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Abstract: Bell’s inequality provided a measurable condition any Local Hidden Variable theory had to
obey. According to this reasoning it quantum mechanics could not contain any hidden variables and so it
was either wrong, or hidden variables didn’t exist. Experiments on Bell’s inequality where in favor of
quantum mechanics, and therefore seemingly disproving the existence of Local Hidden Variables (LHV).
In this paper three no-hidden-variables theories will be discussed and compared, namely the original Bell’s
theorem, the Greenberger, Horne and Zeilinger (GHZ) theorem and the Bell, Kochen and Specker (BKS)
theorem. Each theorem will be attempted to be extended for more particles and for higher spin. These
attempts are more successful in the case of Bell’s theorem than the GHZ and BKS theorems. A link that
exists between the GHZ theorem and the BKS theorem will also be exploited to extend the BKS theorem.

Samenvatting: De wereld van de quantum mechanica betreft de aller kleinste deeltjes, denk aan
fotonen, elektronen of protonen. Die deeltjes hebben veel verschillende eigenschappen, ook eigenschappen
waar er in de wereld om ons heen geen parallellen van zijn. Een van die eigenschappen is de spin van
een deeltje. Je kan je hierbij voorstellen dat een deeltje heel snel om zijn eigen as draait, net als een tol.
Maar de punt van deze tol kan of naar boven, of naar beneden wijzen, dan tolt hij de andere kant op.
Dit noemen we dan spin up en spin down. Deze spin kunnen we meten met speciale apparaten, maar ook
voorspellen aan de hand van de theorie. Er is alleen iets geks aan de hand met die theorie, we kunnen
namelijk niet met 100% zekerheid zeggen wat de meting zal gaan geven. Sterker nog, de kans is 50% om
spin up te vinden en 50% om spin down te vinden. In eerste instantie zou je denken dat er gewoon nog
informatie ontbreekt, er zijn nog variabelen nodig die moeten helpen in de voorspelling van de juiste spin.
Net als bijvoorbeeld de windrichting en gewicht van een bal helpen om te bepalen waar hij neerkomt als
we hem weg schoppen. Er zou dus nog meer informatie nodig zijn om de quantum theorie compleet te
maken, dit zouden de zogenaamde hidden variables (verborgen variabelen) zijn. Echter bleek dit niet zo
te zijn. John. S. Bell publiceerde in 1966 een theorie waarin hij liet zien dat quantum mechanica geen
hidden variables kon bevatten, en als deze er wel zouden zijn, dat de quantum theorie helemaal fout was.
Bell’s theorema werd getoetst en het bleek dat de quatum mechanica toch goed zat. Dit betekend dat de
spin van het deeltje niet bepaald is, totdat hij gemeten word. Deze ontdekking leidde er toe dat meerdere
mensen opzoek gingen naar andere soorten bewijzen tegen de hidden variables. In mijn onderzoek kijk ik
naar drie van deze bewijzen. Ten eerste het origineel van Bell, ten tweede een theorema van Greenberger,
Horne en Zeilinger en ten slotte een van Kochen en Specker, en Bell zelf. Bij elk van deze theorema’s kijk
in hoeverre ze nog steeds geldig zijn voor systemen met bijvoorbeeld meerdere deeltjes of voor hogere spin
(als de deeltjes nog meer kanten op kunnen tollen). Het blijkt dat Bell’s orginele ongelijkheid het meest
algemeen is en ook het minste aanneemt van zowel de quantum theorie als de LHV’s.
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1 Introduction

In quantum mechanics one can make predictions about the properties of particles. For example their
position, momentum and spin. However the predictions (in many cases) can’t be made with a 100%
certainty. One can only say something about the chance that the particle is in position X or the odds
that we find a particle has a spin up. Many who are first introduced to quantum theory think that
the percentages involved come from the fact that we do not have all the information necessary to make
an accurate prediction. There is still information missing. Einstein, Podolsky and Rosen argued the
same. They had an issue with the indeterministic nature of quantum mechanics and so they published
a gedankenexperiment that showed why they believed why there was still information missing from the
theory. By adding this informations one would be able to make accurate predictions about the system
without uncertainty. They believed the particles’ properties already had certain values, and where not
determined by the measuring process. They called this missing information the hidden variables. In an
initial attempt to construct some properties of these hidden variables, almost 30 years later John Bell
published a paper containting a theorem that showed that quantum mechanics and hidden variables did
not match at all. He provided an inequality that a theory containing hidden variables had to obey, and
which quantum mechanics violated. The inequality showed that there where two options. The first was
that quantum mechanics was correct which meant that it was complete and hidden variables didn’t excist.
This also meant that nature was non-local, since the signal between the two particles had to go faster
than the speed of light. The second option was that hidden variables did exist, which in turn meant
quantum mechanics was wrong and nature would obey locality. In either case, the two (LHV and quantum
mechanics) could not work together. When the inequality was tested by Aspect et al, it proved to be in
favor of quantum mechanics. Eventhough now the results of this test have been questioned [17] the initial
response to the results was that it had some major consequences. Not only would this disprove realism
but it would also show that nature was fundamentally non-local. It seemed that indeed the particles knew
what its counterpart were doing instantaneously, therefore the signal between them would go faster than
the speed of light. This posed to be quite the issue, after all that would be in direct violation of relativity.
If information can travel faster than the speed of light this would mean that it could travel backwards in
time in certain situations. However non-local correlations cannot be used to transfer information faster
that the speed of light and therefore be used to send messages [13, p. 421]. Non the less it shows that the
topic is well worth exploring. Consequently there have been more attempts at making both LHV theories
and theorems disproving them.

In this thesis three major no-hidden-variables theories will be discussed and compared. We will mostly be
focusing on the technical derivation of several forms of Bell inequalities, and will cover some interpretation
issues will in the discussion. At first the EPR paradox is explained, making clear the issue that started the
no-hidden-variables theories. After that in each section a theorem will be explained in detail after which
they will be extended for both higher amounts of spin as well as more particles. Finally the assumptions
and with that the validity of the theorems will be discussed. The experiments done to test them are briefly
mentioned along with their results.

2 Einstein, Podolsy and Rosen

The goal when creating a theory, any theory whether in biology, maths, sociology or physics, is to describe
the world we see around us using formulas, definitions, variables and so forth. It aims to attach to each
physical element of the reality we see, a theoretical counterpart which describes it. These elements of the
theory then work together to predict the outcome of the system that is being described. One could argue
that such a theory cannot be complete until each physical element is represented in the theory, and thus
the behavior of each physical element can be predicted. In quantum mechanics this isn’t always the case.
Wave-functions are used to describe quantum mechanical systems, but they give information about the
probability distribution of a particles properties. For the most part they cannot predict anything about
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a particle with a 100% certainty. Furthermore there are so called incompatible observables, with non-
commuting operators, of which we cannot know both values simultaneously. In 1935, Einstein Podolsky
and Rosen (EPR) argued that because of this fundamental uncertainty in quantum mechanics, the theory
wasn’t complete. It couldn’t be called complete until each physical element was represented by, what
they called, an element of reality. The one condition defining this element of reality is the possibility of
predicting it with certainty without disturbing the system [8, p. 777]. Einstein, Podolsky and Rosen then
conducted a thought experiment to prove that quantum mechanics is incomplete and that some ’elements
of reality’ have to exist that would enable the theory to make correct predictions without disturbing the
system. This set-up is best known as the EPR-paradox (or theorem [19]) and will be explained below.
Where the original paper uses momentum, we will be following an example using spin as introduced by
Bohm [6].

2.1 The EPR theorem

The set-up is as follows. A source emits two particles 1, A and B, which are correlated. Because the
momentum is conserved both particles will propagate in opposite directions, resulting in them moving
away from each other to remote locations in space. Both particles will undergo measurements, typically by
Stern-Gerlach devices, which are set under certain parameters or settings. In the case of the Stern-Gerlach
magnets this simply means measuring the x, y or z component of the particle’s spin. When measured,
each particle gives one of two results, either +1 or -1. It is also assumed that when the same settings are
used, the results of the measurements will be the same.

