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Abstract

This thesis gives a description of one possible way to do “M-theory Phe-
nomenology”. M-theory is the conjectured eleven-dimensional theory that
is supposed to provide a complete and unified description of quantum me-
chanics and gravity. Doing phenomenology in this context means searching
for ways to reduce the theory to an effective four-dimensional field theory
that resembles the Standard Model as close as possible. In our case, we do
this by making the extra seven dimensions compact and small enough to be
unobservable in current experiments. Demanding N =1 supersymmetry for
the four-dimensional effective field theory forces the seven extra dimensions
to constitute a manifold of Ga-holonomy.

After considering the compactification of M-theory on a smooth seven-
dimensional G2-manifold it will become clear that singularities in the com-
pact dimensions are needed to realize in the four-dimensional effective the-
ory the two basic features of the Standard Model: non-Abelian gauge groups
and chiral fermions. So-called ADE singularities are needed to generate non-
Abelian gauge symmetry and isolated singularities support chiral fermions.
We will discuss the merits and problems of this type of model and compare
it to other possible ways of obtaining realistic four-dimensional physics from
M-theory and its ten-dimensional counterpart String Theory.
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Chapter 1

Introduction

1.1 Motivation

Ever since the beginning of science, people have been looking for more uni-
fied ways to describe their knowledge of the universe. Describing the physi-
cal laws in terms of less underlying principles adds to our feeling of having
understood Nature better, because it reduces a sense of arbitrariness. Al-
though satisfying, the ultimate justification of these efforts must come in
the form of mathematical consistency and experimental verification. Al-
though it is impossible to determine up front whether a completely unified
description of all observable phenomena - a Theory of Everything - exists,
the latest research in Theoretical Physics seems to indicate that at the very
least something very special is going on at the moment: we are discovering
the pieces of an eleven-dimensional theory that might provide us with such
a description! This theory is called M-theory.

The purpose of this thesis is in essence to explain how this theory, whose
development is in a large part being pushed forward by the need for mathe-
matical consistency, might ultimately be put to experimental test. The body
of the work is devoted to explaining one way to connect this theory to our
current knowledge of the fundamental interactions, namely by compactify-
ing M-theory on a manifold of Go-holonomy. Other possibilities for reaching
the same objective are shortly discussed and compared to this method. It
is our hope that this thesis will be a good starting point for someone who is
interested in doing research on this subject.

1.2 Historical Perspective on Unification

We pick up the story of unification at the first half of the last century. In
the beginning of the 20th century people saw an enormous change in the
way we think about Nature with the introduction of General Relativity and
Quantum Mechanics. It took some time for people to come to grips with
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these two elusive theories, whose development in the beginning was mainly
pushed forward by the need for mathematical consistency. But ever since
experimental data have confirmed the predictions made by these theories, no
one doubts their validity as descriptions of the Universe at large and small
scales, respectively. However, after a number of years of gathering data,
something seemed off: new elementary particles were discovered almost by
the day! This immediately raised the question why the supposedly funda-
mental building blocks of Nature came in such huge numbers and why their
properties seemed to be unrelated. It was not until the early 1970s, when the
Standard Model of Elementary Particles was constructed, that people found
an answer to these questions. In the Standard Model, the only fundamental
matter particles are three families of only two quarks and two leptons (not
counting so-called color charge). Most of the particles found before were
shown to be composite particles, whose properties could be understood in
terms of the properties of the quarks and leptons. Besides these fermions
(which is the collective name for the matter particles), the Standard Model
contains a second group of particles. These are called gauge bosons and are
responsible for the interactions between the matter particles.

Today, more than 30 years later, it is clear that no matter what theory
we eventually find to describe Nature, we know for sure that it must in
some limit and at low energies contain the Standard Model. The reason
for this strong statement is that since its incarnation in the early 1970s,
huge amounts of experimental data have confirmed this model to very high
accuracy. Furthermore, using the Standard Model many predictions have
been made and to this date no discrepancies between these predictions and
the outcome of experiments have been found. One might then ask, if this
is such a well-functioning model, then why would we look for something
else? Although it has been recognized to be a successful description of the
fundamental particles, a number of unsatisfactory features of the Standard
Model have made many people believe that it cannot be the final description.
Some of the most important problems with the Standard Model are that it
contains 26 free parameters (leading to a sense of arbitrariness), it provides
no explanation for the hierarchy in the relative strengths of the fundamen-
tal interactions and there is no explanation for charge quantization. But
the most important problem of all is that it is impossible to include quan-
tum mechanical description of gravity in the Standard Model, treating the
gravitational interaction on the same footing as the other three interactions.

To counter some of these problems, a number of different ideas have been
put forward since then. One of these ideas is that of Grand Unification, in
which all the particle interactions (i.e. the bosons) are unified into a single
description!. Not only are the interactions given a unified description, but

1For the people that know the Standard Model: Grand Unified theories are basically
non-Abelian gauge theories with a single gauge group that contains the Standard Model
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also the quarks and leptons (the fermions or matter particles) are unified into
a single field, meaning that they can be seen as basically different realizations
of a single object. Grand Unified Theories are known to solve some of the
problems of the Standard Model: they contain less free parameters and
provide an explanation for the hierarchy problem and charge quantization.

Supersymmetry is another possible extension of the symmetries present
in the Standard Model and provides a further unification in the description
of the fundamental particles. Supersymmetry was first suggested about 20
years ago and, crudely speaking, is an (approximate) symmetry of nature
which transforms bosons into fermions and vice versa. So, in a way it is
another unification of the way we describe Nature. But this time the bosons
and fermions are put on an equal footing. Note the word approximate in
parentheses. To this date no sfermions or bosinos (these are the names of
the so-called super-partners of the Standard Model particles) have been dis-
covered yet, so supersymmetry cannot be an exact symmetry of nature. At
a certain energy-scale, currently out of reach for experiments, supersymme-
try should be broken. The new Large Hadron Collider (LHC) accelerator,
currently under construction at CERN in Geneva, can possibly change this
situation, because it should be able to reach the energies at which most peo-
ple believe supersymmetry gets broken. [55] is an excellent starting point
for someone who knows the Standard Model, to learn more about its super-
symmetric extension.

The supersymmetry transformations we just described are so-called global
transformations, i.e. transformations that change all bosons into fermions
(and vice versa) at the same time. If we modify the concept of supersymme-
try in such a way that it describes local supersymmetry transformations (i.e.
if we modify it to look like a sort of gauge symmetry version of supersym-
metry), it turns out that the resulting theory will also contain a description
of gravity! Such a theory is known as a Supergravity Theory. Supergravity
theories have been shown to exist in four to eleven spacetime dimensions.
This is the first time that we see the mathematical possibility that there are
more dimensions than we observe in our everyday life. For the reader that
is familiar with quantum field theories, but not with supergravity theories,
we recommend [72] as a starting point.

In the 1960s, experimental data seemed to indicate that the quarks in-
side a nucleus move around as if they are attached to each other with tiny
strings. This started theoretical research in String Theory as a possible
description of this phenomenon called the asymptotic freedom of Quantum
Chromo Dynamics (QCD), the theory of the strong interaction. A number
of mathematical problems and the advent of the Standard Model resulted in

group as a subgroup. Examples of used groups are SU(5), SO(10) and Eg. The quarks
and leptons are combined in a single multiplet that transforms in a representation of the
grand unified group.



4 CHAPTER 1. INTRODUCTION

‘ String Theory ‘ Open / Closed ‘ Chiral ‘ SUSY ‘
Type ITA - N =2
Type IIB -
FEg x Eg Heterotic -
SO(32) Heterotic

Type I \_// v

Table 1.1: Overview some of the basic features of the five String Theories

~—
NN

L
22?2

this theory only being studied by a limited number of theoretical physicists
for some 20 years. But in the early 1980s, the mathematical problems were
resolved and String Theory (as a theory of both open and closed strings)
was recognized to be a possible theory of quantum gravity instead of just a
description of the strong interactions. But it turns out that these theories
can only be made mathematically consistent in ten spacetime dimensions!
The fact that we do not observe these extra dimensions can be explained
by taking these dimensions to be so small that they are unobservable. Not
too long after this “First String Theory Revolution” of the early 1980s, the-
orists learned how to make the extra six dimensions compact to get a four-
dimensional theory that looks quite like a /' =1 supersymmetric version of
the Standard Model. These are the famous Calabi- Yau compactifications of
the Eg x Fg Heterotic String Theory.

Some of the basic properties of the five known String Theories are given
in table 1.1. Just like the Standard Model, String theories are perturbative
theories, with the expansion given in orders of the so-called string coupling
gkl = e2(L-1)¢ (L =0,1,2,..) and L corresponding to the number of ‘loops’
in the expansion. Soon after their birth it was also discovered that if we take
a low energy limit of the five string theories, we find supergravity theories
in ten dimensions.

But the quest for unification was not over, because it was still unsat-
isfactory that there were apparently five different candidates for a Theory
of Everything. In 1995, the famous string theorist Edward Witten discov-
ered that these five string theories are actually related to each other and
to eleven-dimensional supergravity through so-called dualities. He found
strong circumstantial evidence that the five string theories can be brought
together under an eleven-dimensional hood and gave this unifying theory
the tentative name M-theory. This name is deliberately ambiguous. Ac-
cording to Witten, the M can be taken to mean either Mother, Magical,
Mystery, Matrix or Membrane, according to taste. The first three options
have a clear justification. The fourth name was added later, when in [10] the
conjecture was made that M-theory can be described as a Matrix Theory.
For an introduction to this theory, we recommend [70]. And as we shall see



1.3. OUTLINE 5

in chapter 3 the last name was introduced for a very specific reason as well.

