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1 Introduction

In this thesis we will study configurations of D-branes with nontrivial B-field.
D-branes are objects that appear in string theory, and can be described as dy-
namical hyper surfaces in space-time on which open strings can end. The open
strings give a U(n) gauge field on the brane. Closed strings give rise to a B-
field in all of space-time. There is a gauge freedom between the B-field and
the gauge field A on the brane. But for nontrivial B-fields, i.e. B fields that
can only described locally, the local gauge freedom breaks down. In this case
the A-field has to be interpreted as a connection in a twisted vector bundle, in
order to make the path integral factors well defined. An explicit calculation of
the anomaly cancellation will be done in the last chapter. It is mainly based on
[12] and [7].

The first chapter will give an introduction in (super)string theory. The sec-
ond chapter gives an introduction to D-branes with some emphasis on Sen’s
construction of tachyon condensation. The third chapter gives some basics of
K-theory and its application in string theory. Topological K-theory gives a
classification of vector bundles other than that of cohomology, that narrowly
resembles possible D-brane charges. The last chapter describes the problems
related to D-branes in a background of nontrivial B-fields. The twisted line
bundles that are needed to cancel the anomaly of the B-field, give rise to the
proposal in [3] that D-brane charges in such a background should be measured
in twisted K-theory.

2 Bosonic strings

Describing a one-dimensional object moving through space-time, one needs two
variables. A time-like parameter 7, parameterizing the eigentime of the string,
and a parameter o for the different positions on the string. There are two
possible topologies: a loop, the closed string, and a line-segment with two end-
points, the open string. The embedding of the string in space-time, is a map
from the parameter-space, called the worldsheet, ¥ into space-time. We will
start very generally with D-space-time dimensions, so D — 1 space and 1 time
dimension.

X:¥ 5 RP. (2.1)

In the case of a closed string the worldsheet is an infinite cylinder with circum-
ference 2m. For an open string it is the strip | — 0o, 00[ %[0, 7]. Everything starts,
as always, by choosing an appropriate action for the string. By analogy with
the relativistic point particle, where the action is the relativistic length of its
world line, a natural choice is the Nambu-Gotu action, the relativistic area of
the worldsheet embedded in space-time.

1
— / I
Sng Dy / dodr |det 0,X 61,Xp|. (2.2)




We use the indices (a,b = 0,1) for the worldsheet parameters ¢° = 7 and ¢! = o,
and the Greek indices (p,v = 0,1,...D — 1) for space-time coordinates. The
constant o' is the Regge slope and has units of the space-time length squared.
This action has the desired Poincaré and reparameterization invariance, but the
square root makes it not very practical. The expression

hap = 0a X 8, X, = 0, X 0, X "0y (2.3)

can be thought of as the space-time metric 7,, pulled back to the worldsheet.
The action can now be rewritten

Sp=—

/ dodrv/—hh**9, X 9, X (2.4)

Aol
where h is the determinant of h,p and h?? is the inverse of hgp. Now consider
more generally h?® as a symmetric 2-tensor field on the worldsheet, independent

of X. The action S, above with arbitrary fields X# and hy is called the Polyakov
action. Variation of h®® gives

88 = / dodrVhT,6h®
Ara!
(2.5)
with Ty = 0, X" 0, X, — §hathd80X“8qu.
Under a reparameterization 0% — o2 + £% of the world sheet
XH — XF 4+ £99, X",
(2.6)

S+ L / dodrV'h Top(V2E + VPE2).
Yo% b))

Here V denotes the covariant derivative with respect to h%’. So with A®® trans-
forming as:

hab N hab _ vafb _ vbé—a

2.7
— hab + Ecachab _ hacacgb _ hbcacga’ ( )

i.e. transforming as a 2-tensor, S is invariant under worldsheet reparameteriza-
tion just as the Nambu-Gotu action. The Polyakov action however has an extra
symmetry. It is invariant under local (on the worldsheet) rescaling of the metric
with any positive factor:

het — e@(@T)pab, (2.8)
This is called Weyl-rescaling. The equations of motions with respect to h?® give

T% = 0. This condition implies

0 X O X" = = (K0 X "0y X ,,) hap- (2.9)

DN | =

which is the same as saying that h,; is a Weyl-rescaling of the pull-back metric
0,X"0yX,,. Thus we see that the Polyakov action leads to the same theory as



the Nambu-Gotu action, only with an extra invariance.

This extra invariance can be used in combination with reparameterization in-
variance to fix the metric, at least locally, to the standard flat metric hqp = 7qp-
Switching to an Euclidean worldsheet action, and using complex coordinates
w = o + it this simplifies the action to

_ 1
T 21!

S / dwdid 8y, X"05X . (2.10)
>

2.1 Conformal field theory

One might think that fixing the metric leads to the loss of scale invariance. This
is not so. Consider reparameterizations, such that the metric changes with a
positive factor. By (2.7) these satisfy

Vgl 4+ vher = w(o, 7)™ (2.11)

Because the original Polyakov action (2.4) is invariant under Weyl-rescaling
independent of the reparameterization, the action is also invariant if we only
reparameterize X keeping the metric fixed. Such a transformation thus only
gives a different local rescaling of the pull-back metric. An action invariant under
such a transformation, is called conformally invariant. In complex coordinates,
using

2 0
(0 1 1oy o — Lot L2 2.12
hap = 1 8), vz—i(v —iv?), ’Uz—i('l} + i) (2.12)
0 1 . s_ 0 _1 .
6—&—5(31—152)7 3—&—2(614"52)

we get that this transformation is of the form z — 2 + ¢ with 8¢ = 0, or
Z — z+ & with 8¢ = 0. So conformal transformations are anti-holomorphic and
holomorphic transformations. We can use the conformal invariance, to define
new coordinates for the worldsheet, transforming

w

w—z=e"" =exp(—ioc +7), & = b =e® =exp(ioc +7) (2.13)

The closed worldsheet is now mapped to the entire complex plane, with circles
around the origin giving the string coordinates at equal time. The origin itself
corresponds to 7 — —oo and times moves radially outward. The open string is
mapped to the upper half-plane.

Under a conformal transformation

58 ~ / VR(VeE + VPN T,y = / Vhwh®™T,,, (2.14)
> >

Therefore in a conformal theory, in which this §.5 vanishes for any scalar function
w, h®T,, = 0. For the string theory stress tensor in complex coordinates this



means T,; = T3, = 0. Furthermore V®T,; = 0, which follows from the equations
of motion by (2.6). In complex coordinates:

OT,, = 0Ts: = 0. (2.15)
We define
T(2) :=T..(2) = —i,aX 80X,
@ (2.16)

So far all we have done is solving classical equations of motion. Now let’s see
what happens when we try to quantize the theory. Expectation values can be
calculated by using the path integral method

/ DX exp(—

where F is a functional of X, that is a function that depends on all values
of X anywhere on the worldsheet. Using the fact that the path integral of a
functional derivative is zero

0= /DXéeXp S[})(D = <_£%> — (00X (2,2)).  (2.18)

Adding any operator not depending on the value of X at z gives the same answer.
So this must correspond to operator equation in the Hilbert space formalism

W) FIX] (2.17)

dOXH(2,z) = 0. (2.19)

This is in line with Ehrenfest’s theorem as the classical equation of motion
00X " = 0 translates into the corresponding operator equation. From

dexp(=5)X*(', )
0—/’DX 5%, (2, 7)

- /DX exp(—=S) (62 (z — 2,5 — 7') + —a 8. X"(2, ) X" (2, 7))

(2.20)
it follows that
1 v ol v/S2 ! 5 =
7@8 (XH(2,2) XY (2, 2)) = —n*(6°(z — 2", 2 — Z)). (2.21)
T

So the correspondence between classical and quantum mechanics no longer holds
when the local operators are evaluated at coincident points. It is therefore useful
to introduce the following normal ordering

!

a
XH(21,21) X" (22, 22): = XH(21,21) XV (22, Z2) + ET)‘“’ In |z — z2|2. (2.22)



The point is that the normal ordered product does satisfy the equation of mo-
tion. -
61311X“(21,21)Xy(22,22) (223)

In the Taylor expansion of :X*(z1,21) X" (22, 22): for z; around 2o, all terms
o%d.. with k > 0 and [ > 0 vanish by (2.23). Thus from (2.22)
!
XHM(21,21) X" (22,22) = —%77‘“’ In|z; — 20> + : X* X" (22, Z2):
~ i (2.24)
Z k_ 21 — Z2 X"@kX“(zg,Zg): + (21 — ZQ)k:XVakXH(ZQ,ZQ):] .
k=1
This expression is called an Operator Product Ezpansion (OPE), the expansion
of a product of local operators into a sum of local operators evaluated at one
point, the coefficients depending on the separation of the local operators in the
product. The symbol ’~’ will be used, when only the terms with coefficient that
are nonsingular for z; — 25 are specified. So
O/
X“(Zl, El)XV(ZQ, 22) ~ —ET]”V In |2'1 — 2’2|2,

o (2.25)

aXu(Z]_)aXV(ZQ) ~ —m

A primary field ¢(z,2) of weight (h, h) is a field transforming ¢ — (6f) )¢
under (z,%Z) = (f(2), f(2)). For a holomorphic field ¢(z) of course h = 0, and
the infinitesimal transformation under z — f(z) = z + £ reads

ded(z) = (£(2)0 + hOE(2))¢(2). (2.26)
The stress tensor is now given by
T(z) = —%:6‘X“8XM:, T(z) = —é:gX“g‘Xp:. (2.27)

The OPE of the stress tensor with a local operator ¢ gives its behaviour under
conformal transformations, since the infinitesimal change in ¢ under a confor-
mal reparameterizations z — z + & or Z — Z + £ (conformal implies that ¢ is
holomorphic, resp. ¢ is anti-holomorphic) is given by

5§¢ z, z [% i ¢(Z:Z)]7

(2.28)
6£¢(Z, 2) = [% %g(gl)f(gl)a ¢(Z, 2)]

Combining this equation with (2.26), calculating the contour integral using
Cauchy’s theorem, the OPE of T' and a holomorphic field ¢ of weight h should

be
ho(22) 8¢(Z2)

(21 — 22)2 Zl — 2z

T(21)¢(22) ~ (229)



The stress tensor itself is not a primary field, since one can calculate using
Wick’s theorem, that its OPE with itself is not of the form (2.29)
C 2T(22) + 8¢(z2)

TE)TG) ~ 5 i Y e ) T o= 2

(2.30)

where ¢ = d + 1 the number of space-time dimensions. In conformal field
theory this constant is called the central charge. The stress tensor has a Laurent
expansion
e . dz
T(z) = Z L,z=""% L} = L_, or equivalently L, = Z—Wiz""'lT(z).
neE”Z

and similar the operators L for T((z). The operators form an algebra. Using
(2.30) it is possible to calculate

C
[Lma Ln] = (m - n)Lm—i-n + Em(m2 - 1)5m+n,0;

2 (2.31)

[Lns L] = (M = 1)Ly + =

- 12m(m
[Lm,Ly] = 0.

- 1)5m+n,0;

This is a Virasoro algebra. The L,, and L,, are the generators of the conformal
transformations z — z+e€z"t" and z — z+ez™*'. Under such transformations
a primary field of weight (h, h) transforms as (cf. (2.26) and (2.28))

8¢ = [Ln, d(2,2)] = ("0 + h(n + 1)2™) (2, 2) for z = z + €277,
8¢ =[Lpm,d(2,2)] = (2™ + h(m +1)2™)¢p(z,2) for 2 — Z +ez! ™.
(2.32)
Classically Ty, = 0 had to be imposed after gauge fixing, but by (2.31) there is
no nonzero |¥), for which L,|¥) = 0 for all n € Z, thus for which T|¥) = 0. In
fact we only have to impose (¥|T|¥) = 0. The state for which this is satisfied
will be denoted by |0) and L,|0) = 0 for all n > 0. But then

1Z-110)[” = (0|[L1, L—1]0) = (O|L|0) = . (2.33)

So then also L_;]|0) = 0, but this means that this state is invariant under
translations in the plane. The operators Lo, L1 can be seen to generate sl(2, C).
The state |0) is therefore called the sls-invariant vacuum. Note that this is the
vacuum of the worldsheet-theory, which does not mean a space-time vacuum
without strings, but a string worldsheet without any excitations. A state ¥
describing a propagating string is not necessarily translation invariant, as the
coordinate 7 = —oo is fixed at the origin. So in fact it is possible that (¥|T(¥|
has a pole for z — 0. The worldsheet of a propagating string is a cylinder
and the transformation w = o + it — exp(—iw) is only conformal between the
cylinder and the complex plane without the origin. In fact for the transformation
between the cylinder and the plane

Tuw(@) = (902 Tes(2) + 55 (2.34)



With this expression the Hamiltonian H, the generator of translations in the
T-direction, is given by

27 2 =
H:/ o, - —/ 0 s+ Tom = Lo+ To— ¢ (2.35)
o 2m 0o 2m 24
Remember that 7 is only a coordinate on the worldsheet, so it has an arbitrary
rescaling with respect to the space-time coordinates. The parameterization can
be fixed, using for instance light-cone coordinates (see [9] or [18]), but then the
X* are no longer free to move in the ¢ and 7-direction. Thus only D — 2 of the
D bosonic fields X* remain. For this theory then ¢ = D — 2. Translation in the
7-direction is now directly related to a translation of the worldsheet-cylinder in
the longitudinal direction. Demanding invariance under this translation implies
H|¥) = 0. Because invariance under rotation of the string, i.e. invariance under
o-translation, implies (Lo — Lo)|¥) = 0 we then have
Lol®) = Lo|#) = 22 ), (2.36)
This condition which is essential in the calculation of the string spectrum can
be derived in various ways. Frequently used are the light-cone approach and
old covariant quantization. These methods however do not make clear how the
classical condition T,b = 0 breaks down after quantization. A more abstract, but
also more convincing method, uses so called Fadeev Popov ghosts and BRST-
quantization. For a good introduction in BRST-quantization of the bosonic
string see [18] vol. I. We will not treat this here, as it would take too much
space in this already rather lengthy introduction. We will however discuss the
ghost fields and some of their properties as they are essential in understanding
some subjects later on (for instance the vertex operators in superstring theory
see chapter 3).

2.2 Fadeev Popov ghosts

Remember that the stress tensor of the Polyakov action vanishes by the equation
of motion of hgp:

_ /38Sp[X,h]\ _ exp(=Sp[X,h]) _
(Top(o, 7)) = <6th(707)> = / DXDh S (5,7) =0 (2.37)

The Polyakov action is invariant under reparameterization and local rescalings of
the metric, Weyl rescaling. The path integral diverges as we integrate over gauge
equivalent configurations giving the same action. Choosing one representation
in every gauge class [(X,h)] by choosing one fixed metric h, there are two
possible problems. It is possible that one gauge class contains more than one
pair (X, h). This happens if there are reparameterizations which do not change
the metric, so 6h® = V¢ 4+ VP¢2 = 0. These are called killing vectors. For
instance the sphere has six such reparameterizations. Another problem arises
if not every gauge class contains a pair (X, h). Then there are different metrics

10



which cannot be gauged into each other. The space of these gauge inequivalent
metrics is called the moduli space.

By choosing one fixed metric A and omitting the integral Dh, the equation
of motion T,; = 0 above no longer follows. The variation of the metric in the
form of a reparameterization, so §h%® = V€2 4+ V€2 is lost. Indeed Ty, (VAE° +
V?¢2) need not vanish, as the gauge fixed action is no longer reparameterization
invariant. It only vanishes for conformal reparameterizations V%&b + Vb¢* =
wh®, which corresponds to the original Weyl invariance.

There is however a way to preserve this variation in the gauge fixing. If there
are no moduli, by a reparameterization the diagonal elements of the metric can
be send to zero. Then we have a Weyl rescaling of the standard flat metric

190
hap = (2 1) ) (2.38)
0 35

So for every metric h there is a reparameterization ® such that ®(h) = w- h
with w a scalar function.

For the fixing of the metric we need a functional equivalent of the Dirac delta
distribution. This 6[h] is defined such that

/ Dh FIRJ[h — h] = F[f] (2.39)
for any functional F[h] depending on the metric. To fix at ®(h) = w- h we have
to insert d[w - h— ®(h)]. It can be decomposed in delta functionals of its entries.

Olw - b — ®(h)] = 8[2w — ®(h)?**]6[®(h)**]6[®(h)]. (2.40)

The Dirac delta distribution has Fourier decomposition é(z) = [ dkexp(ikz).
Equivalently for the delta functionals we have

5B ()] = / DB... exp (i / szBzz(z,z)tb(h)“(z,Z)>, o
2.41

5[®(h)**] = / DB;; exp (i / d2ngz(z,2)<I>(h)“(z,2)> i

For a bijective map f : R* — R™ we have the following identity with ™ the
higher dimensional delta distribution.

n, sn aof | _
/d 26" (f(x)) ‘det =1 (2.42)
A similar identity holds for the delta functionals.
1= /DtI)Dw S[wh — ®(h)] - |det %‘
’ o (2.43)
3 " 82V €7 02VZ£7
= / DEDw Swh — B(h)] ‘det e et 2 ‘

11



The last line is derived using the fact that the only contribution comes from ®,w
such that ®(h) = w - h. Then a variation §® = £ gives 0®(h)** = 2V*£*. The
variation of w gives an infinite factor in the determinant, but using regularization
techniques, it can be shown that this does not give a problem. If the moduli
space is non trivial, this expression should include an integral over this space.
The integral over ® should be over all reparameterizations modulo the killing
transformations, otherwise the determinant is zero. The determinants can be
evaluated using anti-commuting fields b, bsz, ¢® and c*.

‘det 626'2-25 = /DbzzDCz exp <_2i/dz bzz(z72)vzcz(z72)> ’
02V7¢E? 17T (244)
—_ s Z _ 2 s = zZ,z =
‘det e |~ /Dbzch exp( 27r/d z bzz(2,2)VZ¢c (z,z)) .

The factor —1/(2) arises from rescaling the fields, and is chosen for convenience.
Putting this all together, we get

1= / DEDWDBDEDe dwh — B(h)] - exp(—S,y7[B, w, B(h)] — Syn[b, ),
S01(B, 8] = o [ 2 [Bus(, D0 (2,2) + Bas(z, 2007 (2,2)],

Synlb, ] = % / P2 [bax(2, D)V (2, 2) + bas(z, 2) Ve (2,7)]
(2.45)

Now everything comes down to exploiting all gauge invariances. Add (2.45)
to the Polyakov path integral, the non-gauge fixed path integral with Polyakov
action, and put the integrals D®Dw in front. Write Sp[®(X), ®(h)] = Sp[X, A].
After the integration over B.., Bzz and h, ®(h) changes into wh, but it only
appears in Sp which is Weyl-invariant. The ®(X) can be changed back into
X by a change of variables in X. Then none of the terms depend on w or ®
anymore, so their integrals just give the volume of the total gauge-group and

can be omitted. So in total

/ DXDbDeDbDE exp (—2 !
YK

- / 220XBX — - / d2zb5c+éae.> (2.46)
a 27

Here b, b, ¢ and & are short for b, bss, ¢* and ¢?. The terms VZ¢* and VZ¢Z are
translated in Oc* and Oc?, as the V’s depend on ®(h) and only contributions
with ®(h) = wh have to be considered. In that case the only non vanishing
terms of the Christoffel symbol are I'?, and T'Z. and these do not appear in
VZc¢* and VZc*. If there are moduli there should be integrals over the moduli
space, and the covariant derivatives should remain in the ghost action.

The ghost fields also form a conformal field theory. The b(z), ¢(z) are holomor-
phic fields of weight 2 and —1 and b(z),&(%) are anti-holomorphic of weight 2
and —1. The b, c-fields and the b, &fields can be treated separately. Because the
b, c-theory will occur in other cases, we will treat it here more generally.

12



2.3 First order langrangians in 2d CFT
Let b and ¢ be fields of weight A and 1 — A and

S = i/d2zb('50. (2.47)
2n

In this paragraph we will give the main properties of this theory. Not all deriva-
tions are given in detail. More information can be found in [8]. We will consider
both anti-commuting (e = 1) as commuting (e = —1) b and ¢. By a calculation
analogous to (2.21)

(b(2)c(w)) = e(z —w) ™" (2.48)
Expanding the fields gives
b(z) =3, bz, bl =eb_p,
o(z) =Vnenz N, i =cy, (2.49)
Cmbn +€bpem =0, n-

The stress tensor can be found to be

T(z) = —=A:b(2)0c(2): + (1 — X):(0b(2))c(2):
(1 —3Q?) 2 1
2(z —w)* (z —w)? z—w

Q =€(1—2X).

T(2)T(w) ~ 8T (w), (2.50)

The normal ordering is defined by subtracting the pole e(z — w)~! in (2.48) for
z = w. The central charge can be read of to be ¢ = €(1 — 3Q?). So for the
A = 2-reparameterization ghosts @) = —3 and ¢ = —26. Writing out

L, = Z(k)\ +n)b_pCnyr for k #£0 (2.51)

n

(normal ordering has no influence for k # 0) shows that states |¥) that satisfy
b_pn|¥) # 0 for some n implies ¢, 4,|¥) =0 for all k >0 (2.52)

are states for which Ly|¥) = 0 for all £ > 0. If there is no n for which b_,|¥) =
0. Ignoring some possibilities we will therefore consider states that satisfy the
stronger condition

b n(¥|=0forall n < N and ¢,|¥) =0 for all n > N. (2.53)
for some N € Z. These states will be labeled |g)

b_nlg) =0, n< —eqg+ A,

2.54

A wuseful tool is the number current

Jj(z) = =:b(2)c(z): = Zjnz_”_l. (2.55)

13



The normal ordering was defined subtracting the pole e(z — w) 1,2 — w of
(2.48). But this calculation is only valid if there are no boundary conditions
at z = 0. This situation, which is invariant under translation of the origin,
therefore corresponds to the incoming state |0), as it is the only state with
no poles for z — 0 when acting with b(z) or ¢(z). The normal ordering of j(z)
exactly cancels the pole e(z —w) !, z — w. Therefore j(0)|0) = jo|0) = 0. Using
the definition of |0) we can relate the normal ordering to a creation/annihilation
ordering such that jo|0) = 0. This gives

A—1 oo
jo=€ Y cnbon— > b_ncn. (2.56)
n=-—o00 n=A\
Then jolg) = g|q). We can apply this to Lo as well
A—1 e}
Ly = —¢ Z nepb_p + Z nb_npCp. (2.57)
n=-—oo n=X\
and calculate 1
Lola) = e5a(a + Q)la)- (2.58)

Both |0) and | — @) have Ly = 0, but only |0) has L ; = 0 (use (2.51)), so
|0} is the sly-invariant vacuum. Defining (g| such that (g jg = (g|q results in
{qle!, = 0 if and only if ¢,|q) = 0, {(g|(b_,)" = 0 if and only if b_,|¢) = 0, and
(0|L} = (0|L_} = 0 for k > —1. However

A—1 oo
jg = Z bpc_p —€ Z Cc_nbn
=—00 n=>A\
- oo
= —¢ Z cnb_n + z b_ncCn

n=-—00 n=—(A-1)

(2.59)

and thus jg = —jo — @. Then

(pljola) = q(plg) = e(—p — Q){plg)- (2.60)

So the hermitian conjugate of |q) is the bra (—g— Q| and not |¢). Let us see how
this is related to the path integral calculation. We take as an example the sphere
and focus on the anti-commuting b, c-theory. Consider complex coordinates z
on the entire sphere without the ’south pole’, with z = 0 at the ’north pole’
and z — oo corresponding to the ’south pole’. The coordinates 2z’ = 1/z can
be used for the entire sphere without the north-pole, with 2’ = 0 at the south
pole and the limit 2’ — oo for the north pole. As in the path-integral both
z =0 and 2’ = 0 are not fixed. The path integral calculation corresponds to a
calculation with the translation invariant incoming state |0) and outgoing state
(0. Suppose & ~ z~"=(1=3) is a weight (1 — \) field. Then

az\'
6= (32) ela~am 0 (2:61)
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So for £ to be holomorphic on the entire sphere: (1 — ) <n < —(1 — A), such
that there are no poles for z — 0 and 2z’ — 0. If such fields exist then there
is a symmetry of the action ¢ — ¢ + 5§, with 5 an anti-commuting constant,
because Oné = 0. If in the path integral we integrate over these superfluous
fields - this is an integration over anti-commuting variables which are not in the
integrand- the path integral vanishes just as (0|0) vanishes. The vanishing of
(0]0) can be remedied by including all ¢, with (1 —X) <n < —(1 — ) between
(0] and |0). The b_,, and ¢,, can namely be used to switch between the different
vacua. Using (2.54) with e = 1, it is readily checked that

C—gtr-1lg) =g+ 1),

bo(—g+nla) =g —1),
because the states on the left-hand side have the same defining properties of
(2.54). For instance if A = 2 there are vector (thus weight —1 = (1 — \)) fields
1, z, 22 and we should insert the operators c_j,cy and ¢;. Then c_;coc; |[0) = |3).
We can also let these operators act on the right-hand side giving (0|c_1coc; =
(—3|. So depending on how much of them we shift to the right (0]..|0) turns
into (—3|..|0), (=2|..|1), {(=1]..|2) or {0]..|3). All of these do not vanish because
of (2.60). Using

(2.62)

8"¢(0)[0) = ¢1_,0) (2.63)

instead of inserting c_1,co and ¢;, we could also insert 8%¢(0), dc(0) and ¢(0) on
the right hand-side. In the path integral, this insertion cancels the integration
over ¢(0),0¢c(0) and 8%¢(0). Thus these three values are fixed, and this exactly
fixes the gauge freedom of the killing vector fields 1, z, z2.

In general if there are m different killing vectors by inserting the operators
¢(z1),--¢c(zm) for different z; by fixing the ¢(z;) we fix the gauge freedom. On
the torus with A = 2 there is only one holomorphic vector field, but now there
is also a weight 2 field with dw = 0, which gives a gauge freedom b — b + w.
So we have to fix the gauge by inserting both a b_5 and a ¢;. In general by the
Riemann-Roch theorem we have

(#number of zero modes of ¢ — #number of zero modes of b) = Q(1 — g)

with g the genus of the Riemann surface.
For the commuting b, c-theory there are two differences. The integration over
gauge equivalent field configurations, does not make the path integral vanish but
diverge. Furthermore the operators b_,, and ¢, can no longer be used to switch
between the different |g), because in deriving (2.62) we used ¢2 # 0 and b%,, # 0.
In fact in this case the |g)’s correspond to inequivalent representations of the
b, c-algebra. There is however a way to construct an operator that switches
between the different representations by rewriting the fields. Replace the action
with 1

S=- /d2z%eﬁ¢(z)5¢+ gQ\/ER(]ﬁ. (2.64)

and calculate the OPE:
d(2)p(w) ~ eln(z — w). (2.65)
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This rewriting is also useful for both the commuting (¢ = —1) as the anti-
commuting case (e = 1). First for € = 1 the following OPE-identities hold.

exp(—¢(2)) exp(p(w) ~ ——,

z
exp(—¢(2)) exp(—=g(w)) = O
exp(¢(2)) exp(¢(w)) = O

These are the same as b(z)c(w),b(z)b(w) and ¢(z)c(w) of the anti-commuting
b, c-theory. The weight of the operator exp(g¢) can be calculated to be %eq(q +
Q). So for the anti-commuting theory we can make the identification

b(z) = exp(—¢(2)), c(z) = exp(¢(2)). (2.66)

This process of writing the b, c-theory as a bosonic ¢-theory is called bosonizing.
For the commuting theory (¢ = —1) the weight of exp(¢(z)) is —A. Therefore
we make the identification

b(2) = exp(—¢(2))9¢(2), c(2) = exp(¢(2))n(2), (2.67)

with n and € an auxiliary b, c-theory with weights 1 and 0. They must be
anti-commuting to give the right OPE:

1

w—z

b(2)c(w) = exp(—¢(2))9¢(2) exp(¢(w))n(w) ~ (2.68)
By similar OPE calculations (again for details see [8]), the number current can
be identified with €0¢. In particular

[jo, exp(g¢(2))] = qexp(gp(2)). (2.69)

So the operator exp(g¢(z)) shifts the vacuum state |¢'}, which is a jo-eigenstate
with eigenvalue ¢/, to |¢' + ¢).

2.4 Gauge fixing details

The zero modes of ¢ for the reparameterization ghost system (A = 2) correspond
to the vector fields that leave the metric invariant (killing vectors). After (2.45)
we noticed that these should be divided out of the D®-integration the same way
as they are divided out of De. This means that these killing reparameterizations
still form a gauge invariance of the action S = [ d?20X0X, as this reparame-
terization of X is not fixed by the insertion of the §’s.