Let’s now perform measurements on some of the emitted particles with no particular settings on the
devices. (Not to be confused with random settings, they can in fact be the same with each measurement,
or not. The point is that settings simply do not matter yet.) Before the measurements are performed,
there is no way of knowing what the outcome will be and thus the results may appear to be completely
random. This random behaviour can have 3 different explanations [19].

• There are uncontrollable fluctuations on a microscopic level which influence the results of the mea-
surements.

• The process itself is fundamentally indeterministic.

• The particles contain some microscopic property determining the outcome of the experiments, and
we simply don’t know what they are yet.

As of yet there is no way of telling which explanation is the right one, so we need to involve a concept called
locality. Locality roughly says that no influence or signal can move faster than the speed of light, and is
therefore only applicable in its immediate surroundings. In terms of the two particles from the set-up this
would mean that the measurement on A would in no way affect the measurement on B, provided they are
far enough away from each other. In quantum mechanics the results of the measurement does not depend
on the distance or times at which the spins are measured. This means that if A and B are measured using
the same settings the results will be the same for both particles. Let’s say, for example, we set both our
Stern-Gerlach magnets to measure the y-component of the spin. Then if we measure A to be +1, we know
that B is also +1(or -1 if the particles are anti-correlated). Furthermore, because thanks to locality, any
random fluctuations on A could not have any affect at all on B, we can eliminate the first explanation.
We’ve already established that when the settings are the same for A and B, the results are the same. So
this means that the process cannot be indeterministic, which eliminates explanation number two. The
only option left is that the particles must carry with them all the information needed to provide the given
result. Some intrinsic property exists that determines their outcome. EPR called these the ’elements of
reality’.

It is important to note that EPR does not say that quantum mechanics is wrong, they indeed seem
to assume that quantum mechanics is correct in its predictions of the spin measurements, but that it is

1Specifically the decay of a neutral pi meson into an electron and a positron. π0 → e− + e+
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yet incomplete. That would mean that quantum mechanics only gives a statistical interpretation of the
actual state of the system. It is therefore that they believe that the ’elements of reality’ exist which are the
information attached to the system that determines the outcome. The elements of reality would complete
the theory. In all this the notion of locality is very important. It dictates that the elements of reality are
attached to the region of space where the experiment is done. They cannot fluctuate or suddenly change
because of something happening in another distant region of space, they only evolve locally. Laloë [19]
shows that the EPR conclusions can be summed up in the the following points:

(a) The system contains some elements of reality that influence the outcome of the experiments performed
on the system.

(b) The functions that predict the results are well defined and therefore not indeterministic.

(c) So called ’incompatible’ observables are now able to have a well defined value do to the fact that they
can be predicted. The ’incompatible’ observables are therefore only a result of the incompleteness of
the theory.

EPR conclude their article saying that they do not know whether a description of physical reality that
satisfies the conditions of a complete theory exists, but they believe it is possible [8, p. 780]. There have
been suggestions for local hidden variable theories after the release of EPR and even Bell intended to find
out what what such a theory would look like. More specifically what the elements of reality would look
like. Following EPR’s reasoning he wanted to find out more about the properties of the elements of reality.
What he found was quite the opposite.

3 The Bell inequalities

Bell’s initial goal was to try to create a description for the hidden variables. Basically continuing where
EPR left off and introducing the hidden variables into the mathematics [19]. He uses λ to describe all
the extra information attached to a system necessary to predict the outcome of a measurement. Going
through the calculations incorporating λ result in a inequality that needs to be satisfied by all systems
similar to that of the EPR paradox. This thus provided a measurable condition which the LHV (Local
Hidden Variables) theories had to obey. In the end it is evident that quantum mechanics does not obey
this condition. So instead of showing what the hidden variables would look like inside the quantum theory,
he disproved the possibility of quantum mechanics containing any local hidden variables at all.

In this section we will discuss Bell’s proof as he did in his original article [4]. After that we will see how
the Bell theorem works for all non product states, and for an arbitrary large spin. This will be followed by
an example of a bell’s inequality for spin-1. The final extension of the Bell’s theorem comes from Mermin
[21], Ardehali [1], Belinskii and Klyshko [3] that shows how one can obtain an inequality for N spin-1/2
particles.

3.1 The original Bell inequality

Bell [4] starts off by making a generalization of the EPR experiment where he measured the two particles
along arbitrary directions instead of the same. We will call the direction along which the first particle is
measured ~a, and the second ~b. The particles can then be measured and their values will always be either
+1 or -1 (when measured in units of ~

2). Bell then calculates the expectation value of the product of these
two result. Quantum mechanics predicts:

E(~a,~b) = −~a ·~b. (3.1)

Note that when the two directions are parallel (or anti-parallel) as in the original EPR article, one obtains:

E(~a,~a) = −1

E(~a, ~−a) = +1.
(3.2)
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EPR calls for a complete description of the particles. So Bell introduces the variable λ to characterize
the system. λ can be anything from a single variable to a set of functions describing the system, but for
simplicity we’ll write it as a single variable. Two functions are defined, A(~a, λ) and B(~b, λ) which give the
results for respectively the first and the second particle. Remembering the EPR requirement of locality, A
cannot be influenced by B and vice versa. Both functions can only attain the values +1 or -1. Take ρ(λ)
to be the probability distribution of λ, where

∫
ρ(λ)dλ = 1. Then the expectation value of the product of

A(~a, λ) and B(~b, λ) becomes:

E(~a,~b) =

∫
ρ(λ)A(~a, λ)B(~b, λ)dλ, (3.3)

which must be equal to (3.1). We know from (3.2) that (3.3) has its maximum at 1 and its minimum at
-1. When it equals -1 we know that ~a = ~b and A(~a, λ) = −B(~b, λ). Therefore (3.3) becomes

E(~a,~b) = −
∫
ρ(λ)A(~a, λ)A(~b, λ)dλ. (3.4)

Introducing ~c as another unit vector we can see that

E(~a,~b)− E(~a,~c) = −
∫
ρ(λ)[A(~a, λ)A(~b, λ)−A(~a, λ)A(~c, λ)]dλ

=

∫
ρ(λ)A(~a, λ)A(~b, λ)[A(~b, λ)A(~c, λ)− 1]dλ,

(3.5)

but since A(~a, λ) and B(~b, λ) are both ±1 we know that

−1 ≤ [A(~a, λ)A(~b, λ)] ≤ +1 and ρ(λ)[1−A(~b, λ)A(~c, λ)] ≥ 0, (3.6)

and therefore

|E(~a,~b)− E(~a,~c)| ≤
∫
ρ(λ)[1−A(~b, λ)A(~c, λ)]dλ. (3.7)

Here the second term on the right is equal to E(~b,~c), so that

1 + E(~b,~c) ≥ |E(~a,~b)− E(~a,~c)|. (3.8)

This result is the famous Bell inequality which is valid for any LHV theory. All that remains is to show
that there are situations in which the inequality is incompatible with the quantum mechanical predictions.
For example if ~a, ~b and ~c have the angles 0, π

4 and π
2 respectively, one would obtain:

E(~a,~b) = 0, E(~a,~c) = E(~b,~c) = −
√

2

2
≈ −0.707, (3.9)

which is in disagreement with the inequality [13, p.426]

1− 0.707 = 0.293 6≥ 0.707. (3.10)

Bell thus concluded that quantum mechanics and any local hidden variable theory cannot co-exist.
Either locality is preserved, there are hidden variables and quantum mechanics is incorrect, or quantum
mechanics is correct and locality is violated. It was now only a matter of actually doing the measurements.
The theorem was tested experimentally by Aspect et al [2], which showed to be in favor of quantum
mechanics. The results of the experiment has been questioned however recently by Khrennikov[17]. The
details do not concern us here, but it is sufficient to say that in his article he shows that the inequality is only
violated when one chooses certain settings. The author argues that under certain conditions the inequality
is actually not violated. If however the violation of the inequality is indeed confirmed experimentally
this would mean that the quantum mechanical predictions where correct. The theorem makes very little
assumptions and therefore provides quite a strong argument against local hidden variable theories. The
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theorem does however assume that the distribution of hidden variables is the same for all measurements,
and this assumption will be talked about further in the discussion.

