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Chapter 1

Introduction

In the field of theoretical condensed matter physics, which is the study of the effective
behaviour of many particles together, simplifying assumptions are made to model the
physics of a certain material under specified conditions (e.g. at a certain temperature
or in a magnetic field). The strength of this method is that the “relevant” physics can
be separated from the “irrelevant”, meaning that we do not need to keep track of all
the constituents of a material (electrons, nuclei) and their interactions, but keep only the
interactions that will turn out to affect the properties of the material as a whole.

Two cornerstones of condensed matter theory are Fermi liquid theory and Landau’s
theory of phase transitions. The former describes weakly interacting electron systems at
low temperatures in terms of noninteracting degrees of freedom which behave like electrons,
but with different parameters (mass, charge). Many problems in condensed matter that
are not well understood have to do with the fact that such a weakly coupled description
is not valid, and perturbation theory fails. The latter is an effective theory in terms of an
order parameter 1 describing the behaviour of a system near a continuous phase transition
which becomes scale invariant at the critical point2.

Both theories run into difficulties when a material is made to undergo a phase transition
while remaining at strictly zero temperature. In the vicinity of such a “quantum phase
transition”, the material typically exhibits all kinds of exotic behaviour (such as unconven-
tional superconductivity and metallic behaviour that is uncharacteristic of a Fermi liquid
description). A naive extension of Landau’s theory of phase transitions, due to [50, 61],
uses a time-dependent order parameter to construct an effective description. However,
quantum phase transitions turn out to be much more difficult than their classical counter-
parts, as the effective degrees of freedom are typically strongly coupled. In some cases, it
hasn’t even been possible to identify the effective degrees of freedom, and Landau’s theory
of phase transitions seems to break down. Clearly, different tools are needed to understand
the relevant physics of these new types of phase transitions.

One possible tool comes from an unexpected side: black hole physics. In trying to un-

1see section 2.2
2A critical point is the point at which a continuous phase transition occurs.
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CHAPTER 1. INTRODUCTION 4

derstand quantum mechanics in the presence of black holes, it was discovered in the 1970’s
that these are thermodynamic objects with en entropy proportional to the area of their
event horizon. Since gravitating matter can be made to collapse and form a black hole,
this implies that the entropy of matter in some region of space scales with the area of the
surface surrounding that space, and not with the volume, as would be expected if we were
to model our gravitating matter in terms of some model used in condensed matter physics.
Gravity thus seems to demand a drastic reduction in the degrees of freedom. This led
’t Hooft in 1993 to conjecture his holographic principle[73], which is the speculative idea
that a theory of gravity in a volume of space can equivalently be described by a theory
without gravity on the boundary of that space3. The holographic principle is very general
and does not tell us which theory of gravity is equivalent to which field theory. Neither
does it tell us which spacetime to use, and how observables in one theory can be mapped
to observables in the other theory. A concrete example of such a duality was found in
1998, when Maldacena [59] compared two dual description of D-branes4, and conjectured
that type IIB superstring theory (which contains gravity) in five-dimensional anti-de Sitter
spacetime (“AdS5” in short) is equivalent to a supersymmetric Yang-Mills gauge theory
in four-dimensional Minkowski spacetime. This is often called the “AdS/CFT” correspon-
dence, since the gravity theory lives in anti-de Sitter spacetime, and the dual field theory
is a so-called “Conformal Field Theory” (or “CFT”, in short). A precise mapping between
observables was proposed in the same year by Gubser, Klebanov and Polyakov [37], and
separately by Witten [76]. Many new examples of such “gauge/gravity dualities” were sub-
sequently derived from different string theory (and M theory) setups. A feature that makes
these dualities difficult to prove is that the strongly coupled regime of the gauge theory
corresponds to the weakly coupled regime of the gravity (string) theory, and vice versa.
Therefore, perturbation theory can never be used on both sides of the duality and one
must find exact results to compare. This feature does however make these gauge/gravity
dualities a potential tool in studying physics at strong coupling in a weakly coupled “holo-
graphic dual”.

In order to use this holographic duality as a tool to study condensed matter phenom-
ena at strong coupling, more complicated examples of a duality must be found. This is not
an easy task, as the theories describing condensed matter phenomena usually do not have
all the symmetries (such as supersymmetry or conformal invariance) that make it easier
to derive dualities from superstring theory. Nevertheless, there has been great activity
in the field of AdS/CMT, which is a contraction of “AdS/CFT” and “Condensed Matter
Theory”. Much progress has been made by using a so-called “bottom-up” approach, in
which an existing correspondence is investigated under the change of certain parameters
or the addition of fields. Typically, one uses a simple theory of gravity and then tries
to compare the physics of this simple theory to some condensed matter phenomenon. In

3note that the gravitational system thus lives in a higher dimensional space than its description without
gravity. Therefore, the duality relates two different theories in spacetimes of different dimensionality.

4D-branes are massive, dynamical objects in type II superstring theory.
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this way, relatively simple gravitational systems may be employed to model interesting
condensed matter phenomena. However, since the gravity theory is not a (consistent trun-
cation of) the gravity side of a known duality, the corresponding field theory can not be
specified. In order to compare the physics of a condensed matter system to some process
in gravity, one would ideally like to find a relatively simple “top-down” model, which nev-
ertheless describes interesting physics. One way of doing this is by starting from the full
theory describing the gravitational side of a known duality and “truncating” the theory to
a smaller number of fields. This can sometimes be done “consistently”, meaning that the
solutions of the simple theory are also solutions of the theory with all the fields still present.

A QCP is a natural place to start looking for a gravity dual, since at the QCP the system
is effectively scale invariant, and the symmetries in the boundary theory help to constrain
the form of the gravity background. Furthermore, QCPs typically occur at strong cou-
pling, which will turn out to be a regime in which the gravity dual should be easier to solve
perturbatively. Many examples of systems, both bottom-up and top-down, have been found
to exhibit quantum critical behaviour, signaled by a breakdown of Fermi liquid theory as
some external parameter is tuned. In this thesis, we review an example of a holographic
duality in which the dual gauge theory undergoes a quantum phase transition. On the
gravity side, we will consider Einstein-Maxwell theory with a Chern-Simons term, which
is a consistent truncation known to describe the gravity dual to an infinite number of su-
persymmetric field theories. The fact that the field theory duals are known provides in
principle the possibility to compare the mechanism causing the quantum phase transition
in the gauge theory to a corresponding process in the gravitational dual.

Chapter 2 will contain a short review on the theory of Quantum Phase Transitions. In
chapter 3, a review on the holographic principle and one of its realisations, the AdS/CFT
correspondence, is given. In chapter 4, the holographic description of systems at finite
temperature, charge density and magnetic field is discussed, which is necessary in order to
describe processes in condensed matter. An example of a holographic duality in which the
system can be tuned towards a quantum critical point is reviewed in chapter 5.



Chapter 2

Quantum Phase Transitions

2.1 Motivation and definition

In thermal equilibrium, the state of a system is the one that minimizes the free energy:
F = U −TS. At low temperature, the system will be dominated by the low energy states,
whereas at high temperature, the states with high entropy dominate. If the dominant
states at high and low temperature can not be continuously deformed into each other (for
example if the low temperature phase breaks a symmetry which is present in the high tem-
perature phase), then there is a point where the free energy function is non-analytic. In
the case that such a nonanalyticity occurs, we speak of a phase transition. We can roughly
classify these transitions by the way in which this nonanalyticity occurs: in the case of a
discontinuous phase transition, the different phases coexist at the transition point, where
their free energies are equal, and the first order derivative of the free energy is discontinu-
ous, exactly at the point where the free energy functions cross. Most phase transitions one
encounters in nature are of this kind, as for example the melting of ice. For a continuous
phase transition, there is no coexistence of different phases at the transition point, and the
system is said to be in a third, “critical” phase. The phases at both sides of the transition
point transform continuously into this critical phase as they are tuned to the transition
point. An example of a continuous phase transition is the disappearance of spontaneous
magnetisation as a ferromagnetic material is heated up to its paramagnetic phase.
When approaching a critical point from the disordered phase, small regions where the ma-
terial is ordered will begin to form, whose size increases as the system is tuned towards the
critical point. In the example of the ferromagnetic transition these are small regions where
the spins tend to be aligned. The typical size of these regions defines a distance scale,
which diverges at the critical point. The result is that at the critical point, the difference
between short- and long-distance behaviour disappears and one can effectively describe the
critical phase by a scale invariant theory.

Apart from this large length scale, systems also have short length scales, such as the
lattice spacing. However, the description of a system near a critical point turns out to be
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CHAPTER 2. QUANTUM PHASE TRANSITIONS 7

highly insentive to the precise form of interactions at this small scale. In the limit where
the ordered regions become large compared to the lattice spacing, one can neglect the size
of the lattice spacing and describe the system in terms of a continuum field theory. The
fact that this continuum description of a critical point is insensitive to the microscopic de-
tails explains why some magnetic phase transitions may be described by the same theory
as nonmagnetic phase transitions.

Figure 2.1: QCP in a phase diagram with a line of classical critical points.

In this thesis we will be interested in the holographic description of a quantum critical
point (QCP), which is a continuous quantum phase transition1. By definition, a quantum
phase transition is a transition which occurs at zero temperature, as a result of varying
some non-thermal control parameter, such as applied magnetic field or pressure. Since
classically the entropy at zero temperature has to vanish, a quantum phase transition can
not be caused by the competition between energy and entropy, like its finite-temperature
counterpart. Rather, it is a result of competition between different terms in the Hamilto-
nian describing the system.

A common type of phase diagrams with a QCP has a line of finite-temperature criti-
cal points where the transition temperature is depressed to zero by varying a coupling
constant (see figure 2.1). Around this finite-temperature critical line, the system can be
described by a classical field theory, even though the transition temperature may be very
low. This is due to the fact that close to a critical point, the length scale above which the
behaviour changes qualitatively is very large. Around any nonzero temperature critical
point, therefore, one has kT > ~ω where ~ω is some typical energy scale above which
the behaviour of the system changes (for example an energy gap). This reasoning clearly
breaks down for a quantum phase transition, where the temperature is strictly zero. The
behaviour at a QCP is expected to be characterized by competition between low-lying
states [67]. This quantum critical behaviour is different from typical low energy behaviour,
which can be understood in terms of quasiparticles on a ground state. This competition

1For a review on quantum phase transitions, see the book by Sachdev [66]
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effect tends to break down away from the QCP on the zero temperature line, as an energy
gap forms and the system chooses a ground state. However, if the temperature is increased
such that this gap may be overcome the interplay between the different energy levels again
becomes the dominant behaviour. The finite temperature region of the phase diagram in
which this quantum critical behaviour is important is called the quantum critical regime
(QCR).

Although in real life, it is impossible to actually cool a system down to zero tempera-
ture, the existence of a finite-temperature quantum critical regime (QCR) means that the
study of a QCP is not merely an academic exercise. On the one hand, the existence of this
QCR can serve as an indication that the QCP is present. On the other hand, the fact that
the QCP dominates a larger part of the diagram suggests that the quantum critical theory
may be a good starting point in understanding the phases that are not correctly described
by Fermi liquid theory. An important class of materials where interesting behaviour has
been found in the presence of a QCP are heavy fermion metals. These are rare-earth
based compounds with quasiparticles behaving like very heavy electrons. There has been
evidence of QPTs, which was found to be due to a competition between the interaction
of local magnetic moments with conduction electrons, leading to the above heavy Fermi
liquid behaviour, and the magnetic interaction between the local moments, favouring a
magnetic ground state [24]. When pressure-tuned to a QCP, (some of) these HF metals
have been found to be superconducting near the QCP, leading one to believe that some
magnetic interaction might serve as the pairing mechanism. [33]. Another interesting
possible application of a description of the quantum critical state is in high-temperature
superconductivity (HTSC), where the superconducting state survives at such high tem-
peratures, that a non-BCS mechanism is needed to describe the glue by which the bound
states are formed. It is speculated that hidden underneath the superconducting dome there
is a QPT, which might be relevant for the superconducting regime and other regimes where
the system behaves differently from a Fermi liquid. [2]

2.2 RG flow near continuous phase transitions

Phase transitions can often be characterized by an order parameter, which is defined as an
expectation value that is zero in the disordered phase, and acquires a nonzero value in the
ordered phase. In the classic examples of continuous phase transitions, a nonzero value
of the order parameter is related to spontaneous symmetry breaking.2 An example of an
order parameter which breaks a symmetry is magnetisation. In a ferromagnetic material,
the spin rotation symmetry is spontaneously broken when the system chooses one direction

2Continuous phase transitions that are associated with spontaneous symmetry breaking are usually
termed “second-order”. Examples of continuous phase transitions which are not associated with sponta-
neous symmetry breaking are the Kosterlitz-Thouless transition, and the critical endpoint of a discontin-
uous transition
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in which it is magnetized, which we will take to be the z-axis:

m = 〈
∑
i

Szi 〉.

In the disordered phase, the spins point in random directions and the expectation value
for the total magnetisation is zero:

〈
∑
i

Szi 〉 = 0.

A measure of the tendency of spins to align is given by the correlation function of the
spin operator, which generally has the following form:

〈~S(~x) · ~S(0)〉 ∼ exp(−|~x|/ξ)

This defines a correlation length ξ below which the values of the spins are correlated, which
is therefore a typical length scale in the system which separates two types of behaviour:
short-distance where spins are highly correlated, and long-distance where spins are uncor-
related.3 Upon reaching the critical point, the correlation length diverges, and this division
in short- and long-range behaviour can not be made. This is what scale invariance at con-
tinuous phase transitions means.

One can make these ideas exact by applying the ideas of the renormalization group (RG)
to phase transitions. An RG transformation is like ‘zooming out’ and looking at the same
system from a larger distance, which makes sense, since a phase transition is a change in
the macroscopic properties of a system. When describing the system near such a transition,
one is not interested in its microscopic details, but rather the effective behaviour of many
particles which becomes important at large length scales. The renormalization group is a
method of coarse-graining the description of the system, such that the large-length scale
behaviour can be obtained.