The zero modes of b correspond to the moduli. The moduli are namely variations
of the metric, thus weight 2 fields, that are orthogonal to reparameterizations
and Weyl rescalings. Starting from a Weyl rescaling of the flat metric, any vari-
ation of h,; = h;, is a Weyl rescaling. Thus the moduli are variations of h,,
and h;;, such that 8h,, is orthogonal to O&%, thus ddh,, = 0 and likewise for
hzz. Which are thus indeed the zero modes of b,, and bz»
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All gauge fixing problems can now be resolved by an extension of the gauge
fixing term. Let k be the number of killing vectors and p the dimension of the
moduli space, so k—p = Q(1—g), and let ¢!, 1 < i < pu parameterize the moduli
space. The variation in the metric is denoted by t'6;h. This is the first order
variation of the metric by the moduli, which is what we need for the Jacobian.
The gauge fixing term §(®(h) — wh) has to be extended to §(®(h) + ti6;h — wh).
For the identity in (2.45) still to hold the ghost action has to extended to

Sgeatlb, ¢, T] = /d2z b..(V*¢* + 188;h7%) + cc. (2.70)

where 7 is the anti-commuting ghost corresponding to ¢t. To fix reparameteriza-
tions in p points we have to add §(®(21))d(P(22))..0(®(2x)). To insert these in
the path integral we have to compensate with ghost terms exp(¢Zc®(z;)),1 <
j < k. The ghosts 7 and ¢ can be integrated out immediately to give

/ DbDc d*( d*r exp(—Syeat[b, ¢, 7]) [ ] exp(
j=1

., (2.71)

/Dchexp( Sylb, c] H /d 2 b,,6°h** x cc.) H (2)c* (Z5).

=1

The extra b and c¢ terms are precisely those that are needed to gauge fix the
ghost system. Following the same procedure as before replace Sp[X,h] by
S,[®(X), ®(h)]. After the integration over A this becomes S,[®(X),wh — t;6ih].
A change of variables X — ®(X) makes this S,[X,wh — t;6'h]. If there are
other operators F[X] in the path integral depending on X, we have to replace
F[X] by F[® 1(X)]. The full expression becomes

/ DIDwDX d t exp(—S,[X,wh — t;6°h]) F[®~(X)]

4 (2.72)
X H 0(®(z;)) x ghost term(2.71).

The physical requirements for F[X]-term is investigated in the next-paragraph.

2.5 Vertex Operators

The Hilbert space is a direct product of HX of the bosonic field theory and #H9
of the ghosts. The stress tensor is the sum

T(z)=T"(2)+T9(2) = —%:6X(z)8X(z): + :¢(2)0b(2) + 2(0c(2))b(2):
of matter (X) and ghost (b, c) fields (and similar for the stress tensor T of the

anti-holomorphic fields). In order to restore the full reparameterization invari-
ance of the Polyakov path integral, the condition (T,;) = 0 has to be imposed
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in the gauge fixed situation. Because the gauge fixed theory is conformally
invariant (T'?) = 0 should follow from the equations of motions, as the trace
of the stress tensor corresponds to the conformal reparameterizations. This is
however not true for every gauge choice. The metric was fixed to an arbitrary
Weyl rescaling of the standard flat metric: hop(o,7) = w(o, 7)hap (o, 7). It ap-
pears that after quantization the Weyl rescaling invariance and therefore the

conformal invariance can be broken. In fact
c
ay — _

(T = 12R (2.73)

where R is the worldsheet curvature of the metric hgp,. (In this calculation one
assumes that ¢ = ¢, see [18] §3.4). The vanishing of this Weyl anomaly is re-
quired in order to prevent that different gauge choices are inequivalent and lead
to the loss of covariance or unitarity of the theory. Therefore the total central
charge ¢ = ¢X + ¢ = D — 26 has to vanish. The bosonic string theory can only
be quantized without problems in D = 26 dimensions.
The non-conformal reparameterization invariance has to be preserved in the
gauge fixed theory by imposing T, = T5; = 0. This means that physical states
should satisfy L,|Phys) = L,|Phys) = 0 for n > 0. The state |Phys) is the
direct product of |Matter) € HX and a ghost vacuum state |¢) € H. In order
for Lo|Phys) =(L& + L§)|Phys) to give zero, the Lg eigenvalues of |Matter) and
|g) should be zero together. Later we will argue that the right ghost vacuum
is ¢1]0). As L{c1]0) = —|y0, we get the condition Lo|Matter) = |[Matter). With
D = 26 this is the same as in (2.36).
Now let us address the question of which operators F[X] we can add to the
path integral. As the path-integral over the X-fields with no additional oper-
ators is invariant under a reparameterization of X only, in particular transla-
tion corresponding to L_1, this describes the vacuum of the matter fields. So
we should insert an operator that maps the vacuum to a physical state with
Lo|Matter) = |Matter). This should be done for both the incoming as the out-
going state. Any additional operators should be such that they do not break
the full reparameterization invariance of the total matter+ghost-system, i.e. the
condition

(Tus) = (T35 +T2) = 0. (2.74)

Primary fields ¢(z, %) with weight (h, h) = (1,1) have the special property that
(cf.(2.32))

[ )
[ )

These expressions will vanish when integrated over z and Z. So inserting inte-
grals [ d?z of weight (1, 1) operators in the path integral does not break the total
reparameterization invariance. From the previous paragraph it becomes clear
that the leftover killing reparameterizations, are fixed by adding delta functions.
They will cancel some of the integrals [ d®z replace them by c(z)é(Z) for some

I_’n;¢(za% ] (2.75)
Lna ¢(z7 < ]
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point z. Any additional operators keep their integral. These integrals of weight
(1,1)-fields, are invariant under reparameterization by

/d2z¢(<I>(z,2)) = /d2z6<1>(z,2)5¢(z,2)¢(<1>(z,2)) = /d2z'¢(z',2') (2.76)

with (2',2') = ®(z,2). This means that all dependence on ® in (2.72) is gone.
We have managed to completely separate the reparameterization freedom in the
Polyakov path integral. The integrals over ® and w can now simply left out,
which is equivalent to dividing by the volume of the gauge freedom.

Zero loop n-point diagrams in particle physics, correspond to sphere-like dia-
grams with no holes (handles) in string theory. We have to choose three points
to fix the killing reparameterizations. In describing a propagating string, i.e.
a cylinder diagram, at least the points z = 0 and z = oo have to be fixed.
This still leaves one holomorphic and one anti-holomorphic killing field. This
corresponds to the fact that on an infinite cylinder the choice of the origin, the
(o,7) = (0,0), is arbitrary. It is natural to fix the point z = exp(r —ic) = 1.
The left-moving and right-moving ghost amplitudes are now of the form

{0let (00)e(1)(0)0) = (Ole-1coca|0),

t R o (2.77)
(0]t (00)&(1)2(0)]0) = (0]2—120¢:1 [0).
The total interaction with additional operators is now of the form
/ledzz--er<0|C—15—1¢}(00;00)¢1(21751)¢2(22752)-- (2.78)
P (Zr; Zr)0050¢0(11 1)¢z (0: O)Clél |0>
The initial and final state of this interaction can be recognized to be
¢(07 O)Cléll())a
' (2.79)

(0le—1E_1¢% (00, 00).

The states with ghost vacuum ¢1¢|0) and matter state of the form |Matter) =
#(0,0)|0) with ¢ a weight (1,1) primary field, are therefore the physical states.
They describe the different free strings in the theory. The additional operators
can be thought of as interactions with other strings. They are therefore called
vertex operators, as they can be seen as the branching off of strings from the
worldsheet. In fact we will see that they can also be interpreted as interactions
due to the presence of background fields.

2.6 The closed string spectrum

In the following we will construct all primary operators of weight (1,1) and
thereby the full spectrum of the closed bosonic string theory. After quantization
we should have

[X,(0,7), P,(0",7)] = inud(oc —a'). (2.80)
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One can check, using 8, = Lo + Lo so P* = i[Lo + EO,X”], that this also
follows from the path integral method with (2.21). Then

[Py, :exp(ik, X*):] = ky:exp(ik, X*):. (2.81)

The operator :exp(ik, X*): is a primary field of weight (%’“2, %’“2) So the first
vertex operator we find, ignoring the integral [ d*z, is :exp(ik, X" (2, z): with
k* = 4. With the notation |k,;0) = :exp(ik, X*):c1|0) we have P, |k,;0) =
kulky;0). So the state |k,;0) with k? = —Z is physical. It has negative mass
M? = —k? and it is called the tachyon state.

The other vertex operators are of the form

V(ku: {Nm}, {Nm})(z,,%) =

: lo_o[ (8mXN(z))Nm ﬁ (5mXp,(2))Nm eXp(ikuX“(z,z));_ (2.82)

Wiﬁh N=3, mNy, N = >om mN,, these operators have weight (N4: %’“2? Nt
ok ). In general however they are not primary fields. For V* = X#9X"elrX
the OPE

T(2)V* (w) ~ GowP lw)3 (kY OXH(w) + kﬂgXV(w))eik)\X)‘(w):+
o' k? (283)
+1 1 = A
4 w | :OXH XV ika X ('w):
(z — w)? + z—wa OXH(w)0X" (w)e
shows (cf. (2.29)) that only the operator a,, V** with
kuauu = kya;u/ = 07 k2 = 0, (284)

is a primary field of weight 1. These conditions are called physical state condi-
tions as they decide which states of the form a,,V*”|0) are physical. The poles
(z —w)~2,(2 —w)~3,.. correspond with the operators Lo, L1, ... One can show
that the leading singularity in the OPE of T and an operator of the form (2.82)
is of order N + 2. There are therefore only a finite number (N + 1) of physical
state conditions. The operators of the first mass levels are

M?>=—k2=-4 N=N=0: :exp(ik,X"):
=1: a4 :0XPOXY exp(ik, XH):
M?=—-k?=24 N=N=2: p,:0°X+r0>X" exp(ik, X"):
D :0X OXH 2 XY exp(ik, XH):
TAu:02 X OXHOXY exp(ik, XH):
Srauy DX FOXNIX X" exp(ik, XH):
etc...

each with IV physical state conditions plus the condition k2 = % — N. Later we
will see that the massless modes a,, can be interpreted as the graviton field.
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2.7 Open string spectrum

Until now we have considered only conformal field theory on the entire complex
plane, so o = arg z is a periodic coordinate running from 0 to 27. For the open
string we let ¢ run from 0 to 7, so we only use the upper halve plane. Moreover
we need to apply some boundary conditions for ¢ = 0 and ¢ = w. The action
in ¢ and T coordinates

1

SIX = 4o

/dT /7r do (0, X (1,0))? + (0, X (1,0))? (2.85)
0

after a variation of X# — X*# 4+ §X* changes with
-1

2ol

1
+ 2ral /dT[(SXN(Ta 0)6<7XH(7', 0) - 6XN(T’ W)@UX”(T, 71-)]

0S[X] = /dT /07r do(O2XH(1,0) + 63X“(T, 0))0XH(1,0)

(2.86)

From the first term we get the equation of motion 92X* + §2X* = 90X+ = 0.
For the last term to vanish, we have two possibilities

0, X*(1,0) = 0, XH*(1,m) =0 Neumann boundary conditions,

X*#(r,0) = X{', X*(r,m) = X{" Dirichlet boundary conditions. (2.87)

This last possibility, where we keep the endpoints of the string fixed, will be used
for D-branes in chapter 4. The equation of motion says that X*# is a harmonic
function, therefore it can be written as a sum X#(z,2) = X7(2) + X§(2). We
already saw this for the closed string, where the fields 0X*(z) = 90X (z) and
OX*H(z) = 0X%(Z) and the corresponding stress tensors T'(z) and T'(Z) could be
treated completely separately. They have a Laurent expansion

XH(z) = _i,/% 3 aken, 8XH(z) = —i,/% 3 aken. (2.88)

In the case of open strings the boundary conditions imply dX* = +0X* for
o = 0,7 (+ for Neumann and — for Dirichlet). This gives a,, = £&,. Extend
O0X*(z) to the entire complex plane using the same expansion. Now X (Z) with
Im z > 0 thus 0 < o < 7, can be expressed in the values of 9X*(z) on the lower
half plane, by dX*(2) = £80X*(z) for Imz > 0. So for open strings we can
treat OX* as a holomorphic field on the entire complex plane and simply ignore
the anti-holomorphic fields, as they are directly related to the holomorphic.
For the stress tensor we only consider T'(z) = T (2) +T9(z), and for the ghosts
only b and ¢. The vertex operators have weight A = 1 and are of the form

V(ku, AN (2,2) = : [T (0™ X¥(2) N explik, X*):. (2.89)

m=0

Because of the boundary conditions the variation of X(z,%2) in (2.21) also
changes X (Z, z). Therefore the normal ordering changes to

:X“(zl,zl)X"(zQ,Zg): = X”(Zl,zl)XV(ZQ,EQ) + Oél’nlw In |21 — 22|2 (290)
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and the weight of the operator :exp(ik,X*): becomes %a' k%. The physical state
conditions are M? = —k? = %(N —1) and N other conditions concerning the
orientation with respect to k. There is again a tachyon state with M2 = —%

and a massless state with vertex operator
A, :0XH exp(ik, X*): (2.91)
and physical state conditions
k> =k"A, =0. (2.92)

This describes the D — 2 states of a massless vector particle. The states are
labeled by |A,; k) := A,:0X* exp(ik,X*"):c;|0) and carry an index p. A special
case is when A, = ck, with ¢ a constant. Then we can write |ck,;k,) =
2¢L_1|0; k,). Any physical state which can be written as L_;|¥) with ¥ some
arbitrary state, is physically trivial because all correlations with other physical
states (Phys|L_;|¥) vanish. So in the physical spectrum |A,;k,) ~ |AL;k,)
if A, — A! is a multiple of k. Thus we see that massless mode of the open
string spectrum has the same gauge freedom as the vector potential of Maxwell
theory. In this way we can identify this spin-1 state as the photon.

2.8 Strings in backgrounds

Thus far we have dealt with two dimensional worldsheet field theory only. The
X* have space-time indices, but they just seem to label a number of independent
bosonic fields. We have seen that this number should be 26 to cancel the Weyl
anomaly. Further we saw that the A* that label the photon states, have the same
freedom and gauge invariance as a U(1)-space-time-gauge field. In the same way
we can also show that the massless closed string states have the structure of a
free graviton field. Let us now consider the case of a curved space-time by
replacing the n#”, the standard flat metric, that was implicit in the definition
of the Polyakov action, by a more general curved space-time metric G* (X)

Sq

= / drdovV'h G, (X)h*d, X 3 X" . (2.93)
4dma’ J5
A curved space-time can be seen as a coherent background of gravitons of strings

interacting with the propagating string. This can be seen by expanding a close-
to-flat metric G* (X)) = n*¥ + x"¥(X). Then

exp(—So) =exp(—Sp)(1—ﬁ / drdovVh X, (X)h®8, X 8, X" +...). (2.94)
T =

If we expand x(X) in it’s Fourier modes, we recognize in the first order term an
expansion of graviton vertex operators a,, 0X*0X" exp(ik, X*). These terms
can be interpreted as 1-point interactions of the string with the graviton back-
ground, and the higher order terms as higher order interactions. Note that these
use only the symmetric part of a,,,, and as the trace of the metric is always equal
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to the number of space-time dimensions D, also af; = 0 in these interactions.
By adding an anti-symmetric tensor field By, (X) and a scalar field ®(X), the
dilaton, to the background

_ 1
T dro!

So

/ drdoVh [(Gu(X)h® +ie® B, )0, X 9, X" + o’ Rp(X)]
>

(2.95)
one uses all massless closed string states. The fact that only vertex operators
where added, provided the G, , By, and ¢ fields only have massless modes,
seems enough to maintain the conformal invariance. However as in the case of
the flat background, the vanishing of the Weyl anomaly puts an extra constraint
on the theory. After an elaborate calculation

1 , , 1

To = —5h* B, + €810 X 0, X" — S B R,
1

¢ =Ry, +2V,V,d — ZHM,\H},"\ +0(d),

1 (2.96)
B _ _QV)‘HAHV + (V@) Hy + O(a),

)14
D—-26 1 1
Be = G 5v2<1> + VOV P — ﬂHW)\H‘“”\ + 0(a).

The first R is the worldsheet curvature, while R, is the space-time Ricci tensor.
The field H is the field strength of B

H)\;u/ = 6)\Bp,u + 6uByA + 8"B/\H‘ (297)

So in the language of differential forms where B, are the components of a 2-
form B, H),, are the components of the 3-form H and H = dB.

This theory with action S, describes the propagation of a string in a target
space where the characteristic string length v/a' is much smaller than the char-
acteristic radius of the space-time curvature. The higher mass string states,
which are of order o, can then be ignored and for the vanishing of the Weyl
anomaly we have to impose ny = f,, = % = 0 up to terms of order o'. Look-
ing at (2.96) we see that this means that the metric has to satisfy Einstein’s
equation coupled to the B and ®-field. If B and ® are constant we also recover
the condition D = 26. The condition ﬂf,, = 0 makes the B field into a sort
of gauge field (compare with the Maxwell equation V*F), = 0) with gauge
freedom B ~ B + d)\, where X is any 1-form.

It is possible to construct an action for the background-fields, for which the
equations of motion are exactly the anomaly canceling condition ﬂf,, = ﬂf,, =
B® = 0. One can then try to quantize this system of background-fields, result-
ing in a quantized theory of gravity. Of course this system has all the problems
of quantized gravity field theory, but now we know that it can be seen as a
low energy approximation of a theory that does not have these problems. The
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action, called low energy effective action is given by

_ L [ gpyyge e [_2D=2)
S—Qm%/d zv —Ge [ 3o +R

1
12

(2.98)
HyH"™ 4 49,80"® + O(d)| .

The constant kg is arbitrary and can be changed by a redefinition of ®.
The Euler number y = 2 — 2g — b, with g the genus and b the number of
boundaries, of the worldsheet, can be calculated

=1 [ R (2.99)

Writing the dilaton field ®(X) = ®¢ + ®'(X) as the sum of the vacuum expec-
tation value ®y and ®', we see that the term

1
— by =y 2.1
47T/ER 0 =Xx%Po (2.100)

in the action becomes an overall factor. Summing over all possible topologies,
we see that every extra handle on the worldsheet, which decreases x by 2, gives
an extra factor exp(—2®,) in the path integral. Thus

gs = exp(Po) (2.101)

acts a string coupling constant in the theory. Compare the low energy effec-
tive action with the usual Einstein-Hilbert action, in which the constant x in
V—GR/(2k?) is the gravitational constant, which in has the value

K= LZLEN =4.106 x 10~ °GeV 1. (2.102)

Henceforth one can make the identification

K = Kkoe?® = K0gs- (2.103)

3 Superstrings

Consistency in string theory is a very important and delicate subject. It leads
to very strict constraints on possible theories. For example the bosonic string
theory is only consistent in 26 space-time dimensions. There is however still
an important problem with this theory. It contains a tachyon state, a particle
of negative-mass squared. This means that the vacuum of the theory is not
stable. Another problem is that the spectrum of the theory contains no fermions,
whereas in nature these particles are clearly observed. The constraints on our
string model make it impossible to simply project out the tachyon and add new
states to the theory in a consistent way. A more radical step is needed. The
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bosonic string theory is basically a 2-dimensional conformal field theory with
only bosonic fields. We have seen that the spectrum and gauge symmetries of the
worldsheet theory, translate into a spectrum of space-time particles, such as the
graviton and the photon, with their characteristic gauge invariances. We will see
that if we make the worldsheet theory super-symmetric, that is adding fermions
and enlarging the conformal symmetry group to a super-conformal symmetry
group, the spectrum of space-time fields will also contain fermions. Moreover
there is a natural and, more importantly, consistent way of projecting out a
part of the spectrum including the tachyon, after which not only the worldsheet
theory but also the theory of the space-time fields is super-symmetric.

An overview of superstring theory, including the most recent developments until
1998, is given in the second volume of [18]. As an introduction however it is
rather concise. A better, but older, introduction to the basics of the theory is
given in [9] and [8].

3.1 Superconformal field theory

A 2 dimensional conformal field theory can be made into a super-conformal field
theory by adding anti-commuting coordinates 6,8 to the complex coordinates
z,Z. Again the theory splits into a holomorphic, depending on (z,6), and a
anti-holomorphic part with (z,6). There are complex super derivatives

D =0y + 60, D=8g+55 (3.1)

We will focus on the holomorphic part to avoid repetition. Holomorphic fields
of weight h can now be extended to super-fields of the form

#(z,0) = ¢o(2) + 0¢1(2). (3.2)

A conformal field theory extended in this way is called a super-conformal field
theory. It has an enlarged symmetry group. Next to the usual conformal repa-
rameterizations of the z-coordinates, there are now also reparameterizations in-
volving the anti-commuting coordinates. The super-conformal symmetries are
generated by the super stress tensor

T(2,0) =Ty +6Ty(z) = Y 285G, +0> 27" 2L, (3.3)

Like in ordinary conformal field theory, the transformation properties of the
fields can be derived by calculating the OPE’s of the stress tensor with the
fields. Some more details can be found in [8]. We will just give the results for
the Laurent components L, and G, of the super stress tensor. They form a
super Virasoro algebra:

C
[Lm, Ln] = (m - n)Lm+n + Em(mz - 1)6m+n,07
c 1
{Gra Gs} = 2Lr+s + 3(7'2 - Z)5r+s,07 (3-4)

1
[LmaGT] = (Em - T)Gm+r-
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The L,, are the usual generators of the conformal symmetries
[Ln, d0(2)] = (2™ + h(m + 1)2™)¢o(2),

_— 1 (3.5)
[Lm, $1.(2)] = (27710 + (b + 5)(m + 1)) (2)-
Note that ¢¢ has weight h+ % If h is half integer we will call ¢ the bosonic and
¢1 the fermionic component of the super-field, and vice versa for super-fields
of integer weight h. The G, generate the super-symmetries which mixes the
bosonic and fermionic part of ¢. (e is an anti-commuting constant)

[€Gr, do0(2)] = €221 (2),

, L (3.6)
Gy, d1(2)] = €(2"F70 +2(r + §)hzr 2)¢o(2)-

By going from the coordinates w = o +i7 to z = exp(—iw), the fermionic fields,
the components with weight h half integer, transform as ¢ (z) = (9, exp(—iw))"
¢¢(w). The half integer exponent changes single valued fields in double valued
fields and vice versa. Both possibilities, periodic and anti-periodic, have to
be considered. The Hilbert space splits in two subspaces: The Neveu-Schwarz
sector with ¢Y5(e*™2) = ¢}'%(z) and the Ramond sector with ¢f(e*™'z) =
—¢]1?(z). Notice that this means that ¢; is periodic in the R(amond)-sector,
and anti-periodic in the NS-sector. For the NS-sector the Laurent expansion of
all fermionic fields are in components ¢, with r + % € Z. The R-sector has
integer indices for the ¢y ,.

3.2 Superstring theory, vertex operators and spin fields

The superstring theory is the super-conformal analogue of (2.10)
1 _ 1 = = .
S = g / d*2d*0DX*DX,, = o / d’z OX"OX,, + POy, + POy, (3.7)
with the fields (in units with o' = 2)
X¥(2,2,6,0) = X['(2) + X['(2) + 09" (2) + 694 (2), (38)
and stress tensor
1 1 1
T(z,6) = _§DX“D2XH = —§¢“6XH + —50(6X“6XM +Yro,).  (3.9)

The central weight of the X fields is again ¢ = D the number of space-time
dimensions. For D is even, with the pairs ¢*+ and %~

YO = SVB(E + )

(3.10)
bt = %\/i(zp% +?*) with 4 = 1,2,..D/2
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the action for the ¥*’s can be written as

D/2

S = /d2z;¢i’+5¢"’_. (3.11)

So in fact there are D/2 b,c-systems with A = ;. The central charge is then
D/2 (see (2.50)). So the total central charge of the matter fields is ¢ = 2D.
For the construction of the vertex operators we can use the fact that for a weight
h = 1 super field ¢(2) = ¢5(2) + 04 (2)

[€G, $(2)] = €D (2" p(2)). (3.12)

After integration of this expression over 6 only 6(zr+%¢f) remains which van-
ishes after integration over z. The integral of [L,,#(z)] over € only gives
[Ln, #6(2)] = 0(2"T1¢p(2)) because ¢, has weight 1 and this also vanishes after
integration over z. Including the right-moving fields in this discussion, the in-
tegral [ d?zd® of a weight (3, 1) super field, commutes with the generators of
the super-conformal symmetries L,, and G,.. Thus adding such an expression
in the path integral does not break these symmetries. Those operators are the
super-symmetric version of the vertex operators of bosonic string theory. The
mass formula changes to M? = —k? = Z(N — 1) as the integrated operators
are now of weight % There is a tachyon

/ 2 286 explik, X*) = / P 2k by 3 exp(ik, ™) (3.13)
with k2 = % and the massless mode
/dzzdzﬁau,,DX“DX" exp(ik,X") (3.14)

where a,, satisfies a,, k* = a,, k" = 0.

Operators involving only super-fields do not switch between the NS and the
R-sector, because these do not change the periodicity conditions. For the NS-
sector G2 |, = L_1. There is a unique state |0), called the super-symmetric
vacuum, which is invariant under G4, /2, Lo and L. In the R-sector there is
no state with Lo = 0 since Ly = G + 51 = G2 + %. The lowest possible Lg
eigenvalue is therefore %. The state(s) with this Lo-value thus has Gy = 0. To
reach it from the vacuum state |0) in the NS-sector, we have to bosonize the

Wit Gl i o il (3.15)
The zero modes of v satisfy
{6, v} =20 (3.16)

They are thus a complex representation of the Clifford algebra Clp_;,; cor-
responding to the (—, 4+, +..) metric of D-dimensional space-time(see also ap-
pendix A.6. The elements of the representation space are called Dirac spinors.
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A basis of this space is given by 84 = (54,0, --54,0/2—1) With each s, ; = ﬂ:% and
a=1,.2P/2 1t is thus a 2P/? dimensional space. The operator

D/2-1
So = exp(i Z Sa,iHY), (3.17)
=0

creates the state S, |0). It corresponds to the basis element s, of the Dirac spinor
representation. The 151 and 4§~ act on it as raising and lowering operators.

. . /1 1 1 _1 1 /1 1 11 1
For instance with sq = (—3,—35,—3,—3,—3) and sg = (5,—3,—3,—3>—3)

0t Sal0) = Sp(0), g Ssl0) =0, g Ssl0) = Sal0) (3.18)

The 2P/2 by 2P/2 matrix that corresponds to 14 acting on the basis S,|0) will
be denoted by I‘zﬁ. The states S,|0) have all the desired properties. Firstly
it gives an OPE with ¢* (from now on summation over double spinor indices
a, f3.. is assumed):

P (2)Sa(w) ~ (z — w) /T4 S(w) (3.19)

Thus S, transforms the fermionic fields 1* from periodic to anti-periodic fields
and we are indeed in the R-sector. Further the weight of the spin-field S, is
D/16, giving S,|0) the lowest possible Lg-eigenvalue D/16 in the R-sector.
Consider the state [u®) = u®e*»X"(©)S_(0)|0) = 0. The condition Gy|u®) = 0
implies

kuThgu® =0 (3.20)

which is the massless Dirac equation. As the weight of S, is D /16, the condition
Lolu®) = D/16|u®) implies that the weight of X" is 0, thus k2 = 0. So the
lowest energy states of the left-moving R-sector, can be recognized as a massless
Dirac spinor in 10 dimensions.

There are 2°/? independent states Sa)0), @ = 1,.2P/2. The physical state
condition, the Dirac equation, relates half of them to the other half. This
can be seen by switching to a preferred momentum frame. Take for instance
ko = k‘l,ku = O,N ¢ {0, ].} Then

kT4 gu® = (koto + k1th1) apu”. (3.21)

So 4% |u*) = 0 and thus the first spin number of u® is fixed to +1, leaving

only 2P/2=1 options. These remaining states form a complex representation of
the Clifford algebra Clp_», the Clifford algebra corresponding to the standard
Euclidean metric in RP—2.

3.3 Super-ghosts

The action (3.7) is in fact a gauge fixed action in which the worldsheet metric
and its super-symmetric partner (gravitino) have been fixed. As for the bosonic
string theory the fixing in the full super-symmetric Polyakov path integral has to
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be compensated with a Jacobian, which can be calculated by a path integral of
super ghost fields, the super-symmetric version of the reparameterization ghosts
b, c. Again focusing on the holomorphic part:

C=c+86v, B=p+6b,

o o (3.22)
Sgh:/d zd HBDC:/d z B0y — boc.