There is another version of Bell’s theorem called the CHSH form (or even BCHSH) that is more
commonly used in experiments to test the inequality [7]. Using the same notation A(a, λ) = A, A(a′, λ) =
A′, B(b, λ) = B and B(b′, λ) = B′, which are either +1 or -1 when measured. If we then look at the
following product:

M = AB +AB′ −A′B +A′B′ = (A−A′)B + (A+A′)B′. (3.11)

We can see that it is always equal to either +2 or -2 because either (A − A′) or (A + A′) is always zero.
Then when averaging M over a large number of experiments, we obtain:

−2 ≤ < M > ≤ +2. (3.12)

This is a very clean and general inequality. As said before it is valid to all systems with the same set-up
as the EPR paradox. As long as the outcome is the result of fluctuations and influences that act locally.
When using quantum mechanical notation to predict the outcome, the highest attainable value for M (and
thus < M >) is 2

√
2. The factor

√
2 is a difference of more than 40% [19].

3.2 Extensions of the Bell inequality

While the original version and also the CHSH form work with the same state, namely a singlet state for two
particles, the inequality is also valid for other states. Gisin [9] proved that the Bell inequality is violated
for all non-product states. He utilized a general form of a non-product state:

|Ψ〉 = c1 |↑↓〉+ c2 |↓↑〉 . (3.13)

He then proceeds to show that the value M (3.11) from the BCHSH inequality can also be written as
P (~a,~b)− P (~a, ~b′) + P (~a′,~b) + P (~a′, ~b′) and is equal to

2(1 + 4|c1c2|)−1/2,

for c1 and c2 greater than zero this is always greater than 2 thus violating the inequality [9].
A year later Gisin [10] published a paper showing how the Bell inequality is also valid for an arbitrary

large spin, and so expanding the proof even more. This result was later used to create inequalities for
different types of systems, instead of the two spin-1/2 particles [10]. Instead of looking at Gisin’s proof
that show the possibility of expanding Bell’s theorem for higher spin, we will look at an example of this
by Wu et al [28].

3.2.1 Bell for spin-1

An example of a proof for higher spin particle systems is that of Wu et al [28] which deals with two spin-1
particles. In their proof they use probabilities more directly compared to the original Bell inequalities,
which also leads to a contradiction. Here we will discuss their proof briefly. The state that they use is:

|Φ〉 =
1√
3

(|1,−1〉 − |00〉+ |−1, 1〉). (3.14)

We can see here that the eigenvalues of the eigenvector |mi〉 of the spin operator along the z-axis
Sz = 1, 0,−1 for particles i = 1, 2. Let |m′i〉 be the eigenvector of the spin operator S(βi). The connection
between these two vectors is given by:

∣∣m′i〉 =

3∑
j=1

Dji(β) |mj〉 , (3.15)
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and the rotation matrix

Dji =

∣∣∣∣∣∣∣∣
1+cos(β)

2
sin(β)√

2

1−cos(β)
2

sin(β)√
2

cos(β) −1−cos(β)√
2

1−cos(β)
2

sin(β)√
2

1+cos(β)
2

∣∣∣∣∣∣∣∣ . (3.16)

The particles propagate along the y-axis, one in the positive direction and one in the negative direction,
where they will both meet Stern-Gerlach analyzers after some time. One of the two analyzers will give the
results for spin projection along a direction β1 and the other along β2. The authors then proceed change
the base of (3.14) using (3.15) to rewrite it as:

1√
3

(sin(
β1 − β2

2
) |11〉 − 1√

2
sin(β1 − β2) |10〉+

cos2(
β1 − β2

2
) |1,−1〉+

1√
2

sin(β1 − β2) |01〉 − cos(β1 − β2) |00〉

− 1√
2

sin(β1 − β2) |0,−1〉+ cos2(
β1 − β2

2
) |−1, 1〉

+
1√
2

sin(β1 − β2) |−1, 0〉+ sin(
β1 − β2

2
) |−1,−1〉). (3.17)

Using the following definition for joint probabilities:

Pm1,m2 = |〈Φ| m1m2〉|2 , (3.18)

where the values of the particles are m1,m2 = 1, 0,−1. For (3.17) the authors obtain the following
probabilities according to quantum mechanics:

P11 =
1

3
sin

β1 − β2
2

2

, (3.19)

P00 + P0,−1 + P−1,0 + P−1,−1 =
1

3
(1 + sin

β1 − β2
2

4

). (3.20)

Now it needs to be shown that for this correlation LHV models cannot be sufficient. As with Bell’s
theorem, we introduce λ to represent the hidden variables. The same probabilities will be calculated with
incorporation of λ with

Pm1,m2(β1, β2) =

∫
pm1(β1, λ)qm2(β2, λ)dλ, (3.21)

where pm1 is the result of measuring the first particle along β1 and qm2 is the result of measuring the
second particle along β2. Here too ρ(λ) is normalized. The authors then make use of the following
algebraic theorem which is true for any six real numbers x, x′, X, y, y′ and Y where 0 ≤ x, x′ ≤ X, 0 ≤ y,
and y′ ≤ Y then

−XY ≤ xy − xy′ + x′y + x′y′ − x′Y −Xy ≤ 0. (3.22)

By saying that x = p1(β1, λ), x′ = p1(β
′
1, λ), y = q1(β2, λ), y′ = q1(β

′
2, λ) and X = Y = 1 they obtain

the inequality

S = P11(β1, β2)− P11(β1, β
′
2) + P00(β

′
1, β2) + P0,−1(β

′
1, β
′
2) + P−1,0(β

′
1, β2) + P−1,−1(β

′
1, β2) ≤ 1. (3.23)

This is violated for the angles β1 = 0, β′1 = 2β2, β
′
2 = 3β2 and β2 = 147, 7 deg. This gives S = 1.12 6≤ 1.

Wu et al hereby provide an example of a Bell-type inequality for higher spin.
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3.2.2 Bell for N spin-1/2 particles

The extension of the Bell theorem for a N number of particles was given by Mermin [21], Ardehali [1] and
by Belinskii and Klyshko [3] separately. It is therefore also known as the MABK theorem. In this section
we will discuss Mermin’s and Ardehali’s articles.

Their starting point is a N -particle system in a GHZ state (which we will come to later). In the GHZ
proof of the Bell inequalities they use extreme values (always either +1 or -1), whereas in this proof they
assume that the measurements are imperfect, and therefore that the measured correlations do not attain
their extreme values [1].

Both Mermin and Ardehali start out with the correlated (GHZ) state:

|Φ〉 =
1√
2

(|↑↑ · · · ↑〉+ i |↓↓ · · · ↓〉). (3.24)

Mermin then makes use of the operator A which is:

A =
1

2i

 n∏
j=1

(σjx + iσjy)−
n∏
j=1

(σjx − iσjy)

 . (3.25)

Taking the diagonal matrix elements of this operator can be used as separate observables. When used on
Φ and expanded this gives: 〈

Φ
∣∣σ1yσ2x · · ·σNx ∣∣Φ〉+ · · · (3.26)

−
〈
Φ
∣∣σ1yσ2yσ3yσ4x · · ·σNx ∣∣Φ〉− · · ·

+
〈
Φ
∣∣σ1y · · ·σ5yσ6x · · ·σNx ∣∣Φ〉+ · · ·

−
〈
Φ
∣∣σ1y · · ·σ7yσ8x · · ·σNx ∣∣Φ〉− · · · (3.27)

+ · · · ,

where each line contains all the possible permutations of the subscripts. We are thus considering the set
of all possible permutations of x and y subscripts, containing an uneven amount of y subscripts. It is this
set of 2n−1 terms that will be used to model for LHV. If one would look at the case where each term
attains their extreme value of either ±1 (3.26) would be equal to 2n−1. Doing this would lead to a direct
contradiction which is shown in the GHZ case in section 4. As stated before the authors consider the case
where this does not happen, and each term does not in general attain it’s extreme value. The author then
defines the expectation value of A within the EPR frame to be:

