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Abstract

The ADD scenario proposes that our world exists on a three-dimensional
slice through a higher-dimensional universe. It tries to solve the hierar-
chyproblem (the question why gravity is so much weaker than the other
forces in nature) by assuming that only gravity can propagate through
the extra dimensions, thereby spreading its power over extra space. The
model predicts potentially observable e�ects in astrophysical experiments
and these can be used to derive bounds on the size of the extra dimensions
and the higher-dimensional Planck scale. Supernova observations have
provided some of the strongest bounds on the parameters. This report
describes the ADD scenario and its physical implications for the purpose
of considering the most important constraints on this model derived from
supernova observations.
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Layman summary

The concept of extra dimensions may sound like science �ction, but it has been
explored in many �elds of science and for many centuries, probably ever since
the time Greek philosophers started thinking outside the box. At this moment
the idea that extra dimensions may exist seems to be widely accepted in physics,
even though real evidence has yet to be found.

We are used to describe our world in 4-dimensional space-time, using the
space-time coordinates to specify 'where and when' a speci�c event took place.
These space-time coordinates were introduced in Einstein's theory of relativity
and they are denoted

(x, y, z, ct),

where x, y, z are the three spatial coordinates and ct is the coordinate of time
multiplied by the speed of light, c, in order for all coordinates to have units
of length. No other dimensions have ever been observed, but some physicists
believe that more than three spatial dimensions exist. These extra dimensions
would be too small to observe, but they can help to solve problems in physics,
which can not be solved (easily) in 4-dimensional space-time.

One such problem is the so called hierarchy problem, which addresses the
question: �Why is the force of gravity so much weaker than the other forces in
nature?�. Many theories have tried to solve this problem by introducing extra
spatial dimensions and in this paper I consider one of these theories: the ADD
scenario.

The ADD scenario was proposed by three physicists named Arkani-Hamed,
Dimopoulos and Dvali (ADD) in 1998. It is based on the assumption that
our world is con�ned to a 4-dimensional subspace within a (4 + n)-dimensional
universe. The 4-dimensional subspace is referred to as a 3-brane, because it can
be thought of as a membrane with 3 spatial dimensions. The rest of the universe
is referred to as the bulk. To solve the hierarchy problem, the ADD scenario
suggests that only gravity can propagate through the bulk, while all the other
forces are con�ned to the 3-brane. This way, gravity spreads its power over a
larger space than the other forces, such that it seems weaker than the other
forces when we measure it in our 3-dimensional world. The extra dimensions in
this model are often referred to as "gravity only dimensions" (GOD's).
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Figure 1: Our world on a brane, source:
http://www.nature.com/nature/journal

The ADD scenario expects the extra dimensions to be curled up on very
small circles of radius R . 1mm and it suggests deviations from Newton's
gravitational force law (F = Gm1m2

r2 ) at distances smaller than R. The behavior
of gravity has been tested in short range gravity experiments, but to date no
deviations from Newton's law have been found for any distance larger than
∼40µm. This means that, if GOD's exist, they have to be at least smaller than
40µm.

Another prediction of the ADD scenario is that gravitational energy could
escape into the extra dimensions when high amounts of energy are available.
This could be observed as energyloss in high energy experiments, in particular in
observations on stars and supernovae. Stars and supernovae have been observerd
in astrophysical experiments and the measured energy�uxes have been used to
put constraints on the size of the extra dimensions.

To date, the ADD scenario has not been proven right or wrong directly,
but it has de�natly led to some new ideas and excitement in the �eld of extra
dimensional physics.
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1 Introduction

Extra dimensions have been introduced in physical theories to solve problems
that could not be solved with lower dimensional theories, especially in attempts
to unify the forces in nature. In this report I will consider the so-called ADD-
scenario which was proposed by the physicists named Arkani-Hamed, Dimopou-
los and Dvali (ADD) in 1998. This theory uses the concept of extra dimensions
to solve the hierarchy problem, which adresses the question:

"Why is gravity so much weaker than the other forces in nature?"
To properly introduce the ADD scenario I will give a short overview of the

history and theoretical background of the model.

History and background

In 1919 one of the �rst and most important higher dimensional models was
invented: the Kaluza-Klein model. It was originally invented by the German
mathematician Theodor Kaluza in an attempt to unify general relativity and
electromagnetism. He noticed that the generalization of Einstein's theory to 5
space-time dimensions (1 extra spatial dimension) could simultaneously describe
the gravitational and electromagnetic �elds in 4-dimensional space-time. To
make this work, he had to assume that all �elds are independent of the extra
spatial dimension, but he could not explain this odd property.

The explanation was given by the Swedish mathematician Oscar Klein in
1926. He suggested that the extra dimension could be compacti�ed on a cir-
cle of radius R, where R was expected to be of the size of the Planck length
LPl ∼ 10−35m, too small to have ever been detected. By these means the extra
dimension is in fact curled up such that it has limited length L = 2πR and space
is periodic with period L in this direction. In other words, the extra dimension
has the geometry of a circle: S1 and space is factorized into M4 × S1, where
M4 is the geometrie of the 4-dimensional Minkowski space.

The idea of compacti�cation and hidden dimensions can be illustrated by
imagining a gardenhose. From a large distance a gardenhose looks like a line;
a one-dimensional object. Taking a closer look however, one will see that the
gardenhose in itself is actually two-dimensional: a curled up surface. Clearly this
'extra' dimension was already there, yet it was 'hidden' from us when looking
from a greater distance.

The Kaluza Klein model failed as a complete theory in its original purpose
due to several internal inconsistencies. Besides, no realistic applications for the
model existed at that time. For these reasons, the Kaluza Klein model was
essentially abondoned until the 1970/80's.

In this period supergravity and superstring theory were developed and in
these theories, higher dimensions arise naturally. Moreover, it was demon-
strated that a Kaluza Klein model with 6 extra dimensions, compacti�ed on
a 6 dimensional manifold (the Calabi-Yai manifold), could include features of
the Standard model [2].

During the same period, new theories about the idea of localizing matter
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Figure 2: Hidden dimensions in Kaluza Klein compacti�cation, source:
www.physicsworld.com

on topological defects were developed. The essence of this idea is that our
world could be con�ned to a 4-dimensional subspace within a higher-dimensional
universe. All matter and all �elds that we observe are trapped on the surface
of a domain wall and we are therefore not able to observe the extra dimensions
[3, 4].

While trying to describe our world on a domain wall, physicists found that
there is an important distinction between the force of gravity and the gauge
�elds from the standard model (SM). It proved to be relatively easy to �nd
�eld-theoretical mechanisms which ensured the localization of the SM �elds on
a domain wall, but for the gravitational �eld these mechanisms could not be
found. The distinction can also be shown by the string-theoretical approach.
In string theory the gauge �elds from the SM are usually represented by open
strings, of which he endpoints are attached to a brane: they are trapped on the
brane. Gravity on the other hand is represented by a closed string which is not
bound to any brane and is free to propagate through extra dimensions.