Starting from a microscopic Hamiltonian describing a system with a short-distance (lattice)
cutoff a, a renormalization group (RG) step is as follows:

• Increase the cutoff by a certain factor and integrate out the degrees of freedom below
this distance scale (coarse-graining)

• Rescale the distances so that the cutoff is the same as before the coarse-graining

• Rescale the fields so that the kinetic terms have the same form as before the distance
rescaling

3Length scales below the lattice spacing a are ignored, as one expects the important behaviour for phase
transitions to be collective fluctuations, rather than the microscopic interactions at the scale of lattice sites.
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If the integration has produced new couplings, these must be added to the original
Hamiltonian, and the RG step is iterated, until no new terms appear.
One then compares the Hamiltonian before and after an RG step. The coupling constants
in the Hamiltonian typically change after coarse-graining and rescaling. If after an RG
step the coupling strength of a term increases, this is called a relevant term, since at longer
distances this term will become more important. Conversely, if a coupling constant be-
comes smaller when looking at larger distance scales, it corresponds to an irrevelant term.
A coupling constant which does not change after an RG step is called marginal.4

By taking the limit in which the rescaling is infinitesimal, one can obtain a set of dif-
ferential equations called beta-functions5 for the coupling constants:

d{g}
dl

= β({g}) (2.1)

where {g} is the collection of coupling constants depending on l, and l = lnL, where L
is the length scale of the coarse-graining in the RG step. From this equation one can see
that the relevant, irrelevant and marginal terms correspond to positive, negative and zero
eigenvalues, respectively.

In general, after an RG transformation, the system will have a smaller correlation length.
Exceptions are when the correlation length before the RG step is either zero of infinity.
These are called RG fixed points, and they correspond to points in the space of couplings
where the system is scale invariant and the beta-function has a zero6. If all perturbations
around this fixed point are (ir)relevant, then the fixed point is a repulsive (attractive) fixed
point. In general, a fixed point will have both relevant and irrelevant directions. Such a
fixed point is called a separatrix, and it is these types of fixed points that describe the
critical points of a phase transition.

A typical RG flow describing a real-life system starts at a point in the space of couplings
which is not a fixed point. We will call this the ‘physical point’, and the system is described
by a theory which has as bare parameters these ‘physical’ values of the coupling constants

4Usually the RG equations can not be solved for the exact Hamiltonian and are solved perturbatively.
One generally expects relevant terms to remain relevant, and irrelevant terms to remain irrelevant. Ex-
ceptions to the latter rule are termed “dangerously irrelevant”. Operators that are marginal to first order
and become relevant at higher order are termed “marginally relevant”.

5Note that this is a local equation in energy scale.
6A theory may be scale invariant for all couplings, in which case it has a beta function which is identically

zero, or it may have some points in the space of all couplings for which beta function has a zero. In the
latter case perturbing the system will break the scale invariance and depending on the eigenvalue of the
perturbing operator, lead away from the fixed point (relevant) or back to the fixed point (irrelevant). This
way, one can define stable and unstable fixed points as being fixed points where all small perturbations
lead to an RG flow which brings the system away from the fixed point (unstable), or back towards the
fixed point (stable). Typically, there will be both relevant and irrelevant perturbations in the space of all
couplings
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and as a short-distance cutoff the spacing between the important degrees of freedom (e.g.
spins, etc.). This is typically the lattice spacing. As the system is not tuned to a fixed
point, an RG transformation will cause the theory to flow to a different theory with smaller
correlation length giving the behaviour of the system at slighty longer distances. Following
the flow all the way down to zero correlation length, one ends up in a scale invariant theory
describing the ultra-long distance behaviour: an IR fixed point.
In some cases, one can also extend the flow back to the limit where the lattice cutoff goes to
zero, by defining te system to be a low-energy description of a more general renormalizable
quantum field theory. The passing to the general theory describing the high-energy limit
is called UV completion. This general theory will have a UV fixed point which governs the
ultra-short distance behaviour, from which the RG flow leads towards the physical point,
and from there via the original RG flow to the IR fixed point.

The relevant perturbations from the critical theory (temperature, magnetic field, pres-
sure) cause the system to flow to different IR fixed points at both sides of the transition7.
(The relevant parameters correspond to experimental ‘knobs’ that are used to tune the
system through the phase transition.) The irrelevant directions span the critical surface,
on which the correlation length is infinite8. A phase transition occurs when one passes
through the critical surface along a relevant direction which does affect the value of ξ.

2.2.1 Conformal invariance

A critical point is described by an RG fixed point at which the correlation length diverges.
This means that the system exhibits scale invariance, but often the theory has more sym-
metries. For instance, invariance under lattice translations becomes general translation
invariance in the scaling limit. Similarly, discrete rotations become continuous rotations, et
cetera. In cases where the interactions are short-ranged, the critical point can be described
by a conformal field theory (CFT), which is a theory invariant under angle-preserving
transformations. A heuristic argument for this statement uses that one can describe a con-
formal transformation as a rescaling by a factor b(~x) which depends on position: a local
rescaling. If the interactions are sufficiently short-ranged, the rescaling will be approxi-
mately uniform at the length scale of the interaction. Given that the system is tuned to a
fixed point, the couplings will not change under this local rescaling [17].

The relation between the scaling transformation of the time direction and the scaling
transformation in the spatial directions that leave the critical theory invariant defines the
dynamical exponent z:

t→ λzt, ~x→ λ~x. (2.2)

7Note that moving away from the fixed point with a relevant perturbation means that the long-distance
behaviour will run away from the fixed point, and the correlation length will decrease.

8Irrelevant terms are not expected to alter large scale properties, such as the correlation length
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g1 

g2  A 

C 

B 

Figure 2.2: Renormalization group flows near a fixed point with both a relevant and an
irrelevant direction. A phase transition occurs when one tunes the system through the
critical surface along a relevant direction which affects the value of ξ. The dotted line
corresponds to the physical values of the coupling constants. The short-distance cutoff on
the dotted line is typically the lattice spacing. Unless the system is at a fixed point, RG
flows lead away from the physical line, towards a fixed point which gives the long-distance
scale description (sometimes called IR fixed point). At points A and B, which do not lie
on the critical surface, the correlation length is finite and RG flows will lead away from the
critical surface, towards another fixed point which has ξ = 0 (not included in the figure).
At point C, where the system is tuned through the critical surface, the correlation length
is infinite, and the system flows towards the critical point.
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2.3 Quantum criticality in metals

Metals close to a magnetic QCP show behaviour that deviates from the Fermi liquid be-
haviour that characterized the low temperature phase of normal metals. Two hallmark
features of Fermi liquid behaviour are the quadratic relation between resistivity and tem-
perature,

ρ ∼ T 2, (2.3)

and the linear temperature dependence of the specific heat,

C ∼ T. (2.4)

Experimentally, a way to see the breakdown of Fermi liquid behaviour as an external
magnetic field is tuned close to some critical value can often be seen in a divergence of the
specific heat coefficient, defined as

γ ≡ C

T
. (2.5)

Since C = T∂s/∂T , with s the entropy density of the system, we can equivalently write
γ = s/T at low temperatures.

2.3.1 Hertz-Millis theory of quantum criticality

A theory for magnetic quantum phase transitions in metals extending Landau’s theory for
classical phase transitions was proposed by Hertz [50] and reconsidered and extended by
Millis [61]. Hertz pointed out that near a phase transition at T = 0 statics and dynamics
could not be treated separately, as in the Landau-Ginzburg theory of classical phase tran-
sitions. He proposed a generalization of the Landau-Ginzburg-Wilson functional (which is
the effective theory near a continuous phase transition) in terms of a time-dependent order
parameter. The effective action can be obtained by integrating out irrelevant degrees of
freedom. If this integration does not lead to an analytic action, the method is invalid9

This can happen for example in a phase transition described by a magnetic order parame-
ter if additional degrees of freedom (other than the magnetic ones) become critical at the
transition [58].

2.3.2 Metamagnetic Quantum Critical Point

A QCP can be the zero-temperature endpoint of a line of finite-temperature critical points,
as described in the beginning of this chapter. Here, we shall describe another way in which
a zero-temperature critical point can occur, namely by tuning the critical endpoint of a
line of first-order metamagnetic transitions to T = 0 by varying an extra control parame-
ter. This extra control parameter is usually pressure or chemical doping, and varying this
parameter lowers the transition temperature by changing the relative importance of the

9Alternatively, one can construct an effective action from general arguments such as global symmetries,
but this way one does not know if the theory is correct.
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competing terms in the Hamiltonian that are relevant for the quantum phase transition.
One example of such a Quantum Critical Endpoint (QCEP) occurs when a material which
undergoes a metamagnetic transition is put under pressure (or tuned otherwise) so that
the critical endpoint occurs at zero temperature. Metamagnetism is empirically defined as
a nonanalytic increase in magnetisation at a certain value of applied magnetic field H. As
the control parameter is a symmetry-breaking field, the transition can not be of the con-
tinuous, symmetry-breaking kind10. In general, a metamagnetic transition is expected to
be a discontinuous transition occurring along some line in the H,T plane, and terminating
at some temperature, above which the transition becomes a crossover. This point is called
a critical endpoint. By applying pressure, one may be able to reduce the temperature at
which the line of discontinuous phase transitions ends, all the way down to T=0, thereby
making a so-called quantum-critical endpoint (QCEP). A material with such a metamag-
netic QCEP can be a very convenient way of studying quantum critical behaviour, since
having the magnetic field as a tuning parameter is much easier than applying pressure or
changing the doping of a material.

In 2001, strong indications for a metamagnetic QCEP were found in the compound Sr3Ru2O7

[36, 79]. Sr3Ru2O7 is a layered structure, which for a large magnetic field perpendicular to
the layers exhibits a line of first order metamagnetic phase transitions at finite tempera-
ture, ending at a finite temperature critical point. By including a component of magnetic
field in the plane of the layers, the critical point can be brought to zero temperature.
The theoretical treatment [62] of this metamagnetic quantum phase transition is based
on Hertz-Millis theory[50, 61]. The order parameter of the transition is the difference in
position of the spin-up and spin-down Fermi surfaces, and the critical fluctuations are the
longitudinal fluctuations of the magnetisation density about its average value at the critical
field. The Hertz-Millis theory describing the phase at and above the critical magnetic field
corresponds to a dynamical exponent z = 3 [62].

As for these metamagnetic QCEPs a description in terms of Hertz-Millis theory is
available, they might provide a good check for the holographic treatment of the quantum
phase transition, which will be the focus of the rest of this thesis. In fact, the example of a
holographic QPT that will be discussed in chapter 5 is of this metamagnetic type, and the
results found for the QCP there agree with what one would expect from Hertz-Millis theory
applied to a metamagnetic QCEP (albeit a system which has only one spatial dimension).

10It has been argued by [13] that non analytic terms would drive all ferromagnetic transitions first order
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Figure 2.3: Phase diagram with a QCEP, which occurs when a line of critical endpoints
(CEPs) is depressed to zero temperature. In the B = 0 plane, there is a 2nd order thermal
phase transition from the FM phase to a paramagnetic phase. By applying pressure,
the critical temperature can be lowered, until at some point the transition becomes 1st
order. For a nonzero value of the applied magnetic field B, the second-order transition
is no longer there, since the symmetry is broken by the applied magnetic field. However,
a metamagnetic phase transition can occur, which at sufficiently low temperature is a
discontinuous ‘jump’ in the magnetisation as the applied magnetic field is turned on above
some value. Increasing the temperature smooths out the discontinuity in the magnetisation,
until at some critical temperature the metamagnetic transition becomes continuous. This
point is called a “critical endpoint”. At temperatures above the critical temperature, the
metamagnetic transition becomes a crossover. One can tune the temperature at which
the critical endpoint occurs to zero by changin both the pressure and the magnetic field.
The point at which the critical temperature is tuned to zero is called a “quantum critical
endpoint” (QCEP).



Chapter 3

AdS/CFT

A possible new tool in studying strongly interacting theories that might describe the region
around a Quantum Critical Point is the conjectured duality between certain strongly cou-
pled gauge theories with a large number of “colour charges” N and classical supergravity.
Such a duality is called a “gauge/gravity duality”, and the various applications are often
called “holography”. The simplest example is the “AdS/CFT correspondence” [59], which
will be reviewed in this chapter.

3.1 Holographic principle

The term “holography” is used because the most important idea on which these holographic
dualities rely is the so-called “holographic principle” [73], which will be motivated in this
section.

3.1.1 Black hole thermodynamics

According to the no-hair theorem, a classical stationary black hole solution can be charac-
terized by mass, angular momentum and electric charge alone. Nothing can escape from
the black hole, so its temperature must be zero. When quantum mechanics is taken into
account, the existence of an event horizon puts the background at a finite temperature, as
follows: Hawking discovered [49] that black holes radiate via a quantum process in which
a vacuum fluctuation creates a virtual pair of particles of which one falls into the black
hole and the other escapes to infinity. He showed by a semi-classical computation that a
distant observer will detect a thermal spectrum of particles coming from the black hole, at
a temperature

TH =
κ

2π
(3.1)

16



CHAPTER 3. ADS/CFT 17

where κ is the surface gravity at the horizon, which is the gravitational acceleration ex-
perienced by an observer at the event horizon, as measured at infinity1. In other words,
the black hole event horizon appears to a distant observer as a hot membrane which emits
thermal radiation.2

Since the black hole is an object with mass and temperature, the laws of thermodynamics
must apply. In 1973, Bardeen, Carter and Hawking found an analogy between the laws of
thermodynamics and similar laws in black hole mechanics [11, 10, 48]. After the discovery
of Hawking radiation, these ”laws of black hole thermodynamics” were found to be more
than just an analogy [12, 49].

The ”zero-th law of thermodynamics” states that the temperature of a body in thermal
equilibrium is uniformly distributed. For a black hole, the equivalent statement is that the
surface gravity on the event horizon is constant all over.

The first law of thermodynamics reads

dE = TdS. (3.2)

Einstein’s equations imply an analogous first law of black hole mechanics [10]:

dM =
κ

8π
dA (3.3)

where we recognise the Hawking temperature as proportional to the surface gravity κ. The
entropy must then be proportional to the area of the event horizon.

The second law of thermodynamics reads:

dS ≥ 0 (3.4)

which was compared [10]3 with the area theorem for black holes:

The area of a black hole event horizon never decreases with time

which we write as:
dA ≥ 0. (3.5)

Bekenstein [12] and Hawking [49] found that

SBH =
A

4
, (3.6)

1Kiritsis: the surface gravity is the acceleration needed to keep a particle stationary at the horizon (in
Killing coordinates).

