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Abstract

The starting point for this thesis is gauge theory in four-dimensional flat
spacetime. After a short introduction to the relevant ideas and methods
we introduce supersymmetry and a very convenient way to represent it,
namely the notion of superspace. After that we proceed to the construction
of theories which are simultaneously Poincaré-invariant, supersymmetric
and gauge-invariant.

However, supersymmetry is obviously not present in nature and, thus,
its breaking is necessary. In that direction we analyze spontaneous su-
persymmetry breaking, introduce various criteria regarding it, and explain
their implications. Furthermore, we explore the very promising perspec-
tive offered by the possibility of coexistence of both supersymmetric and
nonsupersymmetric ground states in the same theory. For that we analyze
a special case of the supersymmetric extension of quantum chromodynam-
ics and, indeed, we find that it experiences supersymmetry breaking in
metastable vacua.

In the remainder we try to motivate the string and M-theory realizations
of the above ideas. In order to achieve that we use string-theory brane
configurations to obtain the classical dynamics and their corresponding
lifts to M-theory to get the full quantum dynamics.
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Preface

Although a very appealing idea, supersymmetry is not a part of nature. As of today numerous
experiments have not seen any sign of supersymmetry and, hence, if we want to retain its
power we need to find a phenomenologically acceptable way to break it. Now, there are mainly
two approaches regarding supersymmetry breaking: Either it is explicit, or spontaneous. In
the former case the theory not only contains supersymmetric terms but, also, terms (one or
more) which break supersymmetry. In the latter case, which is also the subject of this thesis,
although the theory has supersymmetry, its vacuum does not.

In the first chapter I give a very short reminder of the ideas and methods of ordinary
gauge theory in four-dimensional flat spacetime. I describe how supersymmetry extends the
Poincaré algebra and introduce the notion of superspace in order to be able to use classical
methods to represent supersymmetry. After that I construct Lagrangians which have three
very important properties: Poincaré invariance, supersymmetry and gauge invariance. In
that way one incorporates supersymmetry in the edifice of quantum field theory and makes
explicit that supersymmetry is indeed a beautiful extension of the established ideas of the
Standard Model.

In the second chapter I delve into the spontaneous breaking of supersymmetry, motivated
by the fact that supersymmetry is nowhere around us and, therefore, its breaking is necessary.
I introduce various ways to check whether supersymmetry is broken and extensively analyze a
particular example up to one-loop order. I give an explicit proof of the Goldstino theorem and
argue that if supersymmetry is spontaneously broken at tree-level, then the breaking persists
to all orders in perturbation theory. Likewise, if supersymmetry is unbroken at tree-level,
then it is not broken at any order in perturbation theory.

In the third chapter I introduce the supersymmetric extension of quantum chromody-
namics (SQCD) and show that the dynamics of this theory depends heavily on the number
of colors and flavors. I extensively analyze the vacuum structure of SQCD both at tree-level
and in the quantum theory, and present a very important duality for a particular range of the
number of flavors. Finally, I use this duality to find that massive SQCD has both supersym-
metric and nonsupersymmetric vacua. In particular, although at tree-level the theory breaks
supersymmetry, there is a nonperturbative (dynamical) mechanism which, without spoiling
the nonsupersymmetric vacua, brings supersymmetric vacua in the quantum theory. That is
an example where mechanisms beyond perturbation theory result in a wide variety of new
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viii Preface

and unexpected phenomena.
In the fourth chapter I try to motivate the form the above phenomena take in string

theory realizations. I introduce the idea of branes in superstring theories and use brane
configurations of type-IIA superstring theory to obtain supersymmetric field theories at low
energy. However, the brane configurations give us the classical dynamics in the low-energy
effective theory; in order to explore the full quantum dynamics one has to lift the type-IIA
brane configurations to M-theory. I extensively analyze the relevant interpretation and find
the shape of the so-called M-theory curve.

The fifth chapter contains a particular string and M-theory realization of the phenomenon
of dynamical supersymmetry breaking in metastable vacua. I describe how massive SQCD
arises in the low-energy limit of type-IIA brane configurations and try to see whether the
dynamical supersymmetry breaking it experiences can be seen in M-theory. Here I stumble
upon a rather disappointing result; M-theory considerations indicate that the low-energy the-
ory does not host both supersymmetric and nonsupersymmetric vacua. On the contrary, one
can see that these two sets of vacua belong to different theories. This situation is unresolved
as of this writing.

With this thesis I aim to finish my master’s on theoretical physics at the university of
Amsterdam. I want to express my gratitude to my adviser, Jan de Boer, with whom it was a
pleasure to discuss about physics and beyond it. I feel very privileged I had the opportunity
to come in contact with his way of thinking. I would also like to thank Kyriakos Papadodimas
for explaining me many difficult concepts in the clearest way possible.

Last, but certainly not least, I would like to thank my family for always being there for
me. Many thanks go to my roommates, Dimitris and Menelaos, for offering me a nice time
at home. I wish them all the best in their professional and personal endeavors. I would also
like to thank Idse, Mark and Michele for very useful discussions on and outside physics.

Andreas Stergiou,
Amsterdam, July 2007
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Introduction

Supersymmetry

The Standard Model of particle physics is one of the most elegant, profound and important
achievements of modern theoretical physics. It is the theory that describes the fundamental
particles and three of the four interactions they experience, namely the electromagnetic, weak
and strong interactions. Its predictions have been stringently tested in a series of experiments
in the past, and it was proved to be the most successful theory in our possession. However,
the Standard Model is not a final theory. It fails to incorporate the omnipresent gravitational
interaction, it predicts zero mass for the neutrinos, particles that actually have nonzero mass
and, in general, it looks rather artificial, since it needs a lot of experimental input in order
to operate. As of today, the consensus is that the Standard Model, within its limits of
applicability, is a theory that adequately describes our universe. Moreover, beyond those
limits, new physics is expected to appear and give more concrete answers.

The search for this new physics led to several new ideas. One of those was supersymmetry,
a symmetry that relates bosons and fermions, the two categories of elementary particles ob-
served in the universe. Supersymmetry enabled physicists to shed light on several problems
the Standard Model failed to handle. For example, supersymmetry achieves the so-called
unification of the couplings. More specifically, the running of the three couplings of the Stan-
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Fig. 1: Running of the couplings in the Standard Model (left) and the Minimal
Supersymmetric Standard Model (right)

dard Model is such that the corresponding “fine-structure constants” do not meet at a specific
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xii Introduction

point at any energy scale. However, when supersymmetry is taken into account the situa-
tion is amended, that is the three “fine-structure constants” all have the same value at some
high energy scale (see Fig. 1) [1]. Additionally, unbroken supersymmetry predicts exactly
zero cosmological constant, and it is strongly believed that some hints about the smallness
of the cosmological constant will emerge from supersymmetry. Furthermore, supersymmetry
suppresses the ubiquitous infinite corrections of quantum mechanics in classical quantities
and, finally, there is a particular supersymmetric model, namely the Minimal Supersymmet-
ric Standard Model, which almost perfectly reduces to the Standard Model, an indispensable
attribute of any theory we might construct.

However, our universe is definitely not supersymmetric since we do not observe the par-
ticles supersymmetry predicts. In addition, we do not yet know if nature utilizes supersym-
metry at high energies, even though there are several reasons to believe so. But the beautiful
solutions supersymmetry offers are too attractive to be dismissed at the first difficulty, and
the Large Hadron Collider (LHC) at CERN is expected to give a definitive answer within five
years. Since this answer is strongly believed to be positive, this gives a rather strong impetus
to the idea of supersymmetry.

Therefore, it appears as the best possibility that we retain supersymmetry up to some
point, and then find a physical mechanism that will explain the transition from the super-
symmetric to the nonsupersymmetric regime. As of today, the proposed solutions to this
problem are far from satisfactory and intense research is conducted in order to unravel the
mystery. One of the most promising directions the research has taken involves the breaking
of supersymmetry in the framework of string theory. This is a very appealing prospect since
string theory automatically incorporates gravity, thus being a theory which offers unification
of the interactions straight from the beginning.

String theory

After string theory was found inadequate to describe the strong interactions among quarks
and gluons, it was realized that quantum mechanics and gravity could be amalgamated by
replacing point particles by strings. The idea of this replacement per se sounds so naive that
it might be hard to believe that it is truly fundamental. But this very idea is perhaps as
basic as introducing complex numbers in mathematics. The orbit of a particle in spacetime
is one-dimensional—a line (Fig. 2(a)). On the other hand, the orbit of a string in spacetime
is two-dimensional—a surface (Fig. 2(b)). Therefore, we are tempted to say that physics
without strings is roughly analogous to mathematics without complex numbers.

Although an area of intense research, the construction of consistent string theories was
delayed by the complex problem of respecting all physical requirements a theory has to
respect. A vast effort towards this direction resulted in five different, yet perfectly consistent,
theories, bearing the strange names type-I, type-IIA, type-IIB, heterotic E8×E8 and heterotic
SO(32). Nevertheless, this plethora of theories posed an embarrassing problem for string
theory; it was highly unlikely that the long-sought unification would eventually be achieved
in five different ways. If one of these ways describes our universe, then what do the other
four describe?
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Fig. 2: The spacetime orbit of a point particle (a) or a string (b) is a manifold of real
dimension one or two respectively

Various attempts to solve the aforementioned problem failed, until in 1995 Edward Witten
derived a great result: All five different string theories along with another interesting theory,
the eleven-dimensional supergravity, are limits of a single, underlying theory (Fig. 3). The
new theory was baptized M-theory.

M-theory is the only auspicious candidate for the missing unification of the forces of
nature. As of today, though, its intricate nature has deprived physicists from the insights
that would lead to the understanding of its meaning and predictions. Therefore, further
developments in high energy physics (and, of course, in physics in general) rely heavily on
the deep understanding of this challenging theory. This fact declares the imperative need for
research in M-theory. In particular, since our world is not supersymmetric, it is required that
a theory contain nonsupersymmetric vacua. Therefore, the discovery of phenomenologically
acceptable nonsupersymmetric vacua in M-theory would signal a giant leap forward.

Research question

The basic research question pertains to the identification of nonsupersymmetric vacua. This
is an important and long quest both in field-theory and in string/M-theory considerations. In
particular, an alluring possibility is the one where supersymmetric and nonsupersymmetric
vacua coexist in the same theory. In this case the nonsupersymmetric vacua are metastable.

Although beyond the scope of this thesis, there is a very important phenomenological
question which stems from the answer to the question we address. If field theory and/or
string/M-theory admit metastable nonsupersymmetric vacua, then which are the models
that most accurately resemble the observed universe? Can those vacua be as long-lived as
required so that our universe be perturbatively-away from them? Evidently, it is only the
answer to these questions that will judge whether we can achieve with the aid of field theory
and/or string/M-theory what we set out to achieve in the first place.
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Relevance for science

At the moment M-theory is the most promising candidate for the unification of all interactions,
the problem that occupied Albert Einstein himself until the very end of his life. After many
years of intensive research, the verisimilitude of string/M-theory results in its ever increasing
acceptance. The lack of incontrovertible evidence for the factuality of string/M-theory further
bolsters up the research activity, thus indicating that something important is under way.

In fact, the aspired start of LHC at CERN in early 2008 will test both supersymmetry and
the quality and potential of our research efforts. As the expectation that supersymmetry will
be verified in LHC is universal, a positive result will indicate that the current approach is on
the right path and needs to be elaborated further. In addition, the implications and prospects
of string theory extend to astronomy and cosmology, in that future detailed astronomical
observations may offer hints in favor of string theory. More specifically, the identification of
objects called cosmic strings could possibly provide us with some pieces of evidence for the
correctness of string theory. Despite the limited reference to the relevant issues, I hope it is
by now evident that this is an absolutely key epoch for research in string/M-theory.



Generalities

Throughout this thesis we work in units where

~ = c = 1

The metric we use is the mostly-minus metric

ηµν =
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Unless otherwise stated Einstein’s summation convention is at work, i.e. in any expression if
an index appears both in an upper and a lower position, then it is assumed to be summed
over the values it takes.

All the spinors we will be using are two-component Weyl spinors which anticommute. Left-
handed spinors carry an undotted index from the beginning of the greek alphabet. Undotted
indices are raised and lowered with the antisymmetric symbol εαβ , α, β = 1, 2,

θα = εαβθβ and θβ = θαεαβ

for which we choose the convention ε12 = −ε12 = 1. For example,

θ1 = ε1βθβ = ε12θ2 = θ2

and
θ2 = ε2βθβ = ε21θ1 = −θ1

The contraction of two left-handed spinors, ψα and χα, acquires a minus sign if we change
the position of the indices:

ψαχα ≡ εαβψβχα = −εβαψβχα = +εβαχαψβ = +χβψβ = −ψβχ
β

Right-handed Weyl spinors carry dotted indices from the beginning of the greek alphabet.
Dotted indices are raised and lowered with the antisymmetric symbol εα̇β̇, α̇, β̇ = 1̇, 2̇, with

the convention ε1̇2̇ = −ε1̇2̇ = 1. If we have two right-handed spinors, ψ̄α̇ and χ̄α̇, then

ψ̄α̇χ̄
α̇ ≡ εα̇β̇ψ̄

β̇χ̄α̇ = −εβ̇α̇ψ̄
β̇χ̄α̇ = +εβ̇α̇χ̄

α̇ψ̄β̇ = +χ̄β̇ψ̄
β̇ = −ψ̄β̇χ̄β̇

xv
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The massless Dirac equation in terms of Weyl spinors splits into

iσ̄µα̇α∂µψα = 0

for left-handed, and
iσµ

αα̇∂µψ̄
α̇ = 0

for right-handed spinors. The 2×2 identity matrix is often denoted by σ0, and σi, i = 1, 2, 3,
are the usual Pauli matrices:

σ0 =

(

1 0
0 1

)

, σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

and σ3 =

(

1 0
0 −1

)

Therefore, the components of σµ are (
�

2, σ
1, σ2, σ3). One can also see that the components

of σ̄µ are (
�

2,−σ1,−σ2,−σ3).
Finally, note that any expansion in the anticommuting superspace coordinates terminates

in order θ2 and θ̄2, since

θ2 ≡ εαβθβθα = ε12θ2θ1 + ε21θ1θ2 = 2θ2θ1 = −2θ1θ2 = 2θ2θ1 = −2θ1θ2

and similarly for θ̄2. Note here that θ2 is used for both θ squared and the second component
of θ.
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CHAPTER 1

Supersymmetric gauge theories

Contents

1.1 Ordinary gauge theories . . . . . . . . . . . . . . . . 3

1.2 Supersymmetry algebras . . . . . . . . . . . . . . . . 8

1.3 Superspace formulation of N = 1 supersymmetry . . . . . . . . 11

1.4 N = 1 supersymmetric gauge theory . . . . . . . . . . . . 14

1.5 The nonlinear sigma model . . . . . . . . . . . . . . . 19

1.6 N = 2 superspace . . . . . . . . . . . . . . . . . . 23

1.7 N = 2 supersymmetric gauge theory . . . . . . . . . . . . 25

1.8 Effective gauge theories with N = 2 supersymmetry . . . . . . . 27

The aim of this chapter is to introduce ordinary gauge theory as well as gauge theory in
superspace. Although a few ideas are described, I assume some familiarity of the reader with
the supersymmetry algebra and the representations of the “group” it generates.

1.1 Ordinary gauge theories

1.1.1 The Abelian case

Ordinary gauge theories constitute the cornerstone of modern theoretical physics. The power
of these theories is manifested through the assumption that Lagrangian densities have to
remain invariant under gauge transformations. Once we impose that constraint it is easy to
see that terms which describe interactions come into play.

Before we attempt to put the above discussion in mathematical language, let us point out
the difference between Lagrangians and Lagrangian densities. Suppose we have a classical

3



4 1. Supersymmetric gauge theories

field theory described by a Lagrangian, L, which depends on some classical fields, φi(x), and
their derivatives:

L = L(φi(x), ∂µφi(x))

Then, the action is given as the integral of the Lagrangian over time from t1 to t2:

S =

∫ t2

t1

dtL(φi(x), ∂µφi(x))

Obviously, in the above equation time is distinguished from the other coordinates of space-
time. Since we intend to rely heavily on Lorentz invariance that is certainly an undesirable
feature and, hence, we should find a fundamental quantity which has to be integrated over
all four spacetime coordinates in order to give the action. This function is the Lagrangian
density, L , and it is given by the formula

S =

∫ t2

t1

dtL(φi(x), ∂µφi(x)) =

∫

R

d4xL (φi(x), ∂µφi(x))

where R indicates the spacetime region over which we have to evaluate the integral. From
now on we will never use Lagrangians and, hence, I will refer to Lagrangian densities simply
as Lagrangians.

With the above clarification in mind let us consider the specific example of the Dirac
Lagrangian:

LDirac = ψ̄(i/∂ −m)ψ (1.1.1)

where ψ̄ = ψ†γ0 and /∂ = γµ∂µ.1 It is easy to see that under the global transformation

ψ → eiqαψ and ψ̄ → e−iqαψ̄ (1.1.2)

where q and α are real numbers (α is the parameter of the transformation), the Lagrangian
(1.1.1) remains invariant. Therefore, Noether’s theorem guarantees the existence of a con-
served current density Jµ. A straightforward calculation gives

Jµ = qψ̄γµψ (1.1.3)

from which we can verify using the Dirac equation that

∂µJ
µ = 0

With the identification of q as the electric charge, (1.1.3) is recognizable at once as the
electromagnetic current density of the spinor field.

Now suppose that the global transformation (1.1.2) becomes local, i.e. the parameter α
is substituted with a real function α(x) over spacetime. The complication we encounter now
stems from the Leibniz rule of differentiation:

/∂ψ → eiqα(x)(/∂α(x))ψ + eiqα(x) /∂ψ

1Note that we suppress the x-dependence of the spinor field ψ.
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Gauge invariance is lost and we should do something to reinstate it. The key observation is
that if we perform the so called minimal substitution:

∂µ → Dµ = ∂µ + iqAµ

and we demand that the vector (or gauge) field Aµ transform according to

Aµ → Aµ − ∂µα(x) (1.1.4)

then we recover invariance under gauge transformations.2 Indeed, the Lagrangian

L
′
Dirac = ψ̄(i /D −m)ψ

= ψ̄(i/∂ −m)ψ − qAµψ̄γ
µψ

= LDirac −AµJ
µ (1.1.5)

where Jµ is given by (1.1.3), is gauge-invariant as it can be easily checked.

If q = e where e is the absolute value of the electron charge, then the additional term in
(1.1.5) is the well known vector-spinor interaction of quantum electrodynamics (QED) with
gauge coupling e. If we now add the kinetic term for the vector field,

LEM = −1
4F

µνFµν , Fµν = ∂µAν − ∂νAµ

which is manifestly invariant under local gauge transformations (since partial derivatives
commute), we get the Lagrangian of QED:

LQED = ψ̄(i/∂ −m)ψ − eAµψ̄γ
µψ − 1

4F
µνFµν (1.1.6)

The gauge principle is therefore seen to introduce the so-called minimal coupling of the
electromagnetic field to the electron field in a natural fashion. We say that QED is an
Abelian gauge theory with gauge group U(1)—its gauge group is the group U(1) because we
assumed gauge invariance under the transformation

ψ → eieα(x)ψ and ψ̄ → e−ieα(x)ψ̄

and, of course, eieα(x) is an element of U(1) expressed in its most general form, and it is
Abelian because the group U(1) is Abelian.

1.1.2 The non-Abelian case

The non-Abelian generalization of the above construction was introduced by Yang and Mills
in 1954 [2]. At that time quarks were not known and so it was naturally assumed that the
Dirac Lagrangian can be used for protons and neutrons,

L = p̄(i/∂ −m)p+ n̄(i/∂ −m)n

2In modern terminology we would say that with the above procedure we gauge the global symmetry.



6 1. Supersymmetric gauge theories

where in the absence of electromagnetism protons and neutrons were assumed to have the
same mass. If we introduce the composite spinor

ψ =

(

p
n

)

then we can write the Lagrangian more compactly:

L = ψ̄(i/∂ −m)ψ (1.1.7)

Evidently, the Lagrangian (1.1.7) is invariant under global isospin rotations,

ψ → exp

(

iτ · α

2

)

ψ

where τ = (τ1, τ2, τ3) describes the 2 × 2 Pauli isospin matrices,

τ1 =

(

0 1
1 0

)

, τ2 =

(

0 −i
i 0

)

and τ3 =

(

1 0
0 −1

)

and α = (α1, α2, α3) is an arbitrary constant (3-vector) parameter of the transformation with
α∗

i = αi, i = 1, 2, 3. The conserved current density is

J
µ = ψ̄γµ τ

2
ψ

which is the isospin current density.

The idea of Yang and Mills was to gauge the SU(2) global symmetry and explore the
physical consequences of this procedure. Let’s follow their reasoning. A gauge transformation
of the field ψ(x),

ψ(x) → ψ′(x) = G(x)ψ(x) (1.1.8)

where

G(x) = exp

(

iτ · α(x)

2

)

results in the transformation

∂µψ → G(∂µψ) + (∂µG)ψ

for the gradient. Now we perform the minimal substitution

∂µ → Dµ = ∂µ + igBµ (1.1.9)

Bµ is the 2 × 2 matrix defined by

Bµ = 1
2τ · bµ = 1

2τ
abaµ = 1

2

(

b3µ b1µ − ib2µ
b1µ + ib2µ −b3µ

)
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where the three gauge fields are bµ = (b1µ, b
2
µ, b

3
µ) and the isospin index a runs from 1 to 3.3

Then, we can prove that if Bµ transforms as

Bµ → B′
µ = GBµG

−1 +
i

g
(∂µG)G−1

under the gauge transformation (1.1.8), then the Lagrangian

L
′ = ψ̄(i /D −m)ψ

= L − gψ̄γµBµψ

= L − g

2
bµ · ψ̄γµ

τψ

is indeed gauge-invariant. Again, the “price” we pay in order to maintain gauge invariance is
an interaction term.

What is missing, at this point, in order to arrive to the Yang–Mills Lagrangian is the term
that describes the propagation of the gauge fields bµ. This term, of course, has to be gauge-
invariant on its own. In analogy with electromagnetism we should first find a field-strength
tensor,

Fµν = 1
2Fµν · τ = 1

2Faµντ
a

from which to construct the gauge-invariant kinetic term

−1
4Fµν · F

µν = −1
2tr(FµνF

µν)

The equality in the last equation follows from the identity

tr(τaτ b) = 2δab

of the Pauli matrices. Our problem, therefore, is to construct a field-strength tensor that is
gauge-covariant, i.e. transforms according to

Fµν → F ′
µν = GFµνG

−1 (1.1.10)

Again in analogy with electromagnetism we choose

Fµν =
1

ig
[Dµ, Dν ]

which, upon insertion of Dµ from equation (1.1.9), takes the form

Fµν = ∂νBµ − ∂µBν + ig[Bν , Bµ]

which can be verified to satisfy (1.1.10). Thus, we arrive to the Yang–Mills Lagrangian

LYM = ψ̄(i /D −m)ψ − 1
2tr(FµνF

µν) (1.1.11)

3
bµ is an isovector.
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Remember that the central feature for Yang and Mills was the isospin symmetry. The
emerging SU(2) gauge bosons of their theory were identified with the pions. While it is now
understood that isospin symmetry is not a true gauge symmetry, this initial confusion was
historically important for the development of the overall ideas of gauge invariance.

It is now time to consider the differences between QED and Yang–Mills theory. Sourceless
QED is a free (noninteracting) field theory. Only bilinear combinations of the photon gauge
field Aµ appear in the QED Lagrangian (1.1.6) and, thus, the only Feynman rule to be found
is that of the photon propagator (Fig. 1.1).

Fig. 1.1: The photon propagator of QED

On the other hand, Yang–Mills theory (1.1.11) has a much richer structure. First of all,
even in the absence of fermion sources there will be interactions due to the nonlinear term
in Fµν . The non-Abelian character of the gauge group introduces trilinear and quadrilinear
terms in FµνF

µν , besides the usual bilinear terms. Hence, in addition to the gauge field
propagator the theory contains the three- and four-gauge-boson vertices (Fig. 1.2).

(a) (b) (c)

Fig. 1.2: Gauge boson propagator (a) and self-interactions in Yang–Mills
theory—3-gauge-boson vertex (b) and 4-gauge-boson vertex (c)

These additional interactions and further characteristics of SU(2) Yang–Mills theory
proved to be ideal to describe the weak interactions of leptons. Therefore, although orig-
inally misunderstood, the SU(2) Yang–Mills theory holds a remarkable position in modern
theoretical physics. Furthermore, the formulation of an SU(3) Yang–Mills theory, namely
quantum chromodynamics (QCD), for the description of strong interactions, strongly indi-
cated that Yang–Mills theories are indeed the correct mathematical way to describe particles
and their interactions.