The /3 and ~y ghosts are commuting fields of weight  and —1. This combination
of commuting fields with half-integer weight is opposite to the rule for the matter
fields. The same is true for the b, ¢ ghosts. In the NS-sector 8 and + are periodic,
have 3, and ~y,-components with half-integer . The ghost-vacua |g) have integer
g- In the R-sector this is all opposite: anti-periodic fields, integer r and half
integer q. As explained in §2.3 the 3, y-theory can be bosonized using a scalar
field ¢ and anti-commuting fields n and & of weight 1 and 0 and the following
identification

B(z) = exp(—¢(2))0¢(2), 7(2) = exp(¢(2))n(2)- (3.23)

The operator e?¢ of weight —%q(q + @) can then be used to interpolate between
the different vacua.

As for the bosonic theory the vanishing of the Weyl anomaly requires the to-
tal central charge to be zero. The central charge of the b,c¢ fields is again
-26. For the j,~ fields it is 11 (see (2.50)). The total central charge is then
D+ D/2—26+ 11. So we need D = 10. The superstring theory only works in
10 space-times dimensions.

Again the gauge choice does not entirely fix the symmetries of the action. There
are again three holomorphic killing reparameterizations (for the genus 0 calcu-
lations) which have to be fixed with three ¢’s and cancel three integrals of
the vertex operators. The conformal symmetries have been enlarged to super-
conformal symmetries. As a result there are now extra super-conformal killing
fields. These give rise to zero modes in the 3, system. The 8, y-system having
weights (A,1—X) = (3,—-1), has Q = (1 — 2)) = 2. The gauge freedom in the
B, system has to be fixed by inserting operators e?? that switch between the
ghost vacua |a) and |a + ¢). The gauge freedom in the b, c-system corresponds
to a gauge freedom in the matter (X and v-fields) system, that is not fixed by
choosing a fixed metric. Similarly the gauge freedom in the 3,~y-system corre-
sponds to a leftover gauge freedom in the gauge-fixed matter theory. We will
not give details of how this leftover gauge-freedom is fixed, but it is very similar
to the bosonic string where three of the integrated vertex operators loose their
integral [ d?z, of which one describes the creation at z = 0 of the incoming state,
one gives the outgoing state and the possible third gives an interaction at some
intermediate point. For the superstring we have vertex operators of the form
[ 22d?0%(z, 7,0, theta) with & = (®(2) + 0®;(2))(D;(2) + 8P4(2)). Again
three of them loose their integral d?z if we fix the killing reparameterizations
of the matter system. Notice that the integral d?z picks out the 80®,(z)®y (%)
term. The fixing of the extra super-conformal killing reparameterizations, is
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done by replacing this term in the vertex operators at z = 0 and z = oo, with
a ®4(2)®4(Z) term, and placing a exp(—¢(z)) at those two points which are
needed in the @ = 2 3, y-system. So in general a physical initial state is of the
form .

B;(2)®;(2)crére @e9)|0). (3.24)

Notice that, since the weights of ®;,c; and e ¢ are respectively 1, -1 and 3,
this state indeed has Ly = 0. Focusing entirely on the matter system this
gives the condition that [Matter) = ®(2)|0)™ has to have Lo = 3. This is the
physical state condition for the NS-sector. The initial state made with (3.13) is
then (|0)™ denoting the matter vacuum)

exp(ik, X(0):|0)™,  with k* = = (3.25)

al
and that of the massless states
@™ (0)4" (0):exp(ik, X*(0)):]0)™,  with k* = k*a,, = k"a,, = 0. (3.26)

Again we have the spurious state decoupling of states which are of the form
L_;|¥). For the massless states this gives an equivalence a,, ~ au, + ckyk,
for any constant c¢. This is the same as for the massless modes of the bosonic
string. Again it can be interpreted as giving rise to a graviton field inducing a
space-time metric G, an anti-symmetric 2-form field B,,, and a dilaton field
P,

In the R-sector the vacua of the 3, y-theory are labeled with half-integer g. The
sla-invariant vacuum |0) is not in the R-sector but in the NS-sector. To switch
from this state to a vacuum in the R-sector, we can simply use exp(g¢(0)) with
half-integer q. To create a physical state in the R-sector from the NS-vacuum
|0), the spin field S, of weight £ = 2 has to be accompanied by exp(—¢(0)/2)
of weight 2, mapping ghost-vacuum |0) in NS to |— ) in R. The physical ground
state of the R-sector including ghosts is then (now focussing on the left-moving

sector only)
u® S, (0)e=?(0)/2:¢iku X" (0). ¢ |0) (3.27)

with u® a Dirac spinor. The non-trivial physical state conditions are k2 = 0
such that Lo = 0 and kufgﬁua = 0 such that Gy = 0. Note that this is a state

with G2 = Lo = 0, which is possible since the total central charge vanishes.

3.4 GSO-projection

In a Dirac spinor representation the operator
't = —P/2popt pb-t (3.28)
has the following properties

(rhH2 =0, {T'YL,r*}=0. (3.29)
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It has eigenvalue +1 for spinors s, with an even number of s,; = —%, and
eigenvalue —1 for an odd number. Projecting on one of the two eigenspaces
gives the two inequivalent Weyl spinor representations, having so called positive
and negative chirality. This construction can be generalized to an operator
(=1)F which satisfies

{(-DF, ¢} =0 (3.30)

for all r. For the R-ground state this means that it acts as I''! (identifying
b = T#). In the whole R-sector every mass-level splits in two eigenspaces of
(—=1)F. So projecting on one of the two eigenspaces we get halve the number of
states at each mass level. F' is the worldsheet fermion number operator. In the
NS-sector it counts the number of ¢’s that are needed to create a state from the
vacuum. The ¢’s switch between mass-levels M? = 2 and mass M? = %1,/2
So projecting out one of the eigenspaces of (—1)F gives either the tachyon state
and every other mass level M2 = %1,/2 with n > —1, or we get the massless
modes and every mass-level with mass an integer multiple of 5 We choose of
course the last option, keeping the graviton and getting rid of the tachyon. In
the R-sector we can choose between of positive and negative chirality.

This projection, called Gliozzi-Scherk-Olive (GSO) projection, is an essential
step in obtaining a well defined superstring theory. First of all we get rid of
the tachyon, which solves all kinds of stability problems. Furthermore it can be
shown that it gives a local field theory on the worldsheet, that is the branch-
cuts, the anti-periodicity around some point at the worldsheet created by the
fermionic fields, disappear in all amplitudes. The projection is also required in
diagrams such as the torus, in which the v-fields not have periodicity conditions
in two directions. Finally it turns out that the projection results in a spectrum
of space-time fields that are super-symmetric.

At the massless level of the left-moving NS-sector we have D—2 = 8 independent
states (the physical state property k,a* = 0 and the gauge freedom a# ~ a*+k*
reduces it by 2). This is the same for the R-sector as 2°/2 = 32 becomes 16 after
the GSO-projection, and the physical state condition (Dirac equation) leaves 8
independent states. To calculate the number of states at other mass levels we

calculate o
Tr(g™ M) = Te(gM*Nr*) (3.31)

: Ny+N .
using M? = % =0 with

No= 0k = D03 nN, Ny =) vt =3 rNy,

n>0 n>0 p >0 r>0 p
(3.32)

where N}’ € Z>o and Nf_ = 0,1 are the bosonic and fermionic occupation

b,n
numbers. a is a normal ordering constant which is % in the NS-sector, and 0 in
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the R-sector. For the R-sector
TI'R(anM2) = 8 Z q22=0(2n>0 "Ns,n+zr>0 TNIL;',T)
{Ng nNE -}

=8 [[ Q- ™[I +a)® (3.33)

n=1 N=0 r=1
oo 8
1+ q™
! (1 - q")

n=1
The 8 in front are the 8 physical ground states of the R-sector. The fact that
the Eu = 0? gives an exponent 8 instead of 10, is because we sum over the
occupation numbers {Ng ., Ni } of the physical spectrum for which every index

1 has only 8 out of 10 independent orientations. For the NS-sector we use that
1+ (=1)¥ =0 for the states projected out by GSO. So that we can write

’ 2 1
Trws(@™") = 5 T @Y 1/2(1+ (-1)F)]

_ 1 ﬁ (1+q"—1/2)8_ﬁ (1—(1"—1/2)8 (3.34)
2\/6 n=1 1- q” n=1 1- q” ‘

Both expressions can be proven to be equal. From a power expansion the number
of states at each mass level can be read of

8 +128q + 1152¢% + 7680¢° + 42112¢* + 200448¢° + O(¢"). (3.35)

This means that at every mass level the left-moving NS-sector contains as many
states as the left-moving R-sector. This is a strong evidence for space-time
super-symmetry.

3.5 Type II strings

For the closed superstring the left moving (holomorphic) fields are completely
independent from the right moving. What we have shown so far is the spectrum
of the left moving fields, with at the massless level both in the NS as in the R-
sector 8-independent states. The right-moving spectrum is of course completely
analogous. The spectrum of the closed superstring is the direct product of the
two. However there is a choice we can make here. For GSO-projection in the R-
sector we could choose between states with left and right-chirality. Both choices
give a similar spectrum. But in the direct product it does matter whether we
choose opposite chirality for left- and right-movers or the same chirality. The
first theory is called the type ITA superstring; the second type IIB.

The choice between NS and R-sector on the left and on the right, gives 4 sectors
of the closed superstring. Each has 8 x 8 independent physical states at the
massless level.

e NS-NS: Completely analogous to the bosonic string (only now in 10 dimen-
sions), the massless level contains a symmetric rank 2 tensor G, the graviton,
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with 35 states, an anti-symmetric rank 2 tensor (2-form field) B,,, with 28 states
and 1 state for a scalar field @, the dilaton.
e NS-R: This sector contains a massless spin 1/2 fermion (8 states) with vertex
operator )

ueTh 0, SPe ¢/ etk X" (3.36)

and a massless spin 3/2 fermion (56 states), the gravitino:
w1, S0 2eihn X" I stap =0 (3.37)
with physical state conditions
k* = kuThgu® = k,Th ju® = k,u® = 0. (3.38)

e R-NS: Naturally, this sector contains the same states as the NS-R sector. Only
in type ITA they have opposite chirality, and in type IIB they are of the same
chirality as in the NS-R sector.

e R-R: In the Dirac spinor representation the product

u®vP (TP TH2 TH () o5 (3.39)

of two spinors u® and v? with C the charge conjugation matrix, transforms as
an n-tensor. A reordering of the indices only changes sign by {T'*, T} = np*”.
Using the notation

N WEET Y (3.40)

for the completely anti-symmetrized product, expressions of the form
(Tlraipkz  Trnl0),gu? (3.41)

with 1 <n < D form a decomposition in anti-symmetric tensors of an element
u®? in the direct product representation of Dirac spinors. Thus

D/2
Dirac

D/2
Dirac

2 ® 2 =[0)®[1]®...[D] (3.42)

where [n] denotes the space of anti-symmetric n-tensors. The n-tensors are
related by the D — n-tensors by

[leaphe | Denl = gPUDBn i Pinsz | pro] (3.43)

So [n] = [D — n] by the linear isomorphism I''!. As we remarked before the
R-ground states satisfying the physical state conditions can be seen as a Weyl
spinor in 8 dimensions.

2Dirac X 2Dirac = [0] + [1] + [2] + [3] + [4] + [5] + [6] + [7] + [8]

5 5 5 N (3.44)
= [0 + [1° + [2]° + [3" + [4].

The following equation with D = 2k

(TlaTH2 THeCY 5 (Tu) 0P = (=1)F(TlaTH2  THIC) pu®(TH0)?  (3.45)
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shows that if we take the direct product of two Weyl spinors in 8 dimensions
with opposite chirality, we only get n-tensors with odd n and the product with

equal chirality gives even-n-tensors. So the 24, x24.  breaks in four sectors

depending on whether we project onto a Weyl spinor of positive 23 or negative
chirality 23’ on the left and on the right.

28 x 28 = [0] + [2] + [4]4,
2% x 2% = [1] + 3],

23 x 23" = [1] + ]3],
23" x 23" = [0] + [2] + [4]_.

(3.46)

The type ITA R-R sector is given by the second or the third possibility, with 8
states corresponding to an 8 dimensional vector, and 56 states corresponding to
an 8 dimensional anti-symmetric 3-tensor.

The type IIB R-R sector is given by the first or the fourth possibility, with 1
state for a scalar and 28 for an anti-symmetric 2-tensor in 8 dimensions, plus
halve (is 35) of the states of an 8-dimensional anti-symmetric 4-tensor.

Again in 10 dimensions, so ignoring the physical state conditions, the vertex
operators are given by

G s o pn €~ 2e= 91252 GB (T2 THn1C) g (3.47)

with G a anti-symmetric n-tensor. From (3.45) with ¥ = D/2 = 5, we see that
we have 10-dimensional even n-tensors in type ITA, and odd n-tensors for type
IIB. They are related to the n — 1-tensors in the 8-dimensional decomposition.
The anti-symmetric n-tensors just as the fields in the NS-NS sector, can be
interpreted as background anti-symmetric n-tensor fields, i.e. they are n-forms
on the space-time manifold. They will be denoted as G(™. So we have

G?,¢M GO G®)  for type IIA,

GV, a® g® ¢ GO, for type IIB. (3.48)
The n-form G(™ is directly related to the dual (10 —n)-form G0~ by G(*) =
x*G(10-n) - G0) in type IIB satisfies a self-duality relation.

3.6 Type I string

For the introduction of open strings, we have to impose boundary conditions.
The conditions for X are as in 2.7: 9X#(z) = £0X*(z) at Imz = 0 with
+ for Neumann and — for Dirichlet boundary conditions. Super-symmetry
({Gr,0X"} = 27T 24)(2) and {G,,dX"} = z7T24)(Z)) then implies

Neumann: ¢*(z) = GJ’N(E)‘Im 2=0 (3.49)
Dirichlet: 9" (2) = —elﬁ“(i)‘ '

Im 2=0
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with € = 1 in the NS-sector and ¢ = sgn(Re(z)) for the R-sector. It is again
possible to accomplish this by using a doubling trick, where holomorphic fields
on the entire complex plane describe the left-moving and the right-moving fields
on the upper half plane. So with a holomorphic field y(z) on the entire plane,
0X(z) = y(z) and 0X(2) = y(2) for Imz > 0. And with ¥(z) a holomorphic
fermionic field in the NS or in the R-sector describes 1*(z) = ¥*(z) and *(z) =
+®#(%) for Imz > 0. The spin-fields are given by S,(2) = sq(2) and S,(2) =
sa(Z) with s4(2) a holomorphic spin-field with

TH(2)sq(w) ~ (2 — w)_1/2fgﬁsﬁ(w). (3.50)

The boundary conditions S,(z) = S4(Z) at Imz = 0 are such that if ¥ is a
fermion with Neumann conditions in the NS-sector, y#S,, is in the R-sector and
vice versa. This can only be combined with the boundary conditions for ¢# and
¢* if we have Neumann conditions for all 4. How to change some of them to
Dirichlet conditions is explained in §4.2.

A consistent string theory with open strings also contains closed strings as a
closed string can branch of of any open string diagram. Because of the boundary
condition S,(2) = S,(2) at Imz = 0, the state S,(0)|0) = S,|0), has the
chirality for the left- and right-moving fermions. Therefore open superstrings
with only Neumann boundary conditions can only be combined with type IIB
closed strings. It turns out that this combination is not yet a consistent theory.
The problems are solved if we project out all states that are odd under the
parity operator which acts as

Q: X.(2) & Xg(2). (3.51)

The result of such a projection is called an unoriented string theory. Further-
more the gauge fields of the open string must have a SO(32)-gauge group.
Actually this must be Spin(32)/modZs with another than the usual Z,, but we
will keep the notation SO(32) as in most of the literature. In the massless NS-
NS sector only the graviton G, and the dilaton survive the projection, while
the 2-form B,,, is projected out. The only surviving states in the massless R-R
sector are those of the 3-form G(®). Finally only the linear combination (NS-
R)+(R-NS) survives, giving one gravitino and one Weyl spinor. The resulting
theory is called the type I open and closed unoriented superstring theory.

3.7 Heterotic strings

The heterotic string is a combination of the bosonic string including the b, ¢
ghosts, on the left-moving side, and of type II superstring on the right-moving
side. It is again a 10 dimensional string theory. As the X fields on the left has
central weight 10 and the b, ¢ fields have —26, we need a compensating theory
with weight 16. The simplest possibility is to add 32 left-moving spin 1/2 fields
M. The index A is an internal index. The A* have a SO(32) symmetry.
Another possibility uses the gauge group E8 x E8. We will not give these
theories anymore attention than to say that these are the last two of the 5
consistent superstring theories.
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3.8 Super-gravity, low-energy effective theory

The spectra of the three superstring theories we have described are all produce
super-symmetric space-time theories. It is important to realize that this is a
local space-time symmetry. As the commutator of two super-symmetry trans-
formations is a translation, this means that we have local Poincaré-invariance,
which is the basis of general relativity. Theories with local super-symmetry are
therefore super-gravity theories.

Just as for the bosonic string theory we can look at superstring theory in a
nontrivial background and look at what conditions the theory lays upon these
space-time fields. In general these equations of motions will contain an infinite
number of terms. However if we are merely interested in a ’everyday life range’
approximation, we can discard terms of order o' or higher. In this range, in
which the ’typical string length’ [ — 0, so we are again in the range of ordinary
particle/field-theories, we ignore all massive fields and even a lot of higher order
corrections in the massless fields themselves. Very often the theory of space-time
fields that we obtain in this way can be described by an action, which is called
a low-energy effective action. As the superstring theories were super-symmetric
at every mass level, this low-energy theory is in fact a super-gravity theory.

... And even for those two numbers there are only a few possible combinations.
There is a unique super-gravity theory in 11 dimensions, which is also the maxi-
mum dimension, and all other theories can be derived from it. In 10 dimensions
we have already seen what the possible super-gravity theories consist of. There
are two N = 2 theories, named type ITA and type IIB, which fields are the
same as the massless modes of the corresponding string-theory. The N =1
theory can be coupled to a super Yang Mills theory with gauge group SO(32)
or 8 x E8. They are equal to the low energy effective theory of type I and
heterotic SO(32) string theory and to heterotic E8 x E8 string theory. The fact
type I and heterotic SO(32) have the same low-energy approximation, while
they are very different theories in general, can be explained by the fact that
their low energy effective actions are only equal after changing & — —® for the
dilaton field. As the string coupling g, ~ e®, the weak coupling limit of one
corresponds to the strong coupling limit of the other theory.

The weak/strong coupling duality, such dualities are called S-dualities in gen-
eral, is a first example of a duality in string theory. These dualities play a very
important role in string theory. Although it appears that there are five dis-
tinct superstring theories, it turns out that there is a web of dualities relating
all of them. In fact, just as the different super-gravity theories can be derived
by dimensional reduction from super-gravity in 11 dimensions, all superstring-
theories appear to be different limits of a single 11 dimensional theory, coined
M-theory. This theory is not a superstring theory. It not yet clear how to de-
scribe it in a perturbative way, although there is a conjecture describing it in
some sort of matrix quantum mechanics.
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Figure 1: An overview of string dualities.

4 D-branes

The fact that the different superstring theories are so strictly related to each
other is only known for a couple of years. This is because before 1995 string
theory was only known in its perturbative regime. All calculations were made
in an expansion of multi loop diagrams giving higher and higher orders of g,.
This is of course only valid in the weak-coupling limit with g; < 1. The situa-
tion changed dramatically with the discovery of non-perturbative objects, called
D-branes, with contributions of order g; !, and the realization of S-dualities in-
terchanging weakly and strongly coupled theories.

The first article giving a complete description of these objects is [20]. A more
elementary introduction is given in [19] and [18]. Some technicalities are more
clearly explained in [1].

4.1 Compact dimensions and T-duality

So far we have assumed our space-time to have a topology equal to R®*1. In
coming to a realistic model of quantum gravity in real life, something has to
be done about the discrepancy between the clearly observed 4 space-time di-
mensions and the 10 dimensions that are required in superstring theory. A way
out of this is to consider the leftover dimensions to be compact with very small
radii, such that they can only be observed at high energies. Moreover we will
see that compactification plays an important role in relating different theories
with one another.

We start by considering the ninth dimension to be compact with radius R, i.e.
periodic 2% ~ z°+27R. The first consequence is that the space-time momentum
in this dimension becomes quantized (in order for the space-time translation op-
erator exp(ip’d) to be single-valued when d is an integer multiple of 2 R). So
with mode expansion

n

o akz7" +akz™
Xz 5 =2+ ok + a* B s ; n n
(2,2) =25 + 2 i(ag +a5)7 + (ag — dg)o + In%eo "
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and P°(z,2) = 4 (20X° + 20X°), for the total momentum

1 i = af + &g n

9 9 = Ay 0 0

=— | —(dz 20X° +dz z0X°) = —— = —. 4.1
P = a,(zz +dz z ) oW I (4.1)
In noncompact dimensions for X to be single valued ag—ag = 0. In the compact
direction however X can make a winding X° — X + 2rwR when going around
0 — 0 + 27 with w € Z the winding number. Thus

ay —ay = —wR (4.2)
d
e ay = 1 (a'ﬂ +wR) ag = 1 (0/E —wR) (4.3)
7 Ve \' R T V2l VR ' '

The mass as observed in the 8 4+ 1 noncompact dimensions

M? = _p“pp = 3,(ag)2 + Mgsc.
5 «“ (4.4)

= a(&g)2 + Mgsc.
with a summation p over the noncompact dimensions 0..8 only and M2, the
mass of the left-moving bosonic and fermionic oscillators- (N —1/2)/2a/ for NS
and N/2a/ for R- and M2, the mass of the right-movers. The different number
n states are the Kaluza-Klein modes, while the number w has no counterpart
in field theory. As R — oo the states with winding number w > 0 become
infinitely massive, and p? becomes continuous again, thus retrieving a noncom-
pact dimension. The limit R — 0 makes all states with n # 0 infinitely heavy,
but as the w > 0 become lighter and lighter, a new continuum of states with
n = 0 and different w appears. So in this limit the compactified dimension does
not disappear as in field theory. Instead we get a spectrum which is similar to
that of the R — oo limit. This is a consequence of the following symmetry. If
we interchange

Otl

RHE’ new, a) & a), a e —af (4.5)
we get exactly the same spectrum. In fact in the bosonic string theory if we
interchange &, < —a&*, for all m with p the compact direction, we get exactly
the same theory. So with X*(z, 2) = X} (z) + X (%) we change to

X' (z,2) = X2(2) — XL(2). (4.6)

So the physics of a string theory with compact dimension R is equal to that of a
theory with compact dimension R’ = o//R. This is a remarkable phenomenon,
which is a specific string feature. This symmetry, which can be regarded as a
space-time parity operation on the right-moving degrees of freedom, is known
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as T-duality (Target space duality).
In superstring theory, taking again x4 = 9 as the compact dimension, by super-
symmetry we also have to change

V0 (2) =9°(2), 4°(2) = —4°(2). (4.7)

By interchanging ¢ (z) <+ —¢°(z), we also interchange one of the pairs {7
¥ in (3.10) thus changing the chirality of the fermions in the R-sector. This
means that T-duality maps type ITA superstrings in a target space with a com-
pact dimension of radius R to type IIB with a compact dimension of radius
o'/R. The spin-fields transform

Sa(2) = Sa(2), S(2) =T°T'S,(2) (4.8)
in order to preserve the OPE (3.19)

()8 (@) = —¢° (Z)I°TS(w) ~ —IT'(z — @) /21°8 (w) (49)
= (z —w)~/?1°5" () '
and similar ¢*$’ for the other p, using that T''T" anti-commutes with T and
commutes with the other I'’'s. Applying this to the R-R vertex operators the
effect on the fields G is that it removes an u = 9-index if one is present, and

otherwise adds one, in this way transforming the type ITA-fields in type IIB and
vice versa.

4.2 Open strings and T-duality

For the open string again the momentum in the compact direction. There is
however no such thing as a winding number. So one might wonder what happens
if we apply the same T-duality (4.6),(4.7). The answer is that if we start with
an open string with Neumann boundary conditions 0X° = 6X? at Imz = 0,
we get Dirichlet boundary conditions X" = —9X' (this follows directly from
(4.6)). It means that where the string endpoints could move freely first, in the
dual theory they are fixed in time: 0, X°(7,0) = 8, X°(r,7) = 0. So still being
able to move freely in the other directions, they are fixed to a 8 dimensional
hyperplane. With y its coordinate in the compact dimension, we can write
X"(7,0) = X'®(r,m) = y for all 7. It is now clear what happens to the quantum
number n of the momentum. Since the endpoints of the string are fixed in the
dual theory, it can have a winding number X'°(7,0) — X" (r,7) = 27wR,w € Z.
T-duality interchanges n < w.
The hyperplane we just saw is what is called a Dirichlet-brane. A D-brane of
p + 1 space-time dimensions is called a Dp-brane. So our construction is a D8-
brane. A theory in which open strings can move freely in the entire target-space
of 10 space-time dimensions can be seen as a D9 brane.

Let us first consider multiple D8-branes. There is a compact ninth dimension.
Let y1,...ym be the coordinates in this dimension of the m D8-branes. The
open strings can stretch between the different branes. The Hilbert space of
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Figure 2: Open strings stretching between multiple D-branes at different posi-
tions X' = y1, Y2, y3, Y4, .-

open strings splits in different sectors. A state can be seen as a matrix where
the ij-element represents a string with boundary conditions

X"(r,0) =y;, X"(r,m) =y; + m2rR. (4.10)

The number w in the difference X'°(7,7) — X"(7,0) = 27 R'w is no longer
integer, rather
w = Yi —Yi
2nR!
In the T-dual picture, this is the ’original’ picture with only Neumann boundary
conditions and no branes, the momentum (use: w < n and R' = o//R)

+m, méeELZ. (4.11)

g _ W Y — Y%  m

= = — 4.12
R~ 2ma R (4.12)
is no longer an integer multiple of 1/R. This means that strings from the ij-
sector in the dual picture pick up a phase

exp (.%) (4.13)
under going around the compact dimension. Define the matrix
A = diag{e V/F W2/ R —ium/R'Y (4.14)

A general state of open strings stretching between the different D-branes was a
matrix with the 7j-th element an open string stretching between the i-th and
the j-th brane. In the T-dual picture of this, the matrix ¥ of the T-dual of
these states transform

T — ATTUA. (4.15)

when translated around the compact dimension. In this picture we thus still
have different sectors of the Hilbert space. One can interpret this by saying
that each endpoint has a label ¢, called Chan-Paton factor, running from 1 to
m, attached to it. So the string string from the ij-sector has a label ¢ at its
beginning and a label j at its endpoint. One can say that there are m different
space-filling D9-branes with open strings stretching between brane i and j.
The phase factor A can be seen as a Wilson Line of a gauge field. Consider a
background field A* on a single D-brane. Its contribution to the string action
is

A, (X (o,7)) X" (0, 7). (4.16)

)

This is simply the photon vertex operator integrated over the worldsheet bound-
ary. It gives a contribution to the momentum operator of a string stretched
between the i-th and j-th brane is

P(r,0) = X*(1,0) +i6(0) AL (X*(7,0)) —i6(c — m) A (X#(7,0)).  (4.17)
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So the endpoints of the open string are charged under the gauge field A*. Under
going around a loop the string picks up a phase

exp(ifAj - A,) (418)

That this is indeed the right interpretation of the phase factor, becomes clear
if we compare the vertex operator of the massless photon A° with its T-dual in
the D8-branes system (in X’-coordinates)

V =08,X%=20X + 20X
. 0 (4.19)
=0, X
So the massless photon state of A? corresponds to variation of the endpoint of
the coordinate, i.e. a fluctuation of the D-brane itself! Let us look at the mass
spectrum of an ij string in the D8-branes system
M? = (af +a3)* + M?

osc.

_ (27TTLR' +y; — yi>2 M2 (4.20)

osc.

2ma!

In the D8-brane picture n € Z is the winding number. If y; = y; there is a
massless state for n = 0. In the NS-sector it is a gauge field A* for the noncom-
pact dimensions, and the fluctuation of the D-brane coordinate in the compact
direction. In the Neumann-picture this last state is the gauge field A° in the
compact direction. In this case as well as for n # 0 the Wilson loop vanishes for
§ A% = 27n. This makes A° a massless gauge field satisfying the Dirac charge
quantization condition (this is explained in §4.6). When brane i shifts away
from j, the massless mode gains mass and in the Neumann picture we have a
non-trivial Wilson loop.

If none of the D-branes coincide, only the strings with begin- and endpoints at
the same D-brane have massless modes. If n of the m D-branes coincide the
n? massless modes can be interpreted as a U(n) gauge field. If all D-branes
coincide, in the Neumann picture we have a full U(m) group acting on the
Chan-Paton factors. The shifting apart of one of the D-branes results in the
breaking down of U(m) to a subgroup U(m — 1) x U(1).