This thesis is concerned with describing in what way we can compact-
ify M-theory on a seven-dimensional space in such a way that the four-
dimensional theory coming out looks like the Standard Model (or a super-
symmetric version of it), analogously to the much studied Calabi-Yau com-
pactifications. These seven-dimensional spaces turn out to be complicated
beasts called G2-manifolds. For a nice non-technical overview of current re-
search into string theory and M-theory and many references to the literature,
see [23].

1.3 Outline

We start in chapter 2 by introducing the reader to the mathematics used in
the rest of this thesis. This treatment centers around two topics: singulari-
ties and Go-manifolds. It is a long chapter, but will give the reader a solid
background with which he can get through the rest of the thesis. Then in
chapter 3, the reader is introduced to M-theory. The bulk of this chapter
actually consists of a description of the low energy limit of M-theory: eleven-
dimensional supergravity. It also contains a description of the Kaluza-Klein
mechanism for doing compactifications. At the end of this chapter we outline
the methods one can use to learn more about M-theory itself.

In chapter 4, the real work begins. There we compactify eleven-dimen-
sional supergravity to four dimensions. We will see that if we demand the
four-dimensional theory to be A =1 supersymmetric, the compactification
manifold has to have G-holonomy. But the theory coming out of this com-
pactification will look nothing like the Standard Model. It only has Abelian
gauge symmetry and no charged chiral fermions. In chapter 5 we solve this
problem by considering singular M-theory compactifications. Then, finally,
in chapter 6 we discuss the advantages and disadvantages of these models,
some phenomenology and give some suggestions for further research.



Chapter 2

Geometrical Preliminaries

The aim of this chapter is to introduce the mathematical concepts which
are needed in order to understand the rest of this thesis. Since it would
take several books to cover all the subjects comprehensively, we try to keep
to the bare essentials. Luckily, should the information in this chapter not
be enough, books and review articles that introduce the necessary topics
thoroughly, do exist. [61], [30] and [17] are good examples. Chapters 12
and 15 of [36] and [37] are good general references as well, although they
are mainly aimed at introducing Calabi-Yau manifolds. For more on K3,
see [8] and for more about Gy-manifolds and singularities, see [39] or the
authoritative book [49]. For the reader that feels somewhat uncertain about
his knowledge of Lie groups, it might be a good idea to study chapter 9 on
the Cartan classification of semi-simple Lie groups in [45] first. Knowledge of
ordinary (real and complex) differential geometry is assumed in this chapter.

2.1 Tools from Differential Geometry

Although we assume preexisting knowledge of differential geometry, some
concepts are so essential to understanding the later chapters (and may not
be included in a standard issue geometrical toolbox) that we present them
here.

2.1.1 Killing vector fields and the isometry group

Let (M, g) be a Riemannian manifold and V the Levi-Civita connection on
it. A Killing vector field K is defined as a vector field which generates an
isometry of the manifold M. This means that if we move over the manifold
in the direction of K., the the metric does not change. In this sense, it
represents a symmetry of the manifold. To find the condition for a vector
field to be a Killing vector field, we impose that the metric is invariant under
an infinitesimal transformation ™ — z™ + eK™. A small calculation [61]
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shows that this condition locally is

(LK G)mn =0, (2.1)

with £ the Lie-derivative. We will often use another equivalent form of the
Killing equation, which is valid for all Levi-Civita connections,’

Vi K + V, K9 = 0. (2.2)

Here we have given the Killing vector fields an extra index (i), because
this equation generally has a number of solutions. Because the covariant
derivative is a linear operator, a linear combination of two Killing vector
fields, a K@ + bK9) with a,b € R, is again a Killing vector field. The same
goes for the commutator of two Killing vector fields, because of the following
property of the Lie-derivative:

Lixy)9=I[Lx,Ly]g, (2.3)

for any two vector fields X and Y. If we now take X and Y to be Killing
vector fields, this equation becomes zero. This implies that the commutator
is also a Killing vector field. These properties show that the Killing vector
fields form a Lie algebra,

KD KD = £ g®), (2.4)

The Killing vector fields are thus also the generators of a group, the isometry
group, of all the symmetry transformations on the manifold. The dimension
of the isometry group can be bigger than the dimension of the manifold itself,
but the maximum is related to its dimension by dim(G) = m(m +1)/2. A
manifold with this number of Killing vector fields is called a mazimally
symmetric space.

A minimal way to construct a manifold M with a certain isometry group
G is by demanding that G acts freely and transitively on it, as in that case
M is just isomorphic to G. If G acted transitively but not necessarily freely,
the space would still consist of a single group orbit, but we could have
non-trivial isotropy groups H,, at points p € M. Identifying under actions
within the isotropy group reduces the dimension to the original value for
free group action. Now if G is a Lie group, the isotropy group H, is a
Lie subgroup of G' and the coset G/H, will admit a differentiable structure
and hence be a manifold. Such a manifold is called a homogeneous space.
Note that it doesn’t matter which choice p € M we make, as all isotropy
groups are conjugate to each other and conjugate subgroups are always
isomorphic to each other. Some examples of symmetric spaces are: R™ with
the Euclidean metric, S™ = SO(n + 1)/SO(n) with the round metric and
CP"™ 2 U(n + 1)/U(n) (see section 2.2) with the so-called Fubini-Study
metric.

!The previous form was also valid for more general connections.
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2.1.2 Holonomy

As we will find out in later chapters, the concept of holonomy is of central
importance. Very roughly speaking, the holonomy group is a geometric
characteristic of a manifold that holds some information about the amount
of symmetry it has. The smaller the holonomy group, the more symmetry
the manifold possesses. Requiring that a manifold has a certain holonomy
group usually leads to a restriction of its curvature and topology. Let us
start by giving the definition of the holonomy group of a manifold.

Definition 2.1 (Holonomy group) Let (M,g) be a Riemannian m-di-
mensional manifold, V be the metric connection®> on M and let

Cp 1= {c()]0 <t < 1,¢(0) = (1) = p} (2.5)

be the set of all closed loops with base-point p. The connection gives us a
notion of parallel transport of vector fields over our manifold. Around a
closed loop c(t), this induces a transformation (acting on X from the right)

P.: X € T)(M) = X, = X - P, € T,(M). (2.6)

The holonomy group at p, Hol,(g) is defined as the set of all possible P,,
i.e.
Hol,(g) := {P:|c(t) € Cp}. (2.7)

The group product of two group elements P, - P! is given by the transfor-
mation generated by first transporting the vector along the loop ¢’ and then
along the loop c. It is easily shown that this product satisfies the axioms
of a group, with the inverse being given by transporting in the opposite di-
rection and the unit element by the constant loop ¢(¢) = p. One important
property of the holonomy group is that if M is simply-connected, its holon-
omy group is connected. This is because on a simply-connected manifold
any loop is contractible to the constant loop. The corresponding family of
parallel transports is a continuous path in Hol,(g) joining any P, to the unit
element. If M is not simply-connected, we can also define the local holonomy
group by considering only loops that are contractible to the constant loop,
but most of the time we are just interested in the total holonomy group.

From this definition it seems that the concept of a holonomy group de-
pends on the point p, but the following proposition shows that it is a well-
defined geometric property of a manifold (under the assumption that it is
connected).

Proposition 2.2 Let p,q € M. If M is arcwise connected, there is a curve
a(t) connecting p and q, which defines a map 7, : Tp(M) — To(M) by

A metric connection is a Levi-Civita connection which satisfies Vg = 0.
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parallel transport along a. Then Holy(g) = 7, Hol,(g)7a, so they are all
conjugate to each other and thus

Hol,(g) = Hol,(g). (2.8)

Therefore we can simply write Hol(g).

We note that if M is flat (R, s = 0) everywhere on a smooth and simply-
connected manifold, the holonomy group is trivial, Hol(g) = {1}, and vice
versa. Later on we will see that if the space is not smooth (i.e. if it contains
singularities) the holonomy group can be discrete. And we already know
that this statement also holds for non-simply-connected manifolds. The
orbifold with the A; singularity we describe in section 2.2.4 is an example
of a space with Z5 holonomy.

Furthermore, if we would not demand V to be a metric connection,
the holonomy group would be Hol(g) C GL(m,R).> But in any practicable
application we do take V to be metric-compatible. This implies that the
connection preserves the length of vectors, with which we find that

e Hol(g) C O(m) if (M, g) real and of dimension m
e Hol(g) C SO(m) if (M, g) real, orientable and Riemannian
e Hol(g) C SO(m —1,1) if (M, g) real, orientable and Lorentzian.

SO(m) (assuming Riemannian geometry) is the biggest holonomy group a
Riemannian manifold can have. As said, smaller holonomy groups are more
restrictive and indicate the presence of more symmetry. So if we want to
analyze more interesting spaces using holonomy, we want to consider sub-
groups of SO(m) as holonomy groups. In 1955 Berger proved the following
theorem, thereby constructing a classification of all the subgroups of SO(m)
which are possible holonomy groups of manifolds.

Theorem 2.3 (Berger) Let (M,g) be a simply-connected m-dimensional
Riemannian manifold that is not isometric to a Riemannian product (My X
M, g1 X g2) with dim(M;) > 0 (i.e. is irreducible) and whose Riemann
curvature satisfies VR # 0, then exactly one of the cases as listed in table
2.1 holds.

