitz and Polchinski gives the correct dependence of the entropies on the excitation
level N or, equivalently, on the mass M = Ms = Mbh. However, it does not allow us to
compute and compare the coefficients of the entropies, because that requires knowing
when exactly the transition from one picture to the other occurs (recall that we gave
the estimate that it happens when r0 ∼ `s). Nevertheless, this correspondence principle
shows that strings have enough states to account for the Bekenstein-Hawking entropy
of black holes.

3.4 Constructing black holes in string theory

It should clear by now that in order to have a full understanding of black holes and the
physical processes that take place in them, we need a theory of quantum gravity. There-
fore, we should hope that string theory correctly reproduces the semiclassical features
of black holes and that it could also ellucidate the problems related to their thermal na-
ture (see chapter 2). Indeed, starting with the work of Strominger and Vafa [10], string
theoretical derivations of the Bekenstein-Hawking entropy of a variety of black holes
have been given. The method they introduced not only gives the correct dependence of
the entropy on some of the black hole parameters, but correctly reproduces the exact
coefficients appearing in the entropy formulas. Let us now explain concisely how all this
comes about.

The discrepancy between the entropies of a string and a black hole in (3.6) was
solved in the previous section, where we explained the correspondence principle between
black holes and strings. However, that method does not allow us to compute the exact
coefficients appearing in the entropy formulas. In order to do so, we would need to
know the exact value of the string coupling at which the transition from one picture
to the other occurs. Imagine now that we could find states (on either side of the
correspondence) that move together as we change gs. Were we able to do so, we would
not need to worry about knowing the precise value of the coupling at which the transition
occurs: the density of states would not vary as we change the coupling and this, in turn,
would make the entropies on both sides of the correspondence match. This is where BPS
states come in. We have seen that the mass of a BPS saturated state is determined by
its charge and the moduli of the theory (M = Q in suitable units). When constructing
black holes in string theory, the charge of a state will be just given by its winding number
around the compact directions. Thus, for BPS states, we may calculate the number of
states at weak coupling and compare it with the result at strong coupling, because
all BPS states of mass M will move together as we change gs: they will be uniquely
determined by their charges, which are not coupling-dependent. The corresponding
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black holes that we expect at strong coupling are supergravity6 solutions and, as the
name of the theory implies, they are supersymmetric. These black holes are extremal
in the sense that they have the minimal mass allowed by their charge in order to avoid
a naked singularity.

In short, the strategy is the following. We start at strong coupling with a super-
symmetric black hole, whose Bekenstein-Hawking entropy is known from geometrical
arguments. We then decrease the coupling and count the number of BPS states at weak
coupling that have the same charge as that of the black hole. The result is that the
number of BPS states at weak coupling is exactly the exponential of the Bekenstein-
Hawking entropy of the black hole at strong coupling (for a well-written and pedagogical
review, see [13]).

Since we are interested in black holes with non-vanishing entropy in the supergravity
limit, we want them to have finite horizon area. It turns out that in order to obtain
this type of black hole in four and five spacetime dimensions, we need to add four and
three charges, respectively. Otherwise, the resulting black hole will have zero horizon
area. Some of these extra charges are not carried by fundamental strings, but rather
by D-branes. Therefore, we will construct black holes using both strings and D-branes.
For clarity, let us explain how to construct a prototypical example: a five-dimensional
black hole with three charges. Since string theory lives in ten dimensions and we want a
five-dimensional black hole, we need to compactify five spatial directions. The simplest
case is that in which the compactified space is a five-torus T 5 = T 4 × S1. We now
take Q5 D5-branes wrapped around T 5, Q1 D1-branes (fundamental strings) wrapped
around S1 and finally, we add Qp units of momentum in the S1 direction. From the
point of view of the non-compact five-dimensional spacetime, all these objects lie on the
same point; therefore the configuration that we just gave describes a localized object in
five spacetime dimensions.

In the strong coupling regime (black hole picture), the D-branes used in our construc-
tion do not appear in the usual sense of higher-dimensional membranes; rather, only the
D-brane charges are the ones taken into account to write the supergravity black hole
solution with finite horizon area. The Bekenstein-Hawking entropy and other quanti-
ties are computed in terms of these charges and other parameters that appear in the
supergravity solution.

In the weak coupling regime (string-D-brane picture), the D-branes used in our
construction do appear as higher-dimensional membranes on which strings end. They
form a D-brane bound state, whose dynamics are described by a two-dimensional su-
persymmetric gauge theory, in which we can count the number of states that have the
appropriate charges. This will allow us to compute the entropy of the system and see
that it matches with the entropy computed in the strong coupling regime. We should
stress that the D-brane bound state computation is done in ten-dimensional Minkowski
spacetime, which is the spacetime predicted by string theory when the interactions in
the theory are sufficiently weak.

Before concluding our present discussion and giving an explicit example in the next
section, we would like mention an important point. We have said previously that the

6The low energy limit of string theory is a supergravity theory.
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Black hole

D1-brane

D5-brane

Weak coupling Strong coupling

P

Figure 3.5: D-brane construction of a five-dimensional black hole. In the weak coupling regime,
we have a D1-D5-P bound state . In the strong coupling regime, we have a black hole with three
charges corresponding to those of the D-branes.

type of black hole resulting from the string theory construction is supersymmetric. This,
in turn, implies that they have zero temperature and thus do not radiate. One may
wonder why are we interested in studying these type of black holes at all. The reason is
twofold. Firstly, extremal black holes were the first for which a precise agreement was
found between the entropy in the strong coupling regime and that in the weak coupling
regime. Secondly, it turns out that using the same construction explained above, we
can obtain black holes that are non-extremal with nonzero temperature. The process of
Hawking radiation should then be somehow realized in the D-brane bound state picture.
This is indeed the case and we will explain it in chapter 7.

3.5 A five-dimensional black hole with three charges

In [21], Horowitz, Maldacena and Strominger found a general metric for a five-dimensional
black hole with three charges, like the one obtained from our D-brane construction. They
considered the low-energy action for ten-dimensional type-IIB string theory (known as
type-IIB supergravity) and compactified five spatial dimensions on T 5 = T 4×S1, adding
momentum p in the S1 direction. The noncompact directions are labeled by coordinates
xµ, µ = 0, . . . , 4, the compact directions of T 4 are labeled by xi, i = 6, . . . , 9 and we
choose the S1 to be in the direction of x5. The length of the S1 is 2πR and the volume
of the T 4 is (2π)4V .

The authors found a six parameter family of solutions to the equations of motion
corresponding to the ten-dimensional action mentioned above. In the Einstein frame,
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this solution is given by

ds2
10 =

(
1 +

r2
0 sinh2 α1

r2

)−3/4(
1 +

r2
0 sinh2 α5

r2

)−1/4
[
−dt2 + dx2

5+

+
r2

0

r2
(coshαp dt+ sinhαp dx5)2 +

(
1 +

r2
0 sinh2 α1

r2

)
dxidx

i

]
+

+
(

1 +
r2

0 sinh2 α1

r2

)1/4(
1 +

r2
0 sinh2 α5

r2

)3/4
[(

1− r2
0

r2

)−1

dr2 + r2 dΩ2
3

]
,

(3.7)

where
r2 = x2

1 + x2
2 + x2

3 + x2
4

and dΩ2
3 is the metric on a 3-sphere. If we wanted the solution in the string frame, we

would simply make use of the equation given in our conventions that conformally relates
the Einstein and string metrics. With d = 10, we would have gSµν = e

Φ
2 gEµν , where in

this case

e−2Φ =
(

1 +
r2

0 sinh2 α5

r2

)(
1 +

r2
0 sinh2 α1

r2

)−1

.

As we see, the above ten-dimensional solution is parametrized by six quantities: α1, α5,
αp, r0, R and V . The role played by αi and r0 will be explained below. We can define
three charges (normalized to be integers) in terms of the previous six parameters as

Q1 =
V r2

0

2gs`6s
sinh 2α1,

Q5 =
r2

0

2gs`2s
sinh 2α5,

Qp =
R2V r2

0

2g2
s`

8
s

sinh 2αp. (3.8)

The last charge is related to the momentum added in the S1 direction by p = Qp/R.
These three charges are precisely the ones associated with the D-branes used in our
black hole construction. As we explained in the previous section, the D-branes do not
appear in our current discussion as higher-dimensional objects, but rather, only their
charges are of interest to us because they allow us to write the desired supergravity
solution.

Now, by following the standard procedure of dimensional reduction for our case
T 5 = T 4×S1, we can bring down the ten-dimensional solution (3.7) to five dimensions,
where it takes the remarkably simple and symmetric form in the Einstein frame

ds2
5 = −λ−2/3h dt2 + λ1/3

(
dr2

h
+ r2 dΩ2

3

)
, (3.9)
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where

λ =
∏

j=1,5,p

(
1 +

r2
0 sinh2 αj

r2

)
=

∏
j=1,5,p

(
1 +

r2
j

r2

)
(3.10)

and

h = 1− r2
0

r2
. (3.11)

This is just the five-dimensional Schwarzschild metric with the time and space compo-
nents rescaled by different powers of λ. It is obviously a static solution, since none of
the metric components depends on time. Despite the fact that the coefficient of dΩ2

3 is
not only r2 (as it is in the Schwarzschild case, for example), this is still a spherically
symmetric solution. In general, we can identify a d-dimensional, spherically symmetric
metric if the unit (d− 2)-sphere dΩ2

d−2 appears explicetely.
The horizon structure of this solution can be directly read-off from the metric above.

There is an event horizon located at r = r0, but due to the choice of coordinates, there
is also an inner horizon located at r = 0, given that all three charges are nonzero. If
one of the charges is set to zero, the surface r = 0 becomes singular.

Now that we have this explicit solution, the relevant thermodynamical quantities of
this black hole can be computed. For example, the Hawking temperature is given by
(see Appendix C for a derivation of this result)

TH =
1

2πr0 coshα1 coshα5 coshαp
. (3.12)

The Bekenstein-Hawking entropy can be calculated from geometrical arguments, by first
finding the area of the five-dimensional black hole. It is easy to see from (3.9) that the
radial size of the horizon is

rh = r0 [λ(r0)]1/6 ,

so that the area of the black hole is that of a 3-sphere with radius rH , given by

A5 = 2π2r3
h = 2π2r3

0 coshα1 coshα5 coshαp.

We now recall from (3.2) and (3.3) that the five-dimensional Newton constant is given
by (in our case, the volume of the compactified space is just (2π)5RV )

G5 =
πg2

s`
8
s

4RV
.

Then, the Bekenstein-Hawking entropy of the black hole is just

Sbh =
A5

4G5
=

2πRV r3
0

g2
s`

8
s

coshα1 coshα5 coshαp. (3.13)

Given that we want our supergravity approximation to remain valid everywhere, we
must require that the geometry is slowly varying at the string scale. This implies that
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r1,5,p � `s. In turn, these conditions become

gsQ1 �
V

`4s
, gsQ5 � 1, g2

sQp �
R2V

`6s
.

The above conditions for the charges and other parameters of the black hole solution
are derived in the D-brane picture (gs � 1). Therefore, given that the compactification
sizes R and V are of the order of some powers of the string length `s, we see that the
charges Q1,5,p must be large. This is true in general: black hole solutions always involve
large values of the charges.

3.5.1 Special cases

The five-dimensional black hole with three charges (3.9) depends on α1, α5, αp and
r0. Let us now see what well-known black hole solutions can be obtained depending on
the values that we assign to these parameters. We will also write their corresponding
temperature and Bekenstein-Hawking entropy, which can be obtained from (3.12) and
(3.13), respectively. We will only show black hole solutions, but we should mention that
other black objects, such as black strings and black branes, can be obtained from (3.9)
[21].

Schwarzschild solution

This case clearly corresponds to setting α1 = α5 = αp = 0, so that the metric (3.9)
reduces to

ds2
5 = −h dt2 + h−1 dr2 + r2 dΩ2

3,

which is immediately recognized as the usual Schwarzschild black hole in five dimensions,
with h given by (3.11). Note that it has exactly the form that we gave in (1.5) for the
(4+n)-dimensional Schwarzschild black hole, with n = 1. The relevant thermodynamical
quantities in this case are given by

TH =
1

2πr0
,

Sbh =
2πRV r3

0

g2
s`

8
s

.

Reissner-Nordström solution

This case corresponds to α1 = α5 = αp = α, so that (3.10) becomes

λ =
(

1 +
r2

0 sinh2 α

r2

)3

By defining a new coordinate as ρ2 = r2 + r2
0 sinh2 α, so that the horizons r = 0 and

r = r0 are now located at ρ2 = r2
0 sinh2 α and ρ2 = r2

0

(
1 + sinh2 α

)
respectively, we can
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bring the metric (3.9) to the following form

ds2
5 = −h dt2 + h−1 dρ2 + ρ2 dΩ2

3,

where in this case, h is given by

h =

(
1−

r2
0

(
1 + sinh2 α

)
ρ2

)(
1− r2

0 sinh2 α

ρ2

)
.

Note that it has exactly the form that we gave in (1.14) for the (4 + n)-dimensional
Reissner-Nordström black hole, with n = 1. The thermodynamical properties in this
case are given by

TH =
1

2πr0 cosh3 α
,

Sbh =
2πRV r3

0

g2
s`

8
s

cosh3 α.

Extremal solution

This case corresponds to r0 → 0 with α1, α5, αp → ∞, keeping R, V and the charges
Q1, Q5 and Qp fixed. The metric (3.9) becomes

ds2
5 = −λ−2/3 dt2 + λ1/3

(
dr2 + r2 dΩ2

3

)
,

with λ given by (3.10). A peculiar thing happens in this case, namely, as a consequence
of αj going to infinity, then coshαj →∞, which clearly makes the temperature of this
black hole to vanish

TH = 0.

However, the entropy is nonzero. Since αj → ∞, we can use the approximation
sinh 2αj ≈ 2 sinh2 αj = 2 cosh2 αj , with which the charges (3.8) can be written as

Q1 =
V r2

0

gs`6s
sinh2 α1,

Q5 =
r2

0

gs`2s
sinh2 α5,

Qp =
R2V r2

0

g2
s`

8
s

sinh2 αp. (3.14)

In this case, it is easy to see that the entropy (3.13) can be written in terms of these
charges as

Sbh = 2π
√
Q1Q5Qp.

Near-extremal solution

Strictly speaking, (3.9) is already a non-extremal solution. However, we want to have
a near-extremal solution, which is the limit where r0 is small and α1, α5, αp large.
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Obviously, these conditions give a large range of possibilities for the near-extremal
solution. To be more specific, we will be interested in the case when αp � α1, α5. That
is, when the contribution to the mass of the black hole due to the D1- and D5-branes
is much larger than the contribution due to the momentum excitations. This is known
as the dilute gas region and it is defined by [22]

r0, rp � r1, r5, (3.15)

which is equivalent to the condition on αj given above and the rj are defined as in
(3.10).

Let us now give the thermodynamical properties of this black hole. Given that in
this case αp � α1, α5, we can use the approximation yet again sinh 2αj ≈ 2 sinh2 αj =
2 cosh2 αj for α1 and α5, so that their corresponding charges are those given in (3.14).
In this case, we get

TH =
√
V r0

2πgs`4s
√
Q1Q5 coshαp

,

Sbh =
2πR
√
V r0

gs`4s

√
Q1Q5 coshαp.

However, there is a much more convenient form to write these two quantities, that
will help us in understanding the D-brane description of this near-extremal black hole
(we will do that in chapter 7). Using again (3.14) and recalling that r2

j = r2
0 sinhα2

j , we
can write

TH =
r0

2πr1r5 coshαp
,

Sbh =
2πRV r0r1r5

g2
s`

8
s

coshαp. (3.16)

The crucial step is to realize that we can write these two expressions as

1
TH

=
1
2

(
1
TL

+
1
TR

)
,

Sbh = SL + SR, (3.17)

with
TL =

r0

2πr1r5
eαp , TR =

r0

2πr1r5
e−αp , (3.18)

and
SL =

πRV r0r1r5

g2
s`

8
s

eαp , SR =
πRV r0r1r5

g2
s`

8
s

e−αp . (3.19)

The subscritps L,R will become clear in our description of the D-brane bound state
corresponding to this black hole. Furthermore, the entropies and the temperatures
above are related by (where we use (3.14))

TL,R =
SL,R

2π2RQ1Q5
. (3.20)
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Chapter 4

Klein-Gordon equation in black

hole backgrounds

In this chapter, we present solutions of the Klein-Gordon equation for a massless scalar
field in two types of black hole backgrounds. Namely, in four-dimensional, static and
spherically symmetric black hole backgrounds and in the five-dimensional black hole
background with three charges presented in chapter 3. The results we obtain will con-
stitute the starting point of the semiclassical computation of greybody factors.

4.1 d = 4 black hole backgrounds

Let us consider a static and spherically symmetric black hole background in four di-
mensions. In spherical coordinates (t, r, θ, φ), the metric is given by

ds2 = −f(r)dt2 + f(r)−1dr2 + r2 dΩ2
2, (4.1)

with dΩ2
2 = dθ2 + sin2 θdφ2 the metric on a unit 2-sphere S2. We want to solve the

Klein-Gordon equation for a massless uncharged scalar field in this background, which
reads (see Appendix D for a short reminder on how this equation comes about)

∇µ∂µΦ = 0. (4.2)

Recalling that the covariant derivative acting on a one-form is defined as ∇νVµ =
∂νVµ − ΓλνµVλ, we can rewrite the Klein-Gordon equation as

gµν
(
∂µ∂ν − Γλµν∂λ

)
Φ = 0, (4.3)

where Γλµν are the usual Christoffel symbols defined as

Γλµν =
gλρ

2
(∂µgνρ + ∂νgρµ − ∂ρgµν) .

Given that the metric is diagonal, we only need to compute the nonzero Christoffel
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symbols that have µ = ν. They are the following

Γrtt =
f

2
f ′ Γrrr = −f

−1

2
f ′

Γrθθ = −rf Γrφφ = −rf sin2 θ

Γθφφ = − sin θ cos θ,

with f ′ = ∂rf . Putting all these expressions in (4.3), we obtain[
−f−1∂2

t + f∂2
r +

1
r2
∂2
θ +

1
r2 sin2 θ

∂2
φ +

(
f ′ +

2
r
f

)
∂r +

cos θ
r2 sin θ

∂θ

]
Φ = 0. (4.4)

The symmetries of the black hole background allow us to simplify the above equation.
First, because of the spherical symmetry, we can write the field as

Φ = U(t, r)Y (θ, φ), (4.5)

which, using the standard method of separation of variables, enables us to split (4.4)
in two parts: one depending only on t and r and the only depending only on θ and φ.
Each of these parts is a differential equation, which must be equal to a constant. In our
case, we choose the U(t, r) equation to be equal to k2, hence, the Y (θ, φ) equation will
be equal to −k2. The two resulting equations are[

−f−1∂2
t + f∂2

r +
(
f ′ +

2
r
f

)
∂r

]
U(t, r) =

k2

r2
U(t, r), (4.6)

[
∂2
θ +

1
sin2 θ

∂2
φ +

cos θ
sin θ

∂θ

]
Y (θ, φ) = −k2 Y (θ, φ). (4.7)

We still have to determine the constant k2. To do so, notice that (4.7) can be written
as

1
sin θ

∂θ (sin θ∂θY ) +
1

sin2 θ
∂2
φY + k2Y = 0.

