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Abstract

This thesis is concerned with cosmological models that arise in low-energy string theory
and coset models.

The first part of this thesis provides a basic introduction to cosmology and bosonic
string theory. After this, the gravitational theory that arises in low-energy string
theory is developed and discussed. The cosmological implications of this theory are
investigated, with emphasis on the relation to the universe we inhabit. This general
account is followed by a detailed review of some known models in the literature and a
discussion on the possibility of finding a de Sitter solution.

The second part of this thesis considers coset models, which provide a systematic
way to find background fields that are valid solutions in full (as opposed to low-energy)
string theory. The construction of such a model using the gauged Wess-Zumino-Witten
action is presented. After this, a general way to describe propagation of scalar particles
on the coset space is developed. The last chapter focuses on coset models that yield
spacetimes with an interesting cosmological interpretation. A well-known example
of such a model is the Nappi-Witten universe, which is analyzed in detail using the
techniques that were discussed.
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Units, conventions, notation

Throughout this thesis, I use natural units in which A = ¢ = 1. The gravitational con-
stant G is kept explicit. Be aware that G also denotes the metric tensor. In particular
VG = \/det G, is the square-root of its determinant.

For quantities related to curvature, such as the Ricci tensor or curvature scalar, I adopt
conventions denoted +++ by Misner et.al. [59]. This means in particular that

Ruuaﬁ = 6(11_‘””5 - 6ﬁ1—wua + Fuparpuﬂ - Fupﬁrpua
RIW = Rauau
For comparison with other conventions, the overview presented on the first page of [59]
is excellent. I will sometimes refer to Weinberg [84], who uses +—— conventions. This
implies that the Ricci tensor and the curvature scalar are defined with an additional
minus sign.
To avoid confusion between curvature quantities on the worldsheet and in space-
time, the latter are denoted in boldface. So the worldsheet curvature scalar is denoted
as R and the spacetime curvature scalar as R.

Usually, a, 8 and other letters from the beginning of the Greek alphabet, when used
as indices, denote coordinates on the string worlsheet. Starting from u, v, the indices
denote spacetime coordinates. If a distinction between spacetime and space is made,
Greek indices as p run from 0 to D, whereas Roman indices as ¢ run from 1 to D.

A lot of string theory analysis is on the complex plane, where coordinates z and Z
are used conventionally. Here 9 is shorthand for 8, and 9 for 8;. For vectors on the
complex plane, v* refers to the z component of the vector v.
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1
Introduction

” Nature uses only the longest threads to weave her patterns, so each small piece of
the fabric reveals the organization of the entire tapestry.”
— Richard Feynman

It is generally believed that nature comes with four fundamental forces. Two of these
are directly visible in our everyday life: electromagnetism and gravity. The first is
obviously responsible for electricity and magnetism, but light and radiation are also
electromagnetic phenomena. Gravity is the force that keeps the planets in their orbit
and makes the apple fall from the tree. On very small scales, these forces are ac-
companied by two equally fundamental forces known as the weak and strong nuclear
force.

Contemporary physics can not describe all four forces in one fundamental frame-
work. The dynamics of the weak, strong and electromagnetic force are described
in one unified system known as the standard model of particle physics — a fantastic
achievement by itself. This is the model that is used to calculate physical quantities
in particle accelerator experiments, where highly energetic particles are smashed upon
one another to interact and form new particles. The model describes physics at high
energies and small length-scales, a world ruled by quantum mechanics.

Gravity is of no importance in this world, as the strength of the force is many orders
of magnitude smaller then the strength of the other forces on small length scales. How-
ever, gravity ’goes a long way’ and contributions of various matter sources generally
add up — as opposed to electromagnetism, where positive and negative contributions
may cancel. This makes gravity the dominant force on astronomical length scales. The
theory that describes this force is Einstein’s general theory of relativity.

In their specific regimes, both the standard model and general relativity are well
established and verified experimentally. However, the theories are fundamentally very
different and cannot be combined. Subjects in which both gravity and quantum me-
chanics are important, such as black holes or the big bang, are notoriously difficult to
describe and clearly indicate the need for a quantum theory of gravity.

A topic related to this issue is the famous cosmological constant, which will be de-
scribed in more detail in the next chapter. One can think of a cosmological constant
as a sort of intrinsic energy of spacetime, though one that may be negative. General
relativity allows such a constant in its framework, though it does not make predictions
about its value; it’s a free parameter. From the standard model perspective, one may
think of the cosmological constant as a vacuum energy caused by particles that are cre-



ated out of the vacuum to annihilate within a very short time. A back-of-the-envelope
calculation shows that such a vacuum energy is expected to be of order

pv ~ (1018 GQV)4

If one trusts the standard model up to Plank scale energies'. Such a cosmological con-
stant would have enormous implications on cosmology and one may safely conclude
that the constant isn’t anywhere near this size. For quite some time, the physics com-
munity believed that one day it would become clear that (and why) the cosmological
constant is exactly zero. However, recent astronomical observations suggest that our
universe in fact has a small but non-zero positive cosmological constant of

pv ~ (10712 GeV)*

The discrepancy between the energy associated with the observed and theoretical
cosmological constant is 120 orders of magnitude. Ideally, a true quantum theory of
gravity would predict the correct value of the cosmological constant.

The effect of a positive cosmological constant is that it drives the expansion of the
universe, thereby steadily diluting the matter content. Eventually the matter contri-
bution to the total energy density of the universe will be negligible and vacuum energy
will dominate the universe. The resulting space is known as de Sitter (dS) space, which
solves the Einstein field equations with positive cosmological constant.

What about string theory? String theory is a consistent quantum theory that includes
a theory of gravity. At low energies (on the string scale of things, E < Mp ~ 10°GeV
where Mp is the Planck mass) this theory is related to general relativity, yet there are
fundamental differences. I will not claim that string theory is the theory of quantum
gravity, but it seems hard to imagine that such a theory, when formulated, will be
totally unrelated to string theory.

Most readers will be familiar with string theory or have at least heard something
about it — probably something about string theory being this crazy theory that lives in
more than four dimensions, namely 26 for bosonic strings and ten for supersymmetric
string theories. At first sight, this may look like a disqualification, but from another
point of view one may advocate that the very prediction of dimensionality shows the
power of the theory. As a comparison, general relativity works in every dimension and
the theory has no preferred number of dimensions.

Of course, this does not invalidate the argument that our universe seems to have
only four dimensions and not ten or 26. In string theory, it is usually assumed that the
remaining dimensions are compactified and form a small internal space that has not
yet been discovered due to its smallness. Ideally, the internal space should reproduce
the physics of the standard model while the large dimensions constitute the large-
scale universe as we observe it. If one day this idea turns out to be true, string
theory incorporates both the standard model and general relativity — making it a true
theory-of-everything.

1.1 Motivation

In this thesis, I solely consider the large dimensions and investigate how string theory
is a theory of gravity that works in these dimensions. I have chosen to focus on two

IThe reader will find references in the next chapter.



main topics; firstly, cosmology from low-energy string theory and the relation to de
Sitter space, associated with a positive cosmological constant. Secondly, coset models
that have an interesting cosmological interpretation. Why these?

From the point of view of string theory, or quantum gravity in general, de Sitter space
is a notorious subject. To name one issue, it has no globally defined timelike Killing
vector which makes it impossible to define a positive conserved energy. Furthermore,
it is known that there is no naive de Sitter solution in low-energy string theory. If
our universe is indeed headed to become such a space, a better understanding of this
space is crucial if string theory is to describe ’the real world’. There is currently a lot
of research in the area, making it a prime example of string theory research that is
triggered by the experiment.

A striking feature of string theory is the existence of a large-small duality that
relates physics at large scales to physics at small scales. This suggests the existence
of a minimal length scale. Such a fundamental length scale is unknown in general
relativity (or the standard model) and the implications of such a scale for physics at
the big bang are enormous. This makes the investigation of singularities in string
theory highly relevant. This research is in the regime of high energies, where general
relativity may break down and low-energy string theory is not satisfactory. A well-
known method to consider dynamical backgrounds (with possible singularities) beyond
the low-energy assumption is by using coset models. Knowing the behavior of scalar
states on such a background, they can be used to probe the structure of singularities in
string theory. Eventually, such knowledge may lead to a better insight into the nature
of the big bang.

1.2 Outline

When I started to write this thesis after an initial period of research, I thought about
its goal. I wanted to address a number of issues that I had been thinking about and
clearly state some insights I developed. On the other hand, I wanted to write some-
thing that may serve as a reference to others — and to myself in a possible later stage
of research. These considerations have primarily determined the outline and plan of
this thesis.

The thesis starts with an introduction to the standard model of cosmology in chapter
2 (not to be confused with the standard model of particle physics). This chapter also
briefly discusses the cosmological constant, Brans-Dicke theory and de Sitter space;
these topics will be encountered a number of times throughout this thesis in the context
of string cosmology. In chapters 3 and 4, conformal field theory and bosonic string
theory are introduced. Regarding these theories, I have chosen to highlight issues
that are especially relevant for string cosmology, leaving out others. For instance,
the subject of interactions in string theory is discussed only very briefly. Chapter 5
introduces the theory of gravity that follows from considering strings in a non-trivial
background. The cosmological implications of the theory are discussed; in particular,
the possibility of finding a de Sitter solution in this theory. Chapters 6 and 7 consider
coset models and discuss models that are interesting from a cosmological point of view,
such as the Nappi-Witten universe. A summary and some conclusions are presented
in chapter 8, together with suggestions for further research.

The reader may notice that there is one example that appears in a number of



sections. It is based on the black hole solution found by Witten, and introduced as
such in section 6.4. The associated low-energy spacetime, known as the Milne universe,
already appears as a solution in low-energy string theory in section 5.4.2. Propagation
of scalars on this background is considered in section 6.6.



2
Theories of cosmology

The first chapter of this thesis is about cosmology. It discusses the cosmological
standard model and two extensions to this model: the cosmological constant and the
Brans-Dicke scalar field. The theory is well established, and readers that are familiar
with cosmology may safely skip it. However, I have chosen to present this review to
provide a solid basis for the theory that will follow in the rest of this thesis. In chapters
3 to 5, I will work towards a theory of gravity inspired by string theory and explore
some implications of this theory on cosmology. There is a lot of nomenclature and I felt
that it would be unwise to refer to cosmological constants, gravitational scalar fields
or Brans-Dicke parameters without giving the reader clear definitions and a context. I
mostly use the action principle to formulate a theory as it makes comparison between
various theories easy.

The outline of this chapter is as follows. In section 2.1, the cosmological standard
model is introduced. Section 2.2 discusses the influence of a non-zero cosmological
constant and a Brans-Dicke scalar fields on the standard scenario. These extensions
will make a comeback in cosmological models based on string theory, starting from
chapter 5. Section 2.3 concludes the current chapter with a discussion of the observed
universe and a short review on de Sitter space, the maximally symmetric solution to
the Einstein equations with a positive cosmological constant.

There are many excellent introductions to cosmology. I usually follow Weinberg
[84], though the reader should be aware that Weinberg uses +—— sign conventions;
see the notation section in the beginning of this thesis. Another nice introduction
to cosmology, aimed at an audience of high energy theorists, is the TASI lecture by
Carroll [20].

2.1 The cosmological standard model

This section introduces what is often called the standard model of cosmology, which is
based on three pillars. The first pillar are the Einstein field equations, which determine
the dynamics of spacetime in the presence of energy. Second is the cosmological
principle, the hypothesis that space (not spacetime) is isotropic and homogeneous on
large scales. Third are equations of state for matter sources in the universe, relating
their energy density to the size of the universe. Combining these leads to the Friedmann
equations that describe the dynamics of the universe we inhabit. I assume D = 4 from
the beginning, where D denotes the dimension of spacetime.



2.1.1 The Einstein field equations

Spacetime is described by a gravitational field, or metric, G. Its dynamics may be
derived from an action principle. Following Weinberg [84], chapter 12, the total action
for some gravitational system with matter splits into a gravitational and a matter part:
S = Sg + Su- The purely gravitational part is given by the Einstein-Hilbert action,
the matter action is represented by a general Lagrangian density.

ﬁ/d“x\/@R
/d4a: VGLy (2.1)

Il

Sa

Sm

As usual, the demand that the action be stationary under an arbitrary variation leads
to an equation of motion. Start by varying the gravitational action with respect to
Guv.

— 1 4
6Sq = —IGWG/d:c(J\/@BH-\/ééR)

I R O . B
= 164G / d's (5VGG" 0GR+ VG (R,0G™ + 6R,,G*))

N S 1 wrn v W

_ lﬁwG/d:c\/a((QG R~ R™) G, + G R, 2.2)

The last term is a total derivative by the Palatini identity (see [84], section 10.9)
6Ry, = Va0, =V, 6T, (2.3)

Concerning the matter part of the action, the variation of an action with respect to
the metric defines the energy-momentum tensor 7' of the system ([84], 12.2):

88y = % / d*eVG T 6G,, (2.4)

Adding this to the contribution from equation (2.2), one finds the famous Einstein
field equations with source, describing the dynamics of a gravitational field G in the
presence of energy characterized by an energy-momentum tensor 7'.

1
RM — SG" R = 8xGT"" (2.5)

Contracting both sides of this equation with G, implies R = —8rGT*?, as D = 4.
This can be used to recast equation (2.5) into the equivalent form

R* =8rG (T™ — %G’“’T“a) (2.6)

As all tensors in the Einstein field equations are symmetric, the field equations are a
collection of ten algebraically independent equations. There is however some redun-
dancy. Suppose one has found a solution G of the Einstein equations and performs
a coordinate transformation (with four degrees of freedom) G — G'. Then G’ will
also be solution to the equations — which is just the statement that the field equations
are tensor equations. In order to describe a unique solution to the field equations, a



coordinate condition has to be specified. This is very similar to choosing a certain
gauge in systems with gauge invariance.

From this point of view, it should be no surprise that although the ten equations
are algebraically independent, they are actually not functionally independent. This is
expressed by the four Bianchi identities

v, (R — %G‘“’R) -0 2.7)

From the physical point of view this corresponds to momentum conservation V,T#" =
0 by the field equations. From the geometrical point of view, it follows from symmetries
of the Riemann-Christoffel tensor. Taking these identities into account, the Einstein
field equations actually consist of only six functionally independent dynamical equa-
tions. This leaves four degrees of freedom for the ten unknown elements of G. This
freedom connects a given G with all the G’-tensors that can be obtained by coordinate
transformations from G.

The above can be summarized by the statement that the Einstein field equations,
subject to the Bianchi identities, fix the metric up to general coordinate transforma-
tions.

2.1.2 Cosmological principle

The Einstein field equations may be applied to a variety of gravitational systems. Usu-
ally, the problem of solving the field equations is simplified by symmetry properties of
the particular situation. For instance, the famous Schwarzschild solution that includes
black holes assumes radial isotropy and no time-dependence of the metric.

When the Einstein field equations are applied to the universe as a whole, the sym-
metry argument that is invoked is the cosmological principle, the hypothesis that space
is homogeneous and isotropic on large scales. This makes physical 'space’ a maximally
symmetric space which determines its structure to a large extent. Therefore spacetime
itself, when sliced into equal-time slices, has a maximally symmetric subspace. From
the theory of symmetric spaces (see e.g. Weinberg [84], chapter 13) it is known that the
most general metric of such a space is the Robertson- Walker metric with line-element
(in polar coordinates r,8, ¢)

dr?

1— kr?

ds* = —dt* + R(t) ( +r2d6? + r?sin® 0dq§2> (2.8)
R(t) is the cosmic scale factor that describes the dynamical evolution of the universe.
There is one additional constant k that can be set to either —1,0, 1 by a suitable choice
of units for . It describes the spatial curvature of the spacetime under consideration;
for £ = —1 equal-time hypersurfaces are positively curved, for k¥ = 0 these surfaces are
flat and in the case k = 1 positively curved. These possibilities are usually referred to
as open, flat or closed, respectively.

2.1.3 Equations of state

The third simplifying assumption in the cosmological standard model concerns the
matter that is present in the universe. Assume that matter (again, on large scales)
behaves as a relativistic perfect fluid, meaning that an observer moving along with
the fluid sees it as isotropic. Of course this kind of symmetry can only be achieved if



the particles that make up the fluid continuously interact, i.e. if the mean free path is
small on the observational length scale. On cosmological scales, matter in the universe
is indeed observed as isotropic. Mathematically, a perfect fluid is characterized by an
energy-momentum tensor of the following form ([84], 2.10)

T = (p+ p)utu” + pG*¥ (2.9)

In this expression, p is the pressure of the fluid, p its proper energy density and u is
the fluid’s velocity four-vector. At this point choose comoving coordinates, so that
u=(1,0,0,0) and r, 6, ¢ may be taken to be constant. Usually there is some equation
of state that relates the pressure p to the energy density p of some specific kind of
fluid’. Many equations of state are as simple as

p=wp (2.10)

Where w € R characterizes a specific kind of energy source. In cosmology the most
common are matter (also known as dust) and radiation. The former includes all kinds
of non-relativistic, non-interacting particles which have negligible pressure and whose
energy is mostly rest mass (w = 0). The latter applies to all relativistic particles which
have w = 1/3.

Inserting this generic equation of state into the condition for conservation of energy
V. TH =0 yields (for v =0, v = 1,2, 3 is trivially satisfied; see [84], 14.2 and 15.1)

d
ﬁ( R®) = -3pR? (2.11)

= po R3wH (2.12)

The time-evolution of the energy density (and subsequently of the pressure) of some
source of energy in the universe is thus proportional to the cosmic scale factor to the
power —3(w + 1). This is summarized in table 2.1 which for completeness includes a
cosmological constant, to be described farther on.

| energy source | equation of state | dynamical equation |
matter, dust p=0 pox R73
radiation p=1/3p px R™*
cosmological constant | p = —p p const

Table 2.1: Dynamics of energy sources in the universe

2.1.4 Friedmann equations

The cards are now on the table. The dynamics of spacetime is described by the
Einstein equations, the general form by the cosmological principle and the dynamics
of matter sources by their equations of state and the conservation of energy. Now these
ingredients can be combined to study the dynamics of the universe. It is important to
keep in mind that the predicting power of the theory is limited by the possibility of
a phase transition. It is only assumed that the equations of state remain valid at all
times.



Plugging the Robertson-Walker metric (2.8) into the Einstein field equations (2.5),
gives the two Friedmann equations for a single matter source with pressure p and
proper energy density p ([84], 15.1)

R(t)? &G k
Rg; = 3 "~ zae 2.13)
% = TG (o) + 3000 (2.14)

It should be noted that the second equation can be derived from the first and (2.11).
That is, considering a perfect-fluid energy source with divergenceless energy-momentum
tensor, equation (2.13) suffices.

Knowing p(t) in terms of R(t), it is possible to solve the above equations for R(t)
to find the expansion history and future of the universe. For example, a spatially flat
(k = 0), matter-dominated universe has a scale factor

R(t) o t2/3 (2.15)
As may be verified by inserting this into equations (2.13) and (2.14).

It is customary to introduce the critical energy density as the energy density that is
required to have a spatially flat universe. Putting & = 0 in equation (2.13), it follows
that this energy density is equal to

3
Perit(t) = STH {2 G (2.16)
Where H(t) is the Hubble parameter
0]
(t) 70 (2.17)

In a realistic model there are of course multiple sources of energy, which is accounted
for by expanding p = > ,p; and p = >, p;. The label i runs over different energy
sources with different equations of state. When there are multiple sources, a useful
quantity is the energy density parameter §2; of a matter source i, defined as

With these definitions, the first of the Friedmann equations (2.13) for multiple energy
sources can be cast into the form

; Qi(t) —1= 7}](05}2(”2 (2.19)

And it follows that k = sign (3", Qi(t) — 1). If the energy density parameters of all
sources exactly add up to one, there is the right amount of energy for the universe to
be spatially flat.

For a qualitative discussion on cosmology dominated by matter sources, see section 15.3
of [84]. I will only mention that, for universes dominated by matter and radiation, open
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Figure 2.1: Evolution of a matter-dominated universe with, from above to below,
Qv =0.1,1.0,4.0 (k= —1,0,1). Note that the time-scale is set by the Hubble parameter
at t = 0, which has a different value for each model. I have chosen R(0)=1 and set G=1.

(k = —1) universes will expand forever, while closed (k = 1) universes will recollapse.
Be aware that this connection is not valid if other energy sources are significant.

In figure 2.1, equation (2.13) was used to calculate the evolution of a universe that
consists of matter only. The cosmic scale factor is plotted for various values of Qs
at t = 0. The Qp; = 4.0 universe will eventually recollapse, the other two increase
without limit.

2.2 Extensions to standard cosmology

In the above, the cosmological standard model was described to the extent of find-
ing the Friedmann equations (2.13) and (2.14) and the underlying assumptions were
discussed. There are several ways in which this standard model of cosmology may be
altered. I will focus on modifications to the first of the three pillars of standard cos-
mology: the Einstein field equations. As a motivation, the reader should be aware that
the field equations (2.5) are not as solidly rooted in general relativity as for instance
the equivalence principle (a point of view expressed by Weinberg [84], section 8.3).
The exact form of the equations is to some extent guesswork. Therefore modifications
such as a cosmological constant or a long-range dynamical scalar field cannot be ruled
out from a purely theoretical point of view. The implication of such modifications on
the dynamics of the universe is the subject of this section.

2.2.1 A cosmological constant

When Einstein applied his theory of general relativity to the universe as a whole, it
was of course known that the relative velocities of celestial objects are much smaller
than the speed of light. Therefore Einstein believed that the universe was (quasi-
)static. However, the Einstein field equations (2.5) do not allow a static universe
(R(t) = 0) solution. Therefore the original field equations were modified to include
the cosmological constant A as can be seen in advance in equation (2.21). With A > 0,
there is indeed a solution corresponding to a static universe, in which the mass density
of ’dust’ in the universe is directly related to its geometry. Einstein in particular hoped
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Figure 2.2: Evolution of a universe with matter and a cosmological constant. From above
to below, (Qar, 24) = (0.3, 0.7), (1.0, 0.0), (0.7, -0.7). Again, R(0)=1 and G=1.

that it would incorporate Mach’s principle, the idea that the mass distribution in the
universe defines inertia.

Then de Sitter found another (quasi-)static solution without any matter present,
thereby undoing the hope of connecting with Mach’s principle. When the redshifts of
far-away celestial objects were discovered, it was realized that the universe actually
was expanding. Furthermore, these redshifts could be explained by de Sitter’s model
but not by Einstein’s static universe. The idea of a static universe was abandoned
and, although mathematically sound, the cosmological constant was discarded. For
more details, see Weinberg [85]; a standard text on this issue.

The modified field equations can be derived from the action
1
S\=167G / d'z VG (R - 2A) (2.20)

The same analysis as in section 2.1.1 yields the modified Einstein field equations (cf.
(2.5)). .
RHY — §G’“’R + AG*Y = 8nGT*H (2.21)

The left-hand side of this equation is the most general divergenceless symmetric two-
tensor that can be constructed from the metric and its first and second derivatives.
This makes it a more general starting point than the original field equations without the
cosmological constant. As follows from equation (2.21), the effect of the cosmological
constant can be taken into account by using the original field equations (2.5) and
substituting

T — TH + T,’\“’
A
TV = ———G™ 2.22
A el (2:22)
That is, the cosmological constant may be regarded as an omnipresent energy source
with energy-momentum tensor 7.
Upon comparison with the general perfect-fluid energy-momentum tensor (2.9) it
is clear that one may think of this energy source as a perfect fluid with equation of
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state p = —p (w = —1) as anticipated in table (2.1). This means it can be treated in
the same manner as ’ordinary’ energy sources. In particular, it can easily be included
in the Friedmann equations to analyze its effect on the dynamics of the universe. A
direct consequence is that spatially closed universes do not necessarily recollapse.

Figure 2.2.1 shows the effect of a non-zero cosmological constant on the evolution of
the cosmic scale factor. It is clear that a positive constant speeds up the acceleration,
while a negative constant slows it down.

The form of the energy-momentum tensor T} is also the origin of the identification of
the cosmological constant with a non-zero vacuum energy. Consider the simple case
of a single scalar field ¢ with potential energy V(¢) and action

S = / oG (G“"am By — V(¢)) (2.23)
It follows that the energy-momentum tensor of this system is given by
1
T = 990" + G (Gaﬁaaqs B — V(¢)) (2.24)

The configuration with the lowest energy is characterized by 0,¢ = 0 and ¢ = ¢
where ¢ is the value of ¢ such that V(¢) is minimal. There is no a priori reason why
V(¢o) should be zero. If indeed it is non-zero, the energy-momentum tensor takes the
general form

THY = —pyecGH*Y (2.25)

vac

Where pyac = 3V (¢o) in the particular model considered here. It follows that, up to
a constant

Tr ~ Tyac (2.26)

A cosmological constant in the sense of (2.21) thus manifests itself exactly as a non-zero
vacuum energy.

2.2.2 A fundamental scalar field

In 1961, Brans and Dicke published an article in which they proposed that gravitational
effects may be partly caused by a scalar field ¢ (the original article [17] is well readable).
Again, this attempt was motivated by the hope of incorporating Mach’s principle.
They considered the following action, in which ¢ is the scalar field.

Oup Ot
¢

Where w is a dimensionless free parameter. The gravitational constant G has disap-
peared from the action, its role now being played by the effective ’coupling’ 1/(®).
Additional matter fields can be included by adding a matter action in the same way
as in the Einstein theory: S = Sy 4+ S, where Sy has no dilaton-dependence. This
implies that the equations of motion for matter in a gravitational field are not modified
— they depend on the metric g and not on the scalar ¢.! However, the equations that

Sp_p = % / d*z VG (4R + w ) (2.27)

IThis is the point of view Brans and Dicke take in the original article. The question is actually
a little more delicate, as it depends on the frame in which the theory is formulated. This is directly
related to the discussion on string and Einstein frames in section 5.2.2.
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Figure 2.3: Evolution of the scale factor and the dilaton in a spatially flat Brans-Dicke
universe with matter only. The free parameter w is varied; from top to bottom in both
figures w = 10,100, 10000.

determine the dynamics of the gravitational field g are modified by the presence of
the scalar field. They can be derived from the above action in a way similar to the
derivation of the original field equations (2.5), the difference being that the Palatini
identity cannot be used, so JR*” has to be calculated explicitly. This results in the
following equations for the fields g and ¢ ([17] or [84], 7.4):

RY - SGWR = %TT‘“’ + %(V“V"d) - G0g)
1
+% (v“¢v"¢ . 5G‘“’(V¢)2) (2.28)
8
04 = 375-T% (2.29)

In the limit of large |w| the second equation implies
p=()+0w™ ") =1/G+O0w™) (2.30)

Inserting this in the first equation, it shows that up to O(w™!) it is the Einstein field
equation (2.5). Hence Brans-Dicke theory becomes standard Einstein gravity in the
limit |w| = oo. As mentioned before, w is a free parameter but in a sensible theory
one would expect it to be of order 1.

For various values of w, the evolution of the scale factor is shown in figure (2.3). As |w|
gets larger, the dilaton becomes nearly constant and the evolution of the scale factor
indeed closely resembles the standard Einstein case. The most striking feature is of
course the behavior at early times where there seems to be no singularity for small |w|.

2.3 Our universe and de Sitter space

The previous sections discussed cosmology from a theoretical point of view. Here I
will very briefly comment on observational data related to the cosmological standard
model and possible extensions. Starting with the Brans-Dicke scalar field: for a scalar
field as introduced in section 2.2.2, observations restrict |w| > 3500 (see [86], section
3.4). As discussed above, Brans-Dicke theory essentially reduces to Einstein gravity
in the limit of large |w|, so this observation virtually rules out a gravitational scalar
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field in the sense of equation (2.27). As will be discussed in chapter 5, the scalar field
will reappear in a modified form in low-energy string cosmology.

Regarding the energy sources present in our universe (and the related spatial topol-
ogy), let me just state that there is currently some concordance that our universe is
spatially flat and dominated by matter and vacuum energy, with density parameters

Q=03 Q=07 (2.31)

The interested reader is referred to a recent review by Sarkar [68], who discusses the
collection of (circumstantial) evidence for this claim and provides full references.

The presence of a non-zero positive cosmological constant implies that our universe is
a de Sitter space. The following is a short summary to this space; a basic introduction
to de Sitter spacetimes can be found in the Les Houches lecture by Spradlin et.al. [73].
The issue of finding a de Sitter space in low-energy string cosmology will be addressed
in section 5.4.5 of this thesis.

de Sitter space in n dimensions dS, is the maximally symmetric solution to the
Einstein field equations in n dimensions with positive cosmological constant (cf. eq.
(2.21)). An easy way to visualize de Sitter space is a n-dimensional hypersurface in
n + 1 dimensional Minkowski space:

A R (2.32)

Where [ > 0. This embedding makes the SO(1,n) isometry group manifest. Such a
manifold solves the Einstein field equations with (see Spradlin et.al. [73])

A= (n-2)(n-1)/(21% (2.33)

The maximal symmetry implies that the Riemann tensor takes the form (Weinberg
[84], section 13.2)

1 2A

1) R(gupguo - g;wgup) = (

n(n — m(gupgua — GuoGup)  (2.34)

Rp,l/pa =
Where the latter equality follows directly from the Einstein equations. There are a
number of coordinate systems that cover (part of) de Sitter spacetime. In particular,
de Sitter space admits spacelike foliations of the Robertson-Walker form (2.8) for
k= —1,0,1 (see Carroll [20]). The scale factor in such a foliation typically becomes
an exponential function of time for late times.
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3
Conformal field theory

This chapter presents an introduction to conformal symmetry and conformally in-
variant quantum field theories (CFTs). It is not meant as an extensive or complete
introduction, but is intended to give the reader an overview and a reference for later
chapters. The theory in this chapter is developed from general symmetry arguments
only, without reference to any particular CFT. It will become clear that conformal
symmetry determines the structure of a theory to a large extent.

Sections 3.1 and 3.2 introduce the notion of conformal invariance and conclude with
the introduction of the celebrated Virasoro algebra. Section 3.3 continues by providing
some basic techniques in field theory that will be used in section 3.4 to discuss basic
properties of a CFT focusing on the role of the energy-momentum tensor. Section
3.5 concludes this chapter with a discussion of the Hilbert space of a conformal field
theory.

