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abstract
The laws of black hole mechanics are reviewed in order to show that surfaces
orthogonal to generators of null hypersurfaces are related to the amount of en-
ergy passing through these null hypersurfaces. The energy is related to entropy
by TdS = dQ. The holographic principle is introduced as the recognition of the
proportionality of surface areas with entropy. The holographic principle is then
assumed to be a fundamental principle of nature. A realisation of the principle
is the (generalised) covariant entropy bound. Local light sheets are constructed
for the generalised covariant entropy bound. The Einstein equation can be de-
rived if a holographic scaling of entropy is assumed. The Einstein equation is
derived in two settings, a thermodynamic setting, which is a generalisation of a
derivation given by Jacobson, and a holographic principle setting.
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Chapter 1

Introduction

Quantum �eld theory knows how to treat all forces except gravity. Quantum
�eld theory is renormalisable on background metrics, but it is not renormalisable
when gravity is given �eld equations of its own. The reason for this lies in the
fact that the coupling constant is not dimensionless, and therefore it cannot
be absorbed by �eld rede�nition. Apparently gravity is not understood well
enough to be treated correctly as a quantised �eld. In order to acquire a better
understanding of gravity it is necessary to look at the regimes where the existing
theories break up. In this thesis the theory of general relativity is considered.

The theory of general relativity has as fundamental ingredient the principle
of equivalence. The principle of equivalence states that in any point in the space-
time a coordinate transformation can be found such that the gravitational �eld
is transformed away. Locally a free particle always sees a �at space-time, and as
long as gravity is a negligible force all particle interactions can be described in a
locally �at space-time. It is also possible to describe all particle interactions on
some background space-time metric if the interaction with gravity is negligible.
This is expected to break up at extremely small scales of the Planck length,
lp =

√
G~
c3 . The metric is expected to be quantised and the state of the metric

is a superposition of mutually orthogonal states.
At large scales the theory of general relativity breaks up when black holes

form. These objects are solutions to the Einstein �eld equations with a curvature
singularity. The physics of black holes is peculiar, because classically what goes
in doesn't come out, it ends on the singularity. The classic black hole is an object
which can be in only one state. The information that went in appears to be lost,
because it can't be encoded in the black hole state. However, it is possible to
derive thermodynamic laws for black holes. If the black hole can be described
by thermodynamics, then the black hole is a perfect absorber, which means that
it must radiate as a black body at some temperature. Quantum mechanically
this radiation can be understood as vacuum �uctuations, a negative energy
particle drops into the black hole, and a positive energy particle escapes, due to
conservation of momentum. Quantum �eld theory on a black hole background
indicates that black holes are unstable, they evaporate if the space-time outside
the horizon has lower temperature than the black hole itself.

At the extremely small scales near the Planck length there are quantum �eld
�uctuations of arbitrary high energy. This makes the gravitational �eld very dy-
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8 Introduction

namic and very strong locally. Gravity will then certainly a�ect the interactions
between the �uctuations at these energy scales. Intuitively, high energy �uctu-
ations will collapse to micro-black holes, which are very hot. These micro black
hole states are expected to evaporate immediately, or instantaneously. This
intuitive picture may not be entirely correct, because as mentioned above the
metric is expected to be in a superposition of states when gravity is quantised.

If the existence of black holes at small scales is assumed, then an implication
of this is that there too the entropy must scale with black hole surface area.
If a �uctuation has enough energy it must collapse into a black hole with an
event horizon, and the second law of black hole thermodynamics implies that
the entropy of this micro black hole is proportional to its horizon. If a unitary
evolution of the quantised �elds is assumed, then this means that the number
of mutually orthogonal states of the quantised �elds is less than quantum �eld
theory indicates, i.e. in quantum �eld theory the entropy scales with the volume
of a system. Not all black hole solutions to the Einstein equation have event
horizons, but in this thesis the cosmic censorship conjecture is assumed, i.e.
there are no naked singularities, they are all hidden behind an event horizon.
The formation of black holes appears to be a natural cut o� for the maximum
amount of energy present in any region of space-time.

This thesis is divided into two parts, �rst there is a part about entropy
and geometry. Space-time can be interpreted as a manifold, and the laws of
black hole mechanics, which can be derived from geometric principles and the
Einstein equation, have a thermodynamic interpretation, thus relating entropy
and geometry. The second law of black hole thermodynamics can be elevated
to a fundamental principle holding for any region of any space-time, this is the
holographic principle. It is shown how dynamic local holographic screens and
local light sheets can be constructed.

The second part uses the holographic scaling of entropy as fundamental
input in derivations of the Einstein equation. In this part the Einstein equation
is derived locally in a thermodynamic setting. The derivation presented here is a
generalisation of a procedure proposed by Jacobson [10]. The derivation is also
carried out in a holographic setting, using local light sheets. These derivations
can be performed on arbitrary manifolds. It is found that the holographic
principle is consistent with classical general relativity.

Notation
The following notation conventions are used in this thesis
• Greek indices κ, λ, ... in general run over four space-time coordinates in a
general coordinate system
• Greek indices α, β, ... in general run over four space-time inertial coordi-
nates, index zero being the time coordinate.
• Repeated indices are summed.
• Cartesian three vectors are indicated by ~v.
• All quantities are expressed in Planck units, i.e. c = ~ = G = 1. A
conversion table to cgs units can be found in [2].
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• Shorthands for the covariant derivative of a tensor Tµν... are Tµν...;λ and
DλTµν....
• Shorthands for the ordinary partial derivative of a tensor Tµν... are Tµν...,λand ∂λTµν....



10 Introduction



Part I

From black hole mechanics to

Holography

11





Chapter 2

Mechanics of black hole

space-times

The purpose of this chapter is to illuminate the four laws of black hole me-
chanics, which are interpreted as the space-time analogue of the four laws of
thermodynamics. The Einstein equation is the fundamental input for these
laws of space-time mechanics, therefore the story begins with the original input
used in the derivation of the Einstein equation. After that the zeroth law is
derived explicitly, in order to show that the surface gravity over the horizon of a
stationary black hole is constant, just as the temperature is constant throughout
a system in equilibrium. Then the First law is derived in order to show that
surface area of a black hole horizon is a measure for the energy contained in
the black hole. The second and third law will be introduced only heuristically.
Since the laws are derived for stationary axisymmetric space-times which are
asymptotically �at, the Kerr-Newman space-time will be introduced to show
how it works in a physical environment. More on these subjects can be found
in e.g. [2] or [7].

2.1 The Einstein equation
The principle of equivalence states that in an arbitrarily strong gravitational
�eld there exists in every point p a general coordinate transformation such that
the metric in this point becomes �at, i.e. the metric gµν is locally the Minkowski
metric, ηαβ , with vanishing �rst derivatives, ηαβ,γ(p) = 0. This means that in a
point x in the neighbourhood of p the metric ηαβ di�ers at most a factor (x−p)2

so strong gravitational �elds are transformed to local weak gravitational �elds.
The consequences for the local equations of motion are considerable, because in
the neighbourhood of p they reduce to ordinary linear di�erential equations. It is
much easier to solve the local ordinary di�erential equations and the equations of
motion in the strong �eld can be recovered by transforming back to the original
coordinates.

In the weak �eld limit Newton's law of gravitation holds, which can be stated
in terms of metric components and energy momentum tensor components by

∇2g00 = −8πT00 (2.1)
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14 Mechanics of black hole space-times

If the assumption is made that such an equation holds for all components of the
energy momentum tensor then one can write down the Lorentz covariant tensor
equation

Gαβ = −8πTαβ (2.2)
with Gαβ a tensor consisting of the metric and its derivatives. Upon transform-
ing this equation back to the strong �eld coordinate system this equation will
read

Gµν = −8πTµν (2.3)
The tensor Gµν is a tensor by de�nition, and because the energy momentum
tensor Tµν on the right hand side has the properties that it is symmetric and
divergence free, the left hand side must have these properties too,

Gµν = Gνµ (2.4)
Gµν;µ = 0 (2.5)

Furthermore the tensor Gµν is assumed to be scale invariant, which means
that Gµν consists of terms containing two derivatives of the metric, i.e. terms
quadratic in �rst derivatives of the metric and linear in second derivatives of
the metric. The �nal requirement imposed on Gµν is that in the weak �eld limit
it reduces to the equation (2.1), so the time time component reads in this limit
G00 ≈ ∇2g00.The only tensor which satis�es these requirements is [1]

Gµν = Rµν −
1
2
R (2.6)

where Rµν is the Ricci tensor and R its contraction, see A.3 for their de�nitions.
The Einstein equation for gravitational �elds thus reads

Rµν −
1
2
gµνR = −8πTµν (2.7)

or equivalently1,
Rµν = −8π(Tµν −

1
2
gµνT

λ
λ) (2.9)

If terms of lower order in the derivatives are allowed, then the only possible
addition to Gµν is a term proportional to the metric itself, for it is always
possible to transform to a coordinate system where the �rst derivatives of the
metric vanish, the Einstein equation with such an addition is

Rµν −
1
2
gµνR− λgµν = −8πTµν (2.10)

where λ is the cosmological constant. This term must be very small if the tensor
Gµν has to satisfy the requirement that the time time component reduces to
∇2g00 in the weak �eld limit

1Contraction of the Einstein equation (2.7) yields the identity
R = 8πTλλ (2.8)

inserting this into the Einstein equation will result in equation (2.9).
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2.2 Stationary axisymmetric space-time
In this section a stationary axisymmetric space-time 2 will be considered, because
space-times with these properties posses in�nitesimal isometries 3 which yield the
well known conserved quantities energy and angular momentum.

Consider a metric gµν associated with some stationary rotating axisymmetric
matter con�guration and de�ne coordinates

(x0, x1, x2, x3) ≡ (t, ϕ, r, θ)

The metric is stationary,
∂gµν
∂x0

= 0 (2.11)
and axisymmetric,

∂gµν
∂x1

= 0 (2.12)
so the metric hasn't got any x0 and x1 dependencies and is written

gµν = gµν(x2, x3) (2.13)
A stationary axisymmetric metric is symmetric (form invariant) under the

mapping that reverses time, t → t̃ = −t, as well as the direction of rotation 4
ϕ → ϕ̃ = −ϕ. The transformation law for a form invariant metric is, see
appendix A.4,

g̃µν(x) =
∂xρ

∂x̃µ
∂xσ

∂x̃ν
gρσ(x)

and this law yields g02 = g03 = g12 = g13 = 0, consider e.g.. the component g02,then
g̃02(x) =

∂xρ

∂x̃0

∂xσ

∂x̃2
gρσ(x)

=
∂x0

∂x̃0

∂x2

∂x̃2
g02(x) = (−1)(+1)g02(x) = −g02(x)

but the form invariance of the metric means g̃µν(x) = gµν(x), and then g02 =
g̃02 = −g02 = 0. It is concluded that the coordinate vectors ∂

∂xi with i ∈ {2, 3}are orthogonal to the coordinate vectors ∂
∂xa with a ∈ {0, 1}. The components

gij with i, j ∈ {2, 3} are a metric on a 2-dimensional Riemannian submanifold5
and can be brought in diagonal form independent of the other components by
a coordinate transformation.

2It is possible to prove for black holes that the requirement that it is stationary impliesaxisymmetry, [2].3See appendixA.4 for more on isometries and the Killing vector �elds related with them.4Consider e.g.. the case in which only time is reversed, if the object rotated clockwisebefore this reversal, then it will rotate counter clockwise after the reversal, and therefore timereversal isn't a symmetry. The same holds if only the direction of rotation is reversed.5I.e. a manifold with a metric of signature (1, 1).
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The general form of the metric gµν of a stationary axisymmetric space-time
is

ds2 = −Adt2 +B(dϕ− ωdt)2 + Cdx22
+Ddx32 (2.14)

where A, B, C, D, and ω are functions of the coordinates x2 en x3 only. These
functions are in terms of the metric components

A = −gtt +
g2
tϕ

gϕϕ
B = gϕϕ

C = g22

D = g33

ω = − gtϕ
gϕϕ

This metric has gµν,0 = 0 and gµν,1 = 0, therefore the Lie derivative 6 with
respect to the coordinate vector �elds ξ = δ µ

0
∂
∂xµ and ψ = δ µ

1
∂
∂xµ of the metric

vanishes, so these are the timelike and rotational Killing vector �eld respectively.
2.2.1 Constants of the motion
The Killing vector �elds of a metric give rise to constants of the motion, this
can be seen from the equations of motion, consider a free particle with velocity
vµ(τ), then the equation of motion is

0 = vµ;νv
ν (2.15)

= vµ,νv
ν − Γσµνvσv

ν (2.16)
= vµ,νv

ν − 1
2
gσν,µv

σvν (2.17)
thus a stationary axisymmetric metric gives rise to 2 constants of the motion,

dv0

dτ
= v0,νv

ν =
1
2
gσν,0v

σvν = 0 (2.18)
dv1

dτ
= v1,νv

ν =
1
2
gσν,1v

σvν = 0 (2.19)
The energy E = v0 = g0νv

ν associated with the timelike Killing vector �eld 7 ξ
and angular momentum J = v1 = g1νv

ν associated with the rotational Killing
vector �eld8 ϕ.

The third constant of the motion is the proper time τ of the observer, proper
time runs constantly for the observer,

− C = gµνv
µvν = Evt + Jvϕ + grrv

rvr + gθθv
θvθ (2.20)

where C = −1 for a timelike observer (all physical observers are timelike), C = 0
for a null observer (e.g.. a light ray), and C = −1 for a spacelike observer (e.g..
a tachyonic particle).

6The Lie derivative can be found in section A.1.1 for the Lie derivative.7That is gµν,0 = gµν,λξ
λ = 0.8That is because gµν,0 = gµν,λϕ

λ = 0.
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Note that local Killing vector �elds give rise to local constants of the motion,
i.e. space-time is locally Minkowski, the metric is expressed on a basis of 4
local Killing vector �elds, 1 timelike and 3 spacelike, which correspond to local
conservation of energy and momentum. Local Minkowski space-time in spherical
polar coordinates immediately shows that angular momentum is also conserved
locally.

In interactions one expects the energy and momentum to be conserved too,
but if for example 2 neutral massless point particles collide this can not be
described by a smooth vector �eld, e.g.. an elastic collision causes a kink in the
paths of the particles. The particles can be supposed to travel on geodesics as
long as they don't collide, so the energy and momentum are only conserved if
the constants of the motion of both particles are taken into account. If this all
happens on some non stationary manifold then the energy will not be conserved
when the particles move outside each others neighbourhood.
2.2.2 Locally non-rotating observers
A stationary axisymmetric metric has, in general, non zero angular momentum,
so it is impossible for an observer to be at rest, the observer is dragged along by
the metric and cannot remain static. However there is a close analogy to static
observers, locally non rotating observers.

A locally non-rotating observer is an observer that is �static� with respect
to the hypersurfaces S which have time9 t = constant, i.e. the velocity uµ of
a locally non-rotating observer obeys uµ ∝ t;µ. In other words, the locally non
rotating observers move on a world line orthogonal to a hypersurface. The events
happening on this hypersurface happen at equal time for the observer at in�nity.
These �static� observers are instantaneously at rest, but their acceleration is in
general non zero, because the timelike vector �eld is ξ is only orthogonal to
an equal time slice at in�nity. Now follow some useful properties of locally
non-rotating observers.

The angular momentum J of the locally non-rotating observer is zero. That
is because the rotational Killing vector �eld is ϕµ = δ µ

ϕ

J = gµνu
µϕν (2.21)

= uϕ ∝ t;ϕ = 0 (2.22)
The proportionality in the second line is because the locally non rotating ob-
servers are de�ned by uµ ∝ t;µ.The angular momentum J = 0 is also given by

J = gµνu
µψν = g00u

0 + g01u
1 = 0 (2.23)

and therefore
u0

u1
= −g01

g11
(2.24)

The components of the velocity are given by
uµ =

dxµ

dτ
(2.25)

9 The coordinate is called time coordinate, because static observers at in�nity move onthe Killing vector �eld ξ, which is the generator of the time translations in a stationaryaxisymmetric metric.
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where τ is a parameter. Then
u1

u0
=

dφ
dt

(2.26)
This means that the angular velocity dφ

dt of the locally non rotating observers is
dφ
dt

= −g01

g11
(2.27)

A �nal consequence is that a locally non rotating lightlike observer with
velocity uµ =

(
u0, u1, 0, 0

)µ can only exist if it has E = J = 0 and g00
g01

= g01
g11

.
This is an immediate consequence of the equations of motion (2.20), which can
only be solved if both J = 0 and E = 0, for suppose that only J = 0, then

0 = gµνu
µuν = Eu0 + Ju1 = Eu0 (2.28)

but u0 6= 0. E = 0 means
0 = E = g00u

0 + g01u
1 (2.29)

so
− g00

g01
=

u1

u0
= −g01

g11
(2.30)

2.3 Conserved quantities: Komar integrals
Killing vector �elds give rise to constants of the motion, e.g.. the energy of a
free particle in a stationary metric is conserved. It is also possible to de�ne
conserved quantities for regions of space-time using Killing vector �elds, the
quantities are charge and current. The conserved charge Qξ for a Killing vector�eld ξµ is de�ned by the Komar integral . Consider a space-time volume V on
a spacelike hypersurface Σ with boundary ∂V . Every Killing vector �eld ξµ on
this hypersurface has a Komar integral associated with it,

Qξ (V ) =
cξ

16π

∮
∂V

dSµνξν;µ (2.31)
where cξ is some constant. The Stokes theorem 10 says that this expression is
equivalent to

Qξ (V ) =
cξ
8π

∫
V

dSµξν;µ;ν (2.32)
Killing vector �elds have the property

ξµ;ρ;σ = −Rλσρµξλ (2.33)
Upon contraction this yields

ξµ;ρ;µ = −Rλρξλ (2.34)
10The form of the Stokes theorem used here is also called Gauss theorem, see also [2].