This is exactly the equation for the spherical harmonics Ylm(hence our choice to name
Y the angular dependent part in (4.5)) that one obtains from Laplace’s equation in
spherical coordinates on S2. Therefore, our constant k2 is equal to l(l + 1), with l the
eigenvalues of the Laplacian on the two-sphere.

Let us now make use of the translational symmetry of the black hole background.
It allows us to write

U(t, r) = T (t)φ(r),

with which we can split (4.6) in two parts: one depending only on t and the other
depending only on r. We choose the T (t) equation to be equal to ω2, hence, the φ(r)
equation will be equal to −ω2. The two equations we get are

∂2
t T (t) = −ω2T (t), (4.8)[

f2∂2
r + f

(
f ′ +

2
r
f

)
∂r

]
φ(r) =

[
f
l(l + 1)
r2

− ω2

]
φ(r). (4.9)
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Therefore, we have that T = eiωt. We do not take into account solutions that go like
e−iωt because we consider those to move in the negative time direction. Note that our
choice to name the constant ω2 was because ω will be the frequency of the wave. By
making the following change of variable

φ(r) = r−1ψ(r),

we can simplify (4.9) to

[
f2∂2

r + ff ′∂r
]
ψ =

{
f

[
l(l + 1)
r2

+
f ′

r

]
− ω2

}
ψ. (4.10)

In order to simplify even more this equation, we define the so-called tortoise coordinate
x as

x ≡
∫

dr

f(r)
, (4.11)

so that ∂x = f∂r and ∂2
x = f2∂2

r + ff ′∂r. Finally, the equation for the radial part of
our scalar field becomes (

d2

dx2
+ ω2 − V (r)

)
ψ(r) = 0, (4.12)

with V (r) given by

V (r) = f(r)
[
l(l + 1)
r2

+
f ′(r)
r

]
. (4.13)

Of course, in order to solve the above equation, we still need to express ψ(r) and r

in terms of the tortoise coordinate x (4.11). The reason to name V this part of the
expression will become clear in the next chapter.

4.1.1 Generalizations

Still in four dimensions, our result can be generalized for the case of fields of nonzero
spin. For example, we might want to consider the propagation of an electromagnetic
test-field (j = 1) or a linearized perturbation of the metric (j = 2). The resulting
Schrödinger-like equation is exactly (4.12), but with the potential V (r) given by [23, 24]

V (r) = f(r)
[
l(l + 1)
r2

+
f ′(r)(1− j2)

r

]
. (4.14)

We should stress that this result is valid when the black hole under consideration does
not carry any electric or magnetic charge. See Appendix F for a brief discussion on how
it gets modified in the case of a charged black hole.

Futhermore, the case of the massless uncharged scalar field can be generalized to
higher dimensions. In spherical coordinate (t, r, θ, φ, ξ1, ξ2, . . . , ξd−4), the metric of a
static and spherically symmetric black hole background in d dimensions (d ≥ 4) is given
by

ds2
d = −f(r)dt2 + f(r)−1dr2 + r2 dΩ2

d−2. (4.15)
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The metric on a unit (d− 2)-sphere (d > 4) is given by the following relation

dΩ2
d−2 = dξ2

d−4 + sin2 ξd−4 dΩ2
d−3 (4.16)

with the well-known formula for a unit 2-sphere dΩ2
2 = dθ2 + sin2 θdφ2, so that

dΩ2
3 = dξ2

1 + sin2 ξ1 dΩ2
2,

dΩ2
4 = dξ2

2 + sin2 ξ2 dΩ2
3,

...

When solving the Klein-Gordon equation in the background (4.15), there will be
other non-vanishing Christoffel symbols, such as Γrξjξj , Γξjθθ, Γξjφφ and so on. After fol-
lowing a similar procedure to the one we explained for the four-dimensional case, we
obtain again the Schrödinger-like equation, but with the scalar field decomposed as1

Φ = φ(r)eiωtYlm...(Ωd−2), (4.17)

where
φ(r) = r

2−d
2 ψ(r) (4.18)

and the potential V (r) is given by [25]

V (r) = f(r)
[
l(l + d− 3)

r2
+

(d− 2)(d− 4)f(r)
4r2

+
(d− 2)f ′(r)

2r

]
. (4.19)

4.2 d = 5 black hole background with three charges

Let us now consider the five-dimensional black hole with three charges presented in
chapter 3. In spherical coordinates (t, r, θ, φ, ξ), the metric is given by

ds2
5 = −λ−2/3h dt2 + λ1/3

(
dr2

h
+ r2 dΩ2

3

)
, (4.20)

with
dΩ2

3 = dξ2 + sin2 ξ
(
dθ2 + sin2 θdφ2

)
the metric on a unit 3-sphere S3 and λ(r) and h(r) defined as in (3.10) and (3.11). To
solve the Klein-Gordon equation in this case, we need to compute the corresponding
Christoffel symbols that have µ = ν. They are the following

Γrtt = −1
3
λ−2λ′h2 +

1
2
λ−1hh′ Γrrr = −1

6
λ−1λ′ − 1

2
h−1h′

Γθφφ = − sin θ cos θ Γξθθ = − sin ξ cos ξ

1The following decomposition holds in general for higher-dimensional, spherically symmetric black
holes. Of course, Ylm...(Ωd−2) are just the higher-dimensional spherical harmonics on the Sd−2 sphere.
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Γξφφ = − sin ξ cos ξ sin2 θ Γrξξ = −hr − 1
6
λ−1λ′hr2

Γrθθ = −
(

1
6
λ−1λ′hr2 + hr

)
sin2 ξ Γrφφ = −

(
1
6
λ−1λ′hr2 + hr

)
sin2 ξ sin2 θ,

with h′ = ∂rh and λ′ = ∂rλ. Putting all these expressions into the massless Klein-
Gordon equation, we obtain[

− λ∂2
t + h2∂2

r +
h

r2 sin2 ξ
∂2
θ +

h

r2 sin2 ξ sin2 θ
∂2
φ +

h

r2
∂2
ξ+

+
(
hh′ +

3h2

r

)
∂r +

h cos θ
r2 sin2 ξ sin θ

∂θ +
2h cos ξ
r2 sin ξ

∂ξ

]
Φ = 0. (4.21)

We now decompose the field as

Φ = U(t, r)Y (θ, φ, ξ). (4.22)

With this, we can split (4.21) in two parts: one depending only on t and r and the
other depending on θ, φ and ξ. Each of these parts must be equal to a constant and we
choose the U equation to be equal to k2, hence, the Y will be equatl to −k2. The two
resulting equations are[

−λ∂2
t + h2∂2

r +
(
hh′ +

3h2

r

)
∂r

]
U = k2 h

r2
U, (4.23)

[
∂2
ξ + 2

cos ξ
sin ξ

∂ξ +
1

sin2 ξ
∂2
θ +

1
sin2 ξ sin2 θ

∂2
φ +

cos θ
sin2 ξ sin θ

∂θ

]
Y = −k2Y. (4.24)

In order to determine the constant k2, note that (4.24) can be written as

∂2
ξY + 2

cos ξ
sin ξ

∂ξY +
1

sin2 ξ sin θ
∂θ (sin θ∂θ)Y +

1
sin2 ξ sin2 θ

∂2
φY + k2Y = 0.

With k2 = l(l+2), this is exactly the equation for the spherical harmonics Ylmm′ (hence
our choice to name Y the angular dependent part) that one obtains from Laplace’s
equation in spherical coordinates on S3.

Now, just as in the four-dimensional case, let us write

U(t, r) = T (t)φ(r),

with which we can split (4.23) in two parts: one depending only on t and the other
depending only on r. We choose the T (t) equation to be equal to ω2, hence, the φ(r)
equation will be equal to −ω2. The two equations we get are

∂2
t T (t) = −ω2T (t), (4.25)[

h2

λ
∂2
r +

1
λ

(
hh′ +

3h2

r

)
∂r

]
φ(r) =

[
h

λ

l(l + 2)
r2

− ω2

]
φ(r). (4.26)



50 Klein-Gordon equation in black hole backgrounds

Again, we have that T = eiωt. By making the following change of variable

φ(r) = r−3/2ψ(r),

we can simplify (4.26) to

[
h2∂2

r + hh′∂r
]
ψ =

[
h
l(l + 2)
r2

+
3h2

4
1
r2

+
3hh′

2
1
r
− λω2

]
ψ. (4.27)

Furthermore, let us introduce the tortoise coordinate, defined for the black hole back-
ground (4.20) as

x ≡
∫

dr

h(r)
, (4.28)

so that ∂x = h∂r and ∂2
x = h2∂2

r +hh′∂r. Finally, the equation for the radial part of our
scalar field becomes (

d2

dx2
+ λω2 − V (r)

)
ψ(r) = 0, (4.29)

with V (r) given by

V (r) = h
l(l + 2)
r2

+
3h2

4
1
r2

+
3hh′

2
1
r
. (4.30)

Again, in order to solve the above equation, we still need to express ψ(r), h(r), λ(r)
and r in terms of the tortoise coordinate x (4.28).

4.3 S-wave approximation

So far, we have not said anything about the frequency ω of the equations we derived
in the two previous sections. That is, (4.12) and (4.29) are valid for any value of
the frequency. However, we can further simplify our results if we consider the low
frequency regime. Indeed, in [26], Unruh showed that in this limit, we can restrict
to spherically symmetric solutions of the wave equation (known as S-waves), because
higher angular momentum components will not be absorbed by the black hole. (We
will explain in chapter 5 that the classical absorption cross-section is just equal to
the greybody factor.) Therefore, in order to solve the Klein-Gordon equation for the
massless scalar field ∇µ∂µΦ = 0 in the low frequency limit, the field decomposition that
we need to consider is just

Φ = eiωtφ(r)

In order to obtain the S-wave solution, we need not go through all the steps in the
calculations. It suffices to take l = 0 in the formulas we derived in the previous two
sections.
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d = 4 black hole

For the four-dimensional black hole background (4.1), we can obtain the equation for
φ(r) by setting l = 0 in (4.9). We get[

f2∂2
r + f

(
f ′ +

2
r
f

)
∂r + ω2

]
φ(r) = 0. (4.31)

Now, using the tortoise coordinate (4.11) and writing again

φ(r) = r−1ψ(r),

we can write the last equation as(
d2

dx2
+ ω2 − V (r)

)
ψ(r) = 0, (4.32)

with V (r) given by

V (r) =
f(r)f ′(r)

r
. (4.33)

d = 5 black hole with three charges

For the five-dimensional black hole background with three charges (4.20), we can obtain
the equation for φ(r) by setting l = 0 in (4.26). We get[

h2∂2
r +

(
hh′ +

3h2

r

)
∂r + λω2

]
φ(r) = 0, (4.34)

which can be further simplified to[
h

r3

d

dr

(
hr3 d

dr

)
+ λω2

]
φ(r) = 0. (4.35)

Now, using the tortoise coordinate (4.28) and writing again

φ(r) = r−3/2ψ(r),

we can write the last equation as(
d2

dx2
+ λω2 − V (r)

)
ψ(r) = 0, (4.36)

with V (r) given by

V (r) =
3h2

4
1
r2

+
3hh′

2
1
r
. (4.37)





Chapter 5

Greybody factors

In this chapter, we introduce the concept of greybody factors and review some qualita-
tive ideas about black hole scattering theory that will help us in the calculations that we
will do in the next chapters. We also explain the important qualitative and quantitative
differences between the computation of greybody factors in the low and high frequency
regimes.

5.1 Modifying Hawking radiation

It should be clear by now that black holes are thermal systems: they have an associated
temperature and entropy and therefore also radiate. The radiation that black holes
emit is known as Hawking radiation, because in [7] he showed that exactly at the event
horizon, the emission rate of a black hole in a mode with frequency ω is given by

Γ(ω) =
1

eβω ± 1
d3k

(2π)3
,

where β is the inverse of the Hawking temperature and the minus (plus) sign is to
be used when considering bosons (fermions). This formula is valid for massless and
massive particles. Moreover, it is immediately generalized to d spacetime dimensions
by replacing the exponents of 3 in the last term by (d − 1). Therefore, at the event
horizon, the spectrum of the radiation is that of a black body and perfectly thermal; as
we saw in the previous chapter, this fact leads to the information loss paradox.

However, we are overlooking an important fact, namely that the geometry of the
spacetime surrounding a black hole is non-trivial. Taking this into account, we might
imagine that once Hawking radiation is emitted at the event horizon, it will get modified
by this non-trivial geometry so that when an observer located very far away from the
black hole measures the sprectrum, this will no longer be that of a black body. This is
indeed the case: the black hole geometry outside the event horizon acts as a potential
barrier that filters Hawking radiation, i.e. part of it will be transmitted and will travel
freely to infinity, whereas the rest will be reflected back into the black hole. In terms
of formulas, we can summarize the previous statements by saying that the spectrum
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emitted by a black hole that an observer at spatial infinity would measure is given by

Γ(ω) =
γ(ω)
eβω ± 1

d3k

(2π)3
, (5.1)

where γ(ω) is the so-called greybody factor, which depends on the frequency of the
particles under consideration. As we can see, greybody factors get their name from the
fact that they modify the sprectrum emitted by a black hole so that it is no longer that
of a black body, but that of a grey body.

λFigure 5.1: The purely thermal radiation emitted at the horizon (red) gets modified (orange)
by the black hole geometry.

In order to quantify all the previous ideas about greybody factors, we will make use
of the results obtained in chapter 4. Let us recall the results we obtained when solving
the Klein-Gordon equation for a massless scalar field in the four-dimensional black hole
background (4.1). Given the scalar field

Φ = r−1ψ(r)eiωtYlm,

we found that the Klein-Gordon equation reduces to the following differential equation
for the radial component of the field(

d2

dx2
+ ω2 − V (r)

)
ψ(r) = 0, (5.2)

with V (r) given by

V (r) = f(r)
[
l(l + 1)
r2

+
f ′(r)
r

]
. (5.3)

By simple inspection, we see that V (r) acts as a potential in the Schrödinger-like
equation (5.2). The scalar field will be filtered by this potential: part of it will tunnel
through the potential and the rest will be reflected. In general, the explicit form of the
potential depends on the black hole geometry and the spin j of the perturbation under
study (in our case, it is a scalar field, so j = 0 and it does not appear in our formulas).
Schrödinger-like equations like the one above, which we already obtained in chapter 4,
will be our starting point to compute greybody factors for different black holes.

The above discussion relates to the definition of greybody factors in the following
way. Hawking radiation, as well as any other field propagating in the black hole back-
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ground, will also be affected by the potential V (r). This is natural, given that the
potential depends only on the geometry of spacetime. Part of the radiation will tun-
nel through the potential barrier and part of it will be reflected back into the hole.
Pictorially, we would have the following situation

V(r)

r

Hawking 
radiation

Transmitted

Reflected

Tunneling

Figure 5.2: Once Hawking radiation is emitted, it will have to propagate in a non-trivial
geometry, which is encoded in the potential V (r). This will act as a filter: part of the radiation
will be transmitted and will travel freely to infinity, whereas another part will be reflected back
into the hole.

We can already anticipate that the specific form of the greybody factor will depend
on some parameters related to the potential barrier. This is indeed the case: the
greybody factor will be defined in terms of the transmission and reflection coefficients
corresponding to the potential barrier. More details will follow in the next section.

5.2 Black hole scattering theory

Before going into the details of the computation of greybody factors for different black
holes in asymptotically flat spacetime, we give a brief review of the basics of black hole
scattering theory. This will allow us to give a quite general definition for greybody
factors. To give a more general overview, let us consider a static, spherically symmetric
d-dimensional black hole with metric

ds2
d = −f(r)dt2 + f(r)−1dr2 + r2 dΩ2

d−2, (5.4)

which has an event horizon at r0. The goal is to study the wave equation for a propagat-
ing field in the exterior region r0 < r < +∞ of the above black hole. For simplicity, we
take a massless uncharged scalar field ψ, but we could also consider an electromagnetic
or gravitational field (e.g. a linearized perturbation of the metric). In the first section
of chapter 4, we mentioned that the field decomposition in this case is given by

Φ = r
2−d

2 ψ(r)eiωtYlm, (5.5)
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with ω ∈ C the complex frequency of the wave: the real part represents the actual
frequency of oscillation of the wave and the imaginary part represents the damping.

Then, after introducing the tortoise coordinate x, defined as

x ≡
∫

dr

f(r)
,

the radial part of the field obeys the following equation(
d2

dx2
+ ω2 − V (r)

)
ψ(r) = 0, (5.6)

with the potential given by

V (r) = f(r)
[
l(l + d− 3)

r2
+

(d− 2)(d− 4)f(r)
4r2

+
(d− 2)f ′(r)

2r

]
. (5.7)

Here, l(l + d − 3), with l ∈ N, are the eigenvalues of the Laplacian on Sd−2. In terms
of the tortoise coordinate, the exterior region of the black hole is now −∞ < x < +∞.
Solutions of (5.6) describe the scattering of an incoming (originating at x = +∞) or
outgoing (originating at x = −∞) wave, by the potential V (r).

Note that since V (r)→ 0 as x→ ±∞, the solutions will behave as plane waves ψω ∼
e±iωx in these limits. Let us recall the sign convention for the direction of propagation
of a plane wave. Using our field decomposition (5.5), we have that (remember that in
our units: k = ω, with k being the wave number)

e±i(ωx−ωt) : Wave travelling in the positive x direction,

e±i(ωx+ωt) : Wave travelling in the negative x direction. (5.8)

Let us consider ψω, a solution of the wave equation that describes the scattering of
an incoming wave originating at x = +∞, that satisfies the boundary conditions

ψω ∼

{
eiωx +Re−iωx, x→ +∞,
T eiωx, x→ −∞,

(5.9)

where R(ω) and T (ω) are the reflection and transmission coefficients, respectively. We
also have to consider ψ−ω, which also solves the wave equation, but with boundary
conditions

ψ−ω ∼

{
e−iωx + R̃eiωx, x→ +∞,
T̃ e−iωx, x→ −∞,

(5.10)

for some other reflection and transmision coefficients, R̃(−ω) and T̃ (−ω). We can now
construct the conserved flux

F =
1
2i

(
ψ−ω

dψω
dx
− ψω

dψ−ω
dx

)
, (5.11)

which does not depend on x, and evaluate it at x→ ±∞. Requiring that the flux must
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be equal at both limits yields
RR̃+ T T̃ = 1. (5.12)

This expression reduces to the familiar formula |R|2 + |T |2 for ω ∈ R.
Let us now consider ψ′ω, a solution of the wave equation that describes the scattering

of an outgoing wave originating at the black hole outer horizon x = −∞, that satisfies
the boundary conditions

ψ′ω ∼

{
T ′e−iωx, x→ +∞,
e−iωx +R′eiωx, x→ −∞.