Applying a few T-dualities in different directions, we get open strings with
Dirichlet boundaries in those directions, i.e. they are fixed on a lower dimen-
sional hyperplane. For a Dp-brane, we have p + 1 Neumann and 9 — p Dirichlet
conditions for an open string attached to it. Since T-duality interchanges N and
D boundaries, a further T-duality in a direction tangent to a Dp-brane reduces
it to a (p — 1)-brane, while a T-duality in a orthogonal direction turns it into
a (p + 1)-brane. For open strings with only Neumann boundaries we found
the condition S,(2) = S,(2) at Imz = 0. As the open strings can be patched
together to form closed strings, there should be closed strings satisfying this.
This requires the left- and right-moving spinors of the R-R-ground state to be
of the same chirality. Thus a space filling D9-brane is only consistent in type
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type ITA p=20,2,4,6,8
type IIB p=-1,1,3,5,7,9
type I p=1,59

Table 1: The possible Dp-branes in superstring theory

IIB. Actually this is only after the parity projection which makes it a type I
theory, but we will come to that. Applying a T-duality in the d-direction, the
boundary condition becomes

S (2)|tm z=0 =TT S} (2) (4.21)

This is only possible for opposite chirality R-R-states of the type ITA string.
Applying an odd number of T-dualities starting from the D9-brane, gives an
even Dp-brane in the type ITA-theory and an even number of T-dualities a odd
Dp-brane of type IIB. For the unoriented type I case the boundary condition for
the spin-field must be invariant under S, <+ S, this is only true for p = 1,5,9.
All possibilities are given in table 1. The D1-brane is a string like object, the
DO is a particle and the D—1-brane an instanton.

4.3 The D-brane action

In the last paragraph we saw that the T-dual of a gauge field in a compact
direction, is the fluctuation of a D-brane in this direction. Let us consider a
Dp-brane with open strings attached to it, giving a massless U(1) vector field on
the brane and 9 — p scalars describing the fluctuations. They have interaction
with the massless closed strings, that can still move through the entire target-
space. This can be described as an interaction with background fields. Using
coordinates £*,a = 0,...p for the brane, we can write an low energy effective
action for this

S, =T, / dPl¢e®\/— det(Gap + Bap + 210! Fpp), (4.22)

where G, and B, are the pull-back of these space-time fields to the brane, and

ub = 0,4y — Op A, the field strength of A,. The integral of v/— det G is the
world volume of the brane, the simplest coordinate invariant action. Note that
this an action for the scalars describing the fluctuations as well. The pull-back
of G and B are namely given by

OXH oXV OXH oXV

(@) =T G (X(€), Buw(€)=2—2" B (X(€). (42
G b(&) 660’ 6§b 14 ( (E)) b(g) aé-a 6§b 14 ( (5)) ( 3)
with X (&) the embedding of the D-brane in the target space. The dependence
on Fy, can be understood as follows. Consider a Dp-brane and an open string
attached to it, starting at X (&) and ending at X (&;). Locally around X (&) we

can choose space-time coordinates such that the metric G#¥ is flat and such that
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the X*-directions for g = 0,..p are parallel to the brane. Consider a constant
gauge field Fi». It is the field strength of a gauge field A with A; = —X2F,.
The endpoints of the string are free to move in the X! and X? direction. Moving
both endpoints in the X! direction keeping X2(&) and X?(&) fixed, after going
around the complete X!-dimension, the string picks up a phase

exp (i27TRF12 [X2(§1) — XQ(EO)]) . (424)

Applying a T-duality in the X!-direction the endpoints are fixed in this direc-
tion. The phase factor gets translated in a difference of the X'-coordinate of
the brane at both endpoints.

X"(&) — X" (&) = 2/ Fio (X% (&) — X (&) (4.25)

Choose local coordinates z® on the brane around &y such that X*(£) = X*(&)+
z® with a = 0, ..p. So the point & is given by 2% = 0. After T-duality X'*(z) =
X(z) for a # 1 and X" (z) = X'(0) + 2ra’ Fi2(X?(z) — X2(0)) = X"(0) +
27’ Fio22. We can discard the x'-coordinate. The only thing that changes in

G, is

OX"™ X" 0X" HX"
9o (T) = WWGH(X(SU))+WWGH(X($)) = (14+(2na F12))* G2 (z)
so that
det G, = (1 + (27 F12)?) det Gop = det(Gap + Fap). (4.26)

Finally the dependence on B is due to the following gauge freedom of the
world sheet action with background fields

B, = Buy +0,A, —0,A,, A, > A, + A, (4.27)

that will be explained in detail in §6.7.

Suppose we have a single compact dimension, the low energy effective action in
the noncompact dimensions is determined by integrating [ 1/(2x2)v/—GR out
over the compact dimension. This should be invariant under T-duality, thus

1 1
2K§ 2Ky

This determines the transformation of the string coupling g, and of ®:

'2 2 2& R !
H_Oz = gfsz = 62<I>' =TR= %' (4.29)
Ko 9s € R

Consider now a Dp-brane wrapped on a p-dimensional torus in with radii R; in
a flat background Gy, = Myv, By = F = 0 and constant dilaton. The action
is simply

=Tpe * [ 27R.. (4.30)
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After a T-duality in the compact dimension j, R; — R} = o'/ R; and exp(—®) —
exp(—®') = exp(—®)va'/R;. As the action of the dual Dp — 1-brane should be
the same

% =21V, (4.31)

p

4.4 D-Branes as R-R charges

Further on we will see that D-branes are BPS-states. In general this means that
there must be conserved charges. In the present there is a natural set of charges,
namely those of the R-R fields. The physical state conditions of the R-R fields
G considered as background fields are

dG =0, d+G=0, (4.32)

where we have written the anti-symmetric p-tensor G as an p + 2-form. The
Hodge star * is an isomorphism between the space of p-forms and the space of
D — p forms, such that

ONxG = (0,G)u (4.33)

for any p-form . (6, G) is the inner-product, i.e. contraction over all indices by
the space-time metric. p is the D-volume form with respect to the metric, that
is locally equal to dzg Adzy A ..dxp for any local orthonormal coordinate system
z;. With G equal to the 2-form F},,, the field strength of Maxwell theory, (4.32)
are just Maxwell’s equations. This is generalized for the R-R fields. For any p,
the p-form G is called field strength. Since dG = 0, locally we can write G = dC
with C a p — 1-form the vector potential (equal to A, in Maxwell’s case). The
fields can be coupled to an electric charge Jg and a magnetic charge Jas, which
are a p— 1 and a d — p — 1-form, by imposing

dG =xJy, d*xG =xJg. (4.34)

In Maxwell theory in 4 dimensions both Jg and Jjs are 1-forms, representing
the electric and magnetic current. The electric source is generally a p — 2-
dimensional object, that is a p — 1-dimensional submanifold E of space-time.
Then one can find a ’electric charge density’ function p on E, such that for any

p—1 form w
/w-pz/w/\*JE (4.35)
E

where the integral on the right is over all of space-time. The field equations for
the case Jyr = 0 can be derived from an effective action

S = % / GP A xGP) 4 /E cr=Yy (4.36)

where the left integral is over all of space-time and the right over the magnetic
source only.
The p = 0,2,4,6,8 Dp-branes in type ITA and the p = —1,1,3,5,7 Dp-branes
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Figure 3: The one loop amplitude of open strings stretching between two D-
branes can also be seen as the exchange of a closed string between the branes.

in type IIB, are electric sources for the p 4+ 1-form vector potentials C"*1) with
p + 2 form field strengths G(®*+2). This means that they are magnetic charges
for the D — p — 1 forms *G. The D8-brane couples to C(®). The physical state
conditions imply that there is no propagating string state for this form, but we
may consider a background with constant G(1)0.

A first guess for the action would be to take p = p, constant. Consider a 1-brane
in the X1, Xo-plane parameterized by (t,z) — (X° = ¢, X! = z, X2(x)). It is
coupled to a 2-form C@®. The action would be

ip1 /(001 + Co20; X2 (x))dxzdt. (4.37)

After a T-duality in the 2-direction we get a 3-form C'®) with Cj);, ~ Co; and a
0-form C§ ~ Coz'. The fluctuations of the brane in the X,-direction correspond
to a gauge field 9, X2 (z) = 2mwa’ F12. So we can rewrite this action

inn / (Chyy + Ch2mal Fly)dadt. (4.38)

These arguments can be generalized, using again the gauge invariance of B +
27 F, to find a general action

ipp/exp(Zwa'F +B)AC. (4.39)

The exponent is an expansion in 2-forms F' and B, and C is the summand over
all 9 for different gq. The integral should be read as picking up exactly all
terms that are p + 1-forms, so CP*1) + (2na/F + By AC®P~1) 4 .

4.5 D-brane tension and charge

Consider two parallel Dp-branes. The one loop amplitude of open strings
stretching between them can be calculated[18]

1 Pl > dt 1

The sum runs over all open string states which stretch between the branes. The
factor 2 counts both possible orientations. The 1/2 is for real fields. Vj 41 is the
volume of the brane, defined by putting the system in a large box. dt/t is the
invariant measure over all one loop diagram, cylinders of circumference ¢. The
trace of exp(—tM?/2) was already carried out in §3.4 using ¢ = exp(—t/2a’).

Ithere is a normalization here that will be fixed later.

45



The mass however is now M? = (N, + Ny + a)/a’ + Y?(2ra')~2 with Y the
D-brane separation (4.20). Integrating the momenta out, this gives

dt, 1y (4.41)
A= Vp+12/?(27rt) (p+1)/ exp (-W

© /q n\ 8 1 = /1 n—1/2\ 8 1 2 /1 _gn1/2 8
SH(05) 4o (5 ) ~ne L (55
et 1—g¢q 2,/q 1—g¢q 2\/q 1—g¢q

n=1 n=1

The minus sign for the R-sector term is required, as it is a one loop fermion
diagram. As a result the whole expression vanishes by the identity of the traces
in the NS and R sector. It is interesting to realize that if we interchange the o-
coordinate along the cylinder and 7 around the cylinder, we are actually looking
at a closed string exchange between the branes. The first two terms without
(=)¥ correspond to the NS-NS states and the last with (=) to R-R states.
To focus on the massless closed string states, take the limit ¢ — 0 in all terms
involving q. Using standard identities for theta functions, this becomes

1 dt t\* ty?
_ L dt o (—pr1)/2 __
A=50-DVn / 7 (2mt) (2m'> eXp( 87r2a'2) (4.42)

= (1 - 1)V, 2m(4na’)* PGy, (V7).

where Gy_,, is the scalar Green function in 9-p dimensions. In a field theory
calculation (see [1]) using the effective actions (4.22),(4.36) the contribution
from the NS-NS fields and of the R-R fields can be exactly calculated

Ans-ns = Vo1 T)Go—p(Y?), Ar-r = —Vp419,Go—p(Y?) (4.43)
This fixes the tension and charge to
2 _ 2 _ 2 1\3—
T, = p, = 2m(4m°a/)°"P, (4.44)

which is in line with (4.31).

4.6 Dirac charge quantization

The existence of both magnetic and electric charges imposes a condition on
the possible charges for which there is a consistent way to interpret the fields
as a gauge theory. In the D = 4,p = 2 Maxwell case the argument is as
follows. Consider a magnetic charge p in the origin. It has magnetic current
Jur = pd(x1)6(x2)d(x3)dt. This charge is measured by the flux of F' through a
sphere S? around the origin, using Stokes theorem

/52F - /BdF = /B *Jy = /B 16 (x1)8(x2)8 (x3)dwdydz = p (4.45)

Anywhere outside the origin dF' = 0, so at least locally it is possible to write
F = dA. In general it is not possible to find such an A for the entire region
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without the origin, since it is not contractible. Suppose a loop C divides S?
in two, and for the upper hemisphere we can write F = dA and for the lower
F =dA'. Again by Stokes the flux is equal to the difference in the loop integral

of A and A’ over C
/F:fA—]{A' (4.46)
S5 c c

This loop integral however calculates the phase an electric charge p picks up
after going around the loop.

exp(ipj{ A) (4.47)

c

Since this phase should be the same using A or A’, we get the condition
pu=2mn, né€Ez. (4.48)

This can be generalized for the R-R fields. The magnetic charge of a field G(»+2)
is a D6 — p-brane. Taking a p + 2-sphere SP*?2 in the transverse space, with its
origin a fixed point on the brane, the charge in this point is measured by

/S » GP2) = pg . (4.49)

In order for the exponent of the action in the path-integral for a p-brane wrapped
on a SP*! sphere

exp(ipp/C(p+1)) (4.50)
to be well defined, one gets the condition
P(6—p)Pp = 27N, n € L. (4.51)

Remarkably this is satisfied by (4.44) with n = 1. So the D-brane charge is the
minimum charge satisfying the Dirac charge quantization condition.

4.7 BPS states

The introduction of D-branes and thus of open strings in the type II theories,
breaks some of the super-symmetry. This is not surprising as only the vacuum
of the theory is invariant under all super-symmetries. However not all of the
symmetries are broken. The boundary conditions for open strings relate the left
and right moving spin-fields and thus the space-time super-symmetry operators
Qo and Q,, breaking halve of the 32 super-symmetries. The remaining 16 are
generated by ~

Q+15,Q (4.52)

where II,, is the operator that gives the boundary condition on the spin field

S0 (2) [t z=0 = I1,54(2) (4.53)

47



For a D8-brane IIg = I'''T'#(4.21), with p the transverse direction. It has the
property that it anti-commutes with the I'* of the transverse directions and
commutes with those of the directions parallel to the brane. More generally for
a Dp-brane with volume form

1
Wt = 0+ 1)!“&%Ti’,,dw“° Adz A .date, (4.54)

one can show by applying several T-dualities that it has the form[1]

1
— (p+1 P
L 1)!wugiiulrﬂorm...rﬂ (T)? (4.55)

where (I')? = 1 for p even and (I')? = T for p odd. Now consider multiple
D-branes, not necessarily parallel nor of the same dimension. For a Dp and a
Dp'-brane with associated operators I, and I, their super-symmetries(4.52)
are different. If they have some in common, there must be a combination u®
and u'® of (4.52) for which

u®(Q + HpQ)a =u"(Q + H;I[)'Q)a- (4.56)
The number of solutions is given by the number of zero eigenvalues of
I, — 11, (4.57)

Consider two branes each parallel to the coordinates axes. It is now possible for
open strings stretching between the branes that in some direction one endpoint
is constrained on the brane (Neumann-condition), while the other endpoint can
move freely in this direction on the other brane (Dirichlet-condition). Because
the number of directions in which the strings have both Neumann boundaries
and the number of Neumann-Dirichlet boundaries is related by

p+p =#ND+2#NN (4.58)

and, since we are either in type ITA or type IIB, p and p' are either both even or
both odd, the number r = #ND of ND directions is always even. H;, I, Lisa
multiple of I'*..I'"" with v; the directions in which there are both Neumann and
Dirichlet conditions. If r = 2,6,10, M? = —1, so there are no +1 eigenvalues
and thus no remaining super-symmetries. For r = 0 and w, = w;, H;, I, =1
and thus all 16 super-symmetries remain, giving a N = 1 space-time super-
symmetry. For » = 4,8, M2 = 1 and halve of the eigenvalues are +1 reducing
the number of super-symmetries to 8.

The N=2 super-symmetry algebra is of the form

{Qar Q) = 2(1°T*)ap (P, + QNS /270,
{Qa,Qp} = 2(T°TH) 5(P, — QNS J2ma), (4.59)
{Qa, Q) = 2Q%.
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Here QV¥ is the charge of the NS-NS 2-form B, we will see in chapter 5 that the
fundamental string is charged under the B-field. Q% is the R-R charge, which
is the sum over the operators II, of the present D-branes. In the rest-frame of
some D-brane configuration we can write, ignoring the B-field:

1{/(Qa ~ = _ 10 0 QF

3 { (Qa) ) (QB QB)} =m (0 1> + Pp (QR,T 0 > (4.60)
Here p is the mass-density. The left-hand side of this equation is a positive
matrix. For a single D-brane QF = II,, and p = Tp/|w®+D |2 with |wP+D)]? =
WPt 4 P+ the local volume density of the D-brane. Locally we can choose
coordinates such that |w®+V|? = 1. Further (QF)? = |w®+Y|2. Thus the

left-most matrix has eigenvalues +p,. But as the total left-hand side is always
positive, we derive a mass bound

m 2> pp (4.61)

This is called a BPS-bound. For states that exactly satisfy this bound, called
BPS-states, there are zero eigenvectors of the right-hand side of (4.60). They
give linear combinations of @), ’s that generate the remaining super-symmetries
of this state. In the case of 1 D-brane half of the (),-combinations give zero,
corresponding to the negative eigenvalues of Q¥. Thus as we saw before there
are 16 super-symmetries left. For the combination of 2 D-branes one derives in
a similar way

forr=0,4,8: = m>p,+pp,

(4.62)
forr=2,6,10: = m>./p2+p2.

Again the states that exactly satisfy these bounds have remaining super-symmetries.
Thus with m = T, + T}y there are BPS-states for r a multiple of 4.

4.8 Brane-anti brane configurations

Consider again two parallel branes of the same dimension. Flipping the ori-
entation of one of the two branes, changes sign of w and thus 1T}, = —II,.
Since the matrix in (4.57) is now 21, which has no zero eigenvalues, this is
no longer a BPS-configuration. Although it was first thought that the super-
symmetry property of D-branes was crucial in assuring stability and providing
self-consistency checks, it was found that there are also stable non-BPS non-
perturbative configurations. In fact their existence is required by strong/weak
coupling dualities because of the existence of stable weakly-coupled non super-
symmetric states. Reference [21] gives an overview of the application of non-BPS
states in string theory.

Characteristic for non-BPS D-brane configurations is the reappearance of tachy-
onic modes. Remember the one-loop open-string amplitude where the (—1)%-
term of the NS open-string sector corresponds to the R-R sector of the closed
string. Changing the orientation of one of the branes, changes the sign of the
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R-R charge and thus the sign of the R-R term in the amplitude. In the open
string picture this corresponds with replacing the operator 1(1 + (-1)¥) by
1(1 = (=1)¥) in the NS-sector. This means that in stead of projecting out the
tachyon, we project out the massless mode and keep the tachyon as ground
state. With a Dp-brane and a Dp-brane, the oppositely oriented anti-brane, on
top of each of other, the four different open strings (p — p,p — p,p — p,p — D)
can be thought of having different Chan Paton labels, represented by a matrix.

The lowest mass modes are then of the form

(‘g ﬁ) (4.63)

The lowest modes of the p — p and p — p open strings give rise to gauge fields
A* and A* on the brane and the anti-brane respectively for the directions p
parallel to the brane, and fluctuations of the D-brane positions for the transverse
directions. Mathematically the gauge fields are the connections of line bundles
E on Dp and F on Dp. The lowest mass modes of the p — p and p — p strings
give tachyon scalar fields 7' and 7. The endpoints of these strings are charged
under A and A but with opposite signs for T and T, because of their opposite
orientation. This shows that T can be regarded as a section of the line bundle
E ® F*, since its connection is A — A, and T as a section of E* ® F. The pair
(T, T) can be thought of being a complex field with modulus |T|> = T'T.

After integrating out the massive modes one can argue[22] that the tachyonic
potential V(T'), which only depends on |T'|, has a minimum such that

27, + V(Tp) = 0. (4.64)

This shows that the minimum describes a state which carries no charge nor
any energy. Consequently it is indistinguishable from the super-symmetric vac-
uum. The process of rolling down the potential to a stable minimum is called
tachyon condensation. Instead of condensating to the tachyon ground state
T = Tpe® with arbitrary constant #, one might consider condensation to a
tachyonic vortex-solution. This is a configuration of the (T, T')-field which has
modulus Ty at infinity, but with a topological non-trivial twist in its phase.
For example on a Dp-Dp system, it might have a twist when going around a
p — 2 dimensional object on the brane pair. This tachyon condensate is then
equal to the standard BPS D(p — 2)-brane configuration. Other twists in the
tachyon field give rise to all possible kinds of lower dimensional branes. In fact
it is thought that all known BPS D-branes arise in this way. The construction
of D-branes arising from topological-nontrivial twists in the line bundles on a
brane-anti brane pair, is remarkably resembled by a standard technique in topo-
logical K-theory. In the next chapter we will see that using this technique one
can describe mathematically, how all lower dimensional branes of the type I1IB
superstring arise from a stack of D9 and D9-branes. Something similar can be
done for type ITA-branes.
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4.9 Descent relations among D-branes

First we will give another perspective[21], from which one can see that brane/anti-
brane pairs indeed contains the spectrum of lower dimensional BPS-branes.
Consider the action of (—1)¥ on a Dp,Dp-system in either type ITA or type IIB
superstring theory, where FT, is the space-time fermion number of the space-
time fields arising from the left-moving sector of the worldsheet only. It changes
sign of the left-moving Ramond sector, but does not change anything else. This
definition implies that all R-R fields change sign, while the NS-NS fields re-
main unchanged. In this way the brane and the anti-brane, being opposite R-R
charges, get interchanged. It is interesting to investigate the orbifold induced
by the operator (—1)fL.

In general an orbifold is contrived from an existing theory by modding out a
symmetry of the target space. The resulting theory consists of two sectors. The
untwisted sector contains all states of the original theory that are invariant un-
der the symmetry. For the closed strings they are, focusing on the lowest modes,
the NS-NS and the NS-R fields. The open string states in the untwisted sector
are those invariant under interchanging the brane and the anti-brane. They are
the linear combination of a p — p and a similar p — p string, corresponding to a
Chan Paton matrix that is a multiple of the identity, and the linear combination
of similar p — p and p — p strings, corresponding to a symmetric off-diagonal
Chan Paton matrix. The twisted sector contains states corresponding to fields
on the closed string worldsheet, that are invariant but are only periodic up to
the symmetry, i.e. under a translation

o—=o+2n: |¥) = (=1)FE|w). (4.65)

As the target space of the orbifold is invariant under the symmetry, consistency
requires these strings to be included. In [5] it is explained that the states of the
left-moving sector with these twisted boundary conditions, are equal to those of
the R-sector, and that if we start with type ITA theory this R-sector is of the
same chirality as the right-moving R-sector. Starting with type IIB the twisted
left-moving sector is now of opposite chirality. Combining this new left-moving
sector with the unchanged right-moving sector gives the R-NS and R-R sector
of the closed superstring. Adding the untwisted sector with NS-NS and NS-R
sectors, to the twisted sector with R-NS and R-R sectors, the orbifold of type
ITA superstring under (—1)¥Z gives the type IIB superstring, and vice versa the
orbifold of type IIB is type ITA.

The open string states that survive the (—1)f modding, are those that are
invariant under interchanging the brane and anti-brane. They have Chan Paton
matrices which are a multiple of

) w () 50

Thus only one gauge field A* + A* and only one real scalar tachyon T + T
survives the projection. The result is a single D-brane. This can be seen by the
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fact that in the transverse directions, of the lowest mass modes corresponding to
the fluctuation of the positions of the D-branes, only the sum remains while the
difference is projected out. Thus the distance between the brane and anti-brane
is fixed and only the system as a whole can be moved in the transverse direction.
Note that if we start with a Dp-Dp-brane system with p even for type ITA and
odd for type IIB, we end up with a single Dp-brane with p even for type IIB
and odd for type ITA! This is different then the possibilities in table 1. It is a
non-BPS configuration with a real tachyon field.

D9-D9-branes DO9-brane D9-brane
type IIB type ITA type IIB
! ! /
! ,
= v v
D8-D8§- branes D&-brane D8&-brane
type ITA type I1B type ITA
.
/ !
v v
D7 brane D7-brane
) type IIA type IIB
: §
§ g
v D6-brane
) type ITA
5
A

Figure 4: Descent relations among BPS and non-BPS D-brane configurations in
type II superstring theories. The horizontal arrows denote modding out (—1).
The vertical arrows denote the tachyon condensation. The diagonal arrows
denote T-dualities.

This trick can be repeated. Note that (—1)* is different in type IIA then
in type IIB as in their left-moving R-sectors states with different chirality are
projected out. Orbifolding again using (—1)¥~ switches again between type ITA
and type IIB for the closed strings. The open string looses the tachyon mode.
So we end up with a single Dp brane with type ITA closed strings for p even and
type IIB for p odd, and the usual gauge field on the brane and brane position
fluctuations from the open strings. This is again the standard BPS Dp-brane
configuration.

Figure 4 gives an overview of all descent relations we have described. The
tachyon condensation is here performed in two steps. First one gives the tachyon
an instanton-like solution in one direction of the Dp-Dp-branes. That is

e Im(T)=0
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e Re(T) is independent of time and p — 1 of the spatial coordinates of the
branes

e For the remaining coordinate z:
ReT — Ty for £ — oo
ReT —» T, for x - —o0

thus giving T a jump around z = 0. This gives a Dp — 1-brane on the original
Dp-brane extending in all directions transverse to the z-direction. It still has
one tachyonic mode of freedom. As instead of the limit T — Ty we could also
take T — Tpexp(if) with an arbitrary phase. This is the non-BPS brane with
only one real tachyon field T', we found after a single orbifolding of a Dp — 1-
Dp — 1 system. The second step gives the real tachyon T a kink in another
direction, say y, such that

e T is independent of time and p—2 of the spatial coordinates of the original
brane-anti-brane system.

o Im(T) - Ty for y — oo Im(T") — =T for y —» —o0

The result is the standard BPS Dp — 2-brane.

5 K-theory

K-theory was first introduced in the 1950’s by A.Grothendieck and further devel-
oped in the 1960’s by Atiyah and Hirzebruch, who where the first to introduce
the K-group of a topological space. Since then it has become a very impor-
tant tool in many areas of topology, differential geometry and algebra. A very
complete introduction in the mathematics of topological K-theory is [11]. A
short introduction focused on topics related to spin geometry, such as the ABS-
construction, can be found in [16].

The fact that R-R fields are differential forms, satisfying Dirac charge quanti-
zation, suggests that they should be described in integer cohomology. In [15]
however, Minasian and Moore made the conjecture that the charges of the R-R
fields of superstring theory take their values in K-theory. More evidence for this
idea was formulated by Witten in [23], where it was shown how Sen’s construc-
tion of tachyon condensation[21] in brane-anti-brane systems leads naturally to
the identification of D-brane charges as elements of K (X), the K-theory of the
space-time manifold X. Furthermore it was shown in this paper that a topologi-
cal condition in K-theory exactly matches the cancellation of a previously noted
worldsheet global anomaly. A good introduction treating both the mathematics
of K-theory and its application in string theory is [17].

The first paragraphs of this chapter are devoted to explaining all necessary top-
ics in K-theory. The last paragraph shows how all elements of the theory are
related to the physics of D-brane systems.
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5.1 The Grothendieck group

The most general definition of the theory is rather algebraic, but this is needed to
make some generalizations later on. A monoid is a set which satisfies all axioms
of a group except for the fact that not all elements have an inverse. Think for
example of the additive semigroup Zs>¢ or the multiplicative semigroup Z*\{0}.
To an abelian monoid A one can associate an abelian group S(A). On the direct
product A x A one can define an equivalence relation with (z,y) ~ (z',3') if
there exists a z € A such that

z+y +z=y+2 +2. (5.1)
The set S(A), the symmetrization of A, is the set of equivalence classes [(z,y)]
SA) =Ax A/ ~. (5.2)

It is an abelian group because it inherits the abelian monoid structure of the
direct product, with addition defined by

[z )] + (=", )] == + ',y + 9] (5.3)

and, since by

[(z,9)] + (v, 2)] = [(z +y,2 +y)] = [(0,0)], (5.4)

every element [(z,y)] has inverse [(y, )]

The symmetrization of Z > consists of pairs of nonnegative integers with (z,y) ~
(z',y") if and only if x + ¢' + 2 = y + ' + z for some z, but this just means
z+y =y+2'. In Z this means x —y = ' —y'. So all pairs with equal differ-
ence are equivalent. This difference is just a number in Z. Thus S(Z>o) = Z.
Similarly S(Z*\{0}) = Q.

Less trivial examples arise from additive categories. An additive category is a
category with an additive structure and the notion of linear homo- and isomor-
phisms. Let ®(C) be the set of isomorphism classes of the additive category
C. Tt is an abelian monoid with addition defined by [z] + [y] = [z + y]. The
symmetrization S(®(C)) is called the Grothendieck group of C and is denoted
by K(C). Instead of using the consequent notation [([z], [y])] for the equivalence
class in K(C) represented by a pair of equivalence classes [z] and [y] in ®(C)
with z,y € C, one uses the notation [z,y], or with [z] = [z, 0] and [y] = [0, y],
writes it as the difference [z] — [y].

As a simple example, consider the additive category C of finite-dimensional
vector spaces over the field R or C. The equivalence classes are completely de-
termined by giving the dimension of the vector space. So ®(C) = Z3>¢ and thus
K(C) = S(Z0) = Z.