1.2 Supersymmetry algebras

A truly remarkable result concerning quantum field theories is the famous Coleman–Mandula
theorem [3]. Suppose that the symmetry group of the S-matrix of a theory contains the
Poincaré group, generated by the ( 1

2 ,
1
2) generators Pµ of translations and the (1, 0) ⊕ (0, 1)
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generators Mµν of proper Lorentz transformations, and a unitary internal symmetry group,
generated by the (0, 0) generators TA of various internal symmetries.4 Then, the Coleman–
Mandula theorem asserts, under mild assumptions, that the symmetry group of the S-matrix
is isomorphic to a direct product of the Poincaré group and the internal symmetry group.

With that result at hand it seems impossible to ever find some symmetry group of the S-
matrix larger than what ordinary quantum field theory takes into consideration in its various
models. However, if we relax one of the assumptions of the Coleman–Mandula theorem,
namely that we work in a Lie algebra,5 then additional operators can be utilized as well. The
symmetry group of the S-matrix is then enlarged; we can define a larger (graded) algebra
which contains the bosonic generators Pµ, Mµν and TA, as well as some new generators,
Q, and is realized by anticommutators between those new generators and commutators in
any other case. Since the new generators obey anticommutation relations it is clear that,
naively, we can think of them as carrying representations of the Lorentz group with spin- 1

2 ,
spin-3

2 , etc. However, the Haag– Lopuszański–Sohnius theorem [5] states in part that the new
generators can only belong to spinor representations of the Lorentz group. Therefore, the new
generators, Q, are fermionic and enlarge the usual Poincaré algebra to the so-called super-
Poincaré or supersymmetry algebra. The “group” generated by the super-Poincaré algebra is
called the super-Poincaré group.

Theories with this enlarged symmetry group are called supersymmetric. Global super-
symmetry transformations are generated by the fermionic quantum operators Q, called su-
percharges, which change fermionic states into bosonic states and vice-versa:

Q|fermion〉 ∝ |boson〉 and Q|boson〉 ∝ |fermion〉

As we saw the supercharges carry spinor representations of the Lorentz group. Of course,
we want to work with irreducible representations of the Lorentz group and we immediately
remember that in four dimensions (one time and three space dimensions) a Dirac spinor, QD,
has eight real components and does not furnish an irreducible spinor representation of the
Lorentz group. However, a Majorana spinor, QM , satisfies the condition

QM = Qc
M

where Qc
M = CQ̄T

M with C the charge conjugation matrix, has four independent real com-
ponents and indeed furnishes an irreducible spinor representation of the Lorentz group of
real dimension four. Likewise, we can consider Weyl (two-complex-component) spinors, Qα,
α = 1, 2. These have four real components and, just like Majorana spinors, furnish an irre-
ducible spinor representation of the Lorentz group of real dimension four. This is denoted as
the (1

2 , 0) spinor representation and referred to as the left-handed Weyl spinor representation
of the Lorentz group. Now, if we have a Weyl spinor, then we can find its complex conjugate,

4Here, ( 1
2
, 1

2
) denotes the vector representation of the Lorentz group, (1, 0)⊕ (0, 1) the representation of the

Lorentz group carried by parity-invariant 2-form fields like, for example, the electromagnetic field strength Fµν ,
and (0, 0) the scalar representation of the Lorentz group. For a general account of irreducible representations
of the Lorentz group the reader is referred to [4, Section 5.6]

5We work instead in a graded Lie algebra, a Lie algebra which contains anticommutators as well as com-
mutators.
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Q̄α̇, α̇ = 1̇, 2̇, where the bar denotes complex conjugation and dotted indices label the com-
plex conjugate representation of the one that is labeled by undotted indices. Q̄α̇ transforms
under (0, 1

2), that is under the right-handed Weyl spinor representation of the Lorentz group.
Evidently, quantities with dotted indices are left-handed Weyl spinors and quantities with
undotted indices right-handed Weyl spinors. If we arrange them in a spinor as

Q =

(

Qα

Q̄α̇

)

we obtain a spinor which transforms in ( 1
2 , 0) ⊕ (0, 1

2), i.e. the Dirac spinor representation of
the Lorentz group.

At this point we are in position to ask an obvious question: Is there any kind of lim-
itation in the number of supersymmetry transformations we can have in a field theory or
supergravity6 model? The answer is yes and the limits originate in the requirement that
the supercharges should act on multiplets of physical states and that the underlying theory
should be either general relativity or an ordinary renormalizable field theory in four space-
time dimensions. As is well known renormalizable field theories in four-dimensional spacetime
cannot accommodate spins larger than 1. In addition, gravity considerations are limited to
spins not higher than 2.

Now, in order to find the exact limits we have to use the supersymmetry algebra and
the action of the raising operators on massless one-particle states.7 It is an attribute of the
supersymmetry algebra that half of the supercharges have to be represented by zero when
acting on massless one-particle states. From the remaining supercharges half are lowering
operators and, thus, we can safely exclude them from the discussion that follows. In addition,
possible central charges do not change the helicity of massless one-particle states and, thus,
it is sufficient to work only with the N nonzero raising operators. But those anticommute
and, hence, applying n of them to a one-particle state of minimum helicity λmin and four-
momentum pµ gives N!/n!(N − n)! states with the same momentum and helicity λmin + n/2.
The maximum value of n that gives a nonzero state is n = N and, hence, the maximum
helicity in a supermultiplet is given by

λmax = λmin + N/2

Thus, if we want to exclude helicities λ with |λ| > 2 then our theory can contain up to
thirty-two supercharges, while in pure field theory considerations, where we exclude helicities
with |λ| > 1, we can have up to sixteen supercharges.

A useful quantity with which we label supersymmetry algebras is the number N defined
above, which is also given by dividing the total number of supercharges by the dimension of
the irreducible spinor representation of the Lorentz group in the dimensions we are working in.
In four dimensions the real dimension of the irreducible spinor representation of the Lorentz
group is four (Weyl or Majorana) and, hence, in field theory considerations we can have up to

6Supergravity is the supersymmetric extension of general relativity.
7At energy scales large enough to allow us to neglect the effects of supersymmetry breaking we can treat

the known particles as well as their superpartners as massless. That is why we are particularly interested in
supermultiplets of massless particles.
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N = 4 supersymmetry. Evidently, if we consider supergravity we can work with up to N = 8
supersymmetry. The second definition of N is extremely useful when we work in theories
which are not four-dimensional. Then, we know the total number of supercharges, since that
does not depend on the dimensionality of spacetime, and we can find N by knowing the
(real) dimension of the irreducible spinor representation of the Lorentz group in the specific
dimensions.

Going back to four dimensions one can see that the case N = 3, although theoretically
allowed, results in a multiplet structure which is automatically the same with that of an
N = 4 supersymmetry. In this thesis we will limit ourselves to the study of N = 1 and N = 2
supersymmetry.

1.3 Superspace formulation of N = 1 supersymmetry

Field theories with N = 1 supersymmetry can be conveniently described by using the notion
of superspace [6]. In superspace, in addition to the ordinary coordinates, xµ, there is also
a set of anticommuting coordinates, labeled by Grassmann numbers θα and θ̄α̇, α, α̇ = 1, 2,
such that

{θα, θβ} = {θ̄α̇, θ̄β̇} = {θα, θ̄β̇} = 0

Derivatives with respect to the anticommuting coordinates are defined as

{

∂

∂θα
, θβ

}

= δ β
α ,

{

∂

∂θα
, θ̄α̇

}

=

{

∂

∂θ̄α̇
, θα

}

= 0 and

{

∂

∂θ̄α̇
, θ̄β̇

}

= δ β̇
α̇

where δ β
α (and δ β̇

α̇ of course) is the Kronecker delta, and they obey the anticommutation
relations

{

∂

∂θα
,
∂

∂θβ

}

=

{

∂

∂θ̄α̇
,
∂

∂θ̄β̇

}

=

{

∂

∂θα
,
∂

∂θ̄β̇

}

= 0

Integration in superspace is defined by means of the Berezin integral:

∫

dθ θ = 1 and

∫

dθ 1 = 0

As we observe integration and differentiation with respect to anticommuting coordinates are
equivalent operations.

The goal of the superspace formulation is to provide a classical description of the action
of supersymmetry on fields, just as in the description of the action of the Poincaré transfor-
mations. In other words, in order to exponentiate the supersymmetry generators we need the
anticommuting coordinates in order to form well-defined exponentials:

eθ
αQα+θ̄α̇Q̄α̇

Now, consider functions of the superspace variables,

Φ = Φ(x, θ, θ̄)
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The supersymmetry generators are represented by differential operators,

Qα =
∂

∂θα
− iσµ

αα̇θ̄
α̇∂µ and Q̄α̇ = − ∂

∂θ̄α̇
+ iθασµ

αα̇∂µ (1.3.1)

where σ0 is the unity matrix and σi, i = 1, 2, 3, are the Pauli matrices:

σ0 =

(

1 0
0 1

)

, σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

and σ3 =

(

1 0
0 −1

)

The θs have mass dimension −1/2 and it can be checked that the supercharges in the repre-
sentation (1.3.1) indeed satisfy the N = 1 supersymmetry algebra:8

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0 and {Qα, Q̄α̇} = 2iσµ
αα̇∂µ (1.3.2)

One can think of the Qs as generating infinitesimal transformations in superspace with (an-
ticommuting) parameter εα (and ε̄α̇). Then, finite transformations can be constructed by
exponentiating the Qs and since the θs are anticommuting the θ-expansion of these exponen-
tials will contain only a finite number of terms. With these additional transformations the
Poincaré group is enhanced to the super-Poincaré group. The result is expressed as

eε
αQα+ε̄α̇Q̄α̇

Φ(xµ, θα, θ̄α̇) = Φ(xµ − iεασµ
αα̇θ̄

α̇ + iθασµ
αα̇ε̄

α̇, θα + εα, θ̄α̇ + ε̄α̇)

and from this it is easy to understand that supersymmetry is to be thought of as a spacetime
symmetry.

Expanding Φ in powers of θ one would get a finite number of terms. However, the
representation of the super-Poincaré group obtained by such an expansion is reducible and,
thus, not a satisfactory one. An irreducible representation of the super-Poincaré group can
be constructed by introducing the superspace-covariant derivatives, Dα and D̄α̇. These are
objects which anticommute with the supersymmetry generators and, thus, are useful for
writing down invariant expressions. In the representation we are working in they are given
by

Dα =
∂

∂θα
− iσµ

αα̇θ̄
α̇∂µ and D̄α̇ = − ∂

∂θ̄α̇
− iθασµ

αα̇∂µ (1.3.3)

and they satisfy the wrong-sign supersymmetry algebra (cf. (1.3.2)):

{Dα, Dβ} = {D̄α̇, D̄β̇} = 0 and {Dα, D̄α̇} = −2iσµ
αα̇∂µ

The fact that the Ds anticommute with the Qs makes the condition

D̄α̇Φ = 0

invariant under supersymmetry transformations. Superfields that satisfy this condition are
called chiral superfields and they carry an irreducible representation of the super-Poincaré
group. Their construction is rather easy: Setting

yµ = xµ + iθασµ
αα̇θ̄

α̇ (1.3.4)

8Here we show only the anticommutation relations among supercharges.



1.3 Superspace formulation of N = 1 supersymmetry 13

it is straightforward to verify that

Φ(y) = φ(y) +
√

2θαψα(y) + θ2F (y)

is a chiral superfield. Expanding in θ we get

Φ(x, θ, θ̄) = φ(x) + iθασµ
αα̇θ̄

α̇∂µφ(x) +
1

4
θ2θ̄2∂2φ(x)

+
√

2θαψα(x) − i√
2
θ2∂µψ

α(x)σµ
αα̇θ̄

α̇ + θ2F (x)
(1.3.5)

The components of the chiral superfield (1.3.5) are a complex scalar field (φ), a spinor field
(ψα) and an auxiliary field (F ). The transformation laws for these can be worked out by
starting with

δΦ = (εαQα + ε̄α̇Q̄
α̇)Φ

The result is

δφ =
√

2εαψα, δψα =
√

2εαF +
√

2iσµ
αα̇ε̄

α̇∂µφ and δF = i
√

2ε̄α̇σ̄
µα̇α∂µψα (1.3.6)

and it makes evident the fact that supersymmetry maps bosons to fermions and vice versa.
However, we are not done yet since, normally, any spectrum of states that is derived from

a Lorentz-invariant field theory will exhibit CPT-symmetry. This implies that for each state
with helicity λ there should exist a parity-reflected state with helicity −λ. So far this property
is absent in our spectrum and, hence, in order to render our theory truly Lorentz-invariant
we have to add the CPT-conjugate multiplet. Consequently, we find that the N = 1 chiral
multiplet contains one state with helicity −1/2, two states with helicity 0 and one state with
helicity +1/2.

Another irreducible representation of the super-Poincaré group, that is vector superfields,
satisfy the condition

V = V † (1.3.7)

which is invariant under supersymmetry transformations. The θ-expansion of V yields

V (x, θ, θ̄) = C(x) + iθαχα(x) − iθ̄α̇χ̄
α̇(x)

+
i

2
θ2(M(x) + iN(x)) − i

2
θ̄2(M(x) − iN(x))

− θασµ
αα̇θ̄

α̇Aµ(x) + iθ2θ̄α̇

(

λ̄α̇(x) +
i

2
σ̄µα̇β∂µχβ(x)

)

− iθ̄2θα

(

λα(x) +
i

2
σµ

αβ̇
∂µχ̄

β̇(x)

)

+
1

2
θ2θ̄2

(

D(x) +
1

2
∂2C(x)

)

(1.3.8)

The scalar fields C, D, M , N and the vector field Aµ must all be real for (1.3.8) to satisfy
(1.3.7). Moreover, we have two spinor fields (χα and λα) in the supermultiplet. Evidently,
the name of the entire supermultiplet comes from the vector field that appears in it.
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1.4 N = 1 supersymmetric gauge theory

Having found irreducible representations of the super-Poincaré group for N = 1 supersymme-
try, we can now consider gauge transformations. The presence of Aµ in the vector multiplet
indicates that if Aµ is to describe a massless vector field, then there should be some un-
derlying gauge symmetry which generalizes the ordinary gauge symmetries alluded to in the
beginning of this chapter.

In the case of a U(1) theory we observe that the superfield iΛ − iΛ†, where Λ is a chiral
superfield, contains a term of the form

iθασµ
αα̇θ̄

α̇[i∂µ(φ(x) + φ∗(x))] = θασµ
αα̇θ̄

α̇∂µα(x)

where α(x) = −(φ(x) + φ∗(x)). Therefore, the transformation

V → V + iΛ − iΛ†, D̄α̇Λ = 0 (1.4.1)

induces the transformation (1.1.4) to the gauge field that appears in the vector superfield
and, thus, is the correct supersymmetric generalization of a gauge transformation. The
corresponding field strength is the gauge-invariant, chiral superfield

Wα = −1
4D̄

2DαV

Its form is chosen so that it produces the usual terms which describe the propagation of gauge
fields (see equation (1.4.4) below). Now, the gauge freedom enables us to choose a gauge,
which in our case will be the so-called Wess–Zumino gauge:

C = M = N = 0 and χα = 0

in equation (1.3.8). This choice is analogous to the Coulomb gauge of electrodynamics and
still allows the usual gauge transformations

Aµ → Aµ + ∂µ(φ(x) + φ∗(x))

In the Wess–Zumino gauge the field strength is written as

Wα(y, θ, θ̄) = −iλα(y) +

(

δ β
α D(y) − i

2
(σµσ̄ν) β

α Fµν(y)

)

θβ + θ2σµ
αα̇∂µλ̄

α̇(y) (1.4.2)

where yµ is given by (1.3.4) and Fµν(y) = ∂µAν(y) − ∂νAµ(y).
The gauge transformation of a chiral superfield is

Φ → e−iqΛΦ

where q is the “charge” of the transformation and Λ is a full chiral multiplet, something that
guarantees that e−iqΛΦ is chiral. Now, since Λ 6= Λ†, we immediately notice that the term
Φ†Φ is not gauge-invariant. To fix this we use the vector superfield (1.3.8) with the gauge
transformation (1.4.1) to construct the term

Φ†eqV Φ
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This last term is gauge invariant and, as we will see in a while, suitable to serve as the kinetic
term for chiral superfields.

Our construction, so far, was limited to Abelian gauge groups but the generalization to
the non-Abelian case is straightforward. A transformation on a chiral superfield is given by

Φ → e−iΛΦ

where Λ is now a matrix-valued chiral superfield. Introducing a matrix-valued superfield V
and requiring that

Φ†eV Φ

be gauge-invariant, we find that eV has to transform as

eV → e−iΛ†

eV eiΛ

under gauge transformations. From this we can define the gauge-covariant field strength

Wα = −1
4D̄

2e−VDαe
V (1.4.3)

Summarizing, we have constructed the terms that represent matter fields and their su-
perpartners, included in chiral supermultiplets, and those that represent gauge fields and
their superpartners, included in vector supermultiplets. But let us explicitly construct the
Lagrangians that describe their propagation. Consider a gauge group G with corresponding
(Hermitian) generators T a

R
, a = 1, . . . ,dimG in a representation R of G, which satisfy

[T a
R, T

b
R] = ifab

cT
c
R

where fab
c are the structure constants of the Lie algebra g that corresponds to the Lie group

G, which are usually taken to be real by a suitable choice of basis of g. It is important
to stress here that the structure constants depend on the choice of basis of g. Also, note
that in the literature it is common to refer to the structure constants as if they were a
characteristic of the Lie group rather than its Lie algebra. This is certainly not so, but the
abuse of the terminology is admissible since for simply-connected Lie groups, such as SU(n)
and Sp(n) but not SO(n), there exists a natural one-to-one and onto correspondence among
the representations of a Lie group and those of its Lie algebra [7, Theorem 3.7]. Now, suppose
that G is simple, so that we have only one gauge coupling, g, in our theory. This is introduced
by rescaling the vector field V ,

V → 2gV

and, hence, all its component fields, which results in rescaled definitions for the gauge-
covariant derivatives, Dµ,9

Dµλ
a = ∂µλ

a + gfab
cAµbλ

c

and the component field strength

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfab

cAµbA
c
ν

9Those have nothing to do with the superspace-covariant derivatives (1.3.3).
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For the vector superfield we are interested in the adjoint representation of G. The adjoint
representation of a Lie group G is a real and linear representation of G which acts on the
space g, where g is the Lie algebra of G. If G is a matrix Lie group containing n×n matrices,
then g is also realized by n× n matrices with the commutator as the Lie bracket. Then, the
adjoint representation, AdG, maps X ∈ g to GXG−1 ∈ g, where G ∈ G, and is represented by
dim g matrices of dimension dim g × dim g. As an example consider the ubiquitous (matrix)
Lie group SU(N). Its adjoint representation acts on its Lie algebra, su(N), which is the space
of N ×N Hermitian traceless matrices. Furthermore, the adjoint representation of SU(N) is
realized by N 2 − 1 matrices of dimension (N 2 − 1)× (N 2 − 1). Now, if we work in the adjoint
representation we take T a

R
≡ T a

ad with

(T a
ad)b

c = −ifab
c

a, b, c = 1, . . . , N 2 − 1, as the generators of G. Since f ab
c can be chosen to be real numbers,

we immediately see that the generators T a
ad are matrices with imaginary entries and, hence,

eiqaT a
ad are matrices with real entries.

If we introduce the complex coupling

τ =
ϑ

2π
+

4πi

g2

where ϑ stands for the theta-angle,10 then the propagation of the gauge field is described by
the Lagrangian

Lgauge =
1

32π
Im

(

τ

∫

d2θ tr WαWα

)

= tr
(

−1
4FµνF

µν − iλασµ
αα̇Dµλ̄

α̇ + 1
2D

2
)

+
ϑ

32π2
g2trFµν F̃

µν

(1.4.4)

where
F̃ µν = 1

2ε
µνρσFρσ

is the dual field strength, the trace is used to denote a sum over gauge indices, and

trD2 ≡ trDaT
a
adDbT

b
ad = DaDbtrT

a
adT

b
ad = DaD

a

since we use the normalization
trT a

adT
b
ad = δab (1.4.5)

Note that the single term trW αWα has produced both the properly normalized kinetic term

for the gauge field, − 1
4trFµνF

µν , and the instanton density g2

32π2 trFµν F̃
µν which multiplies

the ϑ-angle.
So far with the gauge fields. We can now add chiral multiplets, Φi, transforming in some

representation R of the gauge group G. The generators are represented by matrices, T a
R

, and
gauge transformations act as

Φj → e−iΛΦj and Φ†
j → Φ†

je
iΛ†

10We do not use the usual θ here in order to avoid confusion with the superspace anticommuting coordinates.
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where Λ = ΛaT
a
R

. Then,

Φ†
ie

2gVaT a
RΦi

is the gauge-invariant kinetic term and the Lagrangian that describes the propagation of
matter fields as well as their possible interactions is

Lmatter =

∫

d2θ d2θ̄Φ†
ie

2gV Φi +

∫

d2θW (Φi) +

∫

d2θ̄ [W (Φi)]† (1.4.6)

where W (Φi) is the so-called superpotential which is a holomorphic function of Φi and does

not depend on Φ†
i .

11 In components the gauge-invariant Lagrangian (1.4.6) becomes

Lmatter = (Dµφ
i)†Dµφi − iψiασµ

αα̇Dµψ̄
α̇
i + F †

i F
i

+ i
√

2gφ†iT
a
Rλ

α
aψ

i
α − i

√
2gψ̄iα̇λ̄

aα̇T †
aR
φi

+ gφ†iDaT
a
Rφ

i −
(

∂W

∂φi
F i +

1

2

∂2W

∂φi ∂φj
ψiαψj

α + H.c.

)

+ (total derivative)

(1.4.7)

where Dµ = ∂µ − igAaµT
a
R

and “H.c.” means Hermitian conjugate of whatever lies in the
containing parentheses. Note that Lmatter contains kinetic terms for the scalar fields, φi, and
the matter fermions, ψi

α, as well as specific interactions between φi, ψi
α and the gauginos, λa

α.
Additionally, there are nonderivative interactions coming from the superpotential. Note that
gauge indices carried by matter fields are suppressed in the Lagrangian (1.4.7); for example

gφ†iDaT
a
Rφ

i ≡ gφ†ibDa(T a
R)b

cφ
ic

and
∂2W

∂φi ∂φj
ψiαψj

α ≡ ∂2W

∂φia ∂φjb
ψiaαψjb

α

Finally, there is another type of term that can appear if the gauge group G contains U(1)
factors. (Of course, if there exists at least a U(1) factor, then G is certainly not simple (except
if G = U(1)) and we have several gauge couplings.) These are the so-called Fayet-Iliopoulos
terms,

2gξAVA

where the index A runs in Abelian factors, ξA are in general complex numbers and VA

denotes the vector superfield in the Abelian case or the component corresponding to the
relevant Abelian factor. The corresponding Lagrangian is

LF.I. = 2g

∫

d2θ d2θ̄ ξAVA = gξADA (1.4.8)

and, under an Abelian gauge transformation, it is easy to see that it transforms as a full
derivative. Moreover, it is easy to show that it transforms as a full derivative under super-
symmetry transformations as well.

11Of course, if we want the Lagrangian (1.4.6) to be gauge-invariant, we have to choose a gauge-invariant
superpotential.
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Gathering the terms of equations (1.4.4), (1.4.6) and (1.4.8) we get the N = 1 supersym-
metric gauge-invariant Lagrangian

LN=1 = Lgauge + Lmatter + LF.I.

=
1

32π
Im

(

τ

∫

d2θ tr WαWα

)

+ 2g

∫

d2θ d2θ̄ ξAVA

+

∫

d2θ d2θ̄Φ†
ie

2gV Φi +

∫

d2θW (Φi) +

∫

d2θ̄ [W (Φi)]†

(1.4.9)

which in components becomes

LN=1 = tr
(

−1
4FµνF

µν − iλασµ
αα̇Dµλ̄

α̇ + 1
2D

2
)

+
ϑ

32π2
g2trFµν F̃

µν

+ gξADA + (Dµφ
i)†Dµφi − iψiασµ

αα̇Dµψ̄
α̇
i + F †

i F
i

+ i
√

2gφ†iT
a
Rλ

α
aψ

i
α − i

√
2gψ̄iα̇λ̄

aα̇T †
aR
φi + gφ†iDaT

a
Rφ

i

−
(

∂W

∂φi
F i +

1

2

∂2W

∂φi ∂φj
ψiαψj

α + H.c.

)

+ (total derivative)

(1.4.10)

The equations of motion for the auxiliary fields give the so-called F - and D-terms

F †
i =

∂W

∂φi
and Da = −gφ†iT a

Rφ
i − gξa

where ξa = 0 if the index a does not take values in an Abelian factor of the gauge group G.
Substituting those back into the Lagrangian (1.4.10) we get

LN=1 = tr
(

−1
4FµνF

µν − iλασµ
αα̇Dµλ̄

α̇
)

+
ϑ

32π2
g2trFµν F̃

µν

+ (Dµφ
i)†Dµφi − iψiασµ

αα̇Dµψ̄
α̇
i

+ i
√

2gφ†iT
a
Rλ

α
aψ

i
α − i

√
2gψ̄iα̇λ̄

aα̇T †
aR
φi

−
(

1

2

∂2W

∂φi ∂φj
ψiαψj

α + H.c.