Again, we also have to consider ψ′−ω, which also solves the wave equation, but with
boundary conditions

ψ′−ω ∼

{
T̃ ′eiωx, x→ +∞,
eiωx + R̃′e−iωx, x→ −∞.

The above solutions for an outgoing wave can be expressed as linear combinations of
the solutions for an incoming wave

ψ′ω = aψω + b ψ−ω,

ψ′−ω = c ψω + dψ−ω.

This is due to the fact that the space of solutions of (5.6) is two-dimensional. After
some trivial manipulations, we find that the coefficients a, b, c and d are given by

ψ′ω = −R̃
T̃
ψω +

1

T̃
ψ−ω and ψ′−ω =

1
T
ψω −

R

T
ψ−ω.

Moreover, as a consequence of the same manipulations, we find that the outgoing re-
flection and transmission coefficients can be expressed in terms of the incoming ones
as

R′ = −T
T̃
R̃, R̃′ = − T̃

T
R,

T ′ = T, T̃ ′ = T̃ . (5.13)

We see that T T̃ = T ′T̃ ′ and RR̃ = R′R̃′; therefore, we can define the greybody factor in
terms of the incoming or outgoing transmission coefficients. We choose to define them
in terms of the former. Thus, we can naturally define the greybody factor of the black
hole (5.4), for generic frequency ω ∈ C, as

γ(ω) = T (ω)T̃ (−ω). (5.14)

This formula generalizes the result for real frequencies γ(ω) = |T (ω)|2.
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5.2.1 Greybody factor = absorption cross section

It is important to stress the fact that, in view of (5.13), the greybody factor is the same
for the incoming and outgoing wave scattering by the black hole. The equality T T̃ =
T ′T̃ ′ implies that to calculate greybody factors, we can consider either the scattering of
an incoming wave from infinity or the scattering of an outgoing wave originated at the
black hole horizon. It is easy to see that if one considers the former case, the greybody
factor is actually the absorption cross section σabs of the black hole, as it measures how
much of the incident field is effectively transmitted through the potential barrier and
“absorbed” by the hole.

If we choose to compute greybody factors as absorption cross sections, there is
another natural way to define them. We can evaluate the flux (5.11) at the black hole
horizon and compare it to the original flux coming from infinity. Then, the greybody
factor, or absorption cross section, is obviously defined as

γ(ω) = σabs =
Fhorizon
Finfinity

. (5.15)

On a side note, we should mention that the results derived above hold for asymp-
totically flat and asymptotically dS spacetimes. It is a little more subtle to obtain the
results for asymptotically AdS spacetimes, because in that case the tortoise coordinate
varies from −∞ < x < C, where C is a constant value that the coordinate takes at
spatial infinity. The interested reader can see [27] for more details.

5.3 Frequency regimes: low versus high frequency

Up to now, we have not said anything about the frequency ω of the wave considered
when computing greybody factors. Given that this s a key point for coming chapters,
in which greybody factors for different black holes will be computed explicitly, let us
take some time to explain how our calculations will depend on the frequency ω.

We will be interested in two frequency regimes: low ω and high ω. Of course, these
are relative terms, so, we must specify low and high with respect to what. The natural
choice is to consider the scales set by the black hole background. Therefore, we can
define our two regimes of interest with two conditions; namely

Low frequency regime: ω � TH , ωr0 � 1 ,

High frequency regime: |ω| � TH , |ωr0| � 1 , (5.16)

where T is the Hawking temperature of the black hole and r0 the event horizon. These
conditions specify the relative value of the energy of the wave with respect to the scale
set by the black hole quantities, such as the Hawking temperature and the horizon
radius. We take the absolute value in the high frequency case because, as we will see in
chapter 9, the case of interest is when ω is very large and purely imaginary.

The greybody factor formula (5.14) does not depend on the frequency regime, be-
cause it was derived by considering only the behavior of the solutions to the wave
equation (5.6) in the limits r0 and r → ∞. In practice, however, the methods used to
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explicitly compute greybody factors will be different in both frequency regimes. Let us
see how this comes about. When solving the wave equation (5.6), we will need to match
the solutions that we will find in different regions of the spacetime around the black
hole. More concretely, these regions are:

• Far region: The one between the asymptotic region (spatial infinity) and the event
horizon.

• Near region: The one close to the event horizon.

The difference when computing greybody factors in both regimes will be the matching
of the solutions found in each of these regions.

In the low frequency regime, the wavelength of the wave is much larger than the
length scale set by the black hole. This allows us to match the solutions from different
regions directly, much like we do in simple quantum mechanics problems. We will call
this the simple matching technique.

In the high frequency regime, the wavelength of the wave becomes of the order of the
length scale by the black hole. Therefore, in this case the wave will see the curvature
of spacetime and we cannot simply match solutions found in different regions, as there
would be an indeterminacy in doing so. Instead, we will use the monodromy matching
technique.

R

Spacelike slice 
of equal time

Near regionFar region

Figure 5.3: Low frequency (top) and high frequency (bottom) waves near the horizon of the
black hole. R is the radius of curvature in some region of the spacelike slice. The relative size of
the wavelenght with respect to the length scale set by the background geometry will determine
the matching technique to be used.

The main differences between the calculations of greybody factors at low and high
frequency of the wave are summarized in Table 5.1
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Table 5.1: Differences in the computation of greybody factors at low and high frequencies.

Low frequency High frequency
S-wave approximation Full field decomposition

Φ = eiωtr
2−d

2 ψ(r) Φ = eiωtr
2−d

2 ψ(r)Ylm...(Ωd−2)
Simple matching technique Monodromy matching technique

5.4 Motivating the study of greybody factors

One might ask why do we study greybody factors. The goal is twofold. First, the study
of greybody factors allows us to increase our semiclassical gravity dictionary, i.e. to have
a better and more complete understanding of black holes and Hawking radiation within
this context. Also, and more importantly, it is thought that by studying greybody
factors in different regimes, we will be able to gain insight into the quantum nature
of black holes and, thus, of quantum gravity. That is, the deviation from pure black
body radiation might carry information about the quantum degrees of freedom of the
black hole. Indeed, the study of greybody factors in the low frequency regime led to a
result that was one of the precursors of the AdS/CFT correspondence, one of the most
profound ideas coming from string theory. We will review the computation that led
to this insight in chapter 6 and chapter 7. In this thesis we will also study a different
frequency regime and see if the results suggest something new about the quantum nature
of black holes. If so, then greybody factors may help us in resolving the information
loss paradox.
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Chapter 6

Greybody factors at low

frequency: Semiclassical

computation

In this chapter we compute the greybody factor at low frequency for the five-dimensional
black hole with three charges presented in chapter 3. This calculation was fist done by
Maldacena and Strominger in [22]. First, we show the explicit form of the wave equation
and then proceed to use the simple matching technique outlined in chapter 5 to obtain
the absorption cross section, which is equal to the greybody factor.

6.1 The wave equation

We are interested in computing the greybody factor at low frequency for the five-
dimensional black hole with threes charges

ds2
5 = −λ−2/3h dt2 + λ1/3

(
dr2

h
+ r2 dΩ2

3

)
, (6.1)

where

λ =
∏

j=1,5,p

(
1 +

r2
0 sinh2 αj

r2

)
=

∏
j=1,5,p

(
1 +

r2
j

r2

)
, (6.2)

h = 1− r2
0

r2
.

Given that we are in the low frequency regime, we will use the S-wave approximation
found in chapter 4. In this limit, we argued that the field decomposes as

Φ = eiωtφ(r)

and that the equation for the radial part is given by[
h

r3

d

dr

(
hr3 d

dr

)
+ λω2

]
φ(r) = 0. (6.3)
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This time, we will need an explicit expression for the tortoise coordinate x. Using its
definition, we find that

x ≡
∫

dr

h(r)
= r +

r0

2
ln
∣∣∣∣r − r0

r + r0

∣∣∣∣ . (6.4)

Now, after writing
φ(r) = r−3/2ψ(r),

we obtained the following Schrödinger-like equation(
d2

dx2
+ λω2 − V (r)

)
ψ(r) = 0, (6.5)

with V (r) given by (4.37). More explicitly

V (r) =
3

4r2

(
1− r2

0

r2

)(
1 + 3

r2
0

r2

)
. (6.6)

Now that we have the equation that we will use in our computation, let us give a
physical picture of what we will do. We will study the propagation of a wave coming
from infinity toward the black hole. The potential V (r) will act as a potential barrier,
which will filter the incoming wave: part of it will be reflected back to infinity and the
rest will be transmitted into the black hole.

Reflected

r0 3 r0
2

Incoming

Transmitted

V(r)

r

Figure 6.1: Potential correspoding to the five-dimensional black hole with three charges.

We will work in the dilute gas region (3.15)

r0, rp � r1, r5, (6.7)

and restrict to low energies satisfying

ωr1 � 1, ωr5 � 1. (6.8)
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Moreover, we will treat the ratios r0/rp and r1/r5 as order one.
Now, recall from (3.18) that we introduced two temperatures TL,R. Given their

definitions, note that due to (6.7), we have that TL,R � 1/r1, 1/r5. Taking this and
(6.8) into account, we impose an extra condition on the energy, which is

ω ∼ TL,R, (6.9)

so that the ratio ω/TL,R is also of order one.

6.2 Computation using simple matching technique

It is readily seen that (6.5) cannot be solved analytically. Therefore, we will use the
simple matching technique outlined in chapter 5. That is, we will divide space in two
regions, namely, the far and near region, and find the solutions to the wave equation in
each of them. Then, we will proceed to match the solutions at an intermediate point
rm.

Far zone: r > rm

Near zone: r < rm.

The matching point is chosen so that

r0, rp � rm � r1, r5, ωr1
r1

rm
� 1. (6.10)

Taking these conditions into account together with (6.8), we also have that

ωrm � 1. (6.11)

Far zone computation

First, note that in this region, the tortoise coordinate satisfies x = r, given that the ln
term appearing in (6.4) goes to zero due to (6.10) and the far region condition r > rm.
Hence, we can write (6.5) as(

d2

dr2
+ λω2 − V (r)

)
ψ(r) = 0. (6.12)

We now need to find explicit expressions for λ and V (r) in the far zone region. Us-
ing (6.10) and the far region condition r > rm, it is easy to check that the original
expressions (6.2) and (6.6) reduce to

λ = 1 +
(r2

1 + r2
5)

r2
+
r2

1r
2
5

r4

and
V (r) =

3
4r2

.
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Before putting these two expressions into the Schrödinger-like equation, we change the
radial variable to ρ = ωr. With this, (6.12) becomes

d2ψ

dρ2
+
[
1 +

ω2(r2
1 + r2

5)
ρ2

+
ω4r2

1r
2
5

ρ4
− 3

4ρ2

]
ψ = 0.

Finally, using the conditions (6.8), we get a tractable form for the above equation.
Namely

d2ψ

dρ2
+
(

1− 3
4ρ2

)
ψ = 0. (6.13)

The above equation is solved independently by J1(ρ) and N1(ρ), Bessel functions of
the first and second kind. We can write a general solution as

ψ =
√
πρ

2
[AJ1(ρ) +BN1(ρ)] . (6.14)

Now, the Bessel functions above have in general complicated expressions. However, we
will be interested in their asymptotic behavior. For very large r (or equivalently, very
large ρ or far away from the black hole), we can write J1(ρ) and N1(ρ) as (see (E.3))

J1(ρ) =
√

2
πρ

cos
(
ρ− 3π

4

)
=

1
2

√
2
πρ

(
eiρe−i3π/4 + e−iρei3π/4

)
N1(ρ) =

√
2
πρ

sin
(
ρ− 3π

4

)
=

1
2i

√
2
πρ

(
eiρe−i3π/4 + e−iρei3π/4

)
.

Given that e±i3π/4 = ±ie±iπ/4, we get that our general solution (6.14) for very large r,
and using the fact that φ = r−3/2ψ and ρ = ωr, is

φ(r) =
1

2r3/2

[
eiωr

(
Ae−i3π/4 −Be−iπ/4

)
+ e−iωr

(
Aei3π/4 −Beiπ/4

)]
. (6.15)

This will not be the solution that we will use to perform the matching. Instead, we will
use it to compute the incoming flux from spatial infinity.

We now want to find the behavior of the solutions for r ∼ rm or, equivalently, very
small ρ. In this limit, we can write J1(ρ) and N1(ρ) as (see (E.4))

J1(ρ) =
ρ

2
,

N1(ρ) = − 2
πρ

+
ρ

π
(ln ρ+ c) ,

where c = ln 1/2. Therefore, using φ = r−3/2ψ, the general solution (6.14) is given by

φ(r) =

√
πω3

2

[
A

2
+
B

π

(
− 2
ω2r2

+ ln(ωr) + c

)]
. (6.16)

This is the far-zone solution that we will use to perform the matching at r = rm.
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Near zone computation

In this zone, we have that r < rm. Using this condition and (6.10), the expression for
λ reduces to

λ =
r2

1r
2
5

r4

(
1 +

r2
p

r2

)
.

With this, the wave equation (6.3) reduces to[
h

r3

d

dr

(
hr3 d

dr

)
+
ω2r2

1r
2
5

r4

(
1 +

r2
p

r2

)]
φ(r) = 0. (6.17)

We have chosen to write directly the equation for φ(r) instead of using the one for ψ(r).
This is a more complicated equation and we need to perform a series of steps to obtain
the solutions. First, defining a new variable v = r2

0/r
2, the above equation becomes

(1− v)
d

dv
(1− v)

dφ

dv
+
(
D +

C

v

)
= 0, (6.18)

where we have set

D =
(
ωr1r5rp

2r2
0

)2

, C =
(
ωr1r5

2r0

)2

.

Note that now the horizon is located at v = 1 and the matching point rm is in a
region where v is small. The next change of variable happens close to the horizon, where
we set y = − ln(1− v), with which it is easy to see that the equation becomes

d2φ

dy2
+ (C +D)R = 0.

Finally, we have an equation that is actually tractable, whose solutions are

φ(v) ∼ e±i
√
C+Dy

and we interpret them as ingoing (+) and outgoing (−) solutions at the horizon. We
now use the fact that at the horizon, we should only have ingoing waves and so

φ(v) = Ãe−i
√
C+D ln(1−v), (6.19)

where Ã is a constant that will be determined below. This will be the solution that we
will use to find the flux absorbed by the hole.

Let us now find the solutions to (6.18), not restricting to the region close to the
horizon. By making the following change of variables

z = 1− v, φ = Ãz−i(a+b)/2F,

the equation becomes

z(1− z)d
2F

dz2
+ [(1− ia− ib)− (1− ia− ib)z] dF

dz
+ abF = 0. (6.20)
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This is a hypergeometric differential equation, whose solutions are given by hypergeo-
metric functions (see Appendix E). Note that the parameters appearing in the equation
are related to the parameters of (6.18) by

(a+ b)2 = 4(C +D), ab = C. (6.21)

Using the definitions (3.18), it is straightforward to check that

a =
ω

4πTR
, b =

ω

4πTL
. (6.22)

Finally, the solution to the above equation is

φ(r) = Ã z−i(a+b)/2
2F1(−ia,−ib; 1− ia− ib; z), (6.23)

with 2F1 a hypergeometric function. We are interested in this solution at the matching
point r = rm, where due to (6.10), we have that z = 1. Hence, the solution we will use
to perform the matching will be (6.23) with the hypergeometric function given by

2F1(−ia,−ib; 1− ia− ib; 1) =
Γ(1− ia− ib)

Γ(1− ia)Γ(1− ib)
, (6.24)

where Γ are just Gamma functions (again, see Appendix E).

Matching and greybody factor derivation

We have all we need to perform the matching of the far-zone and near-zone solutions
found above. We will match (6.16) and (6.23), and their respective derivatives, at the
matching point r = rm, which satisfies ωrm � 1.

First, note that the term multiplying B in (6.16) is very large at the matching
point. This will require B to be very small and we can ignore it in the solution.1 Also,
notice that at the matching point, we have that z = 1 in (6.23). Taking the above
simplifications into account, the matching of the solutions gives√

πω3

2
A

2
= Ã

Γ(1− ia− ib)
Γ(1− ia)Γ(1− ib)

. (6.25)

We now construct the conserved flux corresponding to the wave equation (6.3). It
is

F =
1
2i

(
hr3φ∗

dφ

dr
− c.c.

)
, (6.26)

where c.c. stands for complex conjugate. To find the flux coming from infinity, we use
(6.15) ignoring B for the reason explained above and get

Finfinity = −ω |A|
2

4
. (6.27)

1If the reader wants to be more rigorous, one can perform the matching without ignoring B and get
that B/A� 1. See [22] for the details.
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To find the flux absorbed by the black hole, i.e. that at the horizon, note that in this
region we had that v = r2

0/r
2 and h = 1 − v; hence, we can write the formula for the

flux as

F =
1
2i

(
−2(1− v)r2

0φ
∗dφ

dv
− c.c

)
.

So, using (6.19) we obtain

Fhorizon = −2r2
0

√
C +D|Ã|2 = −r2

0(a+ b)|Ã|2, (6.28)

where we used (6.21). Then, we finally get the absorption cross section using the formula
introduced in chapter 5 and (6.25)

σSabs =
π

2
r2

0ω
2(a+ b)

(
Γ(1− ia)Γ(1− ib)

Γ(1− ia− ib)

)2

.

Using the formulas in Appendix E, we finally get

σSabs = π2r2
0ω

2ab
e2π(a+b) − 1

(e2πa − 1) (e2πb − 1)
. (6.29)

Notice the superscript S. It is because we have found the absorption cross section
for the S-wave. However, we want that for the plane wave. They are related by [28]

σabs =
4π
ω3
σSabs.