2.3 Conserved quantities: Komar integrals 19

and therefore
Qξ (V ) = − cξ

8π

∫
V

dSµRµνξν

≡
∫
V

dSµJµ (ξ) (2.35)
The Jµ de�ned here is a conserved current, because

Jµ;µ = cξ (Rµνξν);µ

= cξR
µν

;µξν + cξR
µνξν;µ

= 0 (2.36)
The �rst term in this expression is zero because the Bianchi identity for the
curvature tensor,

Rµν;µξν =
1
2
gµνR;µξν

=
1
2
R,µξ

µ = 0 (2.37)
The last equality holds because the metric can be expressed in coordinates such
that ξµ = δµξ is a coordinate vector. The metric is independent of this coordinate
gµν,λξ

λ = gµν,ξ = 0 and then R is independent of the coordinate associated with
ξµ too. The second term is zero because Rµν = Rνµ and ξµ;ν = −ξν;µ, so

Rµνξν;µ = −Rµνξν;µ = 0 (2.38)
The fact Jµ;µ = 0 can be stated alternatively as

1
√
g

∂

∂xµ
(
√
gJµ) = 0 (2.39)

The current Jµ is conserved so if Jµ vanishes at the boundary ∂V of the
domain of integration, then the charge Qξ (V ) is conserved. By way of the
Einstein equation with λ = 0, equation (2.9) this current can be stated in terms
of the energy momentum tensor,

Jµ = −cξ(Tµν −
1
2
gµνTλλ)ξν (2.40)

or for non zero cosmological constant, that is using equation (2.10)
Jµ = −cξ(Tµν −

1
2
gµνTλλ)ξν − cξ

1
8π
λgµνξν (2.41)

In particular asymptotically �at space-times satisfy the requirement that the
�elds vanish at in�nity, and then an asymptotically �at stationary axisymmetric
space-time has a Komar integral for total mass associated with ξµ and a Komar
integral for total angular momentum associated with ϕµ, where the constants
are cξ = −2 and cϕ = 1 respectively.

The di�erence between the conserved quantities de�ned using Komar in-
tegrals and the Nöther theorem lies in the fact the Nöther conserved charges
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and currents are found from a variational principle. A system which posses
a continuous local symmetry, for example invariance under in�nitesimal time
translations, has an action which is stationary under small time variations. The
charge is the energy of the system, and the conserved current is the momentum.
The Komar integrals relate the Killing vector �eld on the boundary of a system
to a charge contained in that system. Note that for a time translation Killing
vector �eld ξµ the energy momentum current is the pµ = Tµ0−gµ0Tλλ, whereasthe energy momentum current associated with the Nöther charge is pµ = Tµ0.

2.4 Kerr-Newman space-time
The Kerr-Newman metric is the stationary axisymmetric solution to the vacuum
Einstein Maxwell equations,

Gµν = −8πTµν (F ) (2.42)
Fµν;µ = 0 (2.43)

Tµν (F ) =
1

4π

(
FµρF

ρ
ν −

1
4
gµνF

ρσFρσ

)
(2.44)

Fµν = Aµ;ν −Aν;µ (2.45)
i.e. the Kerr-Newman space-time is empty except for electromagnetic �elds.

The Kerr-Newman metric in Boyer-Lindquist coordinates is [7, 2]
ds2 = −∆− a2 sin2 θ

Σ
dt2 − 2a sin2 θ

r2 + a2 −∆
Σ

dtdϕ

+

(
r2 + a2

)2 −∆a2 sin2 θ

Σ
sin2 θdϕ2 +

Σ
∆

dr2 + Σdθ2 (2.46)
where

Σ ≡ r2 + a2 cos2 θ

∆ ≡ r2 − 2Mr + a2 + e2

The Maxwell 1-form of the metric is
Aµ =

Qr
(
(dt)µ − a sin2 θ(dϕ)µ

)
− P cos θ

[
a(dt)µ −

(
r2 + a2

)
(dϕ)µ

]
Σ

Note that the metric is asymptotically �at, i.e. the limit r → ∞ yields the
Minkowski metric. The Kerr-Newman solution to the Einstein equation reduces
to the Kerr solution for e = 0, it reduces to the Reissner-Nordstrom solution for
a = 0, and to the Schwarzschild solution for a = e = 0.

The Kerr-Newman metric depends on the four parameters M , a and e2 =
Q2 + P 2. The Komar integrals can be used to show that M is the total mass11
of the space-time,

− 1
8π

∮
∂V

dSµνξν;µ = M (2.47)
11In an empty space-time the only matter present is the matter associated with the gravi-tational �eld permeating the space-time, which has the black hole as its source. So M is themass of the black hole.
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a = J
M with J the total angular momentum of the space-time,

1
16π

∮
∂V

dSµνϕν;µ = Ma = J (2.48)

and e the total electric and magnetic 12 charge, Q and P respectively, of the
space-time,

1
8π

∮
∂V

dSµνAν;µ = e (2.49)
as long as the boundary ∂V for all these integrals is placed in the asymptotically
�at region of the space-time.

The metric has a true singularity at Σ = 0 and a coordinate singularity at
∆ = 0. If M2 > a2 + e2, then ∆ = 0 has two solutions, which are

r± = M ±
√
M2 − a2 − e2 (2.50)

If M2 = a2 +e2, then there is one solution, the coordinate singularity is at r± =
M . In the case M2 < a2 + e2 then there are no solutions to ∆ = 0. This means
that there is no coordinate singularity and therefore no event horizon. The
singularity is called naked. This is deemed unphysical, and usually one assumes
the cosmic censorship hypotheses to rule out this case as physical solution to
the Einstein equation.

The outer event horizon, the one at r+, will be the only one under consid-
eration, for an observer outside the black hole will never see the inner horizon,
unless he goes into the black hole, but he will never be able to report what it is
like in there so this horizon is not of practical importance.

The area A of the horizon is
A =

∫
r=r+

dθdϕ
√
gϕϕgθθ = 4π(r2

+ + a2) (2.51)

2.4.1 Ergosphere
The Kerr-Newman black holes can have an ergosphere, i.e. a region outside the
black hole where the Killing vector �eld ξµ becomes spacelike. This vector �eld
is timelike at in�nity and is associated with the mass of the space-time. In the
region where it becomes spacelike it can no longer be associated with the �ow
of energy. The norm of the vector �eld is

ξµξ
µ =

a2 sin2 θ −∆
Σ

(2.52)
and the ergosphere is the region outside the horizon where the vector �eld is
spacelike,

r+ < r < M +
(
M2 − e2 − a2 cos2 θ

) 1
2 (2.53)

At r+ the vector �eld is spacelike too. In the Schwarzschild case the ergosphere
is not present because a = e = 0, so the vector �eld ξµ is timelike everywhere

12No magnetic charge is known to exist, but it is a theoretical possibility.
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except on the horizon, where it is null. An observer always travels on a timelike
orbit, the tangent uµ to a timelike orbit satis�es by de�nition uµu

µ < 0. The
only term on the left hand side which can be negative in the ergosphere is
2g01u

0u1, all other terms are positive.
The horizon corotates with the black hole, i.e. the horizon is locally non

rotating, and its angular velocity is ωH = − g01
g11

= a
r2
++a2 . The horizon is the

null hypersurface13 generated by the null Killing vector �eld
χµ = ξµ + ωHϕ

µ (2.54)
Often the spatial surface orthogonal to the generators of the null hypersurface
is called the horizon too.

2.5 The 4 laws of black hole mechanics
The event horizons in black hole space-times, i.e. stationary axisymmetric space-
times, are null hypersurfaces generated by a Killing vector �eld. In the next
sections the zeroth and �rst laws of black hole mechanics will be derived, and
the second and third will be introduced heuristically.
2.5.1 The zeroth law
Consider the black hole horizon, i.e. a null hypersurface, H generated by a
Killing vector �eld χµ orthogonal to H. The following statements are true on
H

χµχ
µ = 0 (2.55)

χµ;νχ
ν = κχµ (2.56)

χµ;νχ
µ = −κχν (2.57)

where κ is an arbitrary scalar function, is interpreted as the surface gravity 14
The second equality holds because χµ is hypersurface orthogonal on 15 H, and
the last holds because of the Killing condition. If the Lie derivative 16 ∆ of the
second equation is taken with respect to χµ then it follows immediately that

∆χκ = 0 (2.58)
for χµ is a Killing vector �eld. In other words, κ is parallel transported along
orbits of χµ.

The geodesic congruence kµ with a�ne parameter λ generating the null
hypersurface can in a local inertial system be de�ned by 17

kµ = e−κpχµ (2.59)
13See appendix A.6 for more on null hypersurfaces.14Heuristically this follows from the fact that the second equation is the geodesic equationin non a�ne parameterisation. The term at the right hand side is the acceleration of a locallynon rotating observer on this world line. The norm of χµ is zero, it describes a photon whichtries to stay on the horizon. A more acceptable line of reasoning may be the fact that theSchwarzschild black hole has χµ = ξµ, and then timelike static observers satisfy near thehorizon ξµ;νξ

ν = κ̃ξµ. In the limit r → r+ the κ̃ becomes κ.15See appendix A.6.16See A.1.1 for the Lie derivative.17See appendix A.7, where the function f is κ, which can di�er from geodesic to geodesic,but it will be shown that it is constant on the entire null hypersurface.
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The parameter p of the Killing vector �eld depends on the a�ne parameter λ,
dλ
dp

∝ eκp (2.60)
so

λ ∝ eκp (2.61)
An explicit expression for κ on the null hypersurface can be derived using

the Frobenius theorem18, which states that a vector �eld χµ is orthogonal to a
hypersurface if and only if it satis�es the condition (on the hypersurface)

χ[µ;νχρ] = 0 (2.62)
A Killing vector �eld has χ(µ;ν) = 0 and this equation is equivalent to

χµ;νχρ + χρ;µχν − χρ;νχµ = 0 (2.63)
Contracting this with the tensor χµ ν; yields

χµ ν; χµ;νχρ = −2χµ ν; χρ;µχν (2.64)
= −2χµ;νχ

νχρ;µ (2.65)
= −2κχρ;µχ

µ (2.66)
= −2κ2χρ (2.67)

which only holds on the null hypersurface. The explicit expression for κ on the
horizon is

κ2 = −1
2
χµ ν; χµ;ν (2.68)

In a Kerr-Newman space-time the value of κ is
κ =

√
M2 − a2 − e2

2M2 + 2M
√
M2 − a2 − e2 − e2

(2.69)
Now consider the �ow diagram, see �gure 18, of the orbits of χµ for κ 6= 0.

The precise expression for χµ can be chosen such that19 χµ = κλkµ, with
λ = ±eκp. If the Killing parameter p runs from −∞ to ∞ either only the area
with negative λ or only the area with positive λ is covered. That is, on H, there
is a �xed point in the �ow diagram at λ = 0. This �xed point is actually a �xed
two sphere. For κ = 0 this �xed point is not present, so this case will be treated
later. For κ 6= 0 one �nds that if there is a �xed point, i.e. where χµ vanishes,
then κ is constant on every orbit of χµ, and all these orbits end on the �xed
point. So if κ is constant on the �xed point, then κ is constant on the entire
null hypersurface. Parallel transport of κ2 along an arbitrary tangent vector on
the �xed point (the two sphere) vµ yields

κ2
;ρv

ρ = −χµ ν; χµ;ν;ρv
ρ (2.70)

= χµ ν; R
σ
ρνµχσv

ρ (2.71)
= 0 (2.72)

18See [2] for a proof of this theorem.19See appendix A.7.
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Figure 2.1: The dotted lines are the �ow lines of the vector �eld χµ. The �xed
point, or bifurcation point is a two-sphere.

for on the �xed point χµ = 0. The tangent vector vµ to the �xed point is
arbitrary and therefore κ is constant on the entire horizon.

If κ = 0 then χµ is a geodesic itself and no �xed point is present. In that
case κ is constant on the entire horizon if the energy momentum tensor satis�es
the dominant energy condition which states that the vector

Jµ ≡ −Tµνχν (2.73)
is timelike or null, JµJµ ≤ 0, and future directed20. However a null geodesic
congruence satisfying the Killing condition has

0 = Tµνχ
µχν = −Jµχµ (2.74)

because of the Raychaudhuri equation, see equation (3.63) together with the
Einstein equation (2.10), and therefore Jµ can be expanded as a vector propor-
tional to χµ and an in�nitesimal displacement vector in the 2-dimensional space
orthogonal to the null geodesic congruence, so JµJ

µ ≥ 0, and then JµJ
µ = 0.

This means that Jµ ∝ χµ. Then, because χµχν − χνχµ = 0,
0 = Jµχν − χµJν (2.75)

= −Tµρχρχν + χµTνρχ
ρ (2.76)

= −Rµρχρχν + χµRνρχ
ρ (2.77)

= −κ;µχν + κ;νχµ (2.78)
= −χ[µDν]κ (2.79)

therefore21 κ;µ ∝ χµ and χµ is parallel transported along an arbitrary tan-
gent vector vµ to H, so κ;µv

µ = 0, and thus κ is constant on the entire null
hypersurface.

20This condition means that energy cannot propagate faster than the speed of light.21κ is de�ned only on the horizon, so all these equations hold only on the horizon. The
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This result is known as the zeroth law of black hole mechanics
stationary horizon ⇒ surface gravity κ = constant (2.80)

and it is the space-time analogue of the zeroth law of thermodynamics, which
states that the temperature throughout a system in thermodynamic equilibrium
is constant. Note that a null hypersurface which is generated by vector �elds
with a �xed point the surface gravity is constant without invoking the Einstein
equation.
2.5.2 The �rst law
With the use of Komar integrals an expression for the mass in a stationary
axisymmetric asymptotic �at space-time can be derived. In this derivation the
possible electromagnetic charge of the black hole is assumed to be negligible,
for a black hole shall selectively attract matter with opposite charge, so that on
average the black hole will be electrically neutral. However, a charged particle
in the neighbourhood of a local horizon will notice if an electric charge has just
crossed the horizon and this small charge associated with the local horizon could
determine the fate of the particle, i.e. it could mean the di�erence between
crossing the horizon because of a small attractive electric force, or escaping
because of a small repulsive force.

The total mass of the space-time is de�ned by an observer at in�nity by the
Komar integral for the Killing vector �eld ξµ, for the observer at in�nity is in
the asymptotically �at region and will perceive this vector �eld as the Killing
vector �eld generating time translations.

M = − 1
4π

∫
V

dSµξν;µ;ν (2.81)
= 2

∫
V

dV nµJµ −
1

8π

∮
H

dSµνξν;µ (2.82)
where Jµ is the matter current associated with ξµ, and V is the volume of the
space-time with normal nµ, which has the black hole horizon H as boundary.

Use the horizon generator χµ = ξµ + ωHϕ
µ to obtain for the last term of

(2.82) ∮
H

dSµνξν;µ =
∮
H

dSµνχν;µ − ωH
∮
H

dSµνϕν;µ (2.83)
The second term in this equation is proportional to the angular momentum
JH of the horizon22, for ϕ is a rotational Killing vector �eld, and the angular
momentum associated with this rotation is de�ned by the Komar integral, see
section 2.3. The second term is then

− ωH
∮
H

dSµνϕν;µ ≡ −16πωHJH (2.84)
equations must be di�erentiated tangent to the horizon. To resolve this the derivative maybe projected on the horizon, but for horizons there exist no unique projection operator. Thespace-time volume element contracted with the horizon generator, √− det(gµν)χµ is tangentto the horizon, √− det(gµν)χµχν = 0, and thus, see section A.6 , √− det(gµν)χµDν with
Dµ the covariant derivative can be applied to all equations holding on the horizon. Thisexpression is equivalent to χ[µDν], so if χ[µDν]κ = 0, then κ is constant on the horizon.22This is the angular momentum of the black hole, or rather the angular momentum of thegravitational �eld of the black hole.
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The �rst term of (2.83) can be evaluated easily with the following choice for
the surface element on the horizon 23,

dSµν = dA (χµNν − χνNµ) (2.85)
where dA is the area of the surface element on the horizon and χµ and Nµ are
null vector �elds orthogonal to the horizon such that χµN

µ = −1. The �rst
term of (2.83) is∮

H

dSµνχν;µ =
∮
H

dA (χµNν − χνNµ)χν;µ (2.86)
= 2κ

∮
H

dAχµnµ (2.87)
= −2κ

∮
H

dA (2.88)
= −2κA (2.89)

When (2.84) and (2.89) are inserted in the original expression (2.82) for the
total mass M in the space-time, then

M = 2
∫
V

dV nµJµ −
1

8π

∮
H

dSµνξν;µ (2.90)
= 2

∫
V

dV nµJµ +
1

4π
κA+ 2ωHJH (2.91)

For a vacuum stationary axisymmetric space-time the energy momentum
tensor vanishes, and then equation (2.40) shows that the current Jµ = 0. The
mass MH of the gravitational �eld of a vacuum space-time is 24 itself is de�ned
by

MH ≡ − 1
8π

∮
H

dSµνξν;µ (2.92)
=

1
4π
κA+ 2ωHJH (2.93)

By examining the scaling properties of the di�erent quantities it is possible to
acquire a local di�erential equation for the matter near the null hypersurface.
As equation (2.92) shows the mass of the horizon is a function of A and J .
These parameters describe the electrically neutral rotating object of mass M
completely. Note that both parameters have dimension M2. Therefore for every
µ > 0 one has,

µM(A, J) = M(µ2A,µ2J) (2.94)
i.e. M is a generalised homogeneous function 25 Di�erentiating to parameter µ

23See section 35 for the construction of a metric on the horizon.24This is the mass of the black hole.25A function h(x, y) is called a homogeneous function if, for all λ > 0, it satis�es
λh(x, y) = h(λqx, λpy) (2.95)

for appropriately chosen values for p and q.
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yields
M(A, J) =

d

dµ
M(µ2A,µ2J) (2.96)

= 2µA
∂

∂µ2A
M(µ2A,µ2J) + 2µJ

∂

∂µ2J
M(µ2A,µ2J) (2.97)

= 2µA
∂

∂A

M(A, J)
µ

+ 2µJ
∂

∂J

M(A, J)
µ

(2.98)
= 2A

∂

∂A
M(A, J) + 2J

∂

∂J
M(A, J) (2.99)

=
1

4π
κA+ 2ωHJ (2.100)

Since A and J are independent parameters it is found that
∂M

∂A
=

κ

8π
(2.101)

∂M

∂J
= ωH (2.102)

The �rst law of black hole mechanics reads thus
dM =

κ

8π
dA+ ωHdJ (2.103)

and it represents conservation of energy in a black hole space-time.
2.5.3 The second law
The second law states the surface area of an event horizon can only increase
over time.