Several good texts on CFT may be found in the literature, such as the excellent
self-contained introduction to CFT by Di Francesco et.al. [25]. Where applicable,
I have chosen to refer to sections in this book. The introduction to superstrings by
Kiritsis [51] also includes a nice chapter on CFT. Both the book [63] and lecture notes
[65] on string theory by Polchinski provide an introduction to CFT in the context the
string theory. See also the historical article by Belavin et.al. [11], which introduced
conformal symmetry in two-dimensional quantum field theories.

3.1 The conformal group

This section introduces conformal symmetry, starting for a system in an arbitrary
number of D dimensions. Later the discussion focuses on D = 2. As the theory is well
established, I have not provided full references in this section. All of the topics ad-
dressed here can be found in more detail in Di Francesco et.al. [25], sections 4.1 and 5.1.

The symmetry underlying general relativity is that of general coordinate transforma-
tions. It states that true physical laws do not depend on the coordinates in which
they are formulated. Mathematically, this leads to the introduction of scalars, vectors
and tensors — objects that have a definite transformation law under general coordi-
nate transformations. In particular the metric, as a two-component tensor, transforms
under a coordinate transformation z — 2’ as

oz® OzP
Guv (2) = g, (2") = &T—,H@gaﬁ(w) (3.1)
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The conformal group is defined as the subgroup of the group of general coordinate
transformation that leaves the metric invariant up to an overall position-dependent
scale factor. That is,

Iuv () = g4, (2") = A2) 9o (@) (3-2)

Restricting Q(x) = 1 produces the subgroup of isometries. In flat space, this is the
Poincaré group.

For clarity, let’s restrict to a Euclidean theory in D dimensions with metric g = 4.
Consider an infinitesimal transformation z — x + €. To first order, the requirement
that the transformation only rescales the metric reads

89 (@) = —(Buew + Byen) = —f(@)gu (2) (3.3)
Taking a trace implies f(z) = 2/D 9,¢*. This requirement may be reformulated as
(s 8,8° + (D = 2)9,8,) (85¢”) = 0 (3.4)

For D > 2, it can be shown from the above equation that all third or higher order
derivatives of € vanish, which leaves the following possibilities:

e translations: e* = a¥

e rotations: €# = wH, ¥ with w,, = —w,,

e scale transformations: e = A z#

e special conformal transformations: e = bt x - x — 2z#(b - x)

It may be verified that coordinate transformations with such € do indeed transform
the metric by a factor. The above possibilities add to a total of (D + 2)(D + 1)/2
parameters for a,b,w and A. The algebra underlying conformal transformations is
isomorphic to SO(D + 1,1).

In D = 2 dimensions, which will be of primary interest as the string theory world-
sheet is two dimensional, the (D — 2) term in equation (3.4) drops out and € may well
contain higher order derivatives. In fact, for a Euclidean two dimensional theory, the
restrictions on € reduce to

O1e1 = Oaen O1e2 = —02€1 (3.5)

Which is far less restrictive then those given above for the more general case D > 2. In
fact, there exists an infinite set of transformation parameters e that obey the restriction
(3.5). This is particularly clear by introducing complex coordinates z = z! + iz? and
z = ' —iz?. In these coordinates:

8.6=0 8:e=0 (3.6)

So, any transformation of the form z — f(z), Z — f(Z) is conformal. The functions
f(z) and f(Z) are understood to be analytic functions depending only on z or Z,
respectively. Note that the coordinates z and Z (or new coordinates f(z) and f(z))
are independent but obey the reality condition z* = Z to keep two physical independent
coordinates.
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3.2 The Virasoro algebra

The previous section defined conformal symmetry and introduced complex coordinates.
As these coordinates are very convenient, they will be adopted in the following section
which is a deeper investigation of conformal symmetry.

The conformal symmetry transformations on z and Z decouple (up to a reality condi-
tion), so it will suffice to consider the z dependence only. The transformations on z
work out in exactly the same way. Introduce a basis for the transformation parameter
€

€(z) = — Z €nz ! (3.7)

The allowed values for n depend on the background under consideration; on the com-
plex plane, regularity at the origin implies n > —1. For the Riemann sphere, which is
the complex plane plus infinity, it can be shown that the only transformations that are
valid globally are [_1,lp and ;. In this basis, the generators of conformal symmetry
are

I, = —z"+19, (3.8)

That is, a transformation z — z — €,2™*! is generated by l,,. As can easily be verified,
these generators satisfy a Witt algebra:

[lnslm] = (M =1)lnin (3.9)

Note that not all of these transformations are well-defined (invertible, single-valued)
globally. As mentioned above, on the Riemann sphere only transformations with
n = —1,0,1 are valid. These generators form a subalgebra of the algebra (3.9) that
generates the restricted conformal group. This group transforms a z coordinate as (see
[25], section 5.1.2)

az+b
cz+d

z— where a,b,¢,d € C and ad —bc =1 (3.10)
The parameters a, b, c,d may be regarded as elements of some matrix in SL(2,C),
where two matrices that differ only by a minus sign correspond to the same transfor-
mation. Hence, the restricted conformal group is isomorphic to SL(2,C)/Zs.
Completely analogous statements can be made for the z sector. The generators are
conventionally denoted as I,, and commute with the set of generators I,,.

The discussion above is valid for a classical system with conformal symmetry, where
the generators [,, act on functions that live on the complex plane. In a quantum field
theory, physical states are elements of a Hilbert space, transforming as a representa-
tion of the symmetry group. Due to quantum effects, the algebra of these quantum
generators may have a central extension term of the form (for a calculation, see Green
et.al. [41], section 2.2.2):

3

[LnsLm] = (m=n) Lntn + 75(m* = m)ntmo (3.11)

This is known as the Virasoro algebra with central charge ¢ € R. For ¢ = 0 the
symmetry algebra reduces to the classical Witt algebra and c is also known as the
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conformal anomaly. There is a copy for the generators L,, that may a priori have a
different central charge é. Both algebras are decoupled; L,, and L, commute. Note
that this quantum algebra reduces to the classical Witt algebra for arbitrary c for the
generators L_;, Ly and L;.

Apart from the factor 1/12 in the definition of the central extension term, which is
motivated from string theory, the Virasoro algebra was introduced without reference
to any explicit theory — just conformal invariance.

3.3 CFT machinery

The previous covers the word ’conformal’ in CFT. This section continues with the
field theory’ aspects. It is a collection of some basic techniques encountered in CFT
on the complex plane (introduced in section 4.2), an application that will be useful in
string theory. The introduction of these techniques may seem a bit disparate, but the
next section will put things in perspective by using these tools to analyze the role of
the energy momentum tensor in a generic CFT. It is hoped that this section enables
the reader to follow CFT applications in string theory in chapter 4, or provides the
necessary references.

Of course, the fields are quantum fields and it is assumed that the reader is familiar
with quantum field theory. Both path-integral methods and Hilbert space calculations
are generally used in CFT calculations. If the reader is unfamiliar with path-integrals:
a comprehensive ’short course on path integrals’ can be found in Polchinski [63], ap-
pendix A. It also discusses the relation between path integrals and the Hilbert space
formalism.

Recall that the Hilbert space of a quantum theory is based on canonical quantiza-
tion. In a Minkowski spacetime, this clearly distinguishes a time coordinate from the
spatial coordinates. The analog on the Euclidean complex plane is radial quantization
(this is explained in detail in Di Francesco et.al. [25], chapter 6): the theory is quan-
tized along circles of equal radius on the complex plane. The analog of the usual time
ordering of products of operators is radial ordering, which will be denoted by R]...]

Rloeomie) = { ST ol 2 @12

Where =+ is —1 only if both ¢; and ¢2 are fermionic operators.

In the following sections, the notion of primary conformal fields will be introduced
and tools as Ward identities and the operator product expansion. These tools can
be used in the path integral formalism to find correlation functions that, in principle,
determine the structure of a particular conformal theory. In addition to these tools,
one may use the Hilbert space formalism which will be described in section 3.3.3 and
used more fully in section 3.5.

3.3.1 Primary fields

In a conformal field theory, fields are classified as either primary, quasi-primary or
secondary. A field ¢(z,z) is primary if under a conformal transformation z — f(z),
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Z — f(2) it transforms in the following way*

ot = st ey = (L) (U) " s (3.13)

The parameters (h, h) are called the conformal dimensions of ¢. A field that transforms
according to this transformation law for restricted conformal transformations only is
called quasi-primary and all other fields are secondary. The infinitesimal form of the
transformation law (3.13) is, for a transformation z — 2z + €(2), Z — z + &(2):

ez 9(2,2) = — (hOe + €0 + hOe + €0) ¢(z, z) (3.14)

A lot of important fields will depend either on z or Z but not on both. They are
respectively called holomorphic and antiholomorphic and can be expanded in a Laurent
series. For a (quasi-)primary field ¢(2) of weight (h,0) the usual definition is

)= 2""g, & pa= fc ﬁz’””—%(z) (3.15)

neZ (0) 271

Where C(0O) denotes a contour integral around the origin. The equivalence of these
expressions follows directly from Cauchy’s formula. The inclusion of the conformal
weight h in these definitions will be justified in section 3.3.3.

Expectation values of scattering processes are usually formulated in terms of an S-
matrix. The amplitude of a particular event is then expressed in a correlation function.
Consider the unnormalized two-point function

(¢1(21)p2(22)) = /[d¢] $1(21) ¢ (22)e 51! (3.16)

For |z2| > |21|, this corresponds to the amplitude for creating a state associated with
the field ¢; at spacetime coordinates z; and annihilating a ¢- state at z2. The physics of
the system is encoded in the action S[¢]. Under a symmetry transformation, the action
and the integration measure are invariant, so the correlation function transforms as the
fields, i.e. covariantly. This condition imposes constraints on the form of correlation
functions, known as Ward identities. In CFT, it can be shown that both the two- and
three-point function are specified up to normalization. The exact form of four-point
functions has some freedom that depends on the particular CFT. See [25], sections
2.4.4,4.3.1 and 4.3.2.

3.3.2 Operator product expansion

When considering products of fields, problems may arise if two or more fields are
evaluated at the same point in spacetime, a general problem in quantum theories.
Correlation functions are for instance known to give singularities if the positions of
two fields coincide. In general, it is possible to express the (radially ordered) product
of two fields at positions z; and 2 in terms of other fields. This yields a power series
in the distance (z; — 22) from which the singular behavior may be read off. A general
formula for some basis of local fields ¢y, is

— — diie (= = \d;; —
R[$i(21,21)8(22, %) | = ) ciji(21 — 20) %% (21 — 2) %5 h (20, 22) (3.17)
k
IFollowing conventions used in Polchinski [63] and Di Francesco et.al. [25]. Another convention
that is often used results in a plus sign in the infinitesimal form, as opposed to the minus sign in
equation (3.14). See e.g. Kiritsis [51], section 6.2. The interpretation of h and h remains unchanged.
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Figure 3.1: Change of contour

This is of course a formal expansion; the coefficients c;jx, d;j and Jijk depend on the
particular fields and theory. These expansions are often considered for (anti-)holomorphic
fields inside a contour integral, in which case only the singular part is non-zero. There-
fore, the regular part is often omitted in such an operator product expansion (OPE).

Now consider a mode expansion such as in equation (3.15). A very useful trick
relates the OPE of two fields to the algebra of the modes:

[fns O] = ?{C dhfc @zn%_lz;n%l_l[¢(Z1),¢'(Zz)]

(0) % (0) 211 1
az m+h'—17{ d21 pyn—1 /
B 2mi omi 1
7{0(0) 2mi Cleny 271 R[p(z1)¢'(22)]  (3.18)

Which follows by writing out the commutator and changing the contour for the z;
integration as depicted in figure 3.1. A more detailed description can be found in [25],
section 6.1.2.

3.3.3 Hilbert space techniques

In CFT on the complex plane, there is an isomorphism between states in the Hilbert
space of the theory and local operators: the operator ~ state correspondence. The
mapping is: a path integral on the unit disk with an operator at the origin and a
boundary condition at |z| = 1 produces a state of the Hilbert space in the Schrédinger
representation (see [63], the whole of section 2.8).2 In particular, the path integral
with no field at the origin maps to the ground state (see the argument in [65], section
1.5). I will not describe the isomorphism in more detail, but restrict to the following
statement: assuming the existence of a ground state |0), one may associate a state in
the Hilbert space to any local operator ¢(z, z) as

9 = lim 8(z,2)[0) (319)

Which can be thought of as an asymptotic ’'in’ state in the complex plane, a point of
view expressed by Di Francesco et.al. [25] in section 6.1. Consider the state associated
with a conformal field ¢(z) of weight h, using the mode expansion (3.15):

|¢) = lim_ N (1) (3.20)
’ nez

2From the perspective of string theory, there is a more intuitive way to view this: a path integral
on the cylinder with a specified ’in’ state at £ -+ —oo can be mapped to a path-integral on the complex
plane with an operator at z = 0. The operator ~ state correspondence assures the equivalence of
both perspectives. See [63], section 2.8.
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Regularity at z = 0 for all modes implies that one should demand
#n|0) =0 for n > —h (3.21)

So the modes of a field ¢(z) with conformal weight h are annihilation operators for
n > —h. Of course, the other modes are creators.

Analogous to the ’in’ state, one may define a asymptotic ’out’ state. Demanding
(Plowt = |¢);'n implies that the Hermitean conjugate of a field ¢ should be defined as
(see [25], 6.1.1)

Bz, 2)T = 772y 2Rz 1) (3.22)

Comparing this with a straightforward conjugation of the mode expansion (3.15) im-
plies that the modes of a holomorphic field satisfy

¢l =¢n (3.23)

Which justifies the inclusion of the conformal weight h in the definition of the mode
expansion.

The Hilbert space formalism will be used more fully in section 3.5 to find the states
in the Hilbert space of a general CFT.

3.3.4 Wick’s theorem

Normal ordering was introduced in the beginning of this section as the complex plane
analog of time ordering. In field theory, another ordering procedure for quantum fields
is creation-annihilation normal ordering (denoted as :...:). It prescribes to put all
annihilation modes to the right of creation modes in products of fields. The difference
of a radial ordered product and a normal ordered product of two fields is defined as
the contraction (underbraced), which is a c-number:

Rp1¢o] =: 102 : + 102 (3.24)
——

The definition of a normal ordered product implies that its vacuum expectation
value vanishes and hence

P12 = (R[p162]) (3.25)
——

Wick’s theorem now states that, for free fields, the radial ordered product of multiple
fields is equal to its normal ordered product plus all possible ways of contracting two
fields. For the product of three fields, this reads:

R[p1¢2¢3] =: p1d2¢3 1 + : d1¢2 3 : +: 1 P2¢3 1 + : P1 023 : (3.26)
—— —~ —

For four or more operators, multiple contractions should be considered. Wick’s theo-
rem is discussed by Di Francesco et.al. [25]: a general introduction for free fields in
section 2.3.5, and a generalized version for interacting fields in appendix 6.B. See also
the related discussion on OPEs and ordering procedures in section 6.5.

3.4 The energy-momentum tensor
The previous section introduced some general techniques that are commonly used in

conformal field theories. In the current section, this machinery will be put to use to
discuss some general features of a CFT.
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3.41 The TT OPE

In quantum field theory, symmetry, currents and transformation rules for fields are
intimately connected. Noether’s theorem states that to every continuous spacetime
symmetry corresponds some conserved charge. The space integral of this current yields
a conserved charge which on its turn generates the original symmetry transformations.
In an arbitrary number of dimensions, the energy momentum tensor 7" of a system
relates the conserved current to a particular spacetime symmetry transformation:

Ju(®) = Ty (2)€” (3.27)

Consider a rigid translation which corresponds to choosing € = a* with a constant.
Being a current (corresponding to a conserved charge), j is divergenceless:

Vi () = 0
= a"VIT,(z) =0 (3.28)
Which is the familiar statement that energy and momentum are conserved. Conformal

symmetry means that the system is also invariant under a scale transformation, with
et = Azt

VFEju(z) = 0
= AV*T,(z)z") =0
= T*(z)V,z, =0 (3.29)

In the last line, it was used that T is divergenceless. Now, in flat space the covariant
derivative reduces to an ordinary partial derivative. Using the fact that 7" is symmetric
in its indices and the identity O €, + Oy€, = 0,€” gy, (cf. equation (3.3)) implies

T, =0 (3.30)
Which states that the energy-momentum tensor is traceless classically — a very general
feature for conformal field theories. In complex coordinates, the divergence- and trace-
lessness of the energy momentum tensor imply that it has only two non-zero entries:
T..(z) and Tzz(Z). As these are (anti-)holomorphic functions, they will be denoted

T(z) :=T..(2) T(z) := T:z(2) (3.31)
The conserved current j, splits into j(z) = T'(2)e(z) and j(2) = T(2)&(2)

In section 3.2, the generators of conformal transformations were found to be the L,,
modes that satisfy the Virasoro algebra (3.11). The conserved current corresponding
to these transformations is now expressed in terms of the energy momentum tensor 7',
which suggests a strong connection. In the following, it will be shown that the modes
L, can be identified as the modes of T', provided that the operator product expansion
of T with itself has a form specific to a CFT.

Expand the holomorphic part T'(z) of the energy-momentum tensor as follows (the
suggestive 2 will be justified farther on but is no loss in generality)

T(z) = Z 27" 2L, & L,= j{ gzn'HT(z) (3.32)
neZ c(0) ™
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The commutator of two modes may be expressed as in equation (3.18):

de 1 le 1
(L, L] = ?{ 422 m+ }l B2 nt1 R [T (21)T (2)] (3.33)
Cc(0) 271 2 C(z2) 27 1

It can be shown that the righthandside of this equation is equal to the righthandside
of the Virasoro algebra (3.11) iff

0/2 2T(2’2) + 82T(z2)

R [T(Zl)T(Z2)] = (zl — 22)4 (zl — 22)2 -2

+ (regular terms) (3.34)

Where c is again the central charge. This equation should be viewed as the counterpart
of the Virasoro algebra and is a very general result for conformal field theories.

3.4.2 Primary fields revisited

In the previous section, the modes of the energy-momentum tensor were identified as
the generators of conformal symmetry. Transformations on fields are generated by the
associated charge, which is the space integral of the current. In the complex plane,

this reads
dz dz -
Qf,g:f —.Tzez+7§ —T(2)e(z 3.35
P =CLORS B =21050 (3.35)

from which the transformation of fields may be expressed as

6€’g¢(22,272) = [Q€,€7¢(z2)]

= f ﬁ [T(2)e(z), #(22, 22)] + (anti-holomorphic)
c(0) 271,

- 4 , & Rl 2) + - (3.36)

If ¢(2) is a primary field with conformal dimension (h,0), then its transformation
properties are given in equation (3.14). Matching these expressions implies that the
OPE of a primary field with the energy momentum tensor takes the form

hé(z2) +52¢(Z2)+(

(21 - Z2)2 21 — 22

R[T(z1)¢(22)] = regular terms) (3.37)

This OPE may be taken as an alternative definition of a primary field. The antiholo-
morphic copy is defined in complete analogy.

Comparing the TT OPE (3.34) with this result, it follows that the energy-momentum
tensor does not consist of primary fields. Rather, T(z) and T(z) are quasi-primary

fields of dimension (2,0) and (0,2), respectively. Under an infinitesimal conformal
transformation z — z + ¢, the holomorphic part T'(z) transforms as

5. T(2) = — (20 + €d) T(2) — %336 (3.38)

Where c is again the central charge. The anti-holomorphic part 7(Z) transforms in a
similar way.

23



3.5 The Hilbert space

The operator ~ state correspondence assigns a state in the Hilbert space to every field.
In particular, there is a state that corresponds to the holomorphic part T'(z) of the
energy momentum tensor:

: — N —-n—2
Jim T(2)[0) = lim gzz Ly|0) (3.39)

This state is only well defined if L,|0) = 0 for n > —1, which in particular implies
that the vacuum |0) is invariant under restricted conformal transformations. The state
corresponding to T'(z) is then L_»|0) and more generally,

O"T ~ L5 ,|0) (3.40)

Let’s denote by |h) the state corresponding to a primary field ¢(z) with conformal
dimension (h,0):

by = lim ¢(2)[0) (3.41)

2,2—0
From equations (3.32) and (3.37), it is easy to verify that
[Ln, #(2)] = h(n + 1)2"¢(2) + 2" 10¢(2) (3.42)
Which has direct implications in the Hilbert space:

Lo |h) h |h)
L,lhy = 0 forn>0 (3.43)

And the commutation relation [Lg, L_,] = nL_,, implies that L_,|h) with n > 0 is an
eigenvalue of Ly with eigenvalue h + n. Applying a combination of negative Virasoro
generators leads to a tower of states, each of which has a different eigenvalue under
LO.

This tower of states is known as a Verma module. The state |h) is called the
heighest weight (HW) state and is in direct correspondence with a primary field. The
other states are known as descendants. The Ly operator takes a prominent role in
the construction; this is because it generates the Cartan subalgebra of the Virasoro
algebra. In physical theories, it is usually associated with the Hamiltonian.

A general Verma module may contain states of zero or negative norm, where the
latter would destroy unitarity. An ongoing line of research called the conformal boot-
strap is to classify all values for the central charge ¢ and HW parameter h that give
rise to a unitary, consistent representation of the Virasoro algebra. For instance, it
can be shown that if 0 < ¢ < 1, only rational values are allowed

6
=1-—— =3,4,... 44
c nmin oY (3.44)

With non-trivial restrictions on h. See e.g. [25], chapter 7.
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4
The bosonic string

This chapter introduces bosonic string theory. I have chosen to highlight a number of
topics that are especially relevant for string cosmology, thereby paying less attention
to other ones. For example, the Polyakov action is described in some detail not only
because of its importance in string theory but also because a generalized form will be
the starting point of chapter 5. The particle spectrum of (closed, oriented) bosonic
string theory is also discussed in detail as these particles will be the building blocks
of cosmological models. Interactions in string theory and the Polyakov path integral
are only discussed briefly; these topics will be readdressed indirectly in the rest of this
thesis.

Sections 4.1 and 4.2 give a short introduction to string theory and the role of the
complex plane. They provide a background for a discussion on the Polyakov action,
which I present as the defining action of string theory, in section 4.3. Section 4.4
analyzes string theory on the complex plane, thereby using the CFT machinery that
was introduced in the previous chapter. The particle spectrum of bosonic string theory
is derived in section 4.5 using a procedure known as old covariant quantization. Section
4.6 concludes the chapter with a discussion on interactions, the Polyakov path integral
and the Weyl anomaly.

The reader will find a thorough introduction to the subject in the well-known intro-
duction [63, 64] by Polchinski. The lecture notes [65] by the same author form a nice
alternative as some topics are addressed from a different point of view. This chapter
is largely based on these works, though I have also benefited from the introduction to
superstrings by Kiritsis [51], the lectures on string theory by Liist and Theisen [54]
and from the standard text by Green, Schwarz and Witten [41, 42].

4.1 Strings

String theory is about strings: one-dimensional objects that propagate through space-
time. Besides propagation the string can also oscillate. These different oscillation
modes are interpreted as different elementary particles, each of which is in possession
of its own set of quantum numbers. This is, in a nutshell, the unification of particles
and forces that string theory aims to achieve.

A particular string can either be closed or open. In some specific theories both
kinds coexist, while other theories consider only closed or open specimen. In this
chapter I focus on closed strings as they are most relevant to cosmological scenarios.
Most of the analysis can be applied directly to open strings, apart from some conven-
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Figure 4.1: The string worldsheet embedded in a target space. X maps the worldsheet to
the target space

tional issues. I will consider oriented strings only; it is possible to construct theories
that restrict to unoriented strings, which have a definite behavior under worldsheet
parity transformations.

As the string propagates in spacetime, it sweeps out a surface called the worldsheet.
Coordinates on this worldsheet are taken to be 0 = ¢! and 7 = 2. The ¢ coordinate
is interpreted as a space coordinate, while 7 is a time coordinate — a distinction that is
somewhat arbitrary for Euclidean worldsheets. For open strings, one usually scales o €
[0, 7] while for closed strings the conventional range is o € [0, 27] and the endpoints are
identified. Throughout this chapter, indices «, 3, ... (running from 1 to 2) always label
worldsheet coordinates, so derivatives d, are derivatives with respect to worldsheet
coordinates.

On this worldsheet there are fields, such as the bosonic field X (o, 7) that carries an
index p, v, ... (taking values in 0...D). From the worldsheet point of view, the index
enumerates a collection of D bosonic fields. From the spacetime or target space point
of view, X (o, 7) is a coordinate carrying a Lorentz (vector) index. It gives the position
in spacetime of a point (o,7) on the worldsheet. For now, the target space is taken
to have Minkowski metric 7. In string cosmology, this will be relaxed which leads to
interesting generalizations of the string theory described hereafter. The distinction
between worldsheet and target space can hardly be overemphasized, so have a close
look at figure 4.1.

It is possible to include fermionic fields on the worldsheet, which leads to supersym-
metric string theories. I have chosen not to discuss these theories, though supersym-
metric effective actions will appear in section 5.3.1. The interested reader is referred
to any of the standard texts mentioned in the beginning of this chapter.

4.2 The complex plane in string theory

Before starting with the dynamics of classical strings or analyzing its quantum version,
it is important to discuss the string worldsheet in some detail.

Following Polchinksi [63], I will consider a Euclidean worldsheet with coordinates o
and 7. For flat metrics, the extension to a Minkowski signature worldsheet is straight-
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forward by analytic continuation 7 — i7. If one considers topologically non-trivial (or
time-dependent) worldsheets this cannot be done in general, but such backgrounds will
not be considered in this chapter. One might object that this choice is inconsistent
with the Minkowskian nature of target space; where this is case, analytic continuation
on the worldsheet is understood.

As string theory is formulated in terms of a CFT on the worldsheet, complex
coordinates are particularly well suited. Introduce coordinates w = o + i7 and w =
o — i7. Derivatives become

1 . 1 .
Op = 5(8,, +140;) Og = 5(80 —140;) (4.1)
And the Jacobian of this transformation implies d2z = 2dodr. This is a general coor-
dinate transformation, so vectors and tensors are understood to transform accordingly.
In particular, the metric on the Euclidean strip § transforms to a metric h:

. 10 A 0 1/2\ :a 0 2
(5a5:65:(0 1) — haﬁ:(1/2 (/) )ahﬁ:<2 0) (42)

A conformal coordinate transformation w — z maps to the complex plane
z = exp(—iw) z = exp(iw) (4.3)

As this is a conformal transformation, the metric transforms only by an irrelevant
factor. This coordinate system will prove to be very useful and it will be used almost
exclusively in worldsheet calculations. On the complex plane, time (7) runs radially
outward and space (o) runs in the angular direction. The Levi-Civita tensor € takes
the form! €,; = —ez, = i/2 and €** = —€** = —2i.

To shorten notation, define & := 8, and d := ;. For vectors v in these coordinates,
the following shorthand notation is often used: v := v#; ¥ := v*. Finally, I sometimes
use the shorthand z1s := 21 — 25.

4.3 The Polyakov action

Now that the background is set out, the dynamics of the classical string will be for-
mulated in terms of an action principle.

4.3.1 An action for classical strings

A general starting point for many introductions to string theory is the action for a
classical relativistic point particle. I will not introduce it here, but restrict to the
following statement: this action governs the dynamics of a point particle by requiring
that its geodesic trajectory in spacetime is minimal.

The dynamics of a classical string now follow from the requirement that the area
of the worldsheet is minimal. This statement may be formulated in terms of the
Nambu-Goto action:

1
Sna=—5— /A dodr det [0, X" 05X,/ (4.4)

1Sometimes the antisymmetric tensor is understood to transform as a current, which implies the
normalization €*? = 1 for the complex plane. The normalization I adopt follows if one lets € transform
as a tensor; this complies with Polchinski [63], 3.6. and Di Francesco [25], 5.1.1.
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Here A denotes the worldsheet area, and o'2 is a constant known for historical reasons
as the Regge slope. It is related to the string tension T as

1
T = Y- (4.5)
T has dimension energy per length, which is equivalent to energy-squared. Note the
Lorentz indices on the X fields; for the time being they just ’go along for the ride’,
but it should be understood that in general the contraction involves the target space
metric 7.
The determinant makes the Nambu-Goto action rather difficult to work with, espe-
cially for quantization purposes. A useful procedure, which has its analog in the point
particle case, is to introduce an auxiliary field h. This leads to the Polyakov action

1 o
Sp=—ps /A dodr VEh*®8,X 95X, (4.6)

Where v/h is shorthand for det [hag]l/ ?. The h field is not dynamical as no derivatives
appear in the action. It plays the role of a worldsheet metric and varying the action
with respect to h defines the energy momentum tensor (normalized to string theory
conventions as in [63], chapter 1):

1 1
Taﬁ = _J (6(1XM6EXN - ihaﬁh’wa’yX“(%XH) (47)

Contracting both sides of this equation with h®? implies that T is traceless (in two
dimensions), an important result as may be appreciated from section 3.4. The classical
Euler-Lagrange condition is just Tog = 0, which yields

hag X 6aX”85Xu (4.8)

Inserting this into the Polyakov action (4.6) leads to the Nambu-Goto action (4.4),
which shows the classical equivalence of both actions. Whether this equivalence re-
mains in the quantum theory is in general unclear. I will proceed with the Polyakov
action as the defining action for string theory.

4.3.2 Symmetries of the Polyakov action

One may view the Polyakov action as describing the dynamics of a collection of D free
scalar fields in a two-dimensional space with metric h. The scalar fields parametrize a
D dimensional target space, which is assumed to be Minkowski space in D dimensions.
The action has the following symmetries, where I have emphasized the distinction
between worldsheet and spacetime symmetries:

e spacetime Poincaré invariance:

SXF = wrXV+ab (W = —wip)
Ohag = 0 (4.9)
e worldsheet reparametrization (diffeomorphism) invariance; consider a coordinate
transformation o = —e%:
XH = €*0,X*
Ohap = €"0yhap + On€ hgy + 0" hoy = Vaeg + Vaeq (4.10)

2For perspective: a ~ 1GeV~2 [51].
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o worldsheet Weyl rescaling invariance:

§X* = 0
Shap 2whap (4.11)

The diffeomorphism (diff) invariance corresponds to the divergencelessness of the en-
ergy momentum tensor Vo7 = 0. The rescaling invariance has no analog in point
particle theories and depends crucially on the fact that the string worldsheet is two-
dimensional.