)

− V (φ†i , φ
i) + (total derivative)

(1.4.11)

where

V (φi, φ†i ) = F †
i F

i + 1
2D

2 =
∑

i

∣

∣

∣

∣

∂W

∂φi

∣

∣

∣

∣

2

+
g2

2

∑

a

(φ†iT
a
Rφ

i + ξa)2 (1.4.12)

is the so-called scalar potential.

The next sensible step is to choose particular superpotentials and analyze the emerging
models. However, let us first venture into some general considerations on the physically
interesting superpotentials.
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1.5 The nonlinear sigma model

1.5.1 Only matter

Having extensively analyzed N = 1 supersymmetric Yang–Mills theory, we should now wonder
which are the kinetic terms and superpotentials that describe consistent and sensible physical
theories. In other words, we should find the class of supersymmetric theories that result in
ordinary theories which are renormalizable. For theories with chiral superfields only, it is
very easy to verify that a renormalizable ordinary quantum field theory emerges when the
kinetic term is of the form K i

jΦ†
iΦ

j with some constant Hermitian matrix K,12 while the
superpotential is at most cubic in the chiral superfields, leading to at most quartic scalar
potentials. A very well-known example, which we will not analyze though, is the Wess–
Zumino model, a theory with a single chiral superfield, Φ, a canonical kinetic term and
superpotential

W (Φ) = 1
2mΦ2 + 1

3λΦ3

However, it is often the case that the theory we are analyzing is not a microscopic (com-
plete) theory but, instead, a low-energy effective theory, i.e. a theory that describes our
system only up to some energy scale. Then, we need not require renormalizability any more
and, thus, our freedom in choosing kinetic terms and superpotentials increases. However we
should not forget that our effective theories should include terms with at most two spacetime
derivatives, since higher-derivative terms are irrelevant at low energies.

The above discussion dictates the form of the most general (nonrenormalizable) N = 1
supersymmetric theory we can consider. If we include chiral superfields only, then

L
(eff)
matter =

∫

d2θ d2θ̄ K(Φi,Φ†
i ) +

∫

d2θW (Φi) +

∫

d2θ̄ [W (Φi)]† (1.5.1)

where the function K(Φi,Φ†
i ) has to satisfy the reality condition

K†(φi, φ†i ) = K(φ†i , φ
i)

where φi is the zero component of Φi, since we want to be working with real Lagrangians. It
is straightforward, if laborious, to calculate that in components we have

∫

d2θ d2θ̄ K(Φi,Φ†
i ) = Kj

i (F iF †
j − ∂µφ

i∂µφ†j − iψ̄jα̇σ̄
µα̇α∂µψ

i
α)

− 1
2K

i
jkF

†
i ψ

jαψk
α − 1

2K
jk
i F iψ̄jα̇ψ̄

α̇
k

− iKk
ijψ̄kα̇σ̄

µα̇αψi
α∂µφ

j + 1
4K

kl
ij ψ

iαψj
αψ̄kα̇ψ̄

α̇
l

+ (total derivative)

(1.5.2)

whereKj
i ≡ ∂2K(φ,φ†)

∂φi ∂φ†
j

, Kk
ij ≡

∂3K(φ,φ†)

∂φi ∂φj ∂φ†
k

and similarly forKjk
i andK i

jk andKkl
ij ≡ ∂4K(φ,φ†)

∂φi ∂φj ∂φ†
k ∂φ†

l

.

12Diagonalization of K and rescaling of the fields leads to the canonical kinetic term Φ†
i Φ

i
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As we observe there are no holomorphic terms in the Lagrangian (1.5.2), i.e. there are
derivatives of K(φ, φ†) with respect to both φ and φ†. This shows that the so-called Kähler
transformations,

K(φ, φ†) → K(φ, φ†) + f(φ) + f †(φ†)

where f and f † are arbitrary analytic functions of φ and φ† respectively, do not affect the
Lagrangian (1.5.2). Moreover, it is easy to see that the Kähler transformations can be gen-
eralized to the superfield level, for the transformations

K(Φ,Φ†) → K(Φ,Φ†) + f(Φ) + f †(Φ†)

do not affect the Lagrangian (1.5.1).
Now, note that in the Lagrangian (1.5.2) there is a metric for the kinetic terms for the

complex scalars which is obtained by the complex scalar function K(φ, φ†):

Kj
i =

∂2

∂φi ∂φ†j
K(φ, φ†)

Such a metric is called a Kähler metric and the complex scalar function K(φ, φ†) is called
the Kähler potential. Since the Kähler metric is invariant under Kähler transformations of
the Kähler potential, we are immediately led to interpret the complex scalars φi as local
coordinates on a Kähler manifold. In that sense the target manifold of the sigma model is
Kähler. Also, it is natural to think of fermions as tensors in the tangent space of the Kähler
manifold.

Once we identify Kj
i with the metric of the Kähler manifold, we can easily work out the

connection and the Riemann tensor of the manifold. As is well known, for a general metric
gab the connection is given by

Γc
ab = 1

2g
cd(∂agdb + ∂bgad − ∂dgab)

where gab is the inverse of gab, and the Riemann tensor is defined as

(Rab)
c
d = ∂aΓc

bd − ∂bΓ
c
ad + Γc

aeΓe
bd − Γc

beΓe
ad

In the case of the Kähler metric the only nonvanishing terms are13

Γk
ij = (K−1)k

l K
l
ij , Γij

k = (K−1)l
kK

ij
l

where K−1 denotes the inverse Kähler metric,

(K−1)i
kK

j
i = δj

k

13This calculation is more easily carried out if we temporarily change our notation by substituting

φ†
i → φī and

∂K

∂φi ∂φ†
j

≡ Kj
i → Kij̄ ≡

∂K

∂φi ∂φj̄

and similarly for the rest, where bar and dagger both denote complex conjugation. In the end we switch back
to our usual notation to get the result mentioned in the text.
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and

Rkl
ij = Kkl

ij −Km
ij (K−1)n

mK
kl
n

and it is worth expressing the component form of the Lagrangian (1.5.1) in this simpler and
more geometric language. To achieve this we first need to eliminate the auxiliary fields. Since

∫

d2θW (Φi) + H.c = (WiF
i − 1

2Wijψ
iαψj

α) + H.c (1.5.3)

where Wi ≡ ∂W/∂φi and Wij ≡ ∂2W/∂φi ∂φj , by adding (1.5.3) to (1.5.2) we can find the
equations of motion for the auxiliary fields F i:

F i = −(K−1)i
jW

†j + 1
2Γi

jkψ
jαψk

α

Those can be used to eliminate the auxiliary fields from the component form of the Lagrangian
(1.5.2), which, finally, takes the form

L
(eff)
matter = −Kj

i (∂µφ
i∂µφ†j + iψ̄j

α̇σ̄
µα̇αDµψ

i
α) + 1

4R
kl
ijψ

iαψj
αψ̄kα̇ψ̄

α̇
l

− 1
2 [(Wij − Γk

ijWk)ψiαψj
α + (W †ij − Γij

k W
†k)ψ̄iα̇ψ̄

α̇
j ]

− V (φi, φ†j) + (total derivative)

(1.5.4)

where

V (φi, φ†j) = (K−1)i
jWiW

†j (1.5.5)

is the scalar potential and

Dµψ
i
α = ∂µψ

i
α + Γi

jk∂µφ
jψk

α

is the Kähler-covariant derivative on fermions. From its form we immediately understand
that fermions can actually be treated as contravariant vectors on the tangent space of the
Kähler manifold.

At this point we have to stress an important characteristic that has to do with the scalar
potential (1.5.5) of the effective theories we are analyzing. If we compare that to the scalar
potential we found in the case of renormalizable (UV-complete) theories of chiral superfields
with N = 1 supersymmetry,

V (φi, φ†i ) = WiW
†i

(that is the superpotential (1.4.12) with zero D-terms) then we immediately see that the
Kähler metric changes the way supersymmetry is broken. Indeed, supersymmetry is broken
when the scalar potential is larger than zero and, thus, when it comes to supersymmetry
breaking, theories with a noncanonical Kähler potential differ substantially from theories
with the canonical Kähler potential Kcan(φi, φ†i ) = φ†iφ

i.

1.5.2 Adding gauge fields

It is now time to add gauge fields in our discussion. The gauge group is G with gauge coupling
g and corresponding (Hermitian) generators T a

R
, a = 1, . . . ,dimG in a representation R of G.
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The first effect of the inclusion of gauge fields is that they change the spacetime derivatives
in the term K(φ, φ†) into gauge-covariant derivatives,

∂µφ
i → Dµφ

i = ∂µφ
i − igAaµT

a
Rφ

i

in the case of scalars, and the Kähler-covariant derivatives into gauge- and Kähler-covariant
derivatives,

Dµψ
i
α → D̃µψ

i
α = ∂µψ

i
α − igAaµT

a
Rψ

i
α + Γi

jkDµφ
jψk

α

in the case of spinors. In addition, we have to add kinetic terms for the vector superfield
containing the gauge fields. Evidently, the discussion we are about to begin will closely follow
the steps we took in section 1.4.

As for the matter Lagrangian we need only observe that we can follow the exact steps
that brought us to the Lagrangian (1.4.6) to verify that if we just replace

φ†i → (φ†e2gV )i

in (1.5.1), then the term
∫

d2θ d2θ̄ K(Φi, (Φ†e2gV )i)

is gauge-invariant for any real function K. Therefore, we only need to guarantee that the
superpotential is gauge-invariant in order to conclude that the action

L
(eff)
matter =

∫

d2θ d2θ̄ K(Φi, (Φ†e2gV )i) +

∫

d2θW (Φi) +

∫

d2θ̄ [W (Φi)]† (1.5.6)

is N = 1 supersymmetric and gauge-invariant. Its component form is

L
(eff)
matter = −Kj

i [Dµφ
iDµφ†j + iψ̄j

α̇σ̄
µα̇αD̃µψ

i
α

− (F i − 1
2Γi

klψ
kαψl

α)(F †
j − 1

2Γmn
j ψ̄mα̇ψ̄

α̇
n)]

− [
√

2g(T a
R)i

kφ
kψ̄jα̇λ̄

α̇
a + H.c]

+ [− i
2gD

a(TaR)j
iφ

iKj + H.c.]

+ (WiF
i − 1

2Wijψ
iαψj

α + H.c.) + (total derivative)

(1.5.7)

Proceeding to the generalization of the gauge Lagrangian (1.4.4), we recall that the gauge-
covariant field strength is defined by

Wα = −1
4D̄

2e−2gVDαe
2gV

and it takes the form (1.4.2) times 2g in the Wess–Zumino gauge. Since at most two-derivative
terms should be included, we end up with the most general possibility

L
(eff)
gauge =

∫

d2θ fab(φ
i)W aαW b

α + H.c. (1.5.8)
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where the holomorphic function fab = fba transforms under the gauge group as the sym-
metrized square of the adjoint representation. Note that with the choice fab = (τ/64πi)tr T a

adT
b
ad

we recover the Lagrangian (1.4.4).14 The component form of (1.5.8) is

L
(eff)
gauge = −fab[iλ

aασµ
αα̇∂µλ̄

bα̇ + iλbασµ
αα̇∂µλ̄

aα̇

+ 1
4 (F aµν + igF̃ aµν)(F b

µν + igF̃ b
µν) −DaDb]

+
1

2
√

2

∂fab

∂φi
ψiα

[

iλa
αD

b + iλb
αD

a +
1

2
(σµ

αα̇σ̄
να̇β)(λa

βF
b
µν + λb

βF
a
µν)

]

− λaαλb
α

(

F i∂fab

∂φi
− 1

2
ψiβψj

β

∂2fab

∂φi ∂φj

)

+ H.c.

(1.5.9)

where, here, the Hermitian conjugation applies to all the terms in the right-hand side of the
equation.

The sum of the Lagrangians (1.5.7) and (1.5.9) gives the full Lagrangian of the model we
are studying, and from that we can work out the equations of motion for the auxiliary fields.
Those turn out to be

F i = (K−1)i
j

[

(

∂fab(φ)

∂φj

)†

λ̄a
α̇λ̄

bα̇ +
1

2
Kj

klψ
kαψl

α −W †j

]

and

Da =
i

2
(f−1)ab

[

g(TbR)j
iφ

iKj −
1√
2

∂fbc

∂φi
ψiαλc

α

]

and, of course, they can be used to eliminate the auxiliary fields from the Lagrangian of our
model.

1.6 N = 2 superspace

In order to consider supersymmetric theories with eight supercharges we have to extend the
N = 1 superspace by adding another pair of anticommuting coordinates. Hence, in addition
to the ordinary coordinates, xµ, N = 2 superspace contains the anticommuting coordinates
θα
i and θ̄α̇

i , where i = 1, 2 and greek dotted and undotted indices are as in the case of N = 1
superspace.

An important characteristic we have to think about at this point is the so-called R-
symmetry. This is a global symmetry that transforms different supercharges in a theory with
supersymmetry into each other. R-symmetry does not generally commute with supersymme-
try and particles in a supermultiplet do not have the same quantum number (R-charge) under
it. The reason we did not mention R-symmetry in our treatment of N = 1 supersymmetry
is that, in that case, the R-symmetry group was just the Abelian group U(1) which is often
broken by quantum anomalies. But in theories with extended supersymmetry the group of
R-symmetry becomes non-Abelian and, in the case of N = 2 supersymmetry without central

14To see this observe that if z is a complex number, then Re(z) = Im(iz).
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charges, it is the group SU(2).15 Now, if we want to respect the SU(2) R-symmetry, we
should think of (θα

1 , θ
α
2 ) and (θ̄α̇

1 , θ̄
α̇
2 ) as SU(2)R doublets,16 i.e. so that they transform in the

fundamental representation of SU(2)R.
The N = 2 hypermultiplet Ψ(x, θi, θ̄i) is defined as an N = 2 superfield which is a singlet

under the global SU(2)R and satisfies the covariant constraints

D̄iα̇Ψ = 0, i = 1, 2

In parallel with N = 1 supersymmetry it is convenient to introduce new bosonic coordinates,

ỹµ = xµ + i

2
∑

i=1

θα
i σ

µ
αα̇θ̄

α̇
i

Now, if we expand a hypermultiplet in powers of θα
2 , then the components are N = 1 chiral

superfields. Indeed,

Ψ(x, θi, θ̄i) = Φ(ỹ, θ1) + i
√

2θα
2Wα(ỹ, θ1) + θ2

2G(ỹ, θ1)

where
Φ(ỹ, θ1) = Φ(y + θα

2 σ
µ
αα̇θ̄

α̇
2 , θ1)

G(ỹ, θ1) = G(y + θα
2 σ

µ
αα̇θ̄

α̇
2 , θ1)

and
Wα(ỹ, θ1) = Wα(y + θα

2 σ
µ
αα̇θ̄

α̇
2 , θ1)

are chiral superfields. Consequently, the hypermultiplet contains matter fields.
The physical content of the hypermultiplet is two complex scalars, q and q̃, and two Weyl

fermions, ψq and ψ†
q̃. Since Ψ is an SU(2)R singlet, while (θα

1 , θ
α
2 ) is an SU(2)R doublet, it

follows that the fermionic component fields are also SU(2)R singlets while, on the other hand,
the bosonic component fields form an SU(2)R doublet. A convenient way which we can use
in order to exhibit the SU(2)R symmetry is to arrange the two Weyl fermions and the two
complex bosons of the hypermultiplet in the diamond

ψq

q q̃

ψ†
q̃

Then, the SU(2)R symmetry acts on the rows of the diamond. For further details on the
R-symmetry of N = 2 supersymmetry the reader is referred to [8].

The other multiplet of interest in theories with N = 2 supersymmetry is the vector
multiplet. This contains an N = 1 vector superfield and an N = 1 chiral superfield, altogether
a gauge field, two Weyl fermions, and a complex scalar (all in the adjoint representation of

15In fact the R-symmetry group in this case is the group U(2), but the U(1) factor of this group is again
often broken by quantum anomalies. The whole U(2) R-symmetry is present in scale-invariant N = 2 theories.

16The index R makes it clear that this is the global group that corresponds to the R-symmetry.
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the gauge group we consider; for details see section 1.7). Although the hypermultiplet can be
either massless or a short massive multiplet (BPS), the vector multiplet can only be massless.
The fermions are doublets of SU(2)R, while the gauge field and the complex scalar are singlets.
Again, the diamond structure is useful; we arrange the gauge field, Aµ, the fermionic fields,
λ and ψ, and the scalar field, φ, of the vector multiplet in the diamond

Aµ

λ ψ

φ

The SU(2)R symmetry acts, just as in the case of the hypermultiplet, on the rows of the dia-
mond. Under N = 1 supersymmetry the vector multiplet decomposes into a vector superfield
(1.3.8) with the gauge-covariant field strength (1.4.3) and a chiral superfield (1.3.5).

1.7 N = 2 supersymmetric gauge theory

Our analysis of the N = 2 supersymmetric gauge theory with gauge group G will involve only
the vector multiplet and not the hypermultiplet. Using the decomposition of the N = 2 vector
multiplet into N = 1 multiplets, our construction starts by adding the Lagrangians (1.4.4)
and (1.4.7).17 However, we should pay attention to the fact that since our fields belong to
the same multiplet they must transform in the same representation of G. The fields in the
N = 1 vector multiplet transform necessarily in the adjoint representation of G and, thus,
the same must hold for the component fields of the chiral superfield. In that case the N = 2
matter Lagrangian (1.4.7) becomes

L
(ad)
matter =

∫

d2θ d2θ̄ Φ†
b(e

2gV )b
cΦ

c

= tr
(

(Dµφ)†(Dµφ) − iψασµ
αα̇Dµψ̄

α̇ + F †F

+ i
√

2gφ†{λα, ψα} − i
√

2g{ψ̄α̇, λ̄
α̇}φ+ gD[φ, φ†]

)

(1.7.1)

where

φ = φaT
a
ad, ψα = ψaαT

a
ad and F = FaT

a
ad

in addition to

λα = λaαT
a
ad, D = DaT

a
ad and Aµ = AaµT

a
ad

Let us see how the anticommutator in the term
√

2gφ†T a
R
λaψ arises. Similar steps explain

the appearance of the anticommutator in the term
√

2gψ̄λ̄aT
a
R
φ and the commutator in the

term gφ†DaT
a
R
φ. In the adjoint representation

φ†T a
Rλaψ → φ†b(T

a
ad)b

cλ
α
aψ

c
α

17Here we do not include the superpotential for reasons we will explain below.
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and this becomes

φ†b(T
a
ad)b

cλ
α
aψ

c
α = φ†b(−ifab

c)λ
α
aψ

c
α

= φ†b(+if
ba

c)λ
α
aψ

c
α

= φ†b(tr T
b[T a, Tc])λ

α
aψ

c
α

= φ†b(tr T
bT aTc)λ

α
aψ

c
α − φ†b(tr T

bTcT
a)λα

aψ
c
α

= trφ†λαψα − trφ†ψαλ
α

= trφ†λαψα + trφ†ψαλα

= trφ†{λα, ψα}

where we used the fact that
(T a

ad)b
c = −ifab

c

the obvious property
f ba

c = −fab
c

the normalization (1.4.5) and the supersymmetric identity

λaαψ
α = −λα

aψα

What remains is to add terms that describe the propagation of our fields. We worked out
these terms in section 1.4 (see equation (1.4.4)) and, hence, we just have to add them to the
Lagrangian (1.7.1). The resulting Lagrangian is

LN=2 =

∫

d2θ d2θ̄ Φ†e2gV Φ +
1

32π
Im

(

τ

∫

d2θ tr WαWα

)

= tr
(

− 1
4FµνF

µν − iλασµ
αα̇Dµλ̄

α̇ − iψασµ
αα̇Dµψ̄

α̇ + 1
2D

2

+
ϑ

32π2
g2Fµν F̃

µν + (Dµφ)†(Dµφ) + F †F + gD[φ, φ†]

+ i
√

2gφ†{λα, ψα} − i
√

2g{ψ̄α̇, λ̄
α̇}φ

)

(1.7.2)

which is indeed, although far from obviously, N = 2 supersymmetric. Now, as we saw in
the previous section, theories with N = 2 supersymmetry necessarily have a global SU(2)R

symmetry. From the diamond structure of the vector multiplet we already knew that the R-
symmetry rotates the fermionic fields ψ and λ into each other and, hence, it is straightforward
to check that indeed the Lagrangian (1.7.2) is invariant under the R-symmetry. Note here
that, had we added a superpotential in the beginning of our construction, then we would
have a term ∼ Wijψ

iαψj
α appearing for the matter fermions, ψ, but not for the gauginos,

λ. But that would break the SU(2)R invariance unless the superpotential was linear in
Φ. Moreover, any superpotential linear in Φ would generate a scalar potential of the form
|Wi|2 ∼ |constant|2 which is strictly positive. However, that would spontaneously break
supersymmetry18 and, thus, the superpotential can only be a constant which we can always

18Why this is so will be explained in the next chapter.
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set to zero. Also, it has to be stressed that our description of N = 2 supersymmetric Yang–
Mills theory does not involve a central charge, since the N = 2 vector multiplet we have been
using carries an off-shell representation of the N = 2 supersymmetry algebra in which the
central charge is trivial.

Our next step is to eliminate the auxiliary fields from the Lagrangian (1.7.2). Their
equations of motion give

F a = 0 and Da = −g[φ, φ†]a

and, thus, the Lagrangian (1.7.2) becomes

LN=2 = tr
(

− 1
4FµνF

µν − iλασµ
αα̇Dµλ̄

α̇ − iψασµ
αα̇Dµψ̄

α̇

+
ϑ

32π2
g2Fµν F̃

µν + (Dµφ)†(Dµφ)

+ i
√

2gφ†{λα, ψα} − i
√

2g{ψ̄α̇, λ̄
α̇}φ

)

− V (φ, φ†)

where the scalar potential is

V (φ, φ†) = 1
2 trD2 = 1

2g
2tr [φ, φ†]2

1.8 Effective gauge theories with N = 2 supersymmetry

As in the case of gauge theories with N = 1 supersymmetry, we can as well work with low-
energy effective gauge theories with N = 2 supersymmetry. In order to begin we first have to
find an appropriate sum of (1.5.6) with W = 0 and (1.5.8). In anticipation of some connection
to the Lagrangian (1.7.2), that is chosen to be

L
(eff)
N=2 =

∫

d2θ d2θ̄ K(Φa, (Φ†e2gV )a) + 1
2Re

(
∫

d2θ τab(Φ
i)W aαW b

α

)

and, after working out its component form and eliminating the auxiliary fields,19 we see that
the kinetic terms for the matter fermions, ψ, and the gauginos, λ, are

−iKb
aψ̄

b
α̇σ̄

µα̇α∂µψ
a
α and − iRe(τab)λ̄

b
α̇σ̄

µα̇α∂µλ
a
α

respectively. But the SU(2)R symmetry demands that the kinetic terms for ψ and λ appear
in the same form and, thus, we have to require that

Kb
a = Re τ b

a

where τ b
a = τacδ

cb. That can be implemented by defining a holomorphic function, F(Φ), called
the prepotential, such that

16πK(φ, φ†) = − i

2
φ†a

∂F(φ)

∂φa
+ H.c. ≡ − i

2
φ†aFa(φ) + H.c.

19Remember that now everything transforms in the adjoint representation of the gauge group
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and

16πτab(φ) = −i ∂
2F(φ)

∂φa ∂φb
≡ −iFab(φ)

Then, our effective theory is described by the Lagrangian

L
(eff)
N=2 =

1

16π
Im

[

1

2

∫

d2θFab(Φ)W aαW b
α +

∫

d2θ d2θ̄ (Φ†e2gV )aFa(Φ)

]

where Im Fab plays the role of some sort of coupling. As we observe, our theory is completely
determined by the prepotential. Note that with the choice F(Φ) = 1

2τtr Φ2 we obtain the
Lagrangian (1.7.2). Actually, for the case of SU(2) gauge symmetry Seiberg and Witten
managed to determine the prepotential, and thus solve the low-energy theory [8].
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Even though supersymmetry equips us with powerful methods and gives profound answers to
a series of previously insoluble problems, it nevertheless comes in direct conflict with nature
as we observe it today. Indeed, the supersymmetric partners of the particles we observe in
particle accelerators are absolutely absent in our surroundings. For example, if we consider
N = 1 supersymmetry, then the electron belongs to a chiral superfield which also contains
a scalar field, the selectron, and an auxiliary field. The selectron is the superpartner of
the electron but, although the electron is rather easy to observe, the selectron has not been
detected yet.

Therefore, if we want to retain the power of supersymmetry while, at the same time,
respect phenomenology, we need supersymmetry to be broken at some intermediate scale,
i.e. at some scale below the Planck scale but certainly above the already probed energy
of 100 GeV. In this chapter we will present various methods that are useful in the search
of supersymmetry breaking. Our treatment contains an explicit example of supersymmetry
breaking as well as various criteria that help us find out if supersymmetry is broken. I assume
that the reader is familiar with the spontaneous breaking of ordinary global symmetries.