Strictly speaking, the last three columns are not part of this theorem,
but these properties are listed here for future reference. This theorem will
more or less be our guide for the rest of the chapter, in which we treat the
cases which are important for our specific applications.

3 A generalization of Bergers classification (see the theorem below) is available in case
we do not consider metric connections. Part of this list was already discovered by Berger
in his original work, but recent research indicates that his list was incomplete. For details,
see [58].
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| Case | Dimension | Hol(g) | Name | Ricci flat | Kéhler |
1. |m=n SO(n) Riemannian Vv -
2. |m=2n(n>2)| U(n) Kahler - Vv
3. |m=2n(n>2)|SU(n) Calabi-Yau N4 Vv
4. |m=4n (n>2)| Sp(n) Hyper-Kéhler V4 vV
5. | m=4n (n>2) | Sp(n).Sp(1)* | Quat. Kéhler - -
6. |m=7 | Go | Exceptional | /|
7. |m= Spin(7) Exceptional Vv -

Table 2.1: Bergers classification of possible holonomy groups. *) Notation
for Sp(n) x Sp(1)/Z>.

But before moving on, some remarks have to be made about this clas-
sification. First of all, the statement that Kahler manifolds are not Ricci
flat does not mean that they cannot be Ricci flat. They can be, but if they
are, their holonomy is further restricted to lie in SU(n). This is because for
Ricci-flat metrics the U(1) part of the connection vanishes. If this is the case
it thus becomes a Calabi-Yau manifold, which is already listed under case
3. Because we do not want to wander too far of the main path leading to
the introduction of Go-manifolds, we have reserved Appendix B for a more
detailed treatment of Kahler and Calabi-Yau manifolds. Note that these
manifolds are very important in String Theory and that Go-manifolds can
be constructed in a way very similar to how we construct these. So it might
be worth it to read this appendix.

Second of all, one of the assumptions in theorem 2.3 is that VR # 0. A
manifold with this property is called non-symmetric. If a manifold (M, g)
on the other hand is symmetric (i.e. if its Riemann curvature tensor sat-
isfies VR = 0), it can be shown that it is actually isomorphic to a ho-
mogeneous space: M = G/H. A symmetric manifold written as such has
Hol(g) = H. Note that it might be necessary to take G to be some properly
chosen subgroup of G to make this identification. Building on work done for
the classification of compact semi-simple lie groups, Cartan already in 1927
constructed the classification of all possible holonomy groups of symmetric
manifolds. Details about this classification, a specification of the way we
have to choose the proper subgroup of G and proofs of the statements we
just made can be found in section 3.3 of [49].

Third of all, by demanding the metric to be irreducible we are basically
excluding product manifolds. If (M7, g1) and (Ms, go) are Riemannian man-
ifolds, then the product metric g; X go simply has holonomy Hol(g; X g2) =
Hol(g1) x Hol(g2). So reducible metrics have holonomy groups which are
products of the groups listed in table 2.1. Finally (although we will not
meet them often), we note that quaternionic Ké&hler manifolds always admit



2.1. TOOLS FROM DIFFERENTIAL GEOMETRY 11

Einstein metrics.

2.1.3 Calibrated Geometry

Calibrated submanifolds are a certain kind of volume-minimizing subman-
ifolds of Riemannian manifolds. In 1982 calibrated geometry was given a
solid basis by Harvey and Larson [40] and since then they have started to
play an important role in supersymmetric compactifications. Their existence
is also closely related to conditions for special holonomy and Bergers clas-
sification, as special holonomy manifolds usually come equipped with one
or more natural calibrations. We will encounter several examples of such
calibrations.

We begin by defining the notion of a minimal submanifold. First of
all, the volume of a Riemannian m-dimensional manifold (M, g) is just the
integral of its invariant volume form over M,

Vol (M) = / volyy (2.9)
M

Now consider an immersion ¢+ : N — M, which defines a n-dimensional

submanifold N of M. We call N a minimal submanifold if its volume is

stationary under small variations of its immersion 2. The condition for N

to be minimal is a second order equation on 2.

Note that a minimal submanifold does not necessarily have a minimal
area. For example, the equator of the two-sphere S? is a 1-dimensional
minimal submanifold, but does not have minimal length amongst the lines
of latitude. Also note that a 1-dimensional minimal submanifold is called
a geodesic. We now define a calibration to see how it relates to minimal
submanifolds.

Definition 2.4 (Calibration) Let (M,g) be an m-dimensional Rieman-
nian manifold and ¢ be an n-form on M. ¢ is called a calibration if it
satisfies

dp =0 and / ¢ < Vol(N) (2.10)
N
for all n-dimensional submanifolds N of M.

With the use of this definition we can define a

Definition 2.5 (Calibrated submanifold) A submanifold N of M is called
a calibrated submanifold or @-submanifold if

/ o = Vol(N), (2.11)
N

with ¢ as defined above.



12 CHAPTER 2. GEOMETRICAL PRELIMINARIES

From these definitions, we can see that a p-calibrated submanifold has
the minimal volume in its homology class. To understand this, note that any
other manifold in the homology class of N can be written as N' = N + 9C,
with C' some (n+ 1)-dimensional submanifold of M. If we now integrate the
calibration over N’, we find

/,goz/Ncp+/acgoz/Ncp+/Cdgo:/Ngo:Vol(N). (2.12)

But because ¢ is a calibration, we have [y, ¢ < Vol(N') and thus
Vol(N) < Vol(N'). (2.13)

Note that this proof only holds for the case that N is a compact submanifold.
For a non-compact calibrated submanifold a similar statement holds: they
are locally volume-minimizing in their homology class. This statement is
harder to prove, though.

One of the advantages of considering calibrated submanifolds instead
of minimal submanifolds is that with a given ¢, the condition for an im-
mersed submanifold N to be calibrated is a set of first-order equations on
the immersion :. These are often easier to solve than the second-order equa-
tions that determine whether a submanifold is minimal. Because of this,
many examples of minimal submanifolds can be found with techniques from
calibrated geometry.

For reasons that will become clear later on, calibrated submanifolds are
often called supersymmetric cycles. Cycles - and in particular the way they
intersect with each other - are also the subject of the next subsection.

2.1.4 Intersection Numbers

In later chapters we will encounter the concept of intersection numbers mul-
tiple times. Therefore, we will now give their definition. For this, suppose
that M is an oriented n-dimensional manifold and A and B are two piece-
wise smooth cycles on M of dimensions & and n — k respectively. If we
now take a point p € AN B and any two bases for T,(A) C T,(M) and
T,(B) C T,(M), then A and B are said to intersect transversally at p if
together these bases form a basis of T),(M). If this holds for all p € AN B
the two cycles are simply said to intersect transversally. If AN B = 0, then
the cycles automatically intersect transversally.

Now take A and B to be oriented cycles and suppose that p € AN
B is a point of transversal intersection (it will be clear in a minute what
happens if there are points of intersection at which the cycles do not intersect
transversally). Now, let v1,...,v; € T,(A) be an oriented basis for T),(4) C
T,(M) and wi, ..., wp—k € Tp(B) be an oriented basis for T,(B) C T,,(M).
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Definition 2.6 (Intersection number) Define the intersection index 2,(A-
B) of A with B at p to be +1 if vy,..., 05, w1,..., Wy _k is an oriented basis
of Tp(M) = Ty(A) ® Ty(B) and —1 if it is not. Now, if A and B intersect
transversally everywhere, we define the intersection number to be

#(A-B)= > 4(A-B). (2.14)

pEANB

Note that in this definition we took as a prerequisite that the cycles A
and B intersect transversally. Furthermore, the sum in (2.14) suggests that
A and B intersect in isolated points, while at this point it is not clear
that this is necessarily the case. These two points do not pose a problem
because of the following. It can be shown that the intersection number is
a topological invariant and is in particular invariant under deformations of
the two cycles within their respective homology classes. In other words, if
A, A" € Hp(M,Z7) are elements of the same homology class, then

#(A'-B)=#(A+0C-B)=#(A-B)+#(0C - B) = #(A-B) (2.15)

for some (k + 1)-dimensional submanifold C' C M. Note that this equation
contains the non-trivial statements that the intersection number is linear and
that if a cycle is homologous to zero, its intersection number is zero. What
this also implies is that if we have cycles that do not intersect transversally in
isolated points, we can deform them within their homology classes until they
do and thereupon calculate their intersection number using formula (2.14).
For more background material, proofs of these statements and applications
we refer the reader to [38].

We have now gathered almost all the tools that we need in this thesis
when dealing with smooth spaces. But as we indicated in chapter 1 this
will not be enough: the interesting physics is located at singularities in the
internal space. A good way to describe spaces with singularities is using
algebraic geometry, where the spaces are given by algebraic equations.

2.2 Basic Algebraic Geometry

In algebraic geometry the basic object is a variety. The simplest way to
describe a variety is as the solution set of a number of polynomial equations
in a complex space. If we want to describe non-compact spaces, we can
use polynomials in C", but in order to describe compact varieties we need
polynomials in CP™, the complex projective space. Because CP" plays such
a central role in algebraic geometry, the first thing we need to do is define
it.

Definition 2.7 (Complex Projective Space) Let z € C"t! be 2 # 0.
Now define an equivalence relation z' ~ z where z and 2z’ are equivalent if



14 CHAPTER 2. GEOMETRICAL PRELIMINARIES

there exists an X\ # 0 € C such that 2’ = Az. The complex projective space
CP™ is defined to be the set

CP":={z € C""' — {0}}/ ~, (2.16)
with ~ the given equivalence relation.