δA ≥ 0 (2.104)
This statement is certainly true if it holds for each element of the horizon, and
the horizon elements increase in size if the expansion θ of the generators of
the horizon is greater than or equal to zero, because an area element changes
according to26

da
dλ

= θa (2.105)
It has been discovered that black holes can evaporate over time because of

particle creation near the horizon, see 2.6. This would be a violation of this
second law. However, this law is interpreted as a statement on entropy, and
together with the usual second law of thermodynamics the entropy will increase
over time, because the thermal radiation resulting from the evaporation carries
more entropy than the original black hole.

Classically the second law of black hole mechanics is true by intuition, no
energy can go faster than light, so it is impossible to escape out of a black
hole, and then the size cannot decrease. A precise formulation and proof of the
Hawking area theorem can be found in [2].

26See for a derivation of this equation 35.
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2.5.4 The third law
The third law is, just as the zeroth law, a statement about the surface gravity.
If the surface gravity goes to zero, then the black hole horizon area goes to a
constant �nite value, which needn't be zero, e.g. consider an extreme black hole,
that is a Kerr-Newman black hole with M2 = a2 + e2. Such a black hole has
κ = 0 but a �nite surface area.

An alternative version of this law states that it is impossible to reach surface
gravity zero by a physical process, but this is easily seen to be violated, for if
a black hole evaporates by particle creation near the horizon, then the surface
gravity will go to zero, for eventually the black hole will end its existence.

According to Wald [2], calculations show that it is very hard to make an
extreme Kerr black hole, i.e. the closer one gets to a Kerr black hole, the harder
it is to get even closer. If κ is interpreted as the black hole temperature, then the
thermal radiation produced in the evaporation process preserves the generalised
third law27 will still be true, for the emitted radiation has non zero temperature.

2.6 Hawking radiation
The Schwarzschild black hole equilibrium is unstable. Consider quantum �elds
on the Schwarzschild28 black hole background. If a Wick rotation is made to
imaginary time, t → τ = it, then the metric has a Euclidean signature, it
becomes

ds2 =
(

1− 2M
r

)
dτ2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2 (2.106)
where dΩ2 is the metric on the sphere S2. The metric is singular at r = 2M ,
this is the location of the Schwarzschild black hole horizon. Near the horizon
the metric can be approximated by a Euclidean Rindler metric, i.e. the Rindler
metric (A.40) with imaginary time, then

ds2 ≈ (κR)2 dτ2 + dR2 +
1

4κ2
dΩ2 (2.107)

This metric is acquired under the following identi�cations,
r − 2M =

R2

8M
(2.108)(

1− 2M
r

)
≈ (κR)2 (2.109)

dr2 = (κR)2dR2 (2.110)
κ is the surface gravity of the Schwarzschild black hole, κ = 1

4M . The metric is
Euclidean Rindler times S2. The Euclidean Rindler part of the metric can be
identi�ed with the Euclidean plane in polar coordinates if the imaginary time
is identi�ed as an angle,

0 ≤ τ < 2π
κ

(2.111)
27Which is the combination of this law with that of thermodynamics.28The Schwarzschild black hole solution is the Kerr-Newman solution with a = e = 0.



2.7 Unruh temperature 29

The singularity at R = 0 is a coordinate singularity29.
The Euclidean path integral can now be taken over �elds ϕ with periodic

boundary conditions, ϕ(τ) ≡ ϕ(τ + 2π
κ )

Z =
∫

d[ϕ]e−S (2.112)
where S is the action in imaginary time. This is the path integral representation
of the partition function for �elds with period 30 β

Z = Tre−βH (2.113)
In statistical mechanics β = 1

T , but β is the period β = 2π
κ , so the �elds near

the black hole have temperature T = κ
2π . This temperature is known as the

Hawking temperature.
The black hole is in equilibrium with a heat bath of nearby quantum �elds

if it is at the Hawking temperature. Is such an equilibrium stable? No, if a
quantum �eld enters the black hole, then the black hole temperature decreases,
because the Schwarzschild surface gravity is inversely proportional to the black
hole mass. By absorbing heat (the quantum �elds) the black hole cools itself, i.e.
the black hole has negative speci�c heat. Therefore the black hole equilibrium is
unstable. If the �elds near the black hole have lower temperature than the black
hole, then the black hole must radiate energy in order to achieve equilibrium
with the heat bath which is composed of the quantum �elds near the horizon.
The black hole will heat up when it radiates and start to radiate more, until it
eventually evaporates. The quantum state in equilibrium with the black hole at
the Hawking temperature is known as the Hartle-Hawking vacuum.

2.7 Unruh temperature
For self gravitating systems, such as a Schwarzschild black hole a local tem-
perature can be de�ned. The observers hovering near the horizon move on
the Euclidean Rindler geodesics 31 ξµ = δ µ

τ . If T0 is the temperature seen by
observers at in�nity, then the local observer hovering near the self gravitating
system will measure temperature T de�ned by√

−gµνξµξνT ≡ T0 (2.114)
For an observer near a Schwarzschild black hole the local temperature is,

using the Rindler coordinates near the horizon
κRT =

κ

2π
(2.115)

29If an identi�cation is made with a di�erent period, then the 2-dimensional EuclideanRindler space-time looks like a sheet of paper folded into a cone. The curvature of the metricdoes not blow up, but at the tip of the cone a point is missing. This point is a 2-sphere in thecase presented here. The imaginary time variable is periodic, because the analytic continuationof the time variable in any Green's function of a quantum �eld theory is symmetric underrotations in 4-dimensional Euclidean space, see [4]. More on quantum �elds in curved spacecan be found in e.g. [5].30See for a derivation e.g. [6].31The geodesics of the metric (2.107)



30 Mechanics of black hole space-times

or
T =

R−1

2π
(2.116)

For an observer hovering near a black hole R = constant, and a = R−1 is the
proper acceleration for the observer.

The same result for local temperature is also obtained in quantum mechanics,
see [7]. An observer who accelerates uniform with acceleration a observes a heat
bath at

T =
a

2π
(2.117)

This local temperature is known as the Unruh temperature.
An observer at in�nity in a space-time in which a Schwarzschild black hole

is in equilibrium with quantum �elds will measure the Hawking temperature as
his local temperature.



Chapter 3

The holographic principle

This chapter is about the holographic principle. It begins with an introduction
to the holographic principle, some of the arguments put forward in favour of
the principle are discussed and possible arguments against the principle. The
covariant entropy bound and the generalised covariant entropy bound are stated
as implementations of the principle. These bounds are statements about the
amount of entropy passing through geometrical constructs called (local) light
sheets. Then the Raychaudhuri equation is derived, that is the equation which
describes the expansion of light sheets. Finally local light sheets are constructed.

3.1 Introduction to the holographic principle
The holographic principle is the idea that the information contained in a (d−1)-
dimensional region in a d-dimensional space-time can be encoded on the (d−2)-
dimensional surface enclosing the region. This principle was �rst put forward
in 1993 by 't Hooft, [8]. His original statement was for regions surrounding
black holes, and the information in this region could be stored on the black hole
surface area.

The entropy in a region of space-time is a measure for the information in
that region. The entropy of a system is de�ned as the logarithm of the number
of accessible states to that system, [3]. In statistical mechanics the entropy of a
system scales with the volume of system, to see this an example will be given.

Consider a volume V and divide the volume in a bunch of cubes of unit
volume. Suppose each unit volume can contain either a zero or a one. The
number of accessible states available to a unit cube is 2, and the number of
accessible states of a volume V composed of these cubes is 2V . The entropy is
V ln 2, it scales with the volume of the system.

This example appears to contradict the holographic principle, but this sys-
tem is not very physical. In a physical system the zero and one state may be
considered as a vacuum state of zero energy and an excited state at some energy
E > 0. The states with energy E will gravitate, and when enough states in the
volume are excited then the system is expected to collapse to a black hole. This
black hole will have entropy proportional to its surface area according to the
second law of black hole thermodynamics, see section 2.5.3. This can mean 2
things, either information is lost in the black hole, or the entropy of the original

31
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system was no more than its surface area dictated.
The laws of quantum mechanics are time reversible. If gravity is to be de-

scribed by a quantum theory, then the laws of quantum gravity may be expected
to be time reversible too. The black hole is expected to evaporate without in-
formation loss, unless there is some sort of symmetry breaking.

In his article 't Hooft assumed that quantum gravity is time reversible, and
speculated that the information contained in three dimensional space can be
stored on a two dimensional surface like a holographic image. The idea evolved
in an article of Susskind, [9]. In this article light rays where used to project all
information present in a space-time on a distant 2-dimensional screen.

Many indications have been found for a holographic bound on entropy. An
example of a cosmological space-time satisfying the bound has been found by
Fischler and Susskind, [15], the space-time for which they found the bound to
hold was �at and negatively curved space-time. For positively curved close uni-
verses the bound was violated. However, the bound implemented was not the
covariant entropy bound, which thus far has not been disproved by counterex-
amples.

The covariant entropy bound was introduced by Bousso [13], the de�nition
of the bound will be given in section 3.2. This bound has been proven for semi-
classical systems by Flanagan, Marolf and Wald in [14]. In the same article
a generalisation of the covariant entropy bound was proposed. This bound
is known as the generalised covariant entropy bound, see section 3.3 for its
de�nition. The advantage of the generalised bound is that it implies black hole
thermodynamics.

The holographic principle is to be new input for quantum theories of gravity,
constraining the dynamical degrees of freedom of the metric in the hope that
a resulting quantum theory of gravity is renormalisable. Another point of view
is that the holographic principle should follow from a new theory of gravity.
String theory is such a theory, and in the case of AdS5 × S5 it is found that
4-dimensional Yang-Mills theory lives on the boundary of AdS5, see the reviewof Bousso for more on this, [12].

3.2 The covariant entropy bound
The current version of the holographic principle is the covariant entropy bound,
which is stated for space-time manifolds of arbitrary dimension d. It was �rst
stated by Bousso, see his review article [12] for more on this and other bounds.

Let A be the area of an arbitrary (d − 2)-dimensional spacelike surface B.
Consider the null hypersurfaces 1 which are generated by null vector �elds (light
rays) orthogonal to B. As long as the expansion θ of the generators2, which
start at B, of the null hypersurface is non-positive the null hypersurface is called
a light sheet L of B. The light sheet starts at the surface B and terminates
when θ > 0. In general there are two null hypersurfaces orthogonal to B, so
there are four potential light sheets.

The covariant entropy bound is a statement about the entropy S passing
1A null hypersurface is a (d− 1)-dimensional submanifold, see A.62The expansion of the generators of a hypersurface is governed by the Raychaudhuri equa-tion, this equation is treated in 3.4
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through3 the light sheet L,
S(L) ≤ A(B)

4l2p
(3.1)

where lp ≡
√

G~
c3 is the Planck length, given here with the Planck constant ~,

the gravitational constant G and the speed of light c, which are all 1 in the units
used in this text.

The spatial surface B can be considered as a holographic screen, the entropy
on the light sheet can be projected on B with a density of less than one bit per
Planck area.

3.3 The generalised covariant entropy bound
There exists a more general form of the covariant entropy bound. What hap-
pens if the light sheets are incomplete, i.e. if they are terminated before θ > 0?
For such cases the generalised covariant entropy bound applies, which was �rst
stated by Flanagan Marolf and Wald in their semi-classical proof for the covari-
ant entropy bound [14]. The bound is

S(L) ≤ A(B)− Ã(B̃)
4l2p

(3.2)

where Ã(B̃) is the area of the spacelike surface B̃ on which the light sheet
terminates. This generalised bound implies both the covariant entropy bound
and the generalised second law of thermodynamics.

The generalised form can be used to construct local holographic screens.
The physics on local light sheets can be described by a theory on the boundary
of the light sheet. Adding all the local holographic screens may then yield a
global holographic screen.

3.4 The Raychaudhuri equation
The Raychaudhuri equation governs the expansion of geodesic congruences. In
this section the Raychaudhuri equation is derived for both timelike and null
geodesic congruences. First the term congruence is clari�ed, then the Ray-
chaudhuri equation for timelike geodesic congruences is derived, and after that
the Raychaudhuri equation for null geodesic congruences is derived. Timelike
geodesic congruences can be used to construct light sheets, the light sheets
themselves are generated by null geodesic congruences. Some useful properties
of special null geodesic congruences are derived, and for the null geodesic case a
practical choice for a projection operator on the orthogonal space will be given.
With this projection operator a formula for the expansion of a surface element
is derived. Finally some special cases of null geodesic congruences are studied.
Some of this material can also be found in [2, 7].

3In many references, e.g. [12] authors talk about the entropy on the light sheet. It isunclear what entropy on the light sheet is, if it is the integrated entropy density on the lightsheet then it would always be zero. What these authors mean is the entropy passing throughthe light sheet.
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3.4.1 Congruences
It is often useful to slice the space-time manifold into submanifolds, or hyper-
surfaces. These hypersurfaces can be generated by vector �elds, see section A.6.
For example equal time slices are useful. If a space-time is symmetric under
time translations, then energy is conserved in that space-time. If on top of that
the vector �eld generating the time translations is orthogonal to a family of
hypersurfaces, then the space-time is static and then it can be sliced in equal
time slices. The paths of static free particles in that space-time are generated
by the vector �eld generating the time translations, and the collection of these
paths is an example of a congruence of curves.

A congruence of curves in an open submanifold S of some manifold M is
a family of curves such that through every point p in S passes precisely one
curve of this family. Two corollaries of this de�nition are that the tangents to
a congruence form a smooth vector �eld vµ, and conversely that every smooth
vector �eld vµ generates a congruence A congruence is a timelike or null con-
gruence if the associated vector �eld vµ is timelike, vµvµ < 0, or null vµvµ = 0
respectively. A congruence is a geodesic congruence if the associated vector �eld
vµ satis�es the geodesic equation, vµ;νv

ν = 0.
3.4.2 Geodesic deviations
Consider a geodesic v µ

0 of some geodesic congruence. In general the neigh-
bouring geodesics will not remain parallel, e.g. the meridians on the globe are
geodesics, but meridians cross at the poles. The meridians are a geodesic con-
gruence except on the poles. At the equator they are parallel, but the closer
one gets to the poles, the closer the geodesics are to each other.

Consider, in order to �nd out how a geodesic in the family behaves with
respect to another geodesic in the family, an in�nitesimal displacement vector
ηµ measuring the displacement of one geodesic vµ with respect to the others in
the congruence.

Both vµ and ηµ can be chosen such that they are elements of a coordinate
basis, and therefore

ηµ;νv
ν − vµ;νη

ν = 0 (3.3)
in other words, the Lie derivative of ηµ with respect to vµ is zero.

This can be stated by
ηµ;νv

ν = Bµ;νη
ν (3.4)

where the tensor �eld Bµν is de�ned by
Bµν ≡ vµ;ν (3.5)

Bµν is a measure of how the in�nitesimal displacement vector ηµ changes if it
is parallel transported along vµ, it is a measure of geodesic deviation

A neighbouring geodesic of vµ can be speci�ed by an in�nitesimal displace-
ment vector ηµ, but this speci�cation is not unique, for η̃µ = ηµ + cvµ, with c
a constant, is a displacement to the same geodesic. It is possible to give unique
speci�cations for timelike geodesic congruences and for null geodesic congruences
in terms of displacement vectors. First I shall treat the unique speci�cation for
timelike geodesics, and I will show that this speci�cation doesn't work for null
geodesics, then I will give a unique speci�cation for null geodesics.
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3.4.3 Expansion of timelike geodesic congruences
Consider a congruence of timelike geodesics ξµ with a�ne parameter τ . The
vector �eld ξµ satis�es by de�nition ξµ;νξ

ν = 0 and ξµξµ = −1. Introduce the
notation Bµν = ξµ;ν .The unique speci�cation of a displacement to a neighbouring geodesic in
terms of ηµ is acquired by requiring the displacement vector to be orthogonal
to the geodesics,

ηµξ
µ = 0 (3.6)

This yields a clear physical interpretation of the tensor Bµν , because this
tensor is in both indices orthogonal to the timelike geodesic congruence ξµ,

Bµνξ
ν = ξµ;νξ

ν = 0 (3.7)
Bµνξ

µ = ξµ;νξ
µ =

1
2

(ξµξµ);ν = (−1),ν = 0 (3.8)
That is, the tensor �eld is spacelike, so the deviations can be classi�ed in ex-
pansion, shear, and twist (or rotation).

The 3-dimensional spacelike subspace orthogonal to the timelike geodesics
in which all these deviations happen has as (Euclidean) metric hµν ,

hµν = gµν + ξµξν (3.9)
where gµν is the metric of the 4-dimensional space-time. Thus is hµν = gµρhρνthe projection operator on the subspace orthogonal to ξµ. By means of this
projection operator the tensor Bµν can be expanded in expansion θ, shear σµνand twist ωµν ,

Bµν =
1
3
θhµν + σµν + ωµν (3.10)

θ ≡ hµνB
µν (3.11)

σµν ≡ B(µν) −
1
3
θhµν (3.12)

ωµν ≡ B[µν] (3.13)
The expansion measures if the neighbouring geodesics come closer, or move away
from the geodesic under consideration. The shear measures the deformation of
the congruence, e.g.. if a square is parallel transported along the congruence it
will deform to a diamond if the shear does not vanish. The twist measures of
neighbouring geodesics twist around the geodesic.