2Hawking’s result for the temperature of black hole radiation is consistent with the temperature pre-
dicted by the Unruh effect, where an accelerated observer moving in a vacuum will see thermal background
radiation, with a temperature proportional to its acceleration.

3(ignoring radiation)
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so the entropy of a black hole is given by a quarter of the area of its horizon in Planck
units (in full, SBH = kAc3/(4G~) with G Newton’s constant).

When considering systems containing both black holes and ordinary matter outside the
event horizon, the second law of thermodynamics holds only for the total entropy of the
system, where the entropy of black holes SBH = A/4 is included in the balance. It was
shown that a generalized second law of black hole mechanics (GSL) holds [12]:

dStotal ≥ 0 (3.7)

Generalized second law (GSL): if Sinitial
total = Smatter +SBH, then after interactions have taken

place the final state must obey:
Sfinal

total ≥ Sinitial
total (3.8)

The third law of thermodynamics states that the entropy of a system at absolute zero is
a well-defined constant. This is because a system at zero temperature exists in its ground
state, so that its entropy is determined only by the degeneracy of the ground state. It
means that ”it is impossible by any procedure, no matter how idealised, to reduce any
system to the absolute zero of temperature in a finite number of operations”.

Similarly, the third law of black hole mechanics [10] states that it is impossible to reduce
the surface gravity of a black hole to zero in a finite number of continuous steps.4

Temperature and entropy for charged black hole

The metric for a charged Reissner-Nordstrom black hole is given by:

ds2 = −
(

1− 2M

r
+
Q2

r2

)
dt2 +

(
1− 2M

r
+
Q2

r2

)−1

dr2 + r2dΩ2 (3.9)

where in our units c = G = 1 and the parameters M , Q are to be interpreted respectively
as the mass and electrical charge of the body by considering the asymptotic behavior of
the metric. For |Q| > M this metric has a naked singularity5. If the charged black hole is
to be a solution of classical general relativity, a lower bound on the mass in terms of the
charge,

|Q| ≤M, (3.10)

must be obeyed. The Reissner-Nordstrom solution has two horizons, an outer and an inner
one. These are defined by (

1− 2M

r±
+
Q2

r2
±

)
= 0 (3.11)

4Näıvely we would expect that the surface gravity of a non-extremal black hole with M > |Q| would
be able to gradually drop to zero by emitting away the electrically neutral matter until M = |Q|. This
is indeed possible, but only if there is an infinite amount of time available. The reason is that, as the
matter is being radiated away, it gets more and more difficult to radiate further since the temperature
keeps dropping during the process of radiation.

5A naked singularity is a timelike singularity with no horizon to cloak it.
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where r+ (r−) refers to the outer (inner) horizon:

r± = M

[
1±

√
1− Q2

M2

]
(3.12)

The metric can be rewritten in terms of the inner and outer horizons:

ds2 = −(r − r+)(r − r−)

r2
dt2 +

r2dr2

(r − r+)(r − r−)
+ r2dΩ2 (3.13)

Note that in the extremal limit M = |Q| the inner and outer horizons merge at r± = M .

The surface gravity at the outer horizon of a Reissner-Nordstrom black hole is [75]:

κ =

√
M2 −Q2

(M +
√
M2 −Q2)2

(3.14)

which can also be written as:

κ+ =
r+ − r−

2r2
+

(3.15)

For an extremal Reissner-Nordstrom black hole (r− = r+, or equivalently M = |Q|) the
surface gravity, and therefore the temperature, vanishes.

3.1.2 Bekenstein bound

From the thermodynamics of black holes, an upper bound on the entropy can be derived
for ‘matter’ in a gravitational theory (this ‘matter’ need not be a black hole). The clearest
way of seeing this is by considering the Susskind process, in which a system with spherical
symmetry is converted into a black hole by letting a shell of energy collapse onto it. The
entropies before and after the collapse are given by

Sinitial
total = Smatter + Sshell, (3.16)

Sfinal
total = SBH =

A

4
. (3.17)

The generalized second law, applied to this process, then yields a lower bound on the
entropy of the matter before it was converted into a black hole (since Sshell ≥ 0):

Smatter ≤
A

4
(3.18)

This bound is called the spherical entropy bound. For systems with less symmetry, it is
generally very difficult to construct a spacelike holographic bound. For a review on the
construction of entropy bounds, see the review by Bousso [14]
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Another way to think about the entropy of a system is in terms of its degrees of free-
dom. If Nstates denotes the number of microstates of a system, then S = lnNstates. In other
words, the Bekenstein-Hawking entropy bound tells us that for a volume of space bounded
by area A,

Nstates ≤ eA/4 (3.19)

As a simple example, one can compare this to the number of microstates of a d-dimensional
Ising lattice in a volume V , with (average) lattice spacing a:

Nstates = 2V/a
d

= e(ln 2)V/ad (3.20)

From this result it is clear that a local field theory has too many degrees of freedom to
describe a system where gravity is taken into account, since the degrees of freedom of
a local field theory scale with the volume instead of the area. This could be solved by
considering a field theory living on the boundary of the volume. If the information in a
volume of space was somehow encoded by a field theory on the boundary, much like a
hologram, its degrees of freedom would scale correctly with system size. This observation
led to the formulation of the holographic principle [73, 71]:

A gravitational system in a volume of space can be described in terms of a field theory on
its boundary (with no more than 1 bit of information per Planck area).

3.1.3 Anti-de Sitter spacetime

AdS space is the vacuum of theories with a negative cosmological constant, and it is the
background in which the holographic principle is best understood6.

AdS metric

One often encounters the following form of the AdS metric in terms of so-called Poincaré
coordinates7

ds2 =
L2

r2
dr2 +

r2

L2

(
−dt2 + dxidxi

)
(3.21)

Another way of writing this metric is by redefining the radial coordinate r in terms of a
new radial coordinate z:

ds2 =
L2

z2

(
−dt2 + dz2 + dxidxi

)
(3.22)

Now the boundary is located at z = 0. This new radial coordinate z8, which I will call the
Fefferman-Graham coordinate, measures the radial distance from the boundary of AdS.
This will be the radial coordinate used in sections ?? and ??, as well as in chapter 4. The

6It can be shown [70] that any spacelike surface in AdS space will have its entropy bounded by the
area.

7This is the metric of an incomplete patch of AdS spacetime (the Poincaré patch). It is also an
approximation to the global AdS metric in the region near the boundary.

8not to be confused with the dynamical exponent, which uses the same letter
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radial coordinate r used in chapter ?? is not the same as the coordinate r in (??).

From (3.21) it is easy to see that the metric of AdS spacetime is invariant under the
following scale transformation:

r → λ−1r, t→ λt, xi → λxi (3.23)

which, if the t, xi are taken to be the coordinates of the theory on the boundary, seems
to imply that the radial coordinate r plays the role of the energy scale of the dual theory.
Apart from the above scale transformation, the AdS metric has more isometries. In fact, the
group of isometries of d+ 1-dimensional AdS space (or AdSd+1) is given by SO(2,d), which
is the same as the group of conformal transformations on d + 1-dimensional Minkowski
spacetime. If the dual field theory is thought of as ‘living on the boundary’9 this implies
that the boundary theory is a d-dimensional conformal field theory (CFT).

UV/IR relation

The observation made above that the radial parameter r (or 1/z) seems to play the role
of the energy scale of the dual theory living on the boundary turns out to be true: it was
found in [72] that the lare r cutoff that is needed to regularise IR (“infra red” or: “low
energy”) divergences in the AdS theory is directly proportional to the UV (“ultra violet”
or: “high-energy”) cutoff needed to regularise the dual CFT. In more general examples of
holographic dualities, the relation between the radial parameter in the bulk spacetime and
the energy scale of the dual field theory on the boundary turns out to be less simple. The
notion that such a relation exists in a holographic duality is called the IR-UV connection

3.2 AdS/CFT correspondence and basic dictionary

The holographic principle is very general, and it does not specify which theory of gravity
in the bulk of some spacetime is dual to which theory on the boundary. However, one may
improve the situation by looking at examples with a high degree of symmetry. If some
field theory is to be equivalent to some theory of gravity, then the symmetries of the field
theory should somehow be translated into symmetries of the gravity theory. In particular,
the field theory symmetries are translated into isometries of the background spacetime
of the gravity theory. A high degree of symmetry therefore restricts the possible gravity
background solutions, making the task of finding a correspondence much easier. As was
stated in the previous section, in the case of a CFT, the symmetry group corresponds to
the group of isometries of AdS spacetime. The example found by Maldacena is indeed
called the AdS/CFT correspondence [59].

9An interesting feature of AdS spacetime is that massless fields can go to the boundary and back in
finite proper time [70].
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3.2.1 String description of gauge theories

Confining gauge theories
An early hint for where to look for an example of a holographic duality came from the
discovery [74] that confining gauge theories at strong coupling have a low energy effective
description in terms of a string keeping the fundamental particles together.
Consider for example SU(3) Yang-Mills in 4 dimensions, which is the theory describing
the strong interaction between quarks and gluons in quantum chromodynamics (QCD).
At high energies (or short distance scales), the quarks are asymptotically free, and are
described by perturbative gauge theory. However, at low energies (or long distance scales)
the coupling strength becomes large and the perturbative description breaks down. There
is, however, a different description in terms of pairs of quarks bound together by a flux
tube of gluons. As the coupling strength increases (at lower energy), there will be more
”glue” keeping the two quarks together, and also keeping the flux lines together (since the
gluons are self-interacting), resulting in something that looks very much like a string. So
at lower energy a description in terms of strings becomes better, and one enters a different
perturbative regime.

Large N expansion

We can generalize the above theory to N ”colours”, so we consider SU(N) Yang-Mills
theory. The fields can be normalized so that the Lagrangian can schematically be written
as

L ∼ 1

g2
YM

Tr
(
(∂Φ)2 + Φ2 + Φ3 + . . .

)
(3.24)

where the fields Φ = Φa
b are in the adjoint representation of SU(N).

In this normalization, the weight of a vacuum diagram with E edges, V vertices and F
index loops is given by

(g2
YM)E−VNF = λE−VN2−2g = (g2

YM)2g−2λF , (3.25)

where the ’t Hooft coupling is defined by λ ≡ g2
YMN , and g is the number of handles of

the diagram, related to the number of edges, vertices and index loops by 2 − 2g = χ =
E − V + I10. Note that the weight contains a ”topological term” which depends only on
the genus of the surface on which the diagram can be drawn (given by either N2−2g or
(g2
YM)2g−2) and not on the number of interactions in the Feynman diagram. The other

term does depend on the number of interactions, (either λE−V or λF ).
’t Hooft found that in the limit N → ∞ and g2

YM → 0 such that λ remains fixed (the
so-called ’t Hooft limit), the Feynman diagrams are organised in a perturbative expansion
in terms of 1/N . From the first equality in (3.25) This expansion can be regarded as a
topological expansion, since (see figure 3.1 for examples of a leading-order and a first-order
diagram). This expansion is similar to a perturbative string expansion, where the genus

10the first equality is a known result from mathematics, stating that for diagrams that can be turned
into closed oriented surfaces, the Euler character depends only on the topology of the surface.
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of the worldsheet comes with a factor of the string coupling gs according to g2g−2
s . (note

that the string interaction gs governs the splitting and joining of string endpoints, so if
this interaction is weak, worldsheets with genus 0 are most likely).

(a) Planar graph (b) Surface of genus 0 (c) Non-planar graph (d) Surface of genus 1

Figure 3.1: Direct surfaces constructed from a planar and a nonplanar graph.
Images taken from [60]

Figure 3.2: Topological expansion of closed string vacuum diagrams in small gs

Strong/weak coupling
In the gauge theory, one has to take into account not only the Yang-Mills coupling gYM ,
but also the number of ”colours” N , since even if the Yang-Mills coupling is very weak, a
very large number of colours means that the weight of a diagram with interaction vertices
can become larger due to a colour loop in which one sums over all N colours. From equa-
tion (3.25) we can see that if we take the ’t Hooft limit, only planar diagrams will survive.
Which planar diagrams dominate is then determined by the value of λ. If λ is large the
diagrams with many edges (or faces) will become important, meaning the triangulation of
the surface will be smoother.

The perturbative string expansion is an expansion in small gs (lower genus) and small
α′ (small quantum fluctuations on worldsheet / large radius of curvature in target space?).
Similarly, in the gauge theory perturbative expansion there is the number of colours N ,
and the Yang-Mills coupling g2

YM , although we can also exchange either of these with the
’t Hooft coupling λ ≡ g2

YMN .

The expansion can be separated into an N -dependent part which only depends on the
genus of the surface the diagram triangulates, and a λ-dependent part which goes like
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λE−V , where E is the number of edges of the triangulation and V the number of vertices.
If λ is small (meaning the gauge theory is strongly coupled), the diagrams with a large
number of edges become more important, and the triangulation of the worldsheet of the
string is smooth. This can be related to a weakly-curved target space, or to small α′.

3.2.2 D-branes

A concrete example of a duality between a theory of gravity and a gauge theory was found
[59] by comparing two different descriptions of Dp-branes. As will be explained later, these
are massive, dynamical objects in type II string theory, extending along p spatial dimen-
sions. Their dynamics are described by open strings which have their endpoints attached
to the brane. These endpoints can move along the p + 1-dimensional worldvolume of the
brane, but can not separate from this surface. At the same time, the Dp-branes act as
sources for the gravity field of the theory by emission of closed strings, which happens
when two open strings collide and join endpoints.
The two different descriptions of Dp-branes are in terms of open strings on their worldvol-

ume and in terms of closed strings moving in the geometry caused by their backreaction on
the metric.These different descriptions are valid in different regimes of the coupling “gsN”,
which will be introduced below.

Open strings: ”D-branes”

A Dirichlet p-brane (or Dp-brane) is a p+ 1 dimensional hyperplane in 9 + 1 dimensional
space-time where open strings are allowed to end. The endpoints are free to move along
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the brane’s worldvolume, which means free (Neumann) boundary conditions for the p+ 1
longitudinal coordinates. The fact that the endpoints must remain on the brane worldvol-
ume means that the 9 − p coordinates transverse to the Dp-brane have fixed (Dirichlet)
boundary conditions; hence the name “Dirichlet brane.”