Conformal symmetry is a subgroup of the diff x Weyl symmetry. The action
is invariant under a conformal coordinate transformation by its diff invariance. This
transformation rescales the metric by an overall factor, which may be undone by a Weyl
rescaling. Combining these, the Polyakov action is invariant under the transformation

OXH = €49, X"
0hag = 0 (4.12)

Provided that € denotes a conformal transformation. This symmetry is much smaller
than diff x Weyl but it holds if A is gauge-fixed, which will be done in the next section.

4.4 String theory and CFT

Given the classical string theory action, the quantum theory may be formulated by
canonical quantization in a particular coordinate frame. This procedure is described
in many introductory textbooks, see e.g. chapter 4 of Kiritsis [51] or chapter 1 of
Polchinski [63]. Though insightful, it serves as a first step only as more advanced top-
ics are usually addressed by CFT techniques. In the following, I have chosen a shortcut
by identifying bosonic string theory on the complex plane as a conformal field theory,
which directly provides a perspective and allows to use the standard CFT machinery
as described in the previous chapter.

The rescaling and reparametrization invariance of the Polyakov action can be used to
put the metric h in any particular form. A convenient choice is the conformal gauge
introduced in the beginning of this chapter: h = h. This choice of metric implies that
the worldsheet is Ricci-flat. As will be seen in section 4.6.3, complications arise when
the worldsheet is curved. Be aware that the gauge-fixing by itself is not trivial; the
correct way to slice the diff x Weyl invariance is by coupling a ghost system to the
gauge-fixed action for the X field — a procedure that can be found in any introduction
on string theory; see e.g. Polchinski [63], section 3.3.

This section is concerned with the Polyakov action in gauge-fixed form of the
Polyakov action. This is an action for the bosonic fields X which will be referred to
as the matter action. Keep in mind that in the full string theory, there is also a ghost
action.

4.4.1 Dynamics of the X-field

The gauge fixing reduces the diff x Weyl symmetry to conformal symmetry. The
metric is completely specified, but be aware that the constraint 7,3 = 0 remains valid
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in its gauge-fixed form. In conformal coordinates, the Polyakov action takes the from

1 9 =
Sp = e /d z0 0 u ( 3)
And the equation of motion reads
85X“(z, Z)=0 (4.14)

Which means that X can be written as a sum of a holomorphic and antiholomorphic
function: X#(z,z) = X}'(2) + X} (Z). Using the fact that the path integral of a total
derivative is zero, the classical equation of motion translates to an operator statement

)
= X] ——— -Sp[X])...
0 = [X] g e(-SeIX)
= (00X"(z,2)...)=0 (4.15)
Where the ... denote arbitrary insertions in the path integral, assumed not to be

located at the point z. They can be thought of as preparing initial and final states. In
the following, an equality such as (4.15) will just be denoted as 00X*(z,Z) = 0, where
it is understood that it holds an an operator statement. The next step is to consider
the situation where there is another field present that might be coinciding:

0 = /[dX]mexp(—Sp[X]X”(zg,@)...)=0

1
= /[dX] exp(—Sp[X]) (77’“’52(%2,512) + EaaX”(zl,fl)X"(z%Z?) . )
= 65X”(z1, 1) X" (22,22) = —ma' 77’“/(52(212, Z12) (4.16)

Which should be interpreted as an operator equation, stating that a products of two
operators obey the equation of motion (4.15) provided they are not located at the
same point.

Normal ordering may be defined as to get rid of this proviso. To this end, define
the normal ordered product of two X fields as

!

:X“(zl,Zl)X”(zz,EQ) L= X“(zl,Zl)X”(zQ,ZQ) + %nuu 1n|21 — 22|2 (417)

As 901n |z|? = 276%(z, 2) it follows that
5o :Xu(21,21)Xy(z2,22) : =0 (418)

And the normal-ordered product of two fields is a solution to the equation of motion.
Moreover, it is a harmonic function which is locally the sum of a holomorphic and an
anti-holomorphic function. These are non-singular in the limit z = 2’, so the OPE of
X with itself takes the form

!

(0]
X“(zl,él)X”(ZQ,Zg) ~ —577”” 1n|z1 — 22|2 (419)

The normal ordering prescription (4.17) is in fact set up to give OPEs this simple
form. The reader might be more familiar with creation-annihilation normal ordering
which makes the calculation of matrix elements of an operator between states easy. In
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free field theory, these definitions are in fact equivalent; see Di Francesco et.al. [25],
section 6.5 or Polchinski [63], section 2.7.

The OPE (4.19) is the basis of many more expansions. For example, taking a
derivative with respect to z; and one with respect to 2o yields:

o 1

61X”(21) 62XV(252) ~ —Enuym (420)

4.4.2 The energy momentum tensor

The form of energy-momentum tensor T in complex coordinates can be derived directly
from (4.7) by substituting h = h. However, as X denotes a quantum field, their might
exist an ordering ambiguity in the classical definition of the energy-momentum tensor
T. Therefore it is defined to be normal-ordered:

1 1 _ _
T:. = o 0XHoX, : T:: = o 0X"0X, : Tz, =T,z = (4.21)
As T, and T3; are (anti-)holomorphic functions, it is convenient to define:
T(2) =T..(2) T(Z) =T::(2) (4.22)

In conformal coordinates, T, = T, = 0 is the statement that T is a traceless tensor
(equivalent to the statement 7%, = 0 in o and 7 coordinates). This directly implies
that the theory is conformally invariant, which can of course be verified by transforming
2z — f(2) and Z — f(Z) in (4.13), while keeping X'(2',2') = X (2, 2).

Using Wick’s theorem, the operator product expansion of T with itself can be
calculated directly from its definition and the X X OPE (4.19); see e.g. [63], 2.2.

D/2 + 2T(22) +62T(Z2)

T(@)T (=) ~ (21— 22)t (1 —2)* 21— 2

(4.23)

After comparison with (3.34), this qualifies the matter part of bosonic string theory
on the complex plane as a conformal field theory with central charge D, the number of
spacetime dimensions of the target space. This makes it apparent that the modes of T’
generate conformal transformations and satisfy a Virasoro algebra. For completeness,
these modes L,, are defined as in equation (3.32):

T(z) = Z 2 "L, & L,= fc d—zz"+1T(z) (4.24)

neZ (0) 27

The modes L,, are generators of the Virasoro algebra (cf. section 3.4). In particu-
lar, recall from equation (3.7) that Lo generates a transformation z — z + ez which
is a holomorphic rescaling. It follows that on the complex plane Lo + Lo generate
dilatations, which are associated with time translation. The other real combination
i(Lo — Ly) generates rotations, associated with space translation.

Be aware that string theory by itself is not a conformal field theory. String theory
is a theory of matter fields in a dynamical background, characterized by diff and Weyl
rescaling invariance. Fixing the metric implies that one has to introduce a ghost system
that affects the physical spectrum. Furthermore, some backgrounds can only be fixed
up to moduli that have to be accounted for in a path integral. The discussion above
neglects both moduli and the ghost system and concerns only the matter part of string
theory on the complex plane.
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4.4.3 Primary fields

The bosonic fields X in this theory are not conformal primary fields. However, 0X
and 0X are primary fields of weight (1,0) and (0, 1) respectively. This follows directly
from the OPE of these fields with the energy momentum tensor:

02X (22) N 02(02X (22))

(21 - 22)2 21 — 22

T(z1)62X(z2) ~ (425)

And similar for the T'(21)0X (22) OPE. They are not the only primary fields in bosonic
string theory. Consider the composite field

Vi(z,2) =: exp (ik, X" (2, 2)) : (4.26)
Applying Wick’s theorem leads to the OPE:

o'k? Vi(2o, 7 Vi (22,2
T(@)Vi(z22) = — (;l(jzsl + 2zf(—2z22) (4.27)

The T(21)Vi(22,722) is similar, making Vj(z, Z) a primary field of conformal weight
(a'k?*/4,a'k?/4). This operator will play a role as the tachyon vertex operator in
section 4.5.3.

4.4.4 Mode expansions

The previous sections analyzed the conformal field theory aspects from the OPE-point
of view. An alternative viewpoint is that of the algebra of modes. In this section, the
X field will be expanded in modes; subsequently, the X X OPE can be translated into
an algebra statement that is the basis for finding the spectrum of the theory.

As seen in section 4.4.1, the field X (z, Z) splits into X,(2) and Xg(z). This implies
that 0X = 0Xy, is a holomorphic function, allowing for a Laurent expansion of the
form

OXH(z 47TT Z akz 1 (4.28)

The expansion for X is completely similar, with independent modes &. Integrating
these expansions yields

o o 1 /o a#
XH 7)) = gk — j—pH] 2, .02 Y ek (AW (4 4.29
(2,2) = 2" —igptinfel +iy 2nz¢0n(z"+2") (429

Where p* = /2/a' off = \/2/a' &k is identified as a physical momentum. This is
a general formula for the motion of a string in its background. The first two terms
describe linear motion of the string center of mass; the sum describes its oscillations.
Transforming the expansion to ¢ and 7 coordinates makes it clear that it is the general
solution to the X equation of motion with periodic boundary conditions. The open
string has different boundary conditions which leads to a different expansion. In
particular, the modes a and & are identified (see e.g. [51] section 3.3). As X should be
real, both z and p are real and the oscillation coefficients a, obey the reality condition

an=a_, (4.30)
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The XX OPE (4.19) and its antiholomorphic counterpart translate to the following
commutation relation for the center of mass coordinates x, p and the oscillation modes
a and &:

(2, p"] = in™
[ o] = [, @7] = M dmgn0 1™

[k, 6] = 0 (4.31)
Alternatively, these commutation relations (known as a Heisenberg algebra) could have
been derived by imposing canonical commutation relations on X as expanded in (4.29),
see [51] sections 3.3 and 4.1.

4.5 The spectrum

To derive the spectrum of bosonic string theory I will follow a somewhat intuitive
approach known as old covariant quantization. Other procedures as lightcone quanti-
zation or BRST quantization are described in [51], chapter 4 or [63], chapter 4.

Note that, except for the factor m (which may be absorbed by redefining a), the
commutation relations (4.31) are the same as in the harmonic oscillator scenario. This
suggests that string oscillations, corresponding to particle states, can be quantized
analogously. This procedure will be described below; in the last section the result is
related to the concept of Verma modules that was introduced in section 3.5.

4.5.1 The procedure

The operators with m > 0 are identified as lowering operators and will be called
annihilators. Those with m < 0 are raising operators and will be referred to as
creators. First introduce a ground state, the vacuum, that is by definition annihilated
by all annihilators. It carries a momentum k:

aum>0|07k) =0
P[0, k) k*10, k) (4.32)

Excited states can be constructed by applying one or several raising operators on
the vacuum, leading to a vast amount of particle states. Not all of these states are
physical, as a physical configuration is required to satisfy the constraint equation
T(z) = T(z) = 0. As the explicit form of T in terms of X is known, its modes L,
can be related to the a,, coefficients by comparing terms in the Laurent expansions
(4.24) and (4.29). This gives the following relation:

L= Y :ob omn,: (4.33)

n=—oo

The normal ordering applies only to Ly which introduces some ambiguity in its defini-
tion; this will be of importance later but for now just define Ly to be normal-ordered:

o0

2 oo
a
Lo = Z cat L an, = % + Z a” an, (4.34)
n=1

n=—oo
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The antiholomorphic mode Lg is defined analogously. Translational invariance implies
Lo = Ly; recall that i(Lo— L) generates rotations in the complex plane, corresponding
to translations in the spatial coordinate.

Now these constraints take the form of operator statements with operators L.,
acting on states. Naively, these constraints can be translated to operator statements
on physical states in the Hilbert space |¢):

L,|¢)=0 for allm # 0 (4.35)

However, the Virasoro algebra would then imply

0 = (¢ [Lm,L-m] |¢) = 2m(¢| Lo |¢) + %m(m2 — 1)(¢|9)
= (¢l¢) =0 (4.36)

And the Hilbert space of the theory is completely trivial. A less restrictive requirement
is to impose the operator constraints 'weakly’ in the sense that physical states are
required to obey:®

0 = (¢'|Lim|o) for all m # 0
= Lyl|¢)=0 for m >0 (4.37)

The loosening to m > 0 follows from L! = L_,,. Regarding the Ly constraint, the
definition of this operator (to be normal ordered) is to some extent open for debate.
By commutation, other definitions are always equal to the normal-ordered Ly up to
a constant. To keep things general, one introduces an arbitrary constant A in the Lg
constraint* so that physical states have to obey

(Lo +A)|¢) =0. (4.38)

4.5.2 The states

Now let’s analyze the first mass levels of the closed string. States can be found be
applying creators a, <o and @, <o on the vacuum. Physical states are then selected from
these by requiring the weak operator constraint L,~¢|¢) = f/m>0|¢) = 0. A priori,
this procedure might include spurious states — states that are orthogonal to physical
states in the sense that they can be written as |spur) = L_,|any state). States that
are both physical and spurious have zero norm and are called null states. It can be
shown that these states decouple from the Hilbert space in D = 26 dimensions, an
analysis called the no ghost theorem (see e.g. Polchinski [63], section 4.4)
Let’s start with the vacuum |0, k). The only non-trivial constraint is from Ly:

2 o 2
0 = (Lo+A)[0,k) = (‘% +Za_nan+A> 10, k) = (O% +A) 10, k)
n=1

p2a/
4
Where oy was expressed as the string’s momentum p according to the expression
underneath equation (4.29). The mass M2 = —p? of the vacuum state is then M? =
4A/d.

3In quantizing electrodynamics, this is known as the Gupta-Bleuler approach.
4This constant is often absorbed in the definition of Lg. This however violates the Virasoro algebra.

2
= Al0,k) = —O%m,k) = 0, k) (4.39)
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The first excited state can be expressed as |e, k) = €,, @” | @40, k), where €, is
introduced as a polarization vector that will be subject to non-trivial constraints (do
not confuse it with the antisymmetric tensor). The constraint Ly = Lg directly implies
that the number of creators a and @ should match. Regarding the Ly constraint, a
similar calculation as above shows that the mass of this state is M? = 4(1 + A)/a’.
At this level, there is another non-trivial constraint:

o0
0 = I (etw oy a”,0, k)) = €uw &Yy Z af_p, anp o410, k)
n=—oo
= 6w 621040,k) = V! /264, 87, PO, k) = Vo' [2€u &4 K*|0, K)
= €kt =0 (4.40)

The second line is derived form the first by pulling annihilators to the right and
using the commutation relations (4.31). The constraint states that the holomorphic
oscillations are transversely polarized. Of course a similar equation holds for the
antiholomorphic oscillations: €,,k” = 0. The other constraints are trivially satisfied
but there is some physical redundancy as certain polarizations describe spurious states.
This follows from

L_4|0,k) = ot o, |0,k) =2a_1a9]0,k) =2+/a' /2K, ", |0, k)
1-n ©w 1 1

n=—oo

= (ay ky + by k) ¥ @10, k) = (L_1 ay &, +L_1b, a'il) 10, k)

So that polarizations €, and €,, +a, k, +b, k., correspond to the same physical state;
a and b are understood to be arbitrary vectors with a,k* = b k* = 0.

This process can be continued to arbitrarily high excitations. The Ly constraint
is a mass formula at every level, and more constraint equations apply as the level
increases. I will stop at this point as this thesis is mostly concerned with the first
excited level.

Taking into account the restrictions on the polarization, it follows that the first excited
level has (D — 2)? independent degrees of freedom. As these states are interpreted as
particles in the target space (assumed to be flat Minkowski space in D dimensions),
they must form representations of the little group of the Lorentz group SO(D —1,1).
For massive particles, this is SO(D — 1) and for massless particles it is SO(D — 2).
Now focus on D = 26; the 242 = 576 physical states can be arranged into a symmetric,
antisymmetric and trace part:

€ur = €] — (D —2) " 0un€pp + €qur + (D —2) " 6 €pp (4.41)
~ ~ vl W_/ _/_/
Grv Brv 3]

The states on the right are representations of the little group for massless particles
S0(24). The decomposition is 24 x 24 = 299 + 276 + 1 where r denotes an irreducible
representation of SO(24) with dimension r. These massless particles are identified as
the graviton G, the anti-symmetric tensor B and the dilaton ®. As the first excited
level fits into massless particles, the normal ordering constant should be set to A = —1.

The cost of having the massless levels form representations of the massless little
group of the target space is that the vacuum state has a negative mass-squared of
—4/a/, making it a tachyon. Usually, this signals instability of the theory. The tachyon
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state is an intrinsic drawback of bosonic string theory; in superstring theory there is
a procedure to project it out of the spectrum, but I will not discuss this.

The tachyonic vacuum state and the three massless particles will be encountered
throughout this thesis. At higher levels of excitation, it can be shown that the physical
states can be combined into representations of the massive little group SO(25) (see
[54], section 3.3).

4.5.3 Relation to Verma modules and vertex operators

In the above the spectrum was derived by analogy with the well-known harmonic
oscillator scenario. This spectrum can be interpreted in terms of Verma modules that
were introduced in section 3.5.

As A = —1 the restriction (Lo + A) |¢) = 0 translates to Lo|¢) = |¢) for physical
states ¢. A similar remark for the L constraint leads to the conclusion that physical
states correspond to highest weight states with h = h = 1 (cf. equation (3.43)). In
this language, spurious states are descendants.

By the operator ~ state correspondence physical states are associated with primary
fields of conformal dimension (1,1). These fields are called vertex operators and play a
crucial role in describing interactions. To every physical state, there corresponds such
a vertex operator. For the ground state this is the tachyon vertex operator which is

V;Eachyon(za 2) = ! €xp (zkpo (Z, 2)) : (442)
As seen in equation (4.27), the tachyon vertex operator has conformal weight
(%o’ /4,k%a /4) (4.43)

As stated above, the operator is required to have conformal dimension (1,1). This
leads to the mass formula M2 = —k? = —4/a/.

The vertex operator corresponding to a state at the first excited level |e, k) =
e 0 @10, k) is given by

Vinassiess (2,2) =  €u @ OX"OX" exp (ik,X? (2,2)) : (4.44)

It can be shown that such a field is (1,1) primary if kK = 0 and €,,k* = €,,k” = 0;
see e.g. Kititsis [51], chapter 8. Note that these are the vertex operators on the (flat)
complex plane. A generalization for curved backgrounds will be presented in section
4.6.2.

4.6 Further developments

In the previous sections, I have introduced string theory and showed some of its struc-
ture as a conformal field theory, focusing on the energy momentum tensor and the
spectrum. The spectrum is especially important in this thesis as the particles are the
building blocks of cosmological scenarios. Furthermore, generalizations of the con-
struction as presented so far will be encountered.

This was all free field theory; in the following I will address interactions and provide
a perspective on calculations in string theory. I will be brief as interactions and higher
order calculations (though interesting in their own right) are not of primary interest
in string cosmology.
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Figure 4.2: A string splitting in two strings

4.6.1 Interactions

In quantum field theory, interactions can be added to a free theory by including terms of
higher order in the fields in the Lagrangian density (such as ¢® which leads to a theory
of the same name). Using this prescription with the Polyakov action would result in
a complicated field theory on the worldsheet — describing non-harmonic oscillation of
a single string instead of interactions of two or more strings. String theory is a first-
quantized theory whereas the procedure of adding higher order terms to a Lagrangian
density is sensible for second-quantized theories. Finding such a second-quantized
formulation of string theory — called string field theory — is an area of active research.

Let’s take a step back to a more intuitive picture of interacting strings as a gen-
eralization of Feynman diagram. For instance, the process of a string A splitting into
two string B and C' is depicted in figure 4.2. Conformal invariance makes it possible
to reshape the worldsheet in a drastic way, as depicted. The state of string C' at
infinite time is mapped to an operator on the worldsheet that codes for all the rele-
vant information of string C'. This is the vertex operator encountered in section 4.5.3.
Correlation functions take the general form

(A|Ve(z,2) | B) (4.45)

Where Vi is the vertex operator corresponding to string C'. To give an example,
consider strings A,B and C to be tachyons, states with no degrees of freedom except
momentum. From section 4.5.3, the vertex operator for a tachyon with momentum £k,
is

Vo(z,2) = @ exp(ikepX? (2,2)) : (4.46)
Acting on a tachyon state |0, ky) produces a state
|0, k) =: exp (ikc, X* (2,2)) =10, k) (4.47)

Acting with the momentum operator p and using the commutation relations (4.31), it
may be verified that k; = ks — k. which states momentum conservation at the vertex.

The formalism of vertex operators is a general means of calculating tree level in-
teraction processes in string theory.
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4.6.2 The Polyakov path integral

Probability amplitudes for physical processes can be calculated in the Hilbert space
formalism. However, a much more powerful tool is the path integral which for instance
allows calculations beyond one loop. In analogy with point-particle QFT the path
integral for the Polyakov action (4.6) is defined as

z = [laxjdnesp(-5,x, 1)
—_ 1 2 af "
Spo= —— /A >z Vhh*P 8, X 85X, (4.48)

The arbitrary x coordinates are used to stress that the metric is not gauge-fixed.
This prescription means in particular that integration over all metrics h is assumed.
However, due to the diff x Weyl gauge freedom in the Polyakov action a large number
of metrics represent the same physical configuration which leads to a huge overcounting
and problems with infinities. The resolution is to fix the gauge such that only one h
of each set of gauge-equivalent metrics is counted. This effectively divides the path
integral by the gauge volume of diffeomorphism and Weyl rescaling symmetries. The
consistent method to do this is by introducing anticommuting Faddeev-Popov ghosts
in the path integral. The ghosts constitute an independent CFT with central charge
c¢g = —26. The total central charge of the X CFT and ghost system is then 0 in
D = 26 dimensions. I will not elaborate on this issue but refer to the literature; see
e.g. [63], chapter 3.

The gauge fixing procedure depends on the topology of the worldsheet. Considering
closed strings only, the easiest is the sphere where the gauge freedom can be used to
completely fix h. On the torus, this is not possible; not all torii are gauge-equivalent
and what remains is an integration over a single Teichmiiller parameter.

Describing interactions in the Poyakov path integral formalism relates to the vertex
operators used in the previous section. In the flat space analysis, the operator ~ state
correspondence was a general description to find the vertex operator for a physical
state. The path integral vertex operator formalism for curved worldsheets is a bit
more elaborate. For details the reader is referred to Polchinski [63], section 3.6; I will
just describe the recipe. Starting from the known tachyon vertex operator (4.42), an
integration over the worldsheet is assumed. This should be no surprise because the
worldsheet coordinate dependence has to drop out in the path integral and the integral
ensures diff invariance. Furthermore, the closed string coupling constant g, is inserted.
This leads to

Viaonyon = 290 /A o v/hexp (ik, X?) (4.49)

At the massive level, the vertex operators for the graviton, anti-symmetric tensor and
dilaton state have a different form. The graviton state vertex operator is

Vyraviton = % /A > Vhh®?s,, 8, X 85 X" exp (ik,X") (4.50)

Where s is a symmetric two-tensor. The o' is included to balance the length dimension
of the X fields. In both vertex operators, a regularization procedure is assumed to
define (products of) fields in a curved background.

Note that the anti-symmetric state cannot be included just by allowing s to contain
an antisymmetric part as this would trivially contract to zero. Rather, the vertex
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operator resembles the graviton vertex operator but the worldsheet metric A is replaced
by the anti-symmetric tensor e. The correct prescription to generalize the flat space
dilaton vertex operator is more elaborate and I will postpone this issue until section
5.1.2.

4.6.3 The Weyl anomaly

The symmetries in the Polyakov action are crucial for the consistency of string theory.
These symmetries are explicitly present in the classical Polyakov action (4.6). However,
in a general quantum theory it is possible that a classical theory breaks down, a process
called an anomaly. The analysis of string theory as a conformal quantum field theory
in sections 4.4 and 4.5 was on the Ricci-flat complex plane. Here conformal symmetry
was seen to determine the theory to a large extent. In the Polyakov path integral,
integration over metrics is assumed and it is not a priori clear whether the classical
symmetries will be respected for all metrics, including including non-flat ones. Though
this anomaly is not crucial to the rest of this thesis, I have included the analysis. It
uses a lot of the theory introduced before and may serve to put things in perspective.

The evaluation of the Polyakov path integral was discussed in the previous section.
It relies on a gauge-fixing procedure for the worldsheet metric h making it imperative
that the result does not change when a different gauge is chosen. In other words, if h;
and ho are two different fixed metrics,

Z (e Vncia (4.51)
When actually performing calculations with the path integral, a regularization proce-
dure is often needed. This can usually be done in an explicit diff and Poincaré invariant
fashion. An example is Pauli- Villars regularization® which introduces a massive field.
It is easy to verify that adding a mass term to the Polyakov action respects Poincaré
and diff invariance, but breaks the Weyl rescaling invariance. This difficulty is generic,
so whereas diff and Poincaré invariance are apparent, the Weyl rescaling invariance
has to be verified.

Let’s return to the definition of the energy momentum tensor 7T'. Starting from a
path integral with arbitrary insertions, and using an arbitrary coordinate system z,
the path-integral definition of T reads

(- Yhei,

5. = —% / P/ h(@) Shag(z) (T .. (4.52)

Classically, this coincides with the usual definition of T as used in equation (4.7). For
a Weyl transformation dh = 2wh, this takes the form

Sl = —%/d% h@) w(z) (T2, ...) (4.53)

In the quantum theory, Weyl invariance corresponds to the tracelessness of T as an
operator statement. Let’s assume that, in the quantum theory, T is not traceless. The
trace must be diff and Poincaré invariance as the regularization procedure preserves
these symmetries. Furthermore, on a flat worldsheet T was found to be traceless; see
section 4.4.2. This implies that the trace must be of the form

T* =aR (4.54)

5This regularization procedure is described in [63], appendix A for the harmonic oscillator.
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Where R is the curvature scalar of the worldsheet and a is a constant that will be
determined in the following. A priori, one might consider a general function depend-
ing on R as this is allowed by symmetry, but higher powers of R are forbidden for
dimensional reasons ([63], 3.4)

By diff invariance, which is assumed to hold, every metric can be transformed to
within a local rescaling of the unit metric. It is therefore no loss in generality to
assume the metric in some coordinates z is proportional to §. Then introduce complex
coordinates z = z! +iz? and z = z! — iz?, such that the metric h takes the form

ds® = 2h,zdzdz (4.55)

Note that this metric h is not the fixed metric h associated with the conformal coor-
dinate system introduced in section 4.2. In particular, it may be position-dependent.
In these coordinates, tracelessness of T reads

a
T, =Tz, = §hz2R (456)
Now, conservation of energy-momentum (as a result of diff invariance) reads
_ a_. a 5 a
VZTZZ = _vazZ = —§Vz (hzzR) = —Ehzzsz = —5 BR (457)

By comparing the behavior of the terms V*T,, and —a/2 OR under Weyl rescaling, it
is possible to find the value of a. In the following, this is done to first order around a
flat worldsheet with metric h.

Being a quasi-primary field in CFT, the energy-momentum tensor transforms ac-
cording to equation (3.38) under conformal transformations:

5. T(z) = — (20¢ + €d) T(2) — %636 (4.58)

Where c is the central charge of the CFT. As discussed in section 4.3.2, a conformal
transformation can be thought of as a diffeomorphism (§z = €, 6z = €) and Weyl
rescaling (2w = Oe¢ + J€) that combine to leave the metric invariant. In the trans-
formation rule above, the first term in brackets corresponds to tensor transformation
under a change of coordinates, corresponding to the diffeomorphism. The last term is
identified as the action of a Weyl rescaling on the quasi-primary field T'(z). Hence:

owT(2) = —%6%
= SwVAT,, = V* (—ga%) - —gaza% - —%56% (4.59)

Which is an expansion to first order around a flat worldsheet.
Under a rescaling of the metric dg = 2wg, the transformation of the Ricci scalar
can be deduced from the identity (in D = 2 dimensions; see [63], section 3.3)

VIR = g(R—-2VV,w)
= dwR=-2V°Vw (4.60)

Which is valid up to first order around a flat metric. This implies

Sw (—a/20R) = —g B(—2VV o) = ad(408w) = 4a 50w (4.61)
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Matching the equations (4.59) and (4.61) implies that
c=-12a = T° = —%R (4.62)

In bosonic string theory, the central charge of the X theory is ¢ = D = 26. As men-
tioned in section 4.4, this theory should be coupled to a ghost system that has central
charge —26 (cf. section 4.5.2). The total theory then has ¢ = 0 which implies Weyl
invariance is retained even for curved worldsheets. This provides another motivation
for choosing D = 26.
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5
Low-energy string cosmology

In chapter 2, the reader was introduced to the standard theory of cosmology with
the Friedmann equations in a prominent position. Extensions to this scenario as a
cosmological constant and a scalar field were discussed. The current chapter introduces
a theory of cosmology that is solidly rooted in string theory. Both the cosmological
constant and the gravitational scalar field make a reappearance in this theory.

Section 5.1 considers strings that inhabit a non-trivial background, i.e. not 26
dimensional Minkowski space as assumed throughout the analysis of string theory in
chapter 4. This leads to an effective action governing the dynamics of the background
fields in a low-energy limit. Section 5.2 reinterprets this effective action as a theory of
gravity and discusses in general the cosmological implications. Focusing on the universe
we inhabit requires more advanced techniques as compactification, supersymmetry
breaking and the possibility of a dilaton potential. Section 5.3 gives an overview of
these topics and provides references for more detailed study. Sections 5.4 and 5.5
conclude this chapter with an explicit review of two well-known cosmological scenarios
in string theory and an outlook on exact solutions.

Two reviews on string cosmology that have been helpful are reference [21] by
Copeland et.al. and [57] by Mavromatos.