E =

∫
ρ(λ)

1

2i

 n∏
j=1

(Ejx + iEjy)−
n∏
j=1

(Ejx − iEjy)

 dρ, (3.28)

where ρ(λ) is of course again the normalized distribution function and Ejµ = pjµ(↑, λ) − pjµ(↓, λ). Making
the calculations will result in

E ≤
{

2n/2 n even

2(n−1)/2 n odd
. (3.29)

These are the expected values of A within the EPR reasoning, in other words, assuming locality. The
next step is to look at what quantum mechanics predicts about the same situation and to see if there is a
violation. When we use quantum mechanics to calculate the expectation value one obtains

E = 〈Φ|A |Φ〉 = 2n−1, (3.30)

which is obviously always larger for N > 3 than the predicted values using the EPR reasoning. It is also
clear that the violation becomes even stronger when the number of particles is increased.
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As stated before Ardehali has a very similar argument which works for the same state, although in the
articles the state |Ψ〉 = 1√

2
(|↑↑ · · · ↑〉−|↓↓ · · · ↓〉) is used instead. The operator B is defined as B = B1+B2

where

B1 = (−σ1xσ2x · · ·σn−1x + σ1yσ
2
yσ

3
x · · ·σn−1x + · · · − σ1yσ2yσ3yσ4yσ5x · · ·σn−1x

− · · ·+ σ1y · · ·σ6yσ7x · · ·σn−1x + · · · − · · · )(σna − σnb ), (3.31)

B2 = (σ1yσ
2
x · · ·σn−1x + · · · − σ1yσ2yσ3yσ4x · · ·σn−1x − · · ·+ σ1y · · ·σ5yσ6x · · ·σn−1x

+ · · · − σ1y · · ·σ7yσ8x · · ·σn−1x − · · ·+ · · · )(σna + σnb ). (3.32)

We can see that the set of observables that is considered here contains not only the uneven permutations
of x subscripts but also the even amount. The first equation contains all distinct permutations of even
subscripts of y, the second equation contains all the permutations of odd subscripts of y. As we can see
particles 1, 2, 3, ...n − 1 are measured along either the x or y-axis. The final particle is measured along
either vector a, which is defined as being in the xy-plane and makes a 45 degree angle with the x-axis or
vector b which makes a 135 degree angle with the x-axis while also being in the xy-plane.

Ardehali then proceeds to calculate the expectation value of B using the probability distribution func-
tion Px1,y1,···an,bn(m1, · · ·mn) where the m’s denote the results of measured particles and are therefore
either ↑ or ↓. The author proceeds to define the expectation value of B under local realism:

E =
∑

Px1,y1,···an,bn(m1, · · ·mn)(M1 +M2), (3.33)

where

M1 = −Re

j=n−1∏
j=1

(mj
x + imj

y)(m
n
a −mn

b )

 , (3.34)

M2 = Im

n−1∏
j=1

(mj
x + imj

y)(m
n
a +mn

b )

 . (3.35)

For the ones that are interested in the exact calculations of the next part, one could look at the original
article [1], since the calculations are simply to lengthy to repeat here. Doing these calculations will result
in E being bounded by the following values under assumption of local realism:

E ≤
{

2n/2 n even

2(n+1)/2 n odd,
(3.36)

which is a very similar result to that of (3.29). The expectation value of B according to quantum mechanics
results in:

〈Ψ|B |Ψ〉 = 2(n−1/2). (3.37)

Here we can see that the violation of the inequality is much larger for even n in this case, and much larger
for odd n in the case of (3.29).

Although it might be difficult to actually measure this in an experiment it is still an interesting the-
oretical result when it comes to Bell inequalities. It shows that the result does not become less valid for
systems containing a larger number of particles, but rather it makes the argument even stronger. Gisin
accurately noted that these results provide us with a proof that the classical behavior of systems does not
automatically come from the fact that they are large. By this he meant not only a large spin, but also a
large number of particles contained in the system.

In this chapter we have discussed the original Bell theorem, followed by a number of extensions made
over the years. We have seen that the inequality is violated for not only the state of two spin-1/2 particles
used by Bell himself, but also for other non-product states and for systems containing a higher spin.
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Furthermore we have seen that the violation actually becomes stronger for a higher number of particles,
rather than weaker. Bell’s theorem assumes very little about both quantum mechanics and of course the
LHV’s. The only assumption it makes is that ρ(λ) is independent of the measuring process. So the proof
can only exclude those LHV theories that assume that the measurements do not affect the distribution
of hidden variables [16]. The experiment preformed by Aspect et al [2] indeed showed a violation of the
inequality. Furthermore the MABK theorem has been tested and here too was the inequality violated [30].

4 GHZ experiment

In 1989 Greenberger, Horne and Zeilinger [12] published a book containing several aspects of quantum
theory. One of them was Bell’s theorem. A year later they published an article, together with A. Shimony,
containing one of the theories discussed in that book. The article, appropriately called ”Bell’s theorem
without inequalities” [11] contained a theorem much like that of Bell, but indeed without an inequality.
Instead it had a direct contradiction. Just like Bell’s theorem, their starting point was the EPR reasoning,
so their contradiction is also based upon the assumption of locality. Their proof relies on more assumptions
than Bell’s however, but this does result in a stronger contradiction. In the same year David Mermin
published an article based on their theorem where he shows a much more elegant version. For convenience
from now on we will refer to this version as the GHZM theorem. In the next section we will explain this
version of the theorem by Mermin [24] which is for three particles with spin-1/2. After that we will use
this version and expand it for a system of an arbitrary number of particles.

4.1 The proof

As with the Bell theorem we will assume the hidden variables exist and try to see if they work within the
quantum theory. The proof starts of with three spin-1/2 particles which are emitted by a source in three
different directions. The three particles are in the following state:

|Ψ〉 =
1√
2

(|↑↑↑〉 − |↓↓↓〉). (4.1)

All three particles are sent towards three devices each with a switch with two settings. The device,
which contains a Stern-Gerlach magnet, will measure the x-component when the switch is set to 1, (as
seen in figure 1) and will measure the y-component when set on 2. The device will then light up either red
(for spin up) or green (for spin down) when hit by a particle. If we look at the situation where one device
is set on 1 and the other two on 2, this corresponds to measuring one in the x direction and the other two
in the x direction, we can use the following operators:

σ1xσ
2
yσ

3
y , σ1yσ

2
xσ

3
y , σ1yσ

2
yσ

3
x, (4.2)

where σx and σy are the Pauli matrices, and σ1x works on the first particle, σ2y on the second and so on.
Since

σx |↑〉 = |↓〉 σy |↑〉 = +i |↓〉
σx |↓〉 = |↑〉 σy |↓〉 = −i |↑〉 ,

(4.3)

we can let the operators of (4.2) work on the state (4.1). All three of these will give back the original state
with an eigenvalue of 1.

σ1xσ
2
yσ

3
y |Ψ〉 = +1 |Ψ〉

σ1yσ
2
xσ

3
y |Ψ〉 = +1 |Ψ〉

σ1yσ
2
yσ

3
x |Ψ〉 = +1 |Ψ〉 .

(4.4)

Thus |Ψ〉 is an eigenstate of these operators. For these equations to be true it must be that either all
particles are measured in the up position (and therefore give the value +1), or one is up, and two are
down. So the detectors will always give an odd number of red flashes (one or three).
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Figure 1: Mermin’s set-up of three detectors A, B and C with a source in the middle. Here the settings
correspond to 122, 211 or 212 which will result in an odd number of red flashes. From [24, p. 731].

Next we will look at the situation where all the devices are set to 1. In terms of the operators this will
be:

σ1xσ
2
xσ

3
x |Ψ〉 = −1 |Ψ〉 . (4.5)

This would result in an odd number of green(-1) flashes, which also means that one would never find an
odd number of red flashes.