Strings with both endpoints on the same brane can have an arbitrarily short length, so
these have massless states. This is not the case when strings are stretched between two
parallel branes which are separated. In that case, the lowest-energy states have a mass
proportional to the separation of the branes. However, if the parallel branes are brought
closer together so that they coincide, the stretched strings become massless as well.
In order to keep track of which brane the endpoint is attached to, one can assign a non-
dynamical label to the endpoints of the string. This is referred to as a Chan Paton factor.
For N coincident D-branes, each string has two labels i, j = 1, . . . , N , and its massless
states transform in the adjoint of a U(N) gauge theory11.
It turns out that the low-energy effective action on a stack of N coincident D3-branes
reduces to maximally supersymmetric12 Yang-Mills theory [78] (in short: “N = 4 SYM”),
which is a CFT. In the D-brane action, the string coupling plays the role of the Yang-Mills
coupling, and we identify (up to a constant factor):

g2
YM = gs (3.26)

From this we can recognise the ’t Hooft coupling λ ≡ g2
YMN , which for the Yang-Mills

theory on the D-branes is given by λ ∼ gsN . In the limit gsN � 1, the gauge theory is
weakly coupled.

So far, we have ignored the interactions with closed strings that live in the 10D back-
ground. As mentioned above, a closed string can be formed when open strings on the
brane collide and join endpoints. The splitting and joining of string endpoints comes with
a factor of the string coupling gs. When N branes are stacked on top of each other, we
may therefore guess that the ”strength” of the backreaction of these branes is proportional
to gsN .

Closed strings: ”black p-branes”

13

Consider a generalization of a (charged) black hole solution, where the singularity extends
along p spatial dimensions. Just like a Reissner-Nordstrom black hole, when the mass
and charge saturate the bound M ≥ |Q|, we end up with a p-dimensional generalization

11One can also consider the stack of branes in its rest frame and ignore the U(1) part, so that the group
becomes SU(N).

12with N supersymmetry generators and SU(N) gauge group.
13By “black p-brane”, “p-brane” or “extremal brane” we will mean the geometry of a p-dimensional

black hole. When we consider the object in type II string theory, we will call it a “Dirichlet brane”,
“Dp-brane”, etc. When we use “brane”, this may refer to either, depending on the context.
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of an extremal black hole. 14 Such an ”extremal p-brane” solution appears in type II
supergravity, which is the low-energy (ls =

√
a′ → 0) limit of type II superstring theory.

We will assume that the singularity extends along the t, x1, . . . , xp directions, and use
spherical coordinates r,Ω8−p for the (9 − p) directions perpendicular to the brane. The
extremal p-brane solution reads:

ds2 = H(r)−1/2(−dt2 +

p∑
i=1

dxidxi) +H(r)1/2(dr2 + r2dΩ2
8−p) (3.27)

where the function H(r) is given by

H(r) = 1 +
L7−p

r7−p (3.28)

As alluded to before, it is expected that the black p-brane solution of type II supergravity
extends to a solution of the full type II superstring theory15, with the Dp-branes of the
previous section describing their full string dynamics [64].16

Such a model of an “extremal black brane” can be made e.g. by putting N D3-branes
on top of each other. The supergravity solution will have the same form as in equation
(3.27), with p = 3:

ds2 =

(
1 +

L4

r4

)−1/2

(−dt2 + dxidxi) +

(
1 +

L4

r4

)1/2

(dr2 + dΩ2
5) (3.29)

with the radius now given by:
L4 = 4πgsNl

4
s (3.30)

with a constant dilaton gs = eΦ. As with the general p-brane solution, the metric becomes
flat 10D Minkowski spacetime in the large r limit. In the limit r � 1, which is near the
horizon of the extremal solution, the spherical part of the metric decouples from that of
the directions along the brane, and the metric becomes a product geometry

ds2 ≈ r2

L2
(−dt2 +

3∑
i=1

dxidxi) +
L2

r2
dr2 + L2dΩ2

5 (3.31)

which is AdS5×S5. The limit r → 0 is often referred to as the near-horizon limit.
Note that the radius of curvature L of the AdS space (and the five-sphere) should be large

14If the mass of this charged black hole were to decrease below the extremal value, there would be a
naked singularity. Extremal black holes correspond to zero temperature backgrounds for observers at rest
in their geometry.

15which may then be subject to α′ (ls) corrections
16It was shown in a series of papers starting with [69] that the Bekenstein-Hawking entropy of certain

extremal black branes agree with the entropy calculated by counting the states in the gauge theory de-
scribing suitable systems of Dirichlet branes. Furthermore, the Hawking radiation rates and absorption
cross sections were calculated and successfully reproduced by D-brane models [52].
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Figure 3.3: Geometry caused by the backreaction of a black p-brane. Close to the branes,
the geometry becomes that of a ”throat”. Far away from the brane, the geometry is just
the flat 10D Minkowski spacetime the p-brane was placed in. In the picture, all directions
parallel to the brane are not drawn. Also, in the picture there are two transverse directions.
In general, if a p-brane is placed in R1,9, there will be p + 1 parallel directions (including
time) and 9− p transverse directions.

in order for stringy corrections (α′) to the supergravity solution to be small. From (3.30)
we see that this means that gsN � 1. In order for classical supergravity to be a good
description, we should also have gs � 1, so the regime of validity for the above solution
becomes

1� gsN � N (3.32)

In the following, we will always consider this case of a stack of N coincident D3-branes.

Regimes of validity of the different descriptions

The above black p-branes and D-branes are different simplified pictures of an object in
string theory called a Dp-brane. This object is sketched in figure ??. The process of
open strings colliding and forming a closed string that can move away from the brane and
backreact on the metric comes with a factor of gs, which we take to be small. Since each
brane contributes this factor, the backreaction of a stack of N branes comes with a factor
of gsN . At the same time, we can see from (3.30) that in the limit gsN � 1, the radius
of the throat L is small compared to the string length ls and all stringy probes cannot
penetrate and sample the throat region. The open string description therefore is only valid
if gsN � 1. Classical supergravity, on the other hand, is a good description if gsN � 1
(or: L/α′ � 1) and N � 1 (or: gs � 1).

3.2.3 Decoupling limit for N D3-branes

When describing a stack of N D3-branes placed in R1,9, one generally cannot treat the
region near the branes separately from the region away from the branes, since in general
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there are interactions between the branes and the closed strings living in the 10D back-
ground. However, in the low-energy limit these interactions vanish, since the low-energy
gravity fields that survive this limit in the 10D flat space have too long wavelengths to
tunnel into the throat region. In other words, the absorption cross section goes to zero in
the low-energy limit. The limit in which the Dp-branes decouple from the 10D spacetime
is called the Maldacena limit or the decoupling limit.

A convenient way to take the decoupling limit is to keep the energies of physical pro-
cesses fixed while taking the limit

√
α
′

= ls → 0. Away from the branes we have r > 0,
and we see from the metric (3.29) that in the limit ls → 0 that the metric becomes every-
where flat for all nonzero values of r. Away from the branes, we therefore are left with free
type IIB supergravity in R1,9.

Close to the branes, we have the two perturbative descriptions in terms of open or closed
strings. In the open string description, taking the low-energy limit leaves us with N = 4
SYM on the 3+1 dimensional worldvolume of the branes. In the closed string description,
the states that survive the decoupling limit are the aforementioned background fluctua-
tions which are decoupled from the throat region, but also closed string states of type IIB
string theory that live in the near-horizon region17. The reason why full type IIB string
theory in the near-horizon limit is part of the low-energy description is because the redshift
diverges in the limit r → 0. So we can conclude that the low-energy limit corresponds to
the near-horizon limit in the closed string picture.

3.2.4 AdS5/CFT4 correspondence

After taking the low-energy limit in both the open string and the closed string description
and noting that in both cases we get free supergravity in R1,9 which is decoupled from
the branes, Maldacena was led to conjecture that the two near-brane parts (as defined in
the previous section) must be different descriptions of the same theory, valid in different
regimes of the ”coupling” gsN .

In its strongest form, the Maldacena conjecture [59] (for the case of D3-branes) states
that:

Type IIB superstring theory compactified on AdS5×S5 is equivalent to N = 4 SYM
theory on R1,3.

This conjecture also goes by the name ”AdS/CFT correspondence”, and it is a special
case of a so-called ”gauge/gravity duality”. The latter contains all examples where a
(decoupling limit can be taken in a gravity system and a) dual description found in terms
of a gauge theory on the boundary. Another name by which it is often referred to is the

17Due to the gravitational red-shift, an object moving towards r = 0 would appear to have lower and
lower energy to an observer at r =∞.
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”bulk/boundary correspondence”, where the theory in the bulk of AdS is said to be dual
to a CFT ”living on the boundary” of AdS18.

Maldacena conjecture in the ’t Hooft limit

We are interested in the limit in which the gauge theory is “difficult” (strongly coupled),
and the gravity theory is “easy” (classical and weakly curved). In the ’t Hooft limit
N → ∞, λ ≡ gsN = constant, we saw before that the diagrams with no string loops
became dominant. In this limit, classical superstring theory is a good description.

Weakest statement: N →∞, λ ≡ gsN →∞

In the case of a D3-branes, with a constant dilaton gs = exp Φ, the ’t Hooft coupling is
a dimensionless parameter and one can consider the limit in which both N → ∞ and
λ → ∞. As we saw before, classical supergravity is a good approximation in this limit,
and it it this version of the correspondence which will be interesting to us.

3.2.5 Symmetry matching

One basic check of the duality is comparing the symmetries of the dual theories. Recall
from section 3.1.3 that the isometry group of AdS5, which is SO(2,4) (the covering group
is SU(2,2)), corresponds to the symmetry group of a CFT on R1,3. From this we concluded
that in general, a theory of gravity on AdSd+1 should have a dual description in terms of
some CFT “on the boundary”.

The isometry group of the S5 part of the geometry is SO(6), which has a covering group
SU(4). In the boundary theory, this corresponds to the so-called R-symmetry group of
N = 4 supersymmetry, which is a symmetry under which supercharges transform into
each other.

In both cases, the symmetries are global symmetries of the boundary theory, but ap-
pear as gauged symmetries (diffeomorphisms) in the bulk theory. In [44], it is argued that
these global symmetries are just the ‘large’ gauge symmetries of the bulk theory, and one
may expect the following general correspondence to hold:

Gauged symmetry of (d+ 1)-dimensional bulk ↔ Global symmetry of d-dimensional
boundary

3.2.6 Kaluza-Klein compactification

The AdS/CFT correspondence is often described as a duality between a d+ 1-dimensional
theory of gravity, and a d-dimensional field theory. We saw before, however, that the theory

18see section 3.1.3
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of gravity is actually ten-dimensional. Five dimensions form the AdS5 spacetime, while the
other five dimensions are compactified into a sphere. We can expand the ten-dimensional
supergravity fields into so-called Kaluza-Klein modes. In the simplest example of a Kaluza-
Klein expansion, one dimension is compactified into a circle. A field can then be expanded
in Fourier modes around this circle, thereby replacing the dependence on the compactified
dimension with an infinite tower of states labeled by their mass (which take on a discrete set
of values). We can separate the Kaluza-Klein modes into “light” and “heavy” fields, which
are classified relative to the energy scale we are probing. In the case of compactification
on a circle (or an n-torus), all but the lowest-order fields in this expansion are massive
and can be ignored when probing large distance scales. When performing a dimensional
reduction, where the circle (or torus) is shrunk to zero size, these fields become infinitely
heavy. For general cases of compactification on some compact manifold Md this need not
be the case. This does not necessarily mean that all fields have to be kept in order to find
a solution. If a consistent truncation is found to a subset of the fields, the solutions of
the truncated theory can be lifted to solutions of the full theory. This will be explained in
section 4.1. Consistent truncation does not rely on taking some low-energy limit. Rather,
it means that all but a few fields can be consistently set to zero in the equations of motion.
Consistency demands that the remaining fields in the truncated theory do not generate
fields that were set to zero.

It turns out [53] that type IIB supergravity compactified on S5 to five dimensions
reduces to N = 8 gauged supergravity with SU(4)'SO(6) gauge symmetry. Gauged
supergravities are supergravity theories with non-abelian gauge fields in the supermultiplet
of the graviton.

3.3 GKPW prescription

Having found a theory of gravity and a field theory that are conjectured to be dual, we
would like to find the mapping between the observables on both sides. These include the
spectrum and correlation functions.

3.3.1 Mapping between fields and operators

In order to look for the precise mapping between fields in gravity and in the dual gauge
theory, we will have a look at the fields on both sides of the AdS/CFT correspondence.
First, we note that the gauge theory is a CFT, and therefore has no asymptotic states, so
we will consider local operators on the gauge theory side. Second, these operators will need
to be gauge-invariant, because the gauge symmetries of the CFT correspond to isometries
of the bulk spacetime. One can obtain gauge-invariant combinations of the fundamental
fields (which are not gauge-invariant) by taking a product of the fundamental fields, all
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evaluated at the same spacetime point, and taking a trace19

Oα···δµ···σ(x) = Tr (· · · SYM fields(x) · · · ) (3.33)

In the following we will generally suppress the Lorentz (µ · · ·σ) and (supersymmetry)
spinor (α · · · δ) indices.

A hint for the mapping between gravity fields and gauge theory operators came from
the previously mentioned comparisons of absorption cross sections. There, the response
of the brane systems to external probes coming in from the asymptotic flat region in the
D-brane picture was found20 to agree with that in the p-brane picture [65, 39, 40]

On the D-branes, the external probes correspond to the insertion of certain local gauge-
invariant operators, whereas in the p-brane description an external probe perturbs the
geometry as it comes in from infinity. The difference with the case considered by Maldacena
is that for the absorption calculations the entire geometry was kept, not just the throat
region. The AdS/CFT correspondence suggests that if we cut out the throat region and
replace it with the D-branes, then the response should be identical. Thus, the insertion of
gauge-invariant operators on the D-branes should presumably be identical to the response
of the throat geometry to changing the boundary conditions at the edge of the throat.