It can easily be shown (see for example [36]) that CP"™ is a compact complex
manifold and that all of its closed submanifolds are compact as well.

One of the reasons we introduce algebraic geometry is that we can use
it to describe singular spaces. But as a manifold is by definition a smooth
space, we need to introduce the analogue of a manifold in this setting. This
analogue is the algebraic variety we just described.

Definition 2.8 (Algebraic variety) The set of common zeros of a finite
number of homogeneous polynomials in CP" is called an algebraic set. An
algebraic set which is not the union of two algebraic sets is called an irre-
ducible algebraic set. An open subset of an irreducible algebraic set is called
an algebraic variety.

Explicitly, what this definition says is that any variety can be described
by a set of equations po(zp,-.-,2rn) = -.. = pr(20,...,2,) = 0, with the
{pi}i=1,..r a set of homogeneous polynomials of some degree k; and r < n.
Homogeneity of the polynomials means that they have to obey the condition
pi(A20,. .., Azn) = M¥ip;(20,...,2,). They have to have this property for the
equations p; = 0 to be well-defined on CP".

That it is possible to describe a smooth manifold as an algebraic variety,
was proven by Chow:

Theorem 2.9 (Chow) Any complex submanifold of CP™ can be realized
as the zero locus of a finite number of homogeneous polynomial equations in
CcpP™.

A submanifold defined as such is known as a complete intersection of hyper-
surfaces.

We would like to have a condition that expresses whether a variety is
actually a manifold. Intuitively we can say that a singular variety is a
manifold on which we cannot define a unique tangent space at every point.
Since tangent spaces are generated by derivatives, we can expect to be able
to give such a criterium in terms of derivatives of the polynomials defining
the variety. The condition for the polynomials to define a submanifold M
is as follows. If we define the n x r matrix

Op;
i00) = (g
J

the condition for M to be smooth is that
rank(H;;(p)) = rank(H;;)(p) = rank(H;;) = r. (2.18)

), i=1,...,m;j=1,....n (2.17)
P
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What we mean by this equation is that its rank must be maximal every-
where. If a space has less then maximal rank somewhere, it is singular. This
condition can alternatively be stated in terms of the r-form

P:=dp; A... Ndp,. (2.19)

If this form vanishes nowhere on the hypersurface, then M is a submanifold
of CP". The idea is that if this is the case, the p; can be chosen as r of the
coordinates on CP™.

We hope to have made it clear that with methods from algebraic geome-
try it is possible to say a lot of sensible things about singular varieties. But
please note that for example the study of Calabi-Yau manifolds (appendix
B) depends in large parts on methods from algebraic geometry as well. As
our introduction to this subject ha been quite short and sketchy, we refer
the reader interested in learning more to [38] and relevant parts of [36] and
[64]. We continue by treating varieties that have singularities in isolated
points.

2.2.1 Isolated Singularities

We already hinted a couple of times at the fact that later on (in chapter 5) we
are going to need spaces with singularities to obtain realistic physics from M-
theory compactifications. Specifically, in order to create chiral fermions we
need isolated singularities. In this section we the codimension of a singularity
and then define some of the most common isolated singularities.

The ‘size’ or ‘gravity’ of a singularity is customarily indicated by its
codimension. Basically, the codimension of a singularity is nothing more
than the number of non-singular dimensions in its direct vicinity. One way
to define this mathematically is

Definition 2.10 (Codimension) Define the map H : C" — C" by the
matriz from equation (2.17). Then the codimension of a singularity s is
defined as

codim(s) := dim(ker(H(s))) (2.20)

So for example a variety of dimension d which contains a codimension d —
1 singularity is singular along a line. If one were to fold a page of this
thesis, such a codimension one singularity in a two-dimensional variety would
appear.

Like we said, an especially important class of singularities are isolated
singularities.

Definition 2.11 (Isolated singularity) A singularity of mazimal codi-
mension, i.e. of codimension d if it is embedded in a variety of dimension
d, 1s called an isolated singularity.
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We define two types of isolated singularities, because these are prevalent in
later chapters. The first type define is probably the simplest as well.

Definition 2.12 (Conical singularity) Let (M,g) be a real Riemannian
m-dimensional manifold. A point ¢ € M is said to be a conical singularity
in M if there is a neighborhood Uy of q such that on Ug\{q}, the line element
(metric) takes the form

ds® = dr* + r*dQ%, (2.21)
where Q%; is the metric on a (m — 1)-dimensional manifold N.

If g can globally be written in this form, M is said to be a cone over N.
The manifold N is called the base of the cone. In the special case that N is
a round sphere S™~ !, the singularity is just a coordinate singularity, which
can be avoided by choosing a different coordinate system®.

Another frequently encountered isolated singularity is the orbifold:

Definition 2.13 (Orbifold) A (real) orbifold is a space which admits an
open covering {U;}, such that each patch is diffeomorphic with R™ /T;, with
I'; a discrete group acting on the manifold M.

All points pg € U; which are stable under the action of I';, i.e. all the points
for which gpg = po,g € T'; are singular points of the orbifold, called orbifold
or quotient singularities. In most physics texts an orbifold is defined as a
space of the form M/T', with M a manifold an I a discrete group. That
global definition is a special case of the definition we give here.

Also note that in a similar way we can define a complex orbifold by
requiring that each patch is biholomorphic to C™/I'; and that the induced
transition functions are holomorphic. We can also define a metric on C™/T;
by the natural inherited metric on C™. Furthermore, when a complex orb-
ifold can be embedded in CP", it can also be viewed as an algebraic variety.

We conclude by saying that the definition of the holonomy group which
was given in section 2.1 can be extended to spaces with orbifold (or any other
kind of isolated) singularities. If there is an isolated singularity somewhere in
the space, we simply take all paths which do not pass through the singularity
and define the holonomy group with respect to that set of paths.

2.2.2 ADE singularities

Complex two-dimensional orbifolds of the form C2/T" will become very im-
portant when trying to construct non-Abelian gauge groups in M-theoretical
model building. With coordinates (u,v) of C? written as a column vector,
SU(2) acts in the natural way on the coordinates:

U a b*\[u 9 2 o
£)+ (3 5)C). wereor e o

“The standard spherical coordinate system in R® is the obvious example.
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It turns out that just as holonomy groups could be classified, it is possible
to make a classification of all the possible discrete subgroups of SU(2) and
thus all the possible orbifold singularities. This classification, which was
completed by Du Val in [27], gives a curious relation between the discrete
subgroups of SU(2) and the Dynkin diagrams of the simply-laced, semi-
simple Lie groups A,, D, E¢, E7 and Eg. Later, in chapter 5, we hope
make this relation somewhat clearer for the case of an A,, singularity. As
we see, there are two infinite series corresponding to SU(n) = A,_1 (n > 2)
and SO(2k) = Dy, and three corresponding to the exceptional Lie groups of
type E. This is what gives the orbifold singularities C? /T apE their name
ADE singularity®.

Below we give an explicit formulation of the classification by giving the
generators of the discrete subgroups. As globally defined orbifolds are non-
compact spaces, they cannot be written as hypersurfaces in CP3. But in
each case it turns out to be possible to describe the orbifold C? /T ApE as
a hypersurface in C? instead. This means that they are not varieties as
defined in section 2.2, but if we are keen on using this term anyway, we
could call these spaces non-compact varieties or affine varieties. The (non-
homogeneous) equation for each hypersurface is also given. To simplify the
notation we define

2mi 27 i
n:=es, e€:=e8, (pi=e€n (2.23)
for the fifth, eighth and 2n'" root of one respectively.

Ap—_1 singularity: The discrete group I'4, , is generated by

(%21 432) . (2.24)

I'4, , is isomorphic to Z,, the cyclic group of order n. The equation
for C2/T 4,_, as a hypersurface in C? is

224 y? + 2" = 0. (2.25)

Dy, 2 singularity: The discrete group I'p, ., has two generators:

(CO" C:Ql) and (_01 (1)) (2.26)

I'p, ., is isomorphic to Dy, the binary dihedral group of order n. The
equation for C2/T'p, ., as a hypersurface in C? is

2Pz 2" =0 (2.27)

*Note that sometimes, the singularities are called Du Val singularities after the the
discoverer of the classification.
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E¢ singularity: The discrete group I'g, has three generators: those of Dy,

combined with ..
1 €' €
ﬁ (65 e) . (2.28)

I'p, is isomorphic to T, the binary tetrahedral group of order 24. The
equation for C2/T'g, as a hypersurface in C? is

2y 4+t =0. (2.29)

E7 singularity: The discrete group I'p, has all the generators of Eg com-

bined with
e O
(£ 9). e

I'g, is isomorphic to O, the binary octahedral group of order 48. The
equation for C2/T' g, as a hypersurface in C? is

% +y* +y2t = 0. (2.31)

Ejg singularity: Finally, the discrete group I'g, has only two generators.
They are given by

3 4
0 1 (n+77 0 )
_ . . 2.32
(0 772) ”?-mp\ 0 —n-n (2:32)

I'g, is isomorphic to [, the binary icosahedral group of order 120. The
equation for C2/T' g, as a hypersurface in C? is

24y +2° =0. (2.33)

This singularity is sometimes also called a Kleinian singularity, because
this case was actually already worked out by Felix Klein in 1884.