29
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2.1 Spontaneous supersymmetry breaking

Supersymmetry is broken if and only if the supercharge Qα does not annihilate the vacuum:

Qα|0〉 6= 0

Given a specific field, bosonic or fermionic, it is

〈0|δ(field)|0〉 = 〈0|(εβQβ)(field)|0〉

and, hence, supersymmetry is broken if the variation of some field, bosonic or fermionic, is
such that

〈0|δ(field)|0〉 6= 0

However, since the variation of a bosonic field is fermionic its vacuum expectation value (vev)
has to vanish automatically due to Lorentz invariance. Hence, in order to break supersym-
metry we need at least one fermionic field, κα, whose variation has a nonzero vev:

〈0|δκα|0〉 6= 0

But if the fermionic field belongs to a chiral superfield its variation is (see equation (1.3.6)

δψa =
√

2εαF + · · · (2.1.1)

while, if it belongs to a vector superfield, where, as usual, we call it λα to avoid confusion, it
is

δλα = iεαD + · · ·
where F and D are the auxiliary fields in the Lagrangian (1.4.10), and the ellipses stand
for terms that do not contribute (due to Lorentz invariance) to the vev. Consequently, we
observe that nonzero vevs for either F or D signal supersymmetry breaking.

Now, another way to establish supersymmetry breaking is to find a vacuum energy which
is greater than zero. To see how this comes about consider the supersymmetry algebra
equation

{Qα, Q̄α̇} = 2σµ
αα̇Pµ

Since the Pauli matrices are traceless, taking the trace we obtain

1
4(Q1Q̄1̇ +Q2Q̄2̇ + Q̄1̇Q1 + Q̄2̇Q2) = P0

and, hence, the vacuum energy is1

Evac = 〈0|P0|0〉 ≥ 0

From the last equation we immediately see that, since 〈0|P0|0〉 = 0 implies Qα|0〉 = 0,
supersymmetry is broken if and only if Evac > 0.

1The nonnegativity could be directly seen by looking at the scalar potential (1.4.12).
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Let us now consider an example. A class of supersymmetry-breaking models involving only
chiral superfields is the class of O’Raifeartaigh models. As a representative consider a theory
with three chiral superfields, A,B and X, canonical Kähler potential and superpotential

W = λA(X2 − µ2) +mBX

The F -terms are2

FA = λ(X2 − µ2), FB = mX and FX = 2λAX +mB

and, evidently, FA and FB cannot be set to zero simultaneously. Therefore, supersymmetry
is broken. To find the vacuum energy and the vevs we have to minimize the scalar potential.
Since no matter what the vev of X is we can always choose the vevs of A and B such that
FX = 0, we just have to minimize the scalar potential (µ and m are assumed to be real)

V = |FA|2 + |FB |2 = |λ|2|X2 − µ2|2 +m2|X|2

The solutions are

〈X〉 = 0 or 〈X〉2 = µ2 − m2

2|λ|2
The corresponding vacuum energies are

Evac,1 = |λ|2µ4 and Evac,2 = m2µ2 − m4

4|λ|2

Note that the branch 〈X〉2 = µ2−m2/2|λ|2 does not survive if Evac,2 ≤ 0. More specifically, if
Evac,2 ≤ 0, then two of the roots of the cubic polynomial ∂V/∂X are no longer real and, thus,
of no relevance to our considerations. Thus, the only physical case is the case Evac,2 > 0, in
perfect agreement with broken supersymmetry.

It is now time to investigate the spectrum of the massless states in the case 〈X〉 = 0.
First of all, there is a massless scalar arising from the fact that at this level, which is called
the tree or classical level, not all of our fields are determined. Indeed, at 〈X〉 = 0 the F -term
for X does not fix the vev of A. We say that we have a vacuum degeneracy at tree level.
In the next section we will see how this degeneracy is lifted by loop (quantum) corrections.
Furthermore, there is a massless fermion, ψX . This could not be absent; it is the sign that
supersymmetry is broken and it is called the Goldstino. It is the analog of the Goldstone
boson which is observed in the massless spectrum of spontaneously broken ordinary global
symmetries and we further analyze its connection to supersymmetry breaking in section 2.4.

Finally, let us consider the massive spectrum of our theory. The importance of doing so
is to show that for nonzero energy the bosonic and the fermionic states are not paired. For a
general supersymmetric theory with n chiral superfields Qa and superpotential W (Qa)3 the
mass matrices for scalar and spin- 1

2 fields are given respectively by the 2n× 2n matrices

M2
0 =

(

W †acWcb W †abcWc

WabcW
†c WacW

†cb

)

and M2
1/2 =

(

W †acWcb 0
0 WacW

†cb

)

(2.1.2)

2Note that here and in what follows we denote the chiral superfield and its zero component with the same
symbol.

3Note that any Kähler potential other than the canonical one, Kcan(Qa, Q†
a) = Q†

aQ
a, alters this result.
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with Wc ≡ ∂W
∂Qc and similarly for the rest, where the derivatives are to be evaluated at the

vevs assumed for the zero components of the chiral superfields. Calculating and diagonalizing
the mass matrices in our case shows that the boson mass matrix has two zero eigenvalues,
the two eigenvalues

m2 + 2|λ〈A〉|2 + |λ|2µ2 ± |λ|
√

4m2|〈A〉|2 + 4|λ|2|〈A〉|4 + |λ|2µ4 + 4µ2|λ〈A〉|2

and the two eigenvalues

m2 + 2|λ〈A〉|2 − |λ|2µ2 ± |λ|
√

4m2|〈A〉|2 + 4|λ|2|〈A〉|4 + |λ|2µ4 − 4µ2|λ〈A〉|2

while the fermion mass matrix also has two zero eigenvalues but the two double eigenvalues

m2 + 2|λ〈A〉|2 ± 2|λ|
√

m2|〈A〉|2 + |λ|2|〈A〉|4

which are different from the ones found for the boson mass matrix. Therefore, our expectation
that we would find a mass splitting between bosons and fermions is fulfilled. As a mild
consistency check note that at λ = 0 there is no mass splitting, something that was to be
expected since, then, supersymmetry remains unbroken. Also, note that

STr M2 ≡ Tr M2
0 − Tr M2

1/2 = 0

i.e. the mass splitting in each supermultiplet vanishes. Of course this should be expected
because of the form of the mass matrices (2.1.2).

2.2 Loop corrections

In the previous section we analyzed an O’Raifeartaigh model at the classical level and we
found that in the case 〈X〉 = 0 there is a large vacuum degeneracy: No matter what the
vev of the zero component of the chiral superfield A was, the vacuum energy was exactly
the same. In general, vevs of zero components of superfields that are undetermined in the
vacuum of a theory are called moduli, and the space they parametrize is called moduli space.

In our particular case 〈A〉 is an approximate modulus since a potential for A is generated
at one-loop, thus lifting the vacuum degeneracy. To see this we have to integrate out all the
massive fields in order to get the effective action for A. The one-loop correction to the vacuum
energy is given by the Coleman–Weinberg potential [9], which in the case of supersymmetric
theories where quadratic divergences cancel among bosons and fermions,

STr M2 ≡ Tr M2
0 − Tr M2

1/2 = 0

takes the form

∆V (〈A〉) =
1

64π2
STr M4 ln

M2

Λ2
≡ 1

64π2

(

Tr M4
0 ln

M2
0

Λ2
− Tr M4

1/2 ln
M2

1/2

Λ2

)

(2.2.1)

where Λ is the scale below which our theory is valid. The minus sign in the fermionic
contribution arises because fermionic path integrals of Gaussians give a result proportional
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to the determinant of the matrix coefficient in the exponent, in contrast to bosonic path
integrals which give a result proportional to the inverse of this determinant. Note that if our
theory is supersymmetric this correction vanishes automatically due to the pairing of bosons
and fermions.

Now, to compute the correction exactly we need the spectrum as a function of 〈A〉. But
this was done in the previous section and, thus, we can find the result which, in fact, is too
long to be presented here. However, plotting the correction to the scalar potential for some
values of the parameters as a function of 〈A〉 can tell us what is the behavior of the correction
as we vary 〈A〉. The plot is shown in Fig. 2.1 and it can be seen that its crucial characteristics
do not depend on the particular values we assumed for the parameters.4 Thus, we say that
the potential is stable under deformations.
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Fig. 2.1: The one-loop correction to the vacuum energy

We observe an absolute minimum at 〈A〉 = 0 where the correction to the vacuum energy
is slightly smaller than zero. As expected, quantum corrections lifted the vacuum degeneracy
we found in the previous section.

2.3 Dynamical supersymmetry breaking

In the example we just analyzed we saw the spontaneous breaking of supersymmetry tak-
ing place at tree-level. However, we often happen to consider a theory where at tree-level
supersymmetry remains an exact symmetry of the vacuum, i.e. where supersymmetry is not
spontaneously broken. Then, there exists a wide class of theorems, known as nonrenormal-

4This can be done, for instance, by drawing the 3d plots of ∆V with respect to 〈A〉 and one of λ, µ, m and
Λ at a time. Note that λ is dimensionless while µ, m Λ and 〈A〉 have mass dimension one.
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ization theorems, which guarantee that supersymmetry cannot be broken at any loop order.
That is a remarkable result and although it was originally proved using Feynman diagrams in
superspace (supergraphs) [10], it was later found to arise solely by considerations regarding
the holomorphy of the superpotential [11]. Also, it can be shown that if supersymmetry is
broken at tree-level, then nothing can be done to restore it in perturbation theory. Let us
see an example, namely the Wess–Zumino model. As we saw in section 1.5 this is a theory
with a single chiral superfield, Φ, a canonical kinetic term and tree-level superpotential

Wtree(Φ) = 1
2mΦ2 + 1

3λΦ3

For m = λ = 0 the theory has a U(1) × U(1)R symmetry under which Φ transforms as
(1, 1). Note that under R-symmetry d2θ has R-charge −2 and, thus, in order for the term
∫

d2θW (Φ) to be invariant under U(1)R, the superpotential has to have R-charge +2. Now, if
Wtree is invariant under the U(1)×U(1)R symmetry even if the couplings are nonzero, then we
have to impose the condition that the charges of m and λ under U(1)×U(1)R are (−2, 0) and
(−3,−1) respectively. Now, the most general renormalized superpotential invariant under
U(1) × U(1)R is

Weff = mΦ2f

(

λΦ

m

)

where f is an arbitrary holomorphic function. Considering a small λ in order to give meaning
to perturbation theory, we expand f around λ = 0 and we find

Weff =

∞
∑

n=0

an
λnΦn+2

mn−1

In the limit m → 0 we have to require that Weff be free of singularities. That is so because
we use the Wilsonian effective action5 and gives the condition n < 2. In addition, as λ → 0
we have to recover the tree-level superpotential. This fixes the undetermined constants a0

and a1 and shows that Weff does not receive any corrections. Thus, we proved the standard
perturbative nonrenormalization theorem and, moreover, we extended it beyond perturbation
theory. However, the Wess–Zumino model probably does not exist as an interacting field
theory6 and, hence, this nonperturbative result is of little interest.

Actually, as we will see, nonrenormalization theorems can be violated by nonperturbative
mechanisms, thus making theories with supersymmetric vacua at tree-level subject to pos-
sible spontaneous supersymmetry breaking. This kind of supersymmetry breaking, that is
spontaneous supersymmetry breaking by a nonperturbative mechanism, is called dynamical
supersymmetry breaking [13]. Also, note that in case our theory has a noncanonical Kähler
potential, then that is corrected by quantum effects since it is not protected by holomorphy.

The most important theory in which dynamical supersymmetry breaking occurs is the
N = 1 supersymmetric extension of QCD, a theory which we will extensively analyze in the
following chapter.

5For further details the reader is referred to [12].
6Unless we work in two dimensions where the Wess–Zumino model is an asymptotically free theory and,

so, probably exists nonperturbatively.
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2.4 The Goldstino

A direct consequence of the breaking of any bosonic global symmetry is the appearance of
massless scalars, π(p), called Goldstone bosons, which couple linearly to the symmetry current
jµ. Due to Lorentz-invariance it is

〈0|jµ(x)|π(p)〉 = fpµe−ipx

and, correspondingly, the current takes the form

jµ(x) = f∂µπ(x) + · · ·

where the ellipsis stands for terms quadratic in the fields and for potential derivative terms.7

Similarly, the breaking of supersymmetry in any theory is communicated by the appear-
ance of a Goldstone fermion, more commonly referred to as the Goldstino, which couples
linearly to the supersymmetry current [14]. The Goldstino coupling to the supersymmetry
current can be expressed as

Jµ
α = fσµ

αα̇ψ̄
α̇ + · · · (2.4.1)

where, again, the ellipsis stands for terms quadratic in the fields and for potential derivative
terms. As we will now show, when supersymmetry is broken f is nonzero.

Proceeding to the proof of the above statement we can consider for simplicity a theory
with n chiral superfields in which we have the usual F -term supersymmetry breaking, i.e.
the F -term, F , of say one chiral superfield cannot be set to zero consistently with all other
F -terms being zero. Our proof will be based on the Källén–Lehmann spectral representation,
that is the fact that the Fourier-transformed two-point function exhibits a pole at the mass
of the one-particle state, which for fermions takes the form

∫

d4x eipx〈0|T ψ̄(x)ψ(0)|0〉 =
i(/p +m)

p2 −m2 + iε
+ · · ·

where the ellipsis stands for terms contributed by multi-particle states and T denotes time-
ordering. Evidently, what we need to prove is that in case supersymmetry is broken, then the
Fourier-transformed two-point function for fermions has a pole at zero mass. Let us, therefore,
study the Green’s function 〈0|TεβJµ

β (x)ψα(0)|0〉, where εβ is an infinitesimal constant Weyl
spinor. Our starting point is the equation

∫

d4x ∂µe
ipx〈0|TεβJµ

β (x)ψα(0)|0〉 = 0 (2.4.2)

which is true since the integral of a total divergence is identically zero (when there are no
surface terms). However, if we act with the derivative before performing the integration, then
we take two contributions: One from the derivative acting on the exponential,

∫

d4x (∂µe
ipx)〈0|TεβJµ

β (x)ψα(0)|0〉 = ipµ

∫

d4x eipx〈0|TεβJµ
β (x)ψα(0)|0〉

7Those are not taken into account in the low-energy effective theory.
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and one from the derivative acting on the Green’s function. This can be calculated by ex-
pressing the time-ordering in terms of theta functions and remembering that time derivatives
of theta functions are delta functions. The result is

∫

d4x eipx∂µ〈0|TεβJµ
β (x)ψα(0)|0〉 =

∫

d4x eipxδ(4)(x)〈0|δψα(0)|0〉

where the variation of ψα is8

δψα(0) ≡
[
∫

d3x εβJ0
β(x), ψα(0)

]

which, remembering equation (2.1.1) and dropping derivative contributions since those have
vanishing vevs due to Lorentz invariance, becomes

δψα(0) =
√

2εαF

Hence, by equation (2.4.2) we get

√
2εα〈F 〉 = −ipµ

∫

d4x eipx〈0|TεβJµ
β (x)ψα(0)|0〉

The last equation can obviously be brought to the form
∫

d4x eipx〈0|TεβJµ
β (x)ψα(0)|0〉 = εα

fpµ

p2

where f = i
√

2〈F 〉, which, by the Källén–Lehmann spectral representation, indicates that
there exists a massless fermionic one-particle state in the spectrum. Therefore, our initial
assumption that 〈F 〉 6= 0, i.e. that supersymmetry is broken, resulted in the appearance of
the Goldstino in the spectrum.

The Goldstino coupling to the supersymmetry current is

Jµ
α = fσµ

αα̇ψ̄
α̇ + · · ·

and, indeed, when supersymmetry is broken f is nonzero. For completeness, note that it can
be shown using the Noether technique that the supersymmetry current of a theory with n
chiral superfields is given by

Jµ
α =

√
2σν

αα̇σ̄
µα̇βψi

β∂νφ
†
i + i

√
2F iσµ

αα̇ψ̄
α̇
i (2.4.3)

where i = 1, . . . , n.

8Note that the space integral of the zero component of the supersymmetry current is the supercharge:

εαQα =

Z

d3x εαJ0
α(x)

and

ε̄α̇Q̄
α̇ =

Z

d3x ε̄α̇J̄
0α̇(x)



2.5 The Witten index 37

2.5 The Witten index

A very powerful tool which helps us see whether a given theory breaks supersymmetry is the
Witten index [15]. The Witten index is essentially based on the fact that supersymmetry
breaking depends on the existence of zero-energy states. To be more specific, consider the
supersymmetry generators and their action on bosonic and fermionic states (in finite volume):

Q|boson〉 =
√
E|fermion〉 and Q|fermion〉 =

√
E|boson〉

where E > 0 is the energy of either of the states. Evidently, states of nonzero energy are
constrained by supersymmetry to appear in boson-fermion pairs. However, zero-energy states
are not subject to this constraint since, then,

Q|boson〉 = 0 and Q|fermion〉 = 0

But if there exists some zero-energy state, then supersymmetry is unbroken since, then, the
scalar potential has zero as its minimum. On the other hand, if there are no zero-energy
states, then supersymmetry is broken.

However, in supersymmetric theories it is very hard to count the exact number of bosonic
and fermionic states at each energy level. A somewhat easier, but still hard, job is to count
their difference. Thus, we can calculate the quantity

∑

E

(

nE
B − nE

F

)

(2.5.1)

where nE
B is the number of bosonic states with energy E and nE

F the number of fermionic
states with energy E. But for E > 0 bosons and fermions come in pairs and, hence, the
nonzero energy contributions in the quantity (2.5.1) cancel. What remains is the so-called
Witten index

Tr(−1)F = nE=0
B − nE=0

F

If the Witten index is nonzero, then supersymmetry is obviously unbroken. On the other
hand though, if the Witten index is zero we cannot reach a conclusion, since either nE=0

B =
nE=0

F 6= 0 and supersymmetry is unbroken, or nE=0
B = nE=0

F = 0 and supersymmetry is
broken.

The usefulness of the Witten index lies on the fact that it is a topological invariant of the
theory. It may be calculated for some convenient choice of the parameters of the theory but
the result is true in general. A very important application of this fact is that we can obtain
results for the strongly-coupled regime of a theory by calculating the Witten index at weak
coupling. More specifically, under mild variations of the parameters of the theory the states
may move to or from zero energy. But the pairing of positive-energy states guarantees that
they do so in pairs, thus not changing the value of the Witten index. Now, by mild variation
of the parameters we mean that as long as a parameter of a theory is nonzero and varied to
another nonzero value, then we do not expect the Witten index to change. The change can
only happen if new states of zero energy appear, which is a possibility if there is a change in
the asymptotic behavior of the potential in field space. This can occur if some parameter of
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the theory is set to zero or is turned on, in which case states may come in from or move out
to infinity.

Witten calculated the index of several theories. For example, he found that the index of
pure supersymmetric Yang–Mills theory is nonzero and, thus, he proved that those theories do
not break supersymmetry spontaneously. In addition, supersymmetric Yang–Mills theories
with massive matter do not break supersymmetry either, for, at least at weak coupling, one
can take all masses to be large in which case there are no massless states beyond those of
pure supersymmetric Yang–Mills theory and, so, the value of the Witten index is the same
as in the case of pure superglue.

However, we can easily be carried away here so we better be careful. The theory with zero
mass has flat directions along which the scalar potential is classically zero. On the contrary,
the theory with nonzero mass for the matter fields does not have classical flat directions.
Hence, as the mass is taken to zero the asymptotic behavior of the scalar potential changes
and so might the Witten index. In fact the Witten index is ill-defined in the presence of
flat directions since, then, there exist zero-modes associated with the flat directions giving
rise to a continuous spectrum of states, while to calculate the Witten index we actually need
to consider the theory in a finite volume so that we have a discrete spectrum. Therefore,
we cannot draw any conclusion regarding supersymmetry breaking in massless, nonchiral
theories based on the Witten index of the corresponding pure supersymmetric Yang–Mills
theory.

2.6 Global symmetries and supersymmetry breaking

Another means of checking whether supersymmetry is broken is provided by the connection
between global symmetries and supersymmetry breaking. Consider a theory with an exact,
nonanomalous global symmetry and no flat directions, i.e. without moduli. If the global
symmetry is spontaneously broken, then there is a massless scalar field, the Goldstone boson,
without a potential. Now, if supersymmetry is an exact symmetry of the vacuum, then the
Goldstone boson belongs to a chiral superfield which also contains another massless scalar,
namely the parity-reflected state of the Goldstone boson, without a potential. But then, this
second scalar is a modulus and, therefore, we have a contradiction with our initial assumption
that there are no moduli. The only way to avoid the contradiction is to drop the assumption
of unbroken supersymmetry.9 The aforementioned criterion for supersymmetry breaking first
appeared in a paper by Affleck, Dine and Seiberg [16] and it is often referred to as the ADS
criterion for supersymmetry breaking.

In general, the spontaneous breaking of a global symmetry requires a detailed knowledge
of the potential of the theory under consideration and, thus, it is as difficult to decide as
determining whether the vacuum energy vanishes. Moreover, in the case where the theory is
strongly coupled at the scale of supersymmetry breaking, then neither of those questions can
be directly answered. However, in some cases, we can see if a global symmetry is broken based
on the so-called ’t Hooft anomaly-matching conditions: If a continuous global symmetry is

9This result can be invalidated if the parity-reflected state of the Goldstone boson is a Goldstone boson
itself.
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unbroken in the vacuum, then the massless fermions of the low-energy theory should reproduce
the global triangle anomalies of the microscopic theory [17], [18]. Therefore, if a global
symmetry is unbroken, then there should exist a set of fields, with appropriate charges under
the global symmetry, that give a solution to the anomaly-matching conditions. Now, if we
find that in order to satisfy the ’t Hooft anomaly-matching conditions we need a large set of
fields, then it is plausible to conclude that the global symmetry is spontaneously broken.

In supersymmetric theories we have a ubiquitous continuous global symmetry, namely
the R-symmetry. The ADS criterion, then, says that if we find that the R-symmetry is
spontaneously broken and there are no noncompact flat directions, then supersymmetry is
broken. If the scale of supersymmetry breaking is much lower that the strong-coupling scale,
then we can study supersymmetry breaking in the low-energy effective theory. This contains
only chiral superfields and, typically, some terms in the superpotential acquire vevs. But
then, the fact that the superpotential has R-charge two indicates that the R-symmetry is
spontaneously broken. The above argument makes it clear that the spontaneous breaking
of the R-symmetry is much more easily established compared to that of any other global
symmetry.

In fact, it is known [19] that the existence of an R-symmetry is a necessary condition for
supersymmetry breaking. Furthermore, if the effective Lagrangian is a generic Lagrangian
consistent with the symmetries of the theory (no fine tuning), and if the low energy theory can
be described by a supersymmetric Wess–Zumino effective Lagrangian without gauge fields,
then a spontaneously broken R-symmetry is a sufficient condition supersymmetry breaking.

2.7 Gaugino condensation

Finalizing this chapter let us introduce a criterion for supersymmetry breaking which is based
on gaugino condensation. Suppose that a certain chiral superfield or a linear combination of
chiral superfields does not appear in the superpotential and, yet, all the moduli are stabilized.
In such a case the Konishi anomaly [20] implies that

D̄2(Φ†eV Φ) ∼ trW αWα (2.7.1)

where D̄α̇ is the superspace-covariant derivative, Φ is the chiral superfield that does not
appear in the superpotential and V is a vector superfield. From the component form of
equation (2.7.1) we find

{Qα, ψ
αφ} ∼ trλαλα (2.7.2)

where φ and ψα are the zero and fermionic components of Φ respectively, λα is the gaugino
and tr denotes a sum over gauge indices. From this equation we observe that supersymmetry
is broken by a nonzero vev of the lowest component of trW αWα, that is by nonzero 〈trλαλα〉.
Therefore, the existence of gaugino condensation in this case implies that supersymmetry is
broken.

If the superfield Φ appears in the superpotential, then the right-hand sides of equations
(2.7.1) and (2.7.2) are modified in such a way so that the gaugino condensate forms without
violating supersymmetry. As an example, consider the case where the superpotential contains
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a mass term for Φ. In components this gives the term mφ†φ for the scalar component and,
then, equation (2.7.2) becomes

{Qα, ψ
αφ} ∼ −mφ†φ+

g2

32π2
trλαλα

The last equation is not necessarily incompatible with supersymmetry and, moreover, deter-
mines the vevs of the scalar fields in terms of the gaugino condensate.
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In this chapter we will analyze the supersymmetric extension of quantum chromodynamics.
We will study its classical and quantum dynamics and we will make use of an important
duality in order to find nonsupersymmetric vacua in the strong-coupling regime of the massive
theory.

3.1 N = 1 supersymmetric QCD

N = 1 SQCD with Nc colors and Nf flavors is an N = 1 SU(Nc) gauge theory with Nf quark
flavors Qi (left-handed quarks) which are chiral superfields transforming in the Nc of SU(Nc)
and Nf quark flavors Q̃ĩ (left-handed antiquarks) which are chiral superfields transforming
in the Nc of SU(Nc), where i, ĩ = 1, . . . , Nf are flavor indices. Since the gauge group does
not contain U(1) factors there are no Fayet–Iliopoulos terms.