3.3.2 Correlation functions

Consider a set of gauge-invariant (single-trace) operators Oi. We can deform the CFT by
adding source terms for the gauge-invariant operators:

L(x)→ L(x) +
∑
i

Ji(x)Oi(x) (3.34)

so that a generating functional can be written down

ZCFT[J ] = 〈e−
∫ ∑

i JiOi〉CFT (3.35)

from which correlation functions can be obtained via

〈Oi1(x1) · · · Oin(xn)〉 =
δ

δJi1(x1)
· · · δ

δJin(xn)
lnZ

∣∣∣∣
J=0

(3.36)

The coupling of a gravity probe φ to the branes can be deduced from the D-brane action,
and is of the general form ∫

d4xφ0(x)O(x) (3.37)

19In the large N limit, correlators of multiple-trace operators, denoted e.g. by 〈OO〉 for a double-trace
operator, factorise into the single-trace parts: 〈OO〉 ∼ 〈O〉〈O〉 + O(1/N2). The connected diagrams are
suppressed by factors of N since the disconnected diagrams have more index loops. This goes by the name
large-N factorization. The single-trace operators are basically classical objects in the large N limit, and
may be expected to be dual to states in gravity (which also becomes classical in this limit).

20at low energy
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where x denotes the four coordinates on the brane worldvolume, and φ0 denotes the re-
striction of the bulk field φ to the brane. Note that φ0 plays the role of the source term J .

The proposal made by GKPW [37, 76] was:

ZCFT[J = φ0] = Zstring[φ→ φ0] (3.38)

with the generating function of the CFT given by equation (3.35), and on the right-hand
side the full string theory partition function, with the boundary condition that the bulk
fields φ(z, x) take on the values φ0(x) at the boundary of AdS.

A formula like (3.38) is valid in general, for any field φ. Therefore, each field propagating
on AdS space is in one-to-one correspondence with an operator in the field theory. We
shall therefore take J in the relation (3.38) to mean all sources in the gauge theory.

We will be working in a low-energy limit in which we suppose that we may reliably use
classical gravity. This means we will make use of the weakest formulation of the AdS/CFT
correspondence which is defined for large N and large λ, and which is dual to a strong-
coupling (and planar) limit in the dual field theory. If we use the weakest form of the
AdS/CFT correspondence, we can argue that a saddle point to the superstring partition
function Zstring is given by type IIB supergravity. Thus we can approximate the string
partition function Zstring(φ→ φ0) by21

Zstring(φ→ φ0) ≈ exp(iSsugra(φ̄→ φ0)), (3.39)

where φ̄ denotes the solution of type IIB supergravity with leading asymptotic behavior φ0

near the conformal boundary. In the weakest form, the AdS/CFT correspondence therefore
equates

〈ei
∫
d4xφ0O〉SYM = exp(iSsugra(φ̄→ φ0)), (3.40)

The on-shell bulk action, Ssugra, acts as the generating functional for correlators involving
the operator O. In other words, to compute renormalized correlators of the operator O,
we take functional derivatives of Ssugra with respect to the source φ0. For example the
connected correlator of the operator O, i.e. 〈O〉c, is given by

〈O〉c =
δ

δφ0

Ssugra

∣∣∣∣
φ0=0

. (3.41)

The GKPW prescription provides us with a method for computing gauge theory correlation
functions in gravity, by taking multiple derivatives with respect to the sources,

〈O(x1) . . .O(xn)〉CFT =
δ

δφ0(x1)
. . .

δ

δφ0(xn)
Ssugra

∣∣∣∣
φ0=0

. (3.42)

21we will ignore the fact that there may be more saddle points that are important.
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3.3.3 Boundary conditions

Recall (section 3.1.3) that massless particles in AdS can reach spatial infinity in a finite
time. Therefore, in order to consistently quantize22 fields on AdS, one must not only impose
initial conditions, but also boundary conditions at infinity [15, 4]. The behaviour of the
fields have two linearly independent modes, which behave near the AdS boundary as

φ± ∼ ε∆± (3.43)

where ε denotes the (small) distance to the boundary which is located at z = 0 in Fefferman-
Graham coordinates (introduced in section 3.1.3), and for the scalar field

∆± =
d

2
±
√
d2

4
+ L2m2 (3.44)

The mass of a field in AdS (for which the energy is conserved, positive and finite) has to
satisfy the Breitenlohner-Freedman bound, which for the case of a scalar is given by [15]

m2 > −|mBF|2 = − d2

4L2
. (3.45)

So-called “BF-allowed tachyons”, with masses in the range−d2/4L2 < m2 < 0, surprisingly
do not cause an instability of the background.

In the boundary behaviour of the field φ (3.43), the mode with the larger value ∆+

corresponds to a normalizable mode, since φ+ vanishes at the boundary, leading to a finite
contribution to the partition function23. Normalizable modes fluctuate and describe low-
energy excitations of the bulk spacetime. The mode with the smaller value ∆− = d−∆+ in
general does not vanish at the boundary, in which case it is called a non-normalizable mode.
The energy for such a non-normalizable mode is infinite, so it does not contribute to the
partition function. Instead, these modes serve as classical, non-fluctuating backgrounds in
which normalizable modes propagate [8]. In the GKPW prescription, the boundary values
of these non-normalizable modes correspond to sources in the dual gauge theory24, which
deform the CFT. So in short, normalizable modes change the state the system is in, and
non-normalizable modes change the theory itself.

We can summarize the asymptotic behaviour of a bulk field φ near the boundary in terms
of the radial coordinate z25 as

φ(z, x) ≈
( z
L

)d−∆+

φ(0)(x) +
( z
L

)∆+

φ(1)(x), as z → 0 (3.46)

22conserved and positive energy, inner products conserved, no information leaking away at infinity
23since normalizable modes are modes which have a finite action in Euclidean AdS, or a finite energy in

Lorentzian AdS.
24In Euclidean AdS, only the non-normalizable modes are present, and for each given boundary field

there is a unique extension into the bulk that is also a solution of gravity [76]. (regularity in the bulk,
z →∞, uniquely fixes φ for a given boundary value φ0)

25z measures the radial distance from the boundary, see section ??
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where we have used φ(0) for the coefficient of the leading term, since the non-normalizable
modes define the sources in the GKPW prescription [8].

In the presence of a source term φ
(0)
reg (see (3.59)), the expectation value for the dual

operator O becomes

〈O〉
φ
(0)
ren

= lim
ε0→0

δSsub[φ̄→ φ
(0)
reg]

δφ
(0)
reg

(3.47)

If the radial evolution of the solution φ as a function of the radial parameter z is thought
of as a kind of time evolution, we can define the ‘canonical momentum’ conjugate to φ:

Πφ(z) ≡ ∂L
∂(∂zφ)

(3.48)

which can be rewritten as the variation of the action with respect to the boundary value
of the field

Πφ(z) = −δSreg, on-shell

δφ
(3.49)

Then we can evaluate the field momentum in the solution (3.46) and obtain For the scalar
field, the result turns out to be [54]

〈O(x)〉 =
2∆+ − d

L
φ1(x) (3.50)

From the coefficient φ(1) of the subleading term in (3.46), the state of the system can be
read off [9]. If the source term is zero (φ(0) = 0), then φ(1) is the vacuum expecation value
of the dual operator.

Note that although in the formula (??) for the GKPW prescription only one source φ0

with its dual operator O is explicitly written, the prescription actually says that for all
operators in the boundary theory there should be a corresponding field in the bulk. At
the very least, our ‘dictionary’ should contain an entry for the boundary stress tensor T µν .
This should be sourced by the boundary metric, so the deformation of the CFT looks like∫

ddxg(0)µνT
µν (3.51)

where g(0)µν is the restriction to the boundary of the bulk metric, which behaves near the
boundary as [76, 35, 19]:

gMN =
L2

z2
g(0)µν + . . . as z → 0, (3.52)

where greek letters µ, ν, . . . are used to denote the spacetime coordinates on the boundary,
and capital letters M,N, . . . denote the spacetime coordinates in the bulk. We can conclude
that in order to describe a local field theory at the boundary, we need a dynamical metric:

T µν ↔ gMN (3.53)
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where the symbol “↔” means “is dual to”.
The expectation value for the boundary stress tensor can be computed from the induced
boundary metric, which we set equal to g

(0)
µν

26.

〈T µν〉 =
−2√
−g(0)

δSren

δg(0)µν
, (3.54)

where it is understood that one needs to regularize the expression on the right-hand side
according to the procedure outlined in the next section.

In a similar way, we may want to add a massless gauge field AM (= Aµ(z)) to the bulk
theory and find its entry in the dictionary. From∫

ddxA(0)µjµ (3.55)

we conclude that
jµ ↔ AM (3.56)

where j is the conserved current of some global symmetry group, which corresponds to
the gauge group of A in the bulk (see section 3.2.5). The near-boundary behaviour of the
gauge field is given by:

AM = A(0)
µ + . . . as z → 0 (3.57)

and the expectation value of the boundary current is given by

〈jµ〉 =
1√
−g(0)

δSren

δA
(0)
µ

. (3.58)

3.3.4 Renormalization

Generically, both the on-shell bulk action and the CFT generating functional diverge. On
the bulk side, the divergences arise from the infinite volume of AdS [72](see the discussion
in section 3.1.3), i.e. they are long-distance or infrared (IR) divergences. In the field theory,
the divergences are short-distance ultraviolet (UV) divergences. To make the AdS/CFT
correspondence meaningful we must regulate and renormalize these divergences. One can
obtain a finite value for the action Ssugra by subtracting the divergent terms from the on-
shell action, which are local27 and covariant.

The procedure of holographic renormalization is as follows:

1. AdS space is truncated to a finite region, bounded by a new hypersurface at z = ε0.
Note that at this point, conformal invariance of the dual field theory is lost because
a UV scale is introduced ΛUV = 1/ε0 [72].

26we define the boundary as the background spacetime on which the dual field theory lives
27so as not to change the nonlocal, dynamical, part of the on-shell action [?]
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2. The equations of motion are solved with boundary conditions imposed at this new
boundary.
The Dirichlet conditions imposed at this new boundary are related to the conditions
imposed at the boundary at infinity via relation

φ(x, z)|z=ε0 = φ(0)(x, ε0) = ε
d−∆+

0 φ(0)
reg(x) (3.59)

3. Local terms that diverge in the limit ε0 are subtracted from the action

Ssub = S − Sloc (3.60)

4. The limit ε0 → 0 is taken28 to obtain the renormalized action.

3.3.5 Relevant, marginal and irrelevant operators

We can read off the conformal dimension of a boundary operator dual to a bulk field by
looking at the behaviour of the non-normalizable mode (3.59) under a rescaling of z. Since
φ is dimensionless, we see that φ(0) has dimensions of [length]∆−d which implies, through the
lhs of (3.40), that the associated operator O has dimension ∆ given by ∆ = d−∆− = ∆+.
We can now classify the bulk fields in terms of the conformal dimension of their dual
operators. For a scalar field, the relation (3.44) gives the flollowing classification:

• Massless scalars correspond to operators with conformal dimension ∆ = d, so these
are marginal.

• For m2 > 0 the conformal dimension ∆ > d, so these correspond to irrelevant
operators.29

• If −d2

4
< m2 < 0, the corresponding operator has ∆ < d and is relevant30.

28N.B.: when computing correlation functions, this limit is taken after differentiation w.r.t. the sources,
which were defined on the regulated boundary.

29Since these operators backreact strongly on the boundary, we do not have an asymptotically AdS
spacetime anymore.

30Recall from section 3.3.3 that m2 > −d2/4L2 is required for stability [?]. As the conformal dimension
of an operator is given by ∆ = ∆+, this translates to the requirement that the conformal dimension of an
operator be real-valued
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Figure 3.4: For systems with a gravity dual, the AdS/CFT correspondence provides a
striking geometric picture for the RG flow and the resulting low energy behaviour. As
stated before, the radial direction in the bulk can be associated with the energy scale
of the boundary theory [59, 72, 63], and the radial flow in the bulk geometry can be
interpreted as the RG flow of the boundary theory [7]. Processes in the interior determine
long distance physics (which we call the IR of the dual field theory) while processes near
the boundary control the short distance (or UV) physics.
Figure taken from [43].



Chapter 4

Modeling matter

In general, the holographic principle states that a theory of gravity in d + 1 dimensions
should have a description in terms of a field theory in d dimensions. In particular, a CFT
in d dimensions (or: CFTd) should be dual to a theory of gravity on AdSd+1. The standard
example which can be derived by taking a decoupling limit of a system of D3-branes gives
a holographic description of a CFT4. However, in realistic systems one will generally
want to deform this theory so that the scale invariance (and perhaps other symmetries) is
broken. The simplest way of breaking scale invariance is by placing the theory at a finite
temperature. One also might like to put the system at a chemical potential and induce a
charge density, or turn on a magnetic field. When looking for a holographic description of
condensed matter phenomena, there are two ways to do this, which are sometimes called
the top-down and the bottom-up method:

• Top-down models, that is models derived directly from string/M-theory constructions
(such as the coincident D3-branes discussed in section 3.2.2), might be found in which
the gauge theory has some (exotic) features in common with a condensed matter
system (such as a quantum phase transition or non-fermi liquid behaviour).

• Bottom-up models are usually simple gravitational models that are expected to give
a holographic description of some condensed matter phenomenon. One uses general
features of the AdS/CFT correspondence to guess what kind of fields are needed in
the gravity description, and leaves all other fields out.

In the top-down method, one might try to find a more complicated system of coincident
or intersecting D-branes which admits a decoupling limit, and whose D-brane dynamics
exhibit the features one is interested in. A very basic example of a top-down construction
is the description of a thermal CFT by means of nonextremal D3-branes (to be discussed
in section ??). There has been much work on the holographic description of matter in
the fundamental representation by the addition of extra branes. The latter case is often
studied by probing the geometry caused by the backreaction of a large stack of Dp-branes
by some Dq-branes (where p and q are the number of spatial dimensions of the D-branes,
which need not be equal). These probe Dq-branes can intersect the branes, and/or wrap

38
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some of the compact directions. This method neglects the backreaction of the probe branes
and the dynamics of the background branes.
It is difficult to find systems in string theory that admit a decoupling limit in which the
gauge theory dual has the same behaviour as the condensed matter system one is interested
in. Typically, interesting top-down models are very complicated. When such a system has
been engineered, the results are generally highly dependent on the model, and one must
look for results that are universal1.