We would like to remind the reader of the fact that nine representations of
ADE singularities are shown on the cover of this thesis. These are created
by taking the coordinates z,y, z in the defining equations to be real and can
thus be seen real slices of the codimension four singular affine varieties we
just defined.

After all this work done to describe and classify singularities, we turn to
the question of how to excise them from a space. What we will try to do
is remove the singularity and replace it with a suitable smooth space that
becomes singular again in a certain part of its moduli space. This means
that we can use methods from differential geometry to describe the physics
on the space and take the singular limit to investigate the physics associated
with the singularity.
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2.2.3 Singularity resolution

The resolution of singularities is the art of creating a smooth manifold from
a singular space. One of the reasons that this is important is that it pro-
vides a way to construct manifolds of special holonomy (e.g. Calabi-Yau
or Go-manifolds) when a singular description is at hand. Such a singular
description is often easier to find (for example in the form of an orbifold
singularity) than constructing a manifold with certain properties directly.
There are two ways of resolving a singularity. It can be done by blowing
up or by deforming the singular variety in which it is embedded into a
smooth space. Although these two methods sometimes look alike, there is a
difference. Making this distinction is important when we are describing phe-
nomena like Mirror Symmetry and topology changing processes (see chapter
6 for a brief description of these phenomena).

Intuitively, we can view the procedure of blowing up as removing a neigh-
borhood of the singularity from the space and gluing in a smooth manifold
with the right properties instead. The mathematical definition may not be
completely transparent (and we will not even try to give it in the most pre-
cise way), but the example in the next subsection will hopefully clear up the
procedure a lot.

In the previous subsection we described the ADE singularities as affine
varieties in C®. Before we can describe the blow-up procedure for singular
varieties, we need to define the blow-up of a point in C™. For simplicity we
take this point to be the origin. Blow-ups of points in manifolds, submani-
folds and varieties can be understood using generalizations of this procedure.
If we take (z1,...,2,) to be Euclidean coordinates on C" and [l1,...,[,] to
be homogeneous coordinates on CP™ !, we can define the set

C = { (215 s 20)s [y - 1n]) € C* x CP"71 | 2l = 2514, Vi, 5 ).
(2.34)
There are two ways to look at this space. Firstly, for any given fixed point [
in CP™ !, the space describes a line in C", i.e. it is of the form C! x {I} = C!.
It is quite simple to see this for the cases with small n by writing down all the
relations for the coordinates and picking a specific point, but it is true for
all dimensions. So we can regard C" as a complex line bundle over cpr1,
C" =5 CP"! with fibre C'. Secondly, if we fix a point z € C" that is not
the origin, the equations can similarly be seen to describe a point in CP™~!.
If we on the other hand take z = 0, we find the whole CP"~! instead of just
a point. B
The previous statements imply that the line bundle C* — CP™ ! can
be pointwise identified with C", except that the origin has been replaced by
the manifold CP™~!. Because of this C" is called the blow-up of C" at the
origin. The space CP™~! that replaces the origin is called an exceptional
divisor. Together with the blow-up we always give a projection II back onto
the original space, representing the reversed procedure of blowing-down. In
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our case this map is given by
II:C* — C", (2.35)

with the action given simply by II(z,1) = z.

In the previous subsection we described a number of singular varieties
as hypersurfaces embedded in C3. A natural thing to do after describing
the blow-up procedure for C” is to extend this to the blow-up of a singular
variety. Consider a hypersurface A C C" that is singular in the origin. Then
the blow-up A is defined as the subset A C C" given by the closure of the
inverse image of the projection,

A:=T1(A—{0}). (2.36)

The closure of a set is defined as the unique smallest closed set that contains
the given set.

We do not go into any further details about blowing-up singular varieties,
but we hope that this procedure will be made clearer by explicitly working
out the blow-up of the A;-singularity in the next subsection. The following
theorem®, given in a slightly paraphrased form, shows the applicability of
the blow-up procedure to singular varieties:

Theorem 2.14 (Hironaka) Let X be a singular algebraic variety. Then
there exists a nonsingular variety X, which is the result of a finite sequence
of blow-ups of X.

Another way to get rid of a singularity is to find a “nearby” manifold (i.e.
one that looks very much like the original) which is smooth, but deforms into
the original singular variety by changing some parameter(s). Usually this is
done in an algebraic variety by adding some (small) terms in the defining
polynomials. The example in the next subsection will hopefully make this
procedure clear without giving an exact definition.

2.2.4 An example: the A; singularity

With conclude this section on algebraic geometry with an example which
will hopefully make some of the things introduced clearer. The beauty of this
example is that despite the fact that it is the simplest example, it displays
almost all of the concepts we introduced.

Just as in section 2.2.2 we begin by considering C? with complex coor-
dinates (u,v). We then mod out by I'4,, which has only one generator that

acts on the coordinates as
(“) 5 (‘”) (2.37)
v —v

For proving this theorem (which he did in 1964) Heisuke Hironaka received the 1970
Fields Medal, one of the highest distinctions in mathematics.
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We see that T' 4, is just Zo, so the A; singularity is just the orbifold C? /Zs.
The only fixed point of the transformation (2.37) is the origin. In the origin
the tangent space is ill-defined, so if we want to know what the holonomy of
this orbifold is, we have to consider only path that do not pass through the
origin. Because the orbifold is flat everywhere but in the origin, a vector
will come back onto itself if it is transported along any path that does not
end on the image (under Z5) of its starting point. If we transport it along a
path that does end on the image, it direction gets inverted. In other words,
this orbifold has Z holonomy. As non-trivial holonomy is an indication for
non-trivial curvature, we could say that in the origin there is a curvature
singularity.

In section 2.2.2 we also gave algebraic descriptions of the singularities.
Let us see how we find one for the current example. Note that v and v are
double-valued on C?/75, so they are not suited to use as coordinates. The
combinations

21 =u?, 2z =07, z3=uv (2.38)
are single-valued. We can use any two of these as local coordinates, but we
have to keep in mind that they are not independent and obey the equation

22 — 2129 = 0. (2.39)

We now again make a linear change of variables x = z1 — 29, y = (21 + 22),
z = 2z3, so that we can now write this equation as

24y 4+ 22 =0. (2.40)

This is exactly the equation for C2/Z5 as a hypersurface in C3 that was given
in (2.25) with n = 2. Now call this hypersurface S.

Blow-up of the A; singularity

S is a hypersurface in C2, so first we define C3 as a subset of C3 x CP? as
in (2.34) and then the blow-up of S as § = II-1(S — {0}). Now consider
following a path towards the origin in S. From the discussion below (2.34)
it should be clear” that the point we land on in the exceptional divisor CP?
of C? depends on the direction in which we approach the origin. Now take
this path to be defined by the line (tzg,t21,t22) with ¢ € C and the z; of
course still obeying zpz; — zg = (. If we follow this particular path to the
origin, the point we land on will be [lg,l1,l2] € CP? with the I; satisfying
loly —13 = 0 as well. It can be shown [8] that this hypersurface is CP! = §2.
So we see that the exceptional divisor of S in the origin is a two-sphere.
This is depicted in figure 2.1.

"Note that a path through S is of course also a path through C3, which means that
this discussion applies to this case as well.
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Figure 2.1: Blow-up of the A; singularity. Figure taken from [8].

Deformation of the A; singularity

The next thing we can do is slightly deform the defining equation (2.40) by
adding a small term on the right hand side,

2?4y’ + 22 = (2.41)

By doing this the singularity gets replaced by a 2-sphere of radius €. This
can be seen by taking x,y, z and € to be real. Note that this is exactly the
exceptional divisor of the blow-up!

So in the case of an A;-singularity the two resolution procedures lead to
the same smooth space. But like we said, generally this will not be the case.
One of the reasons we use this example is that enables us to introduce the
Eguchi-Hanson metric, which will be important later on.

Eguchi-Hanson Metric

We now have the equation for the resolved A; singularity, but we do not
have a metric on it yet. By resolving the singularity the holonomy group got
enlarged from 75 to SU(2), so the metric should exhibit this as well. Note
that since SU(2) = Sp(1), this space is both Calabi-Yau and hyperkédhler
[8]. In 1978, Eguchi and Hanson found a Ricci-flat metric on this space,
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which is given by

2 _ 1 7_2 7“2 0_2 0_2 —€T402
dsEH_71_<€/r)4d +1%(op+ o, + (11— (e/r)")o?). (2.42)

In this metric ¢ € RT and the o; are 1-forms that are left-invariant under
SU(2) that are given by

0y = cosdf + sinsin 6do, (2.43)
oy, = —sinydf + cossinfdo, (2.44)
o, = di+ cosfdg. (2.45)

The ranges of all the coordinates in the metric are ¢ < r < o0, 0 < Y < 27,
0<f<mand 0 < ¢ < 27.

At first sight there appears to be a singularity in the metric at r = ¢,
while we claimed that it is the metric on a resolved space. This apparent
singularity is an artifact of the chosen coordinate system and is removable by
going to a different coordinate system. To see this, make the transformation
u? = r2[1 — (¢/r)*]. After this and in the limit « — 0 (corresponding to
r — €), the metric takes the form ds? ~ 1 (du® + u?di?) for fixed 6 and ¢.
So with the periodicity 0 < 9 < 27 we see that this is just the flat metric
on R? in polar coordinates.