In order to start with, consider the theory without superpotential for the quarks. Its
Lagrangian can be written down immediately with the aid of the Lagrangian (1.4.9) and it
turns out to be

L =

∫

d2θ d2θ̄ Q†
ie

2gV Qi +

∫

d2θ d2θ̄ Q̃ĩe
2gV Q̃ĩ†

+
1

32π
Im

(

τ

∫

d2θ tr WαWα

) (3.1.1)

41
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or, in components,

L = (DµQ
i)†DµQi − iψiασµ

αα̇Dµψ̄
α̇
i + i

√
2gQ†

iT
Aλα

Aψ
i
α

− i
√

2gψ̄iα̇λ̄
α̇
AT

AQi + (DµQ̃ĩ)
†DµQ̃ĩ − iψ̃α

ĩ
σµ

αα̇Dµ
¯̃
ψ

ĩα̇

− i
√

2gQ̃ĩ†TAλα
Aψ̃ĩα + i

√
2g ¯̃ψ

ĩ

α̇λ̄
α̇
AT

AQ̃ĩ − V (Qi, Q̃ĩ, Q
†
i , Q̃

ĩ†)

+ tr
(

−1
4FµνF

µν − iλασµ
αα̇Dµλ̄

α̇
)

+
ϑ

32π2
g2trFµν F̃

µν

(3.1.2)

where the scalar potential is

V (Qi, Q̃ĩ, Q
†
i , Q̃

ĩ†) = 1
2g

2

N2
c −1
∑

A=1

(Q†
iT

AQi − Q̃ĩT
AQ̃ĩ†)2 (3.1.3)

and the Qs and Q̃s that appear in the component expansion are called squarks and are the zero
components of the chiral multiplets that represent the quark multiplets of SQCD. The use of
the same letter for both a multiplet and its zero component, with the meaning hopefully clear
from the context, is common practice in supersymmetric gauge theory considerations. Note
that TA, A = 1, . . . , N 2

c − 1, are the generators of SU(Nc) in the fundamental representation,
Qi and Q̃ĩ are Nc × 1 and 1 ×Nc matrices respectively and, also, note that we do not write
the total derivative that appears in the component expansion.

Our theory (3.1.1) has a large global symmetry since

• We can transform the Qs and Q̃s by separate SU(Nf ) transformations

• We can multiply the Qs and Q̃s by different phases

• There is the usual R-symmetry U(1)R′

The relevant representations and charge assignments are shown in the following table.

SU(Nf ) SU(Nf ) U(1)B U(1)A U(1)R′

Q Nf 1 1 1 1

Q̃ 1 Nf −1 1 1

However, there is an anomaly of the U(1)A × U(1)R′ symmetry. Despite that, a single U(1)
symmetry which we will denote U(1)R survives and is a full quantum symmetry. Therefore,
the global symmetry of the quantum theory is

SU(Nf ) × SU(Nf ) × U(1)B × U(1)R

and by the usual results about anomalies we find that the appropriate charge assignment is

SU(Nf ) SU(Nf ) U(1)B U(1)R

Q Nf 1 1 1 −Nc/Nf

Q̃ 1 Nf −1 1 −Nc/Nf
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To make our notation more convenient we define the matrices

Q =

a
↓

i→
























Q1













· · ·













QNf

























Q† =

i
↓

a→








( Q†
1 )

...

( Q†
Nf

)









and

Q̃ =
i
↓

a→






( Q̃1 )
...

( Q̃Nf
)







Q̃† =

a
↓

i→
























Q̃1†













· · ·













Q̃Nf †

























where a = 1, . . . , Nc is a color index. Evidently, Q is an Nc ×Nf matrix, Q† is an Nf ×Nc

matrix, while the opposite holds for Q̃ and Q̃†. In this notation the Lagrangian (3.1.2)
becomes

L = Tr [(DµQ)†DµQ− iψασµ
αα̇Dµψ̄

α̇ + i
√

2gQ†TAλα
Aψα

− i
√

2gψ̄α̇λ̄
α̇
AT

AQ+ (DµQ̃)†DµQ̃− iψ̃ασµ
αα̇Dµ

¯̃
ψ

α̇

− i
√

2gQ̃†TAλα
Aψ̃α + i

√
2g

¯̃
ψα̇λ̄

α̇
AT

AQ̃] − V (Q, Q̃,Q†, Q̃†)

+ tr
(

−1
4FµνF

µν − iλασµ
αα̇Dµλ̄

α̇
)

+
ϑ

32π2
g2trFµν F̃

µν

(3.1.4)

where

V (Q, Q̃,Q†, Q̃†) = 1
2g

2

N2
c −1
∑

A=1

(TrQ†TAQ− Tr Q̃TAQ̃†)2 (3.1.5)

Note that Tr denotes a sum over both gauge and flavor indices,

TrQ†TAQ ≡ Q†
ib(T

A)b
cQ

ic and Tr Q̃TAQ̃† ≡ Q̃ĩb(T
A)b

cQ̃
ĩc†

and we immediately see the equivalence of the scalar potentials (3.1.5) and (3.1.3).
Now, it turns out that in order to give masses to the quark flavors consistently with the

gauge symmetry of our theory, we have to use the unique gauge-invariant chiral superfield we
can construct from Qi and Q̃ĩ, namely the mesonic superfield

M i
ĩ

= Q̃ĩQ
i

M i
ĩ

is gauge invariant since Q is in the fundamental while Q̃ in the antifundamental represen-
tation of SU(Nc) but, evidently, it is not invariant under the global symmetry of our theory.
The superpotential that results in mass terms for the zero components of the quark flavors is

Wtree(Q, Q̃) = tr′mM (3.1.6)
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where m is a nondegenerate Nf×Nf mass matrix and tr′ is not the same as tr, since it denotes
a sum over flavor indices, while tr denotes a sum over gauge indices. With the inclusion of
Wtree the Lagrangian (3.1.4) becomes1

L
′ = Tr [(DµQ)†DµQ− iψασµ

αα̇Dµψ̄
α̇ + i

√
2gQ†TAλα

Aψα

− i
√

2gψ̄α̇λ̄
α̇
AT

AQ+ (DµQ̃)†DµQ̃− iψ̃ασµ
αα̇Dµ

¯̃
ψ

α̇

− i
√

2gQ̃†TAλα
Aψ̃α + i

√
2g ¯̃ψα̇λ̄

α̇
AT

AQ̃] − (1
2Trmψαψ̃α + H.c.)

+ tr
(

−1
4FµνF

µν − iλασµ
αα̇Dµλ̄

α̇
)

+
ϑ

32π2
g2trFµν F̃

µν

− V ′(Q, Q̃,Q†, Q̃†)

where the scalar potential is

V ′(Q, Q̃,Q†, Q̃†) = Trm2Q†Q+ Trm2Q̃Q̃†

+ 1
2g

2

N2
c −1
∑

A=1

(TrQ†TAQ− Tr Q̃TAQ̃†)2

with
Trm2Q†Q ≡ mĩ

i(m
†)j

ĩ
Q†

jcQ
ic

and
Trm2Q̃Q̃† ≡ (m†)i

j̃
mĩ

iQ̃ĩcQ̃
†j̃c

Indeed, the choice (3.1.6) for the superpotential resulted in the anticipated mass terms for
the squarks.

3.2 The classical moduli space

As we saw in the previous section, in the absence of mass terms the scalar potential is given
by equation (3.1.5). We now want to study the vacuum structure of SQCD, i.e. we want to
find vevs for the squarks that make the scalar potential (3.1.5) vanish.2 A necessary condition
for that to happen is

DA ∝ TrQ†TAQ− Tr Q̃TAQ̃† = 0 (3.2.1)

for every A = 1, . . . , N 2
c − 1. Now, define

DL
M = Q†

ia(AL
M )a

bQ
ib − Q̃ĩa(AL

M )a
b Q̃

ĩb† (3.2.2)

where AL
M are the real generators of GL(Nc) and L,M = 1, . . . , Nc count them. Since Qi is in

the fundamental and Q̃ĩ in the antifundamental representation of SU(Nc) we have to choose

(AL
M )a

b = δa
Mδ

L
b

1This is easily seen by looking at the terms a (nonconstant) superpotential contributes to the Lagrangian
(1.4.11).

2Note that in what follows we denote the squarks and their vevs with the same symbol.
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Then, equation (3.2.2) becomes

DL
M = Q†

iaδ
a
M δL

b Q
ib − Q̃ĩaδ

a
M δL

b Q̃
ĩb†

= Q†
iMQ

iL − Q̃ĩM Q̃
†̃iL

which helps us see that

(TA)M
L D

L
M = (TA)M

L Q
†
iMQ

iL − (TA)M
L Q̃ĩM Q̃

†̃iL

=
2

g2
DA

(3.2.3)

where the roles of Q and Q† and those of Q̃ and Q̃† have been interchanged, i.e. Q and Q̃†

are now Nf ×Nc matrices and Q† and Q̃ are Nc ×Nf matrices. Note that this change will
not be made explicit in what follows since our notation will remain exactly as it was.

Now (using color indices instead of the indices L,M) we observe that Dc
b is a Hermitian

matrix and, thus, it can be uniquely expanded as

Dc
b = λδc

b + λE(TE)c
b (3.2.4)

where TE are the generators of SU(Nc), λ and λE are constants and δc
b represents the unit

matrix. Therefore, since the matrices T E are traceless, we conclude that if we need DE = 0
for every E = 1, . . . , N 2

c − 1, then we better have

Dc
b = λδc

b

for the second term in the right-hand side of equation (3.2.4) would contribute the nonzero
term

trTATE = 1
2δ

AE

upon contraction with (TA)b
c. Thus, the equation we have to solve in order to reveal the

vacuum structure of SQCD is

Q†
ibQ

ia − Q̃ĩbQ̃
†̃ia = λδa

b (3.2.5)

Now, the matrix Q has rank3 min(Nc, Nf ) and so does Q†. Therefore, since

rank(Q†Q) ≤ min(rank(Q†), rank(Q))

we conclude that the rank of Q†Q is at most min(Nc, Nf ). Of course, the above discussion
can be repeated in exactly the same way for the matrix Q̃Q̃†, proving that the rank of Q̃Q̃† is
at most min(Nc, Nf ) as well. Note that Q†Q and Q̃Q̃† are Nc ×Nc Hermitian, positive semi-
definite matrices, i.e. they can be diagonalized by an SU(Nc) transformation (not necessarily
by the same one) and their eigenvalues are nonnegative.

3Remember that the rank of a matrix A is given by the maximal number of linearly independent columns
of A, which is equal to the maximal number of linearly independent rows of A.
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3.2.1 Fewer flavors than colors

In this case the rank of Q†Q is at most Nf and so is the rank of Q̃Q̃†. If we diagonalize Q†Q
by an SU(Nc) transformation, then we would get at least Nc−Nf zero eigenvalues. But then,
equation (3.2.5) says that Q̃Q̃† is also diagonal in this basis and, hence, the existence of at
least one zero eigenvalue with the rest positive guarantees that λ = 0. Therefore, up to an
SU(Nc) transformation, equation (3.2.5) is true if

Q†Q = Q̃Q̃† =















|a1|2
. . .

|aNf
|2















(3.2.6)

where ai, i = 1, . . . , Nf , are complex numbers, i.e. if4

Q = Q̃† =







a∗1
. . .

a∗Nf







up to global transformations. Now if we remember the interchange that took place in equation
(3.2.3), then we find the solution to equation (3.2.1) in terms of the original variables:

Q = Q̃† =















a1

. . .

aNf















(3.2.7)

up to global and gauge rotations.

The discussion we presented so far is obviously not gauge-invariant. However, it turns
out that we can combine the squarks into the gauge-invariant combinations

M i
ĩ

= Q̃ĩQ
i, i, ĩ = 1, . . . , Nf

which we call mesons. As we observe the mesonic matrix contains N 2
f complex entries.

Actually, one can show that the complex dimension of the classical moduli space is exactly
N2

f and, therefore, we can parametrize the whole moduli space with arbitrary vevs of the
mesons up to global symmetry transformations. For further details the reader is referred to
[18] and [21]

4Undisplayed entries in matrices are zero and the asterisk denotes complex conjugation.
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3.2.2 More flavors than colors

In this case the rank of Q†Q is at most Nc and so is the rank of Q̃Q̃†. Again due to equation
(3.2.5) we can see that Q†Q and Q̃Q̃† are diagonal in the same basis but, now, they do not
have any zero eigenvalues. This means that λ need not vanish and, hence, up to an SU(Nc)
transformation, equation (3.2.5) becomes

Q†Q− Q̃Q̃† =







|a1|2
. . .

|aNc |2






−







|ã1|2
. . .

|ãNc |2






= λ







1
. . .

1







where ai, ãĩ, i, ĩ = 1, . . . , Nc, are complex numbers. The solution to the last equation is

Q =















a∗1
. . .

a∗Nc















and Q̃† =















ã∗1
. . .

ã∗Nc















with
|ai|2 − |δĩ

i ãĩ|2 = λ, for every i, ĩ = 1, . . . , Nc

up to global transformations and, consequently, in terms of the original variables, equation
(3.2.1) is satisfied if

Q =







a1

. . .

aNc






and Q̃† =







ã1

. . .

ãNc







with
|ai|2 − |δĩ

i ãĩ|2 = λ, for every i, ĩ = 1, . . . , Nc

up to global and gauge rotations.
Obviously, the chain of reasoning we followed in this case can be easily followed to solve

the case Nf = Nc as well. But, again, we have a description of the moduli space which
is not gauge-invariant. The situation is once again amended by combining the moduli in
gauge-invariant combinations. If λ = 0, we can again use the mesons

M i
ĩ

= Q̃ĩQ
i, i, ĩ = 1, . . . , Nc

On the other hand, when λ 6= 0 the mesons are not enough to describe the moduli space
since new flat directions arise. This can be seen by the observation that although for λ = 0
one can see that the complex dimension of the moduli space is N 2

c , if λ 6= 0 this changes to
2NcNf − N2

c which is larger than N 2
c if Nf > Nc. In that case, the missing 2Nc(Nf − Nc)

complex parameters are provided by the baryons

BiNc+1...iNf
=

1

Nc!
εa1...aNc εi1...iNf

Qi1
a1

· · ·QiNc
aNc
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and

B̃
ĩNc+1...̃iNf =

1

Nc!
εa1...aNc

ε
ĩ1...̃iNf Q̃a1

ĩ1
· · · Q̃aNc

ĩNc

where the is and ĩs are flavor indices while the as are color indices. Therefore, up to global
symmetry transformations, the classical moduli space is labeled by vevs of the mesons and
the baryons. For further details the reader is again referred to [18] and [21].

3.3 Dynamics of SQCD

In the previous section we found a large vacuum degeneracy of massless SQCD at the classical
level. Now, as we mentioned before, there are nonrenormalization theorems which prove that
if there is no superpotential in the classical theory, then loop corrections cannot generate one.
Therefore, the vacuum degeneracy we found can only be lifted by a dynamically generated
superpotential, i.e. by a superpotential generated by nonperturbative mechanisms. In this
section we will investigate this possibility. For a thorough review of these ideas and methods
the reader is referred to [12].

But before we begin our discussion let us briefly discuss the idea of the running of a
coupling constant. This phenomenon arises when we require that the physical quantities
predicted by our theory do not depend on the scale at which we impose the renormaliza-
tion conditions, that is on the scale at which we observe the theory. Indeed, if we use the
renormalization scale µ and then we change it to µ′, then the physical quantities should not
change. As we will see, this requirement is fulfilled if the Callan–Symanzik equation holds.
Then, solving the Callan–Symanzik equation we find the renormalization group equation, an
equation which proves that couplings run, i.e. they depend on the momentum or, equivalently,
length scale at which we study our theory.

Consider for simplicity a theory with n scalar fields and bare coupling λ0. The bare
n-point Green’s function,

〈0|Tφ0(x1) · · · φ0(xn)|0〉
has no dependence on the renormalization scale µ, but this is not so for the renormalized
n-point Green’s function,

〈0|Tφ(x1) · · · φ(xn)|0〉 = [Z(µ)]−n/2〈0|Tφ0(x1) · · · φ0(xn)|0〉

where Z(µ) is the field strength renormalization at scale µ.
Let us now see what is the effect of a shift of µ. Let

G(n)(x1, . . . , xn) = 〈0|Tφ(x1) · · ·φ(xn)|0〉connected

be the connected renormalized n-point Green’s function. Now, if we shift µ by δµ, then there
is a corresponding shift in the renormalized coupling constant and the rescaled field such that
the bare Green’s functions do not change:

µ→ µ+ δµ

λ→ λ+ δλ
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and

φ→ (1 + δη)φ

Then, the shift in G(n) is the one induced by the field strength shift:

G(n) → (1 + nδη)G(n)

Thinking of G(n) as function of µ and λ, we can write the shift in G(n) as

δG(n) =
∂G(n)

∂µ
δµ +

∂G(n)

∂λ
δλ

and since this is equal to nδηG(n) we obtain the famous Callan–Symanzik equation:

[

µ
∂

∂µ
+ β(λ)

∂

∂λ
+ nγ(λ)

]

G(n)({xi};µ, λ) = 0

where

β(λ) ≡ µ

δµ
δλ

is the beta function and

γ(λ) ≡ − µ

δµ
δη

is known as the anomalous dimension, owing its name to the fact that the mass dimension
for φ is 1 + γ(λ). The Callan–Symanzik equation asserts that there are two functions, β(λ)
and γ(λ), related to the shifts in the coupling constant and field strength respectively, which
depend only on the coupling and which are responsible to compensate for the shift induced
to the bare Green’s functions by the shift in the renormalization scale µ. In fact, since

δη =
[Z(µ+ δµ)]−1/2

[Z(µ)]−1/2
− 1

we get

γ(λ) =
1

2
µ
∂

∂µ
lnZ

In addition, if λ is thought of as a function of µ it is

δλ =
∂λ

∂µ
δµ

and, thus,

β(λ) = µ
∂

∂µ
λ

From the last equation we immediately observe that the beta function gives information about
the behavior of the renormalized coupling constant as we vary the renormalization scale µ.
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Let us now solve the Callan–Symanzik equation for the two-point Green’s function in
a theory with a single massless scalar field. Since G(2)(p) has mass dimension −2 we can
express its dependence on p2 and µ2 as

G(2)(p) =
i

p2
g(−p2/µ2)

Replacing the derivative with respect to µ with a derivative with respect to p ≡
√

−p2 we
can write the Callan–Symanzik equation as

[

p
∂

∂p
− β(λ)

∂

∂λ
+ 2 − 2γ(λ)

]

G(2)(p, λ) = 0

which is solved by

G(2)(p, λ) =
i

p2
G(λ̄(p, λ)) exp






2

p′=p
∫

p′=µ

d

(

ln
p′

µ

)

γ(λ̄(p′, λ))






(3.3.1)

where λ̄(p, λ), the running coupling, solves the equation

d

d ln(p/µ)
λ̄(p, λ) = β(λ̄(p, λ)), with λ̄(µ, λ) = λ (3.3.2)

The function G(λ̄) can be determined by computing G(2)(p, λ) as a perturbation series in λ
and match terms in the expansion of equation (3.3.1) as a series in λ. Equation (3.3.2) is
known as the renormalization group equation. Obviously, if the beta function for a coupling
is positive, then the theory becomes more weakly-coupled at low momenta (large distances).
In that case the theory is called IR (infrared) free. In contrast, if the beta function is negative
the theory becomes more weakly-coupled at high momenta and it is said to be asymptotically
free.

If we consider, for example, an SU(Nc) gauge theory with Nf flavors and coupling g, then
it can be shown that at one-loop the beta function is

β1−loop(g) = −b0
g3

16π2

where

b0 = 11
3 Nc − 2

3Nf

Therefore, for an ordinary SU(3) gauge theory the one-loop beta function is negative if there
are no more than sixteen flavors. In particular, in QCD there are six flavors in total and,
hence, QCD is asymptotically free. In contrast, QED can be shown to be IR free.

The solution to the renormalization group equation at one-loop exhibits a disturbing
behavior, namely the existence of a finite momentum scale at which the coupling diverges.
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This is the so-called Landau pole. In the case of an SU(Nc) gauge theory with Nf flavors and
coupling g the solution to the renormalization group equation at one-loop is

1

ḡ2(p)
=

1

g2
+

b0
8π2

ln
p

µ

and the Landau pole lies at
ΛLandau = µe−8π2/b0g2

If b0 > 0, i.e. if the theory is asymptotically free, the Landau pole lies at very low energies.
On the contrary, if b0 < 0, i.e. if the theory is IR free, we encounter the Landau pole at high
energy.5 The position of the Landau pole in a gauge theory is referred to as the dynamically
generated scale of the theory. (It is dynamically generated because of the e−1/g2

dependence,
a dependence which cannot be seen in perturbation theory. That is so because the functions
T (g) and T (g) + e−1/g2

have exactly the same perturbation expansion.)
Of course, couplings are expected to be running in supersymmetric theories as well. It

can be shown that for SQCD, as we have described it so far, the exact beta function is [22],
[23], [24]

β(g) = − g3

16π2

3Nc −Nf +Nfγ(g2)

1 −Nc
g2

8π2

(3.3.3)

where

γ(g2) = − g2

8π2

N2
c − 1

Nc
+ O(g4)

3.3.1 The case Nf < Nc

In this case the global symmetries of our theory turn out to be a very useful tool in the search
for a dynamically generated superpotential. Any superpotential that might be generated has
to be invariant under the full nonanomalous global symmetry. In fact, there is a unique
superpotential that is compatible with the symmetries of our theory [25]:

Weff = CNc,Nf

(

Λ3Nc−Nf

detM

)1/(Nc−Nf )

(3.3.4)

where Λ is the dynamically generated scale of the theory and CNc,Nf
are constants which

depend on the subtraction scheme. Indeed, the generated superpotential is nonperturbative
and, hence, there is no conflict with the nonrenormalization theorems.

The superpotential (3.3.4) is further constrained in the limit of large M
Nf

Ñf
or, equivalently,

in the limit of large aNf
in equation (3.2.6). In this limit, SU(Nc) with Nf flavors is broken

to SU(Nc − 1) with Nf − 1 flavors by the Higgs mechanism at energy aNf
. The scale of the

low energy theory is

Λ
3(Nc−1)−(Nf−1)
L =

Λ3Nc−Nf

a2
Nf

5Note here that in the above calculation we took into account only the one-loop result for the beta function
and, therefore, we cannot be sure that the Landau pole persists once we use the exact beta function.
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in the so-called DR subtraction scheme. Requiring the superpotential (3.3.4) to produce the
correct result for the low-energy theory in this limit gives the condition

CNc,Nf
= CNc−Nf

(3.3.5)

Furthermore, if we give a very large mass to the Nf -th flavor by adding the superpotential

Wtree = mM
Nf

Nf
then the resulting low-energy theory is SU(Nc) SQCD with Nf − 1 flavors

and scale

Λ
3Nc−(Nf−1)
L = mΛ3Nc−Nf

(in the DR scheme) a condition that appears by matching the running gauge coupling at
the transition scale m. By requiring invariance under the symmetries we can prove that the
exact superpotential is of the form

Wexact =

(

Λ3Nc−Nf

detM

)1/(Nc−Nf )

f(t)

where

t = mM
Nf

Nf

(

Λ3Nc−Nf

detM

)−1/(Nc−Nf )

Now, in the limit of small mass and weak coupling we know that f(t) = CNc,Nf
+ t. But all

values of t can be obtained in this limit and, thus, the function f(t) in this limit is exactly
f(t) = CNc,Nf

+ t for all t. This conclusion shows that the exact superpotential with the
added mass term is

Wexact = CNc,Nf

(

Λ3Nc−Nf

detM

)1/(Nc−Nf )

+mM
Nf

Nf
(3.3.6)

But the requirement that the superpotential (3.3.6) should give the correct superpotential

upon integrating out M
Nf

Nf
relates CNc,Nf

to CNc,Nf−1 which, when combined with the con-

dition (3.3.5), gives

CNc,Nf
= (Nc −Nf )C1/(Nc−Nf )

where C is a numerical constant. Actually, in the case Nf = Nc − 1 we can carry out a
detailed one-instanton calculation which shows that, in the DR scheme, C = 1 [26]. Hence,
the dynamically generated superpotential in the case Nf < Nc is

Weff = (Nc −Nf )

(

Λ3Nc−Nf

detM

)1/(Nc−Nf )

(3.3.7)

We should now investigate the vacuum structure of the full quantum theory. It is

∂Weff

∂M i
ĩ

∣

∣

∣

∣

∣

〈M i
ĩ
〉

= −
(

Λ3Nc−Nf

detM

)1/(Nc−Nf )

(M−1)ĩ
i

∣

∣

∣

∣

∣

〈M i
ĩ
〉
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and, thus, the superpotential (3.3.7) results in a potential for the squarks which slopes to zero
as detM → ∞. Therefore, the quantum theory does not have a ground state. It is rather
surprising that we started with the infinite set of vacua (3.2.7) in the classical theory and we
ended up in a quantum theory without a vacuum.