The ADD model In 1998 three scientists named Arkani-Hamed, Di-
mopoulos and Dvali (ADD) combined the Kaluza-Klein model with ideas from
string theory, in particular the existence of branes. Their model [5, 6, 7] starts
from the assumption that our universe consists of D = (4+n) dimensions, where
n ≥ 2 dimensions are compacti�ed on a n-dimensional torus as in the Kaluza
Klein theory and space-time geometry is factorized:

R4+n = M4 × Sn. (1)

Within this framework, all matter and the SM �elds are con�ned to a (3+1)-
dimensional brane, called a 3-brane 2 and only gravity is able to propagate
through the extra dimensions. In this way, gravity spreads its power over a
higher dimensional space and that explains why gravity is so weak compared to
the other forces in nature.

2in general we speak of a p-branes, which contain (p+1) space-time dimensions
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Figure 3: Illustration of string theory: the open string is con�ned to a brane
and the closed string is free to propagate through bulk. Source: [4]

The ADD scenario suggests that a modi�cation of Newton's gravitational
force law will be observable at distances of the order of the compacti�cation
scale L, which in the ADD model is expected to be much larger than the Planck
length. In fact, the original theory suggests that L could be in the range of 1
mm, for n = 2. This means that Newton's law would be modi�ed at distances
smaller than a millimetre. A funny coincidence at that time was, that Newton's
law had only been veri�ed for distances larger than 1 mm and it was expected to
be measured at smaller distances in the near future. If the ADD scenario would
be correct, these measurements could deliver the proof of the existence of extra
dimensions by showing that Newton's law breaks down at these lengthscales.

Obviously, these predictions led to great excitement and popularity of the
ADD scenario among experimental physicists. New experiments were designed
to �nd signatures of large extra dimensions and existing data from observations
in particle- and astrophysics were used to put constraints on the ADD theory.

In this report I consider the theory and phenomenology of extra dimensions
to make clear how constraints on the ADD model can be derived from astro-
physical experiments. I will start by considering the most important features
of gravity and compacti�cation used in extra dimensional theories. In the next
section I will show how constraints on extra dimensions arise from astro-particle
experiments and �nally I will compare several approaches which have been used
by di�erent authors to derive constraints from supernova observations.

7



2 Theory

In the ADD model the gravitational �eld is the only �eld that propagates
through the extra dimensions. It is therefore useful to understand how gravity
can be described in higher dimenisonal spaces.

2.1 Gravitation

2.1.1 Gravitation in in�nitely large extra dimensions

In 4-dimensional space-time the gravitational force between two point masses
m1 andm2, separated by a distance r, is given by Newton's famous gravitational
force law

F(4)(r) = GN
m1m2

r2
, (2)

where GN is Newton's gravitational constant. Accordingly the gravitational
�eld at a distance r from a point mass M (in 4-dimensional space-time) is
de�ned:

g(4)(r) = −GN
M

r2
. (3)

Comparing this �eld to the electric �eld (in the Heaviside-Lorentz system):

E(r) =
Q

4πr2
(4)

shows that both �elds fall of with 1
r2 , and the two can be equated for

Q = −4πGNM . Now, from Gauss' law we know that the �ux of the electric
�eld through a closed surface is always equal to the enclosed charge Q:

ˆ −→
E · d−→a = Q (5)

Equivalently, for the gravitational �eld it follows that:

ˆ
−→g(4) · d−→a = −4πGNM, (6)

where M is now the enclosed mass. This equation holds for any closed surface,
but since g(r) is spherically symmetric, it is most convenient to choose a
spherical surface-integral. In that case the integral on the left side of the
equation will always be equal to g(r) times the volume of the spherical shell
around the point mass. In 4 space-time dimensions this tells us that:

vol([S(r)]) · g(r) = −4πGNM (7)
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where vol[S(r)]=4πr2 is the volume of a 2 dimensional spherical shell with
radius r (see appendix A). We can check the gravitional potential:

g(r) =
−4πGNM

vol[S2(r)]
= −GNM

r2
. (8)

Now, assuming that the gravitational potential around a point mass M is
isotropic in all directions, we can generalize this formula to arbitrary dimensions.
It is herefore important to note the di�erence between the number of space-time
dimensions D and the number of spatial dimensions d. I de�ne D = d+ 1.

Assuming that the gravitational �eld is spherically symmetric in any number
of spatial dimensions, the surface integral around a point mass M in D space-
time dimensions is given by:

ˆ

Sd−1

−→gD · d−→a = −4πGNM (9)

vol[Sd−1(r)] · g(r) = −4πGNM (10)

where the factor 4π is just convention and vol[Sn(r)] = rnvol[Sn] is the
volume of a n-dimensional spherical shell. The gravitational �eld in D
dimensions is then given by:

g(D)(r) =
−4πGNM

rd−1vol[Sd−1]
= G(D)−M

rd−1
(11)

where I have de�ned G(D), the gravitational constant in D dimensions, to be:

G(D) =
4πGN

vol[Sd−1]
(12)

and Newton's law in arbitrary dimensions follows easily:

F (D)(r) =
G(D)m1m2

rd−1
. (13)

This formula shows that in D space-time dimensions, the gravitational �eld
should fall o� with 1

rd−1 = 1
rD−2 . For instance, in the case of 1 extra

dimension, gravity should fall o� with 1
r5−2 = 1

r3 . However, experiments have
shown that gravity obeys Newton's law (i.e. falls o� with 1

r2 ) in the range of
10−4m - 1020m.

Obviously, this tells us that if extra dimensions exist and gravity is able to
propagate through these extra dimensions, they can not be in�nitely large. If
the extra dimensions are compacti�ed however, the problem can be avoided.
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2.1.2 Gravitation in spaces with compacti�ed extra dimensions

When a dimension is compacti�ed on a circle of radius R, all �elds will have
period 2πR in this direction. The gravitational �eld from a pointmass M will
start out isotropically in all directions, but for distances r > 2πR, the spherical
symmetry is broken and the �eldlines can only travel further along the ordinary
(in�nitely long) dimensions. From that point, the �eld does not depend on
the extra dimension anymore and it behaves as if it propagates through only 3
spatial dimensions. Therefore one will measure the �eld falling of with approx-
imately 1

r2 for any distance r > 2πR. Fig. 3 shows how �eldlines propagate
through a compacti�ed dimension.

Figure 4: �eldlines in compacti�ed dimension. source: [1]

From this picture we can see how the �eld behaves in the short- and long
distance limits. For simplicity I will assume that all extra dimensions are
compacti�ed with the same size L = 2πR. For short distances (r � L), gravity
propagates isotropically in all directions such that the gravitational force can
be described by:

−→
F (D)(r) =

GDm1m2

rd−1
=
G(4+n)m1m2

rn+2
r � L. (14)

For distances r � L, when the �eldlines can only propagate along the ordinary
spatial dimensions, gravity will behave like:

−→
F (D)(r) =

G(4+n)m1m2

Lnr2
r � L (15)

Again, these formulas are just approximations of the short- and long distance
limit of the general �eld. To �nd a general expression for the gravitational
attraction between two pointmasses m1 and m2 in D = 4 + n dimensions, we
can use the method of images. This method approaches the compacti�ed extra
dimension, as if it were unrolled and has a point mass at every 2πRa for all
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Figure 5: method of images applied on one compacti�ed dimension: ini�nite
series of periodically spaced point masses.

integer a ∈ Z. By these means, we automatically implement the periodicity of
the �eld in the extra dimension: the extra dimension seems to contain an
in�nite number of pointmasses, which are periodically spread over the
"length" of the extra dimension (see �gure 4).