In the bottom-up approach to finding holographic descriptions of condensed matter phe-
nomena, one uses basic knowledge about the holographic duality to construct the gravita-
tional dual to some condensed matter phenomenon. The gravitational theory is simple and
contains only the fields necessary for the case at hand. Bottom-up models are a convenient
starting point for studying interesting condensed matter phenomena in the gravity dual, as
one can get an idea of which bulk interactions are dual to which condensed matter phenom-
ena. Examples are thermalization of a condensed matter system, which has a holographic
dual description in terms of energy falling into a black hole, or superconductivity, which
corresponds to the condensation of charged scalar fields in the presence of a charged black
hole [38, 45, 46], (for a review, see [51]). Studies of charged spinors in the background of
a charged black hole have been used to model Fermi surfaces and in some cases provide
examples of non-Fermi liquid behaviour [56, 57, 28, 18]

An advantage of the bottom-up method is thus that its results are universal, due to the
simplicity of the action. (simple action can be a truncation of many different complicated
actions. Therefore, a simple action may be a description of many dual field theories...)

The simplicity of the action means it is easy to find solutions with the behaviour one
is interested in, but the fact that it is not derived from a string theory construction means
that it is generally not clear which dual field theory is described by this background. In
fact, for many simple gravity actions it is not known if the solutions these generate are
(compactified) solutions of some full higher-dimensional string theory, unless the gravity
action is a consistent truncation of string theory.

4.1 Consistent truncation

In general, a truncation LR of a Lagrangian L describing a system in a certain number
of dimensions can be obtained by means of dimensional reduction (see section 3.2.6) or
by reducing the number of independent fields. Such a truncation is called consistent if
all solutions of the equations of motion of the truncated theory LR are also solutions of
the untruncated theory L. Therefore, it must be possible to uplift any solution of the
truncated theory to a solution of the untruncated theory.

1meaning, properties that are generally expected to be present in gravity duals to larger classes of gauge
theories
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Dimensional reduction should not be confused with compactification, in which a lower-
dimensional description is found with the fields expanded in terms of the compactified
coordinates (the Kaluza-Klein tower of states, introduced in section 3.2.6). It was ex-
plained before that although it might be that the Kaluza-Klein modes are all massive and
can therefore be ignored in an effective description, the dimensional reduction means that
the “heavy” KK-fields are set to zero, and a new theory is defined with only the “light”
fields. Such a truncation to a description in terms of only the light fields can only be
consistent if the light fields do not source the heavy fields. Recall that for compactification
on an n-sphere the dimensional reduction to the massless fields is generally not consistent,
and currents built from the massless fields can act as sources for the massive fields that
have been set to zero [?]. For many cases, the only known lower-dimensional models that
are consistent are pure gravity models with no matter. However, consistent truncations to
interesting theories can sometimes be found if the theory has a subset of the fields that are
invariant under some symmetry.

4.1.1 Einstein-Hilbert action

The simplest consistent truncation to AdS is pure gravity with a negative cosmological
constant, which is described by the Einstein-Hilbert action:

SEH =
1

16πG

∫
dd+1x

√
−g
(
R+

d(d− 1)

L2

)
(4.1)

This is the simplest action we can consider, as it contains the minimal ingredients necessary
to describe a CFT holographically: a dynamical metric which is dual to the stress tensor of
the CFT, and a negative cosmological constant. The latter ensures that the most symmetric
solution is AdSd+1.
The Einstein equations of motion following from this action2 are:

RMN = − d

L2
gMN (4.2)

where RMN is the Ricci tensor. The most symmetric solution to these equations of motion
is Anti-de Sitter space (AdS) which has metric3

ds2 = L2

(
−dt2 + dxidxi

z2
+
dz2

z2

)
. (4.3)

2if the theory is evaluated on a space with a boundary, one needs to add a so-called “Gibbons-Hawking
boundary term”, to be discussed below.

3in terms of the radial coordinate z measuring the distance from the AdS boundary
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Gibbons-Hawking boundary term

Since we are considering gravity on (asymptotically) AdS spacetime and imposing Dirichlet
conditions on the boundary4, the action needs to be supplemented with a boundary term
called the Gibbons-Hawking term,

SGH = − 1

8πG

∫
∂(AdS)

ddx
√
γK, (4.4)

where K is the trace of the extrinsic curvature of the boundary

K ≡ γµν∇µnν =
nz

2
γµν∂zγµν (4.5)

and nA is an outward pointing unit normal to the boundary z = ε. This boundary term
must be added to ensure that the variational problem is well-defined [34]. Without this
term, integration by parts in the Einstein-Hilbert term to get the equations of motion
produces some boundary terms proportional to variations of derivatives of the metric,
which is incompatible with imposing Dirichlet conditions on the metric.

4.1.2 Minimal gauged supergravity in D = 5

In [32], it was shown that supersymmetric compactifications onM5 of type IIB supergravity
can be consistently truncated to minimal D = 5 gauged supergravity. Thus, any solution
of the gauged supergravity can be uplifted on M5 to obtain an exact solution of type
IIB supergravity. In fact, it turns out that minimal gauged supergravity in D = 5 is a
consistent truncation known to describe all supersymmetric compactifications of type IIB
or M-theory to AdS5 [16],[30, 32].

The bosonic action for minimal gauged supergravity in five dimensions is [41]

S =
1

4πG5

∫ (
(
1

4
R+ Λ− 1

2
F ∧ ∗F − 2

3
√

3
F ∧ F ∧ A

)
(4.6)

where F = dA is a U(1) field strength, R and G5 are the Ricci scalar and the gravitational
constant in five dimensions, and the theory must have a negative cosmological constant Λ.

In the rest of this, we will look for ways of modeling finite temperature and charge den-
sity in a d-dimensional field theory. We shall mainly work in the bottom-up method. In
chapter 5 we will work with the above action in different notation (which is a consisten
truncation to the bosonic part of minimal gauged supergravity in five dimensions).

4.2 Finite temperature

In general, a d-dimensional QFT in equilibrium can be placed at a finite temperature by
periodically identifying the Euclidean time, τ ∼ τ + β (with the temperature given by

4i.e., keeping the boundary value g(0)µν of the bulk metric fixed
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β = 1/T if we set kB = 1). This can be deduced from the partition function in the
canonical ensemble:

Z = Tre−βH (4.7)

which can be written as a path integral

Z =

∫
[dφ]e−

∫ β
0 dτ

∫
dd−1xL(φ) (4.8)

with the bosonic (fermionic) fields satisfying periodic (antiperiodic) boundary conditions

φ(x, τ + β) = ±φ(x, τ) (4.9)

In section 3.3.3 we identified the induced metric on the boundary g(0)µν as the field theory
metric. We therefore expect the bulk metric extremizing the supergravity action to have
a periodic Euclidean time, with a period approaching β at the boundary.

For the case of a d-dimensional CFT at finite temperature, we will use the bottom-
up approach to look for the corresponding behaviour of the boundary geometry. Since
any field theory can be placed at a finite temperature, all gravity actions with a field
theory dual should have a solution corresponding to finite temperature. In our bottom-up
approach we might therefore start from the simplest possible gravity action which has AdS
spacetime as a solution, and expect it to have also a solution corresponding to the dual
CFT at finite temperature. This is the Einstein-Hilbert action with a negative cosmological
constant. Indeed, it turns out to have a solution which breaks the scale invariance in the
IR while keeping spatial rotational invariance and spacetime translation invariance: the
Schwarzschild AdS solution5

ds2 =
L2

z2

(
−f(z)dt2 +

dz2

f(z)
+ dxidxi

)
(4.10)

where the so-called emblackening factor

f(z) = 1−
(
z

z+

)d
(4.11)

goes to f(z) → 1 near the AdS boundary z → 0. This spacetime is asymptotically AdS,
and is therefore also called an AdS black hole. Note that temperature affects the IR, as
should be expected.

The Hawking temperature and Bekenstein-Hawking entropy of this black hole corre-
spond to the temperature and entropy of the thermal CFT, respectively [77], with the
temperature given by the surface gravity via the relation (3.1). We can also check that the

5A finite temperature version of the AdS5/CFT4 correspondence of section ?? can be obtained by
taking the decoupling limit of non-extremal D3-branes (while keeping the mass above extremality finite).
One ends up with a geometry that asymptotically goes to AdS5×S5 at the boundary, but in the interior
the AdS5 part of the geometry contains a black hole, whose geometry is given by the ‘Schwarzschild AdS5’
solution. See e.g. [1] for more details.
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Euclidean time is periodic, which gives us a convenient way of reading off the temperature
[34]. On the gravity side, this period is determined such that the Euclidean metric is reg-
ular at the horizon z = z+ (otherwise the solution is not a stationary point of the action).
In the case of the Schwarzschild AdS solution (4.10), absence of a conical singularity (see
[44]) requires that

τ ∼ τ +
4π

|f ′(z+)|
= τ +

4πz+

d
(4.12)

from which we can read off the temperature of the dual CFT:

T =
|f ′(z+)|

4π
=

d

4πz+

(4.13)

The temperature is related to the location of the horizon z+. Taking the limit z+ → 0
(zero temperature), we recover the ordinary AdS metric.

It is worth mentioning that since the temperature is the only scale we introduced on the
field theory side, the zero temperature limit is not a smooth limit. The zero-temperature
geometry is distinct from all nonzero-temperature geometries. All nonzero temperature
states are equivalent, as a rescaling of the temperature can always be undone by a rescal-
ing of the coordinates. This also means that once we have characterized the state of the
theory at a particular temperature, we know the state of the system at any other temper-
ature and no thermal phase transition can happen. Since we have only one dimensionful
scale in our system, the temperature T , the dependence of the free energy, the entropy, or
any other thermodynamic quantity is fixed by dimensional analysis.

4.3 Charge density and magnetic field

Another important feature a holographic description of a condensed matter system must
have is a description of charged matter. A finite charge density ρ = 〈J t〉 6= 0 can be
induced by holding the system at a nonzero chemical potential µ. Keeping the chemical
potential fixed and letting the charge density fluctuate corresponds to considering the grand
canonical ensemble6. The partition function in this case is

Z = Tre−β(H−µQ) = Tre−β
∫
ddx(H−µJt) (4.14)

with µ the chemical potential, J t the charge density operator and Q =
∫
ddxJ t is the

charge associated with a conserved current Jµ.
When describing charged matter, we may sometimes use an effective condensed matter

description in which photons are neglected7, so the electromagnetic U(1) symmetry is
treated as a global symmetry. Recall (section 3.3.3) that a conserved current for a global

6One can also consider the canonical ensemble, in which the charge density ρ is held fixed while the
chemical potential µ fluctuates.

7Electric coupling e is small, and often screened in materials.
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U(1) symmetry in the gauge theory is holographically dual to a massless U(1) gauge field
in the bulk. In particular, our charge density operator J t is dual to the time component
At of a Maxwell field in the bulk. A solution to Maxwell’s equations in the bulk behaves
near the boundary as

At(z) = µ+ 〈J t〉zd−2 + . . . , (4.15)

where the leading behaviour gives the source dual to J t. Therefore, the chemical potential
µ is read off from the leading near-boundary term of the bulk field At

8,

µ = lim
z→0

At, (4.16)

and the charge density is given by the boundary value of the electric flux,9

〈J t〉 = lim
z→0

∂L
∂(∂zAt)

= lim
z→0

Fzt. (4.18)

Therefore to impose that the quantum field theory is at nonzero density, we must impose
that the dual spacetime has an electric flux at infinity. This electric flux must be sourced
in the interior of the spacetime. We will encounter the simplest source to the electric flux
in the next example: the Reissner-Nordström-AdS black hole.

4.3.1 Einstein-Maxwell action

To describe the physics of an electric flux at infinity, the simplest action is obtained by
adding a Maxwell term to the Einstein-Hilbert action (4.1).The action reads

SEM =

∫
dd+1x

√
−g
(

1

2κ2
R+

d(d− 1)

L2
− 1

4e2
FMNF

MN

)
(4.19)

Here κ and e are respectively the Newtonian and Maxwell constants. The equations of
motion are given by

RMN −
R
2
gMN −

d(d− 1)

2L2
gMN =

κ2

2e2

(
2FMPF

P
N −

1

2
gMNFPQF

PQ

)
(4.20)

∇MF
MN = 0 (4.21)

As one might guess, a solution with electric flux at infinity, preserving the symmetries under
rotations and spacetime translations is given by a charged version of the Scharzschild-AdS

8with At(z) a solution to the bulk Maxwell equations under the assumption that rotations and spacetime
translations in the dual field theory are preserved

9The precise expression for 〈Jµ〉 is

〈Jµ〉 = lim
ε→0

(
εd−∆ 1√

−γ
δSsub

δAµ(ε)

)
, (4.17)

where γ is the determinant of the induced metric on the z = ε hypersurface.
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solution (4.10). This is the planar Reissner-Nordström-AdS black hole, with metric

ds2 =
L2

z2

(
−f(z)dt2 +

dz2

f(z)
+ dxidxi

)
(4.22)

The emblackening factor has now changed to

f(z) = 1−
(

1 +
z2

+µ
2

2γ2

)(
z

z+

)d
+
z2

+µ
2

2γ2

(
z

z+

)2(d−1)

. (4.23)

We introduced the dimensionless ratio of the Newtonian and Maxwell couplings

γ2 =
(d− 1)e2L2

(d− 2)κ2
(4.24)

The maxwell potential of the solution is

A = µ

(
1−

(
z

z+

)d−2
)
dt, (4.25)

where we have required the scalar potential to vanish on the horizon, At(z+) = 0, in order
for the gauge field to be well-defined at the horizon [55]. The planar Reissner-Nordström-
AdS solution is characterized by two scales, the chemical potential µ = limz→0At and the
horizon radius z+. From the dual field theory perspective, it is more physical to think in
terms of the temperature than the horizon radius

T =
1

4πz+

(
d−

(d− 2)z2
+µ

2

γ2

)
(4.26)

So now we do have a dimensionless quantity that we can discuss: the ratio T/µ, and we
can continuously take the low-temperature limit T/µ� 1 of the solution. If we set T = 0,
we get

z2
+µ

2

γ2
=

d

d− 2
(4.27)

We thereby obtain the extremal Reissner-Nordström-AdS black hole with

f(z) = 1− 2(d− 1)

d− 2

(
z

z+

)d
+

d

d− 2

(
z

z+

)2(d−1)

. (4.28)

The near-horizon extremal geometry, capturing the field theory IR, follows by expanding
the solution near z = z+. Setting z = z+(1−z+/ρ), and expanding f(ρ) in powers of z+/ρ,
we see that the redshift factor develops a double zero at the horizon (ρ→∞)

f(ρ) = d(d− 1)

(
z+

ρ

)2

+ . . . for ρ large (4.29)
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taking ρ large and rescaling {t, xi} by dimensionless constants gives the near-horizon metric

ds2 =
L2

z2
+

(
1− z+

ρ

)−2(
−f(ρ)dt2 +

z4
+

ρ4f(ρ)
dρ2 + dxidxi

)
≈ L2

d(d− 1)

(
−d2(d− 1)2dt2 + dρ2

ρ2

)
+
L2

z2
+

dxidxi
(4.30)

which, under rescaling of t and xi by dimensionless constants, can be brought to the form

ds2 =
L2

d(d− 1)

(
−dt̃2 + dρ2

ρ2

)
+ dx̄idx̄i (4.31)

So the near horizon geometry is AdS2×Rd−1 (with AdS2 radius L/
√
d(d− 1)), and exhibits

an emergent IR scaling invariance of the time and radial parameter ρ. Notice that the
spatial coordinates xi do not scale under this symmetry. This near-horizon AdS2 geometry
suggests that in the low-frequency limit the d-dimensional boundary theory at finite charge
density is described by some dual CFT1 [27], to which we refer to as the IR CFT of the
boundary theory. It is important to emphasize that the conformal symmetry of this IR
CFT is not related to the microscopic conformal invariance of the higher dimensional
theory (the UV theory), which is broken by finite charge density. It apparently emerges as
a consequence of collective behaviour of a large number of degrees of freedom.