The rate of change of θ, σµν and ωµν can be derived from the parallel trans-
port of Bµν along ξµ,

Bµν;ρξ
ρ = ξµ;ν;ρξ

ρ (3.14)
= ξµ;ρ;νξ

ρ − ξσRσµνρξρ (3.15)
= (ξµ;ρξ

ρ);ν − ξ
ρ
;νξµ;ρ −Rσµνρξσξρ (3.16)

= Rµσνρξ
σξρ −BρνBµρ (3.17)

where towards line (3.15) the commutation relation for covariant derivatives was
used and in line (3.16) the �rst term is zero because of the geodesic equation.
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The trace of this equation yields the rate of change of the expansion,

θ;ρξ
ρ =

dθ
dτ

= −1
3
θ2 − σµνσµν + ωµνω

µν +Rµνξ
µξν (3.18)

This is called the Raychaudhuri equation for timelike geodesic congruences.
The traceless symmetric part of (3.17) will yield the rate of change of the

shear, whereas the antisymmetric part will yield the rate of change of the twist
of the timelike geodesic congruence,

σµν;ρξ
ρ = −2

3
θσµν − σµρσρν + ωµρω

ρ
ν +

1
3

(σρσσρσ − ωρσωρσ)

+ Cµσνρξ
σξρ +

1
6
hµνhρσR

ρσ − 1
2
hµρhνσR

σρ (3.19)
ωµν;ρξ

ρ = −2
3
θωµν − 2σρ[νωµ]ρ (3.20)

The tensor Cµσνρ is the Weyl tensor, see A.3. Note that the twist of the con-
gruence either vanishes everywhere or nowhere.

3.4.4 Expansion of null geodesic congruences
Consider a congruence of null geodesics kµ with a�ne parameter λ. By de�nition
this vector �eld has the properties kµkµ = 0 and kµ;νk

ν = 0.
The orthogonality condition for the displacement vectors ηµ to neighbouring

timelike geodesics doesn't yield a unique speci�cation for null geodesic congru-
ences, for the 3-dimensional subspace orthogonal to kµ also contains kµ itself,
i.e. if η̃µ = ηµ + ckµ, then

η̃µk
µ = ηµk

µ + ckµk
µ = ηµk

µ (3.21)
because kµkµ = 0. This problem can be resolved by considering equivalence
classes of displacement vectors. Displacement vectors are equivalent if they
di�er by a multiple c of kµ,

ηµ ∼ ηµ + ckµ (3.22)
This identi�cation clearly is an equivalence 4.

The orthogonality condition yields a 3-dimensional subspace orthogonal to
the null geodesics, the equivalence removes another dimension of this subspace,
and therefore together they yield a 2-dimensional spacelike subspace V̂ orthog-
onal to the null geodesics, with metric ĥµν .

To acquire the rate of change of the expansion of the geodesics, again one
introduces the tensor Bµν = kµ;ν , but now it must be projected on V̂ ,

B̂µν = ĥ ρ
µ Bρσĥ

σ
ν (3.23)

4The relation ∼ is re�exive for c = 0, ηµ ∼ ηµ, it is symmetric, i.e. if ηµ + ckµ ∼ ηµ then
ηµ ∼ ηµ+ckµ, and it is transitive, if ηµ+ckµ ∼ ηµ and η ∼ η+ c̃kµ, then ηµ+ckµ ∼ ηµ+ c̃kµ.These di�erences are merely a multiple of kµ.
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This tensor is e�ectively 2-dimensional and can be expressed in terms of the
2-dimensional expansion θ̂, shear σ̂µν , and twist ω̂µν ,

B̂µν =
1
2
θ̂ĥµν + σ̂µν + ω̂µν (3.24)

θ̂ ≡ ĥµνB̂
µν (3.25)

σ̂µν ≡ B̂(µν) −
1
2
θ̂ĥµν (3.26)

ω̂µν ≡ B̂[µν] (3.27)
In fact the hat on the expansion can be dropped, but it is kept to indicate that
a null geodesic congruence is under consideration.

Along the same lines as in the case of timelike geodesics one obtains the
expression for rates of change of the expansion shear and twist, but now the
�nal projection is not on a 3-dimensional space, but a 2-dimensional space, i.e.
the equation has hats on the appropriate terms.

B̂µν;ρk
ρ = ̂Rµσνρkσkρ − B̂ρνB̂µρ (3.28)

The trace of (3.28) again yields the rate of change of the expansion,

θ̂;ρξ
ρ =

dθ̂
dλ

= −1
2
θ̂2 − σ̂µν σ̂µν + ω̂µν ω̂

µν +Rµνk
µkν (3.29)

and that is the Raychaudhuri equation for null geodesic congruences.
Just as in the timelike case the equation (3.28) yields the rates of change for

shear and rotation for the traceless symmetric and antisymmetric parts respec-
tively,

σ̂µν;ρk
ρ = ̂Cµσνρkρkσ − θ̂σ̂µν (3.30)

ω̂µν;ρk
ρ = −θ̂ω̂µν (3.31)

Note again that the twist vanishes either everywhere or nowhere in the congru-
ence. Here a few terms extra vanish compared with the timelike case, this has to
do with the fact that the vectorspace is 2-dimensional instead of 3-dimensional.

A projection operator
There is no natural way to embed the 2-dimensional subspace. A convenient
way to erect the 2-dimensional subspace is by introducing a vector �eld nµ which
is not orthogonal to kµ, but is chosen such that

nµn
µ = 0 (3.32)

nµk
µ = −1 (3.33)

These two expressions have to be satis�ed for all λ, so an extra requirement is
that nµ is parallel transported along kµ,

nµ;νk
ν = 0 (3.34)
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The subspace is 2-dimensional if only the displacement vectors ηµ orthogonal
to both kµ and nµ are considered,

nµη
µ = 0 (3.35)

kµη
µ = 0 (3.36)

The associated metric ĥµν is
ĥµν = gµν + nµkν + kµnν (3.37)

and ĥµ;ν = gµρĥρν is a projection operator on the 2-dimensional subspace.

Expansion of a surface
The expansion of a surface element of a null hypersurface generated by a null
geodesic congruence can be determined explicitly using the previous choice for
the metric. A surface element a, spanned by two linear independent displace-
ment vectors ζµ and ηµ is given by

a = εµνρσkµnνζρησ (3.38)
The rate of change of a is

da
dλ

= a;κk
κ (3.39)

= εµνρσkµnν (ζρ;κkκησ + ζρησ;κk
κ) (3.40)

Note that every displacement vector ĥµ;νη
ν = ηµ, which leads, in conjunction

with the de�nition of B̂µν , to
ηµ;νk

ν = B̂µνη
ν (3.41)

The rate of change becomes thus
da
dλ

= εµνρσkµnν

(
B̂ρκζ

κησ + ζρB̂σκη
κ
) (3.42)

= εµνρσkµnν

(
B̂ρκζ

κησ − ζσB̂ρκηκ
) (3.43)

= θ̂a (3.44)
The last step can be taken because ηµ and ζµ are linear independent vectors
spanning a 2-dimensional vectorspace on which B̂µν is a 2× 2 matrix.

Special cases of null geodesic congruences
Consider a congruence of null geodesics kµ orthogonal to a null hypersurface. In
this section it will be proven that such a congruence has vanishing twist, ω̂µν = 0
on the null hypersurface. Furthermore it will be shown that if 1

f k
µ = χµ,

with (χµ;ν + χν;µ)λ=0 = 0 and c a constant, then B̂(µν)|λ=0 = 0 on the null
hypersurface.
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The Frobenius5 theorem states that a vector �eld vµ is (locally) orthogonal
to a hypersurface if and only if

v[µ;νvρ] = 0 (3.45)
For the null geodesic congruence kµ the Frobenius theorem states

0 = k[µ;νkρ] (3.46)
= B[µνkρ] (3.47)

Note that
B[µνkρ] = B̂[µνkρ] (3.48)

because using the given projection operator ĥµν one �nds,
B̂µν = Bµν + kµ (nρBρν + nρBρσn

σkν) +Bµρn
ρkν (3.49)

where it was also used that kµ;νk
ν = 0 and kµkµ = 0. So

nρBρ[νkµkλ] + nρBρσn
σk[µkνkλ] + k[νkλBµ]ρn

ρ = 0 (3.50)
because the �rst term is symmetric in two indices so the antisymmetric part of
this tensor is equal to zero, the second term is clearly completely symmetric,
and the last is again symmetric in two indices. Using this knowledge one obtains

0 = B̂[µνkρ] (3.51)
= ω̂[µνkρ] (3.52)

The vector nµ satis�es nµkµ = −1, as well as ω̂µνnµ = 0 = ω̂νµn
µ, because

ω̂µν is projected on the subspace orthogonal to nµ, so contracting (3.52) with
nµ yields,

0 = 3ω̂[µνkρ]n
µ (3.53)

= nµω̂µνkρ + ω̂ρµn
µkν + ω̂νρkµn

µ (3.54)
= −ω̂νρ (3.55)

in other words, the rotation on the null hypersurface vanishes. Intuitively this
result is not unexpected, if a vector �eld in the plane has rotation around the
origin then the vector �eld has a singularity at the origin.

Now consider the case in which the null geodesics kµ in the congruence can
be written as kµ = fχµ. Consider the symmetric part of B̂µν ,

B̂(µν) = ĥ ρ
µ ĥσνB(ρσ) (3.56)

= ĥ ρ
µ ĥσνk(ρ;σ) (3.57)

= ĥ ρ
µ ĥσνf;(σχρ) (3.58)

= 0 (3.59)
where in it was used in the step towards line (3.58) that on the null hypersurface
χ(ρ;σ) = 0, and in the last step it was used that h ν

µ χν = 0, because hµν projectson the space orthogonal to χµ.
5See [2] for a proof this theorem
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Summarising, null hypersurfaces generated by null congruences which are
approximate (local) Killing vector �elds have vanishing expansion, shear and
rotation on the null hypersurface. Furthermore the expansion disappears in the
entire congruence if the vector �eld satis�es the Killing condition everywhere,
for

gµνkµ;ν = −gµνkµ;ν = 0 (3.60)
gµνkµ;ν;ρk

ρ = −gµνkµ;ν;ρk
ρ = 0 (3.61)

For congruences orthogonal to null hypersurfaces also the shear and rotation
disappear for all λ because of the equations (3.55) and (3.59), this results in

0 =
dθ̂
dλ

= Rµνk
µkν (3.62)

By means of the Einstein equation (2.10) this is equal to
0 = Tµνk

µkν (3.63)
Note that Rµνkµkν = 0 = Tµνk

µkν if along the congruence B̂µν = 0, so if B̂µνis zero in the points right next to λ = 0, then no energy �ux crosses the horizon
near λ = 0. If only B̂µν(0) = 0, then

dθ̂
dλ

(0) = Rµνk
µkν 6= 0 (3.64)

Focusing theorem
For a null hypersurface orthogonal null geodesic congruence ω̂µν = 0, and all
other terms in the Raychaudhuri equation are negative if Tµνk

µkν > 0. The
condition Tµνk

µkν > 0 is known as the weak, strong or null energy condition,
and holds for classical matter. The energy momentum density transported along
the geodesics is positive. If this condition is met, then the inequality

dθ
dλ

≤ −1
2
θ2 (3.65)

holds. Now the focusing of the generators can be calculated,
− dθ−1

dλ
≤ −1

2
(3.66)

so for initial value θi ≡ θ(0),
θ−1 ≥ θ−1

i +
1
2
λ (3.67)

if θi < 0 then θ−1 passes through zero for λ ≤ 2
|θi| , which means that θ → −∞

within �nite a�ne parameter.

3.5 Construction of local light sheets
Local light sheets or local horizons can be constructed by considering the con-
gruence of curves of local uniform accelerated observers. This explains the use
of the term horizon, the local light sheet is the past or future horizon for ob-
servers which accelerate uniform with respect to local inertial observers. The
other advantage of the physical interpretation for the congruence of curves is
that it respects the thermodynamic interpretation of the holographic principle.
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3.5.1 Light sheets and uniform accelerated observers
Consider a local inertial system in spherical polar coordinates ζα = (t, r, θ, ϕ)α.
The equation of motion for a uniform accelerated observer moving on trajectory
xµ (τ) is,

d2xµ

dτ2
+ Γµκλ

dxκ

dτ
dxλ

dτ
= gµ (3.68)

The curve is parameterised by observer time τ and gµ is the acceleration vector.
Time runs constantly for the observer, so for all τ

gµν
dxµ

dτ
dxν

dτ
= −1 (3.69)

and this can only be satis�ed if
0 =

d
dτ

[
gµν

dxµ

dτ
dxν

dτ

]
= 2gµνgµ

dxν

dτ
(3.70)

i.e. the acceleration is orthogonal to the velocity 6.
The equation of motion will be looked at in local coordinates, this means

that the result is valid to �rst order in τ . In order to make it valid to higher
order a coordinate condition is necessary to �x higher order terms of the metric
tensor or the space needs to have symmetries in a larger region.

The observer is accelerated in the radial direction, and the initial velocity is
also in this direction. In the local coordinates ζα this means that

− 1 = −
(

dt
dτ

)2

+
(

dr
dτ

)2

(3.71)
which implies that the velocity along the curve locally has the appearance

dt
dτ

= ± cosh (cτ) (3.72)
dr
dτ

= ± sinh (cτ) (3.73)
with c some constant, the plus signs are for observers moving to the future and
away from the origin. At τ = 0 the orthogonality condition, equation (3.70) is

0 = ηαβg
α dxβ

dτ
= −g0 dt

dτ
(3.74)

which means that g0 = 0, the acceleration is purely spacelike. The acceleration
is uniform, so at τ = 0

dgα

dτ
= (C, 0, 0, 0)α = C

dxα

dτ
=

d3xα

dτ3
(3.75)

6It is also possible that gµ ∝ dxν

dτ
, and then the equation of motion (3.68) is simply thegeodesic equation in non a�ne parameterisation. In that case a rescaling of the parameterwill make gµ = 0, and then the proper time runs constantly for an observer on a geodesic.A non a�ne parameterised observer can be interpreted as an observer accelerating along ageodesic.
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with C a constant7. This is a Lorentz covariant statement, so in local coordinates
this holds for all τ in the neighbourhood. The solutions for gα and xα are, with
C = c2 and Aα, Bα, and Cα constant vectors,

gα =
d2xα

dτ2
= c2 (xα + Cα) (3.77)

xα = Aα sinh (cτ) +Bα cosh (cτ)− Cα (3.78)
The constant vectors Aα and Bα immediately follow from equations (3.72)

and (3.73),
Aα = (

1
c
, 0, 0, 0)α, Bα = (0,

1
c
, 0, 0)α (3.79)

The length of the acceleration vector gα is ηαβgαgβ = c2, and since at τ = 0
the acceleration is purely spacelike this implies that c is the acceleration along
the curve of the uniform accelerated observer. The vector Cα can be used to
�x the location of the observer at τ = 0, if the observer is at τ = 0 a distance
d
c away from the origin, then Cα = (0, 1−d

c , 0, 0)α.
Now the coordinate system used by the accelerated observer can be deter-

mined. At τ = 0 the time coordinate of the local coordinate system used by the
observer at rest coincide, so then the uniform accelerated observer uses the coor-
dinate system xα(0, ~ζ)α, and at other τ the coordinates are simply the Lorentz
boosted coordinates with boost velocity −cτ , so the coordinates are,

xα = ((r − d

c
) sinh(cτ), (r − d

c
) cosh(cτ) + d, xθ, xϕ)α (3.80)

and the line element for the accelerated observer is
ηαβdxαdxβ = −(cr − d)2dτ2 + dr2 + r2dθ2 + r2 sin2 θdϕ2 (3.81)

This metric is a general form of the Rindler metric in spherical polar coordinates.
The Rindler metric in the usual Cartesian form describes observers accelerating
away from a plane through the origin with acceleration c,

ds2 = −c2x2dτ2 + dx2 + dy2 + dz2 (3.82)
The singularity of the metric (3.81) at cr = d is a coordinate singularity,

because it is always possible to extend this metric back to the local inertial
coordinates which are not singular there. The other singularities are the usual
coordinate singularities of the spherical polar coordinates.

All the radial accelerated observers together make a congruence of curves, as
long as the origin is cut out of the neighbourhood, for that is where the curves
intersect. The point of intersection is known as the focal point or caustic. At

7For radial motion all a�ne connection components are zero, i.e. the non zero componentsof the a�ne connection contract with the θ and ϕ components of the vector. The equation ofmotion in the local inertial spherical polar coordinates for radial motion is therefore
d2xα

dτ2
= gα (3.76)

This is actually the statement that the object is spherically symmetric, i.e. radial motion isnothing more than motion in the 2-dimensional r-t plane.
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the points where cr = d the coordinate singularity in the metric occurs, this is
the location of the local horizon or holographic screen. The vector �eld ξ = ∂τ ,which represents (proper) time translations for the accelerated observers is a
null vector �eld at cr = d, and it generates the local horizon, or local light
sheet. The local holographic screen is the spatial cross section orthogonal to
ξµ at observer time τ = 0. By choosing an appropriate value for d a local
horizon can be constructed with arbitrary positive Gaussian curvature, for the
local horizon looks like a surface element of a sphere with radius d

c . The phys-ical interpretation of the created metric is a spherically symmetric (arti�cial)
gravitational �eld.

A �at local horizon can be constructed by considering the congruence of
curves of all uniform accelerated observers along an axis in local Cartesian co-
ordinates, the local metric is the Rindler metric (3.82).
3.5.2 Holographic screen with local angular velocity
It is possible to rigidly rotate the metric (3.81) with constant velocity (as seen by
the accelerating observer) in order to describe a local rotating horizon. The new
metric will describe a stationary axisymmetric rotating (arti�cial) gravitational
�eld. The new congruence is formed by the curves of observers which accelerate
radial to in�nity, but with non zero initial angular velocity. The problem will
be tackled by rigidly rotating the metric. The local light sheet is constructed
at cr = d, just as in the non rotating case. The local holographic screen is the
spatial surface orthogonal to the light sheet generators at observer time τ = 0.

The in�nitesimal rotation is
ϕ → ϕ̃ = ϕ+ ε (τ) (3.83)

inserting this in the metric yields, with ω = dε
dτ and dropping the tildes,

ds2 = −(cr − d)2dτ2 + dr2 + r2dθ2 + r2 sin2 θ [dϕ− ωdτ ]2 (3.84)
= −[(cr − d)2 − ω2r2 sin2 θ]dτ2 − 2ωr2 sin2 θdτdϕ
+ r2 sin2 θdϕ2 + dr2 + r2dθ2 (3.85)

This is the line element used by the local radial accelerating observers with
initial angular velocity ω. Note that it is consistent with the general expression
for stationary axisymmetric space-times, (2.14).