With this, we can finally get the desired result. Using the expressions for a, b given
in(6.22) and the definitions (3.17) and (3.18), we get

σabs(ω) = π3ωr2
1r

2
5

eω/TH − 1(
eω/2TL − 1

) (
eω/2TR − 1

) . (6.30)

This is the result that Maldacena and Strominger obtained in [22]. It has a sugges-
tive structure by itself: statistical factors in the denominator coming apparently from
different systems (the subscripts L and R); a Bose-Einstein distribution factor in the
denominator corresponding to that of the total black hole system and that cancels out
the one appearing in the denominator of Hawking radiation for a massless scalar field.
Therefore, the rate of emission by the five-dimensional black hole with threes charges is

Γbh(ω) = π3ωr2
1r

2
5

1(
eω/2TL − 1

) (
eω/2TR − 1

) d4k

(2π)4
. (6.31)

However, even more surprising is that this result can be obtained from string theory.
We will see how this comes about in the next chapter.





Chapter 7

Greybody factors at low

frequency: String theory

computation

We now present the calculation done by Das and Mathur for the decay rate of D-branes
[28]. We begin by explaining basic concepts of statistical mechanics in two dimensions,
which describes the thermodynamics of massless open string states moving on a D-
brane. Then, we explain the long string configuration and finally show the result for
the D-brane decay rate. We will see that it exactly reproduces the semiclassical result
obtained in the previous chapter. Further references with pedagogical discussions on
the subjects of this chapter are [29, 30].

7.1 Statistical mechanics in two dimensions

Let us consider an two-dimensional ideal gas at weak coupling, which is assumed to
thermalize. It is composed of f flavors of massless bosons and fermions living on a
circle of length L. If L is large, we can describe the system by a canonical ensemble with
inverse temperature β = 1/T , conjugate to the energy, and with a chemical potential
µ, conjugate to the momentum. Therefore, the partition function can be written as

Z =
∑
states

exp

(
−β
∑
r

nrer − µ
∑
r

nrpr

)
,

where nr is the number of particles with energy er and momentum pr. We immedi-
ately see that the total energy and momentum of the system are related to the inverse
temperature and chemical potential by

E = −∂ logZ
∂β

, P = −∂ logZ
∂µ

.
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The average number of particles nr in a state characterized by (er, pr) is given by the
following thermal distribution function

ρ(er, pr) =
1

eβer+µpr ± 1
, (7.1)

with + for fermions and − for bosons.
The entropy of the system is given by the usual thermodynamical relation

S = logZ + µP + βE.

We can evaluate the corresponding expressions appearing in this formula with the above
definitions. Recalling that we are considering f flavors of particles, we get

P =
fLπ

8

[
1

(β + µ)2 −
1

(β − µ)2

]
,

E =
fLπ

8

[
1

(β + µ)2 +
1

(β − µ)2

]
,

S =
fLπ

4

[
1

β + µ
− 1
β − µ

]
.

Now, since they live in one spatial dimension, the particles we are considering can
either be right-moving or left-moving and they statisy in each case

Right-movers: er = pr, Left-movers: er = −pr.

Plugging these two conditions into (7.1), we get the distribution functions for left- and
right-moving particles

ρL =
1

e(β−µ)er ± 1
, ρR =

1
e(β+µ)er ± 1

. (7.2)

Hence, we see that the combinations TL = 1/(β − µ) and TR = 1/(β + µ), appearing in
the exponents of the denominators, act as effective temperatures for the two subsystems.
It is straightforward to check that the toatl temperature of the system is related to these
two new temperatures as

1
T

=
1
2

(
1
TL

+
1
TR

)
. (7.3)

This is exactly the formula (3.17) that we found for the temperature of the five-
dimensional black hole with three charges! The subscritps L,R introduced then have
now a clear meaning.

Finally, we should note that all thermodynamical quantities mentioned above can be
split into left- and right-moving parts as E = EL +ER, P = PL +PR and S = SL +SR.
In particular, we see that the entropy and temperature in each of the subsystems are
related by

TL =
4SL
fLπ

, TR =
4SR
fLπ

. (7.4)
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The upshot of this section is that we have found a dual description, that of an ideal
gas composed of left- and right-movers, whose thermodynamical quantities are exactly
those introduced in the very end of chapter 3 for the near-extremal five-dimensional
black hole with three charges. Therefore, in the D-brane picture of the hole, the ther-
modynamics of open strings moving on branes are precisely described by the system
discussed in this section.

7.2 The long string model

The D-brane configuration that we have is a system of static Q1 D1-branes, Q5 D5-
branes and Qp units of momentum 1/R. Recall that we are compactifying on T 5 =
T 4 × S1 and V is the volume of the four-torus, while R is the radius of the circle.
The low energy excitations of this system are more easily understandable when R is
much larger than the other four directions of T 4. In that case, the effective theory is a
(1 + 1)-dimensional supersymmetric gauge theory, whose modes are essentially those of
the oscillations of the D1-branes.

Now, consider the case when all the D1-branes in our configuration are separate
(think of them as a stack, with each of them on top of each other). If they tried to move
away from the D5-branes, there would be a nonzero binding energy for the system. If
there was a single D1-brane and a single D5-brane, the quantized waves that would
appear in the process would be massless particles with four flavors (since the effective
theory is supersymmetric, we would have four bosons and four fermions). Therefore,
if we have many D1- and D5-branes like in our original configurations, the quantized
waves that appear are massless particles with 4Q1Q5 flavors.

However, we can also consider a different case. Namely, that of joining up several
of our D1-branes in order to form a long string, which will now be multiply wound
around S1. In fact, it was discovered in [31] that if one considers a number nw of
D1-branes without anything else wrapping a circle, the preferred configuration of the
system would be to join into a long string of length 2πnwR. This implies that the long
string configuration is the most entropically favorable.

For our system of D1- and D5-branes, it was found in [32] that the most entropically
favorable configuration is indeed that of a long string winding around the S1, with an
effective length of Leff = 2πRQ1Q5. Therefore, to study the low energy theory of
our D-brane system, it will suffice to study the gauge theory of four bosons and four
fermions living on the cirlce of length Leff . At weak coupling, these particles form
an ideal gas. Therefore, we can use our results from the previous section to describe
its thermodynamical properties! Since the results obtained in this description must be
equivalent to those obtained for the black hole, the relations between the entropies and
the temperatures should be the same. Then, comparing (7.4) and (3.20), they are equal
if

fL = 8πRQ1Q5,

from where we identify for the long string configuration: f = 4 and L = 2πRQ1Q5.
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7.3 Decay rate of the D-brane bound state

Recall that our D-brane configuration is such that we have compactified five spatial
dimensions on T 5 = T 4 × S1, adding momentum in the S1 direction. The noncompact
directions are labeled by coordinates xµ, µ = 0, . . . , 4, the compact directions of T 4 are
labeled by xi, i = 6, . . . , 9 and we choose the S1 to be in the direction of x5. Let us now
use the long string model to compute the decay rate for this system, which gives rise
to the near-extremal five-dimensional black hole with three charges. This was done in
[28].

As we saw in the previous section, the theory that describes the long string is a
(1 + 1)-dimensional massless supersymmetric gauge theory with four flavors of bosons
φi and their corresponding fermionic parterns. We will be interested in calculating the
decay rate for massless minimal scalars, so, we only need to figure out how the bosonic
fields of the long string couple to the bulk supergravity fields1. First, the low-energy
action that describes the coupling of the relevant long string fields to fluctuations of the
four-torus metric is given by

S = T
∫
d2ξ∂αφ

i∂αφjgij . (7.5)

The full action contains higher derivative terms, but we neglect those in the present
energy regime. We are also not taking into account any dilaton field. Let us explain the
terms appearing in this action. The coordinates ξα are those on the worldsheet of the
long string, gij is the metric on T 4 and T is just a constant representing the effective
tension of the long string.

Now, we can expand the metric on the four-torus as

gij = δij +
√

2κ10hij
(
ξ, φi, xµ

)
, (7.6)

where xµ are the coordinates transverse to the five-torus and hij is the ten-dimensional
graviton (which is the traceless part of the deviation of the bulk metric from the flat
metric). From this equation, we can read-off the coupling of the long string with hij . It is
given by κ10, which is related to the ten-dimensional Newton constant by κ2

10 = 8πG10.
Using (3.2), we get

κ2
10 = 64π7g2

s`
8
s.

Then, plugging (7.6) into (7.5), we get the part of the action that will be relevant for
our discussion

Sint =
√

2κ10

∫
d2ξ∂αφ

i∂αφjhij . (7.7)

Note that the constant T has dissappeared from the action. This is because it can
be absorbed in the normalization of the bosonic fields φi, given that the interaction is
quadratic.

Using (7.7), we are interested in studying the decay of a near-extremal state of
our D-brane system, using the long string model, into the mode hij . This decay is

1Remember that in the D-brane description, these live in ten-dimensional flat spacetime, which we
refer to as the bulk.
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dominated by the process of annihilation of a pair of modes of the long string, a left
and a right mover travelling in opposite directions, giving rise to a closed string mode.
The latter is regarded as the quanta of Hawking radiation (see Figure 7.1). Note that

Black hole

D1-brane

D5-brane

Weak coupling Strong coupling

Figure 7.1: Realization of Hawking radiation in the D-brane bound state picture at weak
coupling. Left- and right-movers interact and emit a closed string, regarded as the quanta of
Hawking radiation.

since we are working in the limit where R is much larger than the directions of T 4, we
can ignore the dependence of hij on the fields φi. Futhermore, if one considers S-wave
decay, the dependence on the transverse coordinates on (7.6) will be only through the
radial variable. In fact, we will consider a closed string mode that does not carry any
momentum along the S1 (x5 direction) and that is an S-wave in the transverse space.

Let us now proceed with the actual computation. Consider two long string modes,
corresponding to φi and φj in (7.7), moving in the x5 direction. They have momenta p
and q given by

p = (p0, 0, 0, 0, 0, p5, 0, 0, 0, 0),

q = (q0, 0, 0, 0, 0, q5, 0, 0, 0, 0).

These two long open string modes will collide to give rise to a closed string mode with
momentum k given by

k = (k0, k1, k2, k3, k4, 0, 0, 0, 0, 0).

One can write the decay rate for this process in the usual QFT way as

Γ(p, q; k) = (2π)2Lδ
(
p0 + q0 − k0

)
δ
(
p5 + q5

) 2κ2
10(p · q)2

(2p0L) (2q0L) (2k0V LV4)
V4d

4k

(2π)4
. (7.8)

The delta functions are there to impose conservation of energy and conservation of
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momentum in the x5 direction. The terms in the denominator come from normalization
of the open and closed string modes: the former are normalized on L, the length of
the long string introduced in the previous section, and the latter are normalized in the
entire space with volume V LV4, with V4 the volume of the non-compact directions.

The total decay rate for the emission of the closed string mode is obtained by
averaging (7.8) over all possible initial open string states. Now, recall that in the first
section of this chapter, we found that the thermodynamics of open string moving on a
D-brane are exactly those of an ideal gas composed of left- and right-movers. Therefore,
the initial open string states are drawn from a thermal ensemble and their distributions
are given by (7.2). Then, the total decay rate is given by

Γ(k) =
(
L

2π

)2 ∫ +∞

−∞
dp5

∫ +∞

−∞
dq5ρ

(
p0, p5

)
ρ
(
q0, q5

)
Γ(p, q; k).

Naturally, one of the distribution functions is that of a left-mover and the other that
of a right-mover. Which one is which is conventional. Note that since L = 2πRQ1Q5,
we can write it in terms of the charges for the near-extremal black hole that we gave
at the end of chapter 3. Doing that and using the explicit form of the distributions to
evaluate the integrals above and obtain the final result

Γ(k) = π3ωr2
1r

2
5

1(
eω/2TL − 1

) (
eω/2TR − 1

) d4k

(2π)4
. (7.9)

Furthermore, since this is the decay rate into a masslesss scalar field, we can write the
absorption cross-section of the D-brane configuration by multiplying the above result
by a Bose-Einstein distribution factor for the whole system and get2

σ(k) = π3ωr2
1r

2
5

eω/T − 1(
eω/2TL − 1

) (
eω/2TR − 1

) d4k

(2π)4
. (7.10)

The two formulas above precisely agree with the results (6.30) and (6.31) derived in the
semiclassical picture of the black hole.

7.4 Surprising agreement

It is quite remarkable that the result obtained for the D-brane decay rate exactly agrees
with the semiclassical computation of the Hawking emission rate modified by the corre-
sponding greybody factor. Let us quote part of [22]: “The black hole emits blackbody
radiation from the horizon. Potential barriers outside the horizon act as a frequency-
dependent filter, reflecting some of the radiation back into the black hole and trans-
mitting some to infinity. The filtering acts in just such a way that the black hole
spectroscopy mimics the excitation spectrum of the string. Hence to the observer at
infinity the black hole, masquerading in its greybody cloak, looks like the string, for en-

2Note that the process we have considered is symmetric under time reversal. Therefore, the re-
sult (7.9) can be regarded as the absorption rate of the D-brane system. Hence, multiplying it by a
distribution factor for the whole system gives the absorption cross section.
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ergies small compared to the inverse Schwarzchild radius of the black hole.” Somehow,
the greybody factor, at least at low frequency, seems to “know” about the quantum
structure of the black hole so that it precisely modifies Hawking radiation to make it
look like the radiation coming from fundamental constitutents of the hole.

Historically, the D-brane decay rate computation was done first. However, imagine
it had been the other way around. If the semiclassical computation had been done
first, people might have suspected from the structure of the result that it was telling
us something about the quantum structure of the black hole. The Boltzmann terms
corresponding to the left- and right-movers would have pointed to microscopic degrees
of freedom related to the black hole. As we have seen, that is indeed the case: the super-
conformal field theory that describes the degrees of freedom of the D-brane construction
has left- and right-moving oscillations.

The bottom line is that the study of greybody factors at low frequency played an
important role in our understanding of black holes and their quantum nature. This was
the main motivation to pursue the topic of this thesis: we want to motivate the study
of greybody factors in a different frequency regime that will perhaps lead to further
advances in our understanding of black holes in the string theory context.





Chapter 8

Monodromy technique

Before going into the explicit calculations of greybody factors at high frequency, we
explain in this chapter the monodromy technique, first introduced in this context by
Motl and Neitzke [33].

8.1 Preliminaries

Up to now we have been studying the behavior of the radial part of a field Φ =
r−1ψ(r)eiωtYlm(Ω2) propagating in a black hole background using the following equation(

− d

dx2
+ V (r)2 − ω2

)
ψ(r) = 0 (8.1)

in the physical range r0 < r < +∞, where r0 is the black hole horizon (the outer horizon
in the case of Reissner-Nordström black holes). That is, r ∈ R. We have also seen that
in terms of the tortoise coordinate, the physical range is −∞ < x < +∞. As we said in
chapter 5, the equation holds for ω ∈ C, with the real part being the actual frequency
of oscillation and the imaginary part being the damping. However, the calculation at
low frequency that we showed in the previous chapters only considered ω ∈ R. We are
now interested in considering a special case for the frequency, namely, that of a wave of
very high imaginary frequency (more on this below).

However, to do so, we need cannot use the simple matching technique used before;
instead, we will use the monodromy matching technique that we mentioned in chapter 5.
First, we need to analytically continue (8.1) to the complex r-plane (of course, the
tortoise coordinate will also be such that x ∈ C). The reason behind is that we will
need to study the behavior of the solutions to the wave equations as we travel around
some contours that enclose some of the singular points of the equation. Obviously, that
cannot be done if r is restricted to the real line. Let us now explain the idea behind the
technique.

First, recall that the asymptotic behavior of the solutions to (8.1) for an incoming
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wave, for r and x real, is

ψω ∼

{
eiωx +Re−iωx, x→ +∞,
T eiωx, x→ −∞.

(8.2)

Therefore, we see that if we were to keep the radial coordinates in the real line, in the
limit of high frequency, we would have the problem that the solutions contain terms
that are exponentially growing and terms that are exponentially vanishing. This would
result in an indeterminacy in the definition of the asymptotic solutions. To remediate
this, we will restrict our solutions to contours in the r-plane that have Imωx = 0. By
doing so, we see that the terms eiωx and e−iωx are now purely oscillatory: the problem
of having exponentially growing and vanishing terms has dissapeared. This, in turn,
will allow us to match solutions to the wave equation along the contour Imωx = 0, even
when these were found in very different physical regions.

Now, let us say something about the frequency regime that we will consider. First,
note that since we have chosen the time-dependent part of our field to be eiωt, in order
to have stable solutions, we need to require that Imω > 0, otherwise the solutions would
grow exponentially in time. Moreover, numerical studies show that for the type of black
holes that we will consider, the frequency of the waves is such that Imω � Reω. In
fact, we will be interested in the regime where Imω → +∞. This implies that our
condition for the contour mentioned above becomes

Imωx = 0 −→ Rex = 0. (8.3)

We will have to draw the contour that satisfies the above condition for each of the black
holes that we will consider in the next chapter. This contour is called the Stokes line.

In our computations, we will also consider the case Imω → −∞, since it is necessary
to get the greybody factor. There is nothing contradictory here: in that case, the time-
dependent part of our field is e−iωt, which implies using the same reasoning as above,
that Imω < 0. Moreover, the Stokes line is the same as before.1

Finally, since we are in the high frequency regime, we impose the following energy
condition

|ωrh| � 1, (8.4)

with rh each of the horizons of the black holes we will consider. This condition will be
handy when finding the expressions for the potential.

8.2 Monodromy of the tortoise coordinate and plane waves

In our computations, we will be interested in finding how do our solutions behave as
they run around a horizon of a black hole of the form

ds2
2 = −f(r)dt2 + f(r)−1dr2 + r2 dΩ2

2.

1There are some differences regarding the sign of ωx, but we will address them in the next chapter
for each of the black holes we will consider.
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Naturally, the horizons of the black hole are found by solving f(r) = 0. Let us consider
one of the horizons rh and expand f(r) around it. Then, the tortoise coordinate will be

x =
∫

dr

f(r)
=
∫

dr

(r − rh)f ′(rh)
=

β

4π
log(r − rh), (8.5)

where we have used the fact that the surface gravity is defined as κ = (1/2)f ′(rh) and
its well-known relation to the Hawking temperature of the black hole.

Now, recall that the logarithm of a complex number z = |z|eiθ is given by

log z = ln |z|+ i(θ + 2πm),

with m = 0, 1, 2, . . . . That is, the complex logarithm is a multivalued function. There-
fore, so will our tortoise coordinate around a horizon. This multivaluedness plays a
crucial role in the current method: it will allow us to define the monodromy of the
tortoise coordinate. For example, suppose we have a horizon rh and we travel around
it along C (see figure below). Then, using (8.5), it is easy to see that the tortoise
coordinate will change as

x→ x− iβ
2
. (8.6)

This is the monodromy of x around a black hole horizon.