The next step is to look at the situation from a EPR point of view and therefore assign the hidden
variables to the observables. The hidden variables would determine the value of the observables pre-
measurement and because of this we can simply assign the values to the observables. The assigned values
can obviously be either +1 or -1. We will call M1

x the result of the x-component spin measurement of
the first particle, M2

x for the second particle, etc. Here GHZ makes the assumption that the values of the
observables are subject to the same conditions as the observables themselves are. This means that the
values we assign to the observables of (4.4) and (4.5) have to satisfy

M1
xM

2
yM

3
y = 1,

M1
yM

2
xM

3
y = 1, (4.6)

M1
yM

2
yM

3
x = 1,

and
M1
xM

2
xM

3
x = −1. (4.7)

According to the EPR theorem a cause can only create an effect locally. Because of this we know the
measurement on one of the particles should not influence the outcome of the other two measurements.
Their outcome is already determined beforehand, meaning the particles already have a certain value before
they even arrive at the apparatus. There should therefore be no objection to reusing the result of the
measurement on one of the particles in one setting, in another. So after you’ve send the particles on their
way, with the setting 122 for example, you flip two of the switches to 1. This is after the particles have
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left the source, but before they arrive at the detectors. The same set of particles that gave +1 for 122,
212 and 221 should also give -1 for 111. Because we saw before that this always happens when setting all
the devices to 1. That is why we can simply reuse the resulting values of the measurements of (4.4) to
(re)construct the situation of (4.5). To do this we calculate the product of the three values (4.6) which
then becomes:

(M1
xM

2
yM

3
y )(M1

yM
2
xM

3
y )(M1

yM
2
yM

3
x) = 1 · 1 · 1

(M1
xM

2
xM

3
x)(M1

yM
2
yM

3
y )2 = 1.

(4.8)

The second part of the right hand side is squared and since (±1)2 = 1 one can easily see that the first
part (M1

xM
2
xM

3
x) must also equal one. But this is in contradiction with (4.7)! Here it is evident that

the contradiction resulting from the GHZM thought experiment is much stronger than Bell’s inequality.
The reason this ’works’ (or why we obtain a change in sign) is because σ1x and σ1y do not commute. We
therefore cannot interchange them without repercussions. This is exactly what we did at (4.8). So this is
why quantum mechanics and hidden variables do not work well together, or rather, not at all.

It is interesting to see that the same contradiction can be explained very simply without needing any
knowledge of quantum mechanics. In the same article Mermin shows one can also prove the contradiction
using a simple thought experiment using the devices mentioned earlier. As before, the devices set up to
measure the particles flash either red or green, the results are then respectively +1 and -1. (Interestingly
enough the contradiction can also be shown even without knowing which color stands for which value.) We
again assume locality and that since there is no connection between the devices, there is no way for the
particle to know which color it should flash, just from what the others did. Also it can’t know what setting
the device is set to until it arrives there. Therefore it must carry all the information with it necessary to

know what color to flash for either of the two settings. Mermin uses the notation
1
2 for the information the

particle must have for either setting 1 or 2. Each particle would then have
R
R,

R
G,

G
R or

G
G as an option.

For the devices to give an odd number of flashes for the settings being, 122, 212 or 221 we would get
the following combinations of particle sets:

Setting 1 RRR RGG GRG GGR
Setting 2 RRR RGG GRG GGR

and

Setting 1 RGG RRR GGR GRG
Setting 2 GRR GGG RRG RGR

,

where the top row of each six letter block corresponds to setting 1 and the bottom row of each block to
setting 2. It is easy to check these are correct [24].

Now we will look at the situation where we set all the devices to 1. As we saw before at (4.5), that
resulted in a negative eigenvalue, or in other words an odd number of green flashes. Even if we flip two of
the switches after the particles have already left the result would still be an odd number of green flashes.
In that situation we know one of the possible sets given above left the source and in a 122 (etc) situations
would give the expected result. But when we flipped two of the switched half way and still obtained an
odd number of green flashes it means that the sets of particles given above should also work for the setting
with all the switches set to 1. But if we look at the first row of each set none of them give an odd number
of green flashes. So here too we get a contradiction.

It is quite clear that the GHZM version of the Bell’s theorem is a much more elegant version. The
beauty of it is that it doesn’t depend on statistics of gathered data by performing many measurements,
but instead is a direct contradiction. As Laloë [19] put it, it is ”... 100% contradiction obtained with
100% certainty.” And as Mermin has shown it is even possible to understand the experiment without any
knowledge of quantum mechanics whatsoever. Even though the version is alluring, the reasoning has been
questioned [19]. For one it is presumed that measuring each observable separately will give the same result
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as measuring them at the same time. This is true in quantum mechanics for commuting observables. But
we can see that the operators σx and σy of course do not commute. This would prevent us from knowing
all the six values of (4.8) at the same time.

4.2 Extensions of the GHZ theorem

4.2.1 Extension to N particles

As before with the Bell inequality, we want to try and expand the GHZM theorem for more particles and a
higher spin. In this section an attempt has been made to expand the GHZM thought experiment to one for
N particles. We will try to maintain the same method as before, and keep the proof as simple as possible.
Later in the section it is shown how one can also expand the use of Mermin’s hypothetical devices for N
particles. We start with the function:

|Ψ〉 =
1√
2

(|↑1↑2 . . . ↑N 〉 − |↓1↓2 . . . ↓N 〉). (4.9)

As before we will use the Pauli matrices (4.3), to construct the following operators for measuring these N
particles.

σ(1)x σ(2)x . . . σ(N)
x |Ψ〉 = − |Ψ〉 for N ∈ 1, 2, 3...

σ(1)y σ(2)y . . . σ(N)
y |Ψ〉 =

{
− |Ψ〉 for N = 4n
+ |Ψ〉 for N = 2(2n+ 1)

n ∈ 0, 1, 2, 3...
(4.10)

These two operators correspond to using N devices either all set to 1 or all set to 2. Again an eigenvalue
of +1 would result in an even number of green flashes and the eigenvalue -1 in an odd number of green
flashes. Using these two equations we can construct the following:

σ(1)x σ(2)x . . . σ(j)x σ(j+1)
y . . . σ(N)

y |Ψ〉 =

{
− |Ψ〉 for N − j = 4n
+ |Ψ〉 for N − j = 2(2n+ 1)

n ∈ 0, 1, 2, 3... (4.11)

We can see that these operators all have (4.9) as an eigenfunction. The eigenvalue is either +1 or -1,
depending on the number of particles.

In order to obtain our contradiction, we must look at these results from a localist point of view. From
now on we will call the spin measurement of the first particle in either the x or y direction M1

x,y, of the
second particle M2

x,y and so on. From the third line of (4.11) we see that the following is true for N−j = 2:

M1
yM

2
yM

3
xM

4
xM

5
x . . .M

N
x = 1 (4.12)

M1
yM

2
xM

3
yM

4
xM

5
x . . .M

N
x = 1 (4.13)

M1
yM

2
xM

3
xM

4
yM

5
x . . .M

N
x = 1 (4.14)

...

with N − 1 permutations, where the measurement along the y-axis moves from one particle to the next.
Likewise for N − j = 4 we obtain:

M1
yM

2
yM

3
yM

4
yM

5
x . . .M

N
x = −1 (4.15)

M1
yM

2
yM

3
yM

4
xM

5
y . . .M

N
x = −1 (4.16)

...
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According to the localists, the measurement on M1 could have had no influence on the results of the
measurements on the other particles M2, M3, etc. Therefore we can simple re-use the values of M1, M2

etc, for the predictions on the experiment where we measure the first four particles in the x-directions,
which is M1

xM
2
xM

3
xM

4
xM

5
y . . .M

N
y . To obtain this we simply multiply the first three equations

(M1
yM

2
yM

3
xM

4
xM

5
x . . .M

N
x )(M1

yM
2
xM

3
yM

4
xM

5
x . . .M

N
x )(M1

yM
2
xM

3
xM

4
yM

5
x . . .M

N
x ) = 1 · 1 · 1

(M1
yM

2
yM

3
yM

4
yM

5
x . . .M

N
x )(M1

yM
2
xM

3
xM

4
xM

5
x . . .M

N
x )2 = 1.

(4.17)

Since the second part of this equation is squared, we know this is always equal to one. Therefore the first
part must also equal one. However, from (4.15) we obtained that it should equal minus one. This gives us
a contradiction.