Adding the contributions of each mass to the �eld, we �nd that the vertical
components cancel each other and what remains is a force in the ~r-direction of
the form:

F =

∞∑
a1=−∞

...

∞∑
an=−∞

G(4+n) m1m2

(r2 +
∑n
i=1(2πRai)2)

n+2
2

r√
r2 +

∑n
i=1(2πRai)2

,

(16)

where r is the 'regular' distance from the pointmass
√
x2 + y2 + z2 and the

last term makes sure that only the horizontal components of the �eld
contribute to the force. From this formula, one can describe the �eld at any
point in space and also derive an expression for the short- and long distance
limits. For the purposes of this paper, I will only use the limits: (14) & (15) .

2.2 The Planck scale

In the study of gravitation it is convenient to use the Planckian system of units.
In this system, the physical units of measurement are expressed in terms of the
universal physical constants, such that the fundamental constants can be set to
the numerical value of one.
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2.2.1 Planck units and the Planck scale 4-D

One can derive the Planckian system of units starting from the values of the
fundamental constants3:

G w 6.67× 10−11 m3

kg · s2
→ [G(4)] =

L3

MT 2

~ w 1.06× 10−34m
2 · kg
s

→ [~] =
L2M

T

c w 3× 108m

s
→ [c] =

L

T

where L, M and T stand for the units of length, mass and time, respectively.
The Planck units are found by setting the numerical value of the fundamental
constants to one. This leads to a set of three equations, which can be solved
for the new units of length, time and mass. The corresponding units are called
the Plancklength, -mass and -time and are denoted by: `Pl, mPl and tPl
respectively.

G = 1× `3Pl
mPl · t2Pl

, ~ = 1× `2PlmPl

tPl
, and c = 1× `pl

tPl
(17)

an solving for `Pl, mPl and tPl gives:

`Pl =

√
G~
c3

w 1.61× 10−35m (18)

mPl =

√
~c
G

w 2.17× 10−8kg (19)

tPl =

√
~G
c5

w 5.4× 10−44s. (20)

Many other physical entities can be expressed in terms of these units. The
most important one being the energy scale, or the so-called Planck scale 4:

MPl = mPlc
2 w 1.22× 1016TeV. (21)

Obviously this energy scale is very high. In fact, it is completely out of
reach under terrestrial circumstances and therefore impossible to experiment
with. Currently, the highest energy values have been reached at LHC and are
about 7 TeV, which is high, but not even close to 1016TeV.

3In the complete Planckian system of units also the coulomb constant (4πεo)−1 and Boltz-
mann's constant kB are taken into account, but these are not important for our purposes.

4(Voetnoot: I use eV as the unit for energy because this is very common and convenient
in particle physics. It can also be used as a unit for length, setting c = ~ = 1.
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2.3 The ADD scenario

Large extra dimensions as a solution to the hierarchy problem

The Planck scaleMPl ∼ G−
1
2 ∼ 1016TeV (setting c = ~ = 1) is the fundamental

energy scale for gravitational interactions, but it is not the only fundamental
scale in physics. There is (at least) one other important energy scale, being
the energy scale of the standard model, the electroweak scale: MEW ∼ 1TeV .
Experiments with particle colliders have revealed that electromagnetism and
the weak nuclear force are uni�ed at this energy and the SM has been adjusted
to �t this scale.

There is a large hierarchy between the Planck scale and the electroweak
scale: MPl/MEW ∼ 1016 and this is strange, because it is expected that the
forces were all once united in the early beginning of the universe. To understand
how this could have ever been possible, it would be helpful to understand where
the large hierarchy comes from. In other words, we want to know why the force
of gravity is so much weaker than the standard model interactions. This is called
the hierarchy problem.

In 1998, the ADD scenario gave a new perspective on the hierarchy problem
by suggesting that the higher-dimensional Planck scale could be equal to the
electroweak scale MEW . In fact, the ADD scenario is based on the philosophy
that the electroweak scale should set the scale for all short distance interactions,
including that of gravity. The idea behind this statement is that the electroweak
scale is an experimental certainty: the SM interactions have been probed at
distances of the order of M−1

EW , whereas gravity on the other hand, has not
remotely been probed at distances of the order of M−1

Pl [5, 6, 7].
Within this framework, the 'observed' Planck scaleMPl is just our 4-dimensional

perception of the higher-dimensional (fundamental) Planck scale MPl(D) =
MEW . The fact that we observe the 4-dimensional Planck scale to be so big,
is the e�ect of the existence of n ≥ 2 compacti�ed dimensions, which are large
compared to the Planck length. By these means, the apparent weakness of
gravity is explained by the idea that gravity spreads its power over more than
4 dimensions, while all the other forces are con�ned to a 3-brane.

2.3.1 ADD theory

The ADD scenario does not solve the hierarchy problem completely. It leaves
us with a new parameter, being the compacti�cation scale L. L becomes a new
variable which is related to the higher dimensional Planck scale and the number
of extra dimensions n.

The higher dimensional Planck scale We can �nd a general expression
for the higher dimensional Planck scale, MPl(D), in D(= 4 + n) dimensions for
which n dimensions are compacti�ed on a circle. Again, for simplicity I will
assume that all extra dimensions have the same size L = 2πR such that they
form a torus of volume Ln = (2πR)n. Also I will use the convention c = ~ = 1,
such that the Planck scale can be expressed MPl =

√
G.
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number of extra dimensions n 2 3 4 5 6 7

Compacti�cation scale L in m 10−3 10−8 10−11 10−13 10−14 10−14

Table 1: compacti�cation scale L for di�erent numbers of n andMPl(D) w 1TeV

I start from Newton's law in D dimensions, invoking formula (13) and using
the relation between the Planck scale and the gravitational potential to �nd:

F (D)(r) = GD
m1m2

rn+2
∼ 1

Mn+2
Pl(D)

m1m2

rn+2
,

where Mn+2
Pl(D) is de�ned to be the fundamental Planck scale in D dimension

s. From equation (14) and (15) it follows that:

F (D)(r) =


m1m2

Mn+2
Pl(D)

·rn+2
for : r < L

m1m2

Mn+2
Pl(D)

·Lnr2 for : r > L
(22)

From this we can see the relation between the 4-dimensional planck scale and
the D-dimensional Planck scale:

M2
Pl ∼Mn+2

Pl(D)L
n. (23)

Now letting Mn
Pl(D) =MEW ∼ 1TeV , and requiring L to be chosen such that

it reproduces the observed 4-dimensional Planckscale MPl ∼ 1016TeV :

L ∼MPl(D)

(
MPl

MPl(D)

) 2
n

∼ 10
32/nTeV −1 ∼ 10

32/n−19m. (24)

According to the ADD model only gravity propagates through the extra di-
mensions, so it should be possible to observe deviations from Newtonian gravity
at distances of the order of the compacti�cation scale L. Thus, using di�erent
values for n, we can compare theory with experiment. Letting n = 1, we �nd
that L ∼ 1013m. This implies modi�cations of Newtonian gravity at distances
of the scale of the solar system. Obviously this option is to be excluded. For
other values of n, the results for L are shown in table 1.