Re r

Im r

rh

C

C
2

Figure 8.1: Monodromy of the tortoise coordinate along a path C around a black hole horizon
in the r-plane. The monodromy does not change if we deform the contour and make it into a
bigger one, C2.

Now, we can readily find the monodromy of the plane wave solutions that will appear
in our asymptotic solutions to the wave equation. Using the equation above, it is easy to
see that as one takes e±iωx around a countour C enclosing a horizon, their monodromies
will be given by

MC,rh

[
e±iωx

]
= e±

βω
2 . (8.7)

This result will be one of the main ingredients in the computation of greybody factors
at high frequencies.

Before concluding this chapter, let us comment on a crucial point. We have found the
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monodromy of the tortoise coordinate and the planes waves around a black hole horizon.
If we deform the initial contour C, making it larger and larger (without crossing any
singularity!), until we obtain another contour C2 around the horizon, the monodromy
of the tortoise coordinate and of the plane wave around this final contour has to be the
same as that around the initial contour.

We have now all the general tools and definitions of the monodromy technique to
start our computations. The details explained in this chapter will hold for all the black
hole cases we will consider. The only exception is the one considered in chapter 10, but
we will explain the minor differences there.



Chapter 9

Greybody factors at high

frequency

In this chapter we use the monodromy technique to compute the greybody factors at
high frequency for two four-dimensional black holes in asymptotically flat spacetime. In
the case of the Reissner-Nordström black hole, the computation has not been presented
explicetely in the literature. Further references for this chapter are [34, 35, 27].

9.1 d = 4 Schwarzschild black hole

Before embarking on the actual greybody factor computation, we still need to specify
some other subtetiles regarding the form of the tortoise coordinate, of the solutions and
the explicit construction of the Stokes lines. We will be more explicit in this section in
order to explain thoroughly the steps involved in the computation.

9.1.1 Constructing the Stokes line

Recall that the Stokes line is the one that satisfies Rex = 0 in the r-plane. First, note
that the only singular point of the Stokes line will be at r = 0. Then, let us see its
behavior near that point. Going back for a moment to r, x ∈ R, the Schwarzschild
tortoise coordinate is given by

x = r + r0 log
∣∣∣∣ rr0
− 1
∣∣∣∣ , (9.1)

so that for r < r0, we can write it as

x = r + r0 log
(

1− r

r0

)
.

Then, to find the behavior of x around the origin, we expand the logarithm near r = 0
and get

x = r + r0

(
− r

r0
− r2

2r2
0

)
= − r2

2r0
. (9.2)
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Note that we only expand the log term to second order because that suffices to give us a
non-trivial result. This will change for other black holes, where we will need to expand
up to third order to get a non-trivial result. Of course, the event horizon r0 is located
on the real line in the r-plane.

Now, back to r, x ∈ C. We use the above relation with r = |r|eiθ, so that

x = −|r|
2

2r0
cos 2θ − i |r|

2

2r0
sin 2θ.

Hence, the condition Rex = 0 for the Stokes line implies that

θ =
(
m+

1
2

)
π

2
. (9.3)

Therefore, the Stokes line around the origin behaves as

r = |r|ei
π
2 (m+ 1

2), (9.4)

with m = 0, 1, 2, 3. These are just half-lines in the complex r-plane, separated by an
angle of π

2 . The first is at π
4 (see figure below).

Re r

Im r

m = 0m = 1

m = 2 m = 3

Figure 9.1: Behavior of the Stokes line very close to the origin for the Schwarzschild black
hole.

We will be interested in knowing the sign of ωx in each of the branches of the Stokes
line. It will be sufficient to know the sign of x by looking at equations (9.2) and (9.4).
For m = 0, 2 x is negative, while for m = 1, 3, x is positive. Since Imω → +∞, then
the sign of ωx is such that

Signωx = (−1)m. (9.5)

It is easy to see that if when we consider a wave with frequency Imω → −∞, the
formula would be Signωx = (−1)m+1.

Now, remember that x is a multivalued function near to the horizon. Therefore, the
horizon is a branch point. Also, from (9.1), we see that the Stokes line must intersect
the real line in a point greater than r0. Moreover, as r → +∞, it is easy to see from
the definition of the tortoise coordinate that x → +∞, or equivalently, x ∼ r. Then,
very far away from the origin, the Stokes line Rex = 0 will be approximately parallel
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to Re r = 0. With these last remarks, we have all the information needed to draw the
Stokes line below.

Re r

Im r

r0

Figure 9.2: Stokes line for the Schwarzschild black hole. The colored region corresponds to
Rex < 0. It will prove to be useful in our computation to know the sign of x in different regions.

9.1.2 Asymptotics of the solutions

Now, we need to know how our solutions behave in the limits of our physical region.
These will be the solutions that will be matched along the Stokes line constructed above.
We will be interested in the solutions as r → +∞ and r → 0. The reader might be
puzzled of why we are interested in studying the solutions to the wave equation near
the singularity r = 0, since that point has nothing to do with greybody factors and
their modification of Hawking radiation. This is not a problem: we are just using the
monodromy technique to study the behavior of the solutions in the r-plane. There is
nothing unphysical here.

Just for convenience, recall that the wave equation in this case was found to be(
d2

dx2
+ ω2 − V (r)

)
ψ(r) = 0. (9.6)

To keep things more general, we will use the potential given in chapter 4

V (r) = f(r)
[
l(l + 1)
r2

+
f ′(r)(1− j2)

r

]
,

with j the spin of the perturbation. We should, however, make an important remark.
How analysis below will depend on the term with f ′(r) being dominant, so that the
potential falls rapidly to zero far away from the black hole. Therefore, the results we
will obtain will not hold for j = 1. Hence, we will only take j = 0, 2 in our final results,
for scalar and gravitational perturbations, respectively.
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Solutions as r → +∞

In this limit, the potential V (r) goes to zero and we will have that the solutions behave
as

ψ(x) ∼ A+e
iωx +A−e

−iωx.

Of course, when we study, for example, the scattering of an incoming wave, one of the
coefficients will be replaced by a reflection coefficient R and the other will simply be
one.

Solutions as r → 0

Now, we turn to the task of finding the reduced expression for the potential in this case.
Near r = 0, it reduces to (see Appendix F)

V =
j2 − 1

4x2
. (9.7)

Therefore, after performing the change of variable ρ = ωx, the wave equation in this
region is

d2ψ

dρ2
+
(

1− j2 − 1
4ρ2

)
ψ = 0, (9.8)

with solutions given by

ψ(x) ∼ B+

√
2πωxJ j

2
(ωx) +B−

√
2πωxJ− j

2
(ωx), (9.9)

where Jn are Bessel functions of first kind.
Given that we will be interested in the regime where ωx � 1 (no need to take the

absolute value, because remember that we will use these solutions in the contour where
Imωx = 0), we can use the asymptotic expression for a Bessel function of first kind as a
cosine function, given in Appendix E. It is a simple exercise to check that the solution
to the wave equation reduces to

ψ(x) ∼ (-1)B eiωx + (1)B e−iωx, (9.10)

where we have borrowed the shorthand notation introduced in [33]

(m)B = B+e
imπ

4
(1+j) +B−e

imπ
4

(1−j). (9.11)

9.1.3 Rotating the tortoise coordinate and the solutions

Finally, recall that we will travel along contours in the r-plane to know the monodromy
of our solutions. Therefore, we will also need to know how does the tortoise coordinate
change as we travel from one branch of the Stokes line to another near r = 0 in the
r-plane. Of course, due to (9.4), these rotations will happen as multiples of π

2 . Then,
by looking at (9.2), it is easy to see that

Rotation of
π

2
in r → Rotation of π in x. (9.12)
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For convenience, let us see what happens to the solution (9.10) as we rotate an angle
of nπ

2 near r = 0 in the r-plane. This is equivalent to a rotation of nπ in x. With these,
the terms appearing in (9.9) will get modified as

√
2πωeinπxJ± j

2
(ωeinπx) = ei

nπ
2

(1±j)√2πωxJ± j
2
(ωx)

= 2ei
nπ
2

(1±j) cos
(
ωx− π

4
(1± j)

)
.

So, the solution will take the form

ψ ∼
[
B+e

i
(2n−1)π

4
(1+j) +B−e

i
(2n−1)π

4
(1−j)+

]
eiωx

+
[
B+e

i
(2n+1)π

4
(1+j) +B−e

i
(2n+1)π

4
(1−j)+

]
e−iωx,

which, using notation (9.11), can be written as

ψ ∼ (2n-1)B eiωx + (2n+1)B e−iωx. (9.13)

This equation will be handy when moving from one branch of the Stokes line to another.
However, when doing so, we will need to keep track of what the sign of ωx is in each of
the branches (9.5).

Finally, let us stress that most of what we have said in this and the previous sub-
section, have assumed that Imω → +∞. The above formulas are easily modified if
one considers Imω → −∞ and we will show how below, when computing the greybody
factor.

9.1.4 Greybody factor computation

We now have all the necessary tools to perform the explicit calculation of the greybody
factor. In some sense, what we will do is study the behavior of the solutions as we go
around a given contour in the r-plane and also study the monodromy of the solutions
around the horizon. These two steps will give us enough information to find explicit
expressions for the transmission and reflection coefficients associated to the potential
barrier. We will consider an incoming wave. The setup for the calculation is shown
below.

Incoming wave with positive frequency

First, let us consider an incoming wave with positive frequency Imω → +∞. We start
in the branch m = 2 of the Stokes line, at point 1, where r → ∞, so that the solution
there is given by

ψ(x) ∼ eiωx +Re−iωx.

Note that in this branch ωx is positive. Then, we approach r = 0, up to point 2, where
the solution is given by

ψ(x) ∼ (-1)B eiωx + (1)B e−iωx.
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r0

1

2

3

4

5

6

m=0

m=1

m=2

m=3

Figure 9.3: Setup for our computation in the Schwarzschild case. Note that the sign of ωx will
change in each branch of the Stokes lines depending on the sign of the frequency of the wave.

Given that we are on the Stokes line, we can match these two solutions. Therefore, we
get

(1)B = R

(-1)B = 1. (9.14)

Now, we rotate near r = 0 from point 2 to 3, which are separated by an angle of 3π
2 .

Then, using (9.13), we get that our solution at point 3 is

ψ(x) ∼ (7)B eiωx + (5)B e−iωx.

Note that we have used the fact that in the branch with m = 1, ωx is negative. Then, we
take this solutions and move along the Stokes line up to point 4. To close the contour,
we take big clockwise trip until we reach our initial point 1. Note that as we approach
it, we are in the region where Rex > 0, and since Imω → ∞, the term eiωx in the
solution is exponentially small and we cannot take its coefficient into account because
there will be inherent intedeterminacy in its value. Therefore, we only take into account
the term e−iωx, whose coefficient after travelling around the contour has changed by

(5)B
(1)B

.

Moreover, we have to remember that e−iωx has a monodromy of e−
βω
2 , so that its

coefficient after the trip effectively changes by

(5)B
(1)B

e−
βω
2 . (9.15)
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One can deform the contour considered above and reduce it to a contour very close
to the horizon r0. There, the solution goes as eiωx, because we are considering an
incoming wave with positive frequency. In this case, the monodromy of the solution as
we travel along the new small contour is e

βω
2 . The crucial step is to realize that the

monodromy must be the same in both cases: either if we travel around the big contour
or if we choose to go close to the horizon. Therefore, we get

(5)B
(1)B

e−
βω
2 = e

βω
2 . (9.16)

Finally, one can take our initial solution at point 2 an rotate until we reach the
branch m = 0 of the Stokes line at point 5. Using (9.13), we find that the solution there
is given by

ψ(x) ∼ (3)B eiωx + (5)B e−iωx.

Again, note that in that branch, ωx is positive. We could also take our solution at point
2 an rotate until we reach the branch m = 3 at point 6, where ωx is negative, and get

ψ(x) ∼ (3)B eiωx + (1)B e−iωx.

With this information, let us do the following. If we take the trip along the Stokes line
from point 5 to 6, we see that we are very close to the horizon and so, the solution there
is given by (5.9) as

ψ(x) ∼ Teiωx.

Comparing this equation with the two above, we immediately realize that

(3)B = T. (9.17)

Equations (9.14), (9.16) and (9.17) form the following linear system for the four
variables B+, B−, R, T

ei
π
4

(1+j) ei
π
4

(1−j) 0 −1
e−i

π
4

(1+j) e−i
π
4

(1−j) 0 0
ei

5π
4

(1+j) ei
5π
4

(1−j) 0 −eβω

ei
3π
4

(1+j) ei
3π
4

(1−j) −1 0



B+

B−
T

R

 =


0
1
0
0


We now take a moment to thank Stephen Wolfram for inventing Mathematica. Recalling
that j is an integer and it cannot be 1 for the reasons we explained in the beginning of the
previous subsection, the solutions we get for the transmission and reflection coefficients
are given by

T (ω) =
eβω − 1

eβω + 1 + 2 cosπj
,

R(ω) =
2i cos πj2

eβω + 1 + 2 cosπj
. (9.18)
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Incoming wave with negative frequency

Now, let us consider an incoming wave with negative frequency, so that Imω → −∞.
Recall that in this case the time dependent part of the field is e−iωt. The computation
proceeds exactly as before, except that the frequency being now negative changes the
plane wave terms and the sign of ωx in each of the branches of the Stokes line. At point
1, far away from the black hole, the solution is now given by1

ψ(x) ∼ eiωx + R̃e−iωx.

Recall that in this branch ωx is negative. To find the solution near r = 0, at point 2,
notice that it will not be the solution (9.10) that we used in the positive frequency case.
More explicitly, the solution to the wave equation there is of the form

ψ(x) ∼ B̃+

√
2πωxJ j

2
(ωx) + B̃−

√
2πωxJ− j

2
(ωx),

but now with ωx � −1. This fact changes the sign of the first term in the argument
of the cosine in the asymptotic expression for the Bessel function (E.3). It is a simple
exercise to check that the solution at point 2 reduces to

ψ(x) ∼ (1)
B̃
eiωx + (-1)

B̃
e−iωx, (9.19)

where (m)
B̃

has exactly the same form as (9.11), but with different coefficients. Match-
ing the two solutions above, we get

(-1)
B̃

= R̃

(1)
B̃

= 1. (9.20)

Equation (9.13) also needs to be modified in this case. It is straightforward to check
that after rotating an angle nπ

2 in the r-plane near r = 0, solution (9.19) becomes

ψ ∼ (2n+1)
B̃
eiωx + (2n-1)

B̃
e−iωx. (9.21)

Then, rotating from point 2 to 3, where ωx is now positive, the solution there becomes

ψ(x) ∼ (5)
B̃
eiωx + (7)

B̃
e−iωx.

We move it to point 4 and then close the contour back to our initial point 1. In this case,
as we close the path, the term e−iωx is exponentially small and its coefficient does not
enter the analysis. Then, the coefficient of eiωx as we travel along the contour changes
by (including also its monodromy)

(5)
B̃

(1)
B̃

e
βω
2 .

1At first sight, this equation seems to be in contradiction with the boundary conditions for an
incoming wave with negative frequency that we gave in chapter 5. However, we have to realize that we
are starting in a branch of the Stokes line where ωx < 0, so that the change of signs in the exponents
from (5.9) to (5.10) is now redundant and not necessary for our discussion.
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Again, we can deform the contour to one very close to the horizon, where the solution
in this case behaves as eiωx, whose monodromy is e

βω
2 . Then, we finally get

(5)
B̃

(1)
B̃

= 1. (9.22)

Finally, we take our initial solution at point 2 an rotate until we reach the branch
m = 0 of the Stokes line at point 5, where the solution is given by

ψ(x) ∼ (5)
B̃
eiωx + (3)

B̃
e−iωx.

Again, note that in that branch, ωx is negative. We could also take our solution at
point 2 an rotate until we reach the branch m = 3 at point 6, where ωx is positive, and
get

ψ(x) ∼ (1)
B̃
eiωx + (3)

B̃
e−iωx.

With this information, let us do the following. If we take the trip along the Stokes line
from point 5 to 6, we see that we are very close to the horizon and so, the solution there
is given by

ψ(x) ∼ T̃ eiωx.

Comparing this equation with the two above, we immediately realize that

(5)
B̃

= (1)
B̃

= T̃ . (9.23)

We now have a linear system for the four variables B̃+, B̃−, T̃ , R̃, given by equations
(9.20), (9.22) and (9.23). It is

ei
π
4

(1+j) ei
π
4

(1−j) 0 0
e−i

π
4

(1+j) e−i
π
4

(1−j) 0 −1
ei
π
4

(1+j) ei
π
4

(1−j) −1 0
ei

5π
4

(1+j) ei
5π
4

(1−j) 0 0



B̃+

B̃−
T̃

R̃

 =


1
0
0
1

 .

Solving it, we obtain

T̃ (−ω) = 1

R̃(−ω) = −2i cos
πj

2
. (9.24)

Results

Now that we have the transmission coefficients for an incoming wave of both positive
and negative frequency, we can use (5.14) to obtain the final expression for the greybody
factor at high frequency for the four-dimensional Schwarzschild black hole. It is given
by

γ(ω) =
eβω − 1

eβω + 1 + 2 cosπj
, (9.25)

for j = 0 or j = 2 the spin of the particle under consideration.
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Let us now restrict to the case of a massless scalar field, for which the greybody
factor becomes

γ(ω) =
eβω − 1
eβω + 3

, (9.26)

so that the original emission rate originated at the black hole horizon gets modified to
(see (5.1))

Γ(ω) =
1

eβω + 3
d3k

(2π)3
. (9.27)

9.2 d = 4 Reissner-Nordström black hole

Having explained carefully the steps involved for the Schwarzschild black hole, let us
be more concise in the discussion of this section. All steps are essentially the same as
before.

9.2.1 Constructing the Stokes line

Again, the only singular point of the Stokes line will be at r = 0. Going back for a
moment to r, x ∈ R, the tortoise coordinate in this case is given by

x = r +
r2

+

r+ − r−
log
∣∣∣∣ rr+
− 1
∣∣∣∣− r2

−
r+ − r−

log
∣∣∣∣ rr− − 1

∣∣∣∣ , (9.28)

where r+ and r− are the outer and inner horizon, respectively. So, for r < r0, we can
write the tortoise coordinate as

x = r +
r2

+

r+ − r−
log
(

1− r

r+

)
−

r2
−

r+ − r−
log
(

1− r

r−

)
.