We now note that we can use the o; to write the metrics on the 2-sphere
and the 3-sphere in a particularly compact way,

ds%y = o2+ 05, (2.46)
ds%s = o2+ 05 + o (2.47)
= df? +sin? 0d¢? + (dy? + cos 0de)?, (2.48)

but in the $3-metric we have to let ¢ run from 0 to 4 to cover S3 completely.

If we take the limit ¢ — 0 (or alternatively r» — co) of the metric (2.42)
the metric asymptotes to the form ds?> =~ dr? + r?(o2 + O'Z + ¢2). This
seems to be a cone over the 3-sphere, but because ¥ runs from 0 to 27 this
is actually a cone over S3/Z5, with the Zs-action given by ¢ — 9 + 27.
Logically, a metric with the property that in a certain asymptote it is a
cone is called asymptotically conical. In figure 2.1 you can see a graphical
representation of the blow-up of the A; singularity.

2.3 (G9-manifolds

All the introduction in this chapter more or less builded up to the introduc-
tion of the most important space that we are going to need: the Go-manifold.
As stated in the introduction, this is the space we need obtain a realistic par-
ticle model from compactifications of M-theory. The study of G2-manifolds
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can be done at a highly mathematical level, but we try to keep our treatment
as physical as possible. The leading work on exceptional holonomy (which
as we saw means having either G or Spin(7) holonomy) is [49], which can
be consulted for a more rigorous treatment.

We start this section by defining the group G2, move on to defining Go-
manifolds, then list a number of their most important properties and finally
describe shortly a couple of methods for constructing them.

2.3.1 The group G,

G is the smallest of the so-called exceptional Lie groups. These exceptional
groups are those semi-simple groups in the Cartan classification that do not
belong to one of the infinite series of the SU(r + 1) (or 4,), SO(2r +1) (or
B,), Sp(r) (or C,) or SO(2r) (or D,) type. The other exceptional groups
are Fg, E7, Eg and Fy. G, is a subgroup of SO(7), so it acts in a natural
way on R7. It has some extra structure imposed on it, though, as can be
seen from its definition.

Definition 2.15 (The group Gs) Let (y1,...,y7) be coordinates on R.
Write dy;j..q for the exterior form dy; Ady; A--- Ady; on R”. If we define
a three-form by

wo = dyi2s + dyias + dyier + dyas — dyosr — dysar — dysse (2.49)
1
g%jkdyz‘jk, (2.50)

the exceptional Lie group G is that subgroup of SO(7) that preserves py.

Although the appearance of the three-form in this definition might look a
bit arbitrary, there is more to it than meets the eye. The components p;;j of
o are actually the structure constants of the imaginary octonions O. What
this means is that the basis vectors o; in Im(0) satisfy

0;05 = _(5z'j+90ijlc0'k, ,5,k=1,...,T. (2.51)
The specific form (2.49) just corresponds to a particular choice of basis. In
other words, G5 is the automorphism group of the octonion algebra, which

means that acting with G5 on elements of the algebra again produces the
whole algebra. Note that the group G4 also preserves the Hodge dual of g,

%o = dyaser + dyeser + dyesas + dyiss7 — dyizae — dyi2se — dyi247, (2.52)

the Euclidean metric
go=dyi + -+ dy3, (2.53)
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and the orientation on R”. Further properties of Go are that it is compact,
connected, semi-simple, 14-dimensional and has rank 2 (as the subscript
indicates®).

Later on, the so-called branching rules of for the decomposition of rep-
resentations of SO(7) under Gy will become important. In general, if we
have a Lie subgroup A C B and a certain representation Dg of B, we can
create a representation DE of A by restriction of Dp to A. This repre-
sentation of A will however not be irreducible in general. If it turns out
to be reducible, we can use for example the standard Clebsch-Gordan de-
composition (or possibly the theory of characters) to write this as a direct
sum of irreducible representations. The way representations of the original
group decompose in such a way under a subgroup, are called branching rules.
For the group G as a subgroup of SO(7), the branching rules of the most
important representations are given by:

SO(T) > Gy
21 = 1467 (2.54)
7T =7 (2.55)
8 = 7ol (2.56)

Here the 21, 7 and 8 are the adjoint, vector and spinor representations
of SO(7) respectively. Under Gy these decompose in the way indicated
into the fourteen-dimensional adjoint representation 14, the (fundamental)
vector representation 7 and the singlet 1. Especially the branching rule of
the spinor representation will be important later on. Because we never work
with explicit representations in this thesis, we do not provide the details of
the deduction of these branching rules. The interested reader can consult
[49] for this.

Other than the way given above, G2 can alternatively be defined as that
subgroup of SO(7) that allows for a covariantly constant spinor representa-
tion. If we take this viewpoint, i.e. if we start with a covariantly constant
spinor V@ = 0, then we can construct the Go-invariant three-form (2.49) by
taking its coefficients to be

@ik = 0TT1.0. (2.57)
As such ¢ is then called the induced three-form. For details, see [5].

2.3.2 (Go-manifolds defined

This simplest way to define a Ga-manifold at this point is as a seven-
dimensional Riemannian manifold that has Gs as its holonomy group. A

8Note that for all the groups in the Cartan classification the rank is given by the
subscript.
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mathematical definition of a G2-manifold as given by Joyce in [48] is stated
in terms of G-structures, instead of holonomy. This is a somewhat broader
definition than one just given and can be shown to reduce to reduce to
meaning “having holonomy G5”. It goes as follows.

First of all, a principle bundle is basically a bundle whose fibre F' is iden-
tical to its structure group G (and is therefore often called the G-bundle)?
Furthermore, the frame bundle F' of an oriented manifold X (in our case of
dimension seven) is a particular example of a principle bundle over X whose
fibre at p € X is the set of isomorphisms between 7,(X) and R”, which is
GL(7,R). A frame is a set of seven linearly independent sections, so this
fibre is the set of all possible frames at p. Now we are ready to define a
Go-structure.

Definition 2.16 (Gs-structure) A Go-structure on X is a principal sub-
bundle of the frame bundle of X, with structure group Gs.

Each Gs-structure gives rise to a three-form ¢ and a metric g on X, such
that every tangent space of X admits an isomorphism with R7, identifying
¢ and g with g and go of (2.49) respectively. We take over the abuse of
notation (as Joyce calls it himself) of calling (¢, g) the Ga-structure.

Definition 2.17 (Torsion) Let (¢,g) be a Ga-structure and V the Levi-
Civita connection of g. Then Vo is called the torsion of the Ga-structure.
If Vo =0, the structure is said to be torsion-free.

With these definitions out of the way, we are finally ready to define a G-
manifold.

Definition 2.18 (G2-manifold) A triple (X, ¢, g) is called a Go-manifold
if X is a seven-dimensional manifold and (@, g) is a torsion-free Go-structure
on X.

The following nameless but important theorem gives us the correspon-
dence between the picture we developed for manifolds whose holonomy group
is G2 and the more mathematical definition given above.

Theorem 2.19 Let X be a 7-manifold and (¢,g) a Go-structure on X.
Then the following are equivalent:

1. Hol(g) C G2, and ¢ is the induced 3-form,
2. (¢, g) is torsion-free, Vo =0,

3. dp=d*xp=0o0onX.

For an in-depth treatment of principle bundles, see [61].
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This theorem shows that the holonomy group of a Go-manifold is not nec-
essarily Ga, but can also be a subgroup of it. To avoid confusing language
and because we almost exclusively deal with cases in which Hol(g) = Ga,
we take the word Ga-manifold (unless stated otherwise) to mean “having
exactly holonomy G35”.

Note that the equivalence of case 3 in theorem 2.19 is not at all obvious.
Nevertheless, this set of first-order equations is considerably simpler to solve
than the equations in case 2. Also note that both ¢ and *¢ are calibrations
on a G-manifold. The corresponding three-dimensional p-submanifolds are
called associative submanifolds and the four-dimensional *p-submanifolds
are co-associative submanifolds.

After this definition we give an overview of general properties of Go-
manifolds in order to get a better understanding of them.

2.3.3 Properties of Go-manifolds

In this subsection we list the properties of Ga-manifolds that we are going
to need in quite a matter of factly way. We omit the proofs that are too
involved. These proofs can be found in [49] and references therein. To begin
with, an important proposition is

Proposition 2.20 If (X,g) is a Riemannian manifold with Hol(g) = Ga,
that then X is a spin manifold and its space of parallel spinors has dimension
one.

What we already saw in (2.54) is that there is a singlet in the spinor rep-
resentation. This implies that we can define exactly one parallel spinor
satisfying V7 = 0 on a manifold of G holonomy. We will not show that
X is a spin manifold.

We will give a short presentation of the proof originally given in [41] of
the proposition
Proposition 2.21 A Riemannian spin manifold admitting a non-zero par-

allel spinor is Ricci flat.

o Proof: To prove this proposition, we note that if there is a parallel spinor,
VSn =0, then we also have

1
0= [V, Valn = 4 Bonnpg 7. (2.58)
If we contract this again with a gamma-matrix I'" and then use the Bianchi
identity for Ry,np, (which asserts that components totally antisymmetric in
[npq] are zero), and the relation I'"I'P? = I'"P? — T'P§" 4 ['46P™ | we find
RpynpU" TP =
=R Iy =
=Rmn = 0, (2.59)
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because we assumed the parallel spinor 7 to be non-zero. [J

In section 3.6 of [49] a proof is given of the converse statement. In other
words, it is also true that a Ricci-flat Riemannian manifold is always spin
and admits at least one covariantly constant spinor. If we combine the two
statements from propositions 2.20 and 2.21, we find the important property

Corollary 2.22 If (X, g) is a Riemannian seven-dimensional manifold that
has Hol(g) = Ga, then its metric g is Ricci flat.