In 1998, when the ADD model was �rst proposed, the shortest distance at
which gravity had been measured was about 1 millimetre. Therefore, there was
still a possibility that gravity propagates through higher dimensions at distances
smaller than 1 millimetre; n = 2 was not yet excluded.

The SM �elds on the other hand, had already been extensively tested up
to distances of the order of TeV −1 ∼ 10−18m. This means that (if large extra
dimensions exist) apparently the SM �elds do not propagate through these extra
dimensions for L > TeV −1. They have to be con�ned to a 4-dimensional brane
within the D-dimensional bulk.
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2.4 Direct constraints on LED's

The ADD scenario predicts modi�cations of Newton's inverse square law at
distances smaller than L, this means that the theory can be tested directly by
probing gravity at short distances.

There are only few methods to measure the short range behavior of gravity,
most of which use a so-called torsion pendulum. [8, 9] In general, these experi-
ments search for deviations of the Newtonian potential at very short distances.
Since the 1980's many groups over the world have been working on ever-more-
sensitive tests of the inverse-square law at short distances and ever stronger
bounds were derived on the compacti�cation scale L.

Short range gravity tests

As long as the inverse-square law holds, the gravitational potential for a pair of
point masses can be written as:

V = −Gm1m2

r
.

Generally researchers look for a new force that violates this law with a
characteristic length scale λ. This is done by looking for a potential of the
form:

V = −G(4)
m1m2

r

(
1 + α · e− rλ

)
(25)

where α is a dimensionless scaling factor which corresponds to the strength of
the new interaction relative to Newtonian gravity and λ is a characteristic length
scale. A potential of this form is called a 'Yukawa potential' and it generally
describes a short-range force that will be carried by a particle with a mass of
the order of ∼ ~

cλ . In the case of the LED scenario the Yukawa potential can
be used as an approximation to the e�ects of extra dimensions, by considering
the e�ects of a higher-dimensional particle carrying the force of gravity.

In the next section I will show that such a particle is referred to as a 'Kaluza
Klein' graviton and that it carries a mass inversely proportional to the radius of
the extra dimension: mKK ∼ 1/R. When one such particle travels into the bulk,
another one has to be emitted in opposite direction, to conserve momentum.
From this it follows that the strength of the interaction can be estimated to
be α ∼2n (the number of particles leaving into one extra dimension) and λ is
relative to the inverse mass of the graviton: λ ' R.

Figure 4 shows the progress made by several experiments in constraining the
Yukawa potential parameter space. In the yellow region, new forces have been
ruled out by experiments at the 95% con�dence level (black lines).

The di�erent experiments probe di�erent length scales. The Stanford ex-
periment explores the shortest lengths, while the Irvine experiment has set the
lowest limits to |α|, but probes larger distances. For a more detailed discussion
of the various experiments see [9].
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Figure 6: Results of short range gravity experiments, plotted in terms of the
parameters λ and α. Within the excluded region (yellow) no deviations from
Newton's law have been found, source: ref. [6].
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For the purpose of this report, we are only interested in the case where
(α ∼2n). The two extra dimension scenario is shown by the black line, labeled
"compact extra dimensions". Currently, the lowest bound for two extra dimen-
sions of the same size is equal to L < 37µm (see �gure 5: |α| = log[4]) This
is much smaller than the predicted 1 millimetre from the ADD framework. It
seems that the 6-dimensional scenario, for MPl(D) 'MEW , is excluded by this
result. If MPl(D) is chosen to be slightly higher however, the 6-dimensional sce-
nario may still resolve. In other words, we can interpretate short range gravity
result as a bound on MPl(D). We �nd this bound while using the relationship
between the Planck-scales and plugging in the values n=2 and L < 37µm:

M4
Pl(6) =

M2
Pl

L2

MPl(6) =

√
MPl

L
& 3, 1TeV. (26)

This result tells us, that the ADD scenario with 2 extra dimensions is not
capable of solving the hierarchy problem. Even stronger bounds onMPl(D) have
been derived from astrophysical observations. I will consider these bounds in
chapter 3.
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3 Constraints from Supernova observations

It is emphasized in the ADD papers [6, 7], that signatures of extra dimen-
sions could be observed in astrophysical experiments. The idea is that large
numbers of higher dimensional gravitons, called Kaluza Klein gravitons, could
be produced in the hot cores of stars and particularly in supernovae. These
Kaluza Klein (KK) gravitons can be very massive and they have the ability
to escape into the extra dimensions, thereby taking away energy from the star.
The maximum amount of energy the KK-gravitons can take away is constrained
by astrophysical observations and these constraints have been used to calculate
bounds on the Planck scale and the compacti�cation scale.

To discuss these bounds I will start with a short theory on KK gravitons.
In the next section I will consider the phenomenology of supernovae and in the
last section I will compare some of the most important bounds derived from
di�erent experiments and by several authors.

3.1 Theory of Kaluza Klein gravitons

Kaluza Klein (KK) gravitons are hypothetical particles, which carry the force
of gravity just like ordinary gravitons. The di�erence is that they have masses
inversely proportional to the radius of compacti�cation, so they can be very
massive. Their most important properties follow from an aspect of compacti-
�cation, called "Kaluza-Klein reduction". It shows how 4- and 5-dimensional
physics are related and helps to understand Kaluza Klein gravitons.

3.1.1 Kaluza Klein reduction

Kaluza-Klein reduction shows how our 4-dimensional world can be interpreted
as a projection of a higher-dimensional reality. To illustrate this, lets consider
the 5-dimensional Kaluza Klein model.

In the 5-dimensional Kaluza Klein theory space is factorized into M4 × S1,
where M4and S1 are the geometries of the 4-dimensional Minkowski space and
the compacti�ed extra dimension, respectively. The factorization means that
the 4-dimensional part of the metric does not depend on the extra dimension.
The total set of coordinates is denoted by xM = (xµ, y), where xµ, µ = 0, 1, 2, 3
are the coordinates of the ordinary space-time dimensions and y = x5 is the
coordinate of the extra spatial dimension.