Of course this would also work using the devices as in the 3 particle proof. To easily show this we will
start with an example of 4 particles and build from there. In a system of 4 particles we would use the
operators:

σ(1)x σ(2)x σ(3)y σ(4)y |Ψ〉 = + |Ψ〉 σ(1)y σ(2)y σ(3)y σ(4)y |Ψ〉 = − |Ψ〉 , (4.18)

which is analog to doing one run with all devices set to 2 and another run with two devices set to 1 and
two set to 2. When we look at the first run we need to construct all possible sets which will have an even
number of red (and green) flashes. (The eigenvalue must be +1.)

Setting 1 RRR R RGG R GRG R GGR R

Setting 2 RRR R RGG R GRG R GGR R

Setting 1 GGGG R RGG R GRG R GGR

Setting 2 GGGG R RGG R GRG R GGR

Setting 1 RGG G RRR R GGR R GRG R

Setting 2 GRR R GGG G RRG G RGR G

Setting 1 R RGG GGGG R GGR R GRG

Setting 2 G GRR RRRR G RRG G RGR

Table 1: All allowed sets for N = 4 that would produce an even number of green and red flashes for the
settings 1122, 1212, 1221, 2121, 2211 and 1221. They are constructed using the sets for N = 3 with adding
one particle. The letters with a gray box refer to the added particle. The exception to this are the first box
on the second row and the second box on the fourth row. These are added completely since their 3-particle
counterpart doesn’t exist (or rather wasn’t allowed).

As shown in table 1 these would indeed give an even number of red (and green) lights for the runs
1122, 1212, 2112, 2121, 2211 and 1221. The run with all devices set to 2 must produce an odd number of
red and green flashes (otherwise it wouldn’t produce a negative eigenvalue). Looking at the sets above we
see that none of them would do that however, thus again the contradiction. If we want to apply this to N
particles we should be able to do so in a similar manner, however the number of possible sets doubles with
each new particle. N particles would have 2N sets so writing them all down for say N = 6 would already
be a hell of a task. Fortunately, utilizing the results for N = 3 and N = 4 it is quite easy to convince
oneself that:

If N = odd −→
{

odd number of red flashes for two devices set to 2
never odd number of red flashes for four devices set to 2

If N = even−→
{

never odd number of red flashes for two devices set to 2
odd number of red flashes for four devices set to 2

,

(4.19)
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which concludes our extension of the GHZM theorem. The proof is a nice addition to the original, although
I believe it would mainly be useful on paper. It does give a nice indication of what to look for should
the hypothetical devices ever become a reality. The GHZ experiment is hard to conduct just because
creating an entangled state for more than 2 particles is very difficult and the difficulty increases with
N . Nevertheless Pan et al [26] did the experiment in 2000, proving in favor (once again) for quantum
mechanics. Another experiment using four photons also proved the violation of locality by use of GHZ
entangled states [30].

4.2.2 Extension to higher spin

In order to find out whether the GHZ experiment can be extended to particles with a higher spin, we must
first look into what is necessary. Why does it work for the spin-1/2 particles? As is evident from (4.4) we
need operators which share a eigenstate, but with different eigenvalues. In this section we will study the
case of 3 spin-1 particles. For spin-1 particles the Pauli matrices are:

Sx =
1√
2

0 1 0
1 0 1
0 1 0

 Sy =
1√
2

0 −i 0
i 0 −i
0 i 0

 Sz =

1 0 0
0 0 0
0 0 −1

 . (4.20)

We will only be using Sx and Sy. The eigenvalues of the matrices Sx and Sy are -1, 0 and 1. Now we
square Sx and Sy, the new matrices are:

S2
x =

1

2

1 0 1
0 2 0
1 0 1

 S2
y =

1

2

 1 0 −1
0 2 0
−1 0 1

 SxSy =
1

2

i 0 −i
0 0 0
i 0 −i

 . (4.21)

Using these two and Sx and Sy we can construct three operators which share an eigenstate:

|Ψ〉 = |000〉 , (4.22)

so that:

S2
x1S

2
x2S

2
x3 |Ψ〉 = |Ψ〉 (4.23)

S2
y1S

2
y2S

2
y3 |Ψ〉 = |Ψ〉 (4.24)

Sx1Sy1Sx2Sy2Sx3Sy3 |Ψ〉 = 0. (4.25)

When we again try to assign hidden variables to the observables we can rewrite the above equations as:

M2
x1M

2
x2M

2
x3 = 1

M2
y1M

2
y2M

2
y3 = 1 (4.26)

Mx1My1Mx2My2Mx3My3 = 0.

From here it is evident that there is a contradiction. The last equation tells us that at least one of the M ’s
is equal to zero. But according to the other 2 equations they can’t possibly be zero.

There are several problems with this proof. First of all the contradictions do not come from any
correlations between the 3 spin-1 particles, which is what the whole EPR reasoning is based on. The fact
that the correlation between two far apart particles cannot be explained other then by hidden variables
attached to each particle. It does show however that even in cases where there is no apparent need for
hidden variables, they still don’t work along with quantum mechanics. The second issue is again that not
all operators commute. Yes it is true that S2

x, S2
y and SxSy commute but Sx and Sy separately do not.

Furthermore it could be quite difficult to try test this particular situation in an experiment, also because of
the unusual operator SxSy. Lastly this proof only work for these settings of systems. The 3 spin-1 particle
example (which could work with any number of particles) is only applicable for spin-1 particles.
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4.3 Conclusion

In this chapter we’ve discussed the GHZ theorem [11] in form presented by Mermin [24]. His proof was for
three spin-1/2 particles send in opposite directions and measured in remote regions of space. We then tried
to expand the theorem by making a similar proof for N particles. We saw a contradiction appear that is
quite like the proof of Mermin himself. When trying to extend to higher spin a problem arises. For the
proof to work a state vector is needed that is an eigenvector for the used observables (operators). Finding
a set of operators that share an eigenstate is not easy, and resulted in a set of observables that where not
measurable (4.21). Although the proof has some issues, its simplicity and elegance can be well used to
explain the problem, even to people without a background in quantum mechanics. Doing an experiment
on the GHZ theorem is hard because of the difficulty of creating a entangled state for N > 2, for which
the difficulty rises with N . However it was performed by Pan et al in 2000 [26], and in favor of quantum
mechanics.

If we look more precisely at the proof some flaws can be found in its basic assumptions. First off it is
assumed that the results of the measurements are independent of the experimental set-up. Of course this
does not have to be the case, for who says that the hidden variables do not differ for each experimental
set-up? As mentioned before in section 2.1 the elements of reality are attached to the region of space where
the experiment is done. Furthermore GHZ assumes the values of the operators satisfy the same conditions
that the operators themselves do. This is true for commuting operators in quantum mechanics, which have
been used in the first part of the proof. If we look more closely however, we can see that the individual
operators σx and σy do not commute. For this reason we cannot possibly know all 6 values, that where
used in the second part (4.8), simultaneously. It would be better to assume as little as possible about
quantum theory and the underlying LHV theory, as does the original Bell theorem.

5 The Bell Kochen and Specker theorem

The last no hidden variable theorem that will be discussed is a theorem by Kochen and Specker [18] and
separately by Bell [5] himself. The BKS theorem is quite unlike the other two theorems we have discussed,
in that this one doesn’t have locality at its base. The BKS theorem revolves around the concept of
contextuality. If a system contains variables which are dependent of other variables of that same system,
they are called contextual. In quantum theory these correspond to commuting observables and can be
measured at the same time. When variables are non-contextual, they do not depend on the other variables
in the system, they only depend on the quantities they describe. Logically these then correspond to non-
commuting observables. In this section the BKS theorem will be explained. First the original arguments
will be discussed after which a newer more intuitive version by Mermin [22, 23] and Peres [27]. After
that the extensions to higher spin and more particles is sought and discussed. Finally a link will be made
between this theorem and that of GHZ after which some conclusions can be made about the assumptions
and set up of the theorem.