Then, to find the behavior of x around the origin, we expand the logarithm near r = 0.
In this case, it is necessary to expand to third order in order to get a non-trivial answer.
We find that

x =
r3

3r+r−
. (9.29)

Now, back to r, x ∈ C. We use the above relation with r = |r|eiθ, so that the
condition Rex = 0 for the Stokes line implies that

θ =
(
m+

1
2

)
π

3
. (9.30)

Therefore, the Stokes line around the origin behaves as

r = |r|ei
π
3 (m+ 1

2), (9.31)

with m = 0, 1, 2, 3, 4, 5. These are just half-lines in the complex r-plane, separated by
an angle of π

3 . The first is at π
6 (see figure below).

We will be interested in knowing the sign of ωx in each of the branches of the Stokes
line. Following the same reasoning as for the Schwarzschild case, when Imω → +∞, we
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Re r

Im r

m = 0

m = 1

m = 2

m = 3 m = 5

m = 4

Figure 9.4: Behavior of the Stokes line very close to the origin for the Reissner-Nordström
black hole.

get
Signωx = (−1)m+1. (9.32)

When Imω → −∞, it is easy to check that the above formula changes to Signωx =
(−1)m.

Now, remember that x is a multivalued function near the horizons r+, r−. Therefore,
the two horizons are branch points. Also, in this case the Stokes line should intersect
the real line in two points: one between r− and r+ and the other between r+ and +∞.
Moreover, as r → +∞, it is easy to see from the definition of the tortoise coordinate
that x → +∞, or equivalently, x ∼ r. Then, very far away from the origin, the Stokes
line Rex = 0 will be approximately parallel to Re r = 0. With these last remarks, we
have all the information needed to draw the Stokes line below.

Im r

Re rr+r-

Figure 9.5: Stokes line for the Reissner-Nordström black hole. The colored region corresponds
to Rex < 0. It will prove to be useful in our computation to know the sign of x in different
regions.
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9.2.2 Asymptotics of the solutions

The wave equation is the same as before, but the potential term must be modified. This
is because we are considering a charged black hole, whose electromagnetic field will of
course interact with a spin j = 1 or j = 2 particle. We briefly mention in Appendix F
the modifications to the potential entering the wave equation. Let us now use those
results to see the form of the solutions for this black hole.

Solutions as r → +∞

In this limit, the potential V (r) still goes to zero and we will have that the solutions
behave as

ψ(x) ∼ A+e
iωx +A−e

−iωx.

Again, for an incoming wave, one of the coefficients will be replaced by the reflection
coefficient R and the other will simply be one.

Solutions as r → 0

Near r = 0, the potential reduces again to

V =
j2 − 1

4x2
, (9.33)

with j = 1
3 for spin-0 and spin-2 particles and j = 5

3 for spin-1 particles (see Appendix F
for the details). Therefore, after performing the change of variable ρ = ωx, the wave
equation in this region is again

d2ψ

dρ2
+
(

1− j2 − 1
4ρ2

)
ψ = 0, (9.34)

with solutions given by

ψ(x) ∼ B+

√
2πωxJ j

2
(ωx) +B−

√
2πωxJ− j

2
(ωx), (9.35)

where Jn are Bessel functions of first kind. Therefore, using again the asymptotic form
for the Bessel function, our solutions are exactly (9.10). That is

ψ(x) ∼ (-1)B eiωx + (1)B e−iωx, (9.36)

with the notation (9.13).

9.2.3 Rotating the tortoise coordinate and the solutions

Finally, recall that we will travel along contours in the r-plane to know the monodromy
of our solutions. Therefore, we will also need to know how does the tortoise coordinate
change as we travel from one branch of the Stokes line to another near r = 0 in the
r-plane. Of course, due to (9.31), these rotations will happen as multiples of π

3 . Then,



9.2 d = 4 Reissner-Nordström black hole 95

by looking at (9.29), it is easy to see that

Rotation of
π

3
in r → Rotation of π in x. (9.37)

Just as before, we want to know how the solutions change as we rotate an angle of
nπ
3 near r = 0 in the r-plane. This is equivalent to a rotation of nπ in x. Therefore, our

solutions will change just as in the Schwarzschild case (9.13)

ψ ∼ (2n-1)B eiωx + (2n+1)B e−iωx. (9.38)

Again, when using this formula in our computations, we need to keep track of what the
sign of ωx is in each of the branches of the Stokes line.

9.2.4 Greybody factor computation

We now have all the necessary tools to perform the explicit calculation of the greybody
factor. The steps are basically the same as before, except that we now have two physical
horizons and we have to be more careful when choosing the contour. We will explain
how to do it below. First, we present the setup for our calculation.

m=1

m=2

m=3

m=4

1

2 3

45

6

7

m=0

m=5

Figure 9.6: Setup for our computation in the Reissner-Nordström case. Note that the sign of
ωx will change in each branch of the Stokes lines depending on the sign of the frequency of the
wave.

Incoming wave with positive frequency

Again, let us first consider an incoming wave with positive frequency Imω → +∞. We
start in the branch m = 3 of the Stokes line, at point 1, where r → ∞, so that the
solution there is given by

ψ(x) ∼ eiωx +Re−iωx.
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Note that in this branch ωx is positive. Then, we approach r = 0, up to point 2, where
the solution is given by

ψ(x) ∼ (-1)B eiωx + (1)B e−iωx. (9.39)

Given that we are on the Stokes line, we can match these two solutions. Therefore, we
get

(1)B = R

(-1)B = 1. (9.40)

We now rotate from point 2 to 3, where, using (9.13), the solution is given by

ψ(x) ∼ (3)B eiωx + (5)B e−iωx. (9.41)

Note that point 3 is in a branch where ωx is positive. The reader might wonder why
we chose to move to point 3, instead of point 7. As we said above, given that there are
two horizons, we have to be more careful when choosing the contour, which will only
enclose the outer event horizon r+. Now that we are at point 3, we will travel along the
Stokes line around the inner horizon r− until we reach point 4. When doing, recall from
(8.6) that the tortoise coordinate will change as x→ x− iβ2 . Therefore, our plane wave
terms appearing in the solution will have monodromies already defined in (8.7) and in
this case they are

MC,r−

[
e±iωx

]
= e±

β−ω
2

Then, the solution at point 4 is

ψ(x) ∼ (1)C e
β−ω

2 eiωx + (-1)C e−
β−ω

2 e−iωx. (9.42)

Let us make some remarks about this solution. We have not obtained it by using our
rotation formula with the solution from point 3, because our trip between these two
points did not take place near the origin. However, the plane wave terms will still be in
the solution with their corresponding monodromies. Then, the solution at point 4 will
be just like (9.39), but with different coefficients: there is no reason why they whould
be the same. Finally, to obtain the form of the solution written above, notice that in
the branch of point 4, ωx is negative. By matching the solutions at points 3 and 4, we
obtain

(3)B = (1)C e
β−ω

2

(5)B = (-1)C e−
β−ω

2 . (9.43)

We now want to rotate from point 4 to 5. It is important to note that we cannot
use the formula (9.13) with the solution (9.42): the former is only valid with solutions
of the form we had at point 2, for example. Instead, we will make use of the rotation
formula (9.21) that we obtained in the negative frequency case for the Schwarzschild
black hole, which applies to solutions of the form we have at point 4. Then, at point 5
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we have
ψ(x) ∼ (5)C e

β−ω
2 eiωx + (3)C e−

β−ω
2 e−iωx. (9.44)

We move the above solution along the Stokes line up to point 6 and then close the
contour along the big clockwise trip until we reach point 1. As we approach it, we are
in the region where Rex > 0, so that the term eiωx is exponentially small and will not
be taken into account. Hence, we are only interested in the change in the coefficient of
the term e−iωx. Comparing (9.39) and (9.44), and including its monodromy as it travels
around the outer horizon, the change of the coefficient of e−iωx is

(3)C e−
β−ω

2

(1)B
e−

β+ω

2 .

Again, by deforming our contour to a small one around the outer horizon, we require
that the monodromy remains the same. Close to the horizon, the solution behaves as

eiωx, which has monodromy e
β+ω

2 . Therefore, we obtain

(3)C e−
β−ω

2

(1)B
e−

β+ω

2 = e
β+ω

2 . (9.45)

Finally, to get an equation involving the transmission coefficient, take our solution
at point 2 and rotate it to point 7, where ωx is negative. There, the solution will be

ψ(x) ∼ (3)B eiωx + (1)B e−iωx. (9.46)

Now, imagine we started a trip at point 3, traveled along the Stokes line around the
inner horizon to point 4, then move to the part of the Stokes line that goes around the
outer horizon to point 7 and go back to our initial point 3. In this trip, we are moving
close to r+, where the solution is

ψ(x) ∼ Teiωx.

Then, comparing (9.41) and (9.46) with the equation above, we get

(3)B = T. (9.47)

Equations (9.40), (9.43), (9.45) and (9.47) form a linear system M · v = z, with the
two column vectors z = (0; 1; 0; 0; 0; 0) and v = (B+;B−;C+;C−;T ;R) and M given by

ei
π
4

(1+j) ei
π
4

(1−j) 0 0 0 −1
e−i

π
4

(1+j) e−i
π
4

(1−j) 0 0 0 0

ei
3π
4

(1+j) ei
3π
4

(1−j) −e
β−ω

2 ei
π
4

(1+j) −e
β−ω

2 ei
π
4

(1−j) 0 0

ei
5π
4

(1+j) ei
5π
4

(1−j) −e
−β−ω

2 e−i
π
4

(1+j) −e
−β−ω

2 e−i
π
4

(1−j) 0 0

eβ+ωei
π
4

(1+j) eβ+ωei
π
4

(1−j) −e
−β−ω

2 ei
3π
4

(1+j) −e
−β−ω

2 ei
3π
4

(1−j) 0 0
ei

3π
4

(1+j) ei
3π
4

(1−j) 0 0 −1 0
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Solving the system, we obtain

T (ω) =
eβ+ω − 1

eβ+ω + 2e−β−ω (cosπj + 1) + 2 cosπj + 1
,

R(ω) =
2i cos πj2

(
1 + e−β−ω

)
eβ+ω + 2e−β−ω (cosπj + 1) + 2 cosπj + 1

. (9.48)

Incoming wave with negative frequency

Let us now consider the case of negative frequency. The reasoning here is the same as in
the Schwarzschild case. Yet again, at point 1, far away from the black hole, the solution
is given by

ψ(x) ∼ eiωx + R̃e−iωx.

Note that in this branch, ωx is now negative. Therefore, at point 2, the solution is given
by (9.19)

ψ(x) ∼ (1)
B̃
eiωx + (-1)

B̃
e−iωx.

Matching these two solutions, we get

(-1)
B̃

= R̃

(1)
B̃

= 1. (9.49)

Now, rotating from point 2 to 3 using (9.21), the solution there is given by

ψ(x) ∼ (5)
B̃
eiωx + (3)

B̃
e−iωx. (9.50)

Again, we take the trip around the inner horizon and end up in point 4, where ωx is
now positive. By the same reasoning than in the positive frequency case, the solution
there is given by2

ψ(x) ∼ (-1)
C̃
e
β−ω

2 eiωx + (1)
C̃
e−

β−ω
2 e−iωx.

Matching the solutions at points 3 and 4 yields

(5)
B̃

= (-1)
C̃
e
β−ω

2

(3)
B̃

= (1)
C̃
e−

β−ω
2 . (9.51)

We now use (9.13) and rotate from point 4 to 5, where the solution becomes

ψ(x) ∼ (3)
C̃
e
β−ω

2 eiωx + (5)
C̃
e−

β−ω
2 e−iωx.

Move this solution to point 6 and then close to contour back to point 1. When ap-
proaching it, now the term that will be exponentially small will be e−iωx, so that we
only need to see how the coefficient of eiωx change as we traveled along the contour.
Comparing the solutions at points 2 and 6, it is easy to see that the coefficient changed

2Since point 4 is in a branch where ωx is positive, the solution there is of the form (9.36).
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by, including its monodromy around the outer horizon

(3)
C̃
e
β−ω

2

(1)
B̃

e
β+ω

2 .

However, this change should be equal to the monodromy of the solution around a contour
very close to the horizon, where it behaves as eiωx. Therefore, we get

(3)
C̃
e
β−ω

2

(1)
B̃

= 1. (9.52)

To get an equation for the transmission coefficient, let us rotate the solution at point
2 to point 7 using (9.21). Since at point 7 ωx is positive, the solution there will be

ψ(x) ∼ (1)
B̃
eiωx + (3)

B̃
e−iωx. (9.53)

Now, imagine we started a trip at point 3, traveled along the Stokes line around the
inner horizon to point 4, then move to the branch of the Stokes line with m = 1 and
travel around the outer horizon until we get to point 7 and go back to our initial point
3. In this trip, we are moving close to r+, where the solution is yet again

ψ(x) ∼ T̃ eiωx.

Then, comparing (9.50) and (9.53) with the equation above, we immediately realize
that

(1)
B̃

= (5)
B̃

= T̃

(3)
B̃

= 0. (9.54)

Note that from (9.49) and (9.54), we immediately get T̃ = (5)
B̃

= 1. Then, using
(9.49), (9.51), (9.52) and (9.54) we solve the linear system M · v = z, with the two
column vectors z = (0; 1; 1; 0; 1; 0) and v =

(
B̃+; B̃−; C̃+; C̃−; T̃ ; R̃

)
and M given by



e−i
π
4

(1+j) e−i
π
4

(1−j) 0 0 0 −1
ei
π
4

(1+j) ei
π
4

(1−j) 0 0 0 0

0 0 e
β−ω

2 e−i
π
4

(1+j) e
β−ω

2 e−i
π
4

(1−j) 0 0

ei
3π
4

(1+j) ei
3π
4

(1−j) −e
−β−ω

2 ei
π
4

(1+j) −e
−β−ω

2 ei
π
4

(1−j) 0 0

0 0 e
β−ω

2 ei
3π
4

(1+j) e
β−ω

2 ei
3π
4

(1−j) 0 0
ei
π
4

(1+j) ei
π
4

(1−j) 0 0 −1 0


.

Solving the system, we obtain

T̃ (−ω) = 1,

R̃(−ω) =
−2i ei

πj
2 (1 + cosπj)
1 + eiπj

. (9.55)
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Results

The final expression for the greybody factor at high frequency for the four-dimensional
Reissner-Nordström black hole is given by

γ(ω) =
eβ+ω − 1

eβ+ω + 2e−β−ω (cosπj + 1) + 2 cosπj + 1
, (9.56)

where j = 1
3 if considering a spin-0 or spin-2 particle and j = 5

3 if considering a spin-1
particle.

Therefore, the result for a massless scalar field is

γ(ω) =
eβ+ω − 1

eβ+ω + 3e−β−ω + 2
, (9.57)

so that the original emission rate originated at the black hole outer horizon gets modified
to

Γ(ω) =
1

eβ+ω + 3e−β−ω + 2
d3k

(2π)3
. (9.58)

9.3 Suggestive results

As we can see, the results we have obtained in the previous sections are highly suggestive.
Focusing on the results for a massless scalar field, the greybody factors at high frequency
that we found have the characteristic Bose-Einstein statistics term in the numerator,
which exactly cancels the one appearing in the formula for the Hawking radiation rate.
The resulting emission rates as measured far away from the black hole have peculiar
forms. In the case of the Schwarzschild black hole, the denominator looks like a modified
Fermi-Dirac statistics term. In [36], the author coined the name tripled Pauli statistics
to refer to this term.3 In the case of the Reissner-Nordström black hole, the denominator
involves Boltzmann factors for both the outer and inner horizons.

We have already shown in chapter 6 and chapter 7 that for the five-dimensional
black hole with three charges, the greybody factor computed at low frequency in the
semiclassical picture admitted a realization in string theory. Drawing on theses results,
Motl and Neitzke [33, 34] proposed that the results obtained above for the greybody
factors at high frequency should admit a dual description. If so, the degrees of freedom
in the dual gauge theory must have rather exotic statistics, as the ones appearing in the
greybody factors (9.26) and (9.57). In the case of the charged black hole, it is rather
strange that there is a term involving the inverse temperature of the inner horizon.
It appears that the geometry outside the black hole that modifies the initial Hawk-
ing radiation somehow “knows” about the inner horizon, although they are causally
disconnected by the outer event horizon.

3Historically, Pascual Jordan was the first to find the Fermi-Dirac statistics, which he named Pauli
statistics.



Chapter 10

An attempt

In this chapter, we present an attempt of an original computation. We will apply
the monodromy technique to compute the greybody factor at high frequency for the
five-dimensional black hole with three charges introduced in chapter 3. We restrict to
the case of a massless scalar field. We choose this specific black hole because it has a
well-known D-brane description; therefore, the results in this case might be more easily
realized in the context of string theory.

10.1 Setup

The metric of the five-dimensional black hole with three charges is

ds2
5 = −λ−2/3h dt2 + λ1/3

(
dr2

h
+ r2 dΩ2

3

)
,

where

λ =
∏

j=1,5,p

(
1 +

r2
j

r2

)
(10.1)

and

h = 1− r2
0

r2
. (10.2)

We will restrict to the case of a propagating massless scalar field in the above back-
ground. Recall that the equation we found in chapter 4 for the radial part of this field
Φ = r−3/2ψ(r)eiωtYlmm′ was (

d2

dx2
+ λω2 − V

)
ψ = 0,

with the potential given by

V (r) = h
l(l + 2)
r2

+
3h2

4
1
r2

+
3hh′

2
1
r
. (10.3)

Note that since we are not in the low frequency regime, we cannot simply use the S-
wave approximation to set l = 0 in the formula for the potential. Just as in the previous
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chapter, the goal will be to analytically continue r to the complex plane and study the
behavior of our solutions to compute the greybody factors. Therefore, the first thing
to notice is that we will have two horizons r0 and −r0, which are solutions of h(r) = 0.
Obviously, the physical horizon is still r0, but we will need to position of the other one
to draw the Stokes line. Finally, the tortoise coordinate for this black hole is defined as

x ≡
∫

dr

h(r)
= r +

r0

2
log
∣∣∣∣r − r0

r + r0

∣∣∣∣ (10.4)

Now, let us give the assumptions that we will make in order to perform our calcu-
lations. We will work in the dilute gas regime, so that

r0, rp � r1, r5

and we will treat the ratios r0/rp and r1/r5 as order one. Furthermore, since we will be
considering high (imaginary) frequencies, we define our energy conditions as

|ωr1| � 1, |ωr5| � 1, |ωr0| � 1.