The orbit velocity v = ωr must remain well below the speed of light to if
the metric is to be interpreted as a physical (arti�cial) rotating gravitational
�eld, and such a physical interpretation is necessary in order to do local ther-
modynamics. However, it is not necessary to have a physical interpretation of
the congruence generating the holographic screen in order to do holography.
Therefore it is always possible to create a rotating local holographic screen with
arbitrary angular velocity.

The metric is singular at (cr−d)2 = ω2r2 sin2 θ, and it is possible to construct
a null hypersurface H̃ there, but the tangents to the congruence of the radial
accelerating observers are not null there 8, but rather at the horizon or rotating
holographic screen H at cr = d. In the non rotating case the vector �eld ξ = ∂τ

8The term −2ωr2 sin2 θ < 0, and this keeps the accelerated observers on timelike curvesat the new coordinate singularity.
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generates the horizon at cr = d, but now this vector is not orthogonal to the
horizon H. This is clear if the vector ϕ = ∂ϕ is considered, which is tangent to
the horizon since the surface is ϕ independent

gµνξ
µϕν |H = −2ωr2

H sin2 θ (3.86)
As ϕ is not orthogonal to ξ, except at θ = 0 or θ = π, the conclusion must be
that ξ is not the horizon generator.

The horizon H in the non rotating case was at cr = d, at this location there
is a null vector �eld χµ = ξµ + Cϕµ in the rotating case, and the constant C
follows from

0 = gµνχ
µχν |H = g00ξ

0ξ0 + 2g01Cξ
0ϕ1 + g11C

2ϕ1ϕ1 (3.87)
At cr = d this requirement reduces to

0 = ω2 − 2ωC + C2 (3.88)
so there

C = ω (3.89)
just as in the Kerr-Newman case. The generator of the holographic screen can
be found for arbitrary radius d

c , and the vector �eld exists for all values of ω.
Since the screen is generated by a superposition of the local Killing vector

�elds ξ and ϕ with constant coe�cients, the vector �eld χ is also a local Killing
vector �eld. Note however that the constructed smooth vector �elds are Killing
vector �elds at an instant of time, as the local rotating Rindler space-time is
constructed in a local inertial system at a point p on the space-time manifold.
The true di�erence between this scenario and the Kerr-Newman scenario is the
fact that Kerr-Newman scenario is globally stationary, and this is stationary
only in a neighbourhood on an arbitrary manifold.

The generator χ of the holographic screen has zero expansion, shear and
twist at τ = 0, because at τ = 0 the vector �eld coincides with a Killing vector
�eld, and it is hypersurface orthogonal.
Arti�cial ergosphere
At the new coordinate singularity a null hypersurface H̃ can be constructed,
but this is not the natural hypersurface of the congruence of curves under con-
sideration, as the congruence under consideration is not at H̃.

The null vector �eld generating H̃, must also contain a part in the ϕ di-
rection. That is because it must be orthogonal to all tangents of H̃, and the
location of H̃ is independent of ϕ. Suppose the vector �eld orthogonal to H̃ is
χ̃µ = ξµ + C̃ϕµ, then on H̃,

0 = gµν χ̃
µχ̃ν |H̃ = g00ξ

0ξ0 + 2g01C̃ξ
0ϕ1 + g11C̃

2ϕ1ϕ1 (3.90)
As g00 = 0 on H̃, the requirement is

0 = 2g01 + g11C̃ (3.91)
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so the constant is
C̃ = 2ω (3.92)

This vector �eld is clearly not tangent to the congruence of curves under con-
sideration.

A comparison with the Kerr-Newman metric (2.46) learns that the null hy-
persurface H̃ looks more like the boundary of the ergosphere than a horizon, i.e.
g00 vanishes and the θ dependence of H̃ are the same as for the Kerr-Newman
metric. The ergosphere of the Kerr-Newman black hole is interpreted as frame
dragging due to the concentration of mass in the black hole, but here there is
no mass associated with the rotation. The coordinate frames are not dragged
by matter in this case, but accelerated by hand.
3.5.3 Other local holographic screens
Two families of local holographic screens have been constructed, rotating and
non rotating local holographic screens. Actually this might as well be consid-
ered just one family, as the rotating case is the non rotating case for ω = 0.
In 4-dimensions, i.e. 1 time and 3 spatial dimensions, the non rotating holo-
graphic screens can be divided into two subclasses, the local �at screens and the
screens with positive local curvature. Are there screens with a negative local
curvature? The answer is no. A null geodesic congruence of curves may perhaps
be constructed such that the space orthogonal to the congruence has negative
curvature may be found, but then the expansion of the geodesics that extend
away from the surface will immediately become positive and therefore no light
sheets extend from these surfaces.

The two families of local holographic screens constructed here can be used
to construct any �nite size holographic screen by patching local screens with
the right curvature and right angular velocity together.



46 The holographic principle



Part II

Derivation of the Einstein

equation

47





Chapter 4

A thermodynamic

interpretation of space-time

In this chapter the generalised laws of thermodynamics are assumed to hold
for all matter in the space-time. The generalised laws will be summarised and
the important quantities are de�ned. Assuming the generalised laws of thermo-
dynamics a derivation is given of a local Einstein equation. If this is the true
way to derive the Einstein equation, then it could mean that gravity should
not be quantised at all, but that it should be treated as a many particle e�ect,
such as water or sound waves. This issue is left open to debate in this thesis,
because any local �eld description of gravitational interactions at (extremely)
small scales can only lead to a better understanding of gravity. Only after the
theory is developed which describes local gravitational self-interactions and in-
teractions with matter the answer to this question is known. At this point in
time there is absolutely no experimental information to give a solid foundation
for any answer to this issue.

The derivation of the Einstein equation presented here is a more general
derivation than the one originally proposed by Jacobson in 1995, [10]. Jacobson
considered locally static horizons, which he calls local Rindler horizons. He
created locally accelerated observers in order to model information entering the
space-time through the local past horizon of the local Rindler space. He was led
to the conclusion that the Einstein equation does not describe a fundamental
force, but rather an e�ective �eld description of same more fundamental �elds.
The e�ective �eld description breaks down when the local equilibrium condition
fails. In a later article he declared that this interpretation no longer has his
favour [11], but this doesn't a�ect the derivation itself.

In the derivation presented here locally stationary horizons are considered
instead of static horizons. These are rotating versions of local Rindler horizons.
The equivalence principle, which is usually invoked to transform the gravita-
tional �eld away, is a starting point for the local thermodynamics. This means
that local gravitational waves are described by the model, which propagate on
some arbitrary background space-time manifold.
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4.1 Observers and information
Consider an observer in some space-time. In general the observer cannot observe
the entire space-time, for the information present in the space-time can only
travel at �nite velocities, velocities which are on average less than the speed
of light. Only information within the past light cone of the observer can reach
him, and he can only send information to the region within his future light cone.
The part of the space-time from which an observer can obtain information is a
spacelike hypersurface with boundary, where the boundary is a null hypersurface
which is the horizon of the observer. Events happening outside his horizon are
a spacelike distance away from the observer. The information actually seen by
the observer is the boundary, for only on the light cone travel the photons which
reach his eyes.

In particular uniform accelerating observers will be unable to see all of space-
time, see �gure A.5, and observers in a space-time with a black hole will not
be able to acquire information from beyond the black hole horizon unless they
enter the black hole themselves. These observers are in space-times in which
there are what are sometimes called causality barriers. These are a kind of one
way streets for information, in one direction the information will experience no
barrier, in the other direction it experiences a wall through which it cannot pass,
for they will have to accelerate to velocities greater than the speed of light to
get through the barrier, which is possible only for tachyons, which are assumed
not to exist.

4.2 The postulates of space-time thermodynam-
ics

In chapter 2 the laws of black hole mechanics have been introduced, and these
laws have a thermodynamic interpretation. Together with the usual laws of ther-
modynamics these form the generalised laws of thermodynamics. In this chap-
ter the generalised laws of thermodynamics are the postulates of what might be
called geometric statistical mechanics, and these laws will be used to derive the
Einstein equations. The Einstein equations can then be interpreted as equations
of state. The original laws of thermodynamics have been explored thoroughly by
experimental and theoretic means, but the generalised laws can't yet be tested
experimentally and have neither been explored thoroughly by theoretic means.
Here the generalised laws are studied near local horizons. Local horizons can
be created by considering local uniform accelerated observers, see section 3.5.

The quantities of importance in the laws of thermodynamics are heat Q,
temperature T , entropy S, work W , and internal energy U . It is not evident
what these quantities are in geometry, but the generalised laws interpret surfaces
in space-time to be proportional to entropy and the gravity associated with these
surfaces as temperature. The surfaces associated with entropy are supposed to
be local event horizons, which form the boundary of the observable space-time.

4.2.1 The laws of thermodynamics
In order to clarify the generalised laws of thermodynamics, i.e. the usual ther-
modynamic laws and the extra black hole laws, I will summarise both sets of
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laws here.
The laws of thermodynamics are, the zeroth law,

local thermodynamic equilibrium ⇔ T = constant (4.1)
so two volume elements in thermal equilibrium have equal temperature.

The �rst law, which expresses conservation of energy, is
dU = dQ+ dW (4.2)

i.e. the increase of internal energy of a system is equal to the supplied heat to
the system plus the work done on the system. The heat transferred to a system
is de�ned by

dQ ≡ TdS (4.3)
Entropy is the logarithm of the number of accessible states. Adding heat to a
system means adding degrees of freedom to a system, whereas work does not
change the number of accessible states of the system.

The second, with δS the change of entropy in a closed system,
δS ≥ 0 (4.4)

or the entropy of a closed system increases over time.
Finally the third law,

T → 0 ⇒ δS → 0 (4.5)
which means that the entropy will go to a constant value when the temperature
goes to zero.
4.2.2 The laws of geometric dynamics
The laws of black hole thermodynamics are assumed to describe the geometry
of space-time. The laws are the zeroth,

local stationary horizon ⇔ κ = constant (4.6)
i.e. two pieces of horizon in equilibrium have equal surface gravity. The identi-
�cation of surface gravity with temperature is made.

The �rst law, which describes conservation of energy is
dU = αdA (4.7)

where α is a constant of proportionality 1, and A is the area of the horizon. U
is the energy hidden by the horizon, sometimes referred to as the energy of the
horizon. In chapter 2 the �rst law was

dM =
κ

8π
dA+ ωHdJ + ΦHde (4.8)

where M is the mass hidden by or on the horizon, J is the angular momentum
of the horizon, or all objects hidden by the horizon, and ωH the angular velocity

1α is constant in equilibrium, i.e. when the surface gravity is constant.
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of the horizon. ΦH is the corotating electric potential of the horizon and e is
the total electric charge hidden by the horizon. dA is an area element of the
horizon. The angular momentum term and the electromagnetic charge term
are in [2] interpreted as work terms, and the mass is interpreted as the internal
energy of a black hole. The area is interpreted as a measure of entropy. The
interpretation of work and heat in the scenario presented here is treated in
section 4.3, but only in a scenario without electric charges.

The second law is
da ≥ 0 (4.9)

which means that the area of an area element a = dA of a local horizon increases
in every process, just as the entropy of a closed system increases in any process.
The entropy hidden by horizons is proportional to the surface area of the horizon.

Finally the third law
κ→ 0 ⇒ da→ 0 (4.10)

The surface of the horizon is constant for zero surface gravity.
The generalised laws of thermodynamics are the same as the laws of thermo-

dynamics with the requirement that the horizon thermodynamics is taken into
account, i.e. the temperature of a horizon is proportional to its surface gravity
and the entropy of the horizon is proportional to its area. In local equilibrium
the heat in a region of space-time with a boundary is the heat hidden by the
boundary and the heat carried by matter present in the region,

dQtot ≡ dQth + dQH (4.11)
= TthdSth + THdSH (4.12)

where in equilibrium the thermodynamic temperature Tth and the horizon tem-
perature TH are equal, Tth = TH . A problem with a thermodynamic interpre-
tation of space-time is how heat and work are de�ned in a geometric setting.
The quantities appearing in the postulates will be explained in section 4.3.

4.3 Interpretation of the thermodynamic quanti-
ties

What is the meaning of the postulates of geometric statistical mechanics? A
satisfactory interpretation should be given of each quantity appearing in the
postulates. The original thermodynamic laws have a clear interpretation in the
absence of gravity, so these laws shall not be treated, as the thermodynamics
of the interactions of gravity with matter is described by the laws geometric
dynamics.
4.3.1 Work
Usually work is associated with external parameters describing the system, and
heat is de�ned as energy �ow between the system and a heat bath, or thermal
reservoir. The notion of heat and work are not trivial in space-time. The metric
can't just be put in a box and it is not clear what the external parameters are
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if the system can't be isolated. This can be illustrated with the Kerr-Newman
space-time.

The Kerr-Newman space-time is asymptotically �at, so an observer at in�n-
ity (outside the space-time) will interpret the angular momentum of the space-
time as external parameter, which can be changed by somehow adding angular
momentum to the space-time. What happens if the outside observer adds an-
gular momentum to the space-time? The initial system is described by the 4
parameters of the Kerr-Newman metric. The outside observer will only change
one parameter, the total angular momentum of the space-time J . The external
observer2 adds a little angular momentum δJ . After some time the space-time
will return to an equilibrium con�guration with angular momentum J̃ = J+δJ .
The outside observer is bored 3 with his new space-time, and decides he preferred
the original one, therefore he adds angular momentum 4 −δJ . Again after some
time the space-time will settle down to an equilibrium, which has angular mo-
mentum ˜̃J = J̃−δJ = J and the system has returned to its original con�guration
without generating entropy.

The outside observer at in�nity sees an isolated system and would perhaps
naively use the vector �eld ξµ as the vector �eld generating time translations,
but in the ergosphere of the black hole this vector �eld is no longer a timelike
vector �eld. An observer within the ergosphere will certainly not experience this
�eld as the generator of the time translations. The local observer does not see
an isolated black hole and cannot interpret the angular momentum as external
variable, for if the angular momentum of the black hole is varied, then also the
angular momentum of the gravitational �eld is changed. The observer in the
ergosphere near the horizon would use χµ as the timelike vector �eld, he has to
accelerate in that direction to remain at a �xed distance from the black hole,
because he is dragged by the rotating black hole. The local observer cannot just
increase the angular momentum of the black hole and then decrease it again to
its original value without angular momentum dissipating to the gravitational
�eld of the black hole. The local observer would perform a Penrose process to
decrease the angular momentum of the black hole, but this is a non local process.
The energy of the black hole has decreased if positive energy leaves the space-
time at in�nity. In other words he cannot return to the original con�guration
and repeat the process, thus a transfer of angular momentum is an irreversible
process.

The Kerr-Newman metric can be interpreted as a closed system by observers
at in�nity, and can be by external parameters. Observers which are far enough
away5 from the black hole may also give a good description of the black hole
with these parameters. An observer which is near the horizon can't use these
parameters to describe a closed system, because the gravitational itself carries
the mass and angular momentum, which can be assigned to the black hole only
by observers at in�nity. The conclusion must be that work can only be de�ned
for isolated systems.

2This observer is apparently some sort of deity3As usual the creation (the observer) was created as an image of its creator, i.e. in thiscase me.4Angular momentum can be extracted from a black by a Penrose process, see [2].5Far enough would be the region of space-time where metric is approximately �at
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4.3.2 Temperature and surface gravity
It is not manifest what the surface gravity of a horizon is. The horizon of a
Rindler space-time for example has a surface gravity that is observer dependent.
For a global Rindler space-time the surface gravity must be zero, as Rindler
space-time can be extended to Minkowski space-time. Thus no matter is present
to generate the gravitational �eld, although it is possible to de�ne a surface
gravity for the observer as his own acceleration. How does a local observer
know what the true surface gravity is? It turns out that it doesn't matter what
the true surface gravity is, for it will be shown that in the de�nitions used here
both the heat and the temperature contain the surface gravity κ and therefore
drop out of the thermodynamic relations.

The temperature of a local patch of space-time in instantaneous equilibrium
will be the Unruh temperature, de�ned by

T =
κ

2π
(4.13)

in which κ is the acceleration of the observer with respect to a vacuum space-
time6. An accelerated observer with velocity vµ has as equation of motion
vµ;νv

ν = κvµ, in other words, he moves on a non a�ne parameterised geodesic.

4.3.3 Entropy, heat, and internal energy
A local observer hovering near a black hole does not see the horizon, and can't
de�ne a black hole as a closed system, unless if he knows the global space-
time metric. He can look at matter falling towards the black hole and de�ne
a comoving volume element falling with the matter as long as the matter has
not entered the black hole. He will see this matter fade to black within a �nite
time, see [1], so he does notice that matter disappears from the space-time. The
comoving volume element appears to �atten as it falls towards the horizon when
it is described by the outside observer. An observer falling with the matter does
not see this �attening, for he would measure using a local Minkowski metric.

The vector �eld to be de�ned as the local (approximate) Killing vector �eld
generating the in�nitesimal time translations is the vector �eld generating the
local horizon (null hypersurface), at the horizon this is a null hypersurface or-
thogonal vector �eld.

The entropy can only be de�ned for a closed system, here the closed system
is a comoving volume element, a volume element which moves along with the
the energy which moves towards the horizon. The entropy leaves the space-time
through the local horizon, and the entropy in the volume element scales with
the surface area of the local horizon. That is because the generalised second law
is assumed and the volume element which falls towards the horizon is �attened
as seen by the observer hovering outside the horizon. Just before it fades out of
existence the volume element will have vanishing width 7.

6One can also call it the gravitational acceleration an observer experiences when he hoversat some point outside the gravitating object.7A volume element falling to the horizon with the shape of a ball will evolve into a volumeelement which looks like a pancake with the same radius as the ball had for observers whichhover near the horizon of a black hole.
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There is no work in this scenario, see 4.3.1, and the entropy dS in the volume
element is related to the internal energy U of the volume element by

TdS = dQ (4.14)
= dU (4.15)

The internal energy in geometric dynamics is proportional to the surface area
of the horizon, and this means that the entropy hidden by the local horizon is

TdS = αdA (4.16)
where α = κ

8π if the postulated laws of geometric dynamics have exactly the
same form as described in chapter 2.
4.3.4 The composition of internal energy
The internal energy of a part of space-time is proportional to the mass and
angular momentum content of that part of the space-time. In a more general
case also the energy of electromagnetic charges and �elds etc. must be added
if they are present in the part of space-time under consideration. Locally the
internal energy satis�es

dU = dM − ωHdJ (4.17)
With equation (4.15) this means that the quantities M and J which have the
interpretation of mass and angular momentum respectively are transferred over
the horizon as heat.