The most important example is the Grothendieck group of Vect(X), the addi-
tive category of complex vector bundles over a compact manifold X. This is an
additive category using the Whitney sum E @ F', which is the bundle of direct
sums of the vector spaces of E and F' at each point, and the notion of equivalent
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vector bundles (see appendix A.3 for some of the basics of vector bundles). One
uses the notation

K(X) = K(Vect(X)) = S(®(Vect(X))). (5.5)

The study of this abelian group for, in general, a topological space X, is the
subject of topological K-theory. Very important in this context is Swan’s theorem
which says that if G is a bundle over a compact manifold X there exists a bundle
G' such that G @ G' is a trivial bundle, that is a bundle which is of the form
X x C*. We will use the notation I* for a trivial bundle of rank k. It follows
that the following two equivalence relations define the same equivalence classes
[E, F] of the Grothendieck group

EoF @G=E @ F &G for some G € Vect(X)

! k ~ 1! k (5'6)
< EQF ®©I"=E ®F®I" for some k € Z>.

A very important property of the K-group is its homotopy invariance. The
pull-back of a vector bundle £ — Y under a map f : X — Y is the vector
bundle f*E over X, whose fiber E, at x € X is the vector space Fy(,), the
fiber of F' at f(x). If f,9: X — Y are homotopic maps, the bundles f*E and
f*F are equivalent. Similarly an element [E, F] € K(Y) can be pulled back to
f¥[E,F]=[f*E, f*G] € K(X) and for f and g homotopic

f*1E,F] =g*[E, F]. (5.7)

Thus f*: K(Y) - K(X) and ¢g* : K(Y) —» K(X) are identical if f and g are
homotopic.
Suppose X is a compact manifold which is contractible to a point. This means
that there are maps f : X — pt and g : pt = X such that g o f is homotopic
to the identity. Therefore the pull-back under go f on vector bundles over X is
an isomorphism. The pull-back can be decomposed in (g o f)* = f* o g*. The
pull-back (go f)*E of any vector bundle E € Vect(X) is therefore the pull-back
of the vector bundle g* E over pt, which is necessarily trivial. Since every bundle
E € Vect(X) is isomorphic to (go f)*E, every bundle E € Vect(X) is trivial. As
a result the K groups of X and pt are equal, and because ®(Vect(pt)) = Z>o,
it follows that

K(X)=K(pt) =Z. (5.8)

5.2 Reduced K-theory

Every K-group contains Z as a subgroup, generated by the element [I',0]. This
subgroup thus consists of elements of the form [I™,I"]. These ’trivial’ elements
can always be written as the pull-back of an element of K (pt). Let X again be
a compact space and consider maps

p:X—>pt, i:pt>X (5.9)
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Then p* maps to the trivial elements of K (X)
p*: K(pt) =Z — K(X). (5.10)

Sometimes it is useful to mod out these trivial elements. Therefore we define
the reduced K-group

K(X) = K(X)/img(p* : Z — K(X)). (5.11)
As i* o p* is the identity on K(X), an equivalent definition is given by
K(X) = ker(i* : K(X) = 7). (5.12)

Given a vector bundle £ — X, the rank of E is a function rk E on X that
gives the dimension of the vector space E, for every x € X. In every connected
component this function is constant, so tk E € H%(X,Z>) the space of Z>¢-
valued locally constant functions on X. The map rk : Vect(X) — H%(X,Z>)
is defined on K (X) by

rk([E, F)) : K(X) — H(X,Z);[E, F] — tk(E) — tk(F). (5.13)

Note that this virtual dimension can also be negative. For instance rk[0, "] =
—n. We define
K'(X) = ker(rk : K(X) — H°(X,Z)) (5.14)

If X is connected H°(X,Z) = Z. Furthermore as i* maps every element of K (X)
to the trivial element of the same rank in K (pt), if X is connected i* = rk and
thus K'(X) = K(X).

So far we have required the manifolds to be compact. The K-group of a non-
compact manifold X can be defined as

K(X)=K(X"), (5.15)

where X is the one-point compactification of X: X* = X U {pt}. This can
be thought of as adding infinity as one point to the manifold. For instance
(R*¥)* = S*. One usually calculates K(X+) = keri* with i a map from a point
to the added infinity-point in X . This means that the pair of vector bundles
in K(X*) have equal rank at infinity, and locally around infinity there is an
isomorphism between the two. Later on we will interpret this physically, as
the condition that the configuration looks like the vacuum at infinity. For X
is compact X is defined as the union of X and a disjoint point. This disjoint
point gives another Z of trivial bundles of different rank at that point. The
reduction removes this extra Z. Therefore for compact X K(XT) = K(X)
using the old definition. Thus (5.15) is merely a generalization for noncompact
X. This definition of K(X) is is called compactly supported K-theory. There
is also a non compactly supported K-theory, defined as the Grothendieck group
of Vect(X), that differs only if X is noncompact. For applications in D-brane
mechanics, we actually need a combination of both definitions. For the time
being K(X) will denote the compactly supported K-theory.
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5.3 Higher K-groups

The homotopy invariance is the first parallel between cohomology and K-theory.
For a further development of this relation one introduces the higher K-groups.
Using the compact support definition the higher K-groups can be defined as

K™(X) = K(X x R") with n > 0. (5.16)

By definition K°(X) = K(X) and for n = 0,1,2... we get the different rank
K-groups. However by the Bott periodicity theorem

K" 2(X) =K "(X) (5.17)

So in fact we only have two distinct K-groups, K(X) and K~1(X).

Like in cohomology the K-group K(X) is in fact a ring. The product follows
from [E|Q[F] = [E® F] for isomorphism classes of Vect(X). By writing this out
using distributivity, for products of [E, F] = [E]—[F] and [E', F'] = [E'] — [F"],
we get

[E, F]® [E', F'] = ([E] - [F]) ® ([E'] © [F])
=[EQFE|-[EQF'|-[F®QE']+[F®F'] (5.18)
=[EQE ®FQF ,EQF o FgE'.

The Chern characters are maps (again see A.3)
Chy, : Vect(X) = H**(X, Q). (5.19)
The total Chern character is defined

Ch : Vect(X) = H**"(X,Q); E = Y _ Chi(E). (5.20)
k

It is a ring homomorphism between the semi-ring of vector bundles and the
cohomology ring, by the properties

Ch(E ® F) = Ch(E) + Ch(F),

Ch(E ® F) = Ch(E) - Ch(F). (5:21)

The Chern character can be made into a ring homomorphism between K (X)
and the cohomology ring by

Ch: K(X) - H®*"(X,Q); [E, F] — Ch(E) — Ch(F) (5.22)
In fact if X is compact, it induces a ring isomorphism
K(X)®Q ——> H*"(X,Q). (5.23)

It looks like the K-group and rational cohomology are almost equal. However
in multiplying K(X) with Q one looses all finite subgroups such as Z,, with
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n € Zso. It is exactly by those so called torsion elements that K-theory differs
from ordinary cohomology.
Let us calculate

K~ (pt) = K(R') = K(S) (5.24)

On S?! there are only trivial complex vector bundles. Thus K(S!) = Z and
K~!(pt) = 0. The reduced higher K-groups are defined by

K™"(X) = ker(i* : K~"(X) = K~"(pt)) (5.25)

By Bott periodicity it follows that

K2 - o) (5.26)
Further we have
Ko(X):[:(O(X)+K°(pt)=f(({f)+z’ (5.27)
K7Y(X) = K7'(X) + K~ (pt) = K~(X).

5.4 Relative K-Theory

We define the relative K-group of a manifold X and a closed submanifold Y of
X by 3

K(X,Y)=K(X/Y) (5.28)
with X/Y the manifold X with ¥ shrunk to a point. One defines X/ = X+.
And thus for all compact and non-compact manifolds X:

K(X) = K(X,0). (5.29)

The relative K-group can be described in another equivalent way that will be
useful later on. Let T'(X,Y") be the set of triples (E, F, a) with E, F € Vect(X)
and o : Ely — F|y an isomorphism of the vector bundles restricted to Y.
Two such triples are called isomorphic (E,F,a) = (E',F',d'), if there are
isomorphisms f : E — E' and g : F — F' such that the following diagram
commutes.

Ely ——=Fly (5.30)

b
E'ly —=F'ly

A triple is called elementary if E is isomorphic to F' and a is homotopic to
Idg), within automorphisms of E|y. The sum is defined on T'(X,Y’) by

(E,F,a) & (E',F',a) = (E®E',Fo F,a®d). (5.31)

Further there is an equivalence relation, (E, F,a) ~ (E', F',a'), if there are two
elementary triples (G, H,8) and (G', H', ") such that

(Ea F7 Oé) @ (Ga H:/B) = (ElaFlaal) @ (GI,HI;BI)' (532)
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It can be shown that with this equivalence relation, the relative K-group can
also be defined as
KX, Y)=T(X,Y)/ ~. (5.33)

We use the notation [E, F, ] for the equivalence classes. The inverse of [E, F, a]
is given by [F,E,a~!]. Now for non-compact X, K(X) = K(X,0) can be
described in terms of triples [E, F,a] where o is a bundle isomorphism in a
neighborhood of the infinity of the one-point compactification X+ = X /. This
verifies our earlier statement that the compactly supported K-group K (X) with
X noncompact, is formed by pairs of bundles which are isomorphic at infinity.

5.5 The ABS-construction

The purpose of this paragraph is to show the ABS construction in its full glory,
providing a ring isomorphism between a certain ring of Clifford modules and
K(S™). The practical purpose of the ABS construction lies in the fact that it
gives an explicit generator of K(S™), which will have a very natural and impor-
tant interpretation in the brane/anti-brane system. The reader not interested
in the rather algebraic construction of the isomorphism, can skip to the next
paragraph where the result and its physical interpretation are explained. The
necessary facts about Clifford modules can be found in A.6. For more details
one might consult [16].

Let W be a Z»-graded module over the Clifford algebra Cl, ;. This is a module
which can be decomposed W = W° @ W such that

Cli - Wi CWiti med2 je{0,1} (5.34)

where C17 ; and C1; ; are respectively the subalgebra and linear subspace of Cl,. ,
generated by even and odd products of the I'’s that generate Cl, ;. Restriction
to CI? , makes it a direct sum of two disjoint modules W° and W'. By CIJ , =
Cl,_1,s, these are modules of Cl,_; ;. Conversely it can be shown that given
only W9 as a module of Cl_i,s = Cl‘r’,s, one can reconstruct the Zs-graded
module W = W° @ W!. This establishes an equivalence between the category
of Zy-graded modules over Cl, ; and the category of ungraded modules over
Clr—l,s-

We consider the category of complex Zg-graded modules over Cl, ; = Cl,, with
n =r+s. For n is even there are two inequivalent irreducible ungraded modules
over Cl,_1, and that there is only one for n odd. This gives two inequivalent
Zo-graded modules over Cl,, for n is even, namely W = W+ & W~ and W =
W~ @ W+ with W+ and W~ the inequivalent modules over CI9 = Cl,,_;. All
elements of the category of Zo-graded modules over Cl,, with n even, can be
decomposed in a number of W’s and W’s. It is an additive category. The
Grothendieck group of this category will be denoted by MS. For n is even we
thus have MC = Z @ Z. For n is odd there is only one irreducible Z,-graded
module over Cl,,, namely W = W+ @ W~ with W+ = W~ the only irreducible
module over CI® = Cl,, ;. Thus for n is odd MS = Z.

One can define the Zy-graded tensor product V&W of Zy-graded modules V =
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VO V! over Cl,, and W = W° @ W' over Cl,,. The tensor product VW =
(VeW)? @ (VeW)! with

(Vew) = (VoW o (Ve W),

Vew) =W e (V' oW, (5.35)
is a module over Cl, 4, given by
(e f)-(vew) =(e-v)(f w) (5.36)

where e € R™® C Cl,, and f € R* C Cl,, and thus e® f € R™"*" C Cl,,,4r, and
v € VO (with v € V1 one gets a minus switching f and v). The tensor product
transcends to a map MS, ® MS — MS, ., which makes

MS =P MS (5.37)

n>0

a graded ring.

The inclusion § : C* < C**! induces an algebra homomorphism i : Cl,, —
Cl,,+1- The restriction of the action of Cl,,4; to Cl,, then gives a group homo-
morphism i* : M$,; — MS. Consider now the groups

Z if n is even,

0 ifnis odd. (5.38)

WS i, = {
For n is even MS = Z @ Z is generated by [W,0] and [W,0] with W = W+ &
W and W =W~ & WT the two inequivalent irreducible Zs-graded modules.
i*MS., = Z is generated by [W,0] @ [W,0]. Modding this out of MS, is
imposing an equivalence relation [W,0]@ [, 0] ~ 0 or [W,0] ~ [0, W] (as [0, W]
is the inverse of [IV,0]). Thus we see that the combination [W,0] & [0, W]
survives the modding out, while [IW,0] ® [W,0] vanishes.
Consider now the relative K-group K (B™,S™1). Using its description in terms
of triples [E, F, o], to every Za-graded module W = W+ @ W~ over Cl,, we can

associate
$(W) = [S*,57, ] € K(B", 5" (5.39)

where S* = B™ x W are trivial vector bundles, and
p:Stgn-1 = 87| gn-1; (@, w) = (z,2 - W) (5.40)

where z - w denotes the action of x € S»~1 C Cl,,. Note that as vector bundles
St and S~ are isomorphic. In fact since the ball B” is contractible, all vector
bundles over it are trivial. The only thing which makes ¢(WW) non-trivial is the
topological non-trivial winding of u over S"~!. Topologically B"/S™~! is the
same as the one-point compactification of R?, i.e. S™. Thus

K(B", 8™ ') = K(B"/S™ ') = K(S™) = K~"(pt). (5.41)
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For the Atiyah-Bott-Shapiro construction, one shows that ¢(WW) only depends
on the isomorphism class [W] of graded modules over Cl,,, and that ¢ gives a
homomorphism

¢: ME > K(B™, 8" 1) [V,W] = ¢(V) — p(W). (5.42)

Furthermore it can be shown that it vanishes for elements of i* MS 11 C ME.
The final result is that

¢: MEJME,, — K~ (pt). (5.43)
is a ring isomorphism between the ring

M?/i*ME{-l = @ Mg/i*MEH (5.44)

n>0

and the ring K *(pt). One of the things we can read of is that

= om n Z if n is even,
K(8™) = K"(pt) = { 0 ifnis odd. (5.45)

The construction may seem like a rather long way to compute these K-groups.
The upshot of this method is that it provides explicit generators of the group
K(S™) for n is even. In the quotient space MS/i*MS,, we have [W,0] =
—[W,0] = [0, W], as the generator [W,0] + [, 0] of z'*MSH has been divided
out. The generator of MC /i* MC 1 is therefore [W,0] = [0, W]. The generator
of K(S™) is its image under ¢

¢((W,0]) = ¢(W) = [S*, 57, 4] (5.46)

This explicit generator will prove to have a direct physical interpretation. As a
check we calculate

$([0, W]) = —p(W) = —[S~, 5%, —4] (5.47)

where we used that x acts with opposite sign in W~ compared to its action in
W, since z anti-commutes with I' and T’ = 1 in W*. Moreover

pop(z,w) = (2,2 - (¢ - w)) = (2, (2 - 2) - w) = —(z,w) (5.48)

because (z - x) = —|z|? by definition of Cl,, and |z|? = 1 because p is restricted
to S"~!. Therefore

¢([07W]) = _[S_=S+7_:u] = [S+,S_,—/,L_1] = [S+7S_7,u] = ¢([W’ 0])7

thus checking that ¢ is indeed well-defined on MS/i* MS, ;.
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5.6 K-theory and D-branes

In the last paragraph of this chapter we will finally see how K-theory is related
to D-brane mechanics. In fact it will become clear that almost all basic elements
of K-theory, have a physical interpretation in branes/anti-branes systems.
Remember that the brane/anti-brane system consists of an ordinary D-brane
and a second one one top of it, equal to the first one only with opposite orien-
tation. The lowest mass modes of open strings attached to the first brane is a
vector particle, which in the parallel direction gives a gauge field A, denoted in
the 1-form notation. Open strings on the second, anti-brane give a gauge field
A. The open strings stretching between the branes give two tachyonic real field.
Taking a number of brane/anti-brane pairs, the gauge fields are U(n)-valued,
giving a vector bundle on the branes and on the anti-branes. If the brane is
completely identical to the anti-brane, apart from its orientation, the tachyon
T condensates to its vacuum expectation value |T'| = Ty. The resulting configu-
ration is indistinguishable from the vacuum everywhere. Starting with n branes
and n anti-branes but with a different U(n)-gauge field on the brane then on
the anti-brane, the tachyon taking values in the product of the vector bundles
on the branes and that on the anti-branes with connection A®1—1® A, might
have a non trivial twisting around a lower dimensional object on the brane. As
we saw these twists can condensate to a configuration with lower dimensional
branes on the brane/anti-brane manifold.

We start by considering n Dp-branes stretched out on a manifold X and n Dp-
branes on the same manifold. Let E be the vector bundle with connection A,
and F be the vector bundle with connection A. Adding m branes with vector
bundle H and m anti-branes with the same vector bundle, will not change the
situation, as the tachyon of the m branes and anti-branes will condensate to
the vacuum. Thus the configuration with vector bundles £ and F' is physically
equivalent to the situation with bundles £ @& H and F @ H. This equivalence
is exactly the same as the equivalence relation (E,F) ~ (E® H,F @ H) that
defines classes [E, F] in the K-group K(X). The claim of Witten et al. is that
in type IIB superstring theory, the branes/anti-branes configurations are indeed
adequately described by K (X).

If X is noncompact we have to make a more precise prescription. Remember
that the definition of the compactly supported K-group for noncompact spaces,
defines it to be the reduced K-group of the one-point compactification of X. This
can be interpreted as imposing the condition that around infinity there should
be an isomorphism between the two vector bundles. This means that locally
around infinity the pair (E, F') looks like the vacuum configuration. However if
we want to investigate lower dimensional branes arising in a brane/anti-brane
pair, we do not want this condition for the direction in which the lower dimen-
sional brane is supposed to arise. We want to have a brane in that direction,
not the vacuum!

Let us start with the example of Dp-branes arising in a D9-D9-system in a flat
R!? space-time. We only want a compact-support condition in the transverse di-
rections. The possible vector bundles on RP*t! on which the Dp-brane wraps, are
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the same as the possible vector bundles on pt. Therefore the parallel directions
do not contribute, and the possible Dp-brane charges are measured by

K(R?) = K(S°P). (5.49)
Notice that the previous result

Z  when p is odd,

(S9-P) =
KT = { 0 when p is even, (5.50)

exactly matches the condition that there are only type IIB Dp- branes for p is
odd.

Let B?~P be the unit ball in transverse space, and S8 P its boundary. As
B977/§8=P = §9-P we have

K(B* P 8% 7)) = K(S°P). (5.51)

The elements of the relative K-group are triples [E, F, o] with E and F bundles
on B%~? and a an isomorphism between E and F restricted to S®~P. All bundles
on the contractible B°~?, and thus E and F, are trivial. All information in the
element [E, F, o] lies in the winding of « around the origin in transverse space.
The previous paragraph showed how the ABS-construction gives an explicit
generator of K(B%7P, 58 P) = Z. Let W* be the two inequivalent irreducible
complex representations of Spin(9 — p). The generator of K(B%~?,S8°P) is
given by [E,F,a] with E and F the trivial vector bundles B*~? x W+ and
B%? x W~ and a given by

9—p
a:E— F;(z,w) — infi -w. (5.52)

i=1

This map gives an isomorphism between E and F everywhere except at the
origin. Tt is not homotopic to the isomorphism E — F defined on all of B°~7.
Instead it has a winding around the origin and thus generates K (B°~?, $8-7) =
K(S°7).
This description of K(S°P) is remarkably similar to the winding of the tachyon
around a Dp-brane on the D9-D9-system. The vector bundle in which the
complex tachyon field T takes its values is £ ® F™*, as it is positively charged
under A and negative under A, and thus the connection of the bundle in which
it takes values should be A®1—1® A. A section of this bundle can be seen as
a bundle map

T:-F—>E (5.53)

that maps each fiber of F' linearly on the corresponding fiber of E. Away from
the Dp-brane where E 2 F' this is an isomorphism, which makes it look like the
vacuum. However around the Dp-brane it makes a topological nontrivial twist.
The possible windings of the isomorphism over the sphere S®~? in transverse
space, are generated by a~! : F — E. In fact it can be extended to the whole
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transverse space R? 7 /{0}. The tachyon vortex solution is homotopic with this
a~!. It can be written as

T() = () Y aiT™, (5:54)

where f(||Z]|) is a function that is equal to 1 around the origin, and f(||Z]|) =
To/x for & — oo, such that T condensates to its vacuum expectation value at
infinity. In fact we now have taken T = a, but since a®> = —||z||? = —1 this
only means we have taken the inverse generator.

The element [E, F,a] € K(B%?,58?) describes a D9-D9-system which con-
densates to a single Dp-brane. Taking a multiple of [E, F, ]

[EGE®..FO&F&®..,a0a®..] (5.55)

we get the other elements of K (B%~P, $8~P). This is equivalent by starting with
a multiple of the D9-D9-system in which a single Dp-brane arises, thus creating
a multiple of Dp-branes. We can also make anti(Dp)-branes by reversing the
role of E and F. In this way the K-group K(S?~?), describing first the possible
configurations of D9-D9-branes on R'® with compact support in 9—p directions,
now describes a Dp-Dp system on RPt!,

5.7 D-branes and the Thom isomorphism

Now let us consider a Dp-brane wrapped on a submanifold Y of the space-time
manifold X. As before, we do not want the vacuum-at-infinity restriction in
the noncompact directions of Y. For a Dp-brane wrapped on Y x R* with YV
a p + 1 — k-dimensional compact manifold, we restrict our attention to Y, as
again Y x R* is homotopic to R*¥ and thus has the same vector bundles on it.
So in the following let ¥ be compact. The normal bundle Ny x of ¥ in X
is the 9 — p-dimensional vector bundle, such that TY @ Ny x is equal to the
restriction of TX as a vector bundle to Y. The local coordinates in U; x R9~P
of Ny,x, with U; open in Y, also give local coordinates of a neighborhood of
the submanifold ¥ in X. Let B(Ny,x) be the ball bundle of Ny x, the fiber
bundle on Y formed by restricting each fiber R°~? of Ny, x to the ball B%~?.
This B(Ny,x) gives, by the above identification of Ny x as a local coordinate
neighborhood of Y in X, a so called tubular neighborhood of Y in X. The
sphere bundle S(Ny,x) is Ny,x with each fiber restricted to the sphere S87.
It is the boundary of the tubular neighborhood. If the transverse space of the
Dp-brane is of the form R°~?, by a generalization of the situation of a Dp-brane
wrapped on RPT! C R!, the possible configurations of the D9-D9 system with
a compact support condition in the transverse directions of Y are elements of

K(B(Ny,x),S(Ny,x)) (5.56)

The Dp-brane arising in the brane/anti-brane system on X is thus described by
a pair of vector bundles in a tubular neighborhood of Y and an isomorphism at
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the boundary of this neighborhood, which might have a topological twist. This
again has the interpretation of a tachyon field winding around the Dp-brane.
As B(Ny,x)/S(Ny,x) is the one point compactification of Ny, x we have

K(B(Nv,x),S(Nv,x)) = K(Ny,x) (5.57)

similar to K(B?7,8%7) = K(R*?) = K(S°P) in the RFt! C R'°-case.
By the Thom isomorphism for every vector bundle V over a compact space Y
K(V)= K(Y). Thus

K(B(Ny,x), S(Ny,x)) = K(Ny,x) = K(Y). (5.58)

It is instructive to look in more detail how this isomorphism is formed. It is
similar to a construction in cohomology where there is an isomorphism between
the compact supported cohomology H*(Y) and the cohomology HZ (V) with
compact support along the fiber of V. There the isomorphism is given by

A (A A B(V) (5.59)

for A € H¥(Y), with # : V' — Y the projection to the base, and ®(V) the
Thom class in H} (V). Similarly for the bundle Ny,x one can define a Thom
class in K (B(Ny,x),S(Ny,x)). The construction of it follows naturally from a
generalization of the ABS-construction. There we have in fact Y = pt such that
all bundles over Y are trivial. The element [E,F,a] € K(B°?,S88P) given
above, explicitly gives an isomorphism

K(pt) = K(B*?,8%P7); nwn-[E, Fa] (5.60)

withn € Z=K(pt). By " E=E® E & ..E (n times), with I" the rank n
trivial bundle over B, we get

n-[E,F,a] =" ®[E,F,a] = [["® E,I" ® F,1® d] (5.61)

for n > 0 and similarly [I",I™] ® [E,F,a] = (n — m) - [E, F,a]. Thus the
isomorphism is given by

K(pt) = K(B°?,8%7); [G]— n*[G]® [E,F,q] (5.62)

where 7% is the pull back under 7 : B®~P — pt, mapping the trivial bundle on
B9~P to that on pt. [E, F,a] is the Thom class of R9~? considered as a vector
bundle on pt.

The generalization for Y # pt goes as follows. First of all Ny, x is oriented
because both Y and X are. Therefore the local coordinate transformations
h;; of the fibers between the coordinates of U; and Uj;, can be chosen to be
SO(9 — p)-functions. We can choose Spin(9 — p)-functions h;; such that h;
maps to h;; by the standard 2 to 1 covering Spin(9 — p) = SO(9 — p). This
lifting is not unique, because 1 € SO(9 — p) can be lifted to both 1 and —1 in
Spin(9—p). By definition of a vector bundle the h;; satisfy the cocycle condition

hijhjphg; = 1. (5.63)
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If the hy; of a vector bundle can be lifted to Spin-functions h;; such that the h;;
also satisfy the cocycle condition, we call it a spin bundle. Assume that Ny, x
is a spin bundle with Spin(9 — p)-functions h;;. Let W+ and W~ be the two
inequivalent irreducible complex representations of Spin(9 — p) for p even. Let
S* be the spinor bundles on Y of which the fibers are W+ and for which the
local coordinate transformations of the spinors are given by the action of Eij in
W=. The Thom class ®(Ny,x) of the vector bundle 7 : Ny, x — Y is given by

@(Ny’x) = [7T*5+,7T*S_,a] S K(B(Ny,x),S(Nxx)) (564)
The Thom isomorphism K (Y) — K(B(Ny,x),S(Ny,x)) is then given by
[G] = 7°[G] ® B(Ny,x) = [1*(G ® §+),7%(G ® §7),al. (5.65)

Like in the Y = pt-case, the Thom class generates the possible windings of
the tachyon around the Dp brane wrapped on Y. Again we can make multi-
ple Dp-branes and also Dp-branes. However now the Dp-branes wrapped on Y
might have other than trivial vector bundles. The Dp-Dp branes system on Y
is classified by K(Y). By the Thom isomorphism the possible configurations of
a D9-D9 system with compact support conditions in 9 — p directions transverse
to Y measured in K (B(Ny,x), S(Ny,x)), is equal to the possible Dp-Dp config-
urations wrapped on Y, that will arise on it.

There is one more generalization we have to make. Until now we have assumed
that the transverse space of Y is of the form R "7, so that in fact B(Ny x)
extends in all transverse directions. Suppose it is not. For example it might be
compact. We still have the isomorphism

K(Y) = K(B(Ny,x),S(Ny,x)) (5.66)

between the brane/anti-brane configurations on Y and the configurations of the
D9-DY system in a tubular neighborhood of Y in X. Tt might be that vector
bundles on the tubular neighborhood do not extend to the whole of X. However
if [E, F,a] € B(B(Ny,x),S(Ny,x)), we can choose H € Vect(B(Ny,x)) such
that F'@ H is trivial on B(Ny,x). By the isomorphism o on S(Ny,x) also E® H
is trivial at S(Ny x). Now we can extend [E,F,a] = [E® H,F & H,a & 1]
to the whole of X, by trivially extending £ & H and F & H and a to X.
Basically this is done using a map 7 : X — B(Ny,x)/S(Nv,x) = NQ,L,X that
is the identity at B(Ny,x) and maps all points in X outside this region to
o0 € N{E - This map is continuous and if X is noncompact it maps oo € X+
to 00 € N;,r, x- Therefore we can pull back elements of K(X) = K(X%) to
IE'(N;E,X) = K(B(Nv,x),S(Ny,x)). The composition of the Thom isomorphism
K(Y) - K(B(Ny,x),S(Ny,x)) and the pull back r*K(B(Ny,x),S(Nv,x)) is
called a Gysin homomorphism. If f is the embedding of Y in X, we denote it
by f«. It has the following nice properties. If f is an embedding of ¥V in X
and g an embedding of Z in Y. The Gysin homomorphism (f o g). is equal to
f« © g«. Furthermore for [E, F| € K(Y') and [E', F'] € K(X) we have

f*([EaF] ®f*([ElaF’])) = f*([EaF]) ® [Elapl] (5'67)
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By these properties it becomes clear that nothing is lost by describing a Dp-Dp
branes system, in the K-theory of the D9-D9 system. The description of the
tachyon twist in the previous chapter, only showed the existence of Dp — 2-
branes on a Dp-Dp system. By the taking multiples of this system, one gets
multiple D(p — 2)-branes, and one can also make D(p — 2)-branes by twisting
the tachyon the other way around. In this D(p—2)-D(p — 2)-branes system one
can get D(p—4)-branes and so on. Thus any D(p — 2k)-brane should already be
present in the description of the Dp-Dp system and thus any Dp-brane in the
D9-D9 system. The properties of the Gysin homomorphism show that this ”all
at once” description is equivalent to the step-by-step description, starting with
D9 and D9 branes, then D7 and D7-branes until we reach the Dp-brane. Thus
taking into account the right boundary conditions, every Dp-brane is already
present in the K-group K (X) of the space-time manifold X describing the space
filling D9-D9 systems.