5.1 The proof

The proof presented by Kochen and Specker published in 1967 [18] uses the example of one spin-1 particle
with -1, 0 or 1 as possible values for measurements on Sx, Sy or Sz. The three components do not commute,
but for this particular case of a particle of spin 1, their squares do. The sum of these squared components
is

S2
x + S2

y + S2
z = 2. (5.1)

(With the value of ~ taken to be 1.) Since the squared components commute, they can be measured at the
same time. If we now assign certain hidden variables to each observable, they will determine whether their
values will be 1 or 0. The values of the observables must satisfy the same equations that their observables
satisfy, in other words they must satisfy (5.1). From here it follows that at least two of the measurements

17



σ1x σ2x σ1xσ
2
x

σ2y σ1y σ1yσ
2
y

σ1xσ
2
y σ2xσ

1
y σ1zσ

2
z

Figure 2: Six sets of mutually commuting observables. Each row and column is equal to 1 except for the
last row which is -1. [23]

should give 1 as a result. From now on we call the values of the squared observables Mx,y,z, then:

Mx =

{
1
0
,My =

{
1
0
,Mz =

{
1
0
. (5.2)

Furthermore when we add them together, they cannot be larger than 2, according to (5.1):
Mx +My +Mz = 2. This goes not only for x,xand z but for any set of three orthogonal vectors. So two
of these orthogonal vectors need to be 1 and the last one 0. To further illustrate the problem the values
assigned to the directions can be color coded, red for +1 and blue for 0. One can now rotate these vectors
around with a certain angle. If one maintains this angle then continuously rotating with that angle will
result in a set of vectors rotated around a sphere. At some point you will have found all possible rotations
using that angle. What we now need is to find a set like that for which it is impossible to color the vectors
red or blue is such a way that any combination of orthogonal vectors in this set still satisfy the condition
given by (5.1). Kochen and Specker showed that this is the case for when the angle between two vectors
is less than tan−1(0.5) ≈ 26.565 degrees [23, 18].

An easier and more illustrative example of the theorem comes from Mermin [23] who presented the case
of two spin-1/2 particles. Considering the following nine observables one can create the following diagram.

Each row and column corresponds to a set of mutually commuting (contextual) operators. We then
need to show that it is impossible to assign values to each observable, as it will lead to a contradiction.
We know that all the observables in each row and each column are mutually commuting. Also the product
of the three observables of the right column are -1, the product of the three observables in all the other
columns and all the rows is 1. The values of the observables must also satisfy the equations which the
observables themselves satisfy. Therefore, for example, M1

xM
2
yM

1
xM

2
y = 1 (first column) using the notation

introduced above. Trying to satisfy all the observables in figure 5.1 leads to an inevitable contradiction.
Another way to show this is by use of the figure 3. Here each dot represents a direction, and each

triangle a set of orthogonal directions which need to satisfy the same identities as given by figure 5.1.
When trying to color each dot with either red (+1) or blue (0) one would see that it is impossible to satisfy
these conditions.

The final example for the BKS theorem is one that involves three spin-1/2 particles, creating an eight
dimensional problem. The set that is considered here can be represented in a 5-star diagram where each
line of the star is a set of orthogonal observables. Here the product of all the lines are equal to 1 except
for the horizontal line where the product is equal to -1. Here the contradiction is even more obvious. If
we multiply the values of the sets of observables, the identities demand it to be equal to -1. However each
observable is on a intersection with two lines, and thus appears twice in the multiplication and they must
all be 1. This makes the contradiction even easier to see than with the previous example.

Bell himself wasn’t completely convinced with his reasoning. One of the most important assumptions he
made was that the value of the measured observables was independent of which set was used to measure it
in. His problem with this was that not all additional observables in each set commuted with the additional
observables in the other set. If we look at figure 2 we can see that indeed the observables of each row and
column commute, but for example σ1xσ

2
x does not commute with σ2xσ

1
y . It is clear that these observables

are essentially non-contextual and so incompatible with each other. Bell [5] argued that since they where
non-contextual, there should actually be no reason to assume that the results of measuring in either setting
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Figure 3: A visual representation of the coloring paradox as given by Cabello [20]

Figure 4: Ten observables whose values cannot be colored accordingly with quantum mechanical predic-
tions. The product of the observables on the horizontal line of the star needs to be -1. The other legs of
the star should be +1. Taken from [23, P.811]

should be the same. It thus seems that this non hidden variable proof is less strong than the locality proofs
we discussed earlier. Mermin argues however, that in the eight-dimensional case one could exchange the
(non-)contextuality argument with the locality argument and reinventing it in a GHZ like form [23]. His
arguments are as following:

Consider an observable A which we will measure. We’ll measure the observable in two different settings.
The first is where we measure A along with mutually commuting operators B,C,D,..etc. Secondly we
will measure A along with mutually commuting observables K,L,M , ...etc. However, as with the problem
mentioned before, not all observables B,C,D, ... commute with the observables K,L,M ... Next we assume
that all the observables are measured by separate devices far away from each other. While measuring A in
the first setting (along with B,C,D, ...etc) we replace the devices set to measure B,C,D, ... with devices
made to measure K,L,M , ... etc. If we now assume that because of the distance the devices have from
each other they do not influence one another, we basically assume locality. To sum up, non-contextual
observables are a problem since we can’t measure them at the same time, yet we use them for the proof.
If however the argument can be replaced by assuming locality, it is no longer an issue. The change of
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apparatus does not influence the measurement on A.

σ1x σ2x σ1xσ
2
x C

σ2y σ1y σ1yσ
2
y B

σ1xσ
2
y σ2xσ

1
y σ1zσ

2
z A

L K

Figure 5: Here figure 2 is used to illustrate the issue of mutually commuting sets containing observables
that do not commute with all the observables from other sets. For example C (σ1xσ

2
x) does not commute

with L (σ1xσ
2
y) or K (σ2xσ

1
y). This issue can be resolved using locality, where one assumes that the change

of apparatus of B and C to K and L doesn’t influence the measurement on A.

Mermin then shows that this step works for the 8 dimensional BKS case, which is the star. We can
easily see that the four observables on the horizontal line of the star are the same observables that we
used for the GHZ example of 3 spin-1/2 particles. In order to convert the BKS example to a the GHZ
example all we need is a state |Φ〉 for which the first observable has an eigenvalue -1, and the other three
an eigenvalue of 1. It works because all the four observables are non-local and they commute with each
other. If we however try to convert the two spin-1/2 particle example to a GHZ form we find a there is
a problem [22]. The four non-local observables found in the 2 spin-1/2 particles example are σ1xσ

2
x, σ1xσ

2
y ,

σ2xσ
1
y and σ1yσ

2
y . These observables however do not all commute with each other. We therefore cannot find

a state which is an eigenstate for all these observables.

5.2 Extensions of the BKS theorem

As with the previous two theorems we want to see if the BKS theorem can be extended for a) a higher
(or rather, a different) spin and b) for a higher number of particles. As we have seen above however, this
has already been done in some degree. The original proof worked with one spin-1 particle and Mermin’s
example with two and three spin-1/2 particles. Expanding this version to a higher spin is quite hard. The
reason this type of proof works so well is in the fact that the multiplication of the Pauli matrices in figure
2 and 4 results in the identity matrix I. For spin 1, 3/2, 2 etc, this is not necessarily the case. To find a
contradiction for these higher spins one would need to find a relation for the observables used. When one
would then try to assign values to the observables it would lead to a contradiction assuming the values
satisfy those same conditions. There is no systematic approach to expanding this theorem to a higher spin.

To expand the theorem to more particles can also be a little tricky. Here we can make use of the link
Mermin made between the GHZ proof and BKS. BKS can be transformed into a GHZ locality-type proof
if one can find a set of non-local mutually commuting observables which share an eigenstate. We already
have a set of non-local mutually commuting observables with an eigenstate, namely (4.11). To illustrate
how one could go about finding a BKS type proof with these operators, let’s look at the case for 4 spin-1/2
particles.