10.2 Monodromy of the tortoise coordinate and plane waves

We want to find the monodromy of the tortoise coordinate around the two horizons of
the black hole. As we did before, let us expand h(r) around a horizon rn and see its
behavior. We get

x =
∫

dr

(r − rn)h′(rn)
=
βn
4π

log(r − rn),

where we have used that the surface gravity at the horizon rn is just κn = (1/2)h′(rn)
and its relation to the Hawking temperature. Then, we find that the monodromy of x,
as we take it around a contour C enclosing a horizon, is just

x→ x− iβn
2
. (10.5)

Hence, the monodromy of the plane waves appearing in our solutions will be

MC,rn

[
e±iωx

]
= e±

βnω
2 (10.6)

10.3 Constructing the Stokes line

In a similar fashion to what was done previously, let us begin by find the behavior of the
tortoise coordinate around the origin. Going back to r, x ∈ R for a while, near r = 0,
the tortoise coordinate (10.4) can be written as

x = r +
r0

2
log

(
1− r

r0

1 + r
r0

)
.
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Now, we need to expand the logarithm up to third order to get a non-trivial answer.
Doing that, we get

x = − r3

3r2
0

. (10.7)

Back to r, x ∈ C. Again, by writing r = |r|eiθ, the above equation becomes

x = −|r|
3

3r2
0

cos 3θ − i |r|
3

3r2
0

sin 3θ.

Then, the condition Rex = 0 for the Stokes line implies that

θ =
(
m+

1
2

)
π

3
,

so that near the origin, we have

r = |r|ei
π
3 (m+ 1

2),

with m = 0, 1, 2, 3, 4, 5. These are just half-lines in the complex plane, separated by an
angle of π

3 (see figure below).

Re r

Im r

m = 0

m = 1

m = 2

m = 3 m = 5

m = 4

Figure 10.1: Behavior of the Stokes line very close to the origin for the five-dimensional black
hole with three charges.

The sign of ωx will be determined by that of x. From the equation above, we can
see that for m = 0, 2, 4, x is negative, while for m = 1, 3, 5, it is positive. Therefore,
since Imω → +∞, we have that

Signωx = (−1)m. (10.8)

It is easy to check that if we consider a wave with negative frequency Imω → −∞, the
formula becomes

Signωx = (−1)m+1. (10.9)

To finally construct the Stokes line, note that the two horizons will be branch points
and, again, as r → +∞, r ∼ x. Then, the Stokes line Rex = 0 will be approximately
parallel to Re r = 0 in that limit. We have all the information neede to draw the Stokes
line below.
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Im r

Re rr0-r0

Figure 10.2: Stokes line for the five-dimensional black hole with three charges. Again, the
colored region corresponds to Rex < 0.

10.4 Asymptotics of the solutions

Again, we will be interested in the solutions as r → +∞ and r → 0.

10.4.1 Solutions as r → +∞

In this limit, we immediatelty see that λ = 1 and V (r) = 0. So, the solutions of our
wave equation are just of the form

ψ(x) ∼ A+e
iωx +A−e

−iωx. (10.10)

Again, the coefficients above will be replaced either by 1 or R, the reflection coefficient
of the potential barrier, in the case of an incoming wave.

10.4.2 Solutions as r → 0

To find the solutions in this limit, we first need to express V and λ in terms of the
tortoise coordinate and see if the equation reduces to a simple form. This is not an easy
task because what we are looking for is a resulting equation that has plane wave terms
in its solution, so that we can match them to the solution at r → +∞. That is the
approach we used in the previous chapter. Let us try do the same here.

First, we use (10.7) to find r in terms of x in this region. We get

r =


i1/3(3x)1/3r

2/3
0

−i2/3(3x)1/3r
2/3
0

−(3x)1/3r
2/3
0 .

(10.11)

We will work with the real solution. Now, let us write the explicit expression for the
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potential (9.10) keeping all terms in h(r), h2(r) and h′(r) appearing in the formula.
At first sight it might seems like we could neglect the 1 terms appearing in h and h2

compared to the r−n terms. However, we choose to keep them because it might prove
to be useful later on when we will try to make some clever approximations. The full
potential as a function of r is

V (r) =
3
4 + l(l + 2)

r2
+
r2

0

[
3
2 − l(l + 2)

]
r4

− 9r4
0

4r6
. (10.12)

Using the real solution from (10.11), we can write the potential as a function of the
tortoise coordinate as

V (x) =
3
4 + l(l + 2)

91/3r
4/3
0 x2/3

+
3
2 − l(l + 2)

811/3r
2/3
0 x4/3

− 1
4x2

. (10.13)

Following the same idea, keeping all terms in λ(r), its formula is explicitly

λ(r) = 1 +
r2

1 + r2
5 + r2

p

r2
+
r2

1r
2
5 + r2

1r
2
p + r2

5r
2
p

r4
+
r2

1r
2
5r

2
p

r6
, (10.14)

which in terms of the tortoise coordinate is

λ(x) = 1 +
r2

1 + r2
5 + r2

p

91/3r
4/3
0 x2/3

+
r2

1r
2
5 + r2

1r
2
p + r2

5r
2
p

811/3r
2/3
0 x4/3

+
r2

1r
2
5r

2
p

9r4
0 x

2
. (10.15)

Let us now make the first attempt to solve the wave equation. To do so, we will
neglect all the terms of 1 appearing in the formulas (10.1) and (10.2) for λ and h and
also in h2. Given that we are near r = 0, this seems like a plausible thing to do. Doing
that, the formulas (10.13) and (10.15) simplify to

V (x) =
3
2 − l(l + 2)

811/3r
2/3
0 x4/3

− 1
4x2

(10.16)

and

λ(x) =
r2

1r
2
5r

2
p

9r4
0 x

2
. (10.17)

Note that we can use the fact that we are taking the ratio r0/rp as order one and the
temperatures defined in (3.18) to further simplify the expression for λ to

λ(x) =
1

36π2TLTR x2
(10.18)

We plug the two expressions above into the wave equation and make the following
change of variable ρ = ωx and divide everything by ω2. Doing this, we get(

d2

dρ2
+

ω2

36π2TLTR ρ2
−

3
2 − l(l + 2)

811/3(ωr0)2/3ρ4/3
+

1
4ρ2

)
ψ(x) = 0.

However, due to the high energy conditions that we gave in the previous section, we
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can neglect the third term, so that the equation reduces to(
d2

dρ2
+

ω2

36π2TLTR ρ2
+

1
4ρ2

)
ψ(ρ) = 0.

This is a rather simple equation, whose solution is given by

ψ(x) = C1(ωx)
1
4(2−4

√
−A) + C2(ωx)

1
4(2+4

√
−A),

for some constants C1 and C2 and where we have set A = 1/(36π2TLTR). The problem
with this solution is that, as we said in the beginning of this subsection, we are looking
for a solution that has plane wave terms in order to be able to match it with the one at
r → +∞. So, our approximmation has not worked in this case.

Another possibility is to rescale the solution itself. For example, one can make
ψ = λϕ and assume the same reduced expressions for V and λ as above. In that case,
we obtain an equation whose solutions are also linear combinations of some powers of
x. Therefore, that does not help either.

Recall that in the previous chapter, we could obtain a wave equation that looked
like a Bessel differential equation due to the presence of a single term of ψ(x) in the
equation (see e.g. (9.8)). Apparently, the only way to obtain an equation similar to that
one is to not drop the terms of 1 appearing in the original expression for λ (10.1). That
means that we have to consider the full expression for our computation. That seems
rather complicated and we can anticipate that the resulting differential equation will
probably be hard to solve. Nevertheless, let us see if you can simplify it enough to make
it solvable.

First let us simplify the expression for λ using the dilute gas regime conditions
mentioned in our setup. With them, some of the terms in (10.14) will get simplified as
follow:

r2
1 + r2

5 + r2
p

r2
→ r2

1 + r2
5

r2
,

r2
1r

2
5 + r2

1r
2
p + r2

5r
2
p

r4
→ r2

1r
2
5

r4
.

Note that to obtain the second simplification we also made use of the fact that we
mentioned in our setup that we would take the ratio r1/r5 as order one. Furthermore,
we can again use the temperatures (3.18), with which the second term above becomes

r2
1r

2
5

r4
=

r2
0

4π2TLTRr4
.

Recall also the the last term in (10.14) can be written in terms of the temperatures, as
we did in our previous attempt.

Then, the formula for λ that we will work with is

λ(r) = 1 +
r2

1 + r2
5

r2
+

r2
0

4π2TLTR r4
+

r2
0r

2
p

4π2TLTR r6
. (10.19)
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The formula for V that we will use is just its full expression (10.12). Now, we write
them both in terms of the tortoise coordinate and plug them into the wave equation.
We get [

d2

dx2
+ ω2 +

ω2
(
r2

1 + r2
5

)
91/3r

4/3
0 x2/3

+
ω2

4(81)1/3π2TLTR r
2/3
0 x4/3

+
ω2

36π2TLTR x2
+

−
3
4 + l(l + 2)

91/3r
4/3
0 x2/3

−
3
2 − l(l + 2)

811/3r
2/3
0 x4/3

+
1

4x2

]
ψ(x) = 0. (10.20)

Imagine we would use the same method that proved to be successful for in the previous
chapter. That is, make the change ρ = ωx and divide everything by ω2. Then, the two
first terms of the potential could again be neglected because they would have powers of
ωr0 in their denominators. Therefore, the resulting equation would be[

d2

dρ2
+ 1 +

ω2
(
r2

1 + r2
5

)
91/3(ωr0)4/3ρ2/3

+
ω2

4(81)1/3π2TLTR (ωr0)2/3ρ4/3
+

+
ω2

36π2TLTR ρ2
+

1
4ρ2

]
ψ(ρ) = 0. (10.21)

Note that the second and third term of λ cannot be neglected like we did with the two
first terms of the potential. That is because even though they also have powers of ωr0

in their denominators, they also have powers of ωr1 and ωr5 in their numerators, which
due to the conditions on the energy and of the dilute gas regime, must be dominant.
Therefore, these two terms of λ spoil the desired Bessel form for our differential equation.
Without them, we would have solutions that would have plane wave terms and we would
be ready to carry on the computation of the greybody factor. Trying to solve the above
equation directly using some software does not help either, as it does not return any
solution.

Apparently, if one wants to use the monodromy technique for the stringy black hole
that we have considered in this chapter, the crucial step is to be able to reduce the
wave equation in the limit r → 0 to a form for which the solution can be matched to
the solution at r → +∞. As we have seen above, it is not a trivial task, but rather
a tricky one. There should be some clever change of variable or rescale of ψ that
brings the equation to the desired form. Once that is done, the computation should be
straightforward: it would proceed much like in the Schwarzschild case, with the choice
of contour sketched below.
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r0-r0

Figure 10.3: Sketch of the contour choice for the computation.



Chapter 11

Conclusions

We have given a pedagogical and thorough review of greybody factors for black holes in
asymptotically flat spacetimes. Again, our goal was to publicize the subject as a possible
way to learn new quantum features of black holes. As a motivation, we presented the
computation in the low frequency regime for a stringy black hole. In the high frequency
regime, we reviewed the monodromy technique and used it to compute the greybody
factors for the Schwarzschild and Reissner-Nordström black holes. The latter had not
been done explicitely in the literature. The reader might wonder how is it that greybody
factors at large frequencies might teach us new things about the quantum structure of
black holes. Pictorially, if we take a very high frequency wave, we could expect that
it will be able to “probe” smaller length scales in the black hole geometry. One could
then imagine that new degrees of freedom will make themselves manifest.

Let us conclude by discussing some subtelties of the computations at high frequency.
We also comment on some recent developments in the subject and give some suggestions
that should be taken into account for further work in the subject.

Corrections to the potential

The careful reader might have noticed that we ommited some terms in the approximation
we made to find the form of the potentials as r → +∞. These terms are of order
O (ωrh)−n, with rh the horizons of the black holes we considered. Given that we worked
in the high frequency limit, the energy condition is given by ωrh � 1. Therefore, the
fact that we did not take those terms into account seems perfectly reasonable. However,
it would be interesting to compute the greybody factors considering, at least, the first-
order correction to the potentials. Perhaps the suggestive form of our results would get
modified in such a way that it would either invalidate or strengthen the conjecture of
a dual description. We should note that the first-order correction to the potentials was
considered in [37], but in the context of quasinormal frequencies, which can be regarded
as the poles of the denominator of the greybody factor. Nevertheless, it would be good
to compute directly the greybody factors, as their numerators also contain important
information.
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Stringy black hole

Finally, let us stress that it would be interesting to continue the computation we started
for the five-dimensional black hole with three charges. As we said previously, the prob-
lem boils down to finding the wave equation near r = 0. Once that is done, the compu-
tation should be straightforward using the Stokes line and contour shown in chapter 10.
Perhaps the way to solve the equation is to go back to the one written for φ(r), instead
of solving the one for ψ(r). Granted that the latter was more useful because it had a
simple Schrödinger-like form, but in the case of the stringy black hole there is apparently
no way out if we use the steps that proved to be useful in the case of the Schwarzschild
and Reissner-Nordström black holes. Finally, let us say that the setup for our attempt
relied heavily on the dilute gas regime assumptions. One could also speculate that by
taking other conditions, the wave equation can be brought to a solvable form.

Non-asymptotically flat spacetimes

In this thesis, we have only considered black holes in asymptotically flat spacetimes.
However, the reader might be wondering that happens in the case of asymptotically
de Sitter and Anti de Sitter spacetimes. In [27], the authors worked out a full study
for this cases in both the low and high frequency regimes. They also considered the
cases presented in this thesis, but only mentioned the results by taking a special limit
of de Sitter spacetime. In that sense, we hope that our presentation of the monodromy
technique and its application to the computation of greybody factors at high frequency
provides a good reference for anyone interested in this subject.

When considering black holes in asymptotically de Sitter spacetimes, the main dif-
ference is that spatial infinity is replaced by the cosmological horizon rc. The formula
for the greybody factor (5.14), the range of the tortoise coordinate, the form of the wave
equation and its solutions far away from the hole and near r = 0 are the same. The
results also have suggestive Boltzmann and statistics factors.

There are more differences in the case of asymptotically Anti de Sitter spacetimes.
The range of the tortoise coordinate and the definition (5.14) of the greybody factor
will vary. Remarkably, in this case the result for greybody factors obtained in [27] is
universal: it is always equal to 1. This is quite a puzzling result and one can imagine that
further investigation can mbe made in the context of the AdS/CFT correspondence.

Rotating black holes

We have only considered static and spherically symmetric black holes, where one needs
to study the simple Klein-Gordon equation in a background. In the case of rotating
black holes, things are more complicated due to the lack of the symmetries one has in
the cases we have considered. To study the propagation of a particle in this kind of
background, one uses Teukolsky’s equation. Recently, Keshet and Neitzke [38] solved
the problem of finding the quasinormal modes and greybody factor at high frequency
for a four-dimensional Kerr black hole using the monodromy technique. Let us just
mention their results, as they seem to give new hints to a possible dual description. The
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greybody factor they obtained is given by

γ(ω) =
eε(ω−mΩ)/TH ± 1
eε(ω−ω̃o)/2To + 1

e−ε(ω−mΩ)/TH ,

with the minus (plus) sign for bosons (fermions). With this, the emission rate as mea-
sured far away from the black hole is

Γ(ω) =
e−ε(ω−mΩ)/TH

eε(ω−ω̃o)/2To + 1
d3k

(2π)3
.

Here, TH is the Hawking temperature of the hole, Ω is the angular velocity of the event
horizon, while m and s are the azimuthal quantum number and spin of the parctiel
under consideration. The variable ε is just the relative sign between two parameters in
the problem, which we should not care about here. The punch line is that the relation
between the quasinormal modes (QNMs)and total-transmission modes (TTMs) of the
black hole1 resembles the relation between quantities of two sectors of a dual CFT. Of
course, this is very much what happened in the case at low frequency considered in
chapter 6 and chapter 7. More especifically, the temperatures that one can associate
with QNMs and TTMs are related by an equation like (7.3). Keshet and Neitzke spec-
ulate that the dual description should involved two distinct sets of degress of freedom,
somehow related to QNMs and TTMs. However, as we can see from the formulas writ-
ten above, both sectors do not enter into the final answer, only the QNMs sector. The
authors speculate that perhaps the correct dual picture here involves a single excitation
associated with QNMs decaying into two quanta, one of which enters the subsystem
associated with TTMs while the other emerges as Hawking radiation. It would be in-
teresting to further investigate the case for rotating black hole in the high frequency
limit.

Backreaction

As we said in chapter 5, if we have a wave propagating in a black hole background
with sufficiently high frequency, it can effectively “see” the curvature of spacetime.
Therefore, the obvious, but very non-trivial step, is to include the effect of backreaction
in the analysis. Of course one may say that the results obtained in this thesis are
not valid because they do not include the effect of backreaction. However, we believe
they are still interesting as a first step toward the full computation of greybody factors
in the high frequency regime. The monodromy technique introduced is quite robust
and it should hold when taking backreaction into account. The real problem is how
to include this effect in the analysis. One possibility would be to consider shockwave
geometries [39], which describe the geometry that a high energy particle produces as
it propagates in spacetime. That is, one could study how a particle propagates in a
shockwave geometry produced by a preceding particle and see what kind of equation
one obtains.

1These are just different resonances of the holes. The subscript o appearing in the formula for the
greybody factor corresponds to QNMs.
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Appendix A

Penrose diagrams

We mentioned and showed some Penrose diagrams in chapter 1. In this appendix, we
will quickly explain what they are and why we included them in this thesis. In general,
a spacetime metric may be very intrincate and complicated, which may hide some of
its symmetries and hence does not allow to have an easy visualization of its global
properties. It is therefore useful and convenient to represent spacetimes in a way that
easily reproduces their causal structure, i.e. the relation between past and future events
as determined by their respective light cones. This is accomplished by drawing Penrose
diagrams.

In order to obtain the Penrose diagram for a given spacetime, we need to perform a
series of coordinate transformations such that in the end, timelike and spacelike coor-
dinates have finite ranges and the lightcones form angles of 45◦. The initial metric will
be related to an “unphysical” metric by a conformal transormation

d̃s
2

= ω2ds2 (A.1)

To illustrate the procedure, let us use the simplest example: Minkowski spacetime.
In polar coordinates (t, r, θ, φ), it is given by

ds2 = −dt2 + dr2 + r2 dΩ2
2, (A.2)

with dΩ2
2 = dθ2 + sin2 θdφ2 the metric on a unit 2-sphere. In this case, the lightcones

already form angles of 45◦, but the coordinate t and r have infinite ranges

−∞ < t <∞, 0 ≤ r <∞.

Let us first switch to null coordinates, defined by

u = t− r, v = t+ r,

so that u ≤ v and whose ranges are given by

−∞ < u <∞, −∞ ≤ v <∞.

In Figure A.1, each point represents a 2-sphere of radius r = 1
2(v − u). In these null
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t

r

u = constant

v = constant

Figure A.1: Null coordinates for the Minkowski metric.

coordinates, the Minkowski metric reads

ds2 = −1
2

(dudv + dvdu) +
1
4

(v − u)2 dΩ2
2. (A.3)

Our new coordinates still have infinite ranges. Therefore, our next coordinate trans-
formation needs to bring an infinite value to a finite one. Let us recall that the function
arctan exactly exhibits this behavior, given that

arctan (±∞) = ±π
2
.