The only restriction left is that we required that the manifold ¥ on which the
D-branes wrap should be a spin manifold. If Y is not a spin manifold the Thom
class of it is not well defined, as the lifted ﬁij do not make a proper vector
bundle of ST and S~. Sometimes it is possible to make a vector bundle G' on
Y which has exactly the same problem of a not closing cocycle, such that the
product G ® S* is a well defined vector bundle. By (5.65) this thus gives a
well defined element of the K-group of the tubular neighborhood of Y. This
last construction is called a spinC-structure. In the next chapter we will see
that by an anomaly of the path-integral it is only possible to wrap D-branes
on manifolds with a spin or a spin®-structure. This condition is thus exactly
matched in K-theory.

5.8 K-theory for type I and type ITA branes

Thus far we have only considered branes/anti-branes systems for type IIB the-
ory. The possible charges in this system were measured by K (X) with suitable
boundary conditions in the noncompact directions. The fact that there are only
Dp brane charges for p odd is exactly matched by the Bott-periodicity, and the
fact that K(S9?) = KP~9(pt) is trivial for p even and Z for p odd.

One can now guess how to describe type ITA Dp-Dp systems in K-theory. The
possible charges are now given by K ~(X). The fact that there are now only
even Dp-branes is reflected by the fact that

K1(8%P) = K(S10P) = KP~10(pt) (5.68)

is Z for p even and trivial for p odd. More arguments, using the unstable non-
BPS D9-branes of type ITA, that these configuration should indeed be measured
in K~1(X) can be found in [10]. All other constructions shown above apply in
a similar way.

There is an interesting equivalent definition of K !(X). With X still the 10-
dimensional space-time, let i be the embedding of X as X X pt in the direct
product X x S*. Then K~1(X) can be defined as the subspace of K (X) formed
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by the pull-back of K (X x S') under 4. This suggests that the K-theory de-
scription of type ITA-branes, comes from considering an 11-dimensional space
X x 8. As type IIA theory is the compactification on a circle of M-theory,
this hints at a possible description of M-theory in K-theory. This description is
not that straightforward, as for example the branes in M-theory do not carry
Chan Paton bundles. Some progress has been made in [6], where it is shown
how some aspects of a K-theoretic description of R-R charges can be derived
from M-theory by a detailed study of its partition function.

Finally type I branes can be described in KO(X), the Grothendieck group of
real vector bundles. This follows naturally from the fact that by the orientifold
projection, the gauge bundle in which the tachyon takes its values becomes real.
The analysis of type I-branes in KO(X) is quite similar to that of type II-branes
in K*(X). The Bott-periodicity of the higher KO-groups is less simple. Bott-
periodicity can be derived by describing the higher K-groups using the same
periodicity in the K-group of spheres. For instance

K~"(pt) = K(R") = K(5"),

. (5.69)
KO ™(pt) = KO(R") = KO(S™).

These groups can be calculated using the ABS-construction. For the KO-groups
however, one has to use the real Clifford modules. These have a 8-periodicity,
instead of the 2-periodicity of complex Clifford modules. The result is

D-brane |D9 D8 D7 D6 D5 D4 D3 D2 D1 DO D(-1)

Transverse G0 gl G2 g3 G4 G5 g6 g7 g8 g9 10
space

KO(S™Y |Z Z, Z, 0 Z 0 0 0 Z Z, Zs

We find back the BPS D9, D5 and D1-brane. The Z, charges are stable, but
non-BPS branes. The DO-particle was previously known, but the D8-brane, the
D7-brane and the D(-1)-instanton are new discoveries of K-theory.

6 Nontrivial B-field and twisted K-theory

Although not explicitly mentioned, the analysis in the previous chapter is only
valid for trivial NS-NS B-field, i.e. H = dB = 0. The gauge field A on the
D-branes can no longer be interpreted as the connection of a standard vector
bundle if the B-field is nontrivial. A solution to this problem was already men-
tioned in [23] for flat B-fields, i.e. B-fields for which the de Rham cohomology
class [H] € H3(M,R) of H = dB vanishes but for which [H] does not necessarily
vanish in the integer cohomology H3(M,7Z).

This chapter gives a review of this article, trying to give some more details
in the calculations and arguments involved. The calculations in this chapter are
done using various techniques in algebraic topology. The necessary details of
this theory are given in the appendix. More information can be found in the
references at beginning of it.
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6.1 The factors

Because of the use of algebraic topology, it is useful to describe our physical
system in a more strict mathematical way. We consider Type II superstring
theory on a space-time M, which is an oriented spin manifold, and a (multiple
of) D-brane(s) stretched on an oriented submanifold Q@ C M. @ is oriented
because it is charged under the R-R fields. The embedding of the string in
space-time is a map ¢ from the worldsheet ¥ to M that maps 0¥ on @), as open
string boundaries are only allowed at the D-brane.

The relevant factors in the path integral for the anomaly calculation are

pfaff (D) - exp (i /z: ¢*B) - TrHolps (A). (6.1)

Here pfaff(D) is the pfaffian, the square root of the determinant, of the world-
sheet Dirac operator D. This factor arises after integrating out the 1 fields in
the path integral

pfaff(D) ~ / DYDJ exp (—% / &22G,, [w&p" +1ﬁﬂazz”]> . (6.2)

B is the 2-form field from the NS-NS sector. We have used the mathematical
notation ¢*B for the pull-back of the space-time 2-form B to the worldsheet

(¢*B)ab = 8aXuabeBm/- (6.3)

A is the U(n) gauge field on the n D-branes. Given the background fields G,,,, A
and B, the three factors are functions on the space

X :=Map(E, M) x Met(X) (6.4)

of maps ¢ : ¥ — M and metrics g on the worldsheet. Actually we will see that
these factors are not always well defined, but must be considered as sections of
a line bundle over X. In the next sections we will study each factor separately.

6.2 The A-field, line bundles revisited.

The arguments in this chapter often make use of line bundle constructions, such
as that on a single D-brane with U(1)-gauge field A. Furthermore the physics
of the B-field can be best understood by a generalization of the physics of the
A-field. Therefore we will give an overview of the arguments involved there.

For simplicity we first restrict to U(1)-gauge fields. The physical state condi-
tions for the A-field, give that a free photon A* with momentum k*, is physically
equivalent to a photon A* + ck* with the same momentum. By the correspon-
dence between strings and background-fields, the photon state becomes a Fourier
mode of the background field A. The equivalence relation then translates into
the equivalence relation for 1-form fields A to A ~ A 4+ d\, for any function A.
As we want to have a local field theory on () , this means that if we cover @
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with a collection of open sets {U;} we can choose different 1-forms A; on every
U; as long as on the intersections U;; = U; N U; we can write

with g;; real functions on U;;. The field strength F' = dA is globally defined,
i.e. on all of @, because d4; — dA; = d*>g;; = 0. The equation dF = 0 follows
directly. A good covering of () is a covering by open sets U; such that all U;, U;;,
Uijr = U;NU;NUy, ... are contractible. Given a good cover one can show that for
any F' with dF = 0, there are A; such that F' = dA; on U; and A; — A; = dg;;
on U;j. There is however a restriction we have to put on the possible field
strengths, in order to make the holonomy well defined. The holonomy of A over
a path + is the phase a point-like object charged under A picks up going around
the path. Locally, that is for a path v C Uj, it is given by

Hol, (4;) = exp(i / A). (6.6)

In our situation the endpoints of the open strings are charged under A. This is
expressed in the fact that the same factor Hol, (A;) is present in the string path
integral. This expression gives a contribution to the generator of translations
of the endpoints (like in (4.17)), which gives the state of an open string whose
endpoint is transported along y the same phase Hol(y)(A;). The expression is
only gauge invariant, i.e. under A; — A; + d\;, if v is a closed loop.

For a path going through more than one U;, the only way to make the expression
gauge invariant for closed loops, is cutting up the path in r pieces v, C U;,,1 <
k <. Then the expression is

Hol, (A) = exp(i /Az-k+i Ginoriy (08) +igi s (1)) (6.7)
k=1""k k=2

where vy, are the points on v connecting vx—1 and 7. vy connects v, with ;.
We have to check that this definition does not depend on the way we cut up
the path in pieces, i.e. on the choice of A; on every path piece. Suppose for
instance we have a path that lies on a sphere, and divides it in a upper and lower
hemisphere. Suppose further that the upper hemisphere lies in U; with gauge
field A;, and the lower hemisphere in Uj;. For the calculation of the holonomy
we can choose to use A; on the entire path or A;. By the same argument as in
4.6 (4.46)-(4.48), this means that the integral of F' over the entire sphere has to
be an integer multiple of 27r. This can be imposed by requiring that F/2m lies
in a cohomology class [F/27] € H%(Q,Z). It can be computed in the following
way. Define constants c;j; on every Usj, by

9ij + 9jk + ki = 2TCijk. (6.8)

The fact that the c;;, are constants, can be seen by taking the derivative 0{ the
left-hand side combined with dg;; = A; — A;. The c¢;;, define a class in Cech
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cohomology, called the first Chern class. The condition for F' to have an integral
that is an integer multiple of 27, is exactly that the c-constants are integer, that
is [c] € H*(Q,Z).

In mathematical terms, this defines a line bundle with connection. A line bundle
is a structure which can locally be seen as U; x C. The real functions g;; can
be used to form U(1)-functions h;; = exp(ig;;) that translate between the local
trivializations, in the following manner

Ui xC— Uj X (C; (.CL',Z) — (JU,hijZ) (69)

This structure is only a line bundle if the c;;; are integer. Then the h;; satisfy
the cocycle relation
hijhjkhki = 1, on every Uijk (610)

A section s of a line bundle is an object, which can locally be described as
functions s; : U; = C, with transformation property s; = h;js;. The connection
induced by the A; is a derivative on sections. Vs is the product of a 1-form
and a section, which is locally described by

The phase a section s which satisfies V 4s = 0, picks up under going around a
path is given by Hol,(A).

If we have a multiple of D-branes on top of each other, there are gauge fields Ay,
for every open string going from the k-th brane to the I-th brane. If there are n
branes, the Ay, form a n by n symmetric matrix that gives a U(n)-connection
in a complex vector bundle of rank n. It is actually the product of a symmetric-
matrix valued function and a 1-form. The g;; defined in the usual way, are then
symmetric-n-by-n-matrix valued functions, and the h;; = exp(ig;;) are therefore
U(n)-matrices. They give the transformation between the local trivializations
U; x C* and U; x C" of the vector bundle. The condition for this to be actually
a line bundle is again the cocycle condition for h;;. The holonomy in this vector
bundle induced by A is a little more complicated. The parallel transport over a
path in U;, 7y : [ty, te] = Uj, is the solution M : [ty,te] = U(n) of the differential
equation

d .
EM(t) =iAdi(y@®) M), M) =1 (6.12)
For a closed path v C U; this defines the holonomy over v. A solution is given

by

Hol,(4;) = Pexp(i/

Y

te te pte
Ai):1+i~/t Ai(t)-v'(t)dt—/t /t Ai(t2) - ' (t2) Ai(t1) - ' (#1)dtadty

=ty

te pte e
—I/ / Ai(t3) . 7'(t3)Ai(t2) . ‘/I(tQ)Ai(tl)’)’l(tl)dt;;dtzdtz
ty Jt1 Jta
(6.13)
The P before the exp stands for path-ordered, which is necessary to make this

a solution. An expression for the holonomy over a path going through more
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than one local coordinate region U;, can be constructed in the above way by
patching together this expression for different path pieces and multiplying with
h;; on every transition.

6.3 The pfaffian

The pfaffian of the Dirac world-sheet operator is a real number whose absolute
value is well defined, but its sign is not if () does not admit a spin structure. First
we will give a mathematical condition which tells exactly whether a manifold
admits a spin structure or not.

Consider the tangent bundle T'Q). It is an oriented real vector bundle over
Q. Therefore the h;; cocycle of transformations between the trivializations of
the tangent bundle, can be taken to be SO(n)-valued functions on every Uj;
(n = dim Q). We say that () admits a spin structure if the h;; can be lifted to
a cocycle ﬁij of Spin(n)-functions, such that ﬁij — h;; by the standard 2 to
1 covering map. This is not always possible, since 1 € SO(n) can be lifted to
both 1 and —1 in Spin(n). Therefore the cocycle condition of ﬁij changes by

hijhjkhei =1, = hihjphg = (—1)v5%, (6.14)

with w;jx a cocycle of constants in Zo = {0,1}. It defines a class w2 (Q) = [w] €
H?(Q,Zs) called the second Stiefel-Whitney class of Q. In exact sequences we
have

0——17Z, Ay Spin(n) —— SO(n) ——1 (6.15)

which induces the exact sequence

) (6.16)
So we see that [h;;] € H'(Q, SO(n)) can be lifted to a class [hi;] € H*(Q, Spin(n))
if and only if wy(Q) = 0. Thus @ admits a spin structure if and only if
w2(Q) = 0.

In [7] it was shown that if we deform the embeddings of ¥ in a continuous way
by a one-parameter family of embeddings that comes back to itself, so we have
a circle S' and a map I' : S* x ¥ — M with I'(S! x %) C @, that under going
around the circle pfaff (D) may pick up a change of sign by

pfaff(D) — (—1) pfaff(D) (6.17)
with
S1xo%

This is an integral of a Zs-valued cohomology class. Therefore the expression
has to be understood as an integral over a homology class. For some details of
this theory, see the appendices. With the standard notation (., .) for the integral
of a cohomology class over a homology class, we get

a= ([S* x 0%], T*ws(Q)) (6.19)
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and « takes values in Zs. Actually I' should be its restriction to the worldsheet
boundary, as w2(Q) is a class in H?(Q,Zs). So

T:S'x 0% - Q. (6.20)

This map can be split in two. First f maps (t,0) € St x 0 to (v, 0) with v,
a path 93 — @ defined by

(") = T(o", ). (6.21)

Let us assume that 9% is a single closed loop. Then ~; is an element of L@ the
space of all loops in (). Now we can write

[(t,0) = eo f(t,0) = (v, 0) = 1(0) (6.22)
with e : LQ x ST — @ (identifying Y with S'), the evaluation map
e(v,0) = (o). (6.23)

The transgression of Q to LQ is a map 7 from H?(Q,G) to H~1(LQ,G) such
that for all s € Hy(LQ,Z)

(5, TA) = (s x C,e*\) (6.24)

with C the generator of H;(S',G), i.e. the homology class of St itself. For a
de Rham cohomology class A in L() it is given by integration of A over ”its own
loop”:
TA= e* . (6.25)
Sl
Now

a = ([S* x 8%], (e o f)*wa) = (f«[S* x O%], e*ws). (6.26)

The push forward f, of [S! x 8%] is the direct product of the loop 7 : t — ;
through the loop space L@, and [0¥] = C. Thus

a = (5] x C,c"wa) = (), Twa). (6.27)

The use of this algebraic rewriting, is that we can see pfaff (D) as a section over
a line bundle on LQ. The phase pfaff (D) picks up under going around a loop ¥
through L@, is the holonomy of the line bundle. The value of pfaff (D) is only
locally defined, depending on the loop formed by the worldsheet boundary. Let
the set {U;} be a covering of LQ and let @;; be the Zs-cocycle representing
Tws = [w] € H*(LQ,Z>). The first Chern class [c] € H*(LQ,Z) of the line
bundle is given by Z-constants c;;, such that

Uij + Uk + Opi = 2Ci5k (6.28)

with ¥;; Z-constants such that 9;; = w;; mod 2. The fact that this is the right
expression for the first Chern class can be seen as follows. As in (6.8) take
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9ij = 70;j, then the local coordinate transformations of the line bundle with
first Chern class [c] are given by h;; = exp(ig;j). Because the g;; are constant,
and dg;; = A; — A; we can take a vanishing connection A. The holonomy of
this line bundle over a loop # is then given by

Hol; = ([7], h) = exp(=i([7], 9:5)) =

= exp(in([7,9))) = (—1)[1Tw2), (6.29)

Here we used that the integral of the U(1)-cocycle h;; over the homology cycle
[7] corresponding to 7, is defined as the product the values of h;; in the vertices
in Ujj, i.e. the points connecting path pieces lying in U; with path pieces of
U;. Filling in h;; = exp(igi;) gives the second term which is defined in the same
way, now with summation over the real values of g;; in the vertices. This second
term is then equal to the expression in the previous paragraph.

The right-hand side is the same as (6.17) and (6.27), thus checking the claim
that the Chern class is given by [¢]. This construction can be formalized using
the following exact sequences.

0 727, Zo 0 —

i (6.30)
b HN(IQ,7) — H'(1.Q,7,) ——= H*(LQ,7) — -

Then we can write [¢] = G([@]) = B(Tws). There is a similar map S in the
cohomology of Q.

- HX(Q,Z) —= H(Q, o) —> H¥(LQ,Z) — . (6.31)

This map is usually called Bockstein homomorphism. It can be shown that the
transgression homomorphism 7 intertwines 8 and g

> HX(Q,Z) —> H(Q,Z5) —— H3(Q,Z) ——~  (6.32)

i X

e HY(LQ,Z) — HY(LQ, T) —> H2(LQ,2) — -

There is a standard notation W3(Q) = B(w2(Q)). Thus

[c] = B(Tws) = TB(ws) = TW3(Q)- (6.33)

The factor pfaff (D) does not only depend on the worldsheet boundary, but more
generally on (¢, g) € X defined in (6.4). Let ¥ : X — L@ map the pair (¢, g) to
loop formed by the restriction of ¢ to the worldsheet boundary. What we have
shown is that pfaff(D) is a section of a line bundle over X whose first Chern
class [c] € H3(X,Z) is given by

[c] = T*TW5(Q). (6.34)
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The generalization to a worldsheet boundary consisting of more than one loop is
straightforward. The result of taking each worldsheet boundary over a different
cycle is still given by (6.17) with a now the sum a; + as + ..., where @; is the
contribution of the i’th worldsheet boundary 9%;.

a; = ([S* ® 0%;], T ws). (6.35)

Here T' is every time its restriction to 0%;. Mathematically pfaff(D) is the
section of the line bundle over X, which is the pull-back under ¥ of a line
bundle over LQ" = LQ x LQ x ..LQ. ¥ is the map X — LQ" giving the
loops formed by each worldsheet boundary. The line bundle over LQ" has first
Chern class TW3(Q)®..TWs5(Q) (r equal terms). Although W5(Q) is Zs-valued,
because 3 is a homomorphism W3(Q) + W3(Q) = B(w2(Q) + w2(Q)) = 0, if we
have two loops forming the worldsheet boundary, the contributions of in the
sign ambiguity do not necessarily cancel, as each TWs3(Q) is an element of a
different copy of H?(LQ,Z) in the cohomology of LQ".

6.4 Spin®-structures

It seems that in order for the pfaff(D)-factor to be well defined we have to
require that D-branes only wrap on spin manifolds. After all, the factors in the
path integral have to be real functions, not just sections of a line bundle, to give
unambiguous results in calculations. There is however an alternative option.
For this it is useful to take a closer look at spinor bundles of ). As we explained
the problem of lifting the h;; SO(n)-functions of the tangent bundle T'Q to
Spin(n)-functions is that the cocycle changes to

hijhjkhii = exp(imwi;p). (6.36)

As we saw before the cocycle closes only if w2(Q) = [w] € H*(Q, Z2) vanishes.
If it does not, take v;jr to be Z-constants such that wijr = vijr mod 2. If vy
is a cocycle, i.e. vijr + Vjr + Vpii + vi; = 0, we can find real functions g;; such
that

9ij + 9jk + Gri = Tk (6.37)
Define the U(1)-functions h;; = exp(igi;). The use of this is that it exactly

separates the problem in the spinor bundle. Namely if we divide the ilij by hi;.
The cocycle condition becomes

+ + = exp(iwwijk) exp(—ivijk) =1. (6.38)

=
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The h;; do not define a line bundle on () because they also do not satisfy
the cocycle condition. The first Chern class of it would be given by constants
Cijk = Vijk/2, as can be seen by comparing (6.37) with (6.8). It is the square
root of a bundle, in the sense that we can write

L=L3®RL3 (6.39)
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where £z is the pseudo line bundle with local coordinate transformations hij,
and £ is a true line bundle with local coordinate transformations h3; and first
Chern class [v] € H2(Q,Z).

The problem with the pseudo line bundle L? is that its holonomy is not well
defined. If we take a loop v, move it through @ such that it comes back to itself
it sweeps out a surface S in ). Then 7 can be seen as the boundary of the
beginning and the ending of S. However we may choose a different division in
pieces for the beginning boundary and the end boundary. By methods explained
in the appendices the holonomy calculated using both divisions differs by a
factor exp(i27(9,[c])), the exponent of the integral of [c] € H?(Q,R) over S.
This calculation will be done later on more generally for even less standard line
bundles. For [c] € H?(Q,Z) the expression vanishes, thus verifying that the
holonomy is well-defined for a first Chern class [c] given by integers c;;;. Now
however, going around S the holonomy might pick up a change of sign. This
problem sounds familiar. In fact the sign it picks up is given by

exp(in(S,v)) = exp(in(S,w)) = (—=1)5®) (6.40)

Suppose v forms the boundary of the string worldsheet. The moving around
of the embedding of the worldsheet ¥ through M, is again given by a map
I[:S!'x Y — M such that T restricted to the worldsheet boundary is a map
S x 0¥ — Q. T'(S! x ¥) is the closed surface the boundary sweeps out through
@ when moving and coming back to itself. With S = I',[S! x %] the homology
cycle of S! x 8% pushed forward to space-time, we get the same factor as in
(6.17) combined with (6.27). The ambiguity in pfaff(D) is exactly the same as
the ambiguity in the holonomy of the line bundle L3 around the worldsheet
boundary!

Notice that the product of those two expressions cancel precisely. If on a single
D-brane we take the line bundle formed by the gauge field A, to be equal to
L2, the product of pfaff(D) and Holys (A) is well-defined. In fact we can take
any ordinary line bundle M on @), or a vector bundle E in the case of multiple
D-branes. The holonomy of ordinary line bundles and vector bundles is well-
defined. As we remarked the holonomy of the product factors. Therefore the
factor Tr Holgx(A) gets the right sign ambiguity that cancels that of pfaff(D),
if we take A to be the connection in the product E ® £, with E any ordinary
vector bundle.

Remember that this construction is only possible if the v;;; = w;;; mod 2 form
a cocycle. Only then there are g;; such that (6.37) holds. The question is thus
whether we can lift wy(Q) € H2(M,Z5) to a class [v] € H?>(M,Z). By the exact
sequence (the same as (6.31))

- HY(Q,Z) — H2(Q,Z5) — > H3(LQ,Z) — - (6.41)
this is only possible if S(w2(Q)) = W3(Q) = 0.

As we saw in (6.38) the problem in the ”would-be” spinor bundle S(Q) formed
by local coordinate transformations h;;, is solved by dividing h;; by the h;; of
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L£2. This is the same as taking the direct product S(Q)® L2, where £~ 2 is the
pseudo line bundle with local coordinate transformations hi_jl. This product is
called a spin®-structure. It is the same structure as we encounter in K-theory.
There the Thom class of the normal bundle N of ), on which the D-brane
wraps, in the space-time manifold M, can not be defined if the normal bundle
did not have a spin structure. In the mean time we have have learned that this
is if w2(N) # 0. Furthermore the Stiefel- Whitney classes w;(X) € H(X,Z>)
can be shown to have the property

(L +wi (M) + we (M) +..) = 1+ wi(Q) + w2(Q) + . ) (1 + wi (N) + w2 (N) +..)

for TM =TQ & N, with the usual notation w;(X) = w;(TX). Thus

1(Q) + wi(N),
1(Q) - w1 (N) + w2(Q) + w2(N).

The first Stiefel-Whitney class w; (X) of a manifold X vanishes if X is oriented.
Thus wy (M) = w1(Q) = w1 (IN) = 0. Since the total space-time manifold M has
a spin structure, this is a basic assumption of type II superstrings, ws (M) = 0.
Therefore w2(Q) = wy(N) (remember that all Stiefel-Whitney classes are Zo-
valued). Consequently the normal bundle N admits a spin structure if and only
if @ does.

If wa(N) # 0 it is still possible in K-theory to define an element in K (M) that
can be interpreted as the vector bundle of Dp-branes wrapped on Q. If we can
find a pseudo vector bundle G on @, such that the product G ® S*, with S* the
pseudo spinor bundles of N, is well defined, then this product can be extended
in a tubular neighborhood of ). The K-theory class of it can then be mapped
by the Gysin homomorphism to give an element of K (M). The pseudo vector
bundle G can be constructed as the product of any ordinary vector bundle E
on () and the £~ we constructed above. In this way the usual correspondence
between K (Q) and K(B(N),S(N)) by the Thom isomorphism(5.65) still holds.
The Thom class however is now defined as

v (6.42)
w

[7*(ST ® £L7%), 7 (S~ ® £L75),a] € K(B(N), S(N)). (6.43)

This construction is of course only possible for W3(Q)) = 0. Thus the possible
D-brane charges predicted by K-theory, are only those of D-branes wrapped on
a manifold on which a spinC-structure is allowed. (The usual mathematical def-
inition also declares any ordinary spin manifold to have a spin®-structure.) This
exactly matches the condition for cancellation of the anomaly in the product of
pfaff(D) and Tr Holss (A). It is a very nontrivial check of the K-theory/D-brane
correspondence.

6.5 The B-field

For the B-field the physical state conditions for closed strings imply that there
is a gauge freedom B ~ B + du for any 1-form p. Just as for the A-field, this
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means that the B field is defined only locally. With {U;} a covering of M, we
have different 2-forms B; on every U;, with on every intersection Uj;

B; — B; = dA;; (6.44)

The field strength H is globally defined, so for H is a 3-form on M with for
every U;: H = dB;. If {U;} is a good covering we can also find real functions
aijr, on Uyjr and constants m;jr on Uy p such that we get the following diagram

0 | H

W% B; H = dB, (6.45)

Ql Aij Bi — B] = dA’L]

Qo Qijk Aij + Aji + A = dagjp

R 27k Qijk — Qjk + Qig — Qijp = 2Tk
M U; Uy Uijr Ujn

This is the standard way to show the equivalence between classes in de Rham
and Cech cohomology. Under this equivalence [H] in the de Rham cohomol-
ogy H3(M,R) corresponds to [27m] in Cech cohomology. We require [m] €
H?(M,7), because if we move the worldsheet through space-time it sweeps out
a 3 dimensional volume V with the worldsheet at the beginning and at the end
as boundary. If those two worldsheets are embedded by maps ¢ and ¢' the
difference in the factor can be calculated by

A 4B - /E 4B = /V H (6.46)

But if we move the worldsheet such that it comes back to itself, we don’t want
the factor to change. Therefore the integral of H over all closed volumes must
be an integer multiple of 2, i.e. [m;jr] € H*(M,Z). This is again the argu-
ment of Dirac’s quantization.
We have not been very precise yet how the integral of B is defined. The forego-
ing argument is only valid within one coordinate region U;. Given an embedding
¢ : ¥ — M and a covering U = {U;} we get a covering by V; = {¢ 1 (U;)} of the
worldsheet. It is always possible to make a good covering {U;} of space-time,
such that {V;} is a good covering of ¥. We then make a triangulation of the
worldsheet relative to this covering. This is a formal sum of triangles with each
triangle entirely in at least one coordinate region V;, such that the homology
class of this sum is equal to that of the worldsheet. As in (A.25) this trian-
gulation can be separated in triangles, edges of the triangles and vertices, the
endpoints of the vertices.

tgo) are the triangles in each V;,
#9) are the edges in each V;;,

&)

ik are the vertices in Vjjp.