Using the operators
σ1yσ

2
yσ

3
xσ

4
x σ1yσ

2
xσ

3
yσ

4
x σ1yσ

2
xσ

3
xσ

4
y σ1yσ

2
yσ

3
yσ

4
y , (5.3)

we see that the multiplication of these results in the identity matrix. So the multiplication of the values
should give 1. If we now combine these with the observable σ1xσ

2
xσ

3
xσ

4
x we can obtain a contradiction once

again.
This might not be as elegant as figure 2 and 4, but it’ll do. When we try to color each value blue(+1)

or red(-1) so that the multiplications of the values obey the same relations as the observables, we’ll again
obtain a contradiction. (In the end it looks like all the values should equal -1, which doesn’t work for the
first three lines of (5.2).) Something similar can be done for even higher spin. One would only have to
look for it. There seems to be a lack of consistency in these proofs and so a generalization of it is not easy
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σ1xσ
2
xσ

3
xσ

4
x σ1yσ

2
yσ

3
xσ

4
x −1

σ1xσ
2
xσ

3
xσ

4
x σ1yσ

2
xσ

3
yσ

4
x −1

σ1xσ
2
xσ

3
xσ

4
x σ1yσ

2
xσ

3
xσ

4
y −1

σ1xσ
2
xσ

3
xσ

4
x σ1yσ

2
yσ

3
yσ

4
y 1

1

Table 2: The 5 mutually commuting observables that will lead to a contradiction, where the first column
is all the same observable. The first three rows are equal to -1 when multiplied, the last one is equal to 1.
Same goes for the last column where we multiply the observables obtained from the GHZ example (4.11)

to find. Rather it seems that it is more a matter of trial and error to find a contradiction of this kind for
any arbitrary system of particles.

The BKS theorem tries to assign values to observables. The extra information one adds to these
observables help determine their values without measuring them. This extra informations is what they
consider the hidden variables. It can assign values to any observables not just the ones that need to contain
hidden variables due to locality as with the GHZ theorem. The BKS theorem is based upon the same rules
of quantum mechanics as the GHZ theorem. Namely that the values of the observables have to obey the
same rules and conditions as the observables themselves. The problem with this assumption is that it is
only true for mutually commuting observables, which not all of the observables used in the proof are. The
problem could be solved by looking only at those who do, an so transferring the assumption of contextuality
towards one of locality. This transforms the proof of BKS to a GHZ form, and makes the link between the
two theorems clear.

In conclusion we saw that the BKS proof in its original form is a quite complex geometrical proof
constructed around one spin-1 particle. A condition placed upon the observables of the particle is used,
and it is shown that it is impossible to ’color’ the values in such a way that the condition is fulfilled and
valid for all sets of orthogonal vectors. The proof brought forward by Peres [27] and build on by Mermin
[22, 23] gives us more insight into the theorem and makes it easier to understand. Made with two or three
spin-1/2 particles the coloring problem became more insightful. There was a problem with contextuality
however, which was solved by introducing locality in its stead. This didn’t work in all cases however, only
for 3 spin-1/2 particles and up. The proof could be extended for more particles but was difficult to expand
for higher spin due to the trial-and-error nature of finding suitable observables. Experiments to test the
theorem have been done for single particles [29, 14] as well as two qubit systems [15]. All results confirm
quantum mechanics and can be viewed as support for absence of local realism.

6 Discussion and conclusion

The EPR paradox required the existence of hidden variables, to complete the quantum theory. No-hidden-
variables theories have shown that quantum mechanics and LHV cannot co-exist. In this paper three major
no-hidden-variables theorems have been discussed.

The first was the original Bell theorem considering two entangled spin-1/2 particles. Bell was the first
to provide a testable condition that would determine whether quantum mechanics was correct or not and
so if a LHV theory was necessary. This theorem has been shown to be valid for all non-product states, and
even for an arbitrarily large spin. Another extension of the proof was the MABK theorem, which showed
the validity of the proof for N qubits. The original inequality has been tested by Aspect et. al [2] but
their results have recently been questioned [17]. The MABK theorem has been tested experimentally as
well and shown to be in favor of quantum mechanics. Bell’s inequality needs very little assumptions to
prove, and is therefore very general. It does however assume that the distribution of hidden variables is
not influenced by the measurement. However one could argue that the results of the values, A(~a, λ) and
B(~b, λ) used in the original proof and/or (3.11) cannot be compared at all [25]. This is because different
settings are used to measure particles A and B. It it therefore that one cannot use the same distribution of
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hidden variables for both particles. The results of the measurements are therefore essentially not the same
thing, and it would be like comparing apples to oranges. Jammer [16] argues here that only LHV theories
that assume one can assign the same distribution to all particles have been excluded by the theorem [16].
Nieuwenhuizen argues that this assumption means that the Bell inequality cannot say anything at all about
nature being non-local or not [25].

The Greenberger-Horne-Zeilinger (and Mermin) theorem dealt with three spin-1/2 particles. The ob-
servables of these qubits (the Pauli matrices) shared an eigenstate. The eigenvalue of these observables
combined with the fact that σx and σy do not commute, resulted in a direct contradiction. This proof
was then extended for N qubits, where N > 3. When trying to extend the proof to higher spin a problem
arises. A contradiction can still be found on paper, but testing it might be difficult due to the strange
observables used. The GHZ theorem relies on a lot of properties of quantum mechanics, especially the
fact that values of observables satisfy the same relations as the observables themselves do. As this is only
true for commuting observables, and not all observables used in the EPR part of the proof commute, the
reliability of the proof can be questioned. Testing of the GHZ theorem is difficult because one needs to
create an entangled state for 3 (or more) particles. The experiment conducted by Pan et al [26] was in
confirmation with quantum mechanics.

The last proof that was discussed was the BKS theorem. The original proof used intrinsic geometrical
arguments to show the incompatibility of quantum theory with hidden variables. They showed that it was
impossible to assign values to observables in a way that the restrictions placed on those observables (and
thus their values) where still obeyed. This no-coloring theorem involved sets of orthogonal vectors that
couldn’t be given a certain value (or color corresponding to a value) in a way that the sum S2

x + S2
y + S2

z = 2
was still valid. An improvement to the proof was given by Peres and Mermin, where they used two or
three spin-1/2 particles. By using sets of mutually commuting observables and their relations, they where
able to construct a more intuitive non-coloring proof. The main issue with this proof was that not all
observables in a certain set, commuted with all the observables in another set used in the same proof.
This problem was called non-contextuality. However, by assuming that when the measuring apparatus are
places far enough away from each other, and so that the devices measuring B,C, ... cannot influence the
measurement on A. And so it doesn’t matter if we replace the devices measuring B,C, ... with others that
measure L,M, ... instead. By doing this one assumes locality which can replace the more troublesome
assumption of contextuality. The BKS theorem can therefore be changed into a GHZM type proof. The
results of experiments performed on the BKS theorem have where also in confirmation with quantum
mechanics.

In conclusion all the no-hidden-variable theories discussed have been tested, where most where con-
firmed. However recent studies by Khrennikov into the Aspect et al experiment have raised questions
regarding the interpretation of the results [17]. Where the Bell theorem assumes very little about the
form or context of the hidden variables, or the quantum theory they are based on, both BKS and GHZ
have more issues with their assumptions. It seems that the original Bell theorem remains the most general
in what types of LHV theories it excludes. The beauty and elegance of the GHZ theorem make it easy
(easier) to understand and explain to others. Of the three theorems, Bell’s original proof appears to be
the most suitable for testing. When trying to extend the theorems we where most successful with the
original Bell inequality. Bell type inequalities can be found for all non-product states, higher spin and N
particles. For the GHZ theorem a generalization could be made for more particles, but a generalization
for higher spin could not be found. For the BKS theorem no generalization was found (with exception of
the original argument using one spin-1 particle and geometrical proof, which was valid for any angle under
approximately 26 degrees). However a few examples have been found for multiple spin-1/2 particles.

In this paper we have not discussed in depth any of the loopholes involved in with the no-hidden-variable
theorems, such as the contextuality loophole [25]. Of course we cannot write off LHV’s without having
closed these. Further research into the subject will eventually show whether this can be accomplished or
not, and thus whether or not locality prevails.
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