The horizon area of the extremal geometry is finite, suggesting a finite ground state
entropy. This seems unnatural, as in “real-life” condensed matter systems we do not expect
to find an exactly degenerate ground state (“Nernst theorem” or: “Third law of thermo-
dynamics”). This problem seems to disappear when various perturbations are included,
as low temperature charged AdS black holes are found to be unstable towards a range
of processes that discharge the black hole and can lead to spacetimes without black hole
horizons. The instabilities include condensation of charged scalar fields [38] and Cooper
pairing of charged fermions [42].

One can also consider applying a background magnetic field to the system (at finite
density) described by the boundary theory. In the gravity dual, the asymptotic values
of the Maxwell field at the AdS boundary give the chemical potential and the external
magnetic field

µ = At(x, z → 0), B(x) = Fxy(x, z → 0). (4.32)

The boundary condition at the horizon (“in the IR” of the dual field theory) requires Ai(x)
regular and At(x) = 0.

4.3.2 Dyonic AdS black hole in AdS4

For the case d = 3 one can find a solution describing such a magnetic field while preserving
invariance under rotations and translations: the magnetic brane in AdS4, or: dyonic black
hole. In the context of AdS/CMT, it has been applied to the study of 2+1 gauge theories
in magnetic field in many papers, for instance [47].
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Starting from our Einstein-Maxwell action (4.19), we search for solutions of the same form
as the Schwarzschild-AdS (and Reissner-Nordström-AdS) solution, but with a modified
emblackening factor. We make an ansatz for the the Maxwell field of the form10

A = At(z)dt+B(z)x1dx2 (4.33)

so that the the field strength is of the form

F = −∂zAt(z)dt ∧ dz +B(z)dx1 ∧ dx2 + ∂zB(z)x1dz ∧ dx2 (4.34)

The metric is again of the form (4.10), but with emblackening factor

f(z) = 1−
(

1 +
z2

+µ
2 + z4

+B
2

γ2

)(
z

z+

)3

+
z2

+µ
2 + z4

+B
2

γ2

(
z

z+

)4

, (4.35)

and the gauge potential is

A = µ

(
1− z

z+

)
dt+Bx1dx2. (4.36)

corresponding to a field strength

F =
µ

z+

dt ∧ dz +B dx1 ∧ dx2 (4.37)

The temperature is given by

T =
|f ′(z+)|

4π
=

1

4πz+

(
3−

µ2 + z2
+B

2

γ2

)
(4.38)

Since it is of the same form as the electrically charged Reissner-Nordström solution, this
dyonic black hole in AdS11 again has a finite entropy density at extremality. In the next
chapter, we will (after the introduction) look at an example of a charged magnetic brane
solution which does not have this extremal horizon, and corresponds to a dual “condensed
matter system” with no ground state degeneracy.

10The second term in this ansatz can be thought of as a magnetic field pointing in the direction perpen-
dicular to the two spatial dimensions of some material which is described by the boundary theory.

11in the literature, the terms “AdS black hole”, “planar black hole” and sometimes “black brane” are
used to indicate that it is a black hole solution which has a planar horizon and is asymptotically AdS near
the boundary.



Chapter 5

Holographic Quantum Phase
Transitions

There are many examples in the literature of holographic quantum criticality1. In partic-
ular, quantum critical behaviour has been found [28] by studying the behaviour of bulk
fields in the background of the AdS Reissner-Nordström black hole we encountered in sec-
tion 4.3.1. Recall that this solution to Einstein-Maxwell action is the simplest (bottom-up)
model of a finite charge density, and its universality makes it a very attractive candidate.
In the charged (or dyonic) Reissner-Nordström solution a mechanism causing a QPT in the
bulk is when the mass of some bulk field drops below the Breitenlohner-Freedman bound
in the near-horizon AdS2 region while remaining above the Breitenlohner-Freedman bound
of the asymptotic AdS5 region2. The IR region of the bulk can then develop an instability,
leading to a new geometry, while leaving the boundary intact. This large effect in the
IR for a very small change of a control variable3 is just what we would expect to see at
a continuous phase transition. A less appealing feature of this model is the fact that its
zero temperature limit has a finite horizon area, indicating nonzero ground state entropy
of the dual field theory4. Another disadvantage of using this setup to look for a QCP is
that the fermions are explicitly added in the bulk; the fermions can be thought of as gauge
singlets (coupled to the large N gauge theory), and the fact that the large N limit makes
the gravity theory classical is not exploited (this was emphasized in [29]).

A promising example of a holographic QPT, which will be reviewed in the rest of this

1for instance in the probe D-brane systems that were discussed in the previous chapter, see e.g. [26].
For the reasons mentioned in the beginning of the previous chapter, these systems will not be discussed
further.

2The Breitenlohner-Freedman bound (3.45) depends not only on the AdS radius, but also on the
dimensionality of the AdS spacetime.

3A control parameter is some variable, such as the chemical potential µ, on which the mass of a bulk
field depends.

4Since the CFTs dual to the Reissner-Nordström solution typically includes massless bosons, it is
expected that these form a condensate at low temperatures, thus describing a superconducting phase
which then cloaks the QCP.

48
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chapter, was found [22, 25] by studying gravity solutions that are dual to d = 3 + 1 gauge
theories at finite charge density and magnetic field. It turns out [31] that a large class of
these gauge theories can be described by Einstein-Maxwell-Chern-Simons (EMCS) theory
(5.2), which will be introduced in section 5.1. Based on numerical calculations, it was
suggested in [21] that the entropy density of finite charge density solutions to the Einstein-
Maxwell-Chern-Simons action goes to zero in the zero-temperature limit for large enough
Chern-Simons coupling k and applied magnetic field B. This may be understood by not-
ing (see section 5.1) that the effect of the Chern-Simons term is to seemingly allow the
Maxwell field to carry some of the electric charge measured at infinity. One might imagine
that if the contribution of the Chern-Simons term to the charge density at the boundary is
large enough, there might be solutions in which all the charge measured at the boundary
originates from the gauge field in the bulk (sometimes termed “fluxes” in the literature),
and the interior does not contain a Reissner-Nordström black hole.

In [22], gauge theories whose gravity dual can be described by Einstein-Maxwell-Chern-
Simons theory5 were shown numerically to undergo a continuous quantum phase transition
at finite charge density and magnetic field. The phase transition, which shows similarities
to the metamagnetic quantum critical endpoint (QCEP) discussed in section 2.3.2, is char-
acterized by nonanalytic behaviour of the magnetisation and specific heat at a finite value
of external magnetic field strength. In the large B phase, the entropy density (which gives
the specific heat coefficient in the low temperature limit) was found to vanish linearly with
temperature, but as the magnetic field was lowered to a critical value, this linear coefficient
was found to diverge. In the “Quantum Critical Region” (QCR), the critical exponent was
found to change so that the scaling of the entropy with the temperature became s ∼ T 1/3.
Later, with α = 1/3 for k ≥ 3/4. In [25] a solution at zero temperature representing
the system in its B ≥ Bc phase was found, and the low temperature thermodynamics
were studied using matched asymptotic expansions6. Later [23], solutions representing the
system at finite temperature for B̂ ≥ B̂c and 1/2 < k < 3/4 were used to deduce the
behaviour s ∼ Tα with α = (1− k)/k. An analytic solution for the B < Bc phase has not
yet been found, but the behaviour of the entropy density in that region shows that in the
limit T → 0 the entropy density goes to a finite value [22, 25].

5.1 Einstein-Maxwell-Chern-Simons action

In five dimensional gravity, one may add a Chern-Simons term of the following form to the
Einstein-Maxwell action (4.19),

SCS ∼ k

∫
d5xF ∧ F ∧ A. (5.1)

5with Chern-Simons coupling k > 1/2
6see section 5.4.3
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If the Gibbons-Hawking term (see section 4.1.1) and counterterms are included, the full
five-dimensional action reads:

S =
1

16πG5

∫
d5x
√
−g
(
R− 12

L2
+ FMNF

MN

)
+

k

12πG5

∫
F ∧F ∧A+SGH +Sct. (5.2)

For the so-called supersymmetric value k = 2/
√

3 of the Chern-Simons coupling k, this
action is a consistent truncation (see section 4.1) to the bosonic part of minimal gauged
supergravity in D = 5 [31], which describes AdS duals to supersymmetric gauge theories.
This makes the results of D’Hoker and Kraus very interesting for two reasons: firstly,
as alluded to in the introduction of this chapter, the quantum phase transition found by
D’Hoker and Kraus will be present in an infinite class of theories that are dual to the
Einstein-Maxwell-Chern-Simons action. Of these theories, N = 4 SYM theory is but one
example. Secondly, since the dual gauge theories are completely specified (e.g. N = 4
SYM) one might in principle hope to obtain complementary descriptions of the transition
mechanism within both gauge theory and gravity. However, with the advantage of knowing
the dual gauge theories comes the disadvantage that now the Maxwell field in the bulk will
be the gauge field of some large N group7. Since the electromagnetic field is a U(1) field,
this large value of N is not realistic.

The Einstein equations are

RMN = 4gMN +
1

3
F PQFPQgMN − 2FMPF

P
N (5.3)

while the Maxwell equations become

d ∗ F + k F ∧ F (5.4)

This leads to a new conserved electric charge at the boundary:

Q =

∫
S3

(∗F + k A ∧ F ) . (5.5)

From this we conclude that in the presence of a Chern-Simons term, it is possible that part
of the electric charge is carried by the electric field in the bulk. The larger the value of the
Chern-Simons coupling k, the more charge can be carried by the field. This opens up the
possibility of looking for solutions in which all the charge density of the boundary theory is
sourced by these so-called “fluxes” in the bulk, and there is no Reissner-Nordström black
hole with its finite entropy at zero temperature.

7recall from the discussion of the AdS/CFT correspondence 3.2 that in order for the gravity dual to be
described by classical supergravity, the dual SU(N) gauge theory needs to have large N and large coupling
λ.
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5.2 Physics of charged particles in a magnetic field

In general, charged particles moving in a strong background magnetic field will undergo a
circular motion around the magnetic flux lines due to the Lorentz force. At low tempera-
tures, the effect of quantum mechanics becomes important, and the charged particles can
only occupy orbits with discrete energy values, called Landau levels. The Landau levels
are degenerate, with the number of electrons per level directly proportional to the strength
of the applied magnetic field.
Considering the case of a free8 N = 4 super Yang-Mills theory in 3+1 dimensions (which is
a CFT) in the presence of a magnetic field, we have low energy excitations corresponding
to the drift velocity parallel to the field. At low energies the fermion zero modes dominate,
and the theory flows to a d = 1 + 1 CFT (sometimes denoted by CFT2).

By increasing the number of charged particles (assumed to be fermions), one can build
up a Fermi sea. For a very low charge density ρ (compared to the degeneracy of the Landau
levels, i.e. compared to the magnetic field strength B), the fermions that are added to the
system will be in the lowest Landau level. However, as the density is increased, at some
point new behaviour can set in when it will be energetically favourable to start filling up
higher Landau levels.

5.3 Magnetic brane solution

On the gravity side of the correspondence, a solution for the simpler case of zero charge
density, ρ = 0, and finite magnetic field, B 6= 0, was found in [20]. The solution corresponds
to the point B̂ = ∞, T = 0 in our phase diagram (figure 5.2), where the dimensionless9

combination B̂ ≡ B/ρ2/3 is used instead of two dimensionful quantities B and ρ.

5.3.1 Interpolating solution at T = 0

A geometry realizing the RG flow from a UV CFT4 (N = 4 SYM) to an IR CFT2 (fermion
zero modes) is asymptotically AdS5, and AdS3 × R2 in the IR. A solution with these

8N.B.: only at strong coupling is N = 4 SYM holographically described by the Einstein-Maxwell-
Chern-Simons action.

9The physical parameters B, ρ and T are dimensionful and can be rescaled by a coordinate trans-
formation that preserves the asymptotic AdS5 metric. It is thus only dimensionless quantities that are
meaningful, and these are defined as

B̂ ≡ B

ρ2/3
(5.6)

T̂ ≡ T

B1/2
(5.7)

and the entropy density

ŝ ≡ s

B3/2
(5.8)
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asymptotics was found “almost analytically”10 in [20].
The dual theory on the boundary was placed in a constant magnetic field Bz in pointing
in the z direction in the boundary coordinates,

Fxy → const approaching boundary (5.9)

which D’Hoker and Kraus described holographically by using the following ansatz:

ds2 =
dr2

L(r)2
+ L(r)(−dt2 + dx2

3) + e2V (r)(dx2
1 + dx2

2) (5.10)

F = Bdx1 ∧ dx2 (5.11)

5.3.2 Interpolating solution at finite T

Considering the magnetic brane solution at a finite temperature corresponds to placing a
black hole in the AdS3 geometry. Such a black hole in AdS3 is called a BTZ black hole [5].
An exact solution to the field equations which becomes AdS3×R2 in the zero temperature
limit is BTZ×R2. At small11 finite temperature, the solution therefore interpolates between
AdS5 (large r) and BTZ×R2 (small r). Actually, since we now have two dimensionful
parameters, B and T , we can find a one-parameter family of solutions in terms of the
dimensionless combination T/

√
B. Smooth interpolating solutions were found for all values

of T/
√
B.