Nevertheless, the addition of masses for the Nf flavors results in the appearance of vacua.
To see this, suppose that we add the superpotential (3.1.6) to Weff . Then, the Nf flavors all
get a mass and the exact superpotential is

Wexact = (Nc −Nf )

(

Λ3Nc−Nf

detM

)1/(Nc−Nf )

+ tr′mM

This gives Nc vacua at

〈M i
ĩ
〉 =

(

Λ3Nc−Nf detm
)1/Nc

(m−1)i
ĩ

corresponding to the Nc branches of the Nc-th root. If the masses of the flavors are very
large, then the massive fields decouple leaving a low-energy SU(Nc) supersymmetric Yang–
Mills theory. The low-energy theory has confinement with a mass gap and Nc vacua.

3.3.2 The case Nf = Nc

In the case Nf = Nc the superpotential (3.3.7) obviously cannot be generated. Consequently,
we expect classical flat directions to persist in the quantum theory, although the geometry of
the classical moduli space might change. We will refer to the moduli space of the quantum
theory as the quantum moduli space.

The classical moduli space of Nf = Nc SQCD is parametrized by vevs of mesons,

M i
ĩ

= Q̃ĩQ
i

and baryons,

B =
1

Nc!
εa1...aNc εi1...iNc

Qi1
a1

· · ·QiNc
aNc

and

B̃ =
1

Nc!
εa1...aNc

εĩ1...̃iNc Q̃a1

ĩ1
· · · Q̃aNc

ĩNc

subject to the algebraic constraint

detM − B̃B = 0 (3.3.8)

The generic point of this space does not have any unbroken gauge symmetry. However, at
B = B̃ = 0 and if rank(M) ≤ Nc − 2, i.e. if at least one of the Nc eigenvalues of M is zero,
then the classical moduli space has a singular submanifold. This is immediately seen by the
fact that the function

F (M i
ĩ
, B, B̃) = detM − B̃B

has Jacobian matrix

J =

(

∂F

∂M i
ĩ

∂F

∂B

∂F

∂B̃

)

=
(

(M−1)ĩ
i detM −B̃ −B

)

(3.3.9)
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which has rank zero when B = B̃ = 0 and rank(M) ≤ Nc − 2. Physically, in the singular
points of the moduli space we have the appearance of extra massless fields.

The quantum moduli space is parametrized by the same fields but the constraint (3.3.8)
is modified to [27]

detM − B̃B = Λ2Nc (3.3.10)

Obviously the quantum moduli space does not have singular points; all the singularities of
the classical moduli space have been smoothed out by quantum effects.

The constraint (3.3.10) can be implemented with the superpotential

W = λ(detM − B̃B − Λ2Nc) (3.3.11)

where λ is a Lagrange multiplier. The form of the superpotential (3.3.11) is motivated by
requiring that if we give mass to the Nc-th flavor and then integrate it out, then we should
obtain a low-energy theory with Nf = Nc − 1 flavors and superpotential

Weff =
Λ2Nc+1

detM

which is exactly the superpotential (3.3.7) for Nf = Nc − 1.

3.3.3 The case Nf = Nc + 1

In the case Nf = Nc + 1 there are two kinds of gauge invariant objects: The mesons,

M i
ĩ

= Q̃ĩQ
i

and the baryons

Bi =
1

Nc!
εa1...aNc εij1...jNc

Qj1
a1

· · ·QjNc
aNc

and

B̃ ĩ =
1

Nc!
εa1...aNc

εĩj̃1...j̃Nc Q̃a1

j̃1
· · · Q̃aNc

j̃Nc

From these we can build the superpotential

W =
1

Λ2Nc−1
(TrBMB̃ − detM) (3.3.12)

which is invariant under the global symmetry, which, in this case, has representations and
charge assignments

SU(Nf )L SU(Nf )R U(1)B U(1)R

Q Nf 1 1 1/(Nc + 1)

Q̃ 1 Nf −1 1/(Nc + 1)

It is easy to see that if we give a mass to the (Nc + 1)-th flavor and, then, integrate it
out, we obtain the quantum moduli space with constraint (3.3.10) in the low energy theory
with Nf = Nc.
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3.3.4 The case Nf > Nc + 1

From the form of the beta function of SQCD, (3.3.3), we can immediately recognize that for
Nf > Nc + 1 there are various ranges of Nf with different dynamics. In our treatment we
will consider the case Nc + 1 < Nf < 3Nc only, since in the range Nf > 3Nc the dynamics is
trivial, in the sense that the IR theory is weakly-coupled. As we will see in the next section,
in the range Nc + 1 < Nf ≤ 3

2Nc the physics of our theory has a dual description which will
turn out to be very helpful in the search for supersymmetry breaking.

For now, we turn our attention to the range 3
2Nc < Nf < 3Nc, where SQCD is asymp-

totically free. However, the coupling does not grow to infinity at long distances but, instead,
it reaches a finite value. Our theory, therefore, reaches a fixed point of the renormalization
group. Indeed, because for the beta function of SQCD there are values of Nf and Nc such
that the one-loop beta function is negative, while the two-loop contribution is positive, there
might exist a nontrivial fixed point of the renormalization group. In [28] it was argued that
such a fixed point exists for any number flavors such that 3

2Nc < Nf < 3Nc. Therefore,
for this range of Nf , called the conformal window, the infrared theory is a nontrivial four-
dimensional superconformal field theory. The elementary quarks and gluons are not confined
but appear as interacting massless particles. Furthermore, as the number of flavors decreases,
the fixed-point coupling increases. In fact, for Nf at or below 3

2Nc the theory is very strongly
coupled at the IR fixed-point.

3.4 Seiberg duality

The idea of analyzing the same physics using two different descriptions is particularly ap-
pealing. The reason, of course, is that problems that are not easy (or even impossible) to
analyze in the one description, might turn out to be trivial in the dual description. To be
more specific consider a gauge theory with coupling constant g > 1. At this case the only
tool we have in our disposal in order to analyze the theory, namely perturbation theory, is no
longer meaningful. But imagine that the same physics could be described by another gauge
theory with gauge coupling, g′, related to g by

g′ ∼ 1

g

Then, perturbation theory in this dual description can be used to analyze the physics and
the results can be translated back to the original strongly-coupled theory. The above duality
is often called S-duality or strong-weak duality. For example, the coupling constant of QED
is the fine-structure constant which is proportional to the fundamental electric charge, e,
squared. Now, the Dirac quantization condition states that if there are monopoles in the
universe, then

eg = 2πn

where g is the fundamental magnetic charge and n is an integer. Therefore, there might
exist a theory with coupling proportional to e−2 which describes the same physics as QED.
However, this theory would be strongly-coupled and, so, not really useful, but there is always
the possibility that we can find a weakly-coupled dual to a strongly-coupled theory.
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The basic result discovered by Seiberg is that low-energy6 “electric” SQCD with Nc + 1 <
Nf < 3Nc has a dual description in terms of “magnetic variables” [28]. More specifically, the
physics of the interacting fixed point in the range Nc + 1 < Nf < 3Nc has a dual description
based on the gauge group SU(Nf − Nc) with the same number of flavors, an elementary

(singlet) magnetic mesonic field, (Mm)i
ĩ

= M i
ĩ
/Λ̂,7 and superpotential

W =
1

Λ̂
M i

ĩ
qiq̃

ĩ (3.4.1)

where the scale Λ̂ is inserted in order to guarantee that the superpotential has the correct
mass dimensions. SU(Nf − Nc) is called the magnetic gauge group and the quarks qi and

q̃ĩ are referred to as magnetic quarks in order to avoid confusion with the electric quarks
Qi and Q̃ĩ. Note that if 3

2Nc < Nf < 3Nc, then 3
2(Nf − Nc) < Nf < 3(Nf − Nc) and,

thus, the magnetic theory indeed flows to an interacting conformal fixed point. The claim
is that this fixed point is exactly the one to which the electric theory flows. However, if
Nc + 1 < Nf <

3
2Nc the magnetic theory has a positive beta function, i.e. it is IR-free. It is

exactly in the range Nc + 1 < Nf <
3
2Nc, called the free-magnetic range, that Seiberg duality

is an example of S-duality, albeit only in the IR.

PSfrag replacements

UV

IR

Electric Magnetic

Duality point

Fig. 3.1: The flow of the electric and magnetic theories to the same infrared physics

An important fact that needs to be stressed at this point is that adding tree-level masses
for the quark flavors does not spoil the duality we established. Indeed, the superpotential
(3.1.6) which gives masses to the quark flavors in the electric theory is interpreted as a term

6Note that Seiberg duality applies to the low-energy and not the UV-complete theory.
7In our treatment we will use M and Λ̂ instead of Mm.
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linear in the fundamental magnetic mesonic field in the superpotential of the magnetic theory.
Again, those two theories describe the same physics in the IR.

At the more technical level the magnetic theory has scale Λ̃ which is related to the scale
Λ of the electric theory by

Λ3Nc−Nf Λ̃3(Nf−Nc)−Nf = (−1)Nf−NcΛ̂Nf (3.4.2)

Equation (3.4.2) shows that as the electric theory becomes more strongly-coupled the mag-
netic theory becomes more weakly-coupled and vice-versa. Due to the presence of the phase
(−1)Nf−Nc equation (3.4.2) does not look dual. But if we perform another duality transfor-
mation it becomes

Λ3Nc−Nf Λ̃3(Nf−Nc)−Nf = (−1)NcΛ̂′Nf (3.4.3)

and, therefore, the requirement that equations (3.4.2) and (3.4.3) have the same form enables
us to relate Λ̂′ and Λ̂:

Λ̂′ = −Λ̂

In fact, the minus sign is important when we dualize the magnetic theory. Then, we obtain
an SU(Nc) theory with scale Λ, quarks pi and p̃ĩ and additional singlets M i

ĩ
and N ĩ

i = qiq̃
ĩ

with superpotential

W =
1

Λ̂′
N ĩ

i p̃ĩp
i +

1

Λ̂
N ĩ

iM
i
ĩ

=
1

Λ̂
N ĩ

i (−p̃ĩp
i +M i

ĩ
)

Since M and N are massive they can be integrated out by use of their equations of motion:

N ĩ
i = 0 and M i

ĩ
= p̃ĩp

i

The equation of motion for M shows that we can identify pi and p̃ĩ with the original quarks,
Qi and Q̃ĩ and since, additionally, the superpotential vanishes, we conclude that the dual of
the magnetic theory is the electric theory.

Seiberg duality says that the electric and magnetic theories, two theories with different
gauge symmetries, both describe the same IR fixed point. This is possible since gauge sym-
metries are not true symmetries but have actually to do with a redundant description of the
physics. In that sense, having two different redundant descriptions of the same physics is not
a problem. On the other, hand global symmetries are real symmetries and they have to be
the same in both the electric and the magnetic description. Indeed, the magnetic theory has
the same anomaly-free global symmetry as the electric theory with M i

ĩ
transforming as Q̃ĩQ

i

and with representations and charge assignments

SU(Nf )L SU(Nf )R U(1)B U(1)R

q Nf 1 Nc
Nf−Nc

Nc
Nf

q̃ 1 Nf − Nc
Nf−Nc

Nc
Nf

for the magnetic quarks.
In order for the magnetic dual to describe the same physics as the original electric theory

there must be a mapping of all gauge-invariant operators of the electric theory to those of the
magnetic theory. Indeed, the electric mesons M i

ĩ
= Q̃ĩQ

i become identical to the magnetic

singlets M i
ĩ

in the IR. Likewise, magnetic baryons can be written down and shown to be
related to the electric baryons.
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3.5 Metastable vacua in SQCD

As we saw in the previous section massive SQCD in the free-magnetic range, Nc + 1 < Nf <
3
2Nc, is an asymptotically free theory which flows to a nontrivial fixed point. For this range of
Nf there is also another theory which flows to exactly the same fixed point, namely the dual
magnetic theory, which is IR free and, thus, its vacuum structure is rather easy to analyze.
In fact, using this duality, Intriligator, Seiberg and Shih found that supersymmetry in SQCD
with small masses for the flavors is broken in a metastable vacuum [29].

3.5.1 A toy model

To begin with consider a theory of chiral superfields Φij, ϕ
i
c and ϕ̃ic, where i = 1, . . . , Nf and

c = 1, . . . , N with N < Nf , canonical Kähler potential and superpotential

W = hTrϕΦϕ̃− hµ2tr′ Φ (3.5.1)

The F -terms for ϕ and ϕ̃ can be set to zero by choosing Φij = 0, but the F -terms for Φ
cannot all be set to zero. To see this note that the F -terms

FΦij =
∂W

∂Φij
= hϕi

cϕ̃
jc − hµ2δij

can be written schematically in the matrix form

FΦ = h















a1

. . .

aN















− hµ2



















1
. . .

. . .
. . .

1



















where we diagonalized the matrix ϕϕ̃ which has rank N and, thus, at least Nf − N zero
eigenvalues. Now, we can choose a1 = · · · = aN = µ2 but we cannot do much with the
zero eigenvalues. Therefore, not all FΦij s can be set to zero and, thus, supersymmetry is
spontaneously broken. This is the rank-condition mechanism of supersymmetry breaking.

Without the term hµ2tr′ Φ in the superpotential the theory we described above has the
global symmetry

SU(N) × SU(Nf ) × SU(Nf ) × U(1)B × U(1)′ × U(1)R

and matter content

SU(N) SU(Nf ) SU(Nf ) U(1)B U(1)′ U(1)R

Φ 1 Nf Nf 0 −2 2

ϕ N Nf 1 1 1 0

ϕ̃ N 1 Nf −1 1 0
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The term hµ2tr′ Φ breaks the global symmetry to

SU(N) × SU(Nf ) × U(1)B × U(1)R

where the unbroken SU(Nf ) is the diagonal subgroup of the original SU(Nf )2. The minimum
of the scalar potential is

Vmin = (Nf −N)|h2µ4|
and it occurs along a classical moduli space of vacua which, up to global symmetries, is given
by

Φ =

(

0 0
0 Φ0

)

, ϕ =

(

ϕ0

0

)

and ϕ̃T =

(

ϕ̃T
0

0

)

with ϕϕ̃T = µ2 �
N , where Φ0 is an arbitrary (Nf − N) × (Nf − N) matrix and ϕ0 and ϕ̃T

0

are N ×N matrices. Up to unbroken flavor rotations the vacua of maximal unbroken global
symmetry are

Φ0 = 0 and ϕ0 = ϕ̃T
0 = µ2 �

N (3.5.2)

and by calculating the one-loop effective potential around the vacua (3.5.2) it can be shown
that they are stable, i.e. they do not develop any tachyonic directions.

So far we have considered a theory that breaks supersymmetry spontaneously. Our next
step is to gauge the SU(N) symmetry. We will be interested in the case Nf > 3N , where the
SU(N) theory is IR-free and, thus, has a scale Λm above which it is strongly coupled. Then,
the running of the gauge coupling, g, is

e−8π2/g2+iϑ =

(

E

Λm

)Nf−3N

and, indeed, g runs to zero in the IR. Note that here we take E and Λm to be complex
numbers and that is why we can have the term eiϑ multiplying e−8π2/g2

. Our theory has a
Landau pole at E = Λm and, hence, our description will be valid up to energies E ∼ Λm.

As we have already encountered before, the gauging of a global symmetry results in the
appearance of D-terms in the scalar potential, terms that arise because of the gauge fields
that are introduced with the gauging. The contribution of the D-terms to the scalar potential
is (cf. equation (1.4.12) and use equation (3.1.5))

VD = 1
2g

2
N2−1
∑

A=1

(Tr ϕ̃†TAϕ̃− TrϕTAϕ†)2 (3.5.3)

The D-term potential (3.5.3) vanishes in the vacua (3.5.2) and, so, (3.5.2) remains a minimum
of the tree-level potential

Vtree = VF + VD

where

VF =
∑

i,j

∣

∣

∣

∣

∂W

∂Φij

∣

∣

∣

∣

2
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The SU(N) gauge theory is completely Higgsed in the vacua (3.5.2). Again, the one-loop
correction to the scalar potential after the gauging brings no surprises since, even in this
case, the vacua (3.5.2) do not develop any tachyonic directions. The reason for this is that
the tree-level spectrum of the massive SU(N) vector multiplet is supersymmetric and, thus,
its contributions to the supertrace of the Coleman–Weinberg potential (2.2.1) cancel.

Although the gauging of SU(N) does not affect the nonsupersymmetric vacua it has an
important effect elsewhere in field space, namely it leads to the appearance of supersymmetric
vacua. If we give Φ a nonzero vev, then the first term in the superpotential (3.5.1) gives mass
〈hΦ〉 to the fundamental flavors ϕ and ϕ̃ and, below the energy scale 〈hΦ〉, we can integrate
out these massive flavors and take a low-energy pure SU(N) Yang–Mills theory with scale
ΛL. Matching of the running couplings at scale 〈hΦ〉 gives

e−8π2/g2+iϑ =

(

ΛL

E

)3N

=
hNf det Φ

Λ
Nf−3N
m E3N

(3.5.4)

Now, gaugino condensation results in the superpotential

Wgaugino = NΛ3
L

in the low-energy theory and, therefore, after eliminating ΛL in favor of Λm with the aid
of equation (3.5.4), we obtain the superpotential of the low-energy pure SU(N) Yang–Mills
theory:

Wlow = N
(

hNf Λ
−(Nf−3N)
m det Φ

)1/N
− hµ2tr′ Φ (3.5.5)

Extremizing the superpotential (3.5.5) leads to Nf −N supersymmetric vacua at

〈hΦ〉 = Λmε
2N/(Nf−N) �

Nf
= µ

1

ε(Nf−3N)/(Nf−N)

�
Nf

where ε = µ/Λm. Note that our analysis is reliable when |ε| � 1.

Therefore, we find that gauging the SU(N) symmetry results in the emergence of su-
persymmetric vacua without spoiling the supersymmetry breaking vacua we had found in
the case of only global symmetries.8 Therefore, supersymmetry is dynamically broken in a
metastable vacuum. Note that our result is in accordance with the conclusions of section
2.6. More specifically, the global theory has an R-symmetry which is broken spontaneously
when the zero components of she superfields acquire vevs. (In addition, the global theory
has no moduli. Hence, the global theory breaks supersymmetry.) In contrast, once we gauge
the SU(N) global symmetry the R-symmetry is anomalous under the gauged SU(N). Cor-
respondingly, there are supersymmetric vacua. However, for 〈Φ〉 near the origin, the SU(N)
gauge theory is IR-free. Consequently, the U(1)R symmetry returns as an accidental symme-
try of the infrared theory and, thus, the nonsupersymmetric vacuum near the origin is related
to the accidental R-symmetry there.

8For Λm → ∞ with µ fixed the theory breaks supersymmetry. For Λm large but finite, corresponding to
small but nonzero ε, a supersymmetric vacuum comes in from infinity.
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Finally, we have to mention that the perturbative and nonperturbative calculations we
carried out so far are completely under control and lead to the dominant contributions to the
low-energy dynamics. Corrections can be safely neglected and, thus, our result of metastable
supersymmetry breaking is robust.

3.5.2 Supersymmetric QCD

We now move on to the interesting case of massive SU(Nc) SQCD with scale Λ. This theory
has Nc supersymmetric ground states given by

〈M i
ĩ
〉 =

(

Λ3Nc−Nf detm
)1/Nc

(m−1)i
ĩ

All these supersymmetric states preserve baryon number and, correspondingly, the vevs of all
the baryonic operators vanish. The eigenvalues of the mass matrix, m, are positive numbers,
mi, i = 1, . . . , Nf . We will be interested in the free magnetic range, Nc + 1 < Nf < 3

2Nc,
with

mi � |Λ| and
mi

mj
∼ 1

Then, the expectation values 〈M i
ĩ
〉 approach the origin.

Seiberg duality dictates that, in the free magnetic range, the region around the origin can
be easily analyzed by using the dual magnetic theory, a theory which is IR-free. In the free
magnetic range the metric of the moduli space is smooth around the origin. Therefore, the
Kähler potential is regular there and can be expanded as

K =
1

β
Tr(qq† + q̃†q̃) +

1

α|Λ|2 tr′M †M

where α and β are dimensionless positive numbers of order one. The superpotential of the
magnetic theory is

Wdual =
1

Λ̂
Tr q̃Mq + tr′mM (3.5.6)

where the matching of the scales is given by equation (3.4.2). Now, if all mis are equal,
mi = m0, i = 1, . . . , Nf , then the theory we are analyzing is exactly the toy model of the
previous subsection under the dictionary

ϕ = q, ϕ̃ = q̃, Φ = M/
√
αΛ

h =
√
αΛ/Λ̂, µ2 = −m0Λ̂, Λm = Λ̃ and N = Nf −Nc

Here we have chosen β = 1 by rescaling the magnetic quarks and expressed our answers in
terms of Λ̃ and Λ̂.

In the case Nf = Nc + 1 we do not set β = 1 but, instead, we scale the magnetic quarks
to be the same as the electric baryons of subsection 3.3.3. More specifically qi → Bi and
q̃ĩ → B̃ ĩ and, then, the Kähler potential is

K =
1

β|Λ|2Nc−2
Tr(BB† + B̃†B̃) +

1

α|Λ|2 tr′M †M
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where again β is a dimensionless positive parameter and α is the same as before. The
superpotential in this case is given by equation (3.3.12) with the addition of the mass terms:

W =
1

Λ2Nc−1
(TrBMB̃ − detM) + tr′mM

For Nc > 2 the additional determinant term is irrelevant in the IR and, thus, negligible near
the origin. Hence, this theory is the same as the N = 1 version of the theory in the previous
subsection.

Therefore, borrowing all the results from the previous subsection, we conclude that for
Nf in the range Nc + 1 ≤ Nf <

3
2Nc and for suitable tree-level masses, SQCD has a moduli

space of nonsupersymmetric metastable vacua near the origin. It can actually be proved that
the dynamical supersymmetry breaking in metastable vacua persists if the quark masses are
different, although, still, well below |Λ|. Finally, it can be shown that the metastable vacua
we found can be made arbitrarily long-lived.

Qualitatively, the potential can be thought of as resembling the one shown in Fig. 3.2.
Although quantum tunneling can lead the system to the supersymmetric vacuum, the fact

PSfrag replacements

Φ

V

Fig. 3.2: Qualitative form of the potential of massive SQCD in the free magnetic range

that ε� 1 shows that the two sets of vacua are widely separated in field space and, thus, the
lifetime of the vacuum can be made arbitrarily long by making ε arbitrarily small.

3.5.3 Metastable vacua in Nf = Nc SQCD

It was conjectured in [29] that metastable vacua exist in Nf = Nc SQCD. In this subsection
we will try to check this conjecture. As we found before, Nf = Nc + 1 SQCD experiences
dynamical supersymmetry breaking in metastable vacua near the origin. Beginning with the
superpotential

W =
1

Λ2Nc−1
(TrBMB̃ − detM) + tr′mM

bringing M,m to the form

M =

(

M

MNc+1

Ñc+1

)

, m =

(

m

mÑc+1
Nc+1

)
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B, B̃ to the form

B =

(

B
BNc+1

)

, B̃ =

(

B̃

B̃Ñc+1

)

and separating the terms referring to the (Nc + 1)-th flavor, we can write

W =
1

Λ2Nc−1
(TrBMB̃ − detM) + tr′mM +

1

Λ2Nc−1
BNc+1AB̃

Ñc+1 + ηA

where traces and determinants count only up to Nc and η = mÑc+1
Nc+1 and A = MNc+1

Ñc+1
. The

F -terms for M i
ĩ

and A are

FM i
ĩ

=
1

Λ2Nc−1

(

BiB̃
ĩ −A(M−1)ĩ

i detM
)

+mĩ
i

and

FA =
1

Λ2Nc−1
(BNc+1B̃

Ñc+1 − detM) + η

and the conditions Bi = 0 and B̃ ĩ = 0 which set the other two F -terms to zero result in

FM i
ĩ

= mĩ
i −

1

Λ2Nc−1
A(M−1)ĩ

i detM

and

FA = η − 1

Λ2Nc−1
A

FM i
ĩ

can be set to zero by

〈M〉 = η2 1

ε(2Nc−1)/Nc

�
Nc

where, now, m is the mass of each of the Nc flavors and ε = η/Λ. Then, FA can be set to
zero with the choice

〈A〉 = η2δ
1

ε(2Nc−1)/Nc

where δ = m/η. Note that, as expected, if η = m, then 〈A〉 becomes equal to the diagonal
entries of 〈M〉.