5.1 Strings in a non-trivial background

How does string theory relate to cosmology? Starting point is the generalization
of the Polyakov action in Minkowski target space to arbitrary backgrounds. This
describes the dynamics of strings in a coherent background of the massless string
states: the graviton (metric), the anti-symmetric tensor and the dilaton. It will be
shown that consistency of this theory (diff x Weyl invariance) imposes constraints on
the background. To first order, one of these is that the metric is subject to the vacuum
Einstein field equation.

The crux of the construction is that these constraints can be derived from an effec-
tive action that is reinterpreted as a string-inspired theory of gravity. The construction
is valid for low energies by the limit o/ < R., where R, is the radius of curvature of
the spacetime, a typical length scale. This limit corresponds to viewing strings, from
a large distance perspective, as point-particles.

In chapter 4, string theory based on the Polyakov action was analyzed. This action de-
scribes free bosonic fields X that live on a two-dimensional worldsheet and parametrize

42



a 26 dimensional Euclidean space:

1

Sp=—
P 4ol

/ @z Vhh*P 8, X 85X, (5.1)
A

This action was used as a a definition of the classical theory and the path-integral based
on the Polyakov action defined the quantum theory. Throughout this analysis, the
metric of the target space (implicitly used for contracting the p indices) was understood
to be the Minkowski metric  in D = 26 dimensions describing a flat, static spacetime.
In this section, the Polyakov action will be generalized to more general backgrounds.

5.1.1 The Gauss-Bonnet term

Besides allowing for non-trivial backgrounds, there is another generalization of the
Polyakov action that needs to be mentioned. This results in an additional term known
as the Gauss-Bonnet term.

As seen in section 4.3.2, the Polyakov action is invariant under worldsheet diff x Weyl
and spacetime Poincaré transformations. However, it is not the most general action
with these symmetry properties. Consider the addition

Sp — Sp + i/ d*c VhR (5.2)
47 A

Where R is the worldsheet curvature scalar. Under a Weyl rescaling it transforms up
to a total derivative. (cf. equation (4.60)) This term is known as the Gauss-Bonnet
term and is a valid addition to the Polyakov action from a symmetry point of view.
For notation, write it as A x, where x is a shorthand denoting the integral over the
worldsheet area. Then A is a free parameter, while x is a topologically invariant
quantity known as the Euler number!. For a closed surface with A handles, it is equal
to x =2 — 2h.

As the Gauss-Bonnet term depends only on the worldsheet topology and not on
its local properties, it cannot affect the equations of motion. Therefore, it does not
influence local string dynamics which is the reason it was not considered in chapter 4.
In the path integral however, it gives relative weight to backgrounds with a different
topology. This provides an interpretation for the parameter A: adding a handle in
a string diagram changes the weight by a factor exp (—2A). The extra handle cor-
responds to the emission and absorption of an additional closed string (cf. diagram
4.2), processes that are characterized by the closed string coupling constant g.. Hence,
identify

ge =exp(}) (5.3)
This suggests that the string coupling constant is a free parameter in string theory.

As will become clear in the next section, the situation is in fact a bit more subtle.

5.1.2 Non-linear sigma model

In the previous section, the Polyakov action was generalized by the addition of a new
term. In this section, the generalization from a Minkowski to a general target space

LA nice account on the Euler number can be found in Green et.al. [41], section 3.4.5.
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is considered. This has far-reaching consequences; the generalized action belongs to a
broad class of models known as non-linear sigma models.

To start with, consider the Polyakov action with the straightforward generalization
n— G(X):

1
Aol

S =

/ @z Vhh*P 9, X 35 X" G (X) (5.4)
A

Where the Gauss-Bonnet term is suppressed for the moment. The crucial point is
that the target space metric now depends on the coordinates X. Consider a Taylor
expansion for G close to the origin:

G (X) ~ G (0) + X8, G (0) + .. (5.5)

In the Polyakov action, the first order term is a kinetic term for the X fields. The
terms of higher order are interaction terms, with coupling constants given by various
derivatives of the metric G. This means that the X fields are no longer free, but instead
span some curved manifold. Such a model is historically known as a non-linear sigma
model. A more general introduction to such models can be found in the context of
coset models in section 6.1.

The replacement of n — G(X) clearly constitutes a generalization of the Polyakov
action. Though it may look appealing, it is not obvious that the action with this
modification is the correct way to describe string propagation in a general, possibly
curved, background. As seen in chapter 4, closed string theory predicts a graviton
state in its spectrum and one may question if this is the correct way to account for it.
The answer is yes, as the above prescription corresponds (to leading order around flat
space) to considering the presence of a coherent background of gravitons. To see this,
write the metric as a perturbation around Minkowski space:

G v (X) = 1w + Xpuw (X) (5.6)
Where x is small. In this expansion,

1
4ra! /A 2 VR0, X" X" Xy (X)

= Sp+V (5.7)

S Sp +

Comparing this with (4.50), V is identified as the path integral graviton vertex operator
in a curved background, with

Xuv(X) = 4dmge exp (1k, X*) S0 (5.8)

Concluding: if x takes this plane-wave form, the generalization n — 1 + x(X) cor-
responds to adding Sp — Sp + V with V the graviton vertex operator. The plane-
wave ansatz is not essential and can be generalized by taking a superposition. In the
Polyakov path integral, various configurations are weighed by

exp(—S) = exp(=Sp—V)=exp(-Sp)exp(-V) (5.9)

Inserting a single graviton vertex operator V in the path integral represents a single
graviton interaction. The exponential corresponds to a coherent background of gravi-
tons. This means that considering a perturbation in the Minkowski metric corresponds
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to evaluating flat-space string theory in a background of coherent gravitons — which
makes perfect sense from the string theory perspective.

Motivated by this success, the other massless background fields will be included:
the anti-symmetric tensor field B and the dilaton ®. As was mentioned in section
4.6.2, this is not straightforward as the dilaton vertex operator takes a non-trivial
form. The result is the following non-linear sigma model (see Polchinksi [63], section
3.7):

1

5 % L /Ad% VI (h% Gl (X) + 6% By (X)) 02X 05 X"

1 2
E/Ad zvVhR ®(X) (5.10)

With R the worldsheet curvature scalar. The antisymmetric tensor density € is nor-
malized to vhe®® =1 in Euclidean space, in accordance with the discussion in section
4.2; be aware that other definitions are also used in the literature. The form above is
chosen as to comply with Polchinski [63] and Tseytlin [78].

Let’s focus on the peculiar dilaton term. It resembles the Gauss-Bonnet term
(5.2) that may be added to the Polyakov action, but it has a coordinate-dependent
coefficient ®(X) in place of the fixed parameter A\. The resemblance can be used by
expanding ®(X) = (®) + §®(X). From the analysis that led to equation (5.3), the
closed string coupling g, is related to the vacuum expectation value of the dilaton:

ge = exp () (5.11)

The coordinate-dependent ®(X) term is not topologically invariant; in fact, it is not
even Weyl rescaling invariant on the classical level. This issue will be addressed at
the end of section 5.1.4. It is related to the fact that the dilaton term has no 1/¢’
precoefficient, which is clear on dimensional grounds.

5.1.3 Beta functions and the low-energy effective action

From hereon, the non-linear sigma action (5.10) is understood to be the defining ac-
tion for string theory in a non-trivial background. This section is concerned with the
implications of Weyl rescaling invariance of the non-linear sigma model. It will be
shown that this invariance, which is motivated from string theory, leads to a set of
constraints on the background fields G, B and ®. In the literature, one may find quite
a few ways to formulate these constraints. I have chosen to follow the notation and
conventions of Polchinski [63].

In flat space string theory, it was found that the energy-momentum tensor 7 is traceless
(cf. (4.7)) which assures rescaling invariance. In the analysis on the Weyl anomaly, it
was seen that on a curved worldsheet tracelessness of T implies that the total central
charge of string theory has to be zero. Given that the ghost system constitutes a CFT
with central charge ¢ = —26, the X matter CFT is required to have ¢ = 26. This is
the case for 26 bosonic X fields, which span a 26 dimensional target space. In this
reasoning, tracelessness of T (rescaling invariance) implies that strings live in a 26
dimensional target space. It must be acknowledged that Weyl rescaling invariance has
far-reaching consequences.

Of course a sigma model does not have to be rescaling invariant in general. How-
ever, for the sigma model considered here to be interpreted as string theory in a
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non-trivial background, it should have string theory symmetries — one of which is
Weyl rescaling invariance. For this reason it is required that T is traceless. Note that
the action is diff invariant by construction.

The trace of T in the quantum theory defined by the action (5.10) is not calculated
easily; it involves a regularization procedure such as dimensional regularization. This
is described in some detail in Polchinski [63]. I will only posit the result as

R

1
T% = =5 (Big™ +iBue™”) 0 X" 0 X" — 47 (5.12)

VY

The B coeflicients encode the scale dependence of the theory and are also known as the
renormalization group beta functions. To first order in o', they are equal to (higher
order terms can be found in e.g. Tseytlin [76], section 3)

!

i, = &Ry +22'V,V, @~ %HWJHVM +0(a”?)
= dVPH,,, +d'VP®H,,, + 0(?)
® D-26 <o 0 - o wp ”
BT = = — VIV, @+ VIOV, ® — L H HY 4 O(a) (5.13)

Where the boldface R is the spacetime Ricci tensor (constructed from G), V is the
spacetime covariant derivative and H is the field strength of the tensor field B:

H;un\ = a[uBuA] = ayBu/\ + 81/Bp)\ + 6/\B;U/ (514)

The statement that the non-linear sigma model (5.10) is Weyl rescaling invariant at
the quantum level now reads

G _ pB _ p® __
=B =0 =0 (5.15)

pv

So that the lefthandside of each of the equations in (5.13) is identically zero. This is
a highly non-trivial constraint on the background fields G, B and ®. In particular, in
the absence of & and B background fields, the condition ﬂff,, = 0 implies

R,, =0 (5.16)

This is a celebrated result in string theory: consistency in the sense of worldsheet
rescaling invariance implies that the spacetime graviton field G is subject to the vac-
uum Einstein field equation! It is apparent where string theory departs from general
relativity. If B or ® are non-trivial, or higher order o' contributions are taken into
account, one finds corrections to the Einstein equations.

A trivial solution to the equations (5.15) is string theory in flat Minkowski space
without dilaton and antisymmetric tensor field:

Guw(X) =nw B, (X)=®(X)=0 (5.17)

Which is the theory studied in chapter 4. For this background, 3¢ and % vanish
identically, but % = 0 implies that D = 26, which is of course a familiar result.
If the solution features a dynamical dilaton, the dimensionality of spacetime may be
different.

In all three beta functions, ® only appears differentiated. Shifting it by a constant
value therefore defines another valid background. Relating this to the discussion in
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section 5.1.1, a change in the closed string coupling constant corresponds to consider-
ing a different background.

It is possible to construct backgrounds directly from the set of equations (5.15), but
a more systematic approach starts by noting that these equations, again to first order
in o/, can be derived from the following low-energy effective action

1 2(D -2
Sefr = / dPzV/Ge?® (R+ 4VEPV B — EH“"MH,M - %) (5.18)

Note that this is a spacetime action, in an arbitrary number of D dimensions. Its nor-
malization is irrelevant as it is always possible to rescale the action by a constant shift
in the dilaton. If the dilaton is constant in spacetime, the exponential is an overall
factor and the action reduces to the Einstein-Hilbert action of general relativity, where
the B field may be regarded as a source — cf. section 2.1.1. This is in keeping with the
vanishing of the beta function S as given in (5.13). If ® is constant, it is the Einstein
field equation but a dynamical dilaton yields modifications. The equations of motion
that follow from this action coupled to matter sources are explicitly stated in section
5.2.1. At this point, I suffice by claiming that they are equivalent to the vanishing of
the beta functions (5.15).

To summarize the above: worldsheet rescaling invariance leads to the vanishing of
the beta functions, which is formulated as an action principle in spacetime. The
appearance of this action is not some miracle; it is just set up to reproduce (5.15).
The remainder of this chapter will be concerned with solutions to the equations of
motion of the low-energy effective action. Such a set of fields G, B and & is referred
to as a background and defines (up to O(a')) a rescaling invariant non-linear sigma
model. Before doing so, let’s discuss the assumptions and limits that were taken in
the construction.

5.1.4 Limits of validity

Effective actions occur in various contexts in quantum field theory. As the name
suggests, they do not describe fundamental laws but are usually set up to reproduce
results in a specific regime. The low-energy effective action from bosonic string theory
is no exception. In the following, the limits of its validity are discussed.

Suppose that the background fields satisfy (5.15) or, equivalently, the equations of
motion from the effective action. The non-linear sigma model (5.10) then defines an
interacting two-dimensional CFT up to O(a'). The interaction terms are given in the
expansion (5.5) for G. The first order term has a spacetime derivative of G, which
is roughly proportional to the inverse radius of curvature R.;!. The dimensionless
coupling constant in the series is then \/JRC_I. For the perturbation series to make
sense,

o < R;? (5.19)

Meaning that the characteristic length scale of the fields is large compared to the string
scale. In other words, one is looking at strings from a large-scale perspective in which
the internal structure of the string plays no role. This perspective also justifies the
exclusion of massive states; on large scales one considers large wavelengths and low
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energies. This was implicitly assumed earlier as the vertex operators used to construct
the sigma model (5.10) were those corresponding to the massless states G, B and ®
only. The tachyon state vertex operators was also neglected. The inclusion of this
operator is considered in e.g. Polchinski [63], section 6.6. See also reference [13] by
Bilal.

The beta functions are explicitly considered up to first order in o', which cor-
responds to considering interaction terms up to the second derivative of G in the
non-linear sigma model. It is possible to include higher-order terms which results in
additional higher-order derivatives in the effective action. Which terms to include is a
matter of choice in perturbation theory. The approximation to consider only terms of
first order in o is better if the gradients of the fields are small.

Usually, one is interested in a string theory with a weak coupling constant so that
the effects of higher order loops can be addressed in a perturbation expansion. Because
of the relation (5.11) between this constant and the dilaton vev, it is desirable that
the dilaton does not grow arbitrarily large.

The issue that was raised in the end of section 5.1.2 can be readdressed in the language
of the o/ perturbation expansion. It was noted that the dilaton term by itself is not
rescaling invariant at the classical level. However, in the full sigma model (5.10) the
term is of higher order in o' compared to the first term with G and B. Therefore its
classical transformation under a rescaling should be compared with quantum correc-
tions from the G and B fields. Classically, Weyl rescaling invariance is then apparent
and in the quantum theory rescaling invariance leads to the vanishing of the beta
functions.

5.2 A theory of cosmology: basics

In the previous section, bosonic string theory in a general background was developed
to the point of finding consistency equations for allowed background fields. The main
result is that bosonic string theory may be formulated in a non-trivial background
if the background fields G, B and ® obey the equations of motion derived from the
spacetime action

1
Set = / dPzvV/Ge™® <R+ AVHRY,® — o HP X Hyys — V)

2(D — 26)
vV = 5.20
3o/ ( )
The reason to introduce the symbol V is that this term will be modified in various
scenarios as will be discussed farther on. Using the symbolic notation allows for a
more general discussion.

Starting here, the effective action will be regarded in a different light. In the previous
section, the action was introduced as a trick to find valid backgrounds for string theory.
In this section and the following, the effective action — with a specific implementation
of V — is considered as the definition of a ’string-inspired’ theory of gravity. This
gravitational theory will be referred to as the low-energy string theory of gravity
and should be regarded as a string theory extension of Einstein gravity, i.e. general
relativity.

48



The most striking difference is of course the existence of a B and & field that are on
equal footing with the metric G. In particular, the dilaton ® plays the role of Newton’s
constant yet one that is coordinate dependent. It closely resembles the Brans-Dicke
scalar field, as may be appreciated by comparing equation (5.20) with (2.27).

If it is a constant, the theory reduces to general relativity where B may be regarded
as a source term, or it may assumed to be absent. In the general case, these fields
imply modifications to Einstein gravity.

This section discusses general aspects of this theory of gravitation. Section 5.2.1 derives
the equations of motion for the fields G, B and ® that follow from the action (5.20)
coupled to matter sources. This is followed by a discussion on frames in section 5.2.2.
This section concludes by presenting a large-small duality that is typical to string
cosmology but unknown in general relativity in section 5.2.3.

5.2.1 Matter, symmetry and equations of motion

The low-energy effective action governs the dynamics of the background fields G, B
and ® in the absence of other fields and should be regarded as the counterpart of the
Einstein equations in vacuum.

What are the implications on cosmology? Recall from section 2.1 that the Einstein
field equations constitute one of three basic pillars of the standard model of cosmology,
the other two being the dynamical behavior of mass and the symmetry properties of
spacetime by the cosmological principle. In order to study the impact of replacing
Einstein gravity by the string theory of gravity on cosmological scenarios, one has to
appreciate the behavior of matter and the symmetry properties of spacetime. Ideally,
these would follow from string theory but usually one has to make some assumptions,
the act of which defines a specific string-motivated theory of cosmology.

In section 5.4, these assumptions will be discussed for the specific models considered
there. As for the symmetry of spacetime, it is usually assumed that the metric is
maximally symmetric of the Robertson-Walker type or strictly diagonal with time-
dependent spatial entries. For such an ansatz, it is natural to assume that both the
dilaton ® and the antisymmetric field B have no spatial dependence. To keep things
general, comments regarding the nature of ’stringy’ matter are postponed until section
5.4. However, it is assumed that the action is a functional of G and @ only:

Sy = /dDa:\/E.CM (5.21)

The equations of motion from the general bosonic string cosmology action appear
throughout the literature in a variety of forms; with or without B-field, dilaton po-
tential or matter. For the sake of definiteness, I will state the equations of motion for
the effective action with general V' = V(®), including a B field and matter. Varying
the action with respect to G, B and ®, respectively, results in the following set of
equations

1 1.
Se¢ = Ru+5Guw (—R +V +4VEIV,d — 4VAV,® + EHZ>

3
+ 2V,Vo® - S Hypo H
0 = V(e ?*H"?)
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1 10V

S = R—-V - —H?4+4VIV,® —4V*OV,d + - — 5.22
3 T VEV VERV, O + 593 (5.22)
Where S¢ and S¢ are source terms given by (recall the assumption that the matter

action is independent of B)

Sy = ﬁéSM - ﬁT Se = —62<I> (5SM
¢ JGoGm T g ® T o/G 6%

Where T is the usual energy-momentum tensor of the matter sources. An explicit
calculation, which also discusses the matter sources in some detail, can be found in
Gasperini [31], appendix C.?

Without the source terms and restricting to V' as given in eq. (5.20), these equations
are equivalent to the vanishing of the beta functions as expressed in equation (5.13).
For example, the vanishing of ¢ follows from inserting the third of the equations
(5.22) into the first. The first equation can be rewritten in the particularly easy form

(5.23)

3

,+2V,V, 8 — =
Ry, +2V,V,® -

HypoH,” =0 (5.24)

The addition of matter sources must be regarded from the point of view of the effective
action being a theory of gravity.

The H field is subject to the field equations that follow from the action as expressed
the second equation of (5.22). Furthermore, it obeys a closure condition

a[aHuyp] =0 (525)

which follows directly from its definition in terms of B, equation (5.14). In D =4, it
is customary to introduce a pseudo-scalar axion field o as (see e.g. Lidsey et.al. [53],
section 3.3)

HWP = 2®ehvray o (5.26)

This automatically solves the field equation (5.22) for H. The closure condition, needed
to interpret H as a field strength, is non-trivial:

2V,oVho +V,VFe =0 (5.27)

In fact, the closure equation takes the form of a field equation for the dual field
Hopy = € 2%€40papy/n! H#*P. This duality transformation interchanges the field and
closure equations. As long as both equations are satisfied, the dynamics of a solution
is equivalent to that of its dual.

5.2.2 String and Einstein frame

The reader will have noted the overall factor of vGe2% in the effective action; this is
typical in the string frame form of the action. By a redefinition of G, it is possible to
cast the action into a form more familiar from general relativity, known as the Finstein

2The derivation of the first equation is bit tricky, as one needs to explicitly calculate the variation
of the Ricci tensor. In general relativity (i.e. without the dilaton prefactor), this is a total derivative
by the Palatini identity.
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frame. This section comments on this redefinition.

Using primes to indicate quantities in the Einstein frame, consider rescaling

2
G, =e G, p:

== (5.28)

This is a spacetime rescaling under which the effective action is not invariant. The
various terms in the string frame action (5.20) are related to quantities in the Einstein
frame as

\/66_24) —  (Dp-2)2 G/:e%‘i’\/@

4D -1
R = 6_2pq) (RI - % (V’uvu(b — V'“@V;@))
VERV,® = GMV,8V,® =e PPGMV,OV,0 = PPV OV, O
H" H,,n = e PPH"*H,,\ (5.29)

The primes are used to indicate that the index is raised with the rescaled metric G'.
The relation between the curvature scalars R and R’ follows from a straightforward
computation®, the result may be found in Polchinski [63], section 3.7. Inserting the
equations (5.29) in the string frame action changes its form to

4 1
Seft = / dP VG (R’ — 55 VeV — e T H A, Vem) (5.30)

The reader will recognize the canonical Einstein-Hilbert term +/G'R’ from general
relativity. The rescaling was set up to make this term appear without the dilaton
prefactor. Nevertheless, the departure from Einstein’s theory of gravity is also apparent
by the other terms in this frame. The equations of motion that follow from this action,
the Einstein-frame analogs of equations (5.22), can be found in Copeland et. al. [21].

The actions in the string and in the Einstein frame provide complementary views on
the same physics. If the dilaton is constant, the rescaling is trivial and the form of both
actions is virtually identical. If, however, the dilaton is dynamical, the actions are quite
different in form and a solution for the background fields may be qualitatively different
in both views. For example, a static metric in the string frame may be expanding in
the Einstein frame. In the string frame, solutions often take a simpler form and it
seems a more natural point of view from the perspective of a physical string. On
the other hand, for comparison to cosmological scenarios in general relativity or to
astronomical data, the Einstein frame may be more convenient. I will usually use the
perspective of the string frame.

Their is a fundamental question behind this choice: does an ’observer’ get data
in the string or in the Einstein frame? Of course all experimental input comes from
particles that couple to the gravitational system, so the real question is whether or
not particles in general couple to the dilaton. A related observation is that the effec-
tive action for open string theory has a somewhat different dilaton coupling (see e.g.
[21], equation (2.11)). Even in the string frame, the dilaton does not couple to the
antisymmetric tensor field.

3Be aware that the Palatini identity, which relates the transformation of the Ricci tensor to the
transformation of the affine connection, holds to first order only.
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This implies that the 'natural’ frame depends on us being made of open or closed
strings — or perhaps point particles after all. In the literature, one encounters both
matter sources coupled to the dilaton and matter sources that are not. As mentioned
in the beginning of section 5.2.1, I will only discuss the nature of matter sources for
some explicit examples so I leave the discussion at this. Besides, there is experimental
evidence for the dilaton being constant in the present universe so that both frames are
identical. This will be discussed in more detail in section 5.3.3.

5.2.3 Large-small duality

An important concept in string theory are dualities, relationships between seemingly
different theories. This section is devoted to a large-small duality that relates string
theory on ’small’ and ’large’ backgrounds. This large-small duality is unknown in gen-
eral relativity, yet an intrinsic property of string theory modifications to relativity. It
is investigated in detail by Veneziano [82]; see also more general comments in Tseytlin
[78]. It plays a fundamental role in so-called pre-big-bang scenarios, see e.g. the in-
troduction by Gasperini [31]. See also the review by Giveon et.al. [38].

Large-small duality is related to T-duality, which (in an elementary form) states that
closed string theory compactified on a circle with radius R is dual to closed string
theory compactified on a circle with radius o/ R. It is understood that winding modes
in one theory correspond to momentum modes in the other theory and vice versa. This
particular example of T-duality is described in Polchinski [63], section 8.3. From a more
general point of view, such a duality relates processes at a large scale to processes at
a small scale, thereby strongly suggesting the existence of a minimum length scale
equal to the string length. In a cosmological setting, this leads to quite fundamental
questions regarding the big bang.

The following example is meant to illustrate that the existence of the dilaton is
crucial to this duality. Consider a term in the string theory effective action of the
kind

Sy = /dDav\/Ee*2<1> \%4 (5.31)

The V is understood not to scale with the metric G. It could be the dimensionality
term —2(D — 26)/(3a’) in the string theory effective action, or some dilaton potential
term but let’s keep it general. Now consider the large-small transformation G — G~1.
The action is invariant if, at the same time, ® is transformed according to:

G - G
> - @—%Tr[lnG] (5.32)

Where In is understood to be inverse of matrix exponentiation. These two transfor-
mations exactly balance each other and Sy is invariant under the large-small duality.
This should be contrasted with general relativity. Assuming @ is fixed, Sy will trans-
form non-trivially by the transformation of v/G and there is no way to compensate for
this. With a specific transformation law, the dilaton may accommodate large-small
duality — a specific feature of string theory.

The large-small transformation (5.32) is an example of a larger class of duality trans-
formations on the background fields G, B and ®, which will be discussed in section
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5.4.4. Such a transformation relates two different backgrounds to each other, so it is
not a symmetry in the usual sense of the word. Just as the large-scale duality de-
scribed above they provide insight into the nature of various solutions. With a duality
transformation, it is possible to trade properties of the graviton field G for properties
of the anti-symmetric tensorfield B or the dilaton ®. In particular, two G's with differ-
ent curvature may in fact be dual if their accompanying B and & fields are matched
properly. This strongly suggests that strings feel’ geometry in a different way then
point-particles do.

5.3 String cosmology and our universe

The previous section introduced the reader to a theory of cosmology inspired by string-
theory. The current section introduces more advanced concepts that aim to relate this
general theory to the universe we inhabit.

A fairly obvious question of this kind is how string cosmology can admit a four-
dimensional universe as a solution. The standard answer to this question uses the
mechanism of compactification, which will be the subject of section 5.3.2. Before doing
S0, supersymmetric extensions? to the effective action from bosonic string theory will
be the subject of section 5.3.1. Section 5.3.3 describes experimental constraints from
astrophysical observations on the dynamics of the dilaton and discusses mechanisms
that may affect these dynamics.

5.3.1 Supersymmetry

The effective action discussed so far, being motivated from bosonic string theory, in-
cludes only the massless states from bosonic string theory. This section is concerned
with the effective actions of supersymmetric string theories.

Low-energy effective actions similar to the bosonic action (5.20) can be constructed for
the massless fields of the various superstring theories. The bosonic part of these actions
is universal and equal to the bosonic string theory effective action. Without addressing
this in detail, it should be mentioned that the construction of these actions is not a
straightforward generalization of the procedure of the low-energy effective action of
bosonic string theory as discussed in section 5.1.2. In particular, the ’vertex operator’
approach that was described is much more difficult in superstring theory. However,
it should be clear that it is possible to construct an effective action that reproduces
scattering amplitudes calculated in the low-energy limit of the full theory. This task
is made easier by supersymmetry; in fact, the various superstring effective actions are
largely determined just by their particle content and supersymmetry. As suggested
by symmetry, the low-energy actions of ten-dimensional superstrings are intimately
related (by dimensional reduction) to supergravity theories in eleven dimensions. For

4Recall the physical motivation for supersymmetry: there is a huge difference in the standard
model energy scale 102> GeV and the Planck mass of 1019 GeV, which is a natural scale for gravity.
Higher order gravitational corrections tend to take standard model masses to the Planck scale. The
avoidance of this effect requires extreme fine-tuning, a situation known as the naturalness problem.
Supersymmetry provides a resolution as fermionic contributions exactly cancel bosonic ones. In
addition, SUSY predicts a unification of gauge couplings near the Planck scale. As supersymmetry
has not yet been experimentally observed, it is of course assumed that the symmetry is broken around
the 103 GeV scale. See e.g. the introductory article by Schwarz and Seiberg [69] or the TASI lecture
by Kane [50].
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a nice overview, see Lidsey et.al. [53] and references therein. A more pedagogical
account is presented by Kiritsis [51], chapter 10. Apart from these relations, there
exist various relations between the effective actions, see e.g. [53], section 5.2.

To present one example, consider the bosonic sector of type ITA superstring theory.
I will be very general and the reader is referred to e.g. Polchinski [64], chapter 10
for a proper introduction The bosonic NS-NS sector is identical to that of bosonic
string theory, so that the physical states split into the dilaton ®, a symmetric two-
tensor G and an anti-symmetric two-tensor B. In D = 10, these are the 1, 35 and 28
representation of the little group of the Lorentz group.

The R-R sector provides two other bosonic fields, a vector field A (8,) and an
antisymmetric three-tensor C' (56¢). Their field strengths will be denoted as F' and
G; they are defined in the same way as H is defined as the field strength of B in
equation (5.14). These bosonic fields make up the following effective action (see e.g.
[53], chapter 2)

1

, 1
Sia = /dl%\/é (e”(R +4(V®)? - EHZ) - -F

1
2 2
i 48(G+A/\H))

+ %/B/\G/\G (5.33)

The theory is assumed to live in D = 10 dimensions, making R the ten-dimensional
spacetime curvature scalar. I will not go into detail as this example is just intended
to give a general idea of the structure of a superstring effective action. The other
superstring theories have similar effective actions with of course different fields. The
IIB theory is a bit problematic as it is not possible to derive the selfduality of 35,
directly from an action principle.

In a supersymmetric theory, the fermionic fields of some background can consistently
be put to zero as required by rotational (Lorentz) invariance. Consider a solution
to the equations of motion that follow from the effective action with both bosonic
and fermionic fields. Under supersymmetry transformations by a constant spinorial
parameter, the variation of the fermionic fields is generally zero. The variation of the
bosonic fields is proportional to the fermionic fields. Assuming these fermionic fields
are zero makes the bosonic fields invariant under supersymmetry transformations.
This means that a set of purely bosonic fields may be a supersymmetric solution to
the equations following from a supersymmetric effective action.