5.4 Charged magnetic brane solution

When a the boundary theory has a nonzero charge density, the Chern-Simons term (5.1)
becomes important, since without it we would have a Reissner-Nordström black brane with
finite entropy at zero temperature. Consider a case in which the Chern-Simons coupling
k is “large enough”. Since the degeneracy of the Landau levels is proportional to the field
strength, we expect the value of the charge density at which higher levels (above the lowest
Landau level) become important and the behaviour changes to be proportional to the field
strength as well.

5.4.1 Interpolating solution at T = 0 and B̂ ≥ B̂c

A solution describing the system at zero temperature in the B ≥ Bc phase was found in
[25] by assuming that the IR (small r) limit of the solution factorises into some three-
dimensional part M3 (which in the limit of zero charge density becomes AdS3) and a

10Solving the equations of motion with the ansatz given in [20] numerically for V (r), with the conditions
that e2V (r) → const for small r and becomes linear at large r, gives a result which does not depend on
any free parameters, since we have only one dimensionful parameter B (coordinates x1,2 can be rescaled
to undo any change in B). L(r) was found analytically in terms of V (r).

11for high temperatures, the black hole horizon will be closer to the boundary, and the black hole can
not be regarded as a black hole in AdS3 anymore.
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two-dimensional part: M3 × R2. Assuming translational invariance along the boundary,
one can find the general solution of this form:

ds2 =
dr2

4B2r2
−
(
α0r +

q2

k(k − 1
2
)
r2k

)
dt2 + 4Brdtdx3 +

B√
3

(
dx2

1 + dx2
2

)
(5.12)

F = Bdx1 ∧ dx2 + qrk−1dr ∧ dt (5.13)

The three-dimensional part of this geometry, which we will denote by “WAdS3”, is also
studied in the context of topologically massive gravity [3] and is known as a “null warped”
[3], “Schrodinger” [68, 6] or “pp-wave” solution.

The complete solution for all r, interpolating between WAdS3 × R2 (small r) and AdS5

(large r), was found in [25] by choosing coordinates in which the equations of motion for
the functions L(r) and V (r) is the same as for the pure magnetic case so that the results
may be transfered, and solving the remaining functions M(r) and E(r) in terms of V (r):

ds2 =
dr2

L(r)2
+M(r)dt2 + 2L(r)dtdx3 + e2V (r)

(
dx2

1 + dx2
2

)
(5.14)

F = Bdx1 ∧ dx2 + E(r)dr ∧ dt (5.15)

The small r part of this solution is given by (5.12).

5.4.2 Quantum Critical Point

For k < 1/2 there is no quantum critical point, as the zero temperature entropy density
was found numerically in [22] to be nonzero for any value of B̂. For k = 1/2, the solution
(5.12) breaks down and corresponds to a QCP at B̂c =∞ [25].

The existence of a QCP for the supersymmetric calue k = 2/
√

3 was established nu-
merically in [22] by observing nonanalytical behaviour in the specific heat coefficient as
the critical magnetic field was approached from the large field side. In the analytic zero-
temperature solution (5.12) this critical magnetic field appears for all k > 1/2 [25] as the
lower bound on B̂ for which the solution is a description of our system. This is because in
order for the solution to be the zero temperature limit of a finite temperature solution, the
function M(r) has to be negative for all values of r. This means that there is a lower bound
for the constant α0 in (5.13) α0 ≥ 0. From the relation between α0 and the boundary pa-
rameters ρ,B one can see [?] that this translates into a lower bound on the dimensionless
magnetic field to charge density ratio,

B̂ ≥ B̂c, (5.16)

where B̂c depends on the Chern-Simons coupling k (as might be expected, since the solution
exists by virtue of the Chern-Simons term which allows for a finite charge density at the
boundary without a charged horizon in the bulk).
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The metric of the IR region (small r) at the critical point can be written as

ds2 =
dr2

4r2
− q2r2k

k(k − 1
2
)
dt2 + 4brdtdx3 + dx2

1 + dx2
2. (5.17)

As shown in [25], the solution at the QCP is invariant under the following scale transfor-
mation of the “Schrödinger” part:

r → λ−1r, t→ λkt, x3 → λ1−kx3. (5.18)

which suggests the following value for the dynamical scaling exponent z,

z =
k

1− k
. (5.19)

The prediction of the behaviour of the entropy density ŝ as a function of T̂ in a CFT2

then would be ŝ ∼ T̂ (1−k)/k. As it turns out (see the next section), this prediction is only
valid for 1/2 < k < 3/4. The dynamical critical exponent z = 3 for k > 3/4 follows from
the scaling law s ∼ T 1/3 (again, see section 5.4.3), assuming that the effective IR theory is
indeed a 1+1 dimensional CFT.

5.4.3 Low temperature thermodynamics

Analogous to the pure magnetic case, we might look for a finite temperature solution
which reduces to (5.12) in the zero temperature limit. For 1/2 < k < 3/4 we can find such
solutions, called Asymptotically Null Warped black hole solutions (ANW black holes) [3].
The result for the specific heat coefficient in the Quantum Critical Region is given in the
next section.

Since these ANW black holes do not exist for general k, we do not have analytic solu-
tions at nonzero temperature for k > 3/4. Results for low temperatures were obtained in
[25] by matching two expansions which are valid in two different regions. Note that simply
expanding around the zero temperature solution does not work, since the perturbative
expansion is expected to give bad results in the near-horizon (small r) region, where the
zero temperature solution is expected to break down in favour of a black hole solution with
the same large r asymptotics.

Near the boundary (large r) it is expected that the effect of a finite temperature is small,
so one can expand around the exact T = 0 solution (5.14). Near the horizon (small r),
the effect of temperature should be significant, so we need a finite temperature solution
which is valid for the small r region. We know such a solution for the pure magnetic case:
BTZ×R2 with magnetic flux. The three-dimensional BTZ metric can be written as

ds2 =
dr2

12r2 +mnr
−mrdt2 + 2Brdtdx3 + ndx2

3. (5.20)
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In order to match this onto the finite charge density asymptotically AdS5 solution, this
solution was perturbed with values for E and V at the horizon: E(0) = q and V (0) = v0.
In case of small temperatures, there region of r in which both solutions tend to AdS3×R2

is large. In this region, the parameters of the two asymptotic expansions can be matched.

For the B̂ > B̂c part of the solution this analysis yields the result

ŝ =
π

6

(
B̂3

B̂3 − B̂3
c

)
T̂ T̂ → 0, B̂ > B̂c, (5.21)

which can be approximated near the QCP as

ŝ ≈ π

18

(
B̂c

B̂ − B̂c

)
T̂ , T̂ → 0, B̂ & B̂c. (5.22)

Scaling function

A universal scaling function for ŝ/T̂ 1/3, given in terms of (B̂ − B̂c)/T̂
2/3, was determined

from the numerical results of [22] and derived in [25] by perturbing around the critical
point. The behaviour of the entropy density ŝ is given by

ŝ = T̂ 1/3f

(
B̂ − B̂c

T̂ 2/3

)
, (5.23)

where the scaling function is a solution to the following equation

f(x)

(
f(x)2 +

x

32kB̂4
c

)
= a3 (5.24)

with a some constant which turns out to be proportional to 1/Bc.

This scaling function was investigated in [25] by perturbing around B̂c and in small T̂ .
Three qualitatively different behaviours were found in the regions roughly given by B̂ > B̂c,
B̂ = B̂c and B̂ < B̂c.

In the region B̂ > B̂c, we can consider the low temperature behaviour (small T̂ ) and
take x � 1. One can make the consistent assumption that f(x)3 � f(x)x, so that the
f(x)3 term in (5.24) can be ignored, leading to the solution

f(x) ∼ 32kB̂4
ca

3

x
. (5.25)

The Quantum Critical Region (QCR), where B̂ = B̂c, has x = 0, such that (5.24) becomes
simply f(0) = a, and we have ŝ ∼ T̂ 1/3.
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For the region B̂ < B̂c, we have x < 0. If we assume that f(x) > 0, then it follows that
the two terms on the lhs of (5.24) are separately much larger than the constant on the rhs.
Thus, we can approximate (5.24) by

f(x)2

(
f(x) +

x

32kB̂4
c

)
≈ 0, (5.26)

leading to the scaling function for the B̂ < B̂c part of the scaling region:

f(x) ∼
√
−x√

32kB̂4
c

. (5.27)

Indeed, in [22] the best fit with the numerical results for the extremal entropy density was
found to scale near B̂c according to:

ŝ ∼
√
B̂ − B̂c. (5.28)

The results for the scaling function in three different parts of the scaling region close to
the QCP (marked by the dotted line in figure 5.1) have been summarized in figure 5.1.

Quantum critical region

The scaling behaviour of ŝ at B̂ = B̂c (QCR) given above was determined numerically in
[22] and subsequently established by analytic calculations (matched asymptotic expansions)
[25], both for k > 3/4. For some reason, the behaviour ŝ ∼ T̂ 1/3, which suggests the dual
CFT2 has dynamical exponent z = 3 is not consistent with what one would expect from the
form (5.17) of the zero-temperature solution at B̂ = B̂c, from which the relation (5.19) was
deduced. For the range 1/2 < k < 3/4, different scaling in the QCR was found numerically
[23]. Assembling these data, we have

ŝ ∼ T̂α α =

{
1
3

3
4
≤ k

1−k
k

1
2
< k ≤ 3

4

(5.29)

In [22] the crossover to the low temperature behaviour of B̂ < B̂c and B̂ > B̂c was shown
in the behaviour of the entropy density as the (dimensionless) temperature was decreased
to zero. In the first case, where the dimensionless magnetic field was taken slightly below
the critical value, the entropy density initially followed the ŝ ∼ T̂ 1/3 behaviour of the
Quantum Critical Region, but at very low temperatures, the entropy density was found to
go to a nonzero constant value. For values of the magnetic field slightly above criticality,
the crossover was to the linear behaviour of the low temperature B̂ > B̂c region.
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Figure 5.1: Scaling behaviour of the entropy density ŝ with temperature T̂ in three different
regions of the scaling region, marked by the dotted line. These results are valid for k > 3/4
(note that for the window. Image taken from [25].

5.5 Comparison with a metamagnetic transition

The scaling relation (5.23) is consistent12 with a QCP with one spatial dimension (d =
1 + 1), dynamical critical exponent z = 3, and a relevant operator of dimension ∆ = 2.
As discussed in [22], the critical exponent z = 3 also arises in the Hertz-Millis theory of
metamagnetic quantum phase transitions, in which a variation in the magnetic field across
a nonzero critical value produces nonanalytic behaviour in the specific heat, but no change
in symmetry (see section 2.3.2).

5.6 Discussion

It has been established, both numerically [22] and analytically [25] that field theories dual
to Einstein-Maxwell theory in D = 5 with a Chern-Simons term undergo a Quantum Phase
Transition for k > 1/2 at a critical magnetic field to charge density ratio. No analytical

12Note, however, that the ‘real-life’ materials in which such metamagnetic quantum phase transitions
are found, are in d = 2 + 1.
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"QCR"

"FL"

abc

"high T"

Figure 5.2: The low temperature behaviour of the entropy density was determined numer-
ically. For B̂ > B̂c, which is at a in the figure, the entropy density vanishes linearly with
temperature, which is consistent with Fermi liquid theory. Paths b and c both start at
B̂ ≈ B̂c and small finite temperature with the behaviour ŝ ∼ T̂ 1/3, but for path b B̂ is
slightly above B̂c, and there is a crossover to the linear behaviour ŝ ∼ T̂ . Path c has B̂
slightly below B̂c. Below a certain temperature, the entropy density tends to a constant

value
√
B̂c − B̂ which vanishes in the limit B̂c − B̂ → 0. At large temperatures, the be-

haviour of the entropy density is the same for all values of B̂, as in all cases the geometry is
asymptotically AdS5, leading to a cubic large temperature behaviour of the entropy density
ŝ ∼ T̂ 3.

solution has been found for the B̂ < B̂c region of the phase diagram, but the finite entropy
density at zero temperature suggests that its IR (small r) geometry contains an extremal
horizon. As discussed in chapter 4, such a background is expected to be unstable when for
instance a charged scalar field condenses, leading to a new geometry which has zero entropy
in the T → 0 limit. It would be interesting to have a solution describing this new geometry.

As explained in section 2.2, one typically looks for an order parameter when character-
izing a phase transition. Recall that for a phase transition in which the two phases have
different symmetry, such as the appearance or disappearance of spontaneous (staggered)
magnetisation as a result of applied pressure, the order parameter is the vacuum expec-
tation value for a symmetry-breaking operator. In the phase transition found by D’Hoker
and Kraus, the symmetry has already been broken by the magnetic field, so the operator
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corresponding to the order parameter is not of this type. It is then of interest to find an
order parameter for this scenario13

13it need not be a local operator



Chapter 6

Conclusion and outlook

The mechanism driving the Quantum Phase Transition (QPT) has not been identified,
although in the setup reviewed in chapter 5, this might in principle be possible, since the
charge carriers of the dual gauge theory are modeled fully holographically in the bulk (as
opposed to constructions where charged fields are explicitly added to the bulk theory), and
their interaction with the critical modes (by which I mean the fields that become massless
at the QCP, or the extra states that become accessible in the condensed matter system????)
should somehow be encoded in the gravity system. By studying correlation functions in
this background, one may hope to see what happens in the gravitational system. If the
mechanism causing the instability in the gravity dual were known, one might be able to
construct different examples of holographic dualities in which such a QPT takes place.

The holographic methods reviewed in this thesis do have some serious limitations, of which
some have been discussed. Among these is the fact that the search for a holographic dual
is very difficult unless the dual theories have some amount of supersymmetry, which is
(usually) not a feature of condensed matter models. Furthermore, as was mentioned in
chapter 5, the gauge theory duals typically need a large number N of “colours” to be able
to use classical gravity. However, most models in condensed matter will have N = 1, so
one must hope to find interesting features that do not depend on N . Still, finding examples
of holographic Quantum Critical Points may prove to be a very useful tool in mapping out
various possibilities of QPTs, and in constructing toy models for them.

Another important limitation of using holography is that only special types of quantum
field theories have been found to be described by a holographic dual. One thus cannot
expect that the (strongly coupled) theory describing a QPT necessarily has dual gravity
description.
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