A �eld in the extra dimension is periodic with period L = 2πR. Thus, the
points y and y+ 2πR are identi�ed. I start by describing a massless scalar �eld:

Φ (xµ, y) = Φ (xµ, y + 2πR) , (27)

this can also be written with Fourier transformation:

Φ(xµ, y) =
∑
n=

φn(xµ) · ei nRy. (28)
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Figure 7: Kaluza Klein tower. source: [1]

The expansion coe�cients φn are referred to as the 'modes' of the �eld and
they only depend on the four 'ordinary' space-time coordinates xµ. From the
4-dimensional point of view the modes form a series of 4-dimensional �elds
which is called the Kaluza Klein tower. (see �gure 5)

To learn more about this Kaluza Klein tower, I will use the action to describe
the �eld. In �ve dimensions the Lagrangian density is given by:

L =−1

2
∂MΦ∂MΦ (29)

and plugging in the Fourier expansion gives:

L =−1

2

+∞∑
n,m=−∞

(
∂µφn∂

µφm −
nm

R2
φnφm

)
· ei

(n+m)
R y. (30)

With this we can de�ne the action:

S =

ˆ
Ld5x =

2πRˆ

0

ˆ
Ld4x · dy

= −1

2

2πRˆ

0

ˆ +∞∑
n,m=−∞

(
∂µφn∂

µφm −
n2

R2
φnφm

)
· ei

(n+m)
R yd4x · dy

= −1

2
· 2πR

ˆ +∞∑
n=−∞

(
∂µφn∂

µφ−n −
n2

R2
φnφ−n

)
d4x,
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where I integrated with respect to y, since the 4-dimensional metric does not
depend on y. I de�ne a new more convenient coe�cient:

φj =
√

2πRφn

and note that reality of Φ implies that φ−n = φ†n. Using these simpli�cations
the action becomes:

S = −
ˆ 1

2
∂µφ0∂

µφ†0 +

∞∑
j=1

(
∂jφj∂

µφ†j −
j2

R2
φjφ

†
j

) d4x (31)

It shows that from the 4-dimensional point of view, the spectrum of the 5-
dimensional compacti�ed �eld exists of:

• One real massless scalar �eld φ0 called the zero mode.

• An in�nite series of complex massive scalar �elds, the Kaluza Klein tower.
These �elds have masses inversely proportional to the radius of compact-
i�cation:

m2
j = j2/R2 → mj = |j|/R. (32)

One can generalize this to the case of a massive �eld with mass m0. If we do
this, the masses of the Kaluza Klein states are given by m2

j = m2
0 + j2/R2 and

for the case of more than one extra dimension, in which the extra dimensions
are compacti�ed on a n-dimensional torus with radii R1, R2, ...etc., the masses
become:

m2
j = m2

0 +
j2
1

R2
1

+
j2
2

R2
2

+ ... (33)

Our 4-dimensional world consists only of the massless zero-modes and we
can not observe the higher modes directly. Obviously the energy needed to pro-
duce these massive particles has to be very high, since the masses are inversely
proportional to the compacti�cation radius R and R is very small.

3.1.2 Real emission of Kaluza-Klein gravitons

Processes with Kaluza-Klein (KK) graviton production may be an important
signature of extra dimensions [5, 6]. They appear as missing-energy events
when a particle is produced and no observable particle balances its transverse
momentum in the center of mass frame. To estimate how much energy escapes
into the extra dimensions due to KK graviton production, one mainly needs to
estimate two things: the number of particles that is produced and the amount
of energy they carry away.

Theoretically, there are many processes in which KK-gravitons can be pro-
duced and every process has di�erent production rates. In addition, one needs
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to take in consideration the speci�c physical conditions in which the production
takes place, because this also in�uences the production rate of the particles.

There is a simple method which is often used in particle physics to give a
rough estimate of the production rate in a speci�c process. It starts by esti-
mating the probability that an interaction takes place. In particle- and nuclear
physics the probability is given by the so-called cross section σ. The cross
section is a hypothetical measure of area which helps estimate the number of
succesful interactions between particles. Since the dimension of a cross-section
is [σ] =Length2, it can be approximated by a typical area corresponding to the
relevant interaction.

KK-gravitons are expected to interact with the same strenght as ordinary
gravitons and the typical energy scale for a graviton interaction is the Planck
energy, MPl. Moreover, the typical length scale for a similar interaction would
be the Planck length lPl ∼M−1

Pl . By these means, the production cross-section
of a KK-graviton can be estimated at:

σ(GKK) ∼ l2Pl ∼M−2
Pl (34)

where GKK denotes one single graviton. Actually, it is not possible to produce
just one KK-Graviton, with momentum in the extra dimension. Conservation
of momentum tells us, that a second graviton should leave in opposite
direction, therefore I should include a factor 2 to be more precise. However, I
just give a very rough estimate of the real cross-section here, so I might just as
well forget about this extra factor.

This method of dimensional analysis might seem somewhat coarse, yet it
appears to work quite well as a �rst estimate and we will see later that spe-
ci�c calculations of the cross section of KK-graviton production processes also
contain this factor of M−2

Pl .
Obviously, the probability that a KK-graviton is produced is extremely

small. One may wonder whether or not it is possible to observe any e�ect
of KK-graviton production. It turns out however, that in high energy processes,
the small likelihood of a graviton being produced is compensated by the large
mass degeneracy of the KK modes. In fact, it fully compensates for the tiny
cross section.

The total cross-section is simply the sum over all states:

σtot =
∑
~j

σ(GKK). (35)

Now since mj ∼ (j/R) and R is considerably large in the ADD scenario, the
mass separations between the adjacent KK modes is much smaller than typical
energies in a physical process. One can therefore approximate the sum over
the adjacent

−→
j -states with an integral.

∑
−→
j

→
ˆ
dj. (36)
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I estimate the number of KK modes with quantumnumber j in the extra
dimensions, between j andj + dj in j-space:

dN = Sn−1j
n−1dj

= Sn−1m
n−1
j Rn−1R · dmj

=
Sn−1

(2π)n
M2
Pl

Mn+2
Pl(D)

mn−1
j dmj (37)

where I used the relation (23) from the section 2.2:

Ln = (2πR)n =

(
M2
Pl

Mn+2
Pl(D)

)

and Sn−1 is again the volume of a sphere with unit radius in a n-dimensional
space. It follows that the number of KK-modes accessible at energy E ∼ m is:

N(E) ∼
(

MPl

MPl(D)

)2

·
(

E

MPl(D)

)n
. (38)

From this equation it follows that:

• More KK modes are accessible at higher energies, thus, stronger con-
straints on the LED's will follow from processes with higher energies;

• For E < MPl(D), there are fewer KK modes for higher numbers of n; for
these processes we will �nd weaker constraints for large n;

• The large degeneracy of the KK states compensates for the low probability
of one interaction.

Finally we can estimate the total cross-section for given energy E:

σtot ∼
(

MPl

MPl(D)

)2(
E

MPl(D)

)n
M−2
Pl =

En

M2+n
Pl(D)

(39)

where we can see how the factor M−2
Pl is factored out of the cross-section as a

result of the combined e�ect of all gravitons together. According to this total
cross-section it should statistically be possible to observe e�ects of
KK-Graviton production in high energy processes - like stars [7].
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3.2 phenomenology of supernovae

Physically there are two types of SNe, based on what mechanism powers them.
Type I, the thermonuclear SNe and Type II, the core-collapse SNe. Type II will
be our main interest.