5.3.2 Compactification

From the cosmological point of view, the five superstring effective actions define scalar-
tensor theories of gravity with various antisymmetric tensor fields living in ten dimen-
sions. To find a solution resembling our universe, the obvious first step is to find
a way to reduce the number of large (non-compact) dimensions. Of course, this ar-
gument applies also to the bosonic string. The following section gives a description
of the Kaluza-Klein compactification procedure. For a more rigorous discussion, the
reader is referred to e.g. Kiritsis [51], chapter 12 or Lidsey et.al. [53], chapter 3. As a
perspective: compactification is not the only way to account for our four dimensions.
An alternative is to assume that our universe is restricted to a 3-brane that inhab-
its a higher-dimensional spacetime, as proposed by Randall and Sundrum; see e.g. [66].
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The most common compactification procedure is Kaluza-Klein dimensional reduction.
Focusing on D = 10, this assumes that six dimensions are curled up and form an inter-
nal compact space. From a geometrical point of view, this corresponds to writing a ten-
dimensional manifold M as a product space M = J x K, J being a four-dimensional
non-compact manifold and K a six-dimensional compact manifold that represents the
internal space. Coordinates (z,y) on M split into a set x that parametrizes J and a
set y for K. Matter fields are understood to be independent of the internal manifold
coordinates y, which implies that K is Ricci-flat (see [53]). The compactification re-
sults in scalar moduli fields that live on J. They parametrize the internal space, in
the sense that a different value of such a field corresponds to a different internal space.
A somewhat more abstract description is in terms of CFTs. A solution to the
full — up to all orders of @' — Weyl invariance equations defines a CFT on the string
worldsheet. Such a solution can usually be associated with a ten-dimensional manifold.
This is however not always possible, which makes the CFT approach the more general
one. The analog of assuming a geometrical product space is then to decompose the full
CF'T into the tensor product of some internal compact CFT and a non-compact CFT
with target spaces of the appropriate dimensions. In many cosmological scenarios,
the existence of such an internal CFT with appropriate central charge and symmetry
properties is taken for granted and the internal dimensions are merely spectators.

For supersymmetric theories, compactification on a background will in general break
supersymmetry. If however K is of a special form, some or all of the supersymme-
try remains. For this, it is essential that the manifold allows a covariantly constant
spinor that is defined on the whole manifold ([51], section 12.2). Without the no-
tion of such a spinor, supersymmetry transformations cannot be defined properly as
there is no valid spinorial transformation parameter. The torus has the maximum
number of covariantly constant spinors ([53], section 3.1), so it preserves the most
supersymmetry. Other manifolds that allow at least one constant spinor are for in-
stance Calabi- Yau manifolds. If the compact space is such that some supersymmetry
remains, the fermionic fields can be put to zero without breaking supersymmetry. This
was discussed more generally in the previous section.

The above argument is valid if the field strength H = 0 (see e.g. the historical
article by Candelas et.al. [19]). If one allows fluxes (non-zero field strengths) for
various background fields, some interesting new options arise. See e.g. [16, 56, 72].

5.3.3 A dilaton potential

At first sight, the existence of a scalar field and an anti-symmetric tensor field that
accompany the usual gravitational field may seem quite a strong prediction of string
theory. The existence of these fields is crucial in a typical string theory duality (dis-
cussed in section 5.2.3) that has no analog in general relativity. However, this point
of view is a bit misleading. String theory as such does not (yet?) yield definite pre-
dictions about the dynamical behavior of B or ® — there are various modifications to
the effective action that may change the scenario.

Recall that the vacuum expectation value (vev) of the dilaton controls both the string
coupling gs (cf. equation (5.11)) and the gravitational coupling in analogy with New-
ton’s constant (cf. equation (5.20)). Non-perturbatively, the absence of a dilaton
potential implies that there is no natural, stable dilaton vev. Besides this theoret-
ical flaw, there are observational constraints on the possible existence of a massless
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gravitational scalar field.

This observational constraint stems from an older modification to Einstein gravity
known as Brans-Dicke theory; see section 2.2.2. In that theory, it is proposed that
a long-range scalar field interacts with the Einstein gravitational field, so that the
dynamics of G change. Matter fields are understood to be coupled only to G, as in
general relativity (this is required if one respects the equivalence principle). Brans-
Dicke theory features a free parameter w; the string frame action resembles the Brans-
Dicke theory for w = —1, while the limit |w| — oo takes Brans-Dicke theory to general
relativity. Astrophysical observations lead to the constraint |w| > 3500 ([86], section
3.4), which makes the existence of such a scalar field highly unlikely.

It should be noted that the dilaton is not quite the Brans-Dicke scalar field as it
does couple to the antisymmetric tensor field. This does not change the conclusion that
a dilaton with dynamics as given in the effective action is ruled out by observational
data as noted by Tseytlin [76]. However, there are higher order or non-perturbative
effects (in the o expansion) that may give rise to a dilaton potential. Effectively, the
dilaton then gets a mass and a finite range which changes the whole story. In our
present universe, the dilaton is assumed to be frozen at the minimum of its potential
but it may have played a dynamical role in the early universe.

Such a potential has enormous implications for cosmological scenarios based on the
effective action. In reference [29], Ellis et.al. provide a ’cookbook recipe’ to find a
potential V(@) that will result in some desired behavior of the universe’s scale factor
a(t). The particular analysis is based on a Bianchi I type universe with a perfect fluid
matter source; see also Gasperini [31].5 For such a scenario, virtually any behavior of
the scale factor can be incorporated by choosing a suitable dilaton potential.

Hopefully, the reader will feel a little uncomfortable with the idea of inserting
a specific potential in the effective action without physical motivation. After all, the
effective action as constructed from perturbative string theory has no dilaton potential
at all — see equation (5.20). So what potentials are allowed from a string theory point
of view? At present, this question cannot be answered in general; there are various
models, inspired by string theory, that give rise to a dilaton potential and other models
are being developed. In the following, I will discuss two general effects that lead to
a dilaton potential. This discussion will be very relevant in section 5.4.5, where the
possibility of de Sitter solutions in string cosmology is investigated.

First of all, consider one-loop string amplitudes. Such a loop amplitude represents
the probability that two strings are created out of the vacuum and immediately rejoin.
In a gravitational setting, a non-zero chance contributes to the vacuum energy density.
This is the same as a non-zero cosmological constant, which corresponds to a constant
shift in V. In supersymmetric theories, contributions from bosons and fermions cancel,
resulting in a cosmological constant that is identically zero. In a more realistic theory,
where supersymmetry is broken at some energy scale, the cosmological constant is
related to that energy scale. An example of such a scenario with explicit calculations
can be found in Rohm [67]; a more general account is given by Polchinski [63], section
7.3.

5To be explicit: ® = ®(t) and p;/p = const,

Guv = ( . —ai((t))%ij ) T, = ( ”E)t) _pi(g)l’(si]’ )

The antisymmetric tensor field is put to zero, and it is assumed that matter represented by 7" as given
above is coupled minimally to the dilaton in Sj;.
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In supersymmetric theories, the low-energy behavior is described in terms of a
four-dimensional N = 1 supergravity field theory. These theories may be described by
a Kahler potential and a superpotential. In turn, these potentials control the dilaton
dynamics. Hence non-perturbative effects on these potentials may influence the dilaton
potential. An example of a mechanism which such an effect is gaugino condensation
(giving it a non-trivial vev), see e.g. Barreiro et.al. [4] and references therein. This
mechanism leads generally to potentials that are a combination of exponentials and
polynomials in ®. An investigation as to which potentials are allowed in such a scenario
can be found in Brustein and Steinhardt [18]. See also comments in Tseytlin [76].

5.4 Cosmological solutions

This section is concerned with explicit solutions to the equations of motion of string
cosmology. The first section discusses some literature to provide the reader with
references for further investigations and to put things into perspective. I have chosen
to highlight two interesting and well-known models from the literature in sections
5.4.2 and 5.4.3. Section 5.4.4 discusses O(d,d) duality which is an important tool to
relate two given solutions to each other, or to find new solutions from old ones. The
last section is concerned with the efforts undertaken in the literature to find de Sitter
solutions in low-energy string theory.

5.4.1 A guide to the literature

The aim of this section is to provide the reader with references to a number of use-
ful articles on low-energy string cosmology. It has no pretension of being complete,
which would be an enterprise beyond the scope of this thesis. Instead, I have cho-
sen to discuss a number of articles that have proven to be useful in my research on
low-energy string cosmology. The reader will find extensive references in these articles.

An important article from the early days of string cosmology is by Myers [61]. It
introduces the linear dilaton background that will be discussed in section 5.4.2 and
analyzes string theory on this background using the light-cone gauge on the world-
sheet. Another well-known paper from that era is by Mueller [60], also to be discussed
in section 5.4.2. It presents a nice introduction to string cosmology and introduces the
rolling radii’ class of solutions to the equations of bosonic string cosmology. These
solutions are analyzed in more detail for D < 26, D = 26 and D > 26. Both these
articles focus on bosonic string cosmology (though Myers discusses the superstring
generalization) in the absence of a B field, dilaton potential and matter. The linear
dilaton background assumes a Minkowski metric G = 7 and a dilaton that is a linear
function of any coordinate. Mueller uses an an ansatz that the metric consists of di-
agonal, time-dependent entries; the dilaton is time-dependent.

Section 5.4.3 discusses an article [74] by Tseytlin featuring a maximally symmetric
spacetime metric and a time-dependent dilaton. It is one in a series of articles on
the subject of low-energy string cosmology by Tseytlin. Another well-known article in
this series is reference [80] by Tseytlin and Vafa. It discusses the general form of the
equations of motion of bosonic string cosmology, with attention to large-small duality
and the role of the dilaton. The metric is assumed to be diagonal with time-dependent
spatial entries, the dilaton depends only on time and the B field is absent. Matter is
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incorporated as a string gas in thermal equilibrium for which a notion of temperature
and entropy is discussed. Assuming the matter action is reparametrization invariant
(the discussion is similar to that presented in section 5.4.3) leads to a general set of
equations for the background fields G(t) and ®(t) in the presence of a string gas source
characterized by a density p and pressure p. Cosmological scenarios in the critical
dimension are discussed with attention to the role of winding modes in compact spatial
dimensions. The article concludes with a discussion of non-critical strings, thereby
focusing on relations between Mueller-type backgrounds (as discussed in section 5.4.2)
and exact backgrounds from WZW models, a topic that will be discussed in more
detail in section 5.5.

The article [75] by Tseytlin is closely related to the Tseytlin-Vafa article and uses
the same ansatz for G and ®; B = 0. It discusses matter sources in more detail,
making a distinction between classical and quantum matter sources.

The last article by Tseytlin I want to mention is [76]. It starts with a discussion
on the relation between the string cosmology dilaton and the Brans-Dicke scalar field.
Based on the experimental bounds known from Brans-Dicke theory, the possible dy-
namical behavior of the dilaton is investigated; in particular, it includes a discussion
on the dilaton potential that may arise by the mechanism of gaugino condensation.
Some cosmological solutions for a non-trivial dilaton potential and scalar moduli field
are discussed. The article also comments on various generalizations to WZW models.

Another useful series of articles on string cosmology is by Antoniadis et.al. The article
[1] investigates a cosmological scenario for time-dependent dilaton and axion field.
The metric is assumed to be of the Robertson-Walker form and the setup allows for a
non-zero charge deficit dc that plays the role of V. It is found that, without matter
contributions or higher order terms in the o’ expansion, the only asymptotic solutions
are a static Einstein universe or a Milne universe. Lifting these solutions to exact
CFTs implies discretization of the central charge deficit. The article concludes with
the observation that string loop effects may result in a non-zero dilaton potential
allowing for a de Sitter solution; this issue will be readdressed in section 5.4.5.

Reference [2] reviews some elements of string cosmology and the construction of
cosmological solutions. The linear dilaton and Robertson-Walker solution are discussed
and the associated CFTs are analyzed. In the last part of the article, the discussion
is extended to include superstrings and interactions.

All of the above articles show a very limited interest in the antisymmetric tensor filed
B — it is usually put to zero. Copeland et.al. focus on the role that B may play in
cosmological scenarios in references [21, 22]. The latter article also considers a modulus
field that lives in four dimensions as a consequence of compactification.

5.4.2 The rolling radii solution

The first model I will discuss is based on the much referred to ’rolling radii’ solution
found by Mueller [60]. A review of various solutions based on the model is given by
Craps et.al. in reference [23]. It features bosonic fields only, and the anti-symmetric
tensorfield B = 0.

The action that serves as the starting point of the model is related to the general
effective action (5.20) by putting

B=0 V=2A (5.34)
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In the Mueller article [60], the physical dilaton @ is half of the physical dilaton used
here. Note that A plays the role of a cosmological constant in this theory of gravity;
to see this, compare equations (5.20) and (2.20).

Now assume that the metric has only diagonal entries, all of which depend only on
time. That is,

-1 0
6= (3 utns, ) -0  B=0 (535)

Where p and other Greek indices take values from 0 to N = D — 1; Roman indices as
i range from 1 to N. For notational simplicity, it is convenient to introduce a rescaled
dilaton as

N
P=20-) o (5.36)
i=1

Similar rescalings will prove to be convenient in many other scenarios. Evaluating
the various terms in the action for the specific ansatz results in an integral over ¢
only; there is no spatial dependence by the ansatz and the volume of space is just
an irrelevant overall factor. For details on this calculation see appendix A.1; here the
result is posited as

N
S = / dt\/—Gooe™* (Z G%47 — G¢? + 2A> (5.37)
i=1

The equations of motion derived from this action can be written as

a; = Oéz(p < &; = c;e?

N
@ ¢ =20 =) & (5.38)
i=1
Where ¢; is an arbitrary integration constant. Alternatively, these solutions can be
derived by evaluating the various terms in the set of equations (5.22) for this ansatz.
General solutions (¢;, ¢) to the equations (5.38) for the rolling radii ansatz are
discussed in reference [23], section 2.2. Making an assumption for the set of ¢; simplifies
the problem considerably. Various assumptions are studied in the literature; I will
present two interesting examples in the following.

The linear dilaton

A nearly trivial solution is found by setting ¢; = 0 for all . The «; factors are constant
and may be scaled to 1. The metric reduces to the Minkowski metric but the dilaton
is non-trivial:

G=n B=0 &=+\/A/2¢ (5.39)

It may be verified that these background fields are not only solutions up to order o/,
but in fact imply the vanishing of the beta functions to all orders of o' — it is an exact
solution and as such defines a full conformal field theory. The vanishing of 3¢ implies

D =26+ 3a'A (5.40)
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Making this an example of bosonic strings living in a spacetime with dimension differ-
ent then 26. The background is closely related to the solution (5.17) which is just string
theory in flat 26-dimensional Minkowski spacetime. This resemblance is particularly
clear by inserting the fields (5.39) in the general non-linear sigma action (5.10):

1 /A2 .
S = /d2x\/ﬁh"56aX”85X"nuui4—//dzm\/ﬁRXO (5.41)
A ™ A

47

The reader will recognize the Polyakov action with an additional term. The conformal
field theory that is defined by this action is known as the (timelike) linear dilaton
CFT. The theory is closely related to string theory as formulated in section 4.4. The
X fields are still free, but the energy-momentum tensor has an additional term (cf.
equation (4.21)). In conformal coordinates,

1
T(2) = - OX 90X, : £1/A/200X° (5.42)

A similar expression holds for T'(2). From the T'T OPE, it is easily seen that the CFT
has central charge

c=D—3d'A (5.43)

In D = 26 + 3a’A dimensions, this results in ¢ = 26, which exactly balances the
¢ = —26 ghost CFT that is associated with diff x Weyl invariance.

A more detailed account on the linear dilaton CFT can be found in Polchinski [63],
sections 2.5 and 3.7. See also the article [61] by Myers.
Generalized Milne

A different assumption leads to a model with the geometry of the two-dimensional
Milne universe. Take

¢ =0, ci=0fori#1 (5.44)
Introducing @ := y/A/2, this corresponds to

In (Q 2 tanh? (Qt))
In (cosh (Qt)) (5.45)

al(t) =
B(t) =

| NI =

So that the geometry of the full spacetime is flat, static space in D — 2 dimensions
times a dynamical spacetime with line-element

ds® = —dt*> + Q2 tanh (Qt)* dz, 2 (5.46)

These field constitute a a valid string theory background up to order &' but it is not
an exact solution like the linear dilaton background. However, as will be discussed in
section 5.5, this background may be identified as the leading order of an exact solution
that is found using a gauged WZW model.
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5.4.3 The maximally symmetric solution

In this section, I discuss an interesting cosmological solution proposed by Tseytlin
in reference [74]. It assumes a Friedmann-Robertson-Walker type universe with k£ =
—1,0,1 in 3 + 1 dimensions. The connection to well-known solutions of cosmology
based on general relativity makes it a particularly interesting model. Generic matter
is included in the general analysis, but excluded in the specific example that will be
presented in the end of this section. The solution includes bosonic fields only.

Relating the notation (5.20) used in this thesis to the article [74], the general term
V takes the form

V = V(@) -c

c = —$(Deﬁ' - Dcrit) (547)
Where V (®) is an unspecified dilaton potential and both Deg and D,i; depend on the
particular string theory that underlies the effective action — for superstrings Deg = %D,
D¢yiy = 15; for the bosonic string Deg = D, Dy = 26. In the following, ¢ will be
considered to be an arbitrary parameter, but keep in mind that it is motivated from
string theory. From the effective action (5.20), it is clear that —c plays the role of a
cosmological constant in the theory of gravity, which will be of importance in the end
of this section.

The B field is left out of the effective action, but may be present in the matter

Lagrangian.

The ansatz used to solve the equations (5.22) that follow from the effective action is

-1 0

Here G is the metric of a maximally symmetric N = D — 1 dimensional subspace,
with parameter £k = —1,0,1. The zero coordinate is interpreted as a time coordinate,
the other coordinates span the maximally symmetric physical space. The ansatz is
basically the assumption that the spatial universe is isotropic and homogeneous, hence
maximally symmetric. This makes it natural to assume that the dilaton also has no
spatial dependence. As noted above, B = 0 here but it may be included later on in
the matter action.

The maximal symmetry allows to study the spatial background without further
specifications. The analysis, including a number of results that may be useful in
calculations, is presented in some detail in appendix A.2. It is convenient to introduce
the rescaled dilaton ¢ (the original ® will be referred to as the physical dilaton)

p:=20 - NA (5.49)
Using the notation of the original paper for compatibility, also introduce
S}\J[GOO;/\, (10] = SM[GOOJ)U(I)] VI(QO,)\) = V((I)) (550)

Inserting the ansatz in the general effective action (keeping Goo) results in an integral
over t as all spatial dependence is trivial.® The volume of space is some constant which

%In the original article, the dilaton potential term and the curvature term (including k) are not
included in the action. It can easily be verified from the general effective action and the ansatz that
these terms should be present.
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may be neglected.

s = / dty/~Gao (e~ GONI2 + G — V(A ) + N(N — Dke™)

- S;\/[[GOO;)‘JQO]

(5.51)

The equations of motion for the maximally symmetric ansatz can be derived from this
action. Of course, they can also be found by inserting the ansatz (with Goo = —1) in

the general equations of motion (5.22).
c— N+ ¢?
X — @A
@ — NA?

20
441
Wa (5.52)

The dot denotes a derivative with respect to time ¢; there is no spatial dependence
by the assumption of maximal symmetry. In the above formulae the matter, potential
and curvature terms are included in U, W; and Ws:

— 1 a1 08y
U = NV —De >+ 5V —ef g2l
18V 1 68!
'”7 — _ —2x_ YV - e M
v k(N —1)e 28, 2N° oA
19V 5, 148
o - N M M
We = 35, 7¢ <6G00 2 5¢) (5.53)

Where Gy is understood to be equal to —1 after the variation.
From general principles in this action formulation, the behavior of the matter sources

can be further specified. The argument is as follows: under a reparametrization of ¢,
the factor Gop — being an einbein — transforms as

/ V=Gl dt' = /\/—Ggo dt (5.54)
Now suppose the matter action depends on Ggg only through this prefactor:
SirlGoos V) = [ dtv/ =G L1u (0, 1) (5.55)

It is then invariant under reparametrizations of time by the einbein transformation
law above. From this, it immediately follows that

05y, 0v—Goo 1 1 1
= Ly =—= Ly — —=L 5.56
6Goo  0Goo M T T 2V=Ge M 2~ M (5.56)
Where the arrow denotes putting Ggo = —1, which is always assumed after the varia-

tion. To complete the argument, consider the dependence of the dilaton potential on
A and .

0 = W) _oVipA) Ve dp _ 9VIeN) V(e
B d\ oA dp  ON oA Oy
! !
o Ve N OV(e,A) (5.57)

oA Oy
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Combining the equations (5.56) and (5.57) then implies

Z—[)J\ =-NW, g—g =W, (5.58)
So all matter, curvature and dilaton potential contributions to the system are included
in the single function U(p,A). The article [74] by Tseytlin discusses a mechanical
interpretation of the equations of motion for the maximally symmetric ansatz in terms
of this single function U. It also includes a discussion on the behavior of solutions
with the B field as a matter source for some choices of U. I will discuss another
example presented in the article, which is used to investigate the possibility of a de
Sitter solution in this context.
Assume that matter sources and dilaton potential are absent. The equations of
motion (5.52), (5.53) reduce to”

c—= NN +¢? = —N(N—1)ke 2
$—NX = 0 (5.59)

In general relativity, there exists a Robertson-Walker type de Sitter solution to the
Einstein equations with a positive cosmological constant. The spatial curvature of
this solution is characterized by k = —1,0, 1. Let’s attempt to reproduce this solution
by assuming a constant dilaton. Be aware that —c plays the role of a cosmological
constant, so it is required that ¢ < 0. It can easily be verified that

A = Hlcosh(Ht) H?=-— o

e cosh (Ht) NN-T)

® = const = p=—NA (5.60)
Solves the first of the two equations for k¥ = 1; solutions for K = —1 or £k = 0 can

be found in the article [74]. However, this ansatz does not solve the second of the
equations; in fact, this equation implies that the dilaton cannot be constant, thus
introducing a deformation in the de Sitter solution. This also applies to the ¥ = 0,1
solutions and leads to the conclusion that the de Sitter solution of general relativity is
not allowed in cosmology based on low-energy string cosmology.

5.4.4 O(D,D) duality

In section 5.2.3, scale factor duality — a typical string theory feature — was discussed.
This duality is in fact part of a larger duality group, known as O(d,d) duality. The
duality relates two different sets of backgrounds fields that do not depend on d dimen-
sions. I will comment on this duality for the cosmological models discussed before,
assuming that the fields only depend on cosmic time ¢ and not on spatial coordinates,
implying d = D — 1. For a more general account, see e.g. Giveon and Rocek [39]. An-
other application of this duality is in the context of compactification: if a dimensions
are compactified, O(a, a) duality relates different backgrounds on the uncompactified
space. See e.g. Lidsey et.al. [53], section 4.3.

The general effective action from bosonic string theory, including some antisymmetric
tensorfield B, can be reformulated in terms of 2d x 2d matrices M, £ and a shifted

"In [74], there are three equations but they are not functionally independent; the derivative of the
first equation can be expressed in a linear combination of the second and third equation.
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dilaton ® as
S = /dte’z‘i’ (4 (0,9)2 -V + %Tr [MEM 5]) (5.61)

Where the overdot denotes a derivative with respect to time ¢t. The matrix M consists
of the spatial parts of G and B, which will be denoted as g and b.

-1 -1
_ [ —9 —9b (0 1
w= (G ) e=(01) oo
And the shifted dilaton absorbs the volume of space in the sense that
e =\ /G (5.63)

The equivalence of (5.20) and (5.61) can be shown by a lengthy but straightforward

calculation. It can be found in Meissner et.al. [58], the article that introduced this

duality. As an alternative, it is presented in detail in Gasperini [31], appendix B.
The action is manifestly invariant under a transformation with some matrix N €

0(d, d)

M = NMNT
¢ - 9 (5.64)

Which is easily seen as elements of O(d, d) preserve the off-diagonal form
NeOo(d,d) = NTEN =& (5.65)

This duality can be extended to models that include matter sources, provided that
these sources obey some transformation rule under the duality transformation. The
perfect fluid assumption is not invariant under such a transformation, suggesting a
viscosity of some sort. See e.g. Gasperini [31] or Gasperini and Veneziano [32].

The scale-factor duality that was discussed in section 5.2.3, is a specific example of
an O(d,d) duality. The anti-symmetric field is understood to be absent: b = 0. Now
take the transformation matrix

N=¢& (5.66)
Which interchanges g <+ g~!. Assuming Gypo = —1 extends the duality to the full
spacetime metric G. Invariance of the rescaled dilaton ® is equivalent to the transfor-
mation rule (5.32) for the physical dilaton ®.

5.4.5 A de Sitter solution?

Recently, de Sitter spacetimes (see the introduction in section 2.3) have received con-
siderable interest in string theory. This is motivated from cosmology, where de Sitter
space plays a role in inflationary scenarios. Apart from a de Sitter phase of the early
universe, recent astronomical data suggest that our universe is currently expanding at
an increasing rate, a signature of de Sitter spacetime; for a review, see Sarkar [68].
Formulating a quantum theory of gravity on such a spacetime is a notoriously diffi-
cult subject and it is hoped that string theory may provide a theoretical framework
to address these problems; see e.g. the overview article by Witten [89] or the recent
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article by Balasubramanian et al. [3]. The possibility of a de Sitter solution in various
supergravity theories, which are closely related to the low-energy limit of superstring
theories, is discussed in detail in the review by Hull [48].

There is a large number of articles that present de Sitter solutions in string-inspired
theories of gravity such as scalar-tensor gravity. Usually, the behavior of matter sources
and the form of the dilaton potential — or free parameters such as the Brans-Dicke pa-
rameter w — are fine-tuned to yield such a solution. Though interesting in their own
right, I have chosen to restrict to constructions that are more directly related to string
theory. In this section, I present some references to the literature where de Sitter
backgrounds were considered in low-energy string theory, including a short discussion
of a no-go theorem for de Sitter compactifications in string theory.

Following the work of Boulware and Deser [14, 15], Bento and Bertolami [12] discuss in
general the possibility of a de Sitter solution in string theories of gravity. The analysis
includes higher order curvature terms, but no dilaton potential or explicit cosmological
constant. The basic conclusion is that, without a dilaton, de Sitter solutions exists
but are generally unstable — a small perturbation in the metric always grows large and
changes the structure of spacetime. The inclusion of a dilaton leads to more constraints
on the background fields which remove the de Sitter solution.

A totally different approach that I want to mention is described by De Vega and
Sénchez in [24]. The analysis is based on a gravitational theory with zero cosmological
constant coupled to a gas of string sources. The conclusion in section VL.B. is that a
Robertson-Walker type gravitational background with de Sitter-like dynamical behav-
ior requires the dilaton to have a constant imaginary part Im[®] = 7/2 (in conventions
used here) making it a kind of anti-gravity coupling. From a string theory point of
view, an imaginary dilaton is clearly an undesirable feature as it would for instance
result in a complex string coupling.

The introduction of a cosmological constant, either explicit or in disguise, seems un-
avoidable to find a de Sitter solution. This leads to two questions. First, can string
theory motivate the inclusion of a positive cosmological constant in the effective ac-
tion? Secondly, what (if any) backgrounds solve the equations of motion including
such a constant?

The latter question was already addressed in previous sections of this chapter,
where two examples of cosmological backgrounds were presented that may a priori be
valid for a positive cosmological constant. Recall the cosmological solutions found by
Tseytlin in [74], which were discussed in section 5.4.3. The parameters of the model
that was probed for a de Sitter solution can be summarized as

V==c=2A B=0 ® = const (5.67)

And G is of the Robertson-Walker type as can be seen in equation (5.48). It was found
that the de Sitter solution of general relativity cannot be lifted to the string effective
action theory of gravity with this ansatz for the additional fields B and ®. This was
also noted by Tseytlin in [76].

On the other hand, in section 5.4.2 a class of solutions was described for

V=20 B=0 &=23a() (5.68)

And G diagonal with time-dependent entries as expressed in equation (5.35). These
solutions typically have a large dilaton gradient, which to some extent invalidates the
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first order o' approximation. With a time-dependent dilaton, the interpretation of
A as a cosmological constant is debatable. In the Einstein frame, V = 2A couples
to the dilaton which results in an ’effective’ time-dependent cosmological constant
exp[4/(D — 2) ®(t)] A. To see this, compare the action effective action in the string
frame (5.20) to the same action in the Einstein frame (5.30).

The above discusses the (non)existence of a valid solution to the equations of motion
that follow from the string theory effective action with a positive cosmological constant.
But how, from a string theory point of view, can such a constant appear in the theory
of gravity in the first place?

This question is strongly related to the question which dilaton potentials are to be
allowed as was discussed in the end of section 5.3.3. String loop effects may lead to
a constant shift in V', which is equivalent to introducing a cosmological constant. In
reference [1], Antoniadis et.al. hinted at the possibility of finding a de Sitter solution
with constant dilaton using this effect. A similar observation was made by Mavromatos
in the review [57], chapter 3.2. The effect of string loops on higher-order solutions is
investigated by Bento and Bertolami [12]. They conclude that, if string loop corrections
are taken into account, the negative conclusion described above (no de Sitter solutions
if the dilaton is included) may be avoided.

Recall from section 2.1.3 that a true cosmological constant (a constant non-zero
V') may be regarded as an energy source with equation of state p = —p. Non-constant
dilaton potentials may result in exotic scaling behavior of the dilaton, characterized
by some equation of state p = wp with —1 < w < —1/3. In contrast with an inert
cosmological constant, w can be dynamical. These models are known as quintessence
models, see e.g. Hellerman et.al. [44] or Fischler et.al. [30].

Another way to introduce a cosmological constant in the gravity action is by assuming
that strings do not live in a target space of the critical dimension. This effect is directly
clear from the bosonic action (5.20). Choosing a supercritical value D = 26+ AD > 26
leads to a positive cosmological constant of

__AD
T 2a!

A

(5.69)

This connection was already mentioned by Mueller [60], the article that is the basis of
the solutions described in section 5.4.2. It is discussed in some more detail by Tseytlin
and Vafa in [80].

A no-go theorem

The crux of the scenarios discussed above is to find a string theory motivation to
include a cosmological constant in the effective action. A natural question is whether
this can be done by a specific compactification procedure of the (super)string effective
action?