The proofs of the following two propositions are beyond the scope of this
thesis and are thus omitted.

Proposition 2.23 If (X, g) is a compact manifold with g a metric of holon-
omy Go. Then the fundamental group m (X) is finite.

In order to understand the second proposition we need to know what isotopic
means. An isotopy is defined as a homotopy of one embedding of a manifold
(in another manifold) to another, such that at every time it is an embedding.
Because a homotopy can be understood to mean a continuous deformation,
we can think of isotopy as being basically a smooth deformation of the
manifold.

Proposition 2.24 The moduli space of metrics with holonomy G2 on a
compact 7-manifold X, up to diffeomorphisms isotopic to the identity, is a
smooth manifold of dimension b®(X).

So basically, generic metrics of Gy holonomy have b3(X) parameters deter-
mining the size and shape of the manifold.

The following lemma will be important later on and also has a fairly
short proof, so we include it for completeness.

Lemma 2.25 A Killing vector on a Ricci-flat compact manifold M is co-
variantly constant.

o Proof: Let K, be a Killing vector on M. By contracting the defining
equation (2.2) with ¢™" we find V"K,, = 0. Now, if we let a covariant
derivative act, we get

V'V K + V'V Ky = 0. (2.60)

Using (2.58), V" K,, = 0 and the assumed Ricci-flatness, we can now write
this as

0 = V'"V,K,+ V"V, K,

(2.61)

= V'"ViKp + V™ V] Ky + Vo V' Ky, (2.62)
V™'VmKn + R™,, KP (2.63)
(2.64)

(2.65)

VY Ky + R KP
= V"V, K,
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If we now multiply this last equation by K, and integrate it over our com-
pact manifold M, the result becomes

/ KV, VK™ = — / (VoK) (VIE™) = 0. (2.66)

So, because this holds for any compact!® M, in the end this means that
VoK, =0. 0

Now recall that a manifold of Ga-holonomy is Ricci flat. This means that
a Killing vector on a compact Ge-manifold is covariantly constant. But Go-
holonomy is incompatible with the existence of covariantly constant vector
fields, as we have seen that the 7 of SO(7) decomposes under G2 as 7 — 7.
In particular, there is no singlet and thus no chance of finding a covariantly
constant vector. So this automatically proofs the following proposition:

Proposition 2.26 A manifold of Go-holonomy has no Killing vectors and
hence no continuous symmetries, i.e. the isometry group of a Ga-manifold
18 trivial.

Again without a proof, we state that a compact G-manifold has a trivial
first cohomology group, H'(X,R) = {0}. We define the r-th Betti number
as the dimension of the r-th cohomology group,

B (X) := dim H"(X) = dim H,(X) = by(X), (2.67)

where we have used the fact that the homology group is dual to the cohomol-
ogy group. The triviality of the first cohomology group, together with the
connectedness of X and the Poincaré duality (which implies that 4" = b"~")
enables us to write down all of its Betti numbers

W=0p"=1; b =0°=0; b2=10° b®=">"arbitrary (2.68)
So the most important topological information about manifolds with Go

holonomy is encoded in the pair of numbers (b2, 3). The above values imply
that the Euler characteristic

X(X)=> (-1)"5" =0, (2.69)

This concludes our short review of some of the most essential general prop-
erties of Go-manifolds. For more background, consult [49].

Note that we have taken M to be compact, because otherwise the partial integra-
tion would lead to boundary terms and Killing vector fields typically do not vanish at a
boundary (e.g. at infinity), so in the non-compact case this lemma generically does not
hold.
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‘ Topology of X ‘ Base manifold Y ‘ Isometry group ‘

St x R3 cp? SO(5)
SU(3

CPZ X [R3 W(U)(l) SU(3)

3 x R* S§3 x 83 SU(2)3

Table 2.2: Topology and base manifolds of Asymptotically Conical (AC)
spaces, as constructed by [16] and [34] and reproduced by [42].

2.3.4 Construction of Gy-manifolds

We have now seen what a Go-manifold is and have gotten to know a number
of their important properties, but we still do not know how to construct
them. Although Bergers theorem was formulated in 1955, it took until 1987
for the first local Ga-holonomy metric to be constructed [15]. This local
metric said nothing about the possible global structure of the manifold.
Then two years later it was Bryant and Salamon [16] and independently
Gibbons, Page and Pope [34] who then constructed complete metrics of Ga-
holonomy for a number of non-compact manifolds. The method of their
construction essentially came down to analyzing the Ricci flatness equations
Rmn = 0 for a certain ansatz for the metric. The disadvantages of this
method are that the Einstein equations are a relatively complicated set of
second-order equations and that the method does not allow generalizations,
as it depends on making a certain ansatz. All the examples created in [16]
and [34] are asymptotically conical smooth manifolds, which can be regarded
as resolutions of conical singularities over various base-manifolds Y. The
currently known base manifolds that can be used in this construction are
CP3,SU(3)/(U(1)xU(1)) and S x S3 (see table 2.2). We list these metrics
explicitly under the description of the Hitchin construction below.

Owing to Dominic Joyce, we now have a systematic way of constructing
compact Go-manifolds [46]. This method is inspired by and very similar to
the Kummer construction of a K3 surface (see Appendix B). Unfortunately,
this construction only provides a way to construct local Go-holonomy metrics
and no explicit complete metrics are known on any of the Joyce-manifolds.
Also, none of these manifolds appear to have a limit in which they develop
isolated singularities. So another method of constructing compact manifolds
of G2 holonomy would be beneficial. One possible method was suggested by
Kovalev in [52]. It is an elegant method, but again it provides no way to
construct a complete and compact metric and it is still unclear if these man-
ifolds can develop isolated singularities. Yet another method was developed
by Hitchin in [42]. This seems to be a promising and interesting approach to
the problem, but only explains how to construct non-compact G2-holonomy
metrics. We will say something more about Hitchins construction below,
but not before we have explained how the Joyce construction works.
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Joyce construction of compact G2-manifolds

As Joyce clearly explains himself in [46], his construction can be divided
into four steps.

Step 1 Take the 7-torus 77 and a flat Ga-structure (g, go) and choose
a finite group T' of isometries of T, preserving (¢g,go). Take the
quotient T7/T to get a singular, compact orbifold.

Step 2 If the group I' is well chosen, there is a method of resolving the
singularities in a natural way. We now have a compact manifold X
with a map 7 : X — T7/T.

Step 3 Write down a l-parameter family of Ga-structures (¢, ¢g:) on X
which depends on t € (0,¢€), such that these have small torsion if ¢ is
small. As t — 0, the Ga-structure converges to the singular structure

7 * (¢0,90)-

Step 4 Prove that for sufficiently small ¢, the G2-structure can be deformed
to a Ga-structure (@, g:) with zero torsion. Finally, show that g; is a
metric with holonomy G5 on the compact 7-manifold X.

As was explained in [39], the fixed points introduced in step 1 are Aj;-
singularities and be resolved in step 2 basically by gluing in copies of the
Eguchi-Hanson space.

In Part IT of [48], a large number of examples is given of manifolds
constructed by following this procedure. We reproduce none of these here
as the reader can consult the original article or the book [49] for a detailed
description of them. We do want to note at this point however that one of
the examples is constructed by resolving the singularities of some orbifold

of T3 x K3. In other words, it has the form 73 x K3/T', with T some
suitably chosen discrete group. The reason we mention this is that near the
singularities, this orbifold can locally be described as R x C2/T4,, which
contains the simplest ADE singularity that we have described in such depth
in this chapter. This is our first indication that it is possible to embed
general ADE singularities in manifolds of G2-holonomy.

The Betti numbers (b?,4%) of all the the Go-manifolds constructed in
this way (including all the ones constructed after [48]) are listed in table
2.3. There are in total 252 different sets of Betti numbers and thus 252
topologically distinct Ga-manifolds. According to Joyce, this is probably
only a small fraction of the possible Betti numbers of all compact, simply-
connected seven-dimensional manifolds with holonomy Gs.
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Table 2.3: Betti numbers (b2, b%) of compact Go-manifolds. Taken from [46].

Hitchin construction of non-compact G,-manifolds

Quite recently, Hitchin published a new method [42] of constructing G2 met-
rics on non-compact Asymptotically Conical (AC) spaces. Very schemati-
cally, in this construction we take the base of the conical space to be a
homogeneous space Y = G/K. Then it turns out that on the space P of
G-invariant differential form on Y, we can define a symplectic structure. On
this space we can use a Hamiltonian dynamical system to find a G2-holonomy
metric. The beauty of his method is that we are able to construct a metric
by solving a set of first-order differential equations (the Hamilton equations)
with certain boundary conditions, instead of solving the (second-order) Ein-
stein equations using a specific ansatz. So the Hitchin construction has two
big advantages: the mathematics involved is simpler and it can be gener-
alized. For more information about this method, we refer the reader to [6]
and references therein.

Like we said in the introduction to this section, [16] and [34] constructed
explicit metrics on three different smooth non-compact asymptotically con-
ical Ga-manifolds. Using the Hitchin construction, we can reproduce these
metrics exactly. This is a strong validation of the soundness of this construc-
tion. For future reference, we list these metrics below in their full glory. Note
that all these spaces have the same topology as indicated in figure 2.2. In
this figure X is the total space, Y is the base of the cone, T is the “tip of
the cone” and F is the collapsing fibre.