Therefore, we found supersymmetric vacua for the above choices of 〈M〉 and 〈A〉. Now,
the nonsupersymmetric vacua lie in the origin of field space, 〈M〉 = 0 and 〈A〉 = 0, and they
have energy

V+ = Ncm
2 + η2 = η2(Ncδ

2 + 1)

In order to find the lifetime of the nonsupersymmetric vacua we can model the needed cal-
culation of the bounce action by a triangle potential barrier. Then, using the results of [30],
we find that the bounce action is

S ∼

[

√

Nc(∆M)2 + (∆A)2
]4

V+
=

η6

ε4(2Nc−1)/Nc

(Nc + δ2)2

Ncδ2 + 1
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or

S ∼ 1

ε2(Nc−2)/Nc

As we observe, as long as ε � 1, i.e. η � Λ, our nonsupersymmetric vacua can become
parametrically long-lived. However, this behavior is spoiled when η → Λ, i.e. as we flow
down to Nf = Nc SQCD.

To be more specific, it is very hard to reach a verdict on the existence of metastable
supersymmetry breaking in Nf = Nc massive SQCD. The rank condition breaks down at
Nf = Nc, while the corrections to the Kähler potential are not easy to control. That is
because the Kähler potential does not belong to the holomorphic information of the theory
and, thus, it is not protected by supersymmetry. Our analysis, however, seems to suggest
that metastable supersymmetry breaking occurs in this case as well.



Part II

String theory and M-theory
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CHAPTER 4

Brane configurations and N = 2 U(Nc) gauge theory
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In this chapter we will use branes, extended objects in string theory, in order to describe
four-dimensional N = 2 U(Nc) supersymmetric gauge theories. Our treatment will make
use of brane configurations in type-IIA superstring theory. It will be seen that these classical
brane configurations give rise to the corresponding classical gauge-theory dynamics. Quantum
effects in gauge theory are introduced through the lift of the classical brane configurations to
M-theory. For a general and detailed exposition of the subject the reader is referred to [31]
and references therein. I assume some familiarity of the reader with superstring theory.

4.1 Dp-branes and NS5-branes

Superstring theories not only contain one-dimensional fundamental strings, but, also, ex-
tended p-dimensional objects called p-branes. The world-volume of these objects is (p + 1)-
dimensional and they fall in two categories according to their behavior at weak string coupling,
gs:

• Solitonic or Neveu–Schwarz (NS) branes, whose tension is proportional to g−2
s

• Dirichlet or D-branes, whose tension is proportional to g−1
s

Obviously, at weak string coupling, gs → 0, the NS-branes are much heavier than the D-
branes.

67
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In a superstring theory at weak coupling branes are stable BPS-saturated objects which
couple naturally to a corresponding field in spacetime. By natural coupling we mean the
equivalent of the usual coupling, q

∫

Aµ dx
µ, of a particle (zero-dimensional object) to a

vector field. The immediate generalization is that a p-dimensional brane couples naturally
to a (p + 1)-form potential. Moreover, each (p + 1)-form potential, Ap+1, gives rise to a
(p+ 2)-form field strength,

Fp+2 = dAp+1

where d denotes the exterior derivative. But then, by the usual Hodge-star operator, we
can find the magnetic dual of Fp+2 which, in d spacetime dimensions, is a (d − p − 2)-form
which solves the Bianchi identities, and whose corresponding potential is a (d− p− 3)-form.
Therefore, the magnetic dual of a (p+1)-form potential, Ap+1, is a (d−p−3)-form potential,
Ãd−p−3. Consequently, we establish the existence of a (d − p− 4)-brane, the magnetic dual
of the p-brane we started off with, which couples naturally to Ãd−p−3. Having said all that
and knowing the massless bosonic field content of the different critical, i.e. ten-dimensional,
superstring theories, one can now see which branes appear to each superstring theory at weak
coupling (Table 4.1).

Massless bosonic fields
Branes

NS-NS sector RR sector

Type-I Gµν , Φ Cµν D1, D5, D9

Type-IIA Gµν , Φ, Bµν H(0), Cµ, Cµνρ NS5, D0, D2, D4, D6, D8
Type-IIB Gµν , Φ, Bµν C, Cµν , Cµνρσ NS5, D(−1), D1, D3, D5, D7, (D9)
Heterotic Gµν , Φ, Bµν NS5

Table 4.1: Massless bosonic fields and p-branes appearing in the five critical superstring
theories at weak coupling

Type-IIA superstring theory has a constant nonpropagating zero-form field, H (0), a vector
potential, Cµ, and a three-form potential, Cµνρ, all in the RR sector. In addition there is the
dilaton, Φ, the graviton, Gµν , and the antisymmetric field, Bµν , in the NS-NS sector. On
the other hand, type-IIB superstring theory has the same field content in the NS-NS sector,
but a zero-form, C, a two-form potential, Cµν , and a four-form potential, Cµνρσ, in the RR
sector.

The D(−1)-brane sits at a particular point in spacetime (its world-volume is zero-dimensional)
and has to be interpreted as a (Euclidean) instanton. The space-filling D9-brane indicates
that open strings can propagate freely in spacetime, while the D8-brane is a domain-wall
coupling to the magnetic dual of the nonpropagating field H (0). Note that we can introduce
a D9-brane in type-IIB superstring theory as well. The rest of the D-branes in Table 4.1 all
couple, electrically or magnetically, to the appropriate field in the RR sector. For example,
the D2-brane of type-IIA superstring theory couples electrically to Cµνρ, while the D4-brane
couples magnetically to it, since the magnetic dual of Cµνρ is a 5-form field. In general, the
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tension of a Dp-brane is given by

Tp =
1

gsl
p+1
s

where ls is the fundamental string scale. (The tension of the fundamental string is T = l−2
s .)

The tension of the Dp-brane is equal to its RR charge. An anti-Dp-brane carries the opposite
RR-charge.

The NS5-brane in Table 4.1 couples magnetically to the antisymmetric field Bµν and, thus,
can be thought of as the magnetic dual of the fundamental string of type-II and heterotic
theories. Its tension is

TNS =
1

g2
s l

6
s

The introduction of D-branes in a superstring theory has a major impact on the symme-
tries of the theory. First of all, the SO(1, 9) Lorentz group is broken by the introduction of a
Dp-brane to SO(1, p) × SO(9 − p), i.e. to the Lorentz group in the world-volume of the Dp-
brane times the (global) rotation group in the 9−p transverse directions. Secondly, half of the
supersymmetry of spacetime is broken on the brane. To see this, remember that the thirty-
two supercharges in the bulk of type-II superstring theory are arranged in Majorana–Weyl
spinors.1 In type-IIA we have a left-handed Majorana–Weyl spinor, QL, and a right-handed
one, QR, while, in type-IIB superstring theory, the two Majorana–Weyl spinors have the same
chirality. Now, open strings whose both endpoints lie on the same brane induce the reflection
of right-movers to left-movers and vice versa at the boundary of the world-sheet. Corre-
spondingly, one can see that a Dp-brane stretched in the hyperplane (x1, . . . , xp) preserves
supercharges of the form εLQL + εRQR with

εL = Γ0Γ1 · · ·ΓpεR

where Γs are the 32 × 32 Dirac matrices in ten dimensions. Therefore, the world-volume
theory of a D-brane has half the number of supercharges of the superstring theory at whose
spacetime it is introduced. Furthermore, two parallel D-branes of the same dimensionality
preserve the same supercharges. If we introduce two D-branes of different dimensionality,
then, in general, they break all the supersymmetry of spacetime. However, one can see
that they can be arranged in such a way so as to preserve one-quarter of the spacetime
supersymmetry. We will see an example of a system containing D4- and D6-branes in the
next chapter. The generalization to larger numbers of D-branes is straightforward and has
no surprises.

The low-energy world-volume theory of an infinite Dp-brane is a (p + 1)-dimensional
supersymmetric field theory with sixteen supercharges, which describes the dynamics of open

1In ten dimensions and, in general, in dimensions d such that d mod 8 = 2, we can have spinors which are
both Majorana and Weyl. (Note that this holds if we have only one time dimension.) Hence, the real dimension
of the irreducible spinor representation of the Lorentz group is 2[d/2]−1, instead of 2[d/2] if d mod 8 6= 2, where
[d/2] denotes the integer part of the division d/2. Therefore, a ten-dimensional superstring theory can have
up to N = 2 spacetime supersymmetry. Type-II superstring theories have N = 2 supersymmetry, hence the II
in their name, while the type-I and heterotic superstring theories have half of it.
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strings whose both endpoints lie on the brane. At the massless level it contains a (p + 1)-
dimensional U(1) gauge field, Aµ(x), 9 − p scalars, XI(x), which parametrize the transverse
fluctuations of the brane, and fermions required by supersymmetry. (µ = 0, . . . , p, I =
p+ 1, . . . , 9 and x is a point on the brane.) The bosonic part of the low-energy world-volume
action is2

S =
1

g2

∫

dp+1x

(

1

4
FµνF

µν +
1

l4s
∂µX

I∂µXI

)

(4.1.1)

where Fµν = ∂µAν − ∂νAµ, obtained by dimensional reduction of N = 1 U(1) gauge theory
from ten to p+ 1 dimensions. The U(1) gauge coupling, g, can be shown to be related to the
string coupling, gs, and the fundamental string length, ls, as

g = gsl
p−3
s

At higher energies the interaction with the infinite tower of open-string massive states and
that of closed strings of the bulk of spacetime has to be taken into account. However, we will
mainly be interested in the supersymmetric gauge theory on the brane, for the study of which
we have to decouple the gauge theory degrees of freedom from gravity and massive string
modes. This is achieved in the limit ls → 0 with g kept fixed. In the case p < 3, keeping g
fixed while ls → 0 means gs → 0. Then, we have a consistent theory on the Dp-brane, whose
UV behavior is that of a supersymmetric (p+ 1)-dimensional gauge theory. On the contrary,
if p > 3 then gs → ∞ if ls → 0, something that means that the description of the theory on
the Dp-brane as a supersymmetric (p + 1)-dimensional gauge theory is valid only in the IR.
Finally, if p = 3, g is independent of ls and, thus, in the ls → 0 limit we obtain a consistent
N = 4 U(1) supersymmetric gauge theory in four dimensions.

The transition to the non-Abelian case is achieved by placing N parallel Dp-branes close
to each other. The fact that D-branes are BPS-saturated objects implies that parallel Dp-
branes do not exert forces on each other. More precisely, in the case of parallel Dp-branes the
attractive gravitational (Gµν) and dilaton (Φ) forces cancel against the repulsive electromag-
netic force (Bµν). Therefore, a stack of N nearby parallel Dp-branes is a stable configuration
which, as discussed before, preserves sixteen supercharges. Now, open strings whose end-
points lie on the Dp-branes give rise to a (p + 1)-dimensional supersymmetric U(N) gauge
theory at low energies. The bosonic part of the low-energy world-volume action is

S =
1

g2

∫

dp+1x tr

(

1

4
FµνF

µν +
1

l4s
DµX

IDµXI −
1

l8s
[XI , XJ ]2

)

where Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ] and DµX
I = ∂µX

I − i[Aµ, X
I ]. The 9 − p transverse

scalars, XI , are now N × N matrices transforming in the adjoint of U(N), and so are the
N2 gauge fields. The off-diagonal elements of those matrices, (a, b) and (b, a), a, b = 1, . . . , N
with a 6= b, arise from the two orientations of a fundamental string connecting the a-th and
b-th brane. The N photons in the Cartan subalgebra of the algebra of U(N) and the diagonal
components of the matrices XI correspond to strings whose endpoints lie on the same brane.
Again, supersymmetry unambiguously determines the fermions that will appear in our theory.

2Here we write down only the bosonic part of the action, since supersymmetry unambiguously defines the
fermionic part.
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Let us driefly discuss now the symmetry- and gauge-theory-related matters for the case
of the NS5-brane. The inclusion of an NS5-brane in the spacetime of a superstring theory
results in the breaking of the SO(1, 9) Lorentz group to an SO(1, 5) × SO(4) symmetry. As
for supersymmetry, an infinite NS5-brane stretched in the hyperplane (x1, . . . , x5) preserves
supercharges of the form εLQL + εRQR with

εL = Γ0Γ1Γ2Γ3Γ4Γ5εL and εR = Γ0Γ1Γ2Γ3Γ4Γ5εR

for the type-IIA NS5-brane and

εL = Γ0Γ1Γ2Γ3Γ4Γ5εL and εR = −Γ0Γ1Γ2Γ3Γ4Γ5εR

for the type-IIB NS5-brane. As we observe the nonchiral type-IIA superstring theory gives
rise to a six-dimensional chiral theory with (2, 0) supersymmetry in the world-volume of the
NS5-brane, while from the chiral type-IIB superstring theory we obtain a six-dimensional
nonchiral theory with (1, 1) supersymmetry in the world-volume of the NS5-brane. In any
occasion, as in the case of D-branes, the world-volume theory of an NS5-brane has half the
number of supercharges of the superstring theory at whose spacetime it is introduced.

The light fields that appear in the world-volume of a single type-IIA NS5-brane, namely
a self-dual field, Bµν , five scalars and the corresponding fermions required by supersymme-
try, belong to a tensor multiplet of (2, 0) supersymmetry. Four of the five scalars describe
fluctuations of the type-IIA NS5-brane in the transverse directions, while the fifth lives on a
circle of radius ls, thus giving a hint for a hidden extra dimension. On the other hand, the
world-volume of a single type-IIB NS5-brane has a six-dimensional gauge field, four scalars,
describing fluctuations of the type-IIB NS5-brane in the transverse directions, and the corre-
sponding fermions. The gauge coupling, g, in this case is given by

g2 = l2s

Finally let us describe what happens when we place N NS5-branes on top of each other.
(This configuration is stable since NS5-branes are BPS-saturated objects.) If we have type-
IIB NS5-branes, the low-energy theory is a six-dimensional (1, 1) supersymmetric U(N) gauge
theory, arising from the ground states of D1-branes (D-strings) stretching between the type-
IIB NS5-branes. In the case of type-IIA NS5-branes the low-energy theory is a nontrivial
six-dimensional field theory with (2, 0) supersymmetry, arising by D2-branes (membranes)
stretching between the type-IIA NS5-branes. (For details see [31].)

4.2 M-theory interpretation

The five different ten-dimensional superstring theories can be thought of as asymptotic ex-
pansions around different vacua of a single quantum theory [32]. This theory is known as
M-theory and it is eleven-dimensional. Its low-energy limit is eleven-dimensional supergrav-
ity [33] and its only parameter is the Planck length, lP . The physics is weakly coupled and
well approximated by semiclassical supergravity for length scales much larger then lP , and
strongly coupled at scales smaller than lP .
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The spectrum of M-theory, besides the graviton GMN , M,N = 0, . . . , 10, includes a three-
form potential, A3. The theory possesses a membrane and a five-brane,3 commonly referred
to as M2- and M5-brane respectively. An Mp-brane, p = 2 or 5, has tension

Tp =
1

lp+1
P

and, when it is stretched in (1 . . . p), preserves supercharges εQ with4

Γ0Γ1 · · ·Γpε = ε

where Γs are the 32 × 32 Dirac matrices in eleven dimensions. Therefore, the number of
supercharges preserved by the Mp-brane is sixteen.

The ten-dimensional type-IIA vacuum can be thought of as a compactification of M-
theory on R

1,9 ×S1, where S1 is the circular direction (10) with radius R10. The parameters
of type-IIA superstring theory (ls, gs) are then related to those of M-theory (R10, lP ) by

R10

l3P
=

1

l2s
and R10 = gsls

Thus, the strong coupling limit of type-IIA theory, gs = R10/ls → ∞, is described by the
eleven-dimensional Minkowski vacuum of M-theory.

Type-IIA branes have a natural interpretation in M-theory:

• A fundamental type-IIA string stretched, say, along (1), can be thought of as an M2-
brane wrapped around (10) and (1). It is charged under the gauge field Bµ1 = A10µ1.

• A D-particle corresponds to a Kaluza–Klein mode of the graviton carrying momentum
R−1

10 along the compact direction and electric charge under Gµ,10.

• A D2-brane corresponds to an M2-brane unwrapped around (10). It is charged under
Aλµν .

• A D4-brane corresponds to an M5-brane wrapped around (10). It is charged under
Ã10,µ1,...,µ5 .

• An NS5-brane corresponds to an M5-brane and is thus charged under Ãµ1,...,µ6 .

• A D6-brane is a Kaluza–Klein monopole magnetically charged under the gauge field
Aµ = Gµ10.

• A D8-brane can is conjectured to correspond to an eight-dimensional M-theory brane.

3Since we are in eleven dimensions the magnetic dual of a 2-brane is a 5-brane.
4In eleven dimensions there are only Dirac and Majorana spinors. Majorana spinors carry an irreducible

spinor representation of the Lorentz group of real dimension thirty-two. As a result, we can arrange the
thirty-two supercharges of spacetime in one Majorana spinor and, hence, M-theory has N = 1 spacetime
supersymmetry.
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Ten-dimensional type-IIB superstring theory has a complex coupling

τ = a +
i

gs

where a is the vev of the massless RR scalar, C. The ten-dimensional type-IIB vacuum
corresponds to M-theory compactified on a two-torus of complex structure τ and vanishing
area. The theory appears to be nine-dimensional but, in fact, as the area of the torus goes
to zero the wrapping modes of the M2-brane become light and give rise to a noncompact
direction, xB. If a = 0 the M-theory torus is rectangular with sides R9 and R10. Then, the
mapping of the M-theory parameters (R9, R10, lP ) to those of type-IIB theory (RB , gs, ls) is

R10

l3P
=

1

l2s
,
R9

l3P
=

1

gsl2s
and

R9R10

l3P
=

1

RB

Type-IIB branes have a natural interpretation in M-theory:

• A fundamental type-IIB string corresponds to an M2-brane wrapped around (10).

• A D-string wrapped around xB corresponds to a Kaluza–Klein mode of the eleven-
dimensional supergraviton carrying momentum in (10). An unwrapped (around xB)
D-string arises by an M2-brane wrapped around (9).

• A D3-brane wrapped around xB corresponds to an M2-brane. An uwrapped D3-brane
arises by an M5-brane wrapped around (9,10).

• A D5-brane wrapped around xB arises by an M5-brane wrapped around (10). An
unwrapped D5-brane arises by a Kaluza–Klein monopole charged under the gauge field
Gµ,10 and wrapped around (9).

• An NS5-brane wrapped around xB arises by an M5-brane wrapped around (9). An un-
wrapped NS5-brane corresponds to a Kaluza–Klein monopole charged under the gauge
field Gµ,9 and wrapped around (10).

• A D7-brane wrapped around xB arises by a Kaluza–Klein monopole charged under
the gauge field Gµ,10. An unwrapped D7-brane is related to the conjectured eight-
dimensional M-theory brane.

4.3 N = 2 U(Nc) supersymmetric gauge theory

As we saw in section 4.1 D-branes are defined with the property that open strings can end on
them. However, it can be shown using dualities that this is not the only possibility; in fact
branes can end on branes. This is a very interesting result and it opens new ways for realistic
model-building. As an example consider the setup of Fig. 4.1: A type-IIA superstring theory
configuration of two parallel NS5-branes a distance L6 apart in the direction (6) stretched in
the directions (12345) and at the same point in the directions (789), and Nc nearby parallel
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Fig. 4.1: Four-dimensional N = 2 U(Nc) supersymmetric gauge theory without flavors

D4-branes stretched in the directions (1236), with both sides ending on the NS5-branes in
the direction (6).

This configuration has global symmetry SO(1, 3) × SO(3) × SO(2), where the SO(1, 3)
acts on (0123), the SO(3) on (789) and the the SO(2) on (45). Furthermore, the preserved
supercharges are of the form εLQL + εRQR subject to the conditions

εL = Γ0Γ1Γ2Γ3Γ4Γ5εL and εR = Γ0Γ1Γ2Γ3Γ4Γ5εR (4.3.1)

from the NS5-branes and
εL = Γ0Γ1Γ2Γ3Γ6εR (4.3.2)

from the D4-branes. Conditions (4.3.1) cut in half the number of preserved supercharges
and condition (4.3.2), which is independent of conditions (4.3.1), further reduces the number
of conserved supercharges in half. Therefore, the configuration of Fig. 4.1 preserves one-
quarter of the spacetime supersymmetry, i.e. eight supercharges. In four dimensions this
corresponds to N = 2 supersymmetry. However, we are not there yet, for we did not establish
the existence of an R-symmetry, the ubiquitous automorphism of supersymmetry algebras
(remember the discussion in section 1.6). In fact, the breaking of the SO(1, 9) Lorentz group
provides us with the global symmetry SO(3) × SO(2) which can be immediately identified
with the SU(2)R × U(1)R = U(2)R symmetry of N = 2 supersymmetry.

In general, for an observer on a Dp-brane, modes that live in the bulk of spacetime and
modes that live on the higher-dimensional branes are nondynamical background degrees of
freedom in the low-energy theory (at least in infinite volume). They are frozen at their
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classical values by infinite volume factors, as it can be seen by the example of a U(N) gauge
field living on a D(p+4)-brane on which a Dp-brane is connected; its coupling on the (p+1)-
dimensional world-volume of the Dp-brane, gp+1, is related to its coupling in the p + 5-
dimensional world-volume of the D(p + 4)-brane, gp+5, by

1

g2
p+1

=
Vp+1,...,p+4

g2
p+5

where Vp+1,...,p+4 is the world-volume of the D(p + 4)-brane transverse to that of the Dp-
brane. Hence, from the point of view of the Dp-brane, the U(N) gauge symmetry of the
D(p+ 4)-brane is a global symmetry. Of course, modes of strings stretched between the Dp-
and D(p + 4)-brane have to be included in the discussion of the low-energy theory on the
Dp-brane.

Now, fundamental strings of type-IIA theory do not end on NS5-branes and, thus, the
modes we encounter in the low-energy theory of the configuration of Fig. 4.1 are those of
stretched strings ending on the Nc nearby D4-branes. Since the D4-branes are finite in (6),
those modes are dynamical in four dimensions only.5 Therefore, the configuration of Fig.
4.1 gives, at low-energy, a four-dimensional N = 2 U(Nc) supersymmetric gauge theory in
the four dimensions (0123). The gauge coupling of the five-dimensional gauge theory on the
D4-branes is

g2
D4 = gsls

and, if we use Kaluza–Klein reduction in order to single out direction (6), we find that the
gauge coupling of the four-dimensional N = 2 U(Nc) supersymmetric gauge theory is

1

g2
=

L6

gsls

So far in our discussion we uncovered only vector supermultiplets of N = 2 supersymmetry
in four dimensions. However, it is often the case that we want to obtain a low-energy theory
which contains hypermultiplets as well. If we want them to transform in the fundamental
representation of the gauge group, then the relevant configuration is shown in Fig. 4.2.

The addition is Nf semi-infinite D4-branes to the left of the leftmost NS5-brane. Super-
symmetry is not affected by the introduction of this new set of branes. Open strings with one
end on the Nc D4- and the other on the Nf D4-branes describe hypermultiplets transforming
in the Nc of U(Nc). The position of each of the Nf D4-branes in (45), labeled by the complex
number mi, i = 1, . . . , Nf , can be thought of as mass for the corresponding hypermultiplet.

Note here that the configuration of Fig. 4.2 is not enough to describe the complete dy-
namics of the low-energy N = 2 gauge theory. More precisely, the configuration of Fig. 4.2
cannot describe the Higgs branch of the moduli space of the low-energy N = 2 gauge theory.
In order to obtain a full description of the moduli space one needs a set of Nf semi-infinite
D4-branes, that is a set of D4-branes in (1236), each ending on the right to the leftmost
NS5-brane and on the left to a different D6-brane stretched in (123789). We will see such a
configuration in the next chapter.

5Note that there is also an infinite tower of modes which, however, we do not take into account in our
analysis of the low-energy theory.
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Fig. 4.2: Four-dimensional N = 2 U(Nc) supersymmetric gauge theory with Nf flavors

4.4 Quantum effects (pure N = 2)

The brane configuration depicted in Fig. 4.1 gives rise to the classical N = 2 gauge-theory
dynamics. In general, loop (quantum) effects are incorporated by lifting the classical brane
configurations to M-theory, in which case we interpret the superstring-theory branes as M-
theory branes. For finite gs the type-IIA superstring theory becomes eleven-dimensional at
small distances. The eleventh dimension is circular and its radius is R10 = gsls. In the case
of Fig. 4.1, D4-branes stretched between NS5-branes are interpreted as a single M5-brane
with a curved world-volume [34]. Since all type-IIA branes are stretched in (123) and sit at a
single point in (789), the world-volume of the M5-brane is R

1,3×Σ, with Σ a two-dimensional
surface embedded in the four-dimensional space Q = R

3 × S1, where (456) span R
3 and (10)

S1. Evidently, our goal is to find the exact shape of Σ.

If we parametrize Q with the complex coordinates

s = x6 + ix10 and v = x4 + ix5

then, in the classical type-IIA limit, the D4-branes correspond to constant v, while the NS5-
branes to constant s. Therefore, placing two NS5-branes at s1, s2 and Nc D4-branes at
v1, . . . , vNc results in a classical complex curve, Σcl, described by

(s− s1)(s− s2)

Nc
∏

a=1

(v − va) = 0, Res1 ≤ Res ≤ Res2



4.4 Quantum effects (pure N = 2) 77

Σcl is a singular surface with different components which meet at the singular points s = si,
i = 1, 2, and v = va, a = 1, . . . , Nc.