A systematical approach to answer this question is given by Maldacena and Nufiez
in [55] and results in a no-go theorem. The authors consider a non-singular warped
compactification of the low-energy superstring effection actions:

ds} = Qy)? (Nuwda’dz” + Gmady™dy™) (5.70)

The total D-dimensional spacetime splits into a d dimensional cosmological spacetime
with coordinates x and indices p, ¥ and an internal manifold with coordinates y and
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indices m, n. The warp factor Q(y) depends on the internal space only. The metric of
the "large’ spacetime 7 is understood to be either Minkowski or de Sitter.

The authors derive general properties for the massless superstring fields in such a
background. Plugging these in the D-dimensional Einstein equations for 7 Minkowski
or de Sitter results in inconsistencies. In the analysis, it is assumed that the action
has no O(a?) terms and that the dilaton potential is strictly non-negative V(®) > 08.
Furthermore, it is assumed that the massless fields have positive kinetic terms and
that the effective Newton’s constant remains finite. The article leads to the conclusion
that, under these assumptions, de Sitter nor Minkowski spacetime can arise from the
compactification of superstring effective actions with the general ansatz (5.70). A
similar conclusion is drawn by Hari Dass in [43].

Maldacena and Nufiez point out that their negative conclusion can be avoided by
including O(a?) corrections or starting from a modified theory that has a positive
cosmological constant before compactification. A nice example of a model that avoids
the no-go criterion is presented in reference [72] by Silverstein, including a comment
on how the no-go theorem is circumvented. A review and generalization of this model
is given by Maloney et.al. [56].

5.5 Extension to exact solutions

The whole of chapter 5 so far was devoted to the low-energy limit (order ') of string
theory on non-trivial backgrounds. This section discusses possible relations between
such low-energy solutions and exact (up to all orders in ') solutions. Such an exact
solution defines a worldsheet CFT, for which powerful tools are available to analyze
the theory. The discussion is rather brief and serves only to provide a perspective.

The backgrounds that were considered in the previous sections solve the equations
of string cosmology (5.22) to first order in the o' expansion. From the string theory
perspective, such a background defines a theory that is conformally invariant on the
worldsheet up to first order in «'. Incidentally, such a solution may by itself be
conformally invariant up to all orders in /. An example of such a background is the
linear dilaton CFT, which was discussed in section 5.4.2.

In general, one is not so lucky but a more common possibility is that the low-
energy solution can be identified as the leading order of an exact solution. That is,
there exists a CFT whose leading term in an o/ expansion is the CFT associated with
a low-energy solution. The formulation of such an exact CFT as a two-dimensional
field theory that lives on a worldsheet is highly non-trivial. A well-known method to
do this is by using gauged Wess-Zumino-Witten (WZW) models, which will be studied
in more detail in chapter 6. As was already hinted at in section 5.4.2, this is possible
for the Milne background found there. This example is pursued further in sections 6.4
and 6.6.

An interesting possibility to find exact solutions is by using duality. As was dis-
cussed in sections 5.2.3 and 5.4.4, there exist duality relations between low-energy
(O(a'")) solutions: using O(d, d) transformations, one could acquire new solutions from
old ones. In fact, this duality transformation extends to higher order in @' and is an
exact symmetry. Therefore, exact solutions may also be generated by duality trans-
formations. See Gershon [34] and references therein.

8For V as defined in equation (5.20). In the article, V is assumed to have the same sign as a
cosmological constant, which requires it to be non-positive.

67



There are other methods to lift a low-energy solution to an exact one (e.g. F-
models) but I will not comment on these; see e.g. the account on exact solutions by
Tseytlin [79].
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6
Coset models

This chapter concerns a well-studied approach to construct non-trivial, possibly time-
dependent backgrounds for string theory. Starting point is the non-linear sigma action
which, from a geometrical point of view, defines geodesic motion on a group mani-
fold. Introduction of a topological term defines a Wess-Zumino- Witten (WZW) the-
ory which is conformally invariant at the quantum level. Restricting to a coset of the
original symmetry group yields a conformal field theory that has a natural interpreta-
tion as string theory on a non-trivial background. The exact construction of the coset
allows for controlling the background and investigating the properties of strings that
live on it.

In sections 1 and 2, I choose a physicists’ approach by starting with the gauged
WZW action to define dynamics on a coset space. I introduce the WZW action and
comment on its interpretation as a conformal field theory. Section 3 introduces the
gauged WZW action and discusses how the coset construction leads to a theory of
strings in a background. This coset construction is illustrated in section 4 by discussing
Witten’s black hole construction. In sections 5 and 6, propagation of a scalar particle
on a background originating from a coset construction is discussed and applied to
the black hole solution. The analysis is more mathematical and uses a group theory
approach to cosets.

The reader may refer to Di Francesco et.al. [25] for a more detailed account on
WZW models and the relation to conformal field theory (the first two sections of this
chapter). Another good introduction to this subject is chapter 3 of reference [49] by
Kaku. Other references will be given in the corresponding sections.

6.1 The Wess-Zumino-Witten action

Consider a theory with matrix-valued fields g that live on a two-dimensional worldsheet
A. To be more specific, choose g(x1,x2) € G, where G is the defining representation of
a certain group. The non-linear sigma model is defined by the action (see Di Francesco
et. al. [25], section 15.1.1)
Sniclg) = 4% /dzx Tr [6,~g*18’g:| (6.1)
a” Ja

Indices are raised or lowered with the metric on the worldsheet. The metric is of course

the origin of possible non-linearity as it may depend on the worldsheet coordinates.
In a unitary representation, g~ = g' and the action is real. When written out in

69



components, one may regard the action as an economic way of writing down the
action for a collection of free scalars. From the more geometrical point of view, the
above action defines the dynamics of an elements g on the group manifold of G. The
non-linear sigma action (6.1) has global G, x Gg symmetry, being invariant under the
symmetry operation

g—4g =mgn m,n € G (6.2)

Although the non-linear sigma model is explicitly conformally invariant at the classical
level, the quantum theory is not. Details on this anomaly and the construction of
a resolution can be found in Di Francesco et.al. [25], section 15.1. In the following
section, I will address the issue by looking at the currents associated with the non-linear
sigma model. For now, the claim is that the action can be modified to gain conformal
symmetry at the quantum level by including a topological term. This Wess-Zumino
term integrates over a three-dimensional space V', chosen such that A = V. Introduce
g as the three-dimensional continuation of g on V such that g(x1,z2,23) € G, and
g = g on the surface of V.

ik . o o o .
Ilg] = E/Vd:"a:e”k Tr[9'0:99 0,65 '0kd] (6.3)

The variation of I'[g] with respect to g can be written as a total derivative in three
dimensions, making it a two-dimensional functional. If G is a compact group, the
parameter k needs to be integer for topological reasons. In the next section, it will be
argumented that if k is related to a by a? = 47 /k the resulting theory is conformally
invariant at the quantum level. Explicit examples on how to calculate the contribution
of the Wess-Zumino term for groups SL(2,R) and SU(2) can be found in appendix D.

Assuming a? = 47 /k and assing the topological term to the action (6.1) defines
the Wess-Zumino- Witten (WZW) action:

k —1gqi
Swzwlg] = E/Adszr [0;90g] — T[g]
_ k. 2 —1g  —1gi 1 _
= 6m /Ad z Tr [g 0i99 6g] I'[g] (6.4)

The two forms above are easily seen to be equivalent (note the minus-sign); I have
stated them both as either form appears in the literature frequently.

6.2 WZW models as conformal field theories

The previous section introduced the Wess-Zumino-Witten action as an extension of
the non-linear sigma model. This section investigates the symmetry properties by
analyzing the conserved currents. It will be argumented that the currents constitute
an affine Lie algebra that includes the Virasoro algebra — which establishes conformal
invariance. The following section follows Di Francesco et.al. [25] by discussing the
WZW model from a rather abstract CFT point-of-view. For an introduction with
more emphasis on string theory, see Bars and Nemeschansky [5] or Gepner and Witten
[33].
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6.2.1 Classical currents

Already at the classical level, it can be argumented that the non-linear sigma model is
not the kind of CFT encountered before. Recall from section 3.4.1 that on the complex
plane, the currents of a CFT split naturally into a holomorphic and an antiholomorphic
part. For the WZW action (6.4) it can be shown that varying the action with respect
to g yields the following equation of motion (see [25], 15.1.1):

—1 ia’k ~1lgv
a“(g 6ug) + ?euua”(g 0 g) =0 (6-5)
Putting £ — 0 reduces the WZW theory to the non-linear sigma model (6.1) as the
topological term vanishes. In this case, it is natural to define a current J as

Ju=(9'0u9) (6.6)

In conformal coordinates on the complex plane, the vector J consists of J, = g~'0.g
and J; = g~'0z9. However, &*.J, = 0 in these coordinates reads

6;Jz + asz = 0

And the holomorphic and antiholomorphic current are not conserved separately, which
signals a lack of conformal invariance at the quantum level. For the WZW action (6.4)
both a and k are a priori arbitrary parameters. Of course their overall scaling is
irrelevant classically, but there is some freedom to choose a relation between them.
Use this to choose a? = 47 /k, so that (6.5) reduces to

(g 10,g) + i€ (g 10"g) =0 (6.7)
Evaluating this equality in complex coordinates® implies
8:(97'9:9) =0 (6.8)

Which identifies J; = (¢ 10:¢g) as an antiholomorphic current, depending only on z
— note that it is conserved independently of any holomorphic current. To find this
corresponding holomorphic current J,, use the equality

9:(9 '0:9) = g '0:(0:99 ")g (6.9)

Which is easily verified by writing out both sides of the equation. Now conservation of
Jz implies the vanishing of both sides of the above equation. In turn, this corresponds
to conservation of 8.gg~!. This identifies the corresponding holomorphic current J,
as

J. =0.997" (6.10)

Note the difference with the holomorphic current from the non-linear sigma model.
Alternatively, one could have chosen to relate a and k by a®> = —4x/k. This results
in the conservation of dual currents J, = (9710.g) and J; = dzgg~!. Other relations
between a and k do not lead to separately conserved (anti-)holomorphic currents.

To summarize: in the WZW theory, the (anti-)holomorphic currents J.(z) and
Jz(Z) are conserved separately. This indicates that the global G, x Gg symmetry of
the non-linear sigma model is extended to a semi-local G(z)r x G(2)r symmetry for
the WZW model (see [25], 15.1.2).

1Recall from section 4.2 that on the complex plane, ¢ is normalized to €.z = /2. Furthermore,
the non-vanishing components of the metric are g% = ¢** = 2 and ¢,z = gz, = 1/2.
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6.2.2 Current and Virasoro algebra

For further analysis, it is customary to introduce rescaled currents

J(2) := kJ,(2) J(Z) := kJz(Z) (6.11)
These currents take values in the Lie algebra of G, so it is useful to expand them in a
basis of generators 7;, where i = 1,...,dim G.
J(z) =) J*2)ma (6.12)
a
A standard CFT calculation ([25], 15.1.3) shows that the currents J* obey the OPE
koeb J(w)
a b ~ jpab Z AT .1
TR ) ~ s i (613)

Where f2_ are the structure constants of G.> Performing a Laurent expansion intro-
duces the modes J¢ of the currents J as

J(z) = z Jizmnt (6.14)

The mode algebra corresponding to the OPE (6.13) is

[T, To) =D ife T + kn 6%, (6.15)

c

In the literature, this algebra is known is a level k& current algebra or Kac-Moody
algebra. Note the central extension term proportional to k. There is some similarity
with the central extension in the Virasoro algebra characterized by the central charge
¢ in CFT; cf. equations (3.11) and (3.34).

For the zero-modes J§, this term vanishes so they constitute a Lie algebra. The
anti-holomorphic current J can be expanded analogously as

T=> T (2)ra =) Joirz " (6.16)

The modes J2 form another, independent copy of the affine algebra. In the following,
I will focus on the holomorphic copy; the analysis extends to the anti-holomorphic
symmetry.

For an affine algebra as introduced above, it is in general possible to combine modes
J2 of the affine current to form new modes L, that satisfy a Virasoro algebra. This
statement implies that G(z)1, X G(Z)g invariance includes conformal invariance! From
the CFT perspective, L,, is one of the modes of a traceless energy momentum tensor
T. There are currents associated with conformal invariance, but these are not the only
currents: the J% modes that are still present are interpreted as primary fields with
conformal dimension (1,0). This can be made more precise by defining the energy

2The §*° stems from the inner product of two elements of the Lie algebra of G. It is assumed that
the group is simple, and the basis is chosen such that this inner product is proportional to J, with
normalization such that the long roots have length-squared 2. See comments in [64], 11.4 and 11.5;
[51], 6.10.
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momentum tensor 7' in terms of the currents, a procedure known as the Sugawara
construction:

1

T(z) = Gt g) ; J(2)J%(2) (6.17)

Where g is the dual Coxeter number for the group G. This form is derived in detail
in [25], section 15.2. The modes L, of T constitute a Virasoro algebra with central
charge

kdim G
c= ——

6.18
k+g ( )

To complete the argument, it can also be shown that, with this energy-momentum
tensor, the current J¢ is indeed a conformal primary field of weight (1,0) ([25], 15.2).

6.2.3 The coset construction

The Wess-Zumino-Witten model as described in the previous section is a theory for
elements g of a group G. The construction may be generalized by considering tensor
products of different groups, that is G = G; X G2 X .. .. It is easily seen that the WZW
action of such a product group is the sum of the WZW actions of the constituent
groups. Another possibility is to consider a coset theory G/H where elements on the
orbit of some subgroup H of the original symmetry group G are identified. These
coset theories are especially relevant in string theory as their classical limit can be
interpreted as a theory of strings in a non-trivial background; this will be described
farther on.

If T is the energy-momentum tensor (by the Sugawara construction) of the G
WZW model, and Ty is that for H, then the energy-momentum tensor for the coset
theory is given by T,y = T — Th, and the central charge is

Caq/H = CG —CH (6.19)

The construction is known as the GKO construction, after the authors of [40]. It is
also described in [25], section 18.1.

6.3 Gauging the WZW action

The commonly used procedure to analyze a coset theory starts from the WZW action
for elements of the group G. The restriction to the coset space is done by parametriz-
ing the elements g of G and choosing a gauge that includes only one element of H.
To do this properly, one first has to gauge the theory. This section outlines and com-
ments the gauging procedure. In the following section, an example will be presented
where it is explicitly shown how the model relates to string theory in a background.
It is assumed that G is semi-simple; the extension to non-semi-simple groups is not
straightforward as formulating a WZW theory in not trivial. See the work by Sfetsos
[70, 71].

Due to the peculiar T'[¢g] term in the action only subgroups that obey the following
condition of anomaly cancellation can be gauged (see Witten [88]):

Tr [Ta,LTb,L] =Tr [Ta,RTb,R] (620)
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where T, (a = 1,2) generate the action of H on g in the sense that

09 =€"Torg+9Tor) (6.21)

Assuming H is such a subgroup, one can gauge the vector® symmetry g — ugu !
where u(z,2) € H is a matrix-valued field. If H is abelian, it is also possible to gauge
the axial symmetry g — ugu. This choice represents a T-duality. As a CFT, the
theory is self-dual but the target space interpretation can be very different; see e.g.
Dijkgraaf et.al. [26].

The explicit form of the vector gauged action can be constructed by a trick that
I will present in some detail.* In conformal coordinates, the WZW action is (with a
shorthand notation for the Wess-Zumino term)

k _ . ik _
Swzwlg] = E/Ad%Tr (09" dg] + m/vd%Tr [~ dg)’ (6-22)

Where the integration measure d?z = d?z to match the normalization from section 6.1
with explicit examples discussed farther on and with appendix D.
Now consider the following action, where an auxiliary field h € H is introduced:

Sywzwg; b] := Swzw [hght] — Swzw [hh1] (6.23)
It is manifestly invariant under
g — ugu ! h — hu~? ht — uht (6.24)

Now one may apply a useful relation, known as the Polyakov-Wiegmann formula (see
e.g. [77], which describes the same procedure)

k _
Swzw[gh] = Swzw[g] + Swzw[h] ~ o /Ad2z Tr [g’lag 8hh71] (6.25)

Using this, expand the action (6.23):

Sewzwlg; Ai] = Swzwlg]
+ ; /dzz Tr [-Adgg™" + Ag~'0g + g~ ' AgA — AA] (6.26)
TJA

Where gauge fields A := h='0h and A := ht9(ht)~! that are elements of the algebra
of H are introduced. By construction, the gauged action is invariant under the local
transformation

g—ugu™t  A-u(A+0)ut A u(A+9)ut (6.27)

The term Swzw[hh'] in the action (6.23) was necessary to avoid non-local Sw zw [h]
terms in the resulting action (6.26).

For abelian subgroups H, it is also possible to gauge the axial symmetry. A similar
construction as above results in an action that resembles (6.26), but has additional

3The nomenclature is a little obscure; I will refer to this symmetry as a vector symmetry but in
the literature there is some ambiguity. Note that this procedure differs from the more standard left or
right coset construction that is based on symmetry transformations g — ug or ¢ — gu, respectively.

4A nice alternative motivation for this form of the gauged WZW action can be found in Ginsparg
and Quevedo [37], section 2.1
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minus-signs for the underlined terms. To see this, start with Sy 7w [hgh] — S[hh 1],
where h = (h~1)*. Tt is invariant under h — uw~'h, h — u~'h as H is abelian. This
axially gauged action is invariant under the combined transformation

g—ugy  A—=u(A+dut Ao u(A+0)u! (6.28)

Having an action that is locally invariant under the transformations induced by the
subgroup H, it is possible to fix the gauge and reduce the symmetry of the model. To
do so, first introduce coordinates on (a patch of) the coset space G/H. Usually, there
are several coordinate patches and it can be difficult to find global coordinates that
cover the full coset space.

As the gauge fields appear at most quadratically, they may be integrated out.
This is done be finding their equations of motion from the action, solving these and
reinserting the dynamical behavior into the action. This leaves an integral over a two-
dimensional worldsheet for the D = dim(G) — dim(H) scalars that parametrize the
coset.

The crucial point for string cosmology is that this action may be identified with the
standard action for strings in a non-trivial massless background (cf. equation (5.10),
in conformal coordinates)

1
S =
2mwa!

= 1 .
/sz (Guv + Buy) Ozt 0z” + — /dzthﬁ (6.29)
A 8 Ja

The coset model thus yields an D-dimensional target space for string theory. The
metric field G and the antisymmetric background field B can usually be read off
directly from the action after integrating out the gauge fields. The dilaton ® emerges
from a non-trivial determinant when actually performing this integration, but can also
be reconstructed by considering its low-energy string equation of motion. The reader
will find comments on the relation between isometries for the background fields and
symmetries of the gauged WZW model in the following section, in the context of an
explicit example.

The correspondence implies k¥ = 1/a/, so the low-energy limit o/ — 0 (discussed
in section 5.1.4) corresponds to k — co. As k is usually related to the central charge
of the underlying CFT (via equation (6.18)), it is not obvious that this limit can be
taken. If not so, higher order o' corrections should in principle be considered.

In references [6, 10] Bars and Sfetsos argue that in fact the gauged WZW model as
introduced above is only valid in the classical regime. They suggest that quantum cor-
rections to the background fields should be calculated using a Hamiltonian method [6],
or using an effective quantum action [10], which is a modified version of the (gauged)
WZW model. For the ungauged WZW action, the modification is an overall renor-
malization k¥ — k — g, with g the Coxeter number of the group G. For the gauged
action the modification is more difficult and includes non-local terms. In the classical
limit £ — oo, which will be of primary interest in the following sections, this quantum
theory has the same classical limit as the gauged WZW action introduced above. This
is also discussed by Tseytlin [77].

6.4 Example: Witten’s black hole

To illustrate the coset construction described in the beginning of this chapter, I will
present and discuss a famous example introduced by Witten [87] based on the coset
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SL(2,R)/R. Introducing the gauged WZW action for the model and integrating out
the gauge fields results in a non-linear sigma model from which a black-hole geometry
can be read off. I consider the Lorentzian black hole but use a different coordinate
patch as in [87].

Consider a theory in which the matrices in the WZW action are elements of the non-
compact group SL(2,R). To be explicit, take the following matrices as a basis® of the
Lie algebra:

n:(_oi _0’> 7'2:(3 _OZ) 73:(? _0’) (6.30)

In the following, the non-compact subgroup H generated by 73, is going to be gauged in
an axial sense. That is, the action is modified in such a way that it becomes invariant
under the local transformation ¢ — ugu with u = ie(z, Z). Written explicitly, g
transforms as

_01 )9+6(z,2)g< (1] _01 ) (6.31)

The gauged action can be taken directly from the general equation (6.26) from the
previous section — with the minus-signs as this is an axial symmetry. Express the
gauge fields as

g—>e(z,z)((1)

A= —ia(z,2)m A = —ia(z,2)m

where a(z, Z) and a(z, z) are independent fields that are c-numbers in matrix space.
Now fix the gauge by introducing coordinates (x,t) on the coset space G/H as

cosht e %sinht
9(z,t) = ( e®sinh t cosht ) (6.32)

These coordinates do not cover the whole coset space. By using this specific parametriza-
tion one only considers a region of the total space, a situation often encountered in
this kind of models.

The gauged action now contains the physical fields z,t as well as the gauge fields
A, A and reads

k - _
S = — / d?*z (—0tdt + sinh” t 0z0x) + 0
2w A
k _
+ o / d’z (—2asinh® tdz + 2asinh® t0x — 4ad cosh” t) (6.33)
A
Where 0 denotes the vanishing of the Wess-Zumino term for these coordinates (cf.
[87], equation (33) or appendix D) in this coordinate patch. As the action is at most
quadratic in the gauge fields, it is easy to derive their equations of motion and solve

them. Consequently, these fields can be integrated out by inserting their dynamics
back in the action. For the example studied here, this results in the following action:

s=X / d’z (—0tdt + tanh® t 0z9z) (6.34)
27 A

51 use the convention that group elements are generated by e?®i7i | with parameters a; and gener-
ators 7;. For a short summary on SU(2), SU(1,1) and SL(2,R), see appendix A.
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Comparing this with the general action for strings in a background (6.29), suggests
that the model presented here can be interpreted as string theory in a two-dimensional
spacetime with metric

k ; .
ds® = o (=dt* + tanh® t dz?) (6.35)
™
And no B field. This metric has a spacetime interpretation as a region of the Lorentzian
signature black hole. A closer analysis shows that the dilaton should be included
(compare to [87], equation (12)):

® = —Incosht (6.36)
So that the following equation holds (cf. (5.22))
R, +2V,V,2=0 (6.37)

6.4.1 Isometries

The symmetries of the background fields are closely related to the global symmetries
of the original WZW action. The gauged action has, apart from the local symmetry
which it possesses by construction, the original global SL(2,R) symmetry. Therefore,
transforming ¢ — ugu with u € SL(2,R) in the gauged WZW action is just a re-
formulation of the theory. If one applies this transformation of g to the gauge fixing
equation (6.32), the string action that follows from the construction necessarily has
the same form. For the background fields, that are read off from this action, this is an
isometry. For example, choosing v = ¢7y, the transformation corresponds to x — —x
which is clearly a symmetry of the metric and the dilaton. This argument applies to
abelian groups Gj for non-abelian groups the global symmetry is lost in the gauging
procedure (see [37], sections 2.2 and 4).

This should be contrasted with the possibility to gauge a different subgroup. In
that case, the resulting spacetime can (and generally will) be very different. In the
same article that introduces the example described above, the SL(2,R) symmetry is
also divided by the compact group generated by 73. The resulting string action has
an interpretation as a part of the Euclidean black hole.

6.5 Scalar propagation on a coset

The coset construction is a tool to find non-trivial string backgrounds. Having found
such a background, it may be interesting to study the behavior of scalar states on
these backgrounds. For example, the nature of possible singularities can be probed in
such a way, a subject that will be readdressed in section 7.1.3. Consider a scalar X of
mass m minimally coupled to the metric and dilaton:

Sx = / dPzVGe ?* (-G"9, X9, X —m*X?) (6.38)
The equation of motion for X, which will be referred to as the wave equation, is
(V. V¥ —m?) X —2V,8V+X =0 (6.39)

Which is the usual wave equation for a scalar particle if ® is constant. It is assumed
that X is small enough not to influence the background fields (no backreaction). In a
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generic background this equation can be highly complex. Of course, one can attempt
to straightforward solve it, but this bypasses the symmetries that are known to be
present from the coset construction. Using the theory of group representations, these
symmetries can be used to find solutions to the wave equation. In the following, this
method will be decribed in more detail and applied to the background considered in
the previous section. It is based on the work of Vilenkin and Klimyk [83], a thorough
introduction in the subject. For a more general account on group theoretical aspects
of cosets, see Gilmore [36], especially sections 6.IT, 9.IV and 9.V.

For definiteness, I restrict to the coset model from section 6.4: G/H with G = SL(2,R)
and H = U(1). The generalization to other groups and subgroups is straightforward.
The basic strategy is to find an infinite dimensional representation of elements of
G on the space of functions. The freedom one has to explicitly construct such a
representation is invested to diagonalize the action of the subgroup H that is gauged.
That is, choose a basis in function space in such a way that the action of the subgroup
is trivial. Once the action of the subgroup on this basis is established, the physical
space G can be reduced to G/H by considering only states that are invariant under the
action of the subgroup. What follows is a more explicit discussion of this construction.
Adopting the notation of [83], a general matrix g € SL(2,R) can be expressed as

g:(a ﬂ) ad—py=1 a,B,7,0 €R (6.40)

The aim of the following is to construct the principal continuous representation, which
is an infinite dimensional representation of SL(2,R) acting on functions, labeled by
x = {7,€}. For clarity, I will denote the representation of a group element by T [g]
and use g strictly to refer to the defining representation, i.e. two dimensional matrices.
Let f(x) be a function on the Hilbert space of square-integrable functions Lz (RR). This
space has the usual inner product

ff) = [ dof@F@ (6.41)
Now define the action of an element g of the abstract group on a function f:
7 . _ 27 326 azr + vy
(1101 1) (0) = 15 + 6P sign (52 +9) £ (S ) (6.42)

It is easily verified that

Ty[g1] - Tilge] - f = Tilgr go] - f (6.43)

Which assures this is a valid representation. Unitarity with regard to the above inner
product reads

(f1, 2 = (Tl 1], Tl o)) (6.44)

Writing this out implies 7 = is — 1/2, where s € R. The parameter € takes values in
{0,1/2}. As will become clear, its role is rather limited but the aboved introduction is
formally correct. In the following, the analysis is extended to the space of generalized
functions.
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In the space of functions one is free to choose a basis. It is very convenient to choose
a set of functions that are eigenfunctions under the action of a subgroup of SL(2,R).
Continuing the example from the previous section, consider the hyperbolical subgroup
generated by 7.

—t
itTQ — 7750’3 — € 0 4
e e ( 0 e ) (6.45)
For such a one-parameter subgroup, the associated generator A in the space of func-
tions follows readily from the operator equation

A= L4 [otos]

g = 2i(T — 20y) (6.46)

t=0

Now choose as a basis functions |f,,) with m € R that are eigenfunctions of the
operator A. The basis consists of two distinct sets of functions (see [83], 7.1.3):

|fm) — {.’17:_+im, :c‘r;Jrim}
o A : |fm) = 2m |fm)
T[] |fm) = €™ |fm) (6.47)

Here z and z_ are generalized functions defined to be equal to z for z > 0, z < 0,
respectively. The explicit form of the functions will be needed later, at this point it is
possible to continue more formally.

The usefulness of this construction follows when considering the matrix element

(frms frr) = <fm|Tx[g] |fm’) (6.48)
and apply the symmetry transformation g — €93 get'7s:
(| Tule'® g€ 7] | fon) = €72 (| Ty [g] | fiw) (6.49)

Which leads to conclude that the matrix element is an eigenfunction of this transfor-
mation; the g — el7® ge"""3 symmetry on the group manifold is diagonalized.

Now consider the Casimir operator if the group, i.e. the operator that commutes
with all generators. The same reasoning as above leads to the conclusion that (fp, fm’)
is an eigenfunction of the Casimir operator on the group manifold. As this operator is
the generator for free propagation, these eigenfunctions are naturally associated with
free scalar particle states on the group manifold. By construction, the behavior of
these states under the transformation by the gauged subgroup is straightforward. This
means one can study particle propagation and interactions on the smooth SL(2,R)
manifold and apply the results to the coset space by restricting to states invariant
under the transformation.

The discussion will be limited to the principal continuous representation; there are
different representations, such as the principal discrete representation that may lead
to different but equally valid scalar states. See Vilenlik and Klimyk [83].

6.6 Example: propagation on the black hole solution

To make the construction explicit, let’s revisit the coset model introduced in section
6.4. Introducing Q@ = \/k/m and rescaling t — @t the metric (6.35) and dilaton (6.36)
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take the form

ds? = —di’ + Q %tanh’® Qt da?
®(t) = —IncoshQt (6.50)

I will outline the procedure described in [23] that solves the wave equation (6.39) for
a scalar T in exactly this background. To simplify things a little bit, consider plane
waves with momentum p

T(x,t) = T(t)e” (6.51)

The wave equation for a such a scalar with mass M in the background reads®

5 [ 5cosh® Qt )\ 1+2sinh?Qt \ d - 2 .
Q (p m + M > Tt)+Q (m> ET(t) + WT(t) (6.52)

This equation could be solved directly in terms of hypergeometric functions but, as
stated in the beginning of this section, it is much more elegant (and instructive) to
use the representation method.

With the knowledge that the background originated from a coset of SL(2,R), it is
natural to consider matrix elements of the representation of this group as introduced
above:

(fo Font) = (fn| T lg] | frr) (6.53)

The claim was that this expression solves the equation of motion for a scalar particle on
SL(2,R). This will not be shown explicitly as the coset space is of primary interest.
Restricting to the coset implies that the matrix element should be invariant under
the transformation g — €72 ge?“s. From equation (6.49) it is clear that this means
restricting the basisfunctions by imposing m = —m/'.

Then next step is to fix the gauge in the subgroup by choosing coordinates on
G/H. Parametrize g similar to equation (6.32)

glat) = ( e*sinh @t  cosh @t
e /2 0 coshQt sinh Qt er/2 0
0 e°/2 sinh Qt cosh Qt 0 e ®/?