We now define the path integral factor to be
exp(i¢* B) := exp(i(t'?, ®*B) +i(tV), 8*A) — i(t?, *a)). (6.47)
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Here every time a summation over the missing indices is assumed. This is a
generalization of the expression of the holonomy of a line bundle. It is well de-
fined on equivalence classes of quadruples (B;, Aij, aijk, Mijrr) With equivalence
relation

B; B; + du;

Aij | | Aig + pi =y + dpi (6.48)
Qijk Qijk + Opijk — 2maijk '
Mijkl Mijkt + 00ijk

for any u € CO(M,QY),p € CY(M,Q°) and @ € C?(M,Z). Notice that the
equations in (6.45) are also invariant under this equivalence relation. This can
be summarized in

Q3 H
02 B;
o pi Agj
6.49
Q° Pij  Qijk (6.49)
Z Gijk  Mijkl
M Uy Uy Ugjr Uijn

This is a generalization of the classification of line bundles with connection.
These are classified by triples (A;, gi;,¢ijx) which satisfy the usual relations for
line bundles, i.e.

[C] € H2(M,Z), (6g),~jk = Cijk, and A; — Aj = dg,'j, (6.50)
with equivalence relation
(As, 95, cijr) ~ (Ai + dXi, gij + i — Aj +drij, cijr + (07)ijk) (6.51)

for any real functions A; and Z constants r;;. These classes are elements of
H'(M,U; — Q')[4]. This notation reflects the fact that we can also classify by
pairs (A;, hy;) with A; as before and h;; = exp(ig;;) a cocycle of U(1)-functions.
Consider now equivalence classes [(B,A,a,m)] of quadruples, satisfying the
equations in (6.45) and with [m] € H3(M,Z). The space of these equivalence
classes is denoted by H?(M,U; — Q' — 02). Suppose we have an equivalence
class which is represented by (B, A,a,m) and suppose [m] = 0 in H3(M,Z).
We can write y = 6a for some @ € C?(M,Z). Then §(a+ 27d) = 0 so there is a
p € C'(M,Q°) with dp = a+2né. Because ddp = A, we have §(dp—A) = 0 and
thus a p € CO(M, Q") such that du = dp — A. Finally because 6(du — B) = 0,
there is a B € Q'(M) such that B = B; — dy;. To summarize:

Mijki = O0Gijkl,

Qijr = —2ma;jk + Opij, (6.52)
Aij = —dpij + dpij, -
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This shows that this quadruple is equivalent to (B,0,0,0). In fact there is an
exact sequence like the one for line bundles with connection in (A.47)

0 — H2(M,R) — H2(M,U; - Q' - 02?) — H3(M,Z) — 0.

(6.53)
which means
H*(M,U; - Q! - Q% = H3(M,Z)® H*(M,R) (6.54)
In the case (B,0,0,0) the definition (6.47) simplifies to
exp(ip*B) = exp(i/¢*B). (6.55)

Very often one considers only backgrounds in which [m] = [H]/27 vanishes in
H3(M,Z) and then this is the right factor in the path integral. Because in
general the definition of exp(i¢* B) at least locally (i.e. in a contractible region
where again we can write H = dB) gives the right factor, and it has the right
gauge invariance B ~ B + dpu, this should be the right factor in general.

A special case concerns the restriction to configurations in which [m] and thus
[H] vanish in H3(M,R). This does not automatically imply that [m] vanishes
in H*(M,Z). Still we can write m;jp = daijri, but the @ need no longer be
integer. Within an arbitrary quadruple equivalence class, the a;;; can in general
no longer be gauged to zero. But at least we can take them to be equal to these
constants @;jx. Still A can be gauged to zero and we can write H = dB globally,
so B; = B with one B € Q'(M).

As remarked before, one can check easily that exp(i¢* B) is well defined on the
equivalence classes in H?(M,U; — Q! — 02), as long as S is a closed surface.
Furthermore one can check that it is independent of the triangulation of S and of
the chosen ¢(®), (1) and +(?). Both calculation will actually follow from the more
general calculation with boundary. If we want to introduce D-branes, we have
to admit open strings and thus worldsheets with a boundary. In the following
subparagraph we will explicitly check whether the definition of exp(i¢*B) is
still invariant under the equivalence relation of the quadruples. And whether
it is still independent of the chosen triangulation. The calculations are rather
algebraic and use a special notation explained in the appendices. Readers not
interested in verifying the derivation of the results, are strongly advised to jump
ahead to the summary of the results.

6.6 The anomaly calculation

First of all the introduction of a worldsheet boundary, means that the con-
struction of the triangulation is no longer straightforward. First let us give a
triangulation of the worldsheet boundary. The {U;} can be chosen such that the
U; give a good covering of M and U; N @ a good covering of () and V; = ¢*U;
a good covering of ¥ and V; N X a good covering of 0¥. We start with a
triangulation subject to the covering V;; N0, which is a formal sum + of edges.
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This can be divided in

c§°) are all path pieces in V;,
1
2
In the following we use the Cech boundary operator

(58)i0i1--iq = Zsi’ioil..iq' (656)
i

%

are the endpoints lying in Vj;, 'yg)

the endpoints of these pieces.

c is the sum of these endpoints in V;;.

It maps between Cech cochains with ¢+ 2 indices to cochains with ¢+ 1 indices.
For instance &) = () and ¢© =~ A frequently used argument goes as
follows. 8y = 0 (by definition), therefore we can find a ¢(®) such that 9c(® =
9%, giving the path pieces in V;. Furthermore it is important that the Cech
boundary operator & commutes with the ordinary boundary operator 8. Define
40 = §¢® . Then 97 = ddc(® = 0, therefore we can find a ¢(!) such that
0cM) = 40 giving the vertices in Vij. The above division of the triangulation
of the worldsheet boundary is constructed in this way. The triangulation of a
closed worldsheet is also divided in this way.

We start with a triangulation s of ¥ subject to the V;. Then we define ¢(®) such
that 0t(©) = s. They give the triangles in every V;. For a closed worldsheet we
now define s(® = 9t(® and 9t = 9% = 0 gives a t(!) such that 9t") = s,
giving the edges in V;;. With boundary however 0% # 0. But if we define
50 = 9t(® — ) ie. we subtract the edges lying on the boundary, we have
959 = 0. Thus we have a (1) such that 9t(") = s(0). If we calculate

39t = —c(© = —4(V (6.57)

These are the vertices on the worldsheet boundary, they obstruct the lifting
of 3t to t?). To get rid of them we have to add ), that is define s(!) =
ot + 4 Then ds(V) = 0. Finally we define ) such that 9t(® = s, To
summarize:

tgo) the triangles in V;

sgo) = 6t£0) — cgo) the edges in V;

9 with 8t = 5  the edges in Vj; (6.58)
sijl-) = 6t§;) + cgjl.) the vertices in each V;;

tg,)c, with 9t = s the vertices in Vjp,

with every time the objects at the worldsheet boundary subtracted.

Now we ought to check whether our definition of exp(i¢*B) is still invariant
under the equivalence relation for the quadruples. In the following we omit the
pull-backs ®* in the pairing (.,.), which denotes the integral of cochains of 2-
forms, 1-forms and real functions over cochains of triangles, edges and vertices,
with implicit summation over the indices. Important are the relations

(da,b) = (a,6b), (da,b) = (a,db) (6.59)
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where § is the Cech coboundary operator, and the second equation is just Stokes
theorem.
The contributions from a gauging (6.48) are

(t9,dp) = (08, p) = (¢, ) + (59, ),
(D, —6p + dp) = — (0t ) + (0tD, p) = —(s'D, ) + (s, p) — (1, ),

—(t®),5p — 2ma) = —(3t®, p) + (¢, 27a) = —(s), p) + (¢, 27).
(6.60)

The sum of these contributions is
(@, 1) = (M, p) + (¢, 27a). (6.61)

The last term of this vanishes in the exponent, so we have restricted the change
to an integration over the worldsheet boundary. In fact with u; playing the
role of connection and exp(—ip;;) the local coordinate transformations, it can
be seen as the holonomy of a line bundle over the worldsheet boundary given
by the triple (ui, —pij, dpijr):

Holos: (1, —p) = exp(i(c”, ) +i(c™, p)). (6.62)

There now seems to be a way to solve the problem of the broken symmetry.
Accompany the gauge transformation of the B-field by a gauge transformation
in the A-field 4; — A; — p; and g;; + pi;. The product of the holonomy of a
U(1)-gauge field A and exp(i¢* B) is then invariant under this combined gauging.
However since there are no restrictions on the p;; and p;, the A-field is no longer
a connection in a line bundle. If we start with a triple (A4;, g:;, ¢ijx) satisfying
the usual conditions for a line bundle, after a gauging A; = A;—p;, gi; = gij+pij

we have
Ap — Ay = dgij — pi + pj = dgi; — pi + py — dpij, (6.63)
9ij + Gk + Ghi = ik + pij + pik + Pri

Notice that the contribution on the right-hand sides are the change by gauging
of A;; and a;jx. So consider triples (A;, g;5, ¢iji) of 1-forms, real functions and
Z-constants, satisfying

Ai — Aj =dgij — Aij,
d9ijk = 2mCijk + Qijk, (6.64)
0cijk = Mijht-
After the combined gauging together with c;;, — c;-jk = ¢;jk + Gijk, the triple
still satisfies these conditions. However the last line should ring a bell. It says
that mijw is the coboundary of ¢, thus [m] vanishes in cohomology. The ¢ are

a cochain on Q. It trivializes m only on @. Thus [m] vanishes in H3(Q,Z) but
not necessarily in H3(M,Z).
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For a possible solution of this, we first rewrite the triples and quadruples of the
A and the B-field. Define

hij = exp(igij), Cijr = exp(iar) (6.65)

Then the equivalence classes of quadruples (B, A, a,m) can also be described as
equivalence classes of (B, A, () satisfying

Bi — B] = A,’j,
Aij + Nje + A = iGijedy, (6.66)
0Cijm =1
with equivalence relation
B; B; + du;
Aij | ~ | Aij + i = pj +igizda;t | - (6.67)
Gijk Gijh Qi Uik Awi

for any local 1-forms y; and local U (n)-functions g;;.

For the A-field we generalize to n D-branes, and thus A becomes a U(n)-
connection in a vector bundle. The triples (A,g,c¢) consists of functions A;
on U; whose values are the product of a 1-form and a symmetric n x n-matrix,
and functions g;; and constants ¢;;; with values symmetric n x n-matrices. Then
hi; = exp(ig;;) are U(n)-valued functions. U(n)-bundles are classified by pairs
(A, h) satisfying

A; — hz‘jAjh;jl = ih,’jdh;jl, h,’jh]‘khki =1, (6.68)
with equivalence relation
(A,', h,’j) ~ (Az - ilidli_l,ljhi]‘li_l). (6.69)

for any local U(n) function ;.
The definition of the twisted line bundle is then
A; — hijA;jhi;t = ihidht — Ay,
hijhjrhe: = Cijk-
The A;; have to be read as A;; times the n x n identity matrix I, xy, which is

the generator of the subgroup U(1) C U(n). Similar (i is Cijk - Inxn. This is
consistent under the combined gauging (6.67) and

(6.70)

Ai = A — i,
g (6.71)
hij = qijhi;-

If we look at the last in (6.70) and take the determinant on the right and left-
hand side

det hij det hjk det hk, = CzT;k (672)
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The ¢ ik arises because this is the determinant of (i - Inxn. Now the left-
hand side is a coboundary of U(1)-functions. It trivializes (f%,. Thus [([%;] =
0 € H?(Q,U;). By the usual isomorphism H%(Q,U;) = H3(Q,Z) this means
[¢74] = n[H] = 0. These situations are possible when H?(Q, Z) contains torsion
subgroups. For example if H*(Q,Z) = Z,, and [H] is the generator of Z,, we
get n[H] = 0. If we look at the image of [H] under the standard homomorphism
H3(Q,Z) - H3*(Q,R), we get n[H]g = 0. With real coefficients this means
[Hlg = 0/n = 0. So [H] vanishes in H*(Q,R). We have already looked at
this flat-but-torsion case, and derived that in this case we can write H = dB
everywhere on (), can gauge A = 0 and choose a;;; to be real constants. In our
new description this gives that (;;; are U(1)-constants.

Now let us see whether in this combined system of the A field and torsion
B-field, the product

exp(i L ¢*B) Tr HOlaE (A, h) (673)

is indeed gauge invariant. We have to be more careful now about the holonomy
of the A-field. Since we are now in non-abelian gauge theory it is defined by the
alternating product of path ordered exponential of i f A; along the path piece
v; in U; and h;; in the vertex in U;; in the order the path passes the path pieces
and the vertices. The direct product of a U(n) (vector) bundle (A4,h) with a
U(1) (line) bundle (4, %), is a U(n) bundle with connection A; + A;I,,x, and
transition functions h;; i~1,~j. The holonomy of this product factors in a product
of the (path ordered) holonomy of (A,h) and the holonomy of (A,h), since
the U(1)-functions ﬁ,-j and the U (1)-generators A; - I, x,, commute with all the
factors in the holonomy of the product bundle. Therefore if we apply the gauge
transformation (6.71), the holonomy of the twisted U(n) bundle gets multiplied
by a factor that is equal to the holonomy of the pseudo line bundle formed by

(™, q) = exp(i(c™, p)) (6.74)

this exactly cancels the factor exp(i [;, ¢* B) picks up after the gauge (see (6.61)).
So for the n[H] = 0 case we have restored the gauge invariance of the B-field
triples (B, A, ().

Another problem is that we do not know how our definition depends on the
triangulation of the surface. Consider therefore a second triangulation s’ of X.
The triangulations of ¥ induce two different triangulations of the worldsheet
boundary v = ds and 7' = ds'. The triangulation s’ can be divided in s'® and
') with [ = 0,1,2. For all objects

As® = g0 _ g0 AfD = ) _ 40 (6.75)

denotes the difference in the triangulation. First we relate the two triangulations
of ¥ with each other. As vy and «' are triangulations of the same closed object
ox

[ =[] = [0%] € H:(9%) (6.76)
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Thus ' — v is the boundary of a triangulation § of a surface. Of course there
are no surfaces in 0%, but § should be considered as the formal sum of maps
of triangles into 9%.. For a better picture, one can also push forward v and +/
to @. Then ¢,y and ¢.7' are the boundary of some surface triangulation in @,
which can be thought of as the surface over which one moves 0% back to itself,
but with a changed triangulation. We restrict however to 0X and its covering
VinNox.
In the same way as the division of the triangulation s of ¥ with boundary =, we
can now divide the triangulation § with boundary A~ by
#© such that 88 = 3,
50 .= 51 — A,
i) such that 5i") = 50 (6.77)
51 = 9ED) 4 AcD),
i@ such that 8i® = 5
All {) and #0) lie on 9%.
Now turning back to triangulations in ¥. The push forward of the triangulation
3 to X, remains located on the boundary 8%. We say that s and s’ are triangu-
lations of the same surface if As — § is the boundary of a volume triangulation
v, i.e. Ov = As — 3. In space-time M this means that ¢.(s' — 5) and ¢.s are
both triangulations of ¢(X). In a similar way as before we calculate
=0 = Jw® : Hw® = v,
v = 9@ — At 4 F#O),
w® =0, = JwM : dw® =,
oV = gu® 1 AHD _ 0, (6.78)
W =0, = FJu® : dw® =M,
0@ = guw® — A2 4 §2)
w® =0, = Fu® : Jw® =ov®),
Using this we calculate the change in the exponent of exp(ip.B)

(At B) = (0w ® — dw® +i© B) = (w®, H) — (wV, —dA) + (i, B)
(At A) = (—0w® + dw® + iV A) = —(w™,dA) + (w?, da) + (EV), A)
_(At(2)aa) = —(6’11)(2) - gw(B) + 5(2): (l) = _(w(2)’ d(l) - (w(B)’ 27Tm) - (E(Z)a a)
The term (w(®), H) vanishes because it is the integral over the image of a 3-
simplex (tetrahedron) in ¥, thus over a two dimensional surface. In space-

time M this means that the push forward ¢,w(® has no 3-dimensional volume.
For the same reason (#(?), B) vanishes, because #®) C 9% is 1-dimensional.
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27 (w®),m) vanishes in the exponent, because it is an integer multiple of 2. So
the total change comes down to

FV A) — (i, q) (6.79)

Now we want to show that this change is cancelled by the change of the trace
of holonomy of the twisted U(n) bundle. For this we first have to describe the
triangulation of the worldsheet boundary in a different manner. First we restrict
the possible triangulations, to those for which all edges only go in the direction
of the orientation of 9%, thus excluding triangulations which go back and forth
on 0X. The going a back and forth can be shown to have no contribution to
total holonomy. If we parallel transport a vector over a path and go back in
the same way, the vector comes back to itself. Now separate v in all r edges
E,,a=1,.r. Thus

v = Z E,. (6.80)
a=1

For a general triangulation every cgo) might consist of multiple E,. We define

a map f from the index set {1,2,..r} to the index set of the covering V; N 0%,
such that E, C Vj(,)NOX. The o, denote the vertex connecting E,_1 and E,,
so in fact E, is the interval [04,04+1]. The holonomy around the world sheet
boundary is then

hs1)5(ry (o) Holp, (A5 (1)) - hyiro1), 5y (0r-1)-
HO]ET_1 (Af(r—l)) - ....hf(Q)f(l)(O'g) - HOIE1 (Af(l))

If we divide one E, in two edges assigning them both to the coordinate region
f(a), the holonomy does not change.

If we have a second triangulation (E', f') of 0%, its vertices o/, that are not
vertices of (E, F'), always lie on some edge of (E, f). If we break up the edges of
(E, f) at every point, where there is a vertex of (E', f'), the holonomy of (E, f)
does not change. The other way around if we break up the edges of (E', f') at
vertices of (E, f) the holonomy of (E’, f') does not change. In both cases after
the breaking up we have the same set of edges, only combined with different
maps f and f'. So all we have to do is to check what happens if we change the
map f into f' by changing the coordinate region assigned to every edge. The
factors Holg, (Af(,)) are given by the solutions of the differential equation

(6.81)

%Mﬁ((]’, 0'0) = iA,‘(O')MZ'(O', 0'0), M,'(O'o,a'o) =1 (682)

for U(n)-functions M;. Here A;(o) is, as in all previous calculations, the pull
back ¢* A; to 0%, that is

5 Ailo) = Au(9(0)) 25

with derivation in the direction along the boundary. The holonomy over the
edge E, = [04,04 + 1] is given by

Holg, (Af(a)) = Mi(a)(0at1,0a)- (6.84)

(6.83)
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If [00, 0] lies both in V; and in Vj, define
M(a,00) = hij(o) exp( —|/ Aij)Mj(o,00)h;; 1(00) (6.85)

It satisfies

L (0,00) = [(dhi; )y (0) — iAis (o) + ihi; A;hi"] W (o, 00)

(dh
=i [ihij(0)hy;' (o) — Aij(0) + hijAshi;t] M (o, 00) (6.86)

i (
iA; ]\7[(0 (70)

and M(og,00) = I, thus M(o,00) = M;(0,00). Therefore, if the edge E,
belongs to different coordinate regions f(a) and f'(a), we can write
Ta+1
Hols, (45(a)) = hytaypey (0ar)exp(—i [ Ascarpia)
f(@) F(@)f' (o) o Fla)f(a) (6.87)

Holp, (A7 ()7 () 51 () (Ta)-
In the holonomy of E using coordinate regions f we have the factor

htat1)f()(Tat1)Hole, (Af(a)) hf(a) f(a—1) =

0'a+1
hf(at1)f(a) (Tat1)Pf(a)f(a)(Tat1) exp(—i/ Ag(a) () Holg, (A (a))
hfra)f(a)hs(a) fla—1) =
Bg(at1) (@) Cf(at1) fa) () (Tatt) eXP(—i/ A () fr(a))Holr, (Af ()

Crr(a)f(a) Fa—1) (Ta) hpr (@) f(a—1)

So if we want to replace the assigned coordinate region f(a) of E, by f'(a) we
have to multiply with the U(1)-factors

Ta+1
Chlat1) f() () (Ta+1)Cp (a) () f(a—1) (0a) €xP(—i / Afa)f(a))

to keep the holonomy the same. Thus the holonomy calculated with edges E,
and coordinate region assignment f' multiplied with

Tat1

T Sreatyr@r() (@at1)Cs (@) (o) fam1) (Ta) exp(—i / Afa)fr(a))

a=1 Oa
we get the holonomy using the assignment f. Now all we have to do is show that
this factor is equal to the change in exp(i [;, ¢* B). Similar to the holonomy it is
easy to show that if we divide triangles in the triangulation without changing the
coordinate region assignment, the factor does not change. The sum of integrals
of B; over the broken up triangles is of course the same as B; over the original
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triangle. Further ¢/ and ¢® do not change, as there are no new edges and
vertices between different coordinate regions. We showed that the factor only
depends on the triangulation of the boundary. The division of triangles cause
division of edges on the boundary. So also there it is possible to break up
the edges without changing the B-factor. Therefore we can focus on a fixed
triangulation  with different coordinate region assignments. From picture ??
it then follows that the change (6.79) in the B-field factor, being

exp(i(c”, A) =i, @) = exp(i(c!”, A))(¢V, ), (6.88)

is the same as we just calculated for the holonomy of the twisted line bundle.

6.7 Summary of the results

We have shown that the product of factors
exp(i/ ¢*B) Tr Holyx: (A, h) (6.89)
b

in the path integral, is well defined if the B-field is formed by triples (B;, Aij, Cijk)
of 2-forms, 1-forms and U(1)-functions satisfying

B; = Bj = Ayj,
Aij + Nji + A = iGijrdCy, (6.90)
0Cijm =1

and the A-field is a connection in the twisted vector bundle formed by the pair
(A;, hij) of 1-forms and U (n)-functions satisfying

A; — hZ]AJhZ]I = Ih,]dh;I — Az'j, (6 91)
hijhirhe: = Cijk- '

Here A;; and (jj, are to be read as the U(1) factor times the nxn identity matrix.
The product of path integral factors is independent of the chosen triangulation
and is invariant under the combined gauging

B; B; + du;
Nij | ~ | Aij + pi — pj + iQijdqi;I , (6.92)
Gijk Cijh Qi Uik Ari
and
Ai = A — i,

(6.93)
hij = qijhi;-

with y; any 1-forms and ¢; any U(1)-functions. However from (6.72) it follows
that the definition of the twisted vector bundle makes ¢™ trivial as cohomology
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class in H2(Q,U;). Thus this only brings a solution to the anomaly problem if
[¢"] = 0. By the isomorphism H?(Q,U;) = H3(Q,Z) this is only if n[H] = 0.
In this case we can write H = dB with the same B everywhere on (), we can
choose all A;; =0 and the (;; to be U(1)-constants.

The twisted line bundles have a nice interpretation in the context of adjoint
bundles. These are vector bundles, whose fibers consist of n X n-matrices and of
which the transformation on coordinate region overlaps is given by the action
of U(n)-valued functions in the following manner

This makes that the bundle is invariant under the multiplication of the h;; by
any U(1)-function. So in fact the h;; have values in U(n)/U(1) = SU(n)/Zn.
If one maps the U(n) functions into U(n)/U(1) and lifts them back into U(n)
they may have picked up a factor by a U(1)-function. However this does not
the change the cohomology class of ¢ in H?(M,Uy).

The natural generalization for B-fields with n[H] # 0, lies in taking n — oc.
To be more precise we use a infinite-dimensional separable Hilbert space H,
and take the h;; to have values in U(#), the group of unitary operators on
H. By a theorem of Kuiper U(#) is contractible. Therefore as the (;;, are
a cocycle, one can always find U(H)-functions h;; with coboundary (;jx. The
generalization of the adjoint bundles can be made using bundles on @), with as
fiber the C*-algebra I of compact operators on H. With

Ad(h) : K = K;C — hCh™! (6.95)

the structure group Aut(K) of the bundle is isomorphic to PU(H) = U(H)/U(1)
by the map Ad: PU(H) — Aut(K). By a theorem of Dixmier and Douady the
isomorphism classes of such bundles are given by elements of H*(Q,Z), ex-
actly by mapping U(H) functions h;; with coboundary equal to (;jx, where
[¢] = [H] by the isomorphism H?(Q,U;) = H3*(Q,Z). This lead to the pro-
posal of Bouwknegt and Mathai[3] that for this situation we should look at these
bundles, and that the K-theory of the algebra of sections of this line bundles
should describe the D-brane configurations. Furthermore in [4] it is shown that
the equivalence classes of triples (B, A, () of the B-field classified in the space
H%(Q,U; —» Q' — Q2?), also classify isomorphism classes of Dixmier-Douady
sheaves with connective structure. It seems natural that the local coordinate
description of this connective structure is given by the A-fields with twisted
coboundary conditions in the above manner. However this must be worked
out. Moreover the global worldsheet anomaly cancellation has to be explicitly
checked for this case. For the n[H] = 0 case this has been done above and in
[12]. In the calculation we never made use of the fact that the ¢ are constant
or the A zero, as in the n[H] = 0 case. It seems there is no obstruction to
generalizing this calculation to the case with h;; € U(#). The mathematical
details have to be worked out.

As noticed in [12] and [7] the anomaly problem can be rephrased by saying that
the factors in the path integral are not functions on the space of world sheet
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embeddings and metrics, rather sections of a line bundle over them. The line
bundle can be constructed from a line bundle over loop space. The local co-
ordinate regions in this loops space are given by different triangulations of the
loop. Already in ’85 by Gawedzki [14] in the context of Wess-Zumino-Witten
models it was shown, that the integral of B over a surface with boundary, de-
fined in the above way, depends on the triangulation of the boundary in such
a way, that the transformation between different triangulations of the bound-
ary, is given by the gluing maps in the line bundle over loop space switching
between the same triangulations. In this way if 7 : X — L@ is the map from
the configuration space X of embeddings and metrics to L), mapping the em-
bedding of 9% to LQ, and L is the line bundle over loop space, the pull back
7*L is a line bundle over X and the B-field factor is a section in this line bun-
dle. The first Chern class of the line bundle £ is given by a homomorhpism
H?(Q,U; —» Q! - Q?) - HY(LQ,U; — Q') which is described in more detail
in [4]. It is not very hard to show that the dependence calculated above is indeed
the same as in [4]. If the anomaly calculation for the A-field were completed for
the general n — oo, Dixmier-Douady bundle, case this would give an alternative
description of this line bundle. The trace of the path ordered exponent of i [ A
around a loop would be a section of it.

The pfaff(D)-factor also takes values in a section over loop space with first
Chern class TW3(Q). For the product of the three factor to be a well defined
function on X this gives the following condition

Ws(Q) + B(a) +[H]g =0 (6.96)

where a give the twisted coboundary condition on the h;; of the U(n)-bundle
(U(H)-bundle?)
hijhjkhki = Qjk (6.97)

and f is the Bockstein 8 : H?(Q,U;) — H?(Q,Z). When this condition is
satisfied the product of the three factors are a section in a trivial line bundle.

A Algebraic topology

The following appendices contain a brief exposition of the algebraic topology
that is used in the main text. Some basic knowledge about manifolds, differ-
ential forms and homotopy groups is assumed. The first appendix defines the
de Rham and Cech cohomology and their relation. The second appendix ex-
plains singular homology. A broader introduction into these subjects can be
found in [2] and [13]. The next appendix reviews the main facts about vector
bundles. Appendix A.4 gives a more detailed overview of the theory of complex
line bundles, explaining holonomy and the fact that complex line bundles are
given by classes of H!(M,U;), while the category of complex line bundles with
connection is classified by H'(M,U; — Q!). This last notation and some more
details can be found in [4]. The last appendix treats higher rank vector bundles,
or U(n)-bundles.
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A.1 de Rham and Cech cohomology

Let M be a smooth manifold. There are two ways to define the cohomology
space HY(M,R). In de Rham cohomology we use the differential complex

QM) —4> at(m) —L= 02 (M) L .. (A1)

with Q7(M) the space of g-forms. The g-th de Rham cohomology (¢ > 0) is
then defined as

Hip(M) :=ker(d: Q7 — Q7)) /img(d : Q91 — Q9). (A.2)

g-forms X with d\ = 0 are called closed and ¢ forms with A = dw for some g — 1
form ezact. So de Rham cohomology consists of closed forms modulo the exact
forms. HY,(M) are the locally constant functions.

For the description in Cech cohomology we make use of a good cover of M. This
is an open cover {U;} such that all finite intersections

Ui1i2i3..-is = Uz'l n Ui2 n Ui3 n Uzs (A3)

with s > 1, are contractible. For manifolds such coverings can always be found.
Then we can make the following complex

éO(MjG)L)@(M,G)Léz(MjG)ﬁ_y.. (A.4)

with C?(M,G) consisting of maps « that assign an element Qigiy...i, Of the
abelian group G to every intersection of ¢ + 1 different U;’s. We use the con-
vention that interchanging any of the indices leads to a change of sign

aioil..ik’ik+1..iq = _a’io’il..ik+1ik..iq (A'5)
The coboundary operator &, : C4(M,G) — C9+(M,G) is defined as

q+1

(5qa)ioi1---iq+1 = Z(_l)jaioh BRFEET SRR SRR (AG)
Jj=0

omitting the j-th term. One can check that d,41 ~ d;, = 0. The g-th Cech
cohomology (g > 0) can then be defined as

HY(M,QG) := ker(dq)/ img(dg—1)- (A.7)

Elements of a € C(M,G) with dqa = 0, are called cocycles, and elements that
can be written as 6,10 coboundaries. So the Cech cohomology spaces consist
of the cocycles modulo the coboundaries. H°(M,G) consists of cocycles that
assign an element of G to every connected component of M.