To determine the shape of the smooth complex curve Σ we can consider its large-v asymp-
totics. At this point it is important to recognize that, in the quantum theory, the end of a
brane ending on another brane looks like a charged object in the world-volume theory of
the latter. Consider for example a fundamental string ending on a Dp-brane. In the world-
volume of the Dp-brane the endpoint of the string provides a point-like source for a Dp-brane
world-volume gauge field with Coulomb potential

A0 =
Q

rp−2

where Q is the charge provided by the endpoint of the string in the world-volume of the
Dp-brane and r the distance from the endpoint on the Dp-brane,

r =
√

(x1)2 + · · · + (xp)2

In that case, minimizing the action of the Dp-brane world-volume theory6 would require a
scalar, say Xp+1, to satisfy the p-dimensional equation

(

∂2

∂(x1)2
+ · · · +

∂2

∂(xp)2

)

Xp+1 = Qδ(r)

in the large-v limit. For p 6= 2 the last equation is satisfied if

Xp+1 =
Ql2s
rp−2

(4.4.1)

and, therefore, the string bends the Dp-brane: Its position at large v becomes r-dependent,
Xp+1 = Xp+1(r), approaching the classical value Xp+1 = 0 at large r (for p > 2). Likewise,
in the quantum theory a brane is bent according to equation (4.4.1) when another brane
ends on it, where p is now the codimension of the intersection of the first brane and r the
p-dimensional distance from the end of the second brane in the world-volume of the first.

In our case p = 2 (five dimensions from the NS5-brane minus three dimensions from the
intersection with the D4-brane in (123)) and the Laplace equation we obtain in the large-v
limit is the two-dimensional one. Its solution is not of the form of equation (4.4.1), but of
the form

X6 = lsgs

qL
∑

i=1

ln |v − ai| − lsgs

qR
∑

i=1

ln |v − bi| (4.4.2)

which describes qL D4-branes ending on the NS5-brane from the left at the points v =
a1, . . . , aqL

and qR D4-branes ending on the NS5-brane from the right at v = b1, . . . , bqR
.

However, from the point of view of the four-dimensional N = 2 supersymmetry, X 6 is the
real part of a complex scalar field which belongs to a vector multiplet. The imaginary part

6This is equivalent to preserving the original supersymmetry in the world-volume theory with the added
gauge field.



78 4. Brane configurations and N = 2 U(Nc) gauge theory

of that complex scalar field is a real scalar field propagating on the NS5-brane. But this can
only be X10 and, thus, equation (4.4.2) must be generalized to the holomorphic equation

s = R10

qL
∑

i=1

ln(v − ai) −R10

qR
∑

i=1

ln(v − bi) (4.4.3)

with the real part being equation (4.4.2) and the imaginary part indicating that x10 jumps
by ±2πR10 when we circle ai or bi in the complex v-plane. Defining

t = e−s/R10

we avoid the multi-valuedness induced to s by the compact dimension x10 and we can write
equation (4.4.3) as

t =

∏qR
i=1 ln(v − bi)

∏qL
i=1 ln(v − ai)

Using the variables t and v we are now in position to determine the shape of Σ. Su-
persymmetry requires Σ to be a holomorphic curve in the two-complex-dimensional space Q
labeled by t and v. Therefore, we need one condition on t and v in order to define it,

F (t, v) = 0

for some function F . Now, viewing F as a function of t for large v we have to see two
branches,

t1 = vNc and t2 = v−Nc

corresponding to the two NS5-branes. Therefore, Σ should be described by setting to zero a
polynomial of second degree in t,

A(v)t2 +B(v)t + C(v) = 0 (4.4.4)

where A, B and C are polynomials of degree Nc in v. A root of A(v) means that t → ∞,
something that happens only when x6 → −∞. This indicates that roots of A(v) correspond
to locations of semi-infinite D4-branes to the left of the leftmost NS5-brane in Fig. 4.1. Such
a brane does not exist in the classical configuration of Fig. 4.1 and, thus, A(v) should have no
roots in the first place, i.e. it should be a constant. Furthermore, a root of C(v) means that
t→ 0 or, equivalently, x6 → ∞, and this indicates that the root corresponds to the location of
a semi-infinite D4-brane to the right of the rightmost NS5-brane. But such a brane again does
not exist and, hence, C(v) should be a constant as well. Since v and t1/Nc scale like energy, we
can, consistently with dimensional analysis, choose A(v) = 1 and C(v) = Λ2Nc

N=2, where ΛN=2

is the dynamically generated scale of the four-dimensional N = 2 SU(Nc) supersymmetric
gauge theory. Then, equation (4.4.4) becomes

t2 +B(v)t+ Λ2Nc
N=2 = 0

Now, once the polynomial

B(v) = λ(v − v0) · · · (v − vNc−1), λ 6= 0
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is expanded, it contains the term −λvNc−1(v0 + · · · + vNc−1) which can be canceled by an
appropriate shift of v:

v → v +
v0 + · · · + vNc−1

Nc

If in addition we absorb λ in a rescaling of v we obtain

B(v) = vNc + u2v
Nc−2 + u3v

Nc−3 + · · · + uNc

where u2, . . . , uNc are constants parameterizing the polynomial B.
At this point we have found the exact shape of Σ. It depends on Nc−1 complex numbers,

the constants u2, . . . , uNc . Interestingly, we have Nc − 1 moduli, something that is due to the
fact that the U(1) factor of U(Nc) has a vanishing coupling and, thus, its gauge field appears
frozen at its classical value. Consequently, once the brane configuration of Fig. 4.1 is lifted
to M-theory, the resulting low-energy quantum theory is a four-dimensional N = 2 SU(Nc)
supersymmetric gauge theory.

Let us summarize what we have done so far. First of all we established in the previous
section the existence of a one-to-one correspondence between configurations of D4-branes
stretched between NS5-branes and vacua of classical four-dimensional N = 2 U(Nc) super-
symmetric gauge theory. Then, in this section, we established a one-to-one correspondence
between vacua of the quantum four-dimensional N = 2 SU(Nc) supersymmetric gauge the-
ory and supersymmetric configurations of an M5-brane with world-volume R

1,3 × Σ, with Σ
described above. The classical limit of the quantum theory corresponds to x10 → 0, i.e. to
the limit where the extra dimension of M-theory vanishes.
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In the previous chapter we presented brane configurations that preserve eight supercharges
and, thus, describe N = 2 supersymmetric gauge theories in four dimensions. In this chapter
we will further break supersymmetry. More specifically, we will consider brane configurations
in type-IIA superstring theory that preserve four supercharges. These configurations describe
classical N = 1 supersymmetric gauge theory in four dimensions. Next, the lift to M-theory
will be performed in order to obtain the full quantum N = 1 supersymmetric gauge theory.
Again the reader is referred to [31] for a general and detailed exposition of the subject.

5.1 Classical N = 1 SQCD

In order to describe N = 1 U(Nc) supersymmetric gauge theory in four dimensions we consider
the type-IIA configuration of Fig. 5.1: An NS5-brane stretched in (12345), a rotated NS5-
brane, denoted NS5′, stretched in (12389), Nc D4-branes stretched in (123) and of length L6

in (6) (they lie between NS5 and NS5′) and Nf D4-branes stretched in (123) to the left of
the NS5-brane and each ending in (6) on a different D6-brane stretched in (123789).

The Nc D4-branes preserve supercharges of the form εLQL + εRQR with

εL = Γ0Γ1Γ2Γ3Γ6εR

81
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and so do the Nf D4-branes. The NS5- and NS5′-brane preserve supercharges of the form
εLQL + εRQR with

εL = Γ0Γ1Γ2Γ3Γ4Γ5εL and εR = Γ0Γ1Γ2Γ3Γ4Γ5εR

and
εL = Γ0Γ1Γ2Γ3Γ8Γ9εL and εR = Γ0Γ1Γ2Γ3Γ8Γ9εR

respectively. Finally, the D6-branes preserve supercharges of the same form but with

εL = Γ0Γ1Γ2Γ3Γ7Γ8Γ9εR

Hence, we have four independent conditions, each of which cuts in half the number of pre-

...
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Fig. 5.1: Four-dimensional N = 1 U(Nc) supersymmetric gauge theory with Nf massless
flavors

served supercharges. Therefore, the configuration of Fig. 5.1 preserves four supercharges
(one-eighth of the thirty-two supercharges of type-IIA theory) corresponding to N = 1 su-
persymmetry in four dimensions.1 Note that if 0 < Nf < Nc, then we can fully describe the
dynamics of the low-energy gauge theory by attaching Nf semi-infinite D4-branes to the left
of the leftmost NS5-brane. However, the extra directions of the moduli space we found in
subsection 3.2.2 in the case Nf > Nc can be described only if we add the D6-branes.

1We should mention here the s-rule of brane dynamics [35]: A configuration in which an NS5-brane is
connected to a D6-brane by more than one D4-branes is not supersymmetric.
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There is another configuration of type-IIA branes which is equivalent to the configuration
of Fig. 5.1 and is related to it by a series of Hanany–Witten transitions [35]. If we move a
D6-brane to the right in Fig. 5.1, there will be a value of x6 where it will coincide with the
NS5-brane, for their orientation is such that they cannot avoid each other. As they approach,
the D4-brane that connects them becomes very short in (6) and, in fact, disappears when
they cross.

Therefore, when the D6-brane is in the right of the NS5-brane there is no D4-brane
connecting them. Conversely, if the D6- and NS5-brane that approach each other are not
connected by a D4-brane, then one is created once they cross and switch positions. The
phenomenon that takes place once a D6- and an NS5-brane switch positions in the manner
described above is called a Hanany–Witten transition. The resulting configuration is shown
in Fig. 5.2.
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Fig. 5.2: Four-dimensional N = 1 U(Nc) supersymmetric gauge theory with Nf massless
flavors, obtained by the configuration of Fig. 5.1 after Nf Hanany–Witten transitions

These configurations describe the dynamics of classical N = 1 U(Nc) supersymmetric
gauge theory in four dimensions. In the quantum theory the Abelian factor of U(Nc) has
vanishing coupling and decouples, leaving us exactly with the N = 1 SQCD theory described
in section 3.1 (without mass terms for the squarks).

The color D4- and the D6-branes of Fig. 5.1 sit at the same point in (45) and so do the
D6-branes and the NS5′-brane in Fig. 5.2. Masses for the squarks are then introduced by
relative displacements of the D6- and D4-branes (Fig. 5.1) or, equivalently, D6-branes and
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NS5′-brane (Fig. 5.2) in (45). The resulting Nf ×Nf mass matrix m satisfies the constraint

[m,m†] = 0

and, hence, m and m† can be diagolized simultaneously. The locations of the D6-branes in
the v-plane (remember v = x4 + ix5) are the eigenvalues of m.

5.2 Quantum N = 1 SQCD

We will start the treatment of quantum effects by considering pure N = 1 U(Nc) super-
symmetric gauge theory, i.e. by lifting to M-theory the configuration of Fig. 5.2 (without the
D6-branes) at nonzero gs [36], [37]. As in the case of N = 2 supersymmetry the interpretation
is that of a single M5-brane whose world-volume is R

1,3 × Σ. However, Σ is now a complex
curve embedded in the three-complex-dimensional space R

5 × S1 parametrized by

v = x4 + ix5, w = x8 + ix9 and s = x6 + ix10

The extra complex dimension compared to the N = 2 case arises because one of the NS5-
branes is now rotated.

The shape of Σ can be determined by studying the asymptotics of v and w. Defining

t = e−s/R10

as in the N = 2 case, we know that as we approach the region of the NS5-brane, i.e. as
v → ∞ and w → 0 on Σ, it is t = vNc . On the other hand, as we approach the region of
the NS5′-brane, i.e. as v → 0 and w → ∞ on Σ, it is t = w−Nc . More generally, t should be
a function of t without poles or zeros except at v = 0, which is w = ∞, and v = ∞. The
unique solution to all the constraints is

vNc = t, wNc = ζNct−1 and vw = ζ (5.2.1)

where ζ is an undetermined constant. Of course, this is a redundant description of Σ. Now, if
we start with the configuration of Fig. 4.1 and rotate the rightmost NS5-brane appropriately,
then we end up with the configuration of Fig. 5.2 without the D6-branes. Therefore, the
shape of Σ in the N = 1 case can be obtained by a flow from the N = 2 case. With an
explicit calculation we find again equations (5.2.1) with ζ = NcΛ

3, where Λ is the scale of
pure four-dimensional N = 1 U(Nc) supersymmetric gauge theory. Again, the U(1) factor of
U(Nc) decouples and, hence, we obtain quantum pure N = 1 SQCD.

In the case where flavors are included the results are rather different [36]. More specifically,
the inclusion of 0 < Nf < Nc massless flavors, described adequately by the addition of Nf

semi-infinite D4-branes to the left of the NS5-brane, leads to a singular complex curve Σ,
infinitely elongated in (6). Therefore, the corresponding brane configuration does not describe
a four-dimensional field theory. This is consistent with the field theory analysis of subsection
3.3.1, where we found that the dynamically generated superpotential (3.3.7) results in a
quantum theory without a vacuum. However, masses for the quarks lift the singularity of
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Σ and, in accordance with the purely field-theoretic analysis of subsection 3.3.1, lead to the
description of a well-behaving field theory. More specifically, if the i-th quark flavor has mass
mi, i = 1, . . . , Nf , then Σ is described by

vNc = t

Nf
∏

i=1

(

1 − v

mi

)

and vw = ζ

where

ζNc = Λ3Nc−Nf

Nf
∏

i=1

mi

The inclusion of Nf ≥ Nc massless flavors can be studied by lifting to M-theory the
configuration of Fig. 5.2. In this case the corresponding field theory has a quantum moduli
space of vacua parametrized by vevs of mesons and baryons (see section 3.3). In the brane
picture the new ingredient [38] is that the presence of the D6-branes results in a complex
curve Σ which is embedded not in R

5×S1 but in TN×R
2, where TN is the Taub-NUT space

with asymptotic radius R10 and charge Nf , parametrized by (r, x10) = (x4, x5, x6, x10) with
metric

ds2 = V dr2 + V −1(dx10 + ω · dr)2

where

V = 1 +
NfR10

r
and ∇ × ω = ∇V

and R
2 is parametrized by x8 and x9. The complex curve describing the baryonic branch of

the quantum moduli space in this case splits into two components,

ΣL : t = vNc−Nf and w = 0

and

ΣR : t = Λ3Nc−Nfw−Nc and v = 0

The addition of masses in the last case is postponed until section 5.4. There, we will discuss
the possibility of using brane configurations to describe massive SQCD in the free magnetic
range, the theory at which we found metastable nonsupersymmetric vacua in section 3.5.
The piece that is missing, however, is the realization of Seiberg duality in the brane picture,
something to which we now turn.

5.3 Seiberg duality in the brane picture

The magnetic brane setup describing four-dimensional N = 1 U(N) supersymmetric gauge
theory with Nf massless flavors is shown in Fig. 5.3.

As in the case of the electric theory, the gauge bosons come from strings stretched between
the color D4-branes. Likewise, the Nf flavors of magnetic quarks, qi and q̃ĩ, i, ĩ = 1, . . . , Nf ,
arise from strings connecting color D4-branes and flavor D4-branes. However, in this case
there are additional modes, namely the magnetic mesons, denoted (Mm)i

ĩ
, coming from strings
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Fig. 5.3: The magnetic description of four-dimensional N = 1 U(N) supersymmetric gauge
theory with Nf massless flavors

stretched between flavor branes. These are singlets under the gauge group and we can see
that the standard coupling of three open strings gives rise to the superpotential (3.4.1),

W = (Mm)i
ĩ
qiq̃

ĩ =
1

Λ̂
M i

ĩ
qiq̃

ĩ

which couples magnetic mesons and magnetic quarks. Therefore, this is exactly the magnetic
theory discussed in section 3.4.

Since we found the relevant description of the magnetic theory in terms of branes, it
only remains to connect it to the electric description. In other words, in order to uncover
Seiberg duality we have to connect the electric description of four-dimensional N = 1 U(Nc)
supersymmetric gauge theory with Nf massless flavors to the magnetic description of four-
dimensional N = 1 U(Nf − Nc) supersymmetric gauge theory with Nf massless flavors.
Note, here, that although Seiberg duality in field theory involves the special unitary gauge
groups SU(Nc) and SU(Nf −Nc), the generalization to the unitary gauge groups U(Nc) and
U(Nf −Nc) is straightforward and achieved by gauging the baryon number symmetry, U(1)B .
The required procedure is described in Fig. 5.4 and, obviously, it is valid only when Nf ≥ Nc.

Starting from the configuration of Fig. 5.1 we connect the Nc color D4-branes to Nc of
the Nf flavor branes. The result is shown in Fig. 5.4(a) and, in order to reach the magnetic
description, we have to pass the NS5-brane to the right of the NS5′-brane avoiding their
meeting in space. This can be done by turning on a Fayet–Iliopoulos term in the gauge
theory, something we can do since the gauge group U(Nc) has an Abelian factor. In the
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Fig. 5.4: Continuous connection of electric and magnetic brane configurations

brane picture a Fayet–Iliopoulos term corresponds to moving the NS5-brane and its attached
D4-branes in (7). Then, we reach the configuration of Fig. 5.4(b), in which we can be
immediately exchange the NS5- and NS5′ branes in (6), thus arriving in the configuration of
Fig. 5.4(c). Finally, turning off the Fayet–iliopoulos term we obtain the configuration of Fig.
5.4(d) which contains Nf −Nc branes connecting the NS5- to the NS5′ brane. This is exactly
the configuration of Fig. 5.3 with N = Nf −Nc.

The above procedure shows that the classical moduli space of vacua of the electric theory
with gauge group U(Nc) and Nf massless quark flavors and the classical moduli space of
vacua of the magnetic theory with gauge group U(Nf −Nc) and the same number of quark
flavors can be thought of as providing different descriptions of a single classical moduli space
of supersymmetric brane configurations.

However, we have to underline the fact that a Fayet–Iliopoulos term causes the complete
breaking of the gauge groups. Therefore, the duality actually appears at the classical level,
since, at that level, we do not have strong infrared gauge dynamics. As the gauge symmetry is
restored, i.e. as we turn off the Fayet–Iliopoulos term, we find a discrepancy. More specifically,
in the electric theory nothing special happens since, although the restoration of the gauge
symmetry results in additional massless degrees of freedom, the moduli space does not develop
new branches we can access. On the contrary, in the magnetic theory, turning off the Fayet–
Iliopoulos term causes an enlargement of the moduli space. Consequently, we cannot really
rely on the classical “Seiberg duality” we have found. In order to gain a deeper understanding
we have to study the quantum dynamics. In fact, quantum mechanically the jump in the
dimension of the magnetic moduli space disappears and, hence, the quantum moduli space of
electric SQCD with gauge group SU(Nc) and Nf quark flavors and that of magnetic SQCD
with gauge group SU(Nf −Nc) and the same number of quark flavors can be thought of as
providing different descriptions of a single quantum moduli space.
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5.4 Metastable vacua in the brane picture

After the discovery of metastable supersymmetry-breaking vacua in massive SQCD, a type-
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Fig. 5.5: The nonsupersymmetric magnetic brane configuration

IIA brane configuration that reproduces the observed phenomena was found [39], [40], [41].
The supersymmetry breaking vacuum in the magnetic theory with superpotential (3.5.6) is
obtained by the brane configuration of Fig. 5.5.

The fact that the D4-branes are not parallel makes the nonsupersymmetric nature of this
configuration explicit. Furthermore, as we mentioned in the end of section 5.1, masses for
the quark flavors correspond to different positions of the D6-branes in (45). Now, the Nc

D4-branes are stretched between the NS5′-brane and the D6-branes that are closest to the
origin of (45), i.e. to those that correspond to the Nc smallest flavor masses. The rest of the
D4-branes are stretched between the NS5-brane and the furthest D6-branes. This choice is
justified if we observe that the position of the latter set of D4-branes in (45) is related to the
vevs of the magnetic quarks. Then, if the vev of a magnetic quark is given by one of the Nc

smaller masses, we encounter the situation of one D6-brane on which two D4-brane pieces
coincide. But the fact that the two D4-branes are not supersymmetric with respect to each
other results in the appearance of an open string tachyon at the intersection.

As for the electric theory, moving the flavor D4-branes of Fig. 5.1 in (45) does not break
supersymmetry if we keep them parallel (Fig. 5.6(a)). The nonsupersymmetric vacuum in
the electric description is shown in Fig. 5.6(b), which is obtained as the configuration that
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under (classical) Seiberg duality gives that of Fig. 5.5.
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Fig. 5.6: The supersymmetric (a) and nonsupersymmetric (b) electric brane configurations

At this point we have to lift the configurations we found to M-theory in order to be able
to explore the full quantum dynamics of the low-energy theory. What we have done so far
is just the classical approximation, gs → 0, and, of course, this is far from a satisfactory
treatment. More specifically, the effects of nonzero gs have to be studied, since those will
reproduce the effects of quantum mechanics in the low-energy theory.

But in an attempt for an M-theory lift we find an obstruction due to the phenomenon of
brane bending (see section 4.4) [41]. The crucial observation is that the proper way to define
a theory on the branes at gs 6= 0 is not in terms of the detailed positions of the branes but,
instead, in terms of the asymptotic behavior of the branes that stretch to infinity. These
are the boundary conditions on the system, while the branes in the interior are dynamical
and free to adjust themselves. Now, the supersymmetric brane configuration of Fig. 5.6(a)
gives a specific set of boundary conditions and, of course, any state of this theory, stable
or metastable, must have exactly this set of boundary conditions at infinity. Therefore, we
expect the M-theory lift of the configuration of Fig. 5.6(b) to have exactly the same boundary
conditions as the M-theory lift of the configuration of Fig. 5.6(a). In the opposite case the
metastable nonsupersymmetric vacuum it describes is not a state of the system where the
supersymmetric vacuum belongs.

In fact, the relevant calculations were carried out in [41] and it was found that the bound-
ary conditions do not match. Thus, the supersymmetric and nonsupersymmetric vacua do
not belong to the same theory. Actually, a very small gs causes infinite deviation from the
SQCD limit at infinity and this means that the Hilbert space of states is drastically altered.
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Therefore, we observe that the qualitative nonsupersymmetric features of SQCD, like the
metastable vacuum of section 3.5, cannot be reproduced by the brane description of this
theory.



Conclusions and outlook

The discovery of dynamical supersymmetry breaking in metastable vacua in [29] was fol-
lowed by a great deal of excitement in the high-energy-physics scientific community. The
phenomenon immediately seemed to be generic and, indeed, soon after the appearance of
[29], many models where metastable supersymmetry breaking occured were found. Further-
more, it was recently proved that perturbed Seiberg–Witten theories, that is N = 1 theories
obtained by perturbing N = 2 theories with some superpotential, contain nonsupersymmetric
metastable vacua [42]. All these results show that there is a large class of field theories which
experience metastable supersymmetry breaking for some ranges of their parameters.

Based on the abovementioned results, metastability attracted great attention in model-
building. In fact, metastability simplifies model-building since, in many examples, super-
symmetric vacua are unavoidable as can be seen by arguments based on the Witten index
(see section 2.5) and the so-called Nelson–Seiberg theorem [19]. Therefore, the only way to
break supersymmetry spontaneously is in a long-lived metastable vacuum. Then, we acquire
much more flexibility in constructing meaningful physical theories and, thus, we can hope
to find a model which incorporates metastability and, at the same time, correctly describes
our nonsupersymmetric universe. (For some recent attempts in that direction see [43] and
references therein.)

We should stress here that, for cosmological arguments, it is very important that we
found a large moduli space of nonsupersymmetric vacua in section 3.5. Indeed, as the energy
of the universe decreases, the existence of a very large configuration of nonsupersymmetric
vacua makes it much more likely that the universe will end up there, rather than in one
of the isolated Nc supersymmetric vacua further away in field space. Hence, it seems that
cosmology is not incompatible with our results so far.

Another important question which arose after the appearance of [29] pertains to the
existence of metastable nonsupersymmetric vacua in string/M-theory. In chapter 5 we saw a
particular approach failing to do so, but there is intensive research and several other directions
in search for metastability in string theory. A very alluring approach is offered by engineering
quiver gauge theories with several interesting features by studying D-branes at a simple
Calabi–Yau singularity [44], [45].

Metastable supersymmetry-breaking vacua would have a large impact on the landscape of
string theory. Actually, the landscape would be enhanced by theories with metastable vacua.
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Indeed, theories which have supersymmetric vacua would have to be taken into account, since
nothing precludes them from having nonsupersymmetric vacua as well.

Concluding, it is worth underlining again the fact that nonsupersymmetric metastable
vacua appear to be ubiquitous in supersymmetric field theories and, furthermore, once they
are utilized we gain greater flexibility in realistic model-building. The search for metastability
in string theory is widely believed to give positive results, and may even lead to new and
unexpected advances in string theory itself. Therefore, it is likely that important and beautiful
results still remain uncovered.
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