= e%/2% g (Qt) /273 (6.54)

cosh@t e “sinhQt )

Defining the matrix gr in the last line. With the choice of basisfunctions the matrix
element reduces to

(s fr) = €™ | T [gr(QE)] | Fr) (6.55)

Upon identifying p = 2m = —2m’ it shows that the plane-wave ansatz was correct.
Up to this point the calculations were simplified by a smart choice of basisfunctions.
The difficult part is to calculate the t-dependence of the solution as the basisfunctions
are not eigenfunctions of the associated generator. This will not be done here; the

8This is equivalent to equation (4.6) in [23].
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reader is referred to [83], section 7.2.1 where region h corresponds to gr. I just state
as a result that the functions (fy,| Ty [91(Qt)] | fm) fall into two independent sets:

f++ (Qta m, mla T) and

f--(@Qt;m,m’, )
corresponding to the two sets of basisfunctions. The functions fii can be found in
appendix B.2. After matching the parameters 2s = /M2 + p2 — 1, it can be verified
that

T(t,2) = (frmy frur) = €™ fo L (Qt;m,m, 5) (6.56)

is indeed a solution to the wave equation (6.52).
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7
Cosmological models from cosets

The previous chapter introduced the reader to gauged WZW models and their relation
to string theory. The two-dimensional black hole that was discussed is a well-known
toy model for more complex cosmological scenarios. This chapter is concerned with
'realistic’ cosmological scenarios that originate from a coset construction — realistic in
the sense that the model has a target space of four dimensions, with a single time
coordinate.

This chapter splits into three sections. Section 7.1 discusses in some more detail
the ’3 + 1’ requirement mentioned in the previous paragraph. It also discusses how
spacetime singularities, interesting from a cosmological point of view, typically arise
in gauged WZW models. Section 7.2 presents some cosets that fulfill the requirements
and were studied in the literature. Finally, section 7.3 focuses on one of these models
that was presented by Nappi and Witten. The model is reviewed in some detail and
propagation of scalar states is discussed in analogy with section 6.5.

7.1 General features

The section discusses some general properties that a coset should have to allow for a
cosmological interpretation. A number of models in the literature are discussed in the
next section. Besides physical requirements, these cosets (as any coset) must obey a
consistency condition in the sense of anomaly cancellation; see equation (6.20).

Recall from equation (6.18), that the level k of the current algebra is related to the
central charge of a WZW model. For a coset theory G/H, the central charge is related
to the level of the current algebras associated with G and H as expressed in equations
(6.18) and (6.19). The string theory interpretation of a coset model thus requires
matching k to get an appropriate value for the central charge. For pure bosonic string
theory, this implies the condition condition ¢ = 26. More generally, it is possible to
consider a theory that splits into an internal CFT for the compact dimensions and
an external CFT for the ’'large’ dimensions, as discussed in section 5.3.2. This can
be used to reduce ¢ to e.g. ¢ = 4 (flat Minkowski space in D = 4) or any other
appropriate value. Because of this possibilities, I will not consider specific conditions
on k. However, keep in mind that at the end of the day the value of ¢ should be
justified.
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7.1.1 Dimensionality

Let’s first consider the possibilities to construct a coset G/H with a four dimensional
target space. The manifold G has dimension dim G; gauging the subgroup H reduces
the number of degrees of freedom by dim H, so the first constraint is obviously

dim G —dim H =4 (7.1)

Of course, G may be a direct product of lower-dimensional groups. In this way, the
SL(2,R) model or its analytic continuation SU(2) can be used as building blocks to
generate higher-dimensional backgrounds. The resulting groups are typically semi-
simple.

A large class of cosets can be constructed by taking G to be a direct prod-
ucts of SU(n)s and SL(n,R)s. The dimension of G follows from dim SU(n) =
dim SL(n,R) = n? — 1. To end up with a four dimensional space, one chooses H
to consist of lower-dimensional subgroups; if the resulting coset has dimension greater
than four, the difference can be cancelled by including additional U(1)s or Rs in H.
However, as n gets large, the gap between dim SU(n) and dim SU(n — 1) grows as 2n
and one needs an increasing number of U(1)s or Rs. As there is a limit to the number
of commuting U(1)s and Rs in a group, this process stops at some value of n.!

7.1.2 Signature

The next obvious requirement is that of a single time coordinate. In the theory of
Lie groups, it is well known that one may define a metric on the space spanned by
elements of the algebra of a group. This metric is known as the Cartan-Killing metric;
for an excellent introduction, see Gilmore [36], section 7.ITI. The signature of this
metric is directly related to the compactness of generators of the group. Gilmore uses
conventions in which the Cartan-Killing metric associated with a compact group is
negative definite. For reasons that will become clear below, I will not be very precise
about an overall minus sign but use the fact that the metric associated with a group
with n compact and m non-compact generators has signature (n,m). Restricting to
a coset G/H where H has n' (m') (non)compact generators leads to a metric on the
coset with signature (n —n',m —m').

The gauged WZW formulation of a coset theory differs in two ways from the stan-
dard coset construction as presented in e.g. Gilmore [36]. Firstly, it is based on
gauging the vector symmetry g — ugu ™' or the axial symmetry g — ugu rather then
a left symmetry g — ug or right symmetry g — gu. Secondly, the Wess-Zumino term
adds an element of torsion to the background, which is interpreted as a non-zero B
field. However, the signature of the background metric that originates from the gauged
WZW model corresponding to a coset model is the same as the more standard coset
metric (Ginsparg and Quevedo, [37], 2.3). To identify cosets with signature (1, 3), one
may use standard literature on cosets, such as table 9.7 of [36]. This table is the basis
of table 7.1.2, which shows the number of (non)compact generators for some groups
that will be used farther on.

A last subtlety is the appearance of the level of the current algebra k in front of the
WZW action (6.4). Replacing k — —k yields an overall minus-sign in the background
fields (cf. (6.35)). From the CFT perspective, this defines a dual theory as was

T would like to acknowledge Jan de Boer for this argument.
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discussed in section 6.2.1. For the purpose of finding a cosmological background this
makes the overall sign of the metric irrelevant as it is always possible to consider the
dual theory after putting k — —k. Again, at the end of the day, k£ should be justified
in the sense that is related to the Virasoro central charge of the underlying CFT.

| Group G | compact generators G. | non-compact generators G, |
SO(n) n(n —1)/2 0
SO(m,n) | n(n —1)/24+m(m —1)/2 | nm
SOm;C) | n(n—1)/2 n(n —1)/2
SL(n;R) | n(n—1)/2 nin+1)/2-1
SU(n) n?—1 0
UQ) 1 0
R 0 1

Table 7.1: Number of compact, noncompact generators for some well-known groups.

7.1.3 Singularities

It is hoped that string theory may provide a framework to investigate the nature
of spacetime singularities. This hope is partly motivated from the abstract notion
of large-small duality (see section 5.2.3), which leads to quite fundamental questions
about the big bang singularity. Propagation of strings in the presence of singularities
is for example discussed by Craps et.al. in reference [23]. See also the work of Horowitz
and Steif [46, 47].

Spacetime singularities are known to emerge in coset models. Typically, these singular-
ities occur at fixed points of the gauge transformation symmetry operation g — ugu=!
or g — ugu. This implies that there is some residual, discrete symmetry left after
fixing the gauge on the coset space. Though the curvature may be finite at these
points in spacetime, other physical quantities blow up and the singularity is called an
orbifold singularity. An example of this is presented for the Nappi-Witten universe in
section 7.3.2. Here I will discuss a general argument that shows how a fixed point of
the symmetry transformation can result in a singularity in the resulting metric.

Consider the vector gauged WZW action as stated in equation (6.26). Expand the
gauge fields A, A in term of generators 7; of H

A= Ai’]’z' A = Ai’l'i (72)

Integrating out the fields A® and A results in (see Ginsparg and Quevedo [37], section
2.2)

k _ 5 17—
S = Swzwlg — — /d2zTr[T,-g 18g] Tr[r;099™"] Aijl
Aij = Tnty - TigrigT] (7:3)
Now consider the transformation g — ugu™! for infinitesimal u = 1 + €ir;:
9= (L +€n)g(l —€n)=g+¢€(rig—gn) (7.4)

So g is left invariant by the transformation if ;g = g7; — it is a fixed point. Multiplying
this equality with g~'7; and taking a trace implies that A;; = 0. The action, from
which the background fields are read off, blows up resulting in a singular metric.
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7.2 Models in the literature

In the previous section, the requirements for an interesting coset construction from
a cosmological point of view were stated: the target space is supposed to be four-
dimensional with a single timelike direction. This section presents some references
to the literature where exactly such cosets were considered. The result is presented
in table 7.2, which has no pretension of being complete but presents some models
encountered in the literature.

In most references, U(1) and R are used interchangeably to denote a one-parameter
subgroup. Of course, they are closely related as U(1) elements are generated by e,
where t € R. The important difference is that U(1) is compact, whereas R is non-
compact. As discussed in the previous section, this is of importance in determining
the metric on a group, so I will be rather strict and use U(1) to denote a compact
subgroup and R to denote a non-compact subgroup.

[ Coset (G/H) [ Ge [ Gne | He | Hye | sign. | refs. |

§8E§f§ 4 |6 3 |3 (1,3) | [5, 37]
S0(2,2

W 2 |4 1 |1 (1,3) | [37]

S O§3:1) 6 |4 3 |3 (3,1) | [8, 37]

ssoo?zé«):) x U(1) 4 |3 3 10 (1,3) | [37]

S xU() 4 13 |3 |0 | (1337

so xR 2 |5 |1 |2 | (13)|[37]

gg%ﬁ’}l;; xRxR |1 [4 |0 |1 |13 |37

SOTQSR) xU1) xR |2 |3 1 |0 (1,3) | [37]

% 1 |4 0 |1 (1,3) | [37, 52]

SL(2,R) x(SlU(2)) 4 |2 1 1 (3,1) | [8, 35, 62]

SL(2£)1>(}?S(27R) 2 |4 1 1 (1,3) | [8, 45]

som x U1)) 4 (3 |1 |2 3.1) | [7]

SL(2,]R]%{><U(1)2 3 9 0 1 (3,1) | [35]

SL(2, S

755%2211?1))1 SU%? 4 |1 1 |1 (3,1) | [52]

L(2,R)xSL(2,R
w 2 |4 1 1 (1,3) | [52]

Table 7.2: Some cosets with 3 + 1 dimensional metric. It is understood that all possible
embeddings of the subgroup H C G should be considered. The references are discussed in
this section.

In reference [37], Ginsparg and Quevedo provide a list of coset spaces with a single
timelike coordinate in table 3. They claim that the list is the most general if G is a
product of simple non-compact groups, U(1)s and Rs. Cosets based on non-semisimple
groups are discussed in a qualitative way, but explicit examples are not presented.?

The cosets mentioned in this article constitute the first part of table 7.2. Note that
most of these associate compact generators with timelike directions (k > 0), but there
is one exception for which it is assumed that k£ < 0.

2The extension to non-semi-simple groups is not straightforward as formulating a WZW theory in
not trivial. See the work by Sfetsos [70, 71].
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The article explicitly discusses the D dimensional coset theory based on the coset
SL(2,R) x SO(1,1)P/S0(1,1) for general D. In D = 4, the coset has a 3 + 1 dimen-
sional metric which makes it interesting for cosmology. The coset based on a vector
gauging procedure is that of a two dimensional black hole with two flat dimensions;
the axially gauged coset leads to a spacetime that is the product of a three dimen-
sional black string and an extra dimension. Both constructions yield a non-zero B field.

Bars and Sfetsos have published a number of articles that discuss the construction
of coset models with interesting cosmological interpretation. In reference [§], they
consider the anti-de Sitter coset SO(3,2)/S0(3,1). It is shown that the coset results
in a spacetime with singularities. The possibility of a coset SO(4,1)/50(3,1) for
negative k is mentioned in a footnote.

The article [9], by the same authors, discusses two cosets that were not mentioned
in [37], see table 7.2. The first coset is also considered by Nappi and Witten [62] and
will be discussed in detail in section 7.3. The geometry following the second coset can
be derived from the first by analytic continuation.

Another article [7] by Bars and Sfetsos starts with a list of cosets (arbitrary dimen-
sions) that yield a single time coordinate based on simple non-compact groups. This
list can also be found in [37], table 1. The article focuses on the three dimensional
cosets SO(2,2)/5S0(2,1) and SO(3,1)/S0O(2,1). In section 7, it is argumented that
these models have a cosmological interpretation by adjoining an additional U(1) or R.
The first possibility was already included in table 7.2.

Gershon [35] considers a coset similar to the one considered by Nappi and Witten.
The parametrization is different which results in a spacetime interpretation of a four-
dimensional Lorentzian black hole. Another coset [SL(2,R) x U(1)?]/R is discussed
and interpreted as a black membrane in four dimensions.

In reference [52], Kounnas and Liist consider the [SL(2,R) x SO(1,1)2?]/50(1,1)
coset model that was also investigated in detail in [37] for an arbitrary dimension. The
authors discuss the relation between ¢ and k for this coset and find that the classical
limit £ — oo can be considered by taking ¢ = 4, requiring an internal CFT with ¢ = 22
for the full string theory. In a region of the full space, they find that the metric at late
times describe an isotropic, linearly expanding Robertson-Walker type universe. At
early times, the model is anisotropic and there is no big bang singularity. Two other
cosets are mentioned briefly (see table 7.2).

Reference [45] by Horava completes this list. The article presents a class of solutions
based on the gauging of the direct product of two SL(2,R)s. The gauging procedure
is discussed in detail, as is the anomaly cancellation condition. The exact gauging
procedure depends on a model-defining parameter a € R that introduces a ’distortion’;
for @ = 0 the geometry is the product of a Euclidean and a Minkowskian 2D black
hole.

7.3 The Nappi-Witten universe

In this section, I discuss a model introduced by Nappi and Witten [62]. It is a well-
known coset model that yields cosmologically interesting background fields. The re-
sulting spacetime can be interpreted as a universe that starts from a big bang and
recollapses with a big crunch. The WZW action is based on the direct product
SU(2) x SL(2,R). It has a free model-defining parameter o that determines the
gauging of the subgroup.
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In this section, I will comment on the construction as presented in the article [62]
and discuss two different coordinate patches on the coset space. Regarding the free
parameter, I will focus on the behavior of the coset space at « = 0 and a = 7/2 as
these will prove to be interesting ’limits’. In analogy with the discussion in sections
6.5 and 6.6, propagation of a scalar state on the background is analyzed using group
representation techniques.

Recently, there has been quite some interest in the model. Elitzur et.al. [27]
consider a model based on the NW scenario for a = 0 that describes a series of
expanding and contracting universes and investigate particle propagation on it. Where
applicable, I will relate some findings for & = 0 to this article. In the follow-up article
[28] they expand the model by an extra U(1) group and consider a very general action
of the subgroup that covers general values of a.

7.3.1 The NW subgroup and the gauged action

In the following, take g1 € SL(2,R) and g» € SU(2). The Nappi-Witten (NW) model
is defined by gauging a two-dimensional subgroup H C SL(2,R) x SU(2) that acts on
group elements g1, g2 as

€03 €cos aoz+tesin aos

!
g1 — g1 =€ "gie
g — gé — ez’arzg2ez'e cos o —iEsin aos (75)

In these transformations, « is a free model-defining parameter that introduces *mixing’
in the model. For a = /2, H is a direct product of two subgroups and the transforma-
tion (7.5) is just a combination of an axial transformation on g; with parameter € and
a vector one with parameter € on go. Setting a = 0, the transformation on each group
depends on both parameters € and €. Recall the condition for anomaly cancellation
(6.20):

Tr [T,,.Ts,.] = Tr [To,rTh,R] (7.6)

For the product group, the trace operator is defined as Tr = k1 Trq + k2 Try with Try the
trace in the defining representation of SL(2,R) and k; the level of its WZW action;
likewise for Try, ko. For H defined by (7.5) this implies k; = —k,. The central charge
of the WZW model for elements of G is (cf. (6.18))

3k 3k
_k1+2 ko + 2

(7.7)

As H is isomorphic to R x U(1), the gauging procedure reduces the central charge by
2. Demanding that the central charge of the coset model is 4 (just like flat Minkowski
space) implies k1 = ko + 4. This is inconsistent with the condition from anomaly can-
cellation and in principle implies that it is not possible to construct a ¢ = 4 coset CFT
with these G and H. However, the main interest is in the classical regime k;, ks — 00,
where the discrepancy disappears. This was also noted in [62].

Introducing gauge fields A and B corresponding to € and €, the gauged action takes
the form?®

ky 2 —15 ik, / 3 —1 3
= = Tr — Tr .
Svw i /Ad zTr [0g, * Og1] + 2dr Vd zTr [g; 'dgi] (7.8)

3Regarding the notation, A here corresponds to A, in [62]; A ~ Az, B ~ A,, B ~ A. Further-
more, (k', k) in [62] is (k1,k2) here.
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k a y —_
+ 2—1 /d2z Tr [—AU339191—1 — SinaAa'3gl_1691 — SiHOéAU3g1AU3g1_1]
TJA
k >, — _
+ 2—1 /sz Tr [— COSaBg3gflagl _ COSO&AO’gngU:;g;l _ A03A03]
TJA _— el et 124 W
+ ﬁ/d2zTr [69—1392] + &/di"zTr [g_ldg :|3
A J 4 2 247 [, 2 @92
k ) D —
+ 2—2 /d2z Tr [—Bi02692g;1 + sinaBigzg;1692 + sin OtBiazngiazgz’l]
TJA
k A - —
+ ﬁ /d2z Tr [— cosaAiazgglagg - cosaBi@gQAiazg;l - BZ'JZBiJZ]
A e 200252480293

As discussed above, it is understood that k; = —ks. The action is exactly equal to
equation (8) of [62], yet written a bit more explicit.

Most terms are left unsimplified to avoid obscuring the structure. Note how the
gauge fields mix in the underlined terms, all of which have a factor cosa. As this
already suggests, for @ = m/2 the mixing terms drop out and the action reduces to
the sum of an axially gauged WZW action for g; and a vector gauged action for g,.
Putting a = 0 and identifying both gauge fields, it reduces to the sum of two axially
gauged WZW actions. This is consistent with the specific action of the subgroup as
specified in equation (7.5).

7.3.2 Coordinates and the spacetime background

Before integrating out the gauge fields, define coordinates on the coset space. A general
element of the covering space SU(2) x SL(2,R) can be parametrized as (for SL(2,R),
see e.g. Elitzur et.al. [27], section 2.2) :

g1 (aa Tﬂ; b7 €1,€2, 6) e*’® (_1)61 (7:02)62 g5 (w)eba'a
92(7,8,8) = €Nelree (7.9)

The notation is chosen to comply with the original article [62], as is the parametrization
of SU(2) elements which is different from that described in appendix B.1. The action
(7.5) of the subgroup H now takes the convenient form

a — a+te
b — b+ éEcosa+esina
Y = Y+E
B8 — p+ecosa—eésina
),8,€1,€2,0 — P, 8,€1,€2,0 (7.10)

This makes it particularly clear how the gauge orbit is parametrized by e and e.
Restricting to the coset space can be thought of as picking only one point out of
every set of points that can be reached by the subgroup transformation (7.10). In
this context, this process is usually referred to as choosing a gauge. The resulting
coordinates parametrize a certain patch of the coset space.

There are a number of ways to fix the gauge. In this section, I will follow the
construction in [62], which imposes the gauge fixing conditions on the SL(2,R) sector
as a = b = 0. Other possibilities are discussed in section 7.3.3. Following [62],
parametrize g1 by

g1(¢p) = €7 (7.11)
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This fixes the gauge and limits the discussion to one region in SL(2,R). This is the
region denoted as I1 in [27], corresponding to €; = €3 = 0; § = I in equation (7.9).
In particular, this choice implies that the Wess-Zumino term vanishes for g; vanishes,
as may be verified from appendix D. For go, it takes the form

T[ga] = %/Vd%ejk(ajﬂak'y) cos 2s (7.12)

In conformal coordinates, this is the cos2s term in equation (13) of [62]. Having
parametrized g; and g2, the machinery as described in section 6.4 can be applied to
the model. The gauge fields in the action (7.8) can be integrated out. This yields
the string action from which the spacetime metric G and anti-symmetric tensorfield
B can be read off. Without copying the analysis in [62], I quote the resulting G in
coordinates p=7vy+ B and A =~y — 3:

Gd’d) x -1
Gge x 1

2 cos? s cos? (1 + sin )
Gop

1 — cos 29 cos 28 + sin a(cos 2¢) — cos 2s)
25sin” ssin® ¢(1 — sin a)
1 — cos 21 cos 2s + sin a(cos 2¢) — cos 2s)

G (7.13)

The proportionality constant is k»/2m. The antisymmetric tensorfield B is equal to

(cos2¢p — cos 2s) + sin a(1 — cos 2s cos 21))
1 — cos 21 cos 25 + sin a(cos 2¢) — cos 25)

B, (7.14)
And of course By, = —B,. The dilaton follows either from the gauge field integration
or by imposing the equations for the background fields in low-energy string theory. It
is equal to [62]

¢ = —% In (1 — cos 24 cos 2s) + sin a(cos 2¢p — cos 2s) (7.15)

These fields will be referred to as the NW background. As none of the components of
the metric depends on either A or p, it is clear that the metric has two isometries.

For generic values of «, the background (7.13) is perfectly well-behaved. For ex-
ample, putting o = 0 reduces G to

G¢¢ x -1
Gss o« 1

2 cos? s cosZ ¢
Gpp

o8 2s cos 29 —1
2sin? ssin? ¢

G __Lh- o ¥
AA cos2scos2y — 1

(7.16)

However, at & = 7/2, the A coordinate decouples from the metric as Gyx = 0. The
metric degenerates and does no longer properly describe the coset space.

Spacetime singularities

A number of features of the spacetime defined by these fields is easily understood
for arbitrary a. As G,, > 0 and G\ > 0, the space has signature (—+++) and it
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is natural to interpret 1 as the time coordinate. At ¢ = 0 there is the singularity
Gxx = 0 while at ¢ = 7/2 one has G,, = 0. This suggests the interpretation as a
universe that starts to expand from a collapsed state at 1) = 0 to recollapse at ¢ = m/2.
The nature of the singularities is not obvious. At 1 = 0, the curvature scalar R is

2cos? s(—7 + 3sina)

sin? 5(1 + sin )

Rlyeo = — (7.17)

So for s = 0 and arbitrary a there is a curvature singularity. For other values of s
the singularity is of a different nature: it is an orbifold singularity. In constructing
backgrounds from gauged WZW models, a general phenomenon is that fixed points of
the subgroup that is gauged lead to spacetime singularities.

In the Nappi-Witten model, the transformation (7.5) has fixed points, i.e. there is
a discrete subgroup of H that leaves g1 (1) and g2(s, p, A) invariant for special values
of ¢. Consider a = 0, s # 0, for which values the curvature scalar is clearly finite,
yet there is a singularity for special values of 1. The action of the subgroup (7.10)
becomes

g o g =eTge”

92— gh=e g’ (7.18)

As exp(2mnioy) = 1 for every n € Z, g, is invariant under the Z x Z subgroup of
H defined by € = 27n, € = 2mm. At ¢ = 0, the group element g; is invariant under
this transformation if n = —m. At the time of recollapse ¢ = 7/2, g; is invariant for
n=m.

For general values of a the situation is more subtle, but similar [62]. The spacetime
singularities at both ¢ = 0 and ¢ = 7/2 correspond to the invariance of g1 and g»
under a discrete subgroup of H isomorphic to Z.

7.3.3 Other patches

Before considering different gauge choices, let’s recollect the construction in the pre-
vious section. The Nappi-Witten scenario stems from a WZW model based on G =
SL(2,R) x SU(2) with a gauged subgroup H C G that acts on elements of G according
to equation (7.5). For definiteness, I will restrict to the region (¢; = €2 = 0; 6 = II)
of SL(2,R) that was also considered in the above, so that

gi(a,g,h) = it
go(1,5,6) = eNTeisoneio: (7.19)
The spacetime background (7.13) that was explored in the previous sections originates

from the gauged action by the particular coordinate patch (7.11). In the language of
equation (7.10) this choice of coordinates is equivalent to fixing the gauge as

a=b=0 (7.20)

In this section, I comment on other choices of coordinates. For some choices, there is
a discrete subgroup of H that preserves the gauge condition which implies that one
has to make identifications. I will focus on the behavior at & = 0 or a = /2, as every
patch becomes invalid at one of these choices.
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Alternative one: v =(3=0

Following Elitzur et.al. [27] consider the alternative gauge choice?

v=8=0 (7.21)

Which slices through the SU(2) sector rather than through the SL(2,R). This par-
ticular choice is not unique in the sense that there are different choices for v and 8
that lead to the same g. This important subtlety will be addressed farther on, but
first the resulting spacetime is discussed. Again, it will prove to be useful to introduce
coordinates p=a+band A =a —b.

In the parametrization (7.19) with v = 8 = 0, the Wess-Zumino term vanishes for gs.
For g, it takes the form (see appendix D)

NI % /V d*x 7% (0;\Ox1) sin ) cos 1 In (e cos 1)) (7.22)

The background fields that arises can be found for arbitrary « in appendix C, equations
(C.2) and (C.4). In the case @ = 0, the resulting metric G is exactly the same as found
in the Nappi-Witten patch, as given in equation (7.16).> The antisymmetric field B is
different though, as can be seen by comparing equation (7.14) from the Nappi-Witten
patch with (C.4) for the patch currently considered.

For a = 7/2, the metric degenerates. As follows from (C.2), Gxx = 0 which implies
this coordinate patch is no longer valid.

As mentioned above, the gauge choice (7.21) is not unique. Recall from equation (7.19)
that

92(7,8,8) = eo2elTseifo (7.23)
As can easily be verified, g, is invariant under a transformation
Y=+ (tn)r B B+ (g —no)m (7.24)

Where n; and no are understood to be integers and this particular form will be conve-
nient farther on. This means that both v and £ can only be defined modulo 7 and the
gauge fixing condition (7.21) is only valid up to a shift with 7. This implies that there
exists a discrete subgroup of H that leaves the gauge condition invariant. Comparison
with equation (7.10) shows that the subgroup is isomorphic to Z x Z as

€ = (ni+n)7 ecosa—éesina = (ny —na) 7 =
™
= i 1 i -1 7.25
€ P (ni(sina + 1) + na(sina — 1)) (7.25)

4This article only considers ot = 0. Furthermore, the authors consider the action of the subgroup
that acts as (g1, 92) — (€593 91€%73,€¥€938 gyei€93). In the SU(2) sector, this amounts to gauging the
subgroup generated by o3 rather then oo. The parametrization of SU(2) is also different so that this
subgroups acts conveniently. I will stick to the original subgroup but do consider the gauge choice
discussed in this article. The results are very similar as the reader may appreciate by comparing this
section with [27].

5This is the same geometry as given in equation (3.7) of [27]. To see this, associate coordinates
(6,6’ ,A_X4+) used in that article with (3, s, A, p) used here. Note that the region in SL(2, R) specified
by (7.19) corresponds to region II so that A_ and Ay are understood to be interchanged in (3.7).
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Where the last step is only valid for « # 7/2. So the condition (7.21) fixes the gauge
up to transformations with €, € given in (7.25). This means that any two elements of
SL(2,R) x SU(2) that are connected by such a transformation should be identified.
In the SL(2,R) sector this leads to non-trivial modifications. Keeping things fully
general in that sector — not restricting to the region (e; = e = 0; § = II) — it follows
that an arbitrary matrix g; transforms under (7.5) with transformation parameters
(7.25) as

g£1,1) N g§1’1) exp (27”11 1+ sina)

g1 L g1 g (_27m2 1 —sin a)

g£2’1) 5 g§2’1) exp (27m2 1- sina)

g§2’2) N ggz,z) exp (_27”11 ) (7.26)

Which reduces to equation (3.5) of Elitzur et.al. [27] for @ = 0. The resulting spacetime
is described in more detail in [27]; it consists of a series of closed universes with
"whiskers’ attached at the big crunch - big bang singularity. For generic non-zero
values of «a, things change only quantitatively. The identifications imply that one
should consider a fundamental domain for the coordinates that come from SL(2,R).
In terms of a general element g;, such a domain is

ggl’z) 1—sina
1> |W| > exp (—dr————)
1

(1)1) ]
g 1+sina
1

This reduces to equation (3.6) of [27] for a = 0. If « is non-zero the fundamental
domains get larger or smaller. For the region (e, = es = 0; § = II) corresponding to
g1 from (7.19), the fundamental domain reads

o
0>A>—2r—— 0@
COS &
L
0>p> _2pirome (7.28)
COS &

So that the ’size’ of the compact spatial directions p and A change if a # 0.

This description, and equation (7.26) in particular, breaks down for @ = 7/2. To
analyze this situation, start with the original transformations (7.10). For a = /2, it
follows that a transformation with € = ny7 preserves the gauge condition without any
restrictions on e. With these parameters, g, transforms as

(1,1)

g™ = g exp (2€)
ggz,z) — g£2’2) exp (—2¢) (7.29)

Which would imply that a and b have to be fixed in order to restrict to a fundamental
domain in SL(2,R). This proves the problematic behavior at a = 7/2.
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Alternative two: a =3=0

It is of course interesting to investigate this further. Is the problematic behavior for
a = /2 a problem specific to the coordinate patches discussed so far or is it a general
feature of the coset itself? The following section introduces a third gauge choice that
has no pathologies for a = 7/2 which shows that the coset is in fact well defined.

The setup is very similar to what was discussed above. Consider the parametriza-
tion of SL(2,R) x SU(2) as given in equation (7.19). Fix the gauge as

a=p=0 (7.30)

Which means that I apply one gauge fixing condition on both the SL(2,R) and the
SU(2) sector.