Core collapse SNe mark the evolutionary end of a massive star, with mass
M > 8M�. During their life, these stars accumulate iron in their inner core
as a result of nuclear fusion at the edge. Once the mass of the core reaches
the so-called Chandrasekhar limit (about 1.38 solar masses), the star starts to
collapse. The collapse continues until degeneracy pressure within the stellar
core abruptly stoppes it, at a nuclear density of about 3 × 104g · cm−3. This
bounce causes a shockwave moving outward and is observed as a huge explosion.
It is important to note that this explosion is in fact a reversed implosion, so the
power derives from gravitational energy, not from nuclear energy.

Typically, the released energy of this explosion is about 3 × 1053erg 5, of
which 1% is carried by kinetic energy and the other 99% goes into neutrino's.
This highly energetic neutrino-burst can be (and has been) detected by astro-
physical experiments, however quantitative di�erences between the predicted-
and the measured neutrino�ux have led to the idea that higher dimensional
KK-gravitons might take away energy from the SN core.

During the �rst few seconds after the collapse, the temperatures in the SN
core are estimated at T ∼ 30−70MeV and the densities at ρ ∼ (3−10)×1014g ·
cm−3. At this time the core contains neutrons, protons, electrons, neutrino's
and photons. There are three relevant processes that can possibly produce KK-
gravitons:

• nucleon nucleon bremmsstrahlung: N +N 7→ N +N +GKK ;

• photon fusion: γ + γ 7→ GKK ;

• electron-positron annihilation: e− + e+ 7→ GKK .

The �rst process is the most dominant one, because nucleons are the most
abundant in SNe and because the core temperature is so high that interactions
between nucleons is unsuppressed. However, large uncertainties are involved
in the theory around this process, mainly concerning the temperature of the
SN core. Photons are less abundant than nucleons, so the photon fusion pro-
cess leads to less-restrictive bounds (about three orders of magnitude), but it
can still be useful. The process of electron-positron annihilation is practically
insigni�cant for the derivation of bounds on MPl(D). I will not consider this
process.

For any process that could produce KK-gravitons, the emission rate should
always be low enough to preserve the current understanding of neutrino obser-
vations. Most authors use a criterion, suggested by G. Ra�elt [13]. Ra�elt used
detailed supernova simulations to show that the emission rate of any mechanism
taking away energy from the supernova core should be below 1019ergs ·g−1 ·s−1

51 erg = 10−7J = 624.15GeV
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to be compatible with the current understanding of the neutrino signal of a
supernova type II.

The KK-gravitons that are produced in the SN-core tend to have small ki-
netic energies and they can be trapped in the gravitational potential of the SN
core. The result is a neutron star (NS), surrounded by a halo of KK-gravitons.
These gravitons can be decaying and annihilating, causing a �ux of neutrino's,
electrons, positrons and γ-rays. Special experiments, designed for the observa-
tion of γ-ray �uxes from localized sources, will be able to detect the possible
e�ects of the halo. The strongest bounds arise from nearby neutronstars.

3.3 Constraints

3.3.1 SN 1987A

SN 1987A was a type II supernova and observations were done by two collabo-
rations named Kamiokande [10] and IMB [11]. The observations essentially con-
�rmed the predicted neutrinosignal, but the measured energy �uxes were much
lower than expected. Numerical simulations predicted that the neutrino �uxes
should yield the (time-intergrated) value of 〈Eν̄e〉 ' 16MeV [12], while the data
implied an average neutrino-energy of 〈Eν̄e〉 w 7.5 MeV from Kamiokande (or
at least below 12.5 MeV , taking the 95% con�dence range into account) and
〈Eν̄e〉 w 11.1 MeV from IMB.

This di�erence between predictions and observation is the so-called energy-
loss argument, that has led to the idea that KK-gravitons might take away
energy from the supernova core. To derive constraints on the ADD model from
this idea, one has to calculate the cross section for the relevant production
processes. I will consider bounds derived from the photon-fusion process and
nucleon-nucleon bremmstrahlung by di�erent authors.

Photon fusion

The �rst process I consider is photon-fusion and I will follow the calculation
done by Satheeshkumar and Suresh [14]. The authors start from the idea that
photon fusion is an initial two particle reaction, a + b → c 6and they use the
general formula for the energyloss rate of an process [15]:

ε̇(a+b→c) =

〈
nanbσ(a+b→c)vrelEc

〉
ρ

(40)

where the brackets indicate thermal averaging, na,b are the number densities
for the initial particles, ρ is the total mass density, vrel is the relative velocity
between the particles a and b, Ec is the energy of the particle c and σ(a+b→c)
is the scattering cross-section of an initial two particle interaction. The precise
calculation of the cross-section goes beyond the purpose of this paper, but the

6generally two gravitons are produced, each with opposite momenta, this is taken into
account in the calculation of the cross section.
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used method and parameter values can be found in [16] and even more details
are described in [14]. The obtained cross-section is given by

σ(m~j) =
πκ2
√
s

16
δ
(
m~j −

√
s
)

(41)

where m~j is the mass of the KK Graviton in the jth state,
√
s = Ea + Eb is

the total initial energy in the center of mass frame and κ2 = 16πG(4) ∼ 16π
M2
Pl

is

the coupling constant of the gravitational �eld, which determines the strength
of an interaction between particles. Obviously in this case the coupling is very
weak (κ2 ∼ 1

M2
Pl
) and therefore the probability that a graviton is produced is

very small. However, as we already saw in the previous chapter, the large mass-
degeneracy of the KK states compensates for this small cross-section and we
can write the total cross-section

σtotal = κ2
∑

σ(m~j) (42)

where the coupling strength is factored out and summation over the KK states
can again be approximated by an integral. Filling in the parameters T =
30MeV, ρ = 3 × 1014g · cm−3 (the other parameters can be found in the liter-
ature) and doing the integration then leads to the following bounds (see table
2):

MPl(D) & 14.72 TeV n = 2 (43)

MPl(D) & 1.62 TeV n = 3 (44)

Nucleon nucleon bremsstrahlung

The nucleon-nucleon bremsstrahlung (NNB) process is denoted by

N +N 7→ N +N +GKK

where N can be either a proton or a neutron. Again, to calculate limits on
MPl(D), the main task is to compute the cross-section and the rate of the energy-
loss for this process. There are many processes that contribute to the emission
rate of KK-gravitons in NNB however, and various authors use di�erent ap-
proaches.

Generally the emission rate from this process is of the form:

ε̇ = a · erg · g−1 · s−1(X2
n +X2

p + b ·XnXp)ρT
cM
−(D−2)
Pl(D)

where a, b& c are numerical factors, Xp and Xn = 1 − Xp are the proton and
neutron fractions in the core, T is the temperature and ρ is the total mass
density within the core. The values of these parameters vary per author, but to
give an idea of the ranges of the numerical factors:
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a ∼ 1018 − 1012(for n = 2− n = 3) b ∼ 8.0, c ∼ 5− 8

Generally, the temperature depence causes the biggest uncertainty, because
the temperature of SNe is hard to estimate (it ranges between 30-70 MeV ).
The dependence on the proton- and neutron fractions, Xp and Xn, on the other
hand is not very important. It is therefore common to set the value of Xp to
zero, so that Xn = 1. For comparison of the results of di�erent authors, I only
used the results for the parameters: T = 30 MeV, ρ = 3 × 1014 g · cm−3 and
Xp = 0 (other parameters depend on the models chosen by the author). The
results are listed below.