In�nitesimal geometric quantities mass dM and angular momentum dJ of a
local patch of the horizon may be de�ned for the 8 by

dM ≡ ξµ;νdSµν (4.18)
dJ ≡ ϕµ;νdSµν (4.19)

with ξµ a local stationary Killing vector �eld and ϕµ a local rotational Killing
vector �eld. The surface element dSµν of the horizon can be given by n[µmν]dA,
where nµ and mν are null geodesics orthogonal to the horizon chosen such that
gµνn

µmν = −1, see section 35 for the construction of a metric on the horizon.
It is also possible to de�ne these geometric quantities for the local metric

in a volume near the horizon, but this de�nition is even less obvious than the
previous de�nition for the horizon.

dM ≡ ξνµ;νdV µ (4.20)
dJ ≡ ϕνµ;νdV µ (4.21)

where dV µ = nµdV is the volume element of the space-time region with normal
nµ. These de�nitions are related if the Stokes theorem is applied, but only
when the horizon encloses the region V of space-time and the vector �elds can
be identi�ed with each other.

8There are two reasons for these de�nition, the �rst is that these Killing vector �elds havethese constants of the motion associated with them, see 2.2.1, and the second (related) reasonis that the Komar integrals will be reproduced if one integrates over a closed horizon which isthe boundary of some region of space-time, cf. black holes.
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4.4 The Einstein equation
The quantities appearing in the generalised thermodynamic laws have now been
identi�ed and in this section the generalised laws will be used to derive the
Einstein equation. The derivation is done locally, the resulting Einstein equation
describes the local interaction of the metric with matter present locally on the
metric.

The principle of equivalence states that in any point p in the space-time it
is possible to �nd a local coordinate system in which the metric is Minkowski
at p with vanishing �rst derivatives. This means that locally the gravitational
�eld, i.e. the a�ne connection, vanishes in p. In a local Minkowski space-
time no horizons are present, but a local horizon can be created by considering
Lorentz boosted observers near p, see section 3.5. The horizons created in this
way are called local Rindler horizons, and the rotating version may be called
a rotating local Rindler horizon. The local Rindler space-time possesses local
symmetries, i.e. instead of the usual global Killing vector �eld generating the
Lorentz boost in a global Rindler space-time, the local Rindler space-time has
the Killing vector �eld property only instantaneous 9. The rotating local Rindler
space-time is an instantaneously stationary axisymmetric space-time, with the
instantaneous Killing vector �elds associated with these symmetries.

In this way not only an event horizon in an arbitrary gravitational �eld can
be described locally, but any local interaction of matter with the metric can
be described by the space-time thermodynamics. The only requirement is local
thermodynamic equilibrium. As long as the principle of equivalence holds, local
thermodynamic equilibrium exists. That is because Minkowski space-time is a
�at vacuum space-time. If a transformation can be found such that the space-
time is Minkowski at a point, then the space-time is vacuum around that point,
and a local vacuum is in local equilibrium.

A locally accelerating observer will see a local Rindler space-time, and a heat
bath at the Unruh temperature, see section 2.7. The local Rindler space-time
is also in local equilibrium, because it can be transformed to a local Minkowski
space-time, but it does have a matter current, and the thermodynamics is non-
trivial in the local Rindler space-time.

4.4.1 Einstein equation derived using a local horizon
The Einstein equation will now be derived in the neighbourhood of a local
rotating Rindler horizon using the generalised laws of thermodynamics. The
original derivation of Jacobson, see [10], was for a non rotating local Rindler
horizon, which is a special case of this derivation. The key ingredients in the
derivation are the equalities dQ = TdS and dS = ηdA, where η = α

T .Consider an observer in a local rotating Rindler space-time, see section 3.5.2,
and let χµ = ξµ + ωHϕ

µ be the generator of the local rotating horizon. The
vector �eld ξµ generates the motion towards the horizon, and ωHϕ

µ generates a
rigid rotation of the horizon with angular velocity ωH . The case ωH = 0 repre-
sents the case treated by Jacobson, the non rotating local Rindler horizon. The

9The vector �eld satis�es the Killing property only in a spacelike neighbourhood of p, thevector �eld exists in the future and past of p, but there it doesn't satisfy the Killing property.
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vector �eld χµis timelike outside10 the local horizon. At point p, i.e. the point
in the local Minkowski frame where the horizon is constructed, it is normalised
such that χµχµ = −1 and it is future directed, i.e. it points in the direction of
the �ow of time. The timelike vector �eld χµ is a geodesic of the local rotating
Rindler space-time in non a�ne parameterisation, χµ;νχ

ν = κχµ. The vector
�eld χµ can be interpreted as a local boost vector �eld generating the energy
(matter) �ow over the horizon 11.

On the local rotating horizon χµ is null and it is orthogonal to the horizon,
for the horizon is the null hypersurface generated by χµ. Vector �elds which are
null hypersurface orthogonal have the property that they satisfy the equation
for non a�ne parameterised geodesics 12. Therefore on the local rotating horizon
the boost vector �eld satis�es χµχµ = 0 as well as χµ;νχ

ν = κχµ with the scalar
function κ a constant scalar due to the generalised zeroth law which states that
the surface gravity is constant on a local stationary horizon. The horizon is in
this case generated by the local stationary axisymmetric vector �eld χν , and is
indeed a local stationary horizon.

The χµ can be reparameterised such that they are geodesics of the local
rotating Rindler space-time. The geodesics kµ are de�ned by, see appendix A.7,

χµ = −κλkµ (4.22)
where λ is the a�ne parameter, which is zero in the neighbourhood of point p
where the local inertial frame is constructed, and is negative to the past of p.

The heat dQ in the comoving volume element dV which falls towards the
horizon, as seen by the accelerating observers outside the local horizon on the
vector �eld χµ, is equal to the energy dU in that volume element. The energy
moving along with the volume element is the energy transported along the vector
�eld χµ. The energy current pµ seen by the observers on χµ is

pµ = Tµνχ
ν (4.23)

= −κλTµνkν (4.24)
The volume dV is the volume of the spacelike hypersurface generated by the
timelike geodesic vector �eld kµ, this is the natural normal vector to the volume.
The energy in the volume element is

dU = −κλTµνkµkνdV (4.25)
Near the horizon the volume becomes �atter and �atter, as seen by the observer
on χµ, the volume element in�nitesimally close to the horizon is

dV = dAdλ (4.26)
In�nitesimally close to the horizon the energy or heat moving towards the hori-
zon is given by

dQ = −κλTµνkµkνdAdλ (4.27)
10Outside the local horizon means that the vector �eld χµ is considered to be farther awayfrom the origin of the local metric (3.85) than the local horizon11A rotating black hole drags matter along with it, this scenario is arti�cially created whenlocal rotating Rindler horizons are constructed.12See appendix A.6.
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Although the observer does not see it, the heat is expected to cross the horizon.
The amount of entropy that will cross the horizon at observer time λ is the heat
divided by the Unruh temperature

dS =
dQ
T

(4.28)
= −2πλTµνkµkνdAdλ (4.29)

Note that the surface gravity has disappeared from the equation for entropy. The
accelerated observer observes a local heat bath which is homogeneous, therefore
the scalar quantity Tµνkµkν has the following expansion in λ,

Tµνk
µkν(λ) = Tµνk

µkν(0) + O(λ2) (4.30)
The change of entropy is proportional to the change in horizon area, dS =

ηda. The change in the horizon area a is13,
da
dλ

= θa (4.31)
with θ the expansion of the congruence of null geodesics kµ, which generates
the horizon.

The vector �eld kµ is instantaneously stationary at λ = 0 and has the
property

Bµν |λ=0 ≡ hρµh
ν
σ kµ;ν

∣∣
λ=0

= 0 (4.32)
where hµν is the projection operator on 2-dimensional space14 orthogonal to the
geodesics kµ.

The horizon area element at a�ne parameter λ is
a (λ) = a0e

∫ λ
0 dλ′θ (4.33)

≈ a0

(
1 + λθ (0) +

λ2

2
dθ
dλ

(0)
)

= a0

(
1 +

λ2

2
Rµνk

µkν
)

(4.34)
where a0 = dA, the surface element of the horizon at λ = 0, and to obtain the
term dθ

dλ (0) the Raychaudhuri equation for null geodesic congruences was used,
equation (3.29), in conjunction with the fact Bµν (0) = 0, see equation (4.32).
Thus the local increase of horizon area da is

da = λRµνk
µkνdλdA (4.35)

and the increase of the entropy hidden by the horizon at observer time λ is equal
to

dS = ηda = ηλRµνk
µkνdλdA (4.36)

and therefore dQ
T = dS is equivalent to
− 2πλTµνkµkνdλdA = ηλRµνk

µkνdλdA (4.37)
13A derivation for this equation is in section 3514See section 3.4.4, note that the hats have been dropped here. The equation (4.32) is alsoproven for the null geodesic congruences under consideration here.
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When λ 6= 0 then the expression can be divided by ηλdAdλ,
− 2π

η
Tµνk

µkνdλdA = Rµνk
µkνdλdA (4.38)

As the kµ are null vector �elds there is freedom to add a term proportional
to the metric to this equation. The term fgµνk

µkν , with f a scalar function is
added to the right hand side,

− 2π
η
Tµνk

µkν = Rµνk
µkν + fgµνk

µkν (4.39)
or

0 =
(

2π
η
Tµν +Rµν + fgµν

)
kµkν (4.40)

This equation holds for all null vector �elds on the horizon, for the �rst law
dQ = TdS does not depend on any special family of geodesics. Therefore the
term between brackets must be zero,

0 =
2π
η
Tµν +Rµν + fgµν (4.41)

Now the function f can be found by taking the the divergence of this equation 15,
0 = Rµν;µ + f;µg

µν (4.42)
The Bianchi identities, (Rµν − R

2 g
µν
)

;µ
= 0, then yield

f = −R
2

+ C (4.43)
with C some constant. The resulting equation relating the metric to the energy
momentum density of matter on the metric is

Rµν −
1
2
gµνR+ Cgµν = −2π

η
Tµν (4.44)

Compare this with the Einstein equation (2.10),
Rµν −

1
2
gµνR− Λgµν = −8πTµν (4.45)

The Einstein equation is recovered when the constant C is identi�ed with the
cosmological constant, C = −Λ, and η is identi�ed as η = 1

4 .
Higher order in λ

Both the change in area and heat �ux were given to �rst order in λ. The solution
to the equation of motion for the local observers generating the horizon was also
valid to this order. Still it is nice to know if the Einstein equation is recovered if
terms at higher order are considered, e.g. if a space-time is considered in which

15The energy momentum tensor is divergence free by de�nition, Tµν;µ = 0.
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there is a higher order neighbourhood in which the solutions to the equation of
motion hold to higher order in λ.

The λ expansion of the area variation is to λ4 inclusive
a (λ) = dAe

∫ λ
0 dλ′θ (4.46)

≈ dA
(

1 +
λ

1!
θ (0) +

λ2

2!
dθ
dλ

(0) +
λ3

3!
d2θ

dλ2
(0) +

λ4

4!
d3θ

dλ3
(0)
)
(4.47)

These terms are easily evaluated using the expressions for the parallel transport
of the Bµν , see equation (3.30) together with the fact Bµν(0) = 0,

d2θ

dλ2
(0) = Rµν;ρk

ρkµkν (4.48)
d3θ

dλ3
(0) = Rµν;ρ;σk

ρkσkµkν − (Rµνkµkν)2

− 2CµσνρCµκνλkσkρkκkλ (4.49)
Thus the higher order area variations are

O(λ2) = ηT
λ2

2!
Rµν;ρk

ρkµkν (4.50)
O(λ3) = ηT

λ3

3!

(
Rµν;ρ;σ −RµνRρσ − 2CκσλρC

κ λ
µ ν

)
kρkσkµkν (4.51)

The tensor Cκλµν is the Weyl tensor, i.e. the traceless symmetric part of Rκλµν ,and it measures the deformation of the manifold.
The heat �ux terms to higher order in λ are, under the assumption that

κ = constant,
O(λ2) = −κλ

2

2!
Tµν;ρk

ρkµkν (4.52)
O(λ3) = −κλ

3

3!
Tµν;ρ;σk

ρkσkµkν (4.53)
These expressions are simply the terms in the Taylor expansion of the function
F = −κλTµνkµkν . If the assumption κ = constant is dropped, then terms with
derivatives of κ need to be added, and the relation between χµ and kµ will no
longer be a factor λ.

The �rst order terms gave the Einstein equation which connects Tµν and
Rµν . In the second order equation there is also the freedom to add new terms.
The new equality is, with C = 2π

η ,
0 = λ2 [CTµν;ρ +Rµν;ρ + Uµgνρ + Vρgµν +Wνgρµ] kρkµkν (4.54)

Contracting the term between brackets with gµν yields
0 = CTµµ;ρ +R;ρ + Uρ + 4Vρ +Wρ (4.55)

= (CTµµ +R);ρ +Xρ (4.56)
where Xρ ≡ Uρ + 4Vρ +Wρ. The Einstein equation is recovered for

Xρ = 2R;ρ (4.57)
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A good choice for the three vectors is Uµ = Wµ = 0, and Vµ = 1
2R:µ.The third order terms will yield a tensor Qµνρσ, which is de�ned as a sum of

all permutations of indices of terms Pµνgρσ, because there are now that many
ways to contract the metric tensor with the vector �eld kµ. The new relation is
0 = λ3

[
CTµν;ρ;σ +Rµν;ρ;σ −RµνRρσ − 2CκσλρC

κ λ
µ ν +Qµνρσ

]
kρkσkµkν

Due to the symmetries of the other terms the tensor Qµνρσ has the symmetries
Qµνρσ = Qµνσρ = Qνµσρ = Qµνρσ (4.58)

The Einstein equation is recovered for
Qµνρσ ≡ R;ρ;σgµν −RρσRµν − 2CκσλρC

κ λ
µ ν (4.59)

The vector Xµ and tensor Qµνρσ can be chosen such that the Einstein equa-
tion is satis�ed, it is expected that this is possible to all orders in λ.
Stability under gravitational disturbances
Consider a gravitational disturbance,

gµν → g̃µν = gµν + δgµν (4.60)
What is the e�ect of such a disturbance on the Raychaudhuri equation for a null
geodesic congruence kµ? An observer on a geodesic in the congruence will see
the other geodesics in the congruence deviate di�erently than before, the distur-
bance a�ects the space orthogonal to the geodesics. The varied Raychaudhuri
equation is

dδθ̂
dλ

= −θ̂δθ̂ − 2σ̂µνδσ̂µν + 2ω̂µνδω̂µν + δRµνk
µkν (4.61)

= 2B̂νµδB̂µν + δRµνk
µkν (4.62)

The variation of the Ricci tensor is well known, this yields the Palatini identity,
see e.g. [1], so only the variation of B̂µν will be treated here,

δB̂µν = δĥµρB
ρσĥσν + ĥµρB

ρσδĥσν (4.63)
= δgµρB̂

ρσĥσν + ĥµρB̂
ρσδgσν (4.64)

= δgµλB̂
λ
ν + B̂ λ

µ δgλν (4.65)
This is clearly proportional to B̂µν , and since B̂µν = 0 the only non vanishing
term in the Raychaudhuri equation is the disturbed Ricci tensor,

dδθ̂
dλ

= δRµνk
µkν (4.66)

and thus the varied expansion is
δθ̂ = λδRµνk

µkν + C (4.67)
with C some constant which is set to zero using appropriate boundary condi-
tions.
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The disturbance of the heat transfer is
δQ ∝ λδRµνk

µkν (4.68)
so the �rst order Einstein equations are recovered, i.e. the disturbed metric also
satis�es the Einstein equations.

If a second order disturbance is considered nothing changes, now there are
terms proportional to δB̂µνδB̂µν , B̂µνδ2B̂µν , and (δ2Rµν)kµkν . The only vari-
ation not proportional to B̂µν is again the varied Ricci tensor, so again nothing
new happens.

The conclusion is that the local thermodynamic description of gravity is
independent of external gravitational waves passing through the local volume
element.

4.4.2 Discussion
The state of a system is only well de�ned if the system remains in�nitesimally
close to equilibrium, does this system satisfy that property? Yes, for space-time
is locally empty (or a local vacuum) if the local inertial system is considered, so
the local in�nitesimally accelerated observer observes a space in local equilib-
rium.

The in�nitesimal Lorentz boost can be interpreted as a thermal �uctuation
of the vacuum. A �uctuation immediately causes a local acceleration horizon
to appear. The surface gravity may be interpreted as the reacting force of the
thermal bath which the boosted particle crashes into, thus it experiences a force
which pushes it back to its original location. Another interpretation for κ is
to interpret it as a measure for the probability for the �uctuation to happen, a
larger acceleration is less likely to happen than a small one.

One can also consider the �uctuations as quantum �uctuations, then the
origin of the pull back force can be interpreted as the gravitational pull which
comes from the antiparticle created at the same time as the particle. The
gravitational acceleration felt by the created particle measures the mass of the
anti particle. Again the acceleration is a measure of the size of the �uctuation.

Since the local equilibrium is the con�guration in which the highest entropy
is attained (together with the lowest energy), the entropy seen by the in�nitesi-
mally boosted particle must be in�nitesimally close to the equilibrium entropy,
the process is isentropic.