The group G need not be a fixed group but may depend on the Ujy;,..,. For
instance the elements of a € C?(M,QP) assign to every intersection Uipiy..i, an
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element a;y;,..;, € Qp (Uz‘oil..iq of p-forms on that intersection.

One can show that for manifolds the cohomology of de Rham and Cech, using
R as the abelian group G, are the same. So Hin(M) = HY(M,R). For this
we need the Poincaré lemma, which says that Hio(U) = 0 for ¢ > 1if U is
contractible. This means that every closed ¢g-form on U is exact. Further we
need the fact that H?(M,QP) = 0 for all p, ¢ > 0. This means that every cocycle
of p forms is a coboundary.

Let us take H?(M) as an example. If F is a closed 2-form, the restriction
of F' to every U; can be written as dA; with A; a 1-form on U;, because the
U; are contractible (Poincaré lemma). The set A; can be seen as an element
of CY(M,Q), and (0;A4);; = A; — A; as an element of C?(M,Q'). Tt is a
closed 1-form on every U;;, therefore we can write 4; — A; = dg;; with g;;
a O-form (smooth function) on Ujj. g;; is an element of C?(M,Q0). Cijk =
(029)ijk = 9jk — 9ik + 9ij is closed so is a constant function on Ujji, therefore
cijk € C?(M,R). One can show that dsc = 0. In this way the class [F] in
H2,(M) corresponds to a class [c;] in H*(M,R).

The other way around, suppose c;j; is a cocycle of R constants. Seen as a
cocycle of smooth functions (0-forms) it is then a coboundary, so c;jx, = g;; +
ik + gri for some g € C' (M, Q°) of smooth functions g;;. dg is a cocycle since
dgij +dgjk +dgr; = dCijk = 0. Therefore dg,']' = A; —Aj for some A € é(M, Ql)
Applying the same trick again we get a global 2-form F with F = dA;.

In general the correspondence between a de Rham and a Cech cohomology class
can be computed in the following diagram:

QO(M) o C’O(M, QO) _5> C'I(M, QO) _6> 02(]\/[, QO) 5_>

d d

OO(M,R) —6>CI(M,R) —6>CVZ(M’R) 6_>

where the arrows Q4(M) — C°(M, Q9) maps a g-form to the cocycle that assigns
this same g-form to every U;. Filling in the representative of the a cohomol-
ogy class in the leftmost column, working your down the diagonal gives the
corresponding Cech cocycle in the bottom row. One can even define another
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equivalent cohomology consisting of diagonals of this diagram and a map

D:QYM)e %M, Q"N e CH(M, 073 ¢ ..CY(M,R) -
QY (M) CO(M, Q%) @ CH(M, Q4 ) @ ..C1TH(M,R) (A.8)

between subsequent diagonals given by
D : (AAO D XDY 5 (@A A = dAO A 4 g D) sA@) (A.9)

with an alternating sign before the d. Then again D? = 0 and the cohomology
consists of equivalence classes of diagonals with D(...) = 0 modulo the diagonals
that are in the image of D. We have [A] = [(A, A A1) _\@)] = [X\9)]. For
instance the case of the degree 2 cohomology is given by

02 F

Q|4

R .- .- Cijk
| M U Uy Uy

with [F] 2 [(F, — A, 9ij, —Cijk)] = [ciji]. We need the extra minus signs in every
even column if we want to have F' = dA; etc.

A very useful technique in cohomology uses a short exact sequence (i.e. the
image of one map is the kernel of the following)

0 a—Ll.pt.¢ 0 (A.11)

of abelian groups A, B and C. So here f is injective, g surjective and ker g =
f(A). This then gives the following long exact sequence

7O(M, A) L~ 190, B) —~~ HO(M, C) > (A.12)

<—> 7'\(M, 4) —L = B'\(M, B) > B'(M, 0)

<—>H2(M,A) A

which proceeds between all cohomology groups. Let [y] € HY(M,C), by the
short exact sequence there is a 3 € C9(M,C) such that v = g(8). Because
g(083) = 8g(B) = 0, there is a a € C9t1 (M, A) such that f(a) = 63. Further-
more because f(da) = 6f(a) =0, a = 0so [a] € HI1 (M, A). This defines the
map HY(M,C) — H9*1(M, A). The exactness of the sequence can be checked
by similar arguments.

3
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A.2 Integrals of cohomology classes and homology

The definition of a de Rham cohomology class of degree ¢ is such, that its
integral over a closed (i.e. compact and no boundaries) oriented (sub)manifold
S of dimension ¢ is well defined, because it is invariant under addition of d,
with A any ¢ — 1-form. For a Cech cohomology class it is not directly clear how
to define its integral over a manifold. Let us take again the example of degree
2. Let S be a closed oriented surface. Divide the surface in patches such that
every patch S; lies inside one of the U;. We can refine the covering such that in
every open set U; lies at most one patch, and renumber the patches and open
sets such that S; C U; for every patch S;.

/S[F]ZZ/SidAFZﬁ&Ai. (A.13)

We can choose the patches to be triangular. All edges border on two triangles,
say S; and Sj, the integral of A; and A; are in opposite directions.

Ai — A]‘ = dgz'j. (A14)
edge edge
This integral is equal to the difference of g;; in both endpoints of the edge, the
vertices. One can make the triangulation such that at every vertex three edges
start. If these three edges lie between the patches S;,S; and S in clockwise
order (with respect to the orientation of the surface) its contribution to the
integral is g;; + gk + 9ri = Ciji. SO We can write

/S[F]Z Z Cijk- (A.15)

vertices

In this way we have expressed the integral of the cohomology class in terms of
its Cech cycle. In particular if the Cech cohomology class can be written as
an integer valued cocycle, so it can be a lifted to a class in H2(M,Z) we know
that the integral is integer valued. To be able to define the analogue for Cech
cohomology classes with coefficients not in R or Z, we need to apply the former
procedure in a more formal way.

The subset

q q
Aq = {thpj| th = 1,t]‘ Z 0} (A16)
=0 i=0

of R? with basis {P;}, is called the standard g-simplex. So for ¢ = 0,1,2,3, ...
we have a point, a line, a triangle, a tetrahedron, etc. A singular q simplex is
a continuous map A; — M. We define the space Sy(M,Z) of singular q-chains
to be the space of formal sums of singular ¢ simplices, that is arbitrary linear

combinations of simplices with Z-coefficients. We define the boundary operator
0:5,(M,Z)— Sy_1(M,Z) by

q

(65)(t0, tl, --tq—l) = Z(—l)zs(to, tl, Y ti—l; 0, ti+1; ...tqfl). (Al?)
=0
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Again we have 62 = 0. Then the singular homology with Z-coefficients of degree
q is given by

H,(M,Z) =ker(d : S; = Sy_1)/img(d : Syr1 = Sy) (A.18)

A singular ¢g-chain s with 9s = 0 is called a cycle and the image ds of a g chain a
boundary. The boundary of a g-chain ¢ consists of ¢ — 1-simplices, called faces,
which either have the same orientation as o or the opposite but with a minus
sign. An oriented triangulation of a closed oriented submanifold @) of M is a
combination of simplices o; : A; = @ which must be orientation preserving
maps into @) and cover all of Q). The overlapping faces of two bordering sim-
plices in this triangulation, either have the same orientation but opposite signs,
so they vanish in the boundary of the total triangulation, or opposite orientation
but the same sign. Then one can show that one can add some ’degenerate’ sim-
plices to the triangulation, which cancel these non vanishing faces. So roughly
speaking, in homology opposite oriented faces cancel out, and therefore the total
boundary of the triangulation vanishes. Thus a closed oriented submanifold @)
of dimension ¢ gives a homology class [Q] € Hy(M,Z). For non-oriented closed
submanifolds, the boundary of the triangulation will not vanish, since not all
faces are opposite oriented. But it does vanish if we take Zs coefficients in stead
of Z.

Let s =) ; 9i0i be a singular g-chain with g; € Z and ¢; singular ¢-simplices.
The integral of a g-form A over s is defined as

@M=ZM/A. (A.19)

Let w be a ¢ — 1-form, then

:ZM/ o (A.20)

Therefore we can define the integral of a de Rham cohomology class [A] €
HI.(M) over a homology cycle class [s] € Hy(M,Z) by the pairing ([s],[A]) =
(s,A\). This coincides with the usual definition. So

(&M=LX (A.21)

As we saw in the 2-dimensional example, the integral of a Cech cohomology class
over a singular g-cycle, becomes a sum of the vertices lying in the intersections
Uigir..iy- For the general case (the g-cycle need not be a triangulation of a
manifold, and we want to be able to work with coefficients other than Z), we
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need a formal way of deriving what combination of vertices we have to use. Given
a good cover U = {U;} of the manifold M, for every class in ¢ € H,(M,G) it is
possible to find a g-cycle s in the class ¢, so ¢ = [s], such that every simplex of
s lies entirely in one of the U;. This can be done by breaking up the simplices
that are too big, without changing the homology class. We say s € Sq“(M ,Z).

We can write s as a cochain £ of singular ¢g-chains such that tgo) C U;. This
cochain is thus a member of C°(M, S,). We have the following exact sequence

0~ SU(M,Z)<2— 001, 8,) <2— &' (M, 5,) 2— - (A22)

where 0 is the Cech boundary operator

’Lo’Ll ’Lq Zsl’toll Zq (A'23)

It is important here that the boundary operator 8 and the Cech boundary
operator & commute. Then with sgo) = 6t§0)

95 = 99t® = s = 0. (A.24)

So s € C°M,S,_1) can be lifted to an element tgjl-) € CY(M,S,—1) with
ot = 50, We define sV := 9t(9). Repeating this trick a few times we derive
an element s(4=1) € C7=1(M, Sp). By construction this element has ds(?=1) = 0,
so it can again be lifted to an element (9 € C%(M, Sy) which is a combination
E Gioir..iq,jVi0ir..ig,; Of Vertices v.. in every Ujyq, .4, with coefficients g.. in Z.

We define 35321 . =3 j Gioin.ig.j- Let us take again the example in which s is
the trlangulatlon of some closed oriented surface. For this case
Sz S t(o)
(0) +D
i (’1) 2)
So T (A.25)
Z R

Uk
| T Ui Ui

where s(o) (Jl-) are combinations of edges and vertices respectively, and sz(;,)c

gives the sum of the coefficients of the vertices in every Uj;;. Combing this with
diagram (A.10), we see that we can calculate the integral as the integral of F
ij k So

in general if starting with a g-cycle s and a ¢- form A, s isin C?(M, S, ,) and
A®) in CP(M, Q% P). Define

(s APy = Z (S(P) @ ). (A.26)

20%1--2p? " 2021--1p

over s, the A; over the s( ) , the g;; over the s( ) , or summing the c;jy, - 5!

i0<i1<..ip
Then
/ A= (5,\) = (s, A®) (A.27)
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for all 0 < p < q. And in particular we now know how to integrate a Cech
cohomology class over s. Even if a Cech cohomology class [a] of degree ¢ has
coefficients other than R, so there is no corresponding class of g-forms in de
Rham cohomology, the integral is given by

(s], [o]) = (s, ). (A.28)

This is well defined on the classes by the following variant of Stokes’ theo-
rem(A.20) §
(s'9,08) = (359, B) (A.29)

with 8 a ¢ — 1 Cech cochain.

A.3 Vector bundles

First let us recall the definition of a fiber bundle. A fiber bundle is a quadruple
(E, M, F,r) of smooth manifolds F, the bundle, M, the base, and F the fiber
and a map 7w : E — M, the projection. The bundle is required to be locally
trivializable, that is for every x € M there is a neighborhood U such that there
is a diffeomorphism 7, the trivialization, between 7= (U) C E and U x F such
that m o7 = 7. The pre-image 7~!({z}) of a point z € M, is called the fiber
at ¢ and denoted E,. Two fiber bundles E and E’' on the same base space M
and with equal fibers F' are equivalent if there is a diffeomorphism E — E' that
commutes with the respective projections 7w and 7.

The base space can be covered by open sets U; and trivializations 7;. If U; and
U; overlap in U;; = U; N Uy, one can define a map

¢ij :Uij XF—)UZ']' XF; (’U,,f)l—>’l'j OTi_l(’u,f), (A30)

which ’translates’ the local trivialization on U; to that of U;. By definition on
a triple overlap Uijk = Uij n Ujk N Ujx

Pri © Pk © Pi; =1d. (A.31)

This is the same cocycle condition as for Cech cocycles. If for the same covering

a different set trivializations 7! are given, with \; = 7/ o 7, ! we have
=Tio0T =Xy = dij~Xjodiol (A.32)

This is the same equivalence relation as in Cech cohomology, now for the non-
commutative group of diffeomorphisms. A collection of open sets U; covering M
and diffeomorphisms ¢;; on U;; x F, with 7 o ¢ = ¢ and satisfying the cocycle
condition, is called a collection of local coordinates. Given such a collection one
can reconstruct the original bundle F. A second collection (U;, ¢};) using the
same covering, produces an equivalent fiber bundle if and only if the ¢;j can be
related to the ¢; by (A.32) for some set A; of diffeomorphisms on U; x F' with
TOoN =T.

A fiber bundle is called a real vector bundle if its fiber is a real vector space
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and the maps ¢;; are linear isomorphisms in every point of U;;. As every finite-
dimensional real vector space is isomorphic to RF for some k, we simply take
F = RF. Analogously we define the complex vector bundle with F = C*. Here k
is called the rank of the bundle E, denoted rk E. If the base M is not connected
it is possible to take different rank vector spaces at the different connected com-
ponents of M. Then rk is a local constant function on M.

Note that the ¢;; in some point u, denoted ¢;;(u), is an element of GL(k, R) or
GL(k,C) the spaces of linear isomorphism on real and complex vector spaces.
So in fact ¢;; is a map U;; to GL(k,R) or GL(k,C). Vector bundles on M are
called equivalent if they are equivalent as fiber bundles and the diffeomorphism
is a linear isomorphism on every fiber. The local coordinates of two equivalent
vector bundles, (Uj, ¢i;) and (U;, ¢;;) are again related by (A.32) with the \;
now maps on U; to GL(k,R) or GL(k,C). A vector bundle is called orientable,
if one can choose local coordinates such that det ¢;; > 0 on all U;;. The local
coordinates can always be chosen such that the ¢;; are in O(k) for real bundles
and in U (k) for complex bundles. For orientable bundles they can be chosen to
be in SO(k) and SU(k). This shows that if the vector bundle is endowed with
a metric, that is a smoothly varying positive definite symmetric bilinear form
on each fiber, one can choose local coordinates such that the standard base in
each fiber is orthonormal with respect to this metric.

The various constructions that can be made using vector spaces, can be trans-
ferred to the level of vector bundles. For instance the direct sum E @ F' of two
vector bundles E and F on M is the bundle obtained by taking the direct sum
of the fibers at each point of M. In the same way one defines the direct product
E ® F of two vector bundles. The fibers of the bundle E* are the dual vector
spaces of the fibers of F.

Finally we define the space of sections I'(E), that are maps s : M — E with
mos = Id. In local coordinates they can be given as maps s; : U; — RF or
8; : U — CF, which are related by s; = h;s; on each intersection Uj;.

The space of all vector bundles over a smooth manifold X, is denoted by
Vect(X). If f : X — Y is a smooth map, the pull-back f* : Vect(Y) — Vect(X)
is defined as

A.4 Line bundles

Hermitian complex line bundles, or equivalently principal U(1) bundles, are up
to isomorphism (hermitian means that isomorphisms leave the metric invariant)
given by a cocycle class [h;;] € H'(M,U;). The h;; are smooth U(1)-valued
functions on every intersection Uj;, giving the transformation between the local
trivializations U; x C and U; x C of the bundle. The space of smooth U(1)-
valued functions will be denoted by Ui (M) to distinguish it from U(1) itself.
The short exact sequence

0— 7 5> QO(M)

exp(i.)

U, (M) —1, (A.33)
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gives
. — HY(M, Q%) —— HY(M,U,) —— H*(M,7Z) — H*(M,Q°) — ..

and because both H'(M,Q°) and H?(M, Q') are trivial, this gives an isomor-
phism between H'(M,U;) and H*(M,Z). If g;; is a cochain of real functions
such that h;; = exp(igi;), then

9ij + gjk + gri = 2mCijr (A.34)

with ¢, a Z-valued cocycle, whose class, called the first Chern class, cor-
responds to the class [h;;] under this isomorphism. 27c;jr gives a class in
H?(M,R) and by

02 F

ot . A

R . . 27rcijk

| M Ui Uy Ui

this gives a class [F] in de Rham cohomology called the curvature. The 1-forms
A; define a connection on the space I'(L) of sections of the line bundle L. The
sections can be described on every U; by a function s; : U; — C, transforming
8; = hjjs; on Uy;. The connection is then

(Vs); =ds; —iA;s; on every U; (A.36)

This defines an element of T'(L) ® Q'(M). The hermitian line bundles with
connection are up to isomorphism given by an equivalence class of pairs (A4;, hi;)
satisfying

Aj — Az = |dlog(h,]), hijhjkhki = 1, (A37)
the equivalence given by
(Az,hz]) ~ (Az + I/\z_ld/\z,)\]h”}\l_l) for any e CO(M, U1) (A38)

The space of these equivalence classes is denoted by H' (M, U; — Q). Consider
also the equivalence classes of triples (A4;, gi;, ¢ijx) with equivalence relation

(A3, 935, ciji) ~ (A + dli, gij — U + Ui + dryj, cijr, + O6rijr) (A.39)

for any I € C°(M,Q°) and any r € C*(M,Z). With identifications h;; =
exp(igi;) and A; = exp(—il;), it is easily checked that the space of equiva-
lence classes of triples satisfying A; — A; = —dg;; and (A.34), is the same
as HY(M,U; - Q).

Let # : L — M be a hermitian line bundle with connection V = d + i4;, and
v :[0,1] = M be a path through M. The parallel transport of a vector v of
the fiber L. over v is a path P, through L with w o P, = v and P,(0) = v
satisfying the differential equation

& i (0) A ()| Pos(t) = 0 (A.40)
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where P, ; is P, in local coordinates. So if v(¢) lies in the coordinate region U;,
v(t) X P, i(t) € U; x C give the local coordinates of P,(t). If v([to, t1]) C Ui, the
local solution of (A.40) is given by

t

Py,i(t) = exp(i i Ai(v(t))dt) - Py i(to) (A.41)

for t € [to,t1]. Let v(0) x z be the local coordinates of v in U; x C. If v is
a closed loop, Hol, that maps 2z to P, ;(1), is called the holonomy around .
Given a triangulation of v

(0)

S1 v
So | . Y Y
0 i i (A.42)
G . - Vi
| M U Uy

(so Cgo) gives the segments of v that lie in U; and cgjl-) =Y, 9ij,ivij,1 the vertices

viju € Uyj), and using (A.41) and P, ; = h;; P, ; one sees that
Hol, = exp(i(c'?, 4))(cV), h) (A.43)

where (c(M, h) is calculated with U(1)-coefficients so with products in stead of

sums:
(C(l), h) = H H hij (’Uij’l)gij’l . (A44)
i<j 1
It is easy to see that this expression is indeed invariant under the equivalence
relation (A.38). Furthermore one can check that it is independent of the trian-
gulation of 4. Now suppose we can write v = Js, that is -y consists of one or
more path components forming the border of a surface s. By (A.22) we have
s = 0t9. Because 99t(® = ~, we can take ¢(® = 9t(®) and because now
9c® =0, ¢V = 0. This is a very algebraic way of saying that the border of an
oriented surface can be written as a sum of closed paths each inside the local
U, patches. The holonomy becomes

Hol., = exp(i(9t(?), A)) = exp(i(t?,dA)) = expi / F) (A.45)

Because [F| = 2n[c] and [¢] € H?(M,Z) this is equal to one. This shows that
Hol, only depends on the homology class [y] € Hy(M,Z).

Suppose [c] € H?(M, Z) vanishes. This means [h] € H!(M, U;) vanishes, so we
can write h;; = A\;A; ' with some \; € C°(M,U;). Consequently in a vector
bundle with connection we can gauge h;; to 1, but then A; — A; =0 soif M is
connected we have a global A and the holonomy is given by

Hol, = exp(i/A). (A.46)
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For this reason the holonomy in general is often given by the formula on the
righthand side. The argument can be summarized in the following exact se-
quence

0—— H'(M,R) — H'(M,U; - Q) —— H'(M,U;) ——1,
(A.47)
with a global A € H'(M,R) giving a bundle with connection [(4,1)] € H(M,
U; — Q') with vanishing first Chern class in H*(M, Uy).

A.5 U(n) bundles

For (higher rank) vector bundles things are more complicated. The h;; are
now a cocycle of U(n)-valued functions. We can choose hermitian matrices
gij such that h;; = exp(ig;;). In the same way as for a line bundle we can
construct ’hermitian matrix’-valued 1-forms A; on the U;, a global 2-form F
out of the direct product of 92(M) and the space of maps from M to the
hermitian matrices, and constant hermitian matrices c;jz on every Usjx, which
have to satisfy exp(ic;jx) = 1 for the h;; to be a cocycle. They satisfy similar
relations as for the line bundle (A.37)

F =dA;, Aj = hiinhi_jl + ihz-_jldhij, hijhjphg; =1 (A.48)
The connection is the same as in (A.36)
(Vs)¥ = ds® +iA3 ;8] (A.49)

only the sections s in local coordinates s have an index 1 < a < n, and the
A; are matrices with indices o and  with summation over 8 assumed. The
local solutions P, ,; of the parallel transport of a vector v, is no longer a simple
expression as in (A.41).

Pyi(t) =Pexp(=i [ Ai(y(t))dt') - Pui(to) = 1 —1i [ Ai(y(t))at’

to

L Zf’ (A.50)
5[ [ ) A At ) - o)
2 t'=to Jt""=to
where P stands for path ordered. The local solutions P, ; can be patched to-
gether by P, ; = h;;P, ;. The mapping v; — P, ;(1) with v(0) x v; the local
coordinates of v € L, (), is a linear map R® — R" which can be seen to be
independent of the chosen local coordinate 1.

A.6 Clifford Algebras

This appendix tries to give some basic notions about Clifford algebras and mod-
ules. More information can be found in [16]. The Clifford algebra Cl, ; is the
algebra over R generated by the vector space R"+* and the identity 1, subject
to the relations

veow4w-v=—-2¢q(v,w)l (A.51)
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for any v,w € R"**. v - w is the Euclidean inner product and ¢ is a symmetric
bilinear form on R"*2:

q(v,w) = viwy + Vaws + .VPWp — Vp 1 Wpt1 — Vpp2Wpta — - VppsWprs. (A.52)
The standard basis of R"* is denoted by T';. Thus

261’]’ ZS r

Ll + Tl = { =20 i<r

(A.53)

This shows that the relations given in (3.16) generate the Clifford algebra
Cly,p—1. Further we define
T =Ir2. o, (A.54)

with n = r + s, which has the properties

n(n2+1) ts

2 =(-1) , ol =(-1)""'Iz. (A.55)
for any € R™. The spin group is the subset of Cl,. ; defined by
Spin(r, s) = {v1va...vg|q(v;,v;) = £1 for all ¢ and k is even} (A.56)

It is a double cover of the group SO(r, s), of linear transformations with det =1
which leave ¢ invariant. This can be expressed in the following exact sequence

0 —= Zy — Spin(r,s) —» SO(r,s) = 1 (A.57)
The complex Clifford algebra is the complex algebra
Cly s =Cl, s @r C. (A.58)

For all r + s = n we have
Clr,s = Cln,O (A59)

So we will usually just talk about Cl,, := Cl,, 0. In the complex Clifford algebra
we can define

¢ =i3T for n even
n ’ A.
e =i""T forn odd. (A.60)
For all n it has the following properties
2 =1, 2= (-1)"""Tcz (A.61)

for all x € C".
A representation of the Clifford algebra Cl,. s is a homomorphism of real algebras
between Cl, s and the algebra of linear transformations of a finite dimensional

vector space V.
p:Cl.s - Hom(V,V) (A.62)
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This space V is called a Clifford module and can be either a real or a complex
vector space, giving a real or a complex representation of the Clifford algebra.
The Clifford module is called reducible if it can be written as a direct sum

V=vielh (A.63)

of subspaces V1, V5 which are invariant under the action of Cl, 5, i.e. p(¢)V; C V;
for all ¢ € Cl, 5. The module is irreducible if it is not reducible. Every reducible
representation can be written as a direct sum of irreducible representations

V=V oVe.V (A.64)

Two real (complex) Clifford modules V' and W, are called equivalent if there is
a real (complex) linear isomorphism 7" : V' — W that intertwines the action of
the Clifford module, i.e. for all ¢ € Cl, ; the following diagram commutes

T (A.65)
lp(dﬁ p(®)
V—>w

Similarly a representation of the complex Clifford algebra Cl, ; is a homomor-
phism of complex algebras between Cl, ; and Hom(V, V). Here V has to be a
complex vector space in order for Hom(V, V) to be a complex algebra. In fact
the representations of Cl, s are in a one-one correspondence with the complex
representations of Cl,. 5. The same notion of equivalence between representa-
tions of a complex Clifford algebra exists.

The number of inequivalent irreducible representations is not very big. Let v, ,
denote the number of inequivalent irreducible real representations of Cl,. ;. Then

(A.66)

VT',S =

2 ifr+1=s mod4,
1 otherwise

Vs = 2 corresponds to the cases (cf. (A.55)) in which ['? =1 and T’ commutes
with all elements of Cl,s. The two inequivalent representations then either
have p(T') = 1 or p(T') = —1. These two options correspond precisely with
the two inequivalent representations. We can make use of the following algebra
isomorphism (which holds for all r, s)

C'lg_,rl,S = Clr, s. (A.67)

Here C1) . denotes the subalgebra of Cl,, of all linear combinations of even
products of the I';’s (including the identity). Clzl,,q denotes the set of all other
elements of Cl,, 4. Let p® and p' be the two inequivalent representations of Cl,. s
with v, s = 2 in respectively the spaces W©° and W'. Under the isomorphism we
get a representation in the space WO@®W' of CI2, , . This representation can be
extended to Cl,41,5. In fact if (p, W) is the irreducible representation of Cl,1 s
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it has two eigenspaces of I' with eigenvalues +i or £1. As I' anti-commutes
with all elements of Cl},, ;, these elements switch between the eigenspaces.
But restricting to C19 41,5 Separates W in the two eigenspaces, which are now
inequivalent representations of C12 +1,s- Namely by the condition v, = 2, n
is odd and thus T' of Cl,41,s is an even product, so I' € CI2,, .. Therefore
the two eigenspaces must be the two inequivalent representations WO, W1 of
ClY, 1, = Cl, ;. The decomposition W = W @ W' has the following property

Cli,- W/ C Wi mod2 (A.68)

for all 4,5 € {0,1}. This is the definition of a Zs-graded Clifford module of
Clrj1,s. For v, = 1 a Zy-graded Clifford module of Cl, ;s consists of two
equivalent irreducible representations of CI2,, , = Cl, .

The dimension d,, of an irreducible real representation of Cl, s (n = r + s) is
given by

di=2,d=dy3=4,dy=ds =dsg =dry =8, ds = 16, dpysr = 2**d,,
For the number v of inequivalent irreducible representations of Cl,, and their
complex dimension d<, we have
n—1

272 if n is odd,
=2 if n is even.

v,
v,

=2,

iy (A.69)

Iasa

Sadh

[VIE]

For v$ = 2 again (cf. (A.61)) TZ = 1 and I'c commutes with all elements of
Cl,, so either p(T') =1 or p(T') = —1.
Very important for physical applications are the so called spinor representations
which are the restrictions of Clifford representations to Spin(r,s). It useful to
notice that Spin(r,s) C C1°(r,s). By the discussion above the restriction splits
the representation in two inequivalent spinor representations if v,_; , = 2.
In physics the bilinear form ¢ is equal to minus the metric p** = diag{—1,1,1,...1}
to arrive at

{T*, TV} = 2n". (A.70)

So in D space-time dimensions we look at Cl, s with r = D — 1 and s = 1.
We usually start with the complex Clifford algebra Cly p_1. The elements of an
irreducible representation of this algebra are called Dirac spinors. For D is even
the restriction to Spin(1,D — 1) splits the representation in two inequivalent
representations. The elements of these two spaces are called Weyl spinors of
positive (p(T¢) = 1) and negative (p(T'c) = —1) chirality.
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