Table 2: Energyloss rates ε̇ (erg · g−1 · s−1M
−(n+2)
Pl(D) ) from photon fusion (�rst

row) and NNB in SN 1987A. Parameters: T = 30MeV, ρ = 3× 1014 g · cm−3

n 2 3

Satheeshkumar & Suresh [14]: ε̇ = 4.7× 1023 ε̇ = 1.1× 1020

Cullen & Perelstein [19]: ε̇ = 6.79× 1025 ε̇ = 1.12× 1022

Barger, Han, Kao, Zhang [20]: ε̇ = 6.7× 1025 ε̇ = 6.3× 1021

Hanhart et. al. [21]: ε̇ = 9.24× 1024 ε̇ = 1.57× 1021

Table 3: Bounds on the fundamental Planck scaleMPl(D)(TeV) derived from SN
1987A neutrino observations. Parameters: T = 30MeV, ρ = 3× 1014g · cm−3.

n 2 3

Satheeshkumar & Suresh [14]: M(D) & 14.72 M(D) & 1.62
Cullen & Perelstein [19]: MPl(D) & 50 MPl(D) & 4

Barger, Han, Kao, Zhang [20]: MPl(D) & 51 MPl(D) & 3.6
Hanhart et. al. [21]: MPl(D) & 31 MPl(D) & 2.75

3.3.2 Bounds from KK-decay

Even more stringent constraints can be obtained by considering the subsequent
decays of the KK modes. Depending on their mass, the KK-modes typically
have a lifetime comparable to the Hubble time or longer (4.35 × 1017s or 13.8
billion years) [17] and their decay would contribute to the cosmic gamma-ray
background. [22, 23, 24]. Generally, the decay rate of gravitons to photons can
be estimated by:

Γdecay(m~k) =
m3
~k

80πM2
Pl

. (45)

Hannestad & Ra�elt [22] have used previously obtained data from several
experiments to derive bounds on the compacti�cation scale L and the Planck-
scale MPl(D) based on the theory of KK-decay.
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1. Measurements from the EGRET instrument (Energetic Gamma Ray
Experiment Telescope) [26] constrain the number of KK-gravitons that
may have been emitted by all cosmic SNe. The data imply that a typical
SN-core must not lose more than about 0,5% of its energy in KK-gravitons.
Observations of SN 1987A were used to derive constraints from this re-
striction.

2. Supernova Remnant Cas A is a young SN remnant, probably corre-
sponding to a SN in 1680. Based on its age, a cloud of emitted KK-
gravitons should still appear as a point source to EGRET. However,
EGRET does not observe a photon �ux at the expected point in space.
The di�erence between the theoretically expected �ux and observation re-
stricts the emissivity of KK gravitons and the fundamental Planck scale.

3. Gamma radiation from nearby neutron stars should be visible to
EGRET as a result of the decaying KK-gravitons which are trapped in the
halo around a NS after the SN. The expected γ − ray �ux was calculated
such that only the trapped gravitons are counted, and the results were
compared to EGRET observations in the same way as was done for the
SN remnant Cas A.

4. Neutron-star excess heat gives the most stringent constraints. There
are two mechanisms to be considered.

• KK-decay: When KK-gravitons in the halo around the NS decay, a
fraction of the decay-photons hits the surface and heat the star. The
total energy absorbed by the star in this way can not be too high,
otherwise the star would not be able to cool down as it does. The
derived bounds are very strong compared to bounds derived from SN
observations and temperature dependence is about the same as for
NNB.

• Reabsorption in the neutron-star: while the trapped KK-gravitons
can be inside the NS during part of their trajectory, they can be
reabsorbed by the nuclear medium. The authors estimate the re-
absorbtion rate for average gravitons and compare their results to
observations obtained from di�erent NSs. This process does not pro-
vide signi�cant bounds.

Finally Hannestad and Ra�elt have calculated a bound from NNB and the
neutrino signal from SN 1987A. These results are shown in the �rst row of table
4 and 5. Comparing this result to the results in table 2 and 3, one can see that
this NNB bound is about half the size of the bounds derived by the other authors.
Hannestad en Ra�elt claim that this di�erence is mainly due to the di�erent
approach on calculating the emission rate for gravitational bremsstrahlung in
the SN core.

The authors have explicitly calculated constraints for 2 ≤ n ≤ 7. Lower
bounds on the Planck scale are given in table 4 and upper bounds on the com-
pacti�cation scale L are given in table 5.
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n 2 3 4 5 6 7

Neutrino signal SN 1987A 26.522 2.284 0.45 0.144 6× 10−3 10−4

EGRET γ−ray limits:
SN 1987A 83.44 5.071 0.97 0.28 0.11 10−2

SN remnant Cas A 43.21 4.29 0.89 0.29 0.12 10−2

Nearby stars 115 9.169 1.3 0.48 0.19 10−2

Neutron star Excess heat 2.1× 103 88.2 10.6 2.33 0.73 10−2

Table 4: lower bounds on MPl(D) (TeV) as derived by Hannestad & Ra�elt [23]
from γ − ray observations.

n 2 3 4 5 6 7

Neutrino's SN1987A 10−6 1.1×10−9 3.8×10−11 2×10−12 1.2×10−12 4.4×10−13

EGRET γ ray:
SN 1987A 10−7 2.5×10−10 1.2 ×10−11 2×10−12 5.6×10−13 2.3×10−13

SN remnant CasA 3.6×10−7 4×10−10 1.4×10−11 2×10−12 5.0×10−13 1.9×10−13

Nearby stars 2.6×10−8 7.2×10−11 3.9×10−12 7 ×10−13 2.2×10−13 10−13

NS Excess heat 10−10 2.6×10−12 3.4×10−13 10−13 4.4×10−14 2.5×10−14

Table 5: Upper bounds on the compacti�action scale L(m), derived by Hannes-
tad & Ra�elt [23] from γ − ray observations.

Note that I express bounds on the Planck scale in terms of the parameter
MPl(D), while Hannestad and Ra�elt use a di�erent parameter in the original
paper:

M
2+n

4+n = M
2

Pl/L
n (46)

where MPl = MPl/
√

8π is the reduced Planck scale, and Ln is the volume of
the extra dimensions. This parameter is related to MPl(D) by:

MPl(D) = 21/(n+2) (2π)
n/(n+2)

M4+n. (47)

To get the limits on MPl(D) as shown in table 4, the results from [22] were
multiplied by the factor MPl(D)/M4+n.
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4 Discussion

We have seen how the ADD gives a di�erent perspective on the hierarchy prob-
lem by putting the higher dimensional Planck scale at the electroweak scale. I
have considered some physical implications of the theory and the most restrictive
constraints from short range gravity experiments and supernova observations.