So, we now define our new coordinates as

U = arctanu,

V = arctan v,

so that U ≤ V and their finite ranges are given by

−π
2
< U <

π

2
, −π

2
< V <

π

2
.

In terms of these new coordinates, the metric (A.3) becomes

ds2 =
1

4 cos2 U cos2 V

[
−2 (dUdV + dV dU) + sin2 (V − U) dΩ2

2

]
. (A.4)

Lastly, let us transform back to a timelike coordinate T and a radial coordiante R
by making

T = V + U,

R = V − U,

with ranges
0 ≤ R < π, |T |+R < π. (A.5)
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In terms of these new coordinates, the metric (A.4) reads

ds2 =
1

(cosT + cosR)2

(
−dT 2 + dR2 + sin2RdΩ2

2

)
. (A.6)

We have finally arrived to our desired result: the original metric ds2 is now related
to an “unphysical” metric d̃s

2
via a conformal transformation. That is

d̃s
2

= ω2ds2, (A.7)

with

ω = cosT + cosR,

d̃s
2

= −dT 2 + dR2 + sin2RdΩ2
2. (A.8)

The metric d̃s
2

describes the manifold R×S3, where we see that the 3-sphere is purely
spacelike. Of course, this metric has curvature, unlike in Minkowski spacetime. This
is not a problem: the real, physical metric is still flat spacetime, which is recovered
by performing the conformal transformation. If we have curvature in our result it is
because our choice of coordinates implies so.

We are one step away from getting the Penrose diagram for the Minkowski metric.
First, let us draw R × S3 on a cylinder, where each circle of constant T represents a
3-sphere. The shaded region in Figure A.2 corresponds to Minkowski spacetime, which
in this case is the subspace defined by (A.5). Finally, we can unroll the shaded region

T

T=π

T=-π

R=0

R=π

Figure A.2: Entire manifold R × S3. Each circle of constant T represents a 3-sphere. The
shaded region corresponds to Minkowski spacetime.

to obtain a triangular diagram that represents Minkowski spacetime. This is precisely
the corresponding Penrose diagram, depicted in Figure A.3. Each point in the diagram
represents a 2-sphere.

The boundaries of the Penrose diagram, except R = 0, do not correspond to the
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i+

i

I

I+

-

-

i0R=0

t = constant

r = constantR, r

T, t

Figure A.3: Penrose diagram of Minkowski spacetime. Note that our initial requirements have
been met: lightcones form angles of 45◦ and our time and radial coordinates have finite ranges.

original spacetime. They are referred to as conformal infinity and the union of the
spacetime with conformal infinity is the conformal compactification. From the struc-
ture of the Penrose diagram, we see that conformal infinity is subdivided into different
regions:

i+ : future timelike infinity (T = π, R = 0),

i− : past timelike infinity (T = −π, R = 0),

i0 : spatial infinity (T = 0, R = π),

I + : future null infinity (T = π −R, 0 < R < π),

I − : past null infinity (T = −π +R, 0 < R < π),

where I is pronounced as “scri”. Note that i+, i− and i0 are points, whereas I + and
I − are null surfaces with the topology of R× S2.

We now have a clear picture of the causal structure of Minkowski spacetime, which
was the main goal of drawing the Penrose diagram. Radiall null geodesics are at ±45◦,
as expected from the inclination of the lightcones. All timelike geodesics begin at i− and
end at i+. All null geodesics begin at I − and end at I +. Lastly, spacelike geodesics
both being and end at i0. Note that a singularity is indicated by a wavy line, as in the
examples of chapter 1.

For a more general spacetime, it is not trivial to find the series of transformations
that allow us to draw the corresponding Penrose diagram. Fortunately, most of them
can be found in the literature. The important thing about Penrose diagrams is to be
able to “read” them, i.e. to understand the causal structure of spacetime by looking at
the diagram. This is the reason why we included them in chapter 1: to have a clear idea
of what is going on with waves as they propagate in a given black hole background.



Appendix B

Euclidean derivation of the

Hawking temperature

We will derive the Hawking temperature for any given d-dimensional metric that can
be brought to the form

ds2
d = −F (r)C(r) dt2 +

1
C(r)

dr2 +H(r) r2 dΩ2
d−2. (B.1)

This metric has an horizon at r= r0 and the functions F (r), C(r) and H(r) are such
that

C(r0) = 0

F (r), H(r) > 0 , for r ≥ r0

F (r), C(r), H(r) r→∞−−−→ 1.

The goal of this method is to use the analogy between path integrals with periodic
time and systems at finite temperature. Since path integrals are only defined in Eu-
clidean spacetime, let us first perform a standard Wick rotation t → iτ , so that the
above metric can be written as

ds2
d = F (r)C(r) dτ2 +

1
C(r)

dr2 +H(r) r2 dΩ2
d−2,

which now describes the spacetime between r = ∞ and r = r0. Due to rotational
symmetry, we can set dΩ2

d−2 = 0, so that

ds2
d = F (r)C(r) dτ2 +

1
C(r)

dr2. (B.2)

We now go very close to the horizon by writing r = r0 + ε, such that 0 < ε � 1 and
dr2 = dε2. Taylor expanding the functions F (r) and C(r) around r = r0, we get

C(r) = C(r0) + εC ′(r0) +O(ε2)

F (r) = F (r0) + εF ′(r0) +O(ε2).
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Then, using the fact that C(r0) = 0 and keeping terms to first order in ε the metric
(B.2) can be written as

ds2
d = εF (r0)C ′(r0) dτ2 +

1
εC ′(r0)

dε2. (B.3)

Let us now introduce a new coordinate defined as

u =
2
√
ε√

C ′(r0)
,

so that
du =

dε
√
ε
√
C ′(r0)

,

in terms of which, the metric (B.3) can be written as

ds2
d = du2 + u2 F (r0)C ′ 2(r0)

4
dτ2. (B.4)

This last equation has the form dr2 + r2 dφ2, which is a smooth Euclidean space if φ is
a periodic variable such that 0 ≤ φ ≤ 2π. Therefore, in the case of the metric (B.4), we
can write

F (r0)C ′ 2(r0)
4

dτ2 = d(

√
F (r0)C ′(r0)

2
τ)2

which gives us a periodic time condition given by

0 ≤
√
F (r0)C ′(r0)

2
τ ≤ 2π −→ 0 ≤ τ ≤ 4π√

F (r0)C ′(r0)
.

Finally, recall that a path integral with periodic time 0 ≤ τ ≤ τmax is equivalent to a
system with finite temperature T and these quantities are related by

β =
1
T

= τmax.

Therefore, we have found that the Hawking temperature associated with the metric
(B.1), which has an horizon at r = r0, is

TH =
C ′(r0)

√
F (r0)

4π
. (B.5)



Appendix C

Hawking temperature of the

five-dimensional black hole

To examplify the utility of the result derived in the previous appendix, let us compute
the temperature of the five-dimensional black hole with three charges (3.9). Let us first
rewrite the corresponding metric

ds2
5 = −λ−2/3h dt2 + λ1/3

(
dr2

h
+ r2 dΩ2

3

)
, (C.1)

Comparing this metric with (B.1), we see that in this case C(r) = hλ−1/3 and F (r) =
λ−1/3; that is:

C(r) =
(

1− r2
0

r2

) ∏
j=1,5,p

(
1 +

r2
0 sinh2 αj

r2

)−1/3

(C.2)

and

F (r) =
∏

j=1,5,p

(
1 +

r2
0 sinh2 αj

r2

)−1/3

. (C.3)

In order to calculate the Hawking temperature given by (B.5), we need C ′(r0) and√
F (r0). It is a simple exercise to find that

C ′(r0) = 2 r−1
0

(
1 + sinh2 α1

)−1/3 (1 + sinh2 α5

)−1/3 (1 + sinh2 αp
)−1/3

and √
F (r0) =

(
1 + sinh2 α1

)−1/6 (1 + sinh2 α5

)−1/6 (1 + sinh2 αp
)−1/6

.

We thus find that

C ′(r0)
√
F (r0) = 2 r−1

0

(
1 + sinh2 α1

)−1/2 (1 + sinh2 α5

)−1/2 (1 + sinh2 αp
)−1/2

,

but since 1 + sinh2 x = cosh2 x, this last equation can be written as

C ′(r0)
√
F (r0) = 2 r−1

0 cosh−1 α1 cosh−1 α5 cosh−1 αp.
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122 Hawking temperature of the five-dimensional black hole

Finally, replacing this expression in (B.5), we get the Hawking temperature of the five-
dimensional black hole with three charges (3.9) is given by

TH =
1

2πr0 coshα1 coshα5 coshαp
. (C.4)



Appendix D

Klein-Gordon equation in curved

spacetime

In quantum field theory, the Klein-Gordon equation is the equation of motion of a scalar
field (spin zero). In flat spacetime, it is obtained by considering the Lagrangian

L = −1
2
ηµν∂µΦ∂νΦ− 1

2
m2Φ2,

with ηµν being the Minkowski metric. After using the action principle with this La-
grangian, we obtain (

�−m2
)

Φ = 0. (D.1)

This is the Klein-Gordon equation in flat spacetime. The operator � is known as the
d’Alembert operator and it is defined as

� ≡ ∂µ∂µ = ηµν∂µ∂ν = −∂2
t +∇2,

with ∇2 = ∂2
x + ∂2

y + ∂2
z being the usual Laplacian operator in three dimensions.

This equation can be generalized to curved spacetime. Consider a spacetime with
metric gµν ; the first thing we need to do is the standard change from the normal deriva-
tive ∂µ to the covariant derivative ∇µ, defined by

∇µV ν = ∂µV
ν + ΓνµλV

λ,

∇µWν = ∂µWν − ΓλµνWλ,

when acting on a vector and a one-form, respectively. Again, Γλµν are the Christoffel
symbols mentioned in chapter 4. Then, the Lagrangian we need to consider is

L = −1
2
√
−g
(
gµν∇µΦ∇νΦ +m2Φ2

)
, (D.2)

where we have also included the standard measure
√
−g. Then, a natural step is to

define the d’Alembert operator in a curved spacetime with metric gµν as

� ≡ ∇µ∇ν = gµν∇µ∇ν .
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124 Klein-Gordon equation in curved spacetime

Then, the Klein-Gordon equation in curved spacetime that one obtains by using the
action principle with (D.2) is (

∇µ∇ν −m2
)

Φ = 0.

However, recall that the action of the covariant derivative on a scalar is the same as the
action of the normal derivative, i.e. ∇νΦ = ∂νΦ . Therefore, we can rewrite the last
equation as (

∇µ∂ν −m2
)

Φ = 0. (D.3)

The Klein-Gordon equation for a massless scalar field is then

∇µ∂νΦ = 0, (D.4)

which we used as the starting point in our calculations of chapter 4.



Appendix E

Some useful formulas

Let us give some formulas that are used for some computations in the body of the thesis.

Bessel functions

Bessel’s differential equation is given by

d2y

dx2
+

1
x

dy

dx
+
(

1− n2

x2

)
y = 0,

with n an aribitrary real or complex number. The solutions to the above equation are
known as Bessel functions and n is the so-called order of the function. They come in two
types: Bessel functions of first kind Jn(x) and Bessel functions of second kind Nn(x).
Their general expressions are

Jn(x) =
∞∑
j=0

(−1)j

j!Γ(j + n+ 1)

(x
2

)2j+n
(E.1)

and
Nn(x) =

Jn(x) cosnπ − J−n(x)
sinnπ

. (E.2)

Given that it is a second-order differential equation, it must have two independent
solutions. When n is an integer, the following indentity holds J−n(x) = (−1)nJn(x),
meaning that they are not independent solutions. So, in this case the general solution
is given by

y(x) = C1Jn(x) + C2Nn(x),

for some constants C1,2. However, when n is non-integer, Jn(x) and J−n(x) are linearly
independent, so that the solution in that case is.

y(x) = D1Jn(x) +D2J−n(x)

What is more useful for our computations is to know the asymptotic behavior of the
Bessel functions as the argument take large or small values. For large x, we have the
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following asymptotic expressions

Jn(x) =

√
2
πx

cos
(
x− nπ

2
− π

4

)
,

Nn(x) =

√
2
πx

sin
(
x− nπ

2
− π

4

)
, (E.3)

whereas for small x, we have

Jn(x) =
1

Γ(n+ 1)

(x
2

)n
,

N1(z) = − 2
πz

+
z

π
(ln z + c) . (E.4)

Finally, the Bessel functions of first kind have the following property

λ−nJn(λx) =
∞∑
j=0

1
j!

[(
1− λ2

)
x

2

]j
Jn+j(x). (E.5)

Hypergeometric functions

The hypergeometric differential equation is

z(1− z)d
2y

dx2
+ [c− (a+ b+ 1)z]

dy

dx
− aby = 0

and has regular singular points at x = 0, 1,∞. The solutions to the above equation are
hypergeometric functions pFq(a1, . . . , ap; b1, . . . , bq;x), which can be defined as a series
for which the ratio of two successive terms can be written as

ck+1

ck
=

(k + a1)(k + a2) . . . (k + ap)
(k + b1)(k + b2) . . . (k + bp)

. (E.6)

The function 2F1(a, b; c;x) is the first to be studied and its expression is given by

2F1(a, b; c;x) =
∞∑
n=0

(a)n(b)n
(c)n

xn

n!
,

where (a)n = a(a + 1)(a + 2) . . . (a + n − 1) is the Pochhammer symbol. In the body
of the thesis, we are interested in knowing the value of the above function when x = 1.
Its expression is

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

,

where Γ are the usual Gamma functions. Furthermore, we make use of the following
identity

|Γ(1− ix)|2 =
πx

sinhπx
.



Appendix F

Asymptotics of the potential

In this appendix, we will find the expressions for the potential V (r) near the origin
for the four-dimensional Schwarzschild and Reissner-Nordström black hole, which both
have the form

ds2 = −f(r)dt2 + f(r)−1dr2 + r2 dΩ2
2, (F.1)

d = 4 Schwarzschild potential

In this case, the general formula for the potential is given by

V (r) = f(r)
[
l(l + 1)
r2

+
f ′(r)(1− j2)

r

]
. (F.2)

Of course, as r → +∞, the potential simply vanishes.

f(r) = 1− r0

r
, f ′(r) =

r0

r2
. (F.3)

To find how the potential behaves near r = 0, we use the form of the tortoise coordinate
near that point, given by (9.2) and get

r = ±i
√

2xr0.

Plugging this expression into (F.2), we get the potential in terms of the tortoise coor-
dinate

V (x) =
j2 − 1

4x2
− l(l + 1)

2xr0
± i
[

(1− j2)− l(l + 1)
2x
√

2xr0

]
. (F.4)

Now, we make the following change of variable ρ = ωx, so that

V (ρ) = ω2 (j2 − 1)
4ρ2

− ω l(l + 1)
2ρr0

± iω3/2

[
(1− j2)− l(l + 1)

2ρ3/2
√

2r0

]
.

Then, it is straightforward to see that

V (ρ)
ω2

=
j2 − 1

4ρ2
−O

(
1

(ωr0)n

)
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128 Asymptotics of the potential

Hence, due to the high energy condition (8.4), we can effectively neglect the last terms.
This allows us to just consider the first term of (F.4). That is the form of V that we
use in the main body of the thesis

V (x) =
j2 − 1

4x2
. (F.5)

d = 4 Reissner-Nordström potential

The form of the wave equation we derived in chapter 4 and have been using up to
now, holds for any static, spherically symmetric black hole in four dimensions and for
any type of propagating particle. However, as we briefly mentioned in chapter 9, when
considering a charged black hole, the potential term entering the equation will change.
This is because the electromagnetic field of the hole will interact with, for example,
an external electromagnetic field or a linearized perturbation of the metric. In [40],
the authors found how the potential needs to be modified. Since it is not the specific
subject of this thesis and we only want to know the form of the potential to use it in our
monodromy technique, we follow the discussion in [35], which is more straightforward.
We restrict our discussion to four-dimensional black holes.

Spin j = 0 particles

In this case, the potential is given by

V0(r) = f(r)
[
l(l + 1)
r2

+
f ′(r)
r

]
, (F.6)

which is just the same as in the Schwarzschild case with j = 0. This is expected because
these particles do not interact with the electromagnetic field of the charged black hole.

Spin j = 1 particles

In this case, the potential is given by

V1±(r) = f(r)

[
l(l + 1)
r2

− 3G4M

r3
±
√

9G2
4M

2 + 4G4Q2 (l(l + 1)− 2)
r3

+
4G4Q

2

r4

]
.

(F.7)
Note that the plus sign (minus) corresponds to the equation that gives the coupling of
the particle to the electromagnetic (gravitational) field of the hole. Both obey the same
Schrödinger-like equation that we have been using in this thesis.

Spin j = 2 particles

In this case, the formula for the potential involve some nasty expressions. It has the
form

V2±(r) =
f(r)
64r2

U±(r)
H2
±(r)

, (F.8)
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where

H+(r) = 1 +
6G4M (1−Υ)
2 [l(l + 1)− 2] r

,

H−(r) = l(l + 1)− 2 +
3G4M (1 + Υ)

r
,

with

Υ =

√
1 +

4Q2 [l(l + 1)− 2]
9G4M2

.

The functions U± are given by huge expressions, which we will not write down here, but
refer the reader to [35] to have a look at them. Fortunately, all we need to know about
them are their expressions when r → 0. These are given by

U+(r → 0) = 64 [l(l + 1)− 2] + 128,

U−(r → 0) = 64 [l(l + 1)− 2]3 + 128 [l(l + 1)− 2]2 ,

Reduction of the potentials

In this case, the tortoise coordinate near r = 0 is given by (9.29). By following a
similar procedure to the one for the Schwarzschild black hole, we arrive at the following
expressions for the potentials near r = 0

V0(x) = − 2
9x2

=

(
1
3

)2 − 1
4x2

, (F.9)

V1±(x) =
4

9x2
=

(
5
3

)2 − 1
4x2

, (F.10)

V2±(x) = − 2
9x2

=

(
1
3

)2 − 1
4x2

. (F.11)

We see that these formulas are exactly like (F.5), but with j = 1
3 or j = 5

3 . Therefore,
when considering a spin-0 or spin-2 particle, the potential near the origin reduces to

V (x) =
j2 − 1

4x2
, (F.12)

with a “modified” spin entering the equation, given by j = 1
3 . And when considering a

spin-1 particle, the potential near the origin also reduces to

V (x) =
j2 − 1

4x2
, (F.13)

but with a modified spin of j = 5
3 .
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