Let’s look at the background fields that emerge from this model. From the discussion
in appendix D, it follows that the Wess-Zumino term for g, vanishes. For gy, it takes
the form

Swzlg] = 5—; /d2zln (e cos 1) sin 24) (DA — DbAY) (7.31)

Inserting this, plus the coordinates, in the gauged action (7.8) and integrating out the
gauge fields yields an action from which the low-energy metric G and anti-symmetric
tensor field B can be read off. The general result can be found in appendix C. The
reader may verify that there is no decoupling of coordinates for a = 7/2; in fact the
metric takes the form

Gyy o« —1
Gge x 1
Gwp o tan?e
Gyy o tan ’s (7.32)

Where the proportionality factor is again ks /27. This shows that there is a coordinate
patch in which the coset is perfectly well-defined for a = n/2. Taking o = 0, the
metric (C.5) again degenerates. With this choice of coordinates it is not immediately
clear, but one may verify that G is no longer linearly independent for this value of a.
This is particularly clear in coordinates v + b, v — b.

Just as in the previous analysis, the gauge choice a = 8 = 0 is not unique. The
choice a = 0 uniquely specifies a group element g; — a result of the non-compactness
of the subgroup generated by exp (acs3). However, a general gs is left invariant by the
transformation

B = B+ 2mn; (7.33)

Note the factor 2 relative to (7.24). Again, this leads to the conclusion that there exists
a discrete subgroup of H that preserves the gauge choice. From equation (7.10),

2
e=0 e=-"1 (7.34)
sin «
This transformation acts on the other coordinates as
cos o
b —» b+ 271"'11 .
2mn
O N e (7.35)
sin o
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These identifications are perfectly well-defined for a@ = 7/2, for which value there are
no identifications on b. The situation for @ = 0 is similar to the case & = 7/2 in
the previous patch. From (7.10), it follows that any transformation with € = 0 and
arbitrary € preserves the gauge condition which invalidates the description.

Three patches, one space

In this section, I considered three coordinate patches on the Nappi-Witten coset, cor-
responding to the choices a = b = 0, v = f = 0 and a = 8 = 0. The resulting
background fields can be found in equations (7.13), (C.2) and (C.5), respectively. It
was found that the metric of the first two patches degenerates at o = 7/2 but is well-
defined at a = 0. The situation is completely opposite in the last patch; it behaves
properly at a = 7/2 but degenerates at a = 0.

Do the coordinate patches describe the same space where they overlap? All three
geometries emerge from the Nappi-Witten coset with the subgroup defined by equation
(7.5) so they are all of signature (—+++). They all have two isometries, a necessary
condition to be identical. The fact that all metrics only depend on ¢ and s suggest
a more detailed way to compare them: consider a point on the six-dimensional space
with coordinates

a=0 =1 b=0
fy:(] s—= 38 ﬂ:O (736)
Each of the patches considered includes this particular point. A straightforward cal-

culation shows that, for 0 < a < 7/2, the curvature scalar for each of the patches is
identical and equal to

(22 + 6 cos 2a)(cos 41) — cos 4s) + 32 sin a(cos 21) sin? 2s 4 cos 2s sin? 2¢))
4(1 + sin & cos 2¢p — cos 2s(cos 2¢) + sin @) )2
Which reduces to (C.3) for & = 0, but this is only valid in the first two patches. For

a = m/2, only the geometry of the last patch is well defined. For this value of «, the
scalar curvature indeed reduces to (C.6).

R=-

7.3.4 Construction of scalar states

The previous section discussed a number of coordinate patches on the Nappi-Witten
coset space. In this section, I will restrict to the original patch that was defined by
equation (7.11). The resulting space has geometry as given in (7.13) and antisymmet-
ric tensorfield (7.14). These fields will be referred to as the Nappi-Witten background
in this section, that discusses propagation of scalar states on that background. The
discussion is similar to that of section 6.5.

Scalar states on the NW background must obey the wave equation (6.39) for the
background. For a general scalar field T = T'(3, s, A, p) this equation is both lengthy
and untransparent so it will not be stated here. However, assuming that the scalar
field is constant in two spatial dimensions and making the ansatz T = T'(¢,s), the
equation reduces to

m?T(1,s) = (tan™'s—tans) %T(@b, s) + (tant) — tan™" 1)) %T(zﬁ, s)
62 82
+ @T(% 8) — WT(% 5) (7.37)
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Which is independent of a, a feature special to the simplified situation considered here.
The general wave equation for an arbitrary four-dimensional scalar field does depend
on a.

In order to find solutions of the scalar wave equation on the NW background,
the technique of group representations will be applied. Using the parametrization
introduced in the previous section in equations (7.9) and (7.11), the general solution
T(1,s, A, p) of the wave equation on SL(2,R) x SU(2) splits into

T@W,s0p) = Ti(W)Ta(s, N p) = (ful Tlor] | fwr) (Fal Tlge) | Fv)

The bases | f,) and |f,) can of course be chosen differently if this is convenient. The
bases can be constructed to diagonalize the transformation (7.10) in the sense that

(fml T[gi] |fm’) — e—2z’(m+m' sin a)e—2i(m’' cos a)& <fm| T[g1] |fm’) (7‘39)
(Fal Tlgs) | ) = e cosemzilnmnlsinede (£ Tlgy]| ) (7.40)

Invariance of T'(1, s, A\, p) under the transformation (in order to consider the coset
space) then implies

m+m'sina+n'cosa=0
m'cosa+mn—n'sina=0 (7.41)

For a = /2 the equations separate into one restriction on the functions |f,,) and one
on the functions |f,) while for different values of a the restrictions mix. Choosing
a = 0 the mixing is maximal: m relates to n’ and m’' relates to n. In the following,
the matrix elements (fy,, fms) will be evaluated first and then (f,, fur)-

The SL(2,R) sector

The basis of functions |f,) should be chosen such that it diagonalizes the transforma-
tion (7.5)

€03 €cos aoz+esin aos (7 42)

g1 — e gie

The reader will recognize the hyperbolic subgroup e‘’# introduced in equation (6.45).
Applying the results of the analysis in that section shows that the basis {z7* "™, 77"}
leads to the correct transformation behavior as expressed in equation (7.39). Not the
whole analysis that follows can be taken over as the gauge condition used here is
different from the one used there; an other region of S L(2,R) is considered.

As before, the evaluation of (fi, fm') = (fm| Tx:[€¥72] | fm') is taken from Vilenkin
and Klimyk [83]. The reader may refer to section 7.2.1 where region u corresponds to
the region chosen here®. The matrix elements are given by the functions g 4 (; m,m’, )

and g__(¢;m,m',7), which can be found in appendix B.2.

The SU(2) sector

Up to this point, all matrix elements originated from representing elements of SL(2, R)
by the principal continuous representation series. A similar construction can be set up
for SU(2) — a well-studied subject in quantum mechanics so I will be brief. Consider an

8See also [27] where this is region IT.
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system of arbitrary spin with the three spin generators Ji, Jo, J3. As these operators
do not commute among themselves it is convenient to choose a basis that diagonalizes
one operator, say Js. Let |¢,,) be such a basis with eigenvalues

I3 - |¢n) =1 |bn) (7.43)

As is well known, n takes integer or half-integer values ranging from —j to j, where
j(j + 1) is the eigenvalue corresponding to the Casimir operator J2. This choice of
basis implies the triviality of the matrix element

<¢n|eJ3t|¢n’) = dnn e (7.44)

Explicit calculations are needed to evaluate matrix elements that involve J; and Jo,
just as in the SL(2,R) analysis.

These rather formal statements do not specify the representation of states and
operators. For example, one can think of a spin-1/2 system, and take J; = o0;/2
as operators in a two-dimensional vector space. On the other hand, one can think
of the basis states as functions in function space and the spin operators as some
representation of SU(2) acting on these functions. This point of view provides the
link with the analysis on representations of SL(2,R). In the following, this connection
is stressed by using the notation J; = Tl[ai], where [ labels different representations.

Opposed to every textbook example, it is the subgroup generated by J> that is to
be diagonalized. Suppose that the basis |¢,) is defined as above, while the basis |f,,)
is a set of eigenvectors of Jo:

Ja - |fn> = Tl[‘72] : |fn> =n |.fn) (7'45)

Using the coordinates -, s and p that parametrize the SU(2) sector in the NW analysis,
the matrix elements may be computed as”

(fos fr) = (Ful Tile"72 €72 €%2] | fur)
= ($al Ti[e70e 72607 |p)
= e e 2 (g Tile %) |pw) (7.47)
The last matrix element is given by the Wigner D-function d*. n,—nt (28) stated explicitly

in appendix B.2. For further reference, see e.g. [81], which uses a parametrization in
Euler angles®

DY?(—2v,25,—28) = '173¢ 15721003 (7.48)

It is easily verified that (f,, fn/) as defined above has the correct transformation be-
havior (7.40) under the action of the NW subgroup (7.10).

"In the second line, I use a trick that may need some comment. Denote J; = Tl [oi]. From equations
(7.43) and (7.45), the exponential factors follow directly. Consider a unitary operator U that acts as
¢n = U frn, which is just a change of basis. As Jy and J3 have the same eigenvalues, it can be shown
that Jo = U~ 1J3U. Use this to find

(bn| J2|@nr) = (Sa| U I3U b)) = (fu| U2 T3U? | fr) (7.46)

Which may be explicitly considered in the defining representation to find eq. (7.47).
A 8Though the definition of Euler angles differs from that adopted in appendix B.1;
DY?(a1,09,a3) = u(—a1 — /2, —az, —az + w/2) where u is defined as in equation (B.2)
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This completes the construction of scalar states on the Nappi-Witten background.
Summarizing, the following set of scalar states was found (in coordinates v, s, A and

p):

T(4,5,\,p) = e 0+ Ine= =" g\ | (hym,m/,7)d,, _,.(25) (7.49)
The functions g, g4+ and diwb, are given explicitly in appendix B.2. There are
a-dependent restrictions on (n,n’,m,m') as expressed in eq. (7.41). From the SU(2)
sector there is the additional constraint that both n and n' are (half-)integer valued
and bounded by |n|, |n'| <.

This clarifies the fact that for the ansatz T' (v, s) the wave equation was independent
of a. The ansatz corresponds to setting n = n' = 0 in the general solution. Except for
the special value o = 7/2 this implies m = m’ = 0 for generic a and restrictions on
the states are no longer a-dependent.
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8
Conclusion

String theory is a huge subject. I hope that this thesis serves the reader as a useful
resource for one aspect of string theory: how string theory is a theory of gravity and
what implications this may have on cosmology. In this conclusion, I will summarize
the main line of argumentation and emphasize some findings.

A first introduction to string theory usually starts by considering classical strings that
vibrate and propagate in D-dimensional Minkowski spacetime, sweeping out an area
known as the worldsheet. The dynamical behavior can be formulated by the Polyakov
action which is then used to analyze the quantum theory (chapters 3 and 4):

1
Sp = , / dodr Vhh*?8, X" 93 X" 1,
A

4ra

From the string worldsheet point of view, the Polyakov action defines the dynamics
of a set of scalar fields X that live on the two-dimensional worldsheet. The X fields
are coupled covariantly to the worldsheet. They are contracted by the spacetime
Minkowksi metric 7 which just enumerates the fields. From the worldsheet perspective,
this action defines a free field theory for each X* so that this set spans Minkowski
space in D dimensions.

From a cosmological point of view, it is highly interesting to consider strings in a
more general background. It can be shown that a naive generalization of the Polyakov
action by substituting n — G(X) is the correct way to account for a coherent back-
ground of graviton states (section 5.1.2). From the worldsheet perspective, this gen-
eralization means that the X fields are no longer free but have interaction terms with
coupling constants related to derivatives of G so that they span some manifold (section
5.1.2). Such a model is historically known as a non-linear sigma model. It may be
generalized to include the other background fields of closed bosonic string theory: the
dilaton ® and anti-symmetric tensorfield B (section 5.1.2).

String theory in Minkowski space is characterized by reparametrization and rescal-
ing invariance (section 4.3.2). Rescaling invariance is a typical feature of conformal
field theories (cf. chapter 3), which explains their relevance to string theory. If the
non-linear sigma model is to describe strings in a non-trivial background, it is reason-
able to demand that these symmetries are present. This imposes highly non-trivial
constraints on the set of allowed background fields G, B and ® (section 5.1.3). In turn,
these constraints can be derived from a low-energy effective action — which defines the
bosonic string theory of gravity (section 5.2). This is valid for low energies and large
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distances, where a string reduces to a point particle (more precise: up to first order in
an o expansion; section 5.1.4).

The theory reduces to general relativity if the dilaton is constant. From comparison
with Brans-Dicke theory (cf. section 2.2.2) we know that the dilaton cannot play a
dynamical role in our present universe. In string theory, this means that there should
be some dilaton potential so that the dilaton is now settled near its minimum. Such
a potential has huge implications on the dynamical evolution of the universe (section
5.3.3). A currently interesting question is whether the de Sitter (dS) solution of gen-
eral relativity (which solves the Einstein field equations with a positive cosmological
constant; cf. section 2.3) is also allowed in string gravity. The example of section
5.4.3 shows that assuming a constant dilaton is inconsistent. There are solutions for
a time-dependent dilaton but one may question the exact interpretation of a cosmo-
logical constant in that case (section 5.4.2). The construction of a dS solution is not
trivial and there are no-go theorems as discussed in section 5.4.5.

All of the above applies to low-energy string theory; the background fields solve the
constraint equation from rescaling invariance only up to O(a') (section 5.5). For more
exotic phenomena as black holes or the big bang (where energies are around the Planck
scale), one needs to consider backgrounds that are valid beyond this approximation
— defining a fully rescaling and reparametrization invariant non-linear sigma model.
One procedure to find such backgrounds is by using a coset construction (chapter
6). One may start from a non-linear sigma model for some group G and restrict to a
coset G/ H by gauging the associated Wess-Zumino-Witten action (sections 6.1 to 6.3).
Integrating out the gauge fields makes contact with the low-energy theory of gravity —
but it is now possible to associate an exact solution with a low-energy solution (section
6.4).

This makes it particularly convenient to study the propagation of scalar states on
a background that is acquired from a coset construction (section 6.5 and the explicit
example in section 6.6). The scalars can be used as probes to investigate the spacetime
structure.

In a cosmological setting, such research may provide new insight into the nature of
spacetime singularities such as the big bang. Some general requirements for a coset to
yield a background that is interesting from a cosmological perspective (such as a 3+ 1
metric) can be formulated (section 7.1. A number of such cosets have already been
studied in the literature, and the reader will find a (non-complete) list in section 7.2.

A prominent example of such a model is the Nappi-Witten (NW) universe [62],
which is investigated in detail (section 7.3). The model has a free parameter a that
determines how the subgroup is gauged. There has been recent interest in this model,
such as in the work of Elitzur et.al. [27] who consider a different patch as the original
authors and restrict to & = 0. This article is discussed and some results are generalized
to non-zero a (section 7.3.3). Another coordinate patch on the NW coset is found.
Opposed to the patches of [27, 62] it is well-behaved for a = 7/2 (section 7.3.3).
Finally, scalar propagation on the NW background is investigated for general « (section
7.3.4).

8.1 Suggestions for further research

The (non-)possibility of finding a de Sitter solution in low-energy string theory is
quite an interesting subject. Let me stress that the discussion on section 5.4.5 is not
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conclusive — a more thorough investigation of the subject would be very welcome.
Such a study may cover a more detailed analysis of allowed dilaton potentials, or
consider higher-dimensional objects as branes or orientifolds (see e.g. Silverstein [72]
and Maloney et.al. [56]).

Another interesting topic is the possible propagation of scalar states through space-
time singularities. Using the theory described in chapters 6 and 7, one could investigate
the nature of a singularity that arises in some coset background. An example of such
a study, with quite detailed calculations, can be found in Elitzur et.al. [27] for the
NW coset. It would be very interesting to compare these results with singularities in
other backgrounds.
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A

Formulae for cosmological scenarios

A.1 The rolling radii solution

This appendix presents some geometrical quantities for the metric ansatz in the rolling
radii scenario (5.35). The Ggo term is kept explicit here, as it may be useful for varia-
tion purposes. It is understood that Goo = —1 after the variation. A straightforward
calculation shows that the non-vanishing components of the connection are

Goo
I =
00 2G00
iy = & (no sum)
o, = I'y=- i 20 (no sum) (A1)
Goo

This implies the following non-vanishing entries of the Ricci tensor:

G
_ -2 00 .
Roo =~ @+ dDt 5, 2 0
R, = _62% @»_f_o}id —ﬂdr 0sj (no sum) (A.2)
1] GOO i zkil k 2G0() i ] -

Various terms that are encountered in reducing the general low-energy effective action
(5.20) to the specific form (5.37) are

. 1G' .
v.ve - [E-iGsd 0
0 2%y
00
= 1Goo - N
V. Ve = —d4+ 20§ 4
g 2Goo Goo
1 .
V. eVFe = — @2
g Goo
N N N d N
R = -G» 2d; + a?) + aid; | — —(G)Y a; (A3
;( ) ;; i | =g ); (A.3)

Putting Goo = —1, this is equal to the result in Mueller [60], section 3.
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A.2 The maximally symmetric solution

In this appendix, the reader will find some results in deriving the equations of motion
(5.52), (5.53) from the ansatz (5.48). The action (5.51), which is an integral over
t, can be derived from the general effective action by calculating various geometrical
quantities and keeping Ggo explicit.

Please be aware of the notation as this may cause some confusion. As usual, Greek
indices run from 0 to D — 1 and Roman indices from 1 to D — 1. Quantities with a
tilde are evaluated in the N = D — 1 dimensional subspace, those without a tilde in
the D dimensional spacetime. For instance, R, is the (a,b) component of the Ricci
tensor of the maximally symmetric subspace. In contrast to this, Ry is the (a,b)
component of the D-dimensional Ricci tensor, which in general is a different quantity.
The connection for the geometry (5.48) is related to the connection of the maximally
symmetric subspace as:

Goo
FO
00 2G00
Ty, = A (no sum)

/'\62/\ N

0 _ 10 _
% = T%=-5—Ci
I, = T (A4)

Now the fact that the ’space’ subspace is maximally symmetric can be used. For an
introduction to maximally symmetric (sub)spaces, see e.g. Weinberg [84], chapter 13.!
The Ricci tensor in a maximally symmetric space is

Rij = k(N - 1)Gj; (A.5)

Using this, it can be shown that the D-dimensional Ricci tensor for the ansatz has
non-zero entries

. N Goo -
Ry = —-N Hy ——=
00 ()\ + A ) + 2 Goo A
R;, = [(k(N-1)— ie”(X + NX) + 1 Gug e\ | Gi; (A.6)
’ Goo 2 (Goo)? !

The Goo is kept explicit as it may be needed for variational purposes. After the

variation, Goo = —1. Other terms in the equations of motion are found by working
out the connection coeflicients of this geometry, resulting in
1 %(i) 0
v,V,® = 2 Goo e~
H ( 0 GLOOCQ)‘/\ (I)Gij
d N .. 1 Go
V,VF® = —+ —A\P — —
# Goo  Goo 2 (Goo)?
1 .
V. VFEd = ——2
a Gaoo

1Be aware that Weinberg uses (+——) sign conventions, as opposed to the (+-++) convention
adopted throughout this thesis. This leads in particular to a different sign for the Ricci tensor and
curvature scalar. See the 'notation’ section in the beginning of this thesis.
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Goo
(Goo)?
These quantities can be inserted in the general equations of motion of string cosmology

(5.22) with Ggo = —1. After putting B = 0 this leads to (5.52), (5.53) with a bit of
linear algebra. Recall the introduction of the rescaled dilaton ¢ = 2® — NA.

LON. —N(N+1)
R = A+
Goo Goo

ML NN - 1Dke 2 + NX (A7)
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B

Some group theory and special
functions

B.1 SU(2), SU(1,1), SL(2,R)

The Pauli ¢ matrices are given by

=(23) em(1F) e=(3h) e

They form the usual basis of SU(2). A commonly used parametrization of nearly all
group elements of SU(2) is in terms of the real Euler angles ¢, 0, .

cos§/2ei9t¥)/2 jging/2eHo—¥)/2
u(¢,0,9) = ( isinf/2ei V=912 cosf)2e~Hot¥)/2 (B-2)
Which has the convenient factorization u(¢,8,v) = u(¢,0,0) (0,6, 0) (0, 0,). With
an obvious reparametrization, a generic element can be written in real coordinates a;
(1=1,2,3) as

u(2a; — /2,202,203 + 7)2) = el*173 gia2024ix303 (B.3)

The group SU(1,1) can be regarded as the analytic continuation of SU(2). Complex-
ifying ¢,6,1 — or, equivalently, the a;’s — leads to the group SL(2,C). The group
SU(1,1) is then extracted by requiring 6 to be purely imaginary; starting from SU(2)
this corresponds to continuing § — —it. The parametrization in Euler angles ¢, ¢,
is

[ cosht/2eH9H¥)/2  ginht/2eH(9-¥)/2
9(9,t:9) = ( sinht/2e'(¥=9)/2  cosht/2e H¢+¥)/2 (B-4)
Equivalently, a group element can be expressed in real coordinates f; as
o103 B202 ,iB303 (B.5)

A natural choice of basis in SU(1,1) is such that the subgroup corresponding to a
generator p; is associated by analytic continuation with the subgroup generated by o;
in SU(2). This basis is

p1 = —ial p2 = —iUz p3 = 03 (B.G)
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The non-compact group SL(2,R) is isomorphic to SU(1,1):

g€ SL(2,R) &t 'gte SU1,1) t= ( : . ) (B.7)

Which suggests the basis (1; <> p;)
T = —i(]l T = iO’3 T3 = 09 (B8)

All entries are purely imaginary as expected. A frequently encountered parametriza-
tion of SL(2,R), which covers elements with all entries non-zero, is as follows (see e.g.
reference [27] or [83])

g(a’7 t7 b7 €1, €2, 5) =e"%® (_]‘)61 (i02)€295(t)eb03 (Bg)

Where the discrete labels €; and e are either 0 or 1 and § labels the following matrices

cost —sint
() = (sint cost) —m2<t<n/2

cosht sinht > o< t< oo (B.10)

gu(t) = <sinht cosht

As a possible help, here are some exponentiated matrices often encountered in the
analysis:

o5 _ [ cosht —isinht ito _ [ cost sint oo _ e 0
€=\ isinht cosht €=\ —sint cost T\ 0 et
B.2 Explicit form of matrix elements

B.2.1 f,, and f__

In the space of generalized functions, choose the basis |fn,) := {z/7*"7,2""*7} where
m € R. Consider the following region of SL(2,R) acting on these functions

cosht sinht
gr(t) = ( sinht cosht ) (B.11)
Matrix elements {fy,| TT,G[gI(t)] | fm) are given by fi4(t;m,m',7) or f__(t;m,m',T)
where

]. —1 ! : ’
fia®) = 5 cosh (£) HmH™) ginh (¢)27 HmEm)
s
B(—1 —im,—7 +im)

o Fy (=7 —im, —7 —im/, =27, — sinh ™2 t)

1 o P
f—-@) = Tcosh(t) imtm") ginh (p) 22T Hi(mem)

Y(¥3

B(l+7+im',14+ 7 —im/)

2Fi(1+ 7 —im,1+ 7 —im', 27 +2,—sinh *t) (B.12)

In these formulae B is the Euler beta function and 2 F} is a hypergeometrical function.
See Vilenkin and Klimyk [83], section 7.2.1 where region h corresponds to g.
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B.2.2 g,,and g _
Now consider the same basisfunctions |f,,) with a different region

oy _ costp  sing
eV = ( —siny  cos® ) (B.13)

The corresponding matrix elements { f, | Ty, [€747%] | fnr) are equal to either g | (t;m,m’, 7)
or g__(t;m,m’,7), defined as:

1 ) , ) )
g++(t) = 2—m.(cos #)~im+m’) (gip, ) 27+ilmtm)
B(l+7—im/,—1 —im)
oF i (—T7 —im, —7 — im',1— i(m + m'), —tan—2 )

1 . , _ ,
g--(t) = S —(cost) mH™ ) (sin )22 —ilmEm)
B(]. +7+ 'l'm17 -7+ Zm)

2Fi(1+7+im,1+7+im',1+i(m+m'),—tan ?t) (B.14)

See [83], section 7.2.1 where region u corresponds to et¥72.

B.2.3 Wigner D-function d'_,

The Wigner D-function dlmm, can be expressed in Jacobi polynomials:

e [ I =m)Y(I 4+ m)!
dlmm’(t) - E ((l—m’)!(l+m’)

m—m'|,|m+m’
X Pl(l(‘mHLJ‘+|m7|2n,‘)/2(cost) (B.15)

1/2 , ,
'> (cost/2)™ ™ (sint/2)lm=™

Where P (z) denotes the nth Jacobi polynomial in z for parameters a and b. The
factor £&™™ is equal to 1 for m/ > m and to (—1)™ =™ for m/ < m.

Various other forms can be found in reference [81], chapter 4. These matrix ele-
ments are also given in [83], section 6.8. The region considered there is «(0, ¢,0) which
is equal to ei™/40s¢it/2020—in/405  Thig leads to a phase factor of i™~™ relative to
scalar states in the region D1/2(0,¢,0) = e~ /292 considered in the text.
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C

Background fields related to the
Nappi-Witten universe

This appendix explicitly states the background fields found for different coordinate
patches on the Nappi-Witten coset. Recall from (7.19) that I parametrize the six-
dimensional manifold SL(2,R) x SU(2) as

gl(a,¢,b)
92(7,8,8) = €"72e7e7 (C.1)

Which does not cover the whole manifold. Nappi and Witten choose a coordinate
patch by setting a = b =0 [62].

2993 eu[wzebtfs

Il

C.1 Alternative one: vy =(5=0

The geometry is conveniently expressed in coordinates p =a+band A =a — b:

GW/) x -1
Gss ox 1
G, o 2 cos? scos? (1 — sina)

 —1+ cos 2¢ cos 2s + sin acos 2s — cos 20))

G x — 2 sin? s sin’ zp(l +sina) (C.2)
—1 + cos 21 cos 2s + sin a(cos 2s — cos 2¢))

The proportionality factor is k2 /2w. Note that it has signature (—+++) for & > 0.
The geometry is well-behaved for o = 0; in particular, the curvature scalar takes the
form

7 (cos4s — cos 4))
(cos2scos2y —1)2

R|a=0 = (C3)

For a = 7/2, G,, = 0 which means the metric degenerates and this is not a valid
description of the coset geometry at that point.
The antisymmetric tensorfield B takes the form

Byx o —In(e” cost)sin2i
2 cos? 1) cos? s(sin a — cos 2s)
—1 + cos 21 cos 25 + sin a(cos 25 — cos 21))

Bp,\ 08
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C.2 Alternative two: a =3=0

Sticking to the original coordinates, the geometry can be expressed as

Gl/ﬂ/) x -1
G ox 1
G 14 cos 24) cos 2s — sin a(cos 25 + cos 21))
—1 + cos 24 cos 2s + sin a(cos 25 — cos 21))
G o~ 1 + cos 21) cos 2s + sin acos 25 + cos 21))
m —1 + cos 219 cos 2s + sin a(cos 2s — cos 21))
Gy o (1 + cos 2s cos 21)) cos a (C.5)

—1+ cos 21 cos 2s + sin a(cos 2s — cos 2¢))

The proportionality factor is ky/27 and the signature is again (—+++) for £ > 0.
Opposed to the previous example, this geometry is well defined for @ = 7/2. The
curvature scalar is

2(cos2s + cos 29)

Rlazn/z = - sin? s cos2 ¢ (C.6)
The antisymmetric tensorfield B is found to be
Byp o< 2sin2¢1n (e’ cos )
By, « (1 — cos 25 cos 21)) cos a ©.7)

—1 + cos 21) cos 2s + sin a(cos 25 — cos 21))
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D
The Wess-Zumino term

This appendix discusses the topological Wess-Zumino term that arises in WZW mod-
els. More specific, it presents a general formula for the WZ term for WZW models
based on SL(2,R).

Recall from equation (6.3) the definition
T[§] = —— /d%e”k Tr[§7'0:05'0;99 " 0rd] (D.1)
247 1%

Where §(z1,22,23) is valued in G and lives on a three-dimensional space V' whose
boundary corresponds to the string worldsheet. This term is easily evaluated if one
can find some 2 x 2 matrix D such that

eT*Tr [§710;967'0;9 67" 0kg] = €7%0;Djy, (D.2)

Now the Wess-Zumino term can be evaluated as follows (cf. Di Francesco et.al. [25],
15.1.2)

ik
247
ik

= —— [ dz*D; D.
W/dee " (D.3)

I'[g]

d3 ijk 0:D.:p. = 7’_ /d3 jki 8:D.
/V Ie€ ik 2ar v I € ik

For G = SL(2,R) this can be done in generality. Express an element g; of this group

w=( %0 (0.4)

Where a, b, u and v are real, depend on z1, 22 and x3 and obey ab + uv = 1. The
reader may verify that equation (D.2) holds for

Djk = —6(8ju 8kv) Ina (D.5)
So that T takes the form

Tg1] = —%/demejk(aju()kv) Ina (D.6)
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In conformal coordinates, z; = z,z2 = Z, the term I' takes the form

" o o
Tg1] = —Z—/dzz (€% (0udv) + €% (0udv)) Ina
47 174
R /dzz (Oudv — Gudv) Ina (D.7)
27 \%
Recall from section 4.2 that €¥? = —e?? = —24. I have implicitly used d?z = d%z

here. The result (D.7) is in keeping with equation (31) of reference [87], the article by
Witten on which section 6.4 is based. Note that, in particular, the Wess-Zumino term
vanishes for any element of SL(2,R) with u o« v.

For SU(2), T have not found such a general formula. However, consider elements
g € SU(2) that can be parametrized by

gs = eiaa2 eiba3 ez’ca’g (DS)
In this parametrization, (D.2) holds for
Dj = —6(0jc 0a) cos2b (D.9)
So that
" o
T[g2] = i /dza: e7*(8;c Oa) cos2b (D.10)
47T 174
Which in conformal coordinates reads

Ilg2] = —%/dex(acga—gcaa) cos 2b (D.11)

This is consistent with equation (13) of [62] by Nappi and Witten. The Wess-Zumino
term in that equation follows from the above equation by identifying b = s, a =
(p+A)/2and c= (p—N)/2.
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