Short range gravity experiments exclude the 6 dimensional scenario (n = 2)
directly for MPl(D) = MEW , meaning that 2 extra dimensions can not solve
the hierarchy problem in the ADD framework. Neutrino observations of SN
1987A have been used to put bounds on the Planck scale for low values of n.
The strongest bounds derived from these experiments imply MPl(D) & 50 TeV
(n = 2) and MPl(D) & 4 TeV (n = 3). Stronger bounds on the Planck scale
and bounds for larger numbers of n, have been derived from γ-ray observations
by EGRET. The most stringest constraints follow from the consideration of NS
excess heat and the results are summarized in the table below. According to
these results, the hierarchy problem can not be solved for n ≤ 5.

n 2 3 4 5 6 7

MPl(D)(TeV ) & 2.1× 103 88.2 10.6 2.3 0.7 10−2

L(m) . 10−10 10−12 10−13 10−13 10−14 10−14

I used the assumption that all extra dimensions are compacti�ed with the
same size L. Theoretically though, the extra dimensions can have di�erent sizes
and this would lead to di�erent results.

Besides the constraints derived from short range gravity experiments and
SN observations, several other experiments have also put strong constraints on
MPl(D) and L. In the �eld of astrophysics, observations on black holes, the
sun and red giants have been used to derive constraints in similar ways as SN
observations have been [20], but none of these are as strong as the constraints
I discussed in this paper. Particle collider experiments search for signatures of
gravitons in the form of missing energy in particle collisions. The results do not
depend on the number of extra dimensions, n, as much as astrophysical exper-
iments. For example, experiments done at (LEP II) have led to the following
upperbounds on the Planck scale: MPl(D) & 2 TeV (for n = 2) and 0.6 TeV (for
n = 6) [27].

In cosmology, constraints arise from various models, like in�ation models
and Big-Bang Nucleosynthesis [28]. All approaches lead to particularly high
bounds on the MPl(D) for small n, but for higher numbers of n the results are
not as signi�cant. For more details on these bounds see for example [29].

All in all, the ADD scenario is strongly constrained by several experiments,
but no hard proof of extra dimensions has been found so far. The theory has not
been proven wrong either, but even if we were to �nd extra dimensions, we can
ask ourselves: "does the ADD solve then really solve the hierarchy problem?".
It seems to solve the hierarchy between the electroweak scale and the Planck
scale (for the right choice of L), but it also leaves us with a new hierarchy
problem: the hierarchy between the electroweak scale and the compacti�cation
scale L. In the highest dimensional scenario (according to string theory), n=7:
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L ∼ 10−14m, while M−1
EW ∼ 10−19m. For L to reach the order of 10−19, the

universe would have to contain in�nitly many extra dimensions, since (24):

L ∼ 1032/n−19m

and obviously this is not considered a realistic scenario.
Several other models have been based on the concept of large extra dimen-

sions. The most important ones are the 'Universal extra dimension' (UED)
model and the Randall-Sundrum (RS) models.

The UED model is similar to the ADD scenario, only in this model all �elds
can propagate through the extra dimensional bulk [30]. The Randall-Sundrum
models (RS I and RS II), are based on the assumption that our universe contains
two 3-branes, with equal but opposite tensions and space-time is curved within
the extra dimensions. This curving is called 'warping' of the extra dimensions
and the models are often referred to as 'warped extra dimension' models. For
more details see [31]. Many more models extist, all giving di�erent perspectives
on di�erent problems in physics.

At this point it seems that we will just have to wait for proof to know whether
extra dimensions exist and if so, which model describes the physics within these
extra dimensions best. If direct evidence of extra dimensions is to be found,
this would have major consequences for our understanding of the universe and
it could possibly be an important step towards the uni�cation of the forces into
one overarching theory.
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A Appendix A: Spheres in higher dimensions

It is important to be exact in the de�nition of spheres, because they are often
confused with balls in daily language. When we are speaking of a sphere, at
least in mathematical terms, we mean the spherical shell of radius R (a surface)
that surrounds a ball of t Radius 0 < r < R.

In mathematics a ball of radius R in 3-dimensional space R3 with coordi-
nates (x1, x2, x3) is called a three-ball B3 (where the superscript denotes the
dimensionality) and it is enclosed by a two dimensional spherical shell S2, called
a two-sphere . The three-ball is then the region mathematically de�ned by:

B3(R) = x2
1 + x2

2 + x2
3 ≤ R2 (48)

and the two-sphere:

S2(R) = x2
1 + x2

2 + x2
3 = R2. (49)

In general a d-ball Bd is a ball in d-dimensional space Rd with coordinates
(x1 + x2 + ...+ xd). It is mathematically de�ned by the region:

Bd(R) = x2
1 + x2

2 + ...+ x2
d ≤ R2 (50)

and enclosed by the (d-1)-sphere:

S(d−1)(R) = x2
1 + x2

2 + ...+ x2
d = R2 (51)

Now, to calculate the �ux of a �eld through a sphere in d-dimensional
space Rd, one needs to know how to calculate the volume of the sperical shell
S(d−1)(R). Note that I call this a volume, even though I am speaking of a
sperical shell. Mathematicians always speak of volumes, no matter what the
dimensionality is of the space they are talking about.

As an example I will use the volume of a ball and the corresponding sphere
in 2- and 3-dimensions. The volume of a 2-ball in R2 is

vol[B2(R)] = πR2,

it is the area of the circle surrounded enclosed by a line, the 1-sphere S1of
volume:

vol[S1(R)] = 2πR. (52)

In the 3-dimensional case, the volume of the 3-ball is obvious,
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vol[B3(R)] =
4

3
πR3

and the volume of the 2 dimensional spherical shell is the surface area that
encloses the 3-ball:

vol[S2(R)] = 4πR2

Now in arbitrary dimensions the volume of a sphere of radius R is related
to the volume of a sphere of unit radius by:

vol[S(d−1)(R)] = R(d−1)vol[S(d−1)] (53)

where the volume of a sphere with unit radius is given by:

vol[S(d−1)] =
2π

d
2

Γ(d2 )
(54)

and Γ(d2 ) is the Gamma function:

Γ(x) =

∞̂

0

dt · e−tt(x−1), x > 0. (55)

For a more detailed derivation see reference [32]. For d=1 and d=2 the gamma
function is easy:

Γ(
1

2
) =

∞̂

0

dt · e−tt( 1
2 ) =

√
π (56)

Γ(1) =

∞̂

0

dt · e−tt(0) = 1 (57)

and for other values of d, the gamma function follows from the relation:

Γ(x) = (x− 1)Γ(x− 1). (58)

All in all, the volume of a (d-1)-sphere in d-space is given by

vol[S(d−1)(R)] = R(d−1) 2π
d
2

Γ(d2 )
(59)

and the volume of a d-ball Bd is

vol[Bd(R)] = R
π
d
2

Γ(1 + d
2 )

(60)
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