Forget the second law of black hole thermodynamics for a moment, and
consider only the second law of ordinary thermodynamics. This law states
that the entropy in a closed system can not decrease. Consider the closed
system to be a local Minkowski neighbourhood of space-time. This system is
in local equilibrium, and it is a local vacuum, therefore de�ne its temperature
and entropy to be zero. A Lorentz boosted particle in this local Minkowski
system observes a heat bath, and an entropy transfer over the horizon. This is
against the second law, the entropy, which is a scalar and is therefore invariant
under coordinate transformations, of the local Rindler space-time observed by
the particle must be in�nitesimally close to the entropy of the local Minkowski
space-time experienced by an inert particle. Apparently the entropy lost over the
horizon is equal to the entropy which is created by accelerating, i.e. the entropy
of the observed heat bath. The total entropy in the original Minkowski volume
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was zero, and therefore the entropy hidden by the local horizon of the boosted
particle must cancel the entropy of the heat bath observed by the particle. The
entropy hidden by the horizon is the entropy which is seen to cross the horizon by
the accelerated particle. The entropy which the particle observes to disappear
from his local space-time is contained in a volume element, which is �attened
to a surface element on the horizon. This gives an upper bound for the total
entropy for a system in local equilibrium, it has to be proportional to the area
of surfaces rather than volumes, for any �uctuation will generate a local horizon
over which entropy is lost. Following this line of reasoning the ordinary second
law of statistical mechanics actually implies a scaling of entropy proportional to
horizon area for any system with Lorentz symmetries.

The classical statistical mechanics is consistent with this relativistic theory,
because for small �uctuations the horizon is far away, and the created horizon lies
outside the local system. Therefore entropy is in classical processes, i.e. in low
energy processes, proportional to volumes. However, if the �uctuation becomes
arbitrarily large, then the horizon comes arbitrarily close to the �uctuation,
and then the entropy of the heat bath observed by the �uctuation has to be
proportional to an area. Apparently the number of states at high energy reduces
at such a high rate that the entropy in a region does no longer scale with the
volume, but rather the entropy increases proportional to the area.

Taking this reasoning a step further, a lightlike �uctuation happens on the
acceleration horizon, lightlike �uctuations describe the electromagnetic interac-
tions, for these are propagated by photons. All force mediators in the standard
model are lightlike (on shell). The space-time a lightlike object experiences
is 2-dimensional, i.e. the dimension of the spatial surface orthogonal to the
propagation null vector of the photon.

The general theory of relativity can thus be interpreted as a statistical theory,
and the principle of equivalence is actually the statement that the neighbour-
hood of each point in space-time is in local thermodynamic equilibrium. That
the general theory of relativity is a statistical theory could have been expected,
as Einstein is well known for his work on black body radiation.



Chapter 5

Holographic derivation of the

Einstein equation

In this chapter the holographic principle is used to derive the Einstein equation
locally, in particular the generalised covariant entropy bound is the holographic
bound used in this chapter which is

S(L) ≤ A(B)− Ã(B̃)
4

(5.1)
See section 3.3 for a description of the quantities appearing in the bound.

5.1 in�nitesimal light sheet
The generalised covariant entropy bound is supposed to hold for the entropy
passing through a local light sheet L connecting the local in�nitesimal holo-
graphic screens dA and dÃ which are separated by an in�nitesimal a�ne pa-
rameter distance λ as measured along geodesics which generate the light sheet.
It will be seen that this is a good measure for the length of a light sheet, as the
a�ne parameter on the null geodesic congruence generating the light sheet is
associated with the proper time of the natural family of observers which gener-
ate the light sheet. The generalised covariant entropy bound for this scenario
is

dS ≤ dAλ − dA0

4
(5.2)

The reasoning in this section will be very much like that of section 4.4. First
the entropy S passing through the light sheet will be considered. The entropy
passing through the light sheet is by de�nition related to the heat dQ passing
through the light sheet,

TdS = dQ (5.3)
By de�nition no work is done on the light sheet, i.e. it is a geometrical con-
struction, not a physical object, ergo no work can be done on it. The entropy
is related to the energy dU passing through the light sheet

TdS = dU (5.4)

64
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A local light sheet would be constructed in a local Minkowski space-time. The
local temperature and energy of Minkowski space is zero, and this equality is
empty. However, the local light sheets constructed in section 3.5.2 come with a
natural family of accelerated observers, and the temperature on the light sheet
should be the local temperature observed by the accelerated observer, which is
the Unruh temperature.

The local holographic screen generator χµ = ξµ + ωϕµ is proportional to
the null geodesic kµ, just as in the thermodynamic scenario, χµ = −κλkµ, with
λ the a�ne parameter and κ the acceleration of the observers. The Unruh
temperature is

T =
κ

2π
(5.5)

The energy current seen by the observers is
pµ = Tµνχ

ν (5.6)
= −κλTµνkν (5.7)

The volume element in�nitesimally close to the light sheet containing the energy
that will cross it in proper time interval dλ is

dV µ = kµdAdλ (5.8)
The heat or energy U passing through the local light sheet is the energy

which these observers see leaving the observable part of their space-time at
proper time λ is

dU = −κλTµνkµkνdAdλ (5.9)
The entropy transferred through the light sheet is

dS =
1
T

dU = −2πλTµνkµkνdAdλ (5.10)
The accelerated observer sees a local homogeneous heat bath and therefore the
term Tµνk

µkν can be considered constant for small λ, the �rst correction being
of order λ2.

Now the area di�erence of the holographic screens is considered.
dAλ − dA0 = da (5.11)

= [Rµνkµkν ]λ=0λdλdA+ O(λ2) (5.12)
The area variation da = dAλ − dA0 of an area element is given by equation
(4.33). The area element is in�nitesimal and therefore the term Rµνk

µkν at
proper time λ = 0 can be considered constant on an in�nitesimal area element.

The entropy bound is an equality for the holographic screen, the entropy
scales proportional to the area because of this bound, and the coe�cient must
also be the same, otherwise it is possible to either state a tighter bound, or the
bound is not true. For example, if the entropy scales with volume, then it is
always possible to construct a system with low entropy density large enough
such that its total entropy breaks the bound. Also no work is done, all energy
passing through the light sheet contributes to the number of accessible states.
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The resulting equality is,
− 2πλTµνkµkνdAdλ =

1
4
Rµνk

µkνλdλdA (5.13)
For λ 6= 0 this implies

0 = (8πTµν +Rµν)kµkν (5.14)
Just as in the thermodynamic derivation there is freedom to add fgµνk

µkν ,
0 = (8πTµν +Rµν + fgµν)kµkν (5.15)

The generalised covariant entropy bound does not depend on a special family
of geodesics, the equation must hold for all null vector �elds on the light sheet.
This means that the term between brackets must be zero.

0 = 8πTµν +Rµν + fgµν (5.16)
The scalar function f can be established by taking the divergence of this equa-
tion. The energy momentum tensor is divergence free, Tµν;µ = 0, so the diver-
gence of (5.16) is

0 = (Rµν + fgµν);µ (5.17)
The Bianchi identity (Rµν − R

2 g
µν
)

;µ
= 0 now �xes f up to a constant C,

f = −R
2

+ C (5.18)
The resulting equation relating the metric to the energy momentum density

of matter on the metric is
Rµν −

1
2
gµνR− Λgµν = −8πTµν (5.19)

and this is exactly the Einstein equation with Λ = −C the cosmological con-
stant.
5.1.1 discussion
The derivation, carried out for local holographic screens, is similar to the deriva-
tion in section 4.4.1, the generalised covariant entropy bound implies the gen-
eralised second law.

What is important is that this holographic derivation is more general than
the thermodynamic derivation. The screens constructed here are purely geo-
metric. For example, black hole horizons have a physical interpretation and it
may be argued that work can be done on black holes, and therefore also on
the local horizons. It remains possible to give a classic physical interpretation
of the holographic screen in certain cases, i.e. when the congruence of curves
represents physical observers, then the screen might be interpreted as a patch
of the horizon of a rotating black hole, even a non stationary one. The local an-
gular velocity is the angular velocity of the curves used to generate the horizon.
The mass of the hidden black hole must be determined from the local uniform
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acceleration along the curves, because the global space-time manifold will not
be asymptotically �at.

The great advantage of this derivation of the Einstein equations is that the
holographic screens remains a valid construction even if the natural family of
curves which generate the light represents unphysical observers which move
faster than the speed of light. This fact can be used in the construction of �nite
dynamical light sheets on a �nite patch of the space-time manifold. An arbitrary
dynamic �nite holographic light sheet may be constructed by smoothly patching
together local rotating light sheets with the right angular velocities.

The construction of holographic screens remains valid to arbitrary small
length scales, as long as a local inertial system can be found. That is nothing
more than requiring space-time to be a smooth manifold and this is not an
unusual assumption. Near the Planck length scales the metric is expected to
be in a superposition of metrics. In that case there is no transformation to
a local inertial frame and the construction of local holographic screens breaks
down. A possible way out is to consider the expectation value of the metric,
and construct screens on the averaged metric.

5.2 �nite holographic screen
The Einstein equation can also be derived from the generalised entropy bound
for �nite holographic screens A and Ã which are an in�nitesimal distance dλ
apart. The bound is then

S ≤ Aλ −A0

4
(5.20)

and the bound is again an equality for the holographic screens.
For each patch of the light sheet exists a natural family of accelerated ob-

servers, and all these observers see in�nitesimal comoving volume elements
which will cross the horizon. Now all the energy in these volume elements
needs to be added up to calculate the entropy moving through the light sheet.
The metric hµν , see section 3.4.3, on the hypersurface orthogonal to the timelike
geodesic congruence kµ is

hµν = gµν + kµkν (5.21)
The local volume element of a spatial volume orthogonal to a timelike geodesic
congruence is the determinant of the metric on the hypersurface,

√
hd3x ≡

√
det(hµν)d3x (5.22)

x are the coordinates on the hypersurface. The vector �eld kµ is the normal to
the hypersurface.

The total entropy S in a closed comoving �nite volume moving towards the
horizon is

S = −2π
∫
V

λTµνk
µkν
√
hd3x (5.23)

The quantity Tµνkµkν can no longer be considered constant, therefore the av-
erage will be taken, the average of any scalar ρ in the volume V is de�ned
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by
< ρ > ≡

∫
V
ρ
√
hd3x∫

V

√
hd3x

(5.24)
The light sheet under consideration has in�nitesimal a�ne parameter length

dλ. The entropy passing through the light sheet in observer time λ is the
entropy contained in the volume with the horizon as boundary on one side and
has thickness dλ orthogonal to the boundary. The direction orthogonal to the
boundary is kµ, and the volume element of this volume near the horizon can be
expanded for small λ,

√
hd3x ≈

√
h(x, 0)d2xdλ+ O(λ2) (5.25)

and √h(x, 0) is the metric on the boundary of the volume. The metric ĥµνon the boundary has been de�ned in section 35. The λ is coordinate is in the
boundary orthogonal direction kµ.

The average of a scalar in a volume of thickness λ near the holographic screen
is

< ρ >0 ≡
∫
λ

∫
B
ρ
√
ĥd2xdλ∫

B

√
ĥd2x

∫
λ

dλ
(5.26)

where B is the boundary of V at the holographic screen.
The scalar Tµνkµkν is parallel transported along kµ,

(Tµνkµkν);ρk
ρ = 0 + O(λ) (5.27)

i.e. Tµνkµkν can be considered constant with respect to λ in a neighbourhood
of λ = 0. The average of λTµνkµkν near the screen is

< λTµνk
µkν >0 =

∫
λ

∫
B
λTµνk

µkν
√
ĥd2xdλ∫

B

√
ĥd2x

∫
λ

dλ
(5.28)

=

∫
B
Tµνk

µkν
√
ĥd2x

∫
λ
λdλ∫

B

√
ĥd2x

∫
λ

dλ
(5.29)

= < Tµνk
µkν >0

∫
λ
λdλ∫
λ

dλ
(5.30)

The entropy passing through the light sheet is found to be
S = −2π < Tµνk

µkν >0

∫
λ

λdλ
∫
B

√
ĥd2x (5.31)

The next step is the area di�erence, the area A of the spatial surface B
orthogonal to the light sheet at proper time λ is

A(λ) =
∫
B(λ)

√
ĥ|λ(x)d2x (5.32)

=
∫
B(0)

e
∫
θdλ

√
ĥ|λ=0(x)d2x (5.33)

≈
∫
B

(
1 +

∫
λ

Rµνk
µkν(x)λdλ) +

∫
λ

O(λ2)dλ
)√

ĥd2x
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In the second line the expression for the rate of change of each area element was
used, see section 35, and in the third line 1 it was used that the expansion, shear
and twist of the congruence vanish at λ = 0, and therefore the expansion near
λ = 0 can be approximated by

θ(x, λ) ≈ λRµνk
µkν(x, 0) + O(λ2) (5.34)

The area di�erence is for screens an in�nitesimal distance λ apart,
A(λ)−A(0) =

∫
λ

∫
B

λRµνk
µkν

√
ĥd2xdλ (5.35)

The average of λRµνkµkν for a volume of in�nitesimal thickness near the holo-
graphic screen is2

< λRµνk
µkν >0 = < Rµνk

µkν >0

∫
λ
λdλ∫
λ

dλ
(5.36)

With that the right hand side of the entropy bound (5.20) has become
A(λ)−A(0)

4
=

1
4
< Rµνk

µkν >0

∫
λ

λdλ
∫
B

√
ĥd2x (5.37)

The equations (5.31) and (5.37) now yield the equality
− 8π < Tµνk

µkν >0 = < Rµνk
µkν >0 (5.38)

A zero term < fgµνk
µkν >0 can be added, f is a scalar function, the result is

− 8π < Tµνk
µkν >0 = < Rµνk

µkν >0 + < fgµνk
µkν >0 (5.39)

The sum of averages is the average of a sum, for all the averages here are
supposed to be �nite,

0 = < 8πTµνkµkν +Rµνk
µkν + fgµνk

µkν >0 (5.40)
= < (8πTµν +Rµν + fgµν) kµkν >0 (5.41)
≡ < Hµνk

µkν >0 (5.42)
The geodesic generator kµ of the light sheet is not unique. This relation must
hold for all tangents to the light sheet. The average (5.42) is zero for all these
tangents,

0 = < Hµνk
µkν >0 (5.43)

=

∫
B
Hµνk

µkν
√
ĥd2x∫

B

√
ĥd2x

(5.44)

Since the kµ are arbitrary, and the surface area of B is non zero and �nite, this
can only be true if

0 = Hµν (5.45)
= 8πTµν +Rµν + fgµν (5.46)

1Note that the third line has only explicit dependence on λ. The surface integral is evalu-ated at λ = 0 and the scalar Rµνkµkν too.2The derivation is exactly the same as the one for λTµνkµkν .
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The same steps as in the previous derivation 3 are taken again and therefore the
most general solution for f is

f = −1
2
R+ Λ (5.47)

and the Einstein equation is again recovered.
5.2.1 discussion
By considering the average entropy passing through a �nite screen an e�ective
description of the behaviour of the metric has been found for �nite regions of
space-time. Note that the regions have in�nitesimal thickness. In order to
acquire a volume of �nite thickness a whole lot of light sheets of in�nitesimal
a�ne parameter length can be constructed. This new light sheet is then bounded
by two surfaces a �nite distance λ apart, and the entropy passing through the
light sheet is the sum of contributions of each light sheet of in�nitesimal length.
The size of the light sheet is ultimately determined by the convergence condition
imposed on the null geodesics generating the light sheets. If two light sheets of
in�nitesimal length are patched together, then they are patched in such a way
that the new light sheet extends orthogonally away from the surface on which
the old light sheet terminated orthogonally. The generators of the patched
light sheet will be smooth vector �elds. The termination surface can always be
chosen such that the null geodesic congruence terminates orthogonally, because
of equation (3.31), i.e. the vector �eld will never develop a twist.

Is this derivation of the Einstein �eld equations more fundamental than the
usual derivation, see section 2.1 and [1]? As the boundary area of the light
sheet in the generalised covariant entropy bound is described by the Raychaud-
huri equation, the fact that the �eld equations have only second derivatives of
the metric and terms proportional to the metric is implicit in the covariant en-
tropy bound. Therefore the derivation is not more general, as the only other
assumption in the usual derivation is that it reduces to the Newtonian theory
for weak �elds, but this requirement is dropped for the Einstein equation with
cosmological constant.

If the entropy is supposed to scale with volume, as in ordinary thermody-
namics then one might expect that a covariant entropy bound may hold using
timelike geodesics, which begin orthogonal on a spatial volume (hypersurface).
This will not yield the Einstein equation, unless the trace of the energy momen-
tum tensor is added by hand in the expression for the heat in the volume. That
is because in that scenario it is impossible to add a scalar function for free, the
inner product of timelike geodesics is not zero. Also the cosmological constant
must be added by hand in such a scenario. This may be another indication that
the holographic principle is actually correct.

The covariant entropy bound is time reversal invariant, it can equally well
describe the decrease of a horizon surface area due to entropy entering a space-
time over the past horizon, see �gure A.5. It may therefore be used in a unitary
microscopic description of quantum gravity.

An advantage of the holographic derivation over the thermodynamic deriva-
tion is that the Einstein equations derived in this way is independent of a phys-
ical interpretation of the geodesics generating the light sheet.

3See the derivation under equation (5.16).
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Conclusion

The Einstein equation and the laws of black hole mechanics imply a scaling of
entropy with area. Together with the assumption that black hole formation and
evaporation proceed in a time reversible manner, this scaling of entropy with
area implies a bound on the total entropy passing through null hypersurfaces,
it is less than the surface area orthogonal to the null hypersurface generators.
The surface area can contain less than one bit per Planck area if the bound is
correct and the number of states of a system can be in is �nite.

Reversing the logic, i.e. assuming a holographic entropy scaling either as
thermodynamic principle or in the form of the holographic entropy bound, leads
to the Einstein equation. This means that a holographic scaling of entropy is
consistent with classical general relativity.

There is no a priori reason to assume that the number of degrees of freedom
available to the metric at the quantum scale is larger than at large scales. If
the number of degrees of freedom available to the metric is reduced, then this
reduces the dimension of the divergences in quantum gravity, and it may become
renormalisable. Holography is a new symmetry in the theory, but it is not local,
a boundary has to be speci�ed on which the information in a region of space-
time is projected. the implementation of the symmetry in a quantum theory
therefore is nontrivial, it is not possible to de�ne a Nöther current, which exists
for local symmetries. It is also debatable if it makes sense to talk about a
boundary on such small scales that the metric is in a superposition.
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Appendix A

Tools

In the appendix some facts from general relativity are summarised. Thorough
treatments can be found in [1, 2].

A.1 Tensors
Type (mn) tensors, i.e. m contravariant and n covariant indices, are de�ned by
their transformation law

T̃µ1...µm
ν1...νn (x̃) =

m∏
i=1

(
∂x̃µi

∂xρi

) n∏
j=1

(
∂xσj

∂x̃νj

)
T ρ1...ρm

σ1...σn (x) (A.1)

For example, a type (22) tensor transforms according to
T̃κ µ
λ ν (x̃) =

∂x̃κ

∂xρ
∂xσ

∂x̃λ
∂x̃µ

∂xτ
∂xυ

∂x̃ν
T ρ τ
σ υ (x) (A.2)

A.1.1 General in�nitesimal coordinate transformations
Consider a general in�nitesimal coordinate transformation

xµ → x̃µ = xµ + dxµ (A.3)
It is often useful to express the transformed tensor, e.g.. T̃µν (x̃), in the old
coordinates, i.e. one would like to know T̃µν (x).

The partial derivatives required to transform the tensor are
∂x̃µ

∂xν
= δµν +

∂dxµ

∂xν

∂xν

∂x̃µ
= δ ν

µ −
∂dxν

∂xµ
+O

(
dx2
) (A.4)

The transformed tensor is
T̃µν (x̃) =

∂xρ

∂x̃µ
∂xσ

∂x̃ν
Tρσ (x)

= Tµν (x)− Tµσ (x)
∂dxσ

∂xν
− Tρν (x)

∂dxρ

∂xµ
+O

(
dx2
) (A.5)
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The Taylor expansion of the transformed tensor is
T̃µν (x̃) = T̃µν (x+ dx)

= T̃µν (x) +
∂Tµν (x)
∂xλ

dxλ +O
(
dx2
) (A.6)

These facts yield the transformed tensor in old coordinates,
T̃µν (x) = T̃µν (x̃)− ∂Tµν (x)

∂xλ
dxλ +O

(
dx2
)

= Tµν (x)− Tµσ (x)
∂dxσ

∂xν
− Tρν (x)

∂dxρ

∂xµ
− ∂Tµν (x)

∂xλ
dxλ +O

(
dx2
)

≡ Tµν (x)−∆dxTµν (x) +O
(
dx2
) (A.7)

where ∆dxTµν (x) is the Lie derivative with respect to the vector �eld dxµ.
The Lie derivative can be expressed in covariant derivatives instead of coor-

dinate derivatives because the a�ne connections cancel against each other,
Tµν,λdxλ = Tµν;λdxλ + ΓκλµTκνdxλ + ΓκλνTµκdxλ

Tµκdxκ,ν = Tµκdxκ;ν − ΓκλνTµκdxλ

Tκνdxκ,µ = Tκνdxκ;µ − ΓκλµTκνdxλ

∆dxTµν ≡ Tµν,λdxλ + Tµκdxκ,ν + Tκνdxκ,µ (A.8)
= Tµν;λdxλ + Tµκdxκ;ν + Tκνdxκ;µ (A.9)

The Lie derivative for tensors of arbitrary type can be derived in the same
manner, however note that transforming a contravariant index will yield a sign
di�erence.

A.2 Equation of motion in general relativity
The principle of equivalence states that at every point p in an arbitrary space-
time it is possible to �nd a local inertial system in a su�ciently small region
around p, such that the laws of nature take the same form as in the absence of
gravitation. Su�ciently small means that the gravitational �eld in that region
is constant for all practical purposes.

A free particle in a local inertial frame ξα with local metric ηαβ moves in a
straight line,

d2ξα

dτ2
= 0 (A.10)

Under a general coordinate transformation to coordinates xµ this equation be-
comes

d2xµ

dτ2
+ Γµκλ

dxκ

dτ
dxλ

dτ
= 0 (A.11)

The a�ne connection Γµκλ is de�ned by

Γµκλ ≡ ∂xµ

∂ξα
∂2ξα

∂xκ∂xλ
(A.12)
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The metric tensor is de�ned by
gµν =

∂ξα

∂xµ
∂ξβ

∂xν
ηαβ (A.13)

The metric determines distances in the space-time, but it is not positive de�nite,
distances can be negative, null or positive. The negative distances are timelike
distances, the null distances are lightlike distances (the distance traveled by
light rays), and the positive distances are spacelike distances.

The proper time τ is de�ned by
dτ2 ≡ ηαβdξαdξβ (A.14)

= gµνdxµdxν (A.15)
and it is invariant under general coordinate transformations.

The a�ne connection can be expressed in the metric tensor
Γµκλ ≡ 1

2
gµν {gκν,λ + gλν,κ − gκλ,ν} (A.16)

The comma in the expression is de�ned by gµν,λ = ∂λgµν = ∂
∂xλ

gµν . The a�ne
connection is the �eld that determines the gravitational �eld strength, which can
be seen from the equation of motion for a free particle in a general coordinate
system. The deviation from movement on a straight line is determined by the
a�ne connection.

The path of a free particle extremises the proper time, a free particle can
be interpreted as a particle moving on a geodesic on some manifold. Therefore
gravity can be interpreted geometrically, space-time is a manifold on which free
particles move along geodesics. The metric on the manifold is gµν , and the
metric de�nes the a�ne connection, i.e. the gravitational �eld strength.

The curve xµ has a tangent vector �eld vµ,
vµ =

dxµ

dτ
(A.17)

The derivative does not transform as a tensor, a general coordinate trans-
formation causes an a�ne connection to appear. The covariant derivative Dµof a tensor does transform as a tensor, and is de�ned for vector �elds by

Dνv
µ = vµ;ν (A.18)

=
∂vµ

∂xν
+ Γµνκv

κ (A.19)
Dνvµ = vµ;ν (A.20)

=
∂vµ
∂xν
− Γκµνvκ (A.21)

The covariant derivative itself is not a tensor. The covariant derivative for
vectors vµ de�ned only along a curve xµ is

Dvµ

Dτ
=

dvµ

dτ
+ Γµνκ

dxν

dτ
vκ (A.22)

Dvµ
Dτ

=
dvµ
dτ
− Γκµν

dxν

dτ
vκ (A.23)

When vµ is the tangent to a curve these are simply the equations of motion for
a particle on that curve, a free particle has Dvµ

Dτ = 0.
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A.3 Curvature
The Riemann-Christo�el curvature tensor Rλµνκ is

Rλµνκ ≡
∂Γλµν
∂xκ

−
∂Γλµκ
∂xν

+ ΓηµνΓλκη − ΓηµκΓλνη (A.24)
This is the only tensor that can be constructed from the metric tensor and its
�rst and second derivatives. Two other tensors can be obtained by contraction
of indices, namely the Ricci tensor and the curvature scalar.

The Ricci tensor Rµκ is
Rµκ ≡ Rλµλκ (A.25)

The curvature scalar (also known as the Ricci scalar) R is the trace of the
Ricci tensor

R ≡ gµκRµκ (A.26)
The trace free symmetric part of the Riemann-Christo�el curvature tensor

is called the Weyl tensor Cκλµν . This tensor measures the deformation of the
space-time, cf. the shear of geodesic congruences (3.12).

For space-times dimension N ≥ 3 the Weyl tensor is de�ned by the equation
Rλµνκ =

1
N − 2

(gλνRµκ − gλκRµν − gµνRλκ + gµκRλν)

− R

(N − 1) (N − 2)
(gλνgµκ − gλκgµν) + Cλµνκ (A.27)

The Weyl tensor is trace free, that is
Cλµλκ = 0 (A.28)

A.4 Isometries and in�nitesimal isometries
In geometry the mappings which leave distances invariant, isometries, are of
considerable importance, so what are the coordinate transformations that leave
distances in space-time invariant? In this section the isometries and in�nitesimal
isometries are studied.

Consider a space-time with metric gµν . If space-time is invariant under a
coordinate transformation then the metric is said to be form invariant under
this mapping. More speci�c, a metric gµν(x) is form invariant under a given
coordinate transformation x→ x̃ if

g̃µν(y) = gµν(y) ∀y (A.29)
that is g̃µν(x) = gµν(x) or equivalently g̃µν(x̃) = gµν(x̃).

In an arbitrary point p(x) = p(x̃) the transformed metric is
gµν(x) =

∂x̃ρ

∂xµ
∂x̃σ

∂xν
g̃ρσ(x̃)

Therefore a form invariant metric g̃µν(x̃) necessarily satis�es
gµν(x) =

∂x̃ρ

∂xµ
∂x̃σ

∂xν
gρσ(x̃) (A.30)

Clearly a form invariant metric under some coordinate transformation yields
the same distances in both coordinate systems.
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A.4.1 Killing vector �elds
Consider an in�nitesimal isometry, i.e. an isometry generated by an in�nitesimal
coordinate transformation,

x̃µ = xµ + εξµ (A.31)
where ε ∈ R is an in�nitesimal independent parameter. Consider the equation
(A.7) for the metric gµν instead of Tµν , then it is clear that the metric is form
invariant if and only if the Lie derivative, equation (A.9), vanishes with respect
to ξµ. The Lie derivative is zero if and only if

ξµ;ν + ξν;µ = 0 (A.32)
If a vector �eld satis�es this condition it is called a Killing vector �eld.

In general a Killing vector �eld of the metric gµν(x) is a vector �eld ξσ(x)
which satis�es the Killing condition

0 = ξσ;ρ + ξρ;σ (A.33)
In this thesis smooth vector �elds are considered which satisfy the Killing con-
dition only in a neighbourhood on a spatial hypersurface, these vector �elds
are called local or instantaneous Killing vector �elds, because they satisfy the
Killing condition at an instant of time.

To acquire all isometries of the space-time it is necessary to discover the
Killing vector �elds allowed by the metric. A linear combination of Killing
vector �elds with constant coe�cients is again a Killing vector �eld, so the space
spanned by the Killing vector �elds determines the isometries of the metric.

Consider the commutator of covariant derivatives of a Killing vector �eld.
The cyclic sum rule for the Riemann-Christo�el curvature tensor leads to the
following identity for Killing vector �elds,

ξµ;ρ;σ = −Rλσρµξλ (A.34)
This identity makes it possible to express all higher order derivatives in terms
of ξµ(p) and ξµ;ν(p), given ξµ(p) and ξµ;ν(p) in some point p. So every Killing
vector �eld can now be expressed as

ξµ(x) = A ν
µ (x, p)ξν(p) +B λν

µ (x, p)ξλ;ν(p) (A.35)

A.5 Rindler space-time
Here the transformations are given that lead to the Rindler space-time. Rindler
space-time is the way Minkowski space-time is seen by a uniform accelerating
observer, the time coordinate is the proper time of this observer. These trans-
formations also apply in the in�nitesimal case.

The Minkowski metric in Cartesian coordinates is
ds2 = −dt2 + dx2 + dy2 + dz2 (A.36)
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Consider a coordinate transformation to light cone coordinates,
t =

1
2

(U − V )

z =
1
2

(U + V )

dt =
1
2

(dU − dV )

dz =
1
2

(dU + dV )

The new metric is
ds2 = dUdV + dx2 + dy2 (A.37)

Transform again, restricting the U and V coordinates to R+

U = eu

V = ev

dU = eudu
dV = evdv

So only the positive wedge of the original Minkowski space-time is now under
consideration. The metric is

ds2 = eu+vdudv + dx2 + dy2 (A.38)
Finally transform to

u = −T + lnZ
v = T + lnZ

du =
(
−dT +

1
Z

dZ
)

dv =
(

dT +
1
Z

dZ
)

The resulting metric is the Rindler metric, which is
ds2 = −Z2dT 2 + dx2 + dy2 + dZ2 (A.39)

In the original Minkowski coordinates this metric covers only the wedge with
positive z coordinate, see �gure A.5, with Rindler or acceleration horizons given
by z = t and z = −t. Events happening beyond the line z = t will never be
known to the accelerating observer, nor can the observer in�uence the space-
time beyond the line z = −t.

The Rindler horizons are generated by the vector �eld ξ = ∂T , this can easilybe veri�ed in the U , V coordinates, then ξ = V ∂V − U∂U . The horizons are
given by U = 0 and V = 0 and the vector �eld ξ satis�es ξ2|U=0 = 0 = ξ2|V=0.The acceleration along each geodesic of the Rindler space-time can be made
explicit by transforming T → T̃ = gT , but this acceleration is not uniquely
determined. The resulting general form is

ds2 = −g2Z2dT 2 + dx2 + dy2 + dZ2 (A.40)
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Figure A.1: The Rindler space-time is a wedge of the Minkowski space-time.

These metrics have the horizons intersecting at the origin, but it is trivial to shift
this intersection to some other point on the Z axis, the most general Rindler
metric is

ds2 = −(gZ + C)2dT 2 + dx2 + dy2 + dZ2 (A.41)
with C some constant, this form can be obtained by shifting the Z → Z̃ = Z−C

g .coordinate.

A.5.1 Rotating observer in Rindler space-time
Consider the Rindler metric in spherical polar coordinates,

ds2 = −(cR− d)2dT 2 +R2dθ2 +R2 sin2 θdϕ2 + dR2 (A.42)
and perform an in�nitesimal rotation,

ϕ → ϕ̃ = ϕ+ ε (T ) (A.43)
the resulting metric in old coordinates is

ds2 = −R2dT 2 +R2 sin2 θ [dϕ− ωdT ]2 + dR2 +R2dθ2

where
ω =

dε
dT

(A.44)

A.6 Manifolds and hypersurfaces
A smooth n-dimensional manifold M has an algebraic description. A manifold
is given by the function

f
(
x0, x1, . . . , xn−1

)
= 0 (A.45)

of which the gradient is required to be non zero,
~∇f
(
x0, x1, . . . , xn−1

)
6= 0 (A.46)
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A family of hypersurfaces 1 S in this manifold M is given by a smooth function
S
(
x0, x1, . . . , xn−1

)
= λ (A.47)

which yields a hypersurface for each value of λ.
The gradient of this function yields a vector �eld orthogonal to each hyper-

surface S = λ. That this does indeed yield a submanifold becomes clear if the
function g is considered which gives the algebraic description of the manifold,

g = S − λ = 0 (A.48)
The gradient of g has to be non zero in order to acquire a smooth manifold.

However, the inner product of the gradient with itself can be zero for non Eu-
clidean manifolds2. If the inner product of the gradient of g with itself is equal
to zero then the hypersurface is degenerated and is called a null hypersurface.
The general expression for vector �elds orthogonal to a family hypersurfaces is

nµ = h(x)gµν(x)∂νS(x) = hgµνS;ν (A.49)
where the scalar function is non zero, h(x) 6= 0.

Vector �elds nµ orthogonal to null hypersurfaces satisfy the geodesic equa-
tion in non a�ne parameterisation. Consider parallel transport of nµ along
itself,

nµ;νn
ν =

(
hgµλS;λ

)
;ν
nν

= h;νg
µλS;λn

ν + hgµλS;λ;νn
ν

= h;νg
µλS;λn

ν + hgµλS;ν;λn
ν

= h−1h;νn
νnµ + hgµλ

(
h−1nν

)
;λ
nν

= h−1h;νn
νnµ + gµλhh−1

;λnνn
ν + gµλnν;λn

ν

= h−1h;νn
νnµ + gµλhh−1

;λnνn
ν +

1
2
gµλ (nνnν);λ (A.50)

The term proportional to nµnµ vanishes by de�nition, and the last term satis�es
for arbitrary tangent tµ to the null hypersurface the equality (nµnµ);ν t

ν = 0,
again due to the fact that nµnµ = 0 everywhere on the null hypersurface 3.
Since tµ is an arbitrary tangent vector �eld to the null hypersurface this means
that (nµnµ);ν is a null hypersurface orthogonal vector �eld too, and is therefore
proportional to nµ on the null hypersurface,

(nµnµ);ν = 2nµnµ;ν = −2ηnν (A.51)
where η is some scalar function.

The �nal expression for parallel transport along itself is on the null hyper-
surface

nµ;νn
ν =

(
h−1h;νn

ν − η
)
nµ (A.52)

1A hypersurface is a n− 1 dimensional submanifold S ⊂M .2E.g. consider the Minkowski metric.3(nµnµ);ν 6= 0, unless each member in the family hypersurfaces is a null hypersurface.
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which is proportional to nµ, so it is the tangent vector along a geodesic curve
xµ in non a�ne parameterisation.

The vector �eld can be brought into a�ne parameterisation. If the vector
�eld nµ is in a�ne parameterisation the scalar function h is such that nµ;νn

ν =
0, and then

η = h−1h;νn
ν (A.53)

A.7 Geodesics in non a�ne parameterisation
Consider a geodesic in a non a�ne parameterisation, uµ = dxµ

dp and the same
geodesic in a�ne parameterisation, vµ = dxµ

dτ , the equations of motion are
Duµ

Dp
= fuµ (A.54)

Dvµ

Dτ
= 0 (A.55)

with f a scalar function. In a local inertial frame in some point P these equations
reduce to the linear di�erential equations

duµ

dp
= fuµ (A.56)

dvµ

dτ
= 0 (A.57)

Now the relation between uµ and f is determined, the �rst equation is for
every µ,

d lnuµ

dp
= f ⇒ lnuµ =

∫
dpf + c∗µ (A.58)

with c∗µ a constant (not a vector) belonging to the component µ. The solution
is

uµ = cµe
∫

dpf (A.59)
where cµ = ec

∗µ is a constant vector. The solution for vµ is simple, i.e. it is a
constant vector,

vµ = c̃µ (A.60)
The relation between the parameters p and τ can be determined with

dxµ

dp
=

dτ
dp

dxµ

dτ
(A.61)

⇒ cµe
∫

dpf =
dτ
dp
c̃µ (A.62)

⇒ dτ
dp

= Ce
∫

dpf (A.63)
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with C a constant. For a constant scalar function f = f0 the last equation
becomes

dτ
dp

= Cef0p (A.64)
and the solution for τ is

τ =
C

f0
ef0p + C̃ (A.65)

If no boundary conditions are given then a convenient choice for the constants
is C = ±f0, and C̃ = 0, for then

dτ
dp

= ±f0e
f0p (A.66)

τ = ±ef0p (A.67)
This choice can be made due to the freedom to translate the parameter p.

Summarising the result for constant function f0

uµ = ±τvµ (A.68)
where the freedom remains to let p run in the same, the + case, or opposite,
the − case, direction of τ .
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