First of all, the metric that is asymptotic to a cone over CP? is given by

2 2 2
dstp = Jﬁ + (1= (ro/r) ) (dus + e Agun)? + T d%, (2.70)
where dQ7 is the standard round metric on S* with SO(5) isometry, normal-
ized to have R,s = 3¢gps (1,5 € {1,2,3,4}). The u; are a set of coordinates
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70
T

Figure 2.2: Topology of asymptotically conical spaces. X is the total space,
Y is the base of the cone, T is the “tip of the cone” and F' is the collapsing
fibre.

of R? that a subject to the condition Y,(u;)> = 1 and rg € RT. A4; is an
SU(2) gauge field on $%, carrying unit instanton number. We see that if
we take r = r(, the S* remains at finite size, while the fibre S? shrinks to
zero size. Topologically, this space looks like figure 2.2, with X = §* x R3,
Y =CP3 T=5%and F = §2.

If we would replace in (2.70) the metric dQ? by a metric with SU(3)
isometry on CP?, we have the second case of a metric on a cone over
SU(3)/U(1)2. The collapsing fibre is the same S2. For a detailed description
of the geometry of both these spaces, see [9] and the original papers [16] and
[34).

The metric that approaches a cone over S3 x S2 is given by

dr? 1 9 31, 9 9 9 r2 ) ) )
WJrgr [1=(ro/r)’J(vi +v3+u3) + 5 (0T +03+03) (271)

where v; = ¥; — %az- and X;, 0; are two sets of SU(2) left-invariant one-forms
we defined in equation (2.43). The parameter ry here determines the size of
the S generated by the v;. If now r — 7g, we see that one S2 shrinks to
zero size, while the other remains finite. So here both T and F are S3.

It is interesting to note that for these three manifolds the “tip-of-the-
cone” T'is a calibrated cycle. In the asymptotically conical metrics with base
manifolds CP? and SU(3)/U(1)2, T = S* and T = CP? are their respective
xp-calibrated co-associative four-cycles. For the metric with base S x 3,

2 _
dSSs—
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the S° that remains of finite size is a ¢-calibrated associative three-cycle.

Kovalev construction of compact Gs-manifolds

The last method of constructing Go-manifolds we would like to mention was
recently suggested by Alexei Kovalev in [52]. He uses a kind of ”generalized
connected sum” of two asymptotically cylindrical Calabi-Yau manifolds Wy
and Wy to create a smooth compact Go-manifold X. The way this can be
pictured is that the asymptotically cylindrical spaces with W7 and Wy at
their ends are glued “back-to-back” to form X,

X = (W x SYHyu (Wy x SY). (2.72)

Although this method is very elegant, it remains to be seen whether these
spaces can be deformed to include also isolated singularities. It appears to
have only led to the creation of a few examples of compact G2-manifolds,
but this might change in the future.

2.4 Conclusions

In this chapter we provided a lot of background material for the remainder
of this thesis. We started with introducing isometry, holonomy and cal-
ibrated geometry and then mainly used tools from algebraic geometry to
study singularities. This was all aimed at being able to describe (singular)
Go-manifolds, which were introduced in section 2.3.2. After studying them
in detail, let us make a couple of general of remarks about the challenges
which have to be faced when dealing with G-manifolds. The two most
important challenges are

e the lack of an existence theorem for G2 holonomy metrics,

e dealing with singularities and constructing spaces with the right type
of singularities.

The first problem basically boils down to the fact that there is no theorem
analogous to Yau’s theorem B.7 for manifolds of G3-holonomy, ensuring
that (under certain favorable conditions) a metric with G2 holonomy can be
found. This means that for now the analysis of (physics) problems involving
G2-manifolds has to be done on a case-by-case basis for the specific known
examples of such metrics.

The second problem has to do with the fact that we need singular spaces
to obtain realistic physics from Go-compactifications and we do not yet have
sufficient methods to construct Go-manifolds with all the needed singulari-
ties. This has in a large part to do with the fact that all the tools from alge-
braic geometry that can normally be used to study singular spaces (which
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was done very successfully for singular Calabi-Yau manifolds over the years),
cannot be used on G-manifolds. The reason is of course that Go-manifolds
do not admit a complex structure and can hence not be described as va-
rieties (which are inherently complex objects). More explicitly, as we will
see in chapter 5 we need isolated singularities to obtain the most interesting
physics. Furthermore, in chapter 3 we explain that compactness is needed
in order to have any hope of finding realistic physics from M-theory com-
pactifications. But no compact manifolds with isolated singularities have
been constructed up till now. Examples of non-compact Gs-manifolds with
isolated singularities have been found as we saw in the previous subsection,
but these can only be serve as local models of M-theory compactifications.

The statement that these are true challenges is underlined by the fact
that G2-manifolds have been known to be interesting spaces to do Kaluza-
Klein reduction on for more than twenty years (in the early eighties peo-
ple already knew that you needed a space of Ga-holonomy to compactify
eleven-dimensional supergravity to four dimensions while preserving N’ =1
supersymmetry), but only in the last couple of years we have (partially)
learned how to deal with these problems. This has just as much to do with
our greater understanding of M-theory as with our improved knowledge of
methods to construct Ge-manifolds''. But it should be clear that still great
mathematical challenges lie ahead and that the progress in finding realistic
M-theory compactifications has been slower than many people would have
liked, because of these challenges.

1Note that the same comments actually also apply to the other type of exceptional
holonomy manifolds, those with Spin(7) holonomy. These have their own applications
(similar to those of G2-manifolds), but will not go into them at all.



Chapter 3

M-Theory Essentials

3.1 Introduction

This chapter is intended as a short introduction to M-theory. This discussion
will be focused on the part of M-theory we know best: its low-energy ef-
fective theory. This low-energy limit is the eleven-dimensional supergravity
theory we briefly mentioned in chapter 1. The way we introduce this theory
is by first reviewing the general procedure for Kaluza-Klein dimensional re-
duction. After this review, it will be clear that compactification of theories
in higher dimensions provide a way to construct a purely geometrical de-
scription of the fundamental interaction and that something special is going
on in eleven dimensions. But it is also clear that eleven-dimensional super-
gravity cannot be the final answer, because this theory is not renormalizable
and thus ill-behaved at short distances (i.e. at high energies). Therefore,
after describing eleven-dimensional supergravity in detail, we describe some
key features of M-theory.

General references for section 3.2 are [36] and [29]. These references are
a bit outdated by now, but they still contain nice introductions to the basics
of Kaluza-Klein supergravity. The material in section 3.3 can be found in
many places, but [64] and [67] are excellent places to learn more. For a more
accessible introduction to M-theory, see for example [54].

3.2 Eleven-dimensional Supergravity

We explained in the introduction that supergravity is a locally supersymmet-
ric field theory that contains a description of gravity. Supergravity theories
exist in dimensions four to eleven! and provide the low-energy limits of all

Tn three dimensions, it is possible to define a supergravity theory, but then the metric
is non-dynamical. This theory a so-called Chern-Simons theory, whose non-trivial field
configurations are purely topological. In two dimensions even this is not possible anymore,
so the theory becomes trivial.

36
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superstring theories and M-theory in 10 and 11 dimensions respectively. An
explanation for the existence of these extra dimensions may be given by
the Kaluza-Klein mechanism. The authors of [29] make this statement even
stronger: “QOur research in this area has convinced us that the only way to
do supergravity is via Kaluza-Klein and that the only viable Kaluza-Klein
theory is supergravity.” Motivated by these encouraging words, we begin by
describing the general procedure of Kaluza-Klein theory.

3.2.1 Kaluza-Klein Theory

The basic idea of Kaluza-Klein theory is that a relatively simple theory in
a high number of dimensions can give rise to a fairly complicated theory
in low dimensions if some of the dimensions form a compact space. The
internal (gauge) symmetries of the low-dimensional effective field theory
in this scheme are generated by geometric symmetries (isometries) of the
compact space.

As explained in [29] the general procedure for doing Kaluza-Klein com-
pactifications is as follows. We start with a Einstein-Hilbert action in
D = 4 + k dimensions with coordinates z” (D = 0,...,D — 1), describ-
ing the dynamics of the metric gyn(z), combined with a generic action
describing a collection of matter fields collectively indicated by 5(z) So, we
consider an action that looks like?

S = /dDz\/g} R+ L£(D)]. (3.1)

The corresponding set of field equations will contain the Einstein equations
with the energy-momentum tensor given in terms of the fields d. We will
then look for classical solutions of these equations for which the metric
describes a product spacetime M = M, x X, i.e.

(gun(z)) = (Quuo(ﬂc) A(l‘);mn(y)> . (3.2)

Here g, (x) is a metric on My that has Lorentzian signature and depends
only on the four-dimensional coordinates z#. G,y (y) is the Euclidean metric
on the internal k-dimensional space X with coordinates y™. We have in-
cluded a so-called warp factor A(x) in this metric. It is possible to construct
consistent theories for certain choices of the warp-factor, but we will only
work with the case in which the warp-factor is trivial

Az) = 1. (3.3)

Then we demand M, to be maximally symmetric, meaning that it is
homogeneous and isotropic about every point®. This implies that it has

2Note that we are not very careful with factors and constants here.
3Since current cosmological (WMAP) data [68] indicates that this is the case up to
fluctuations of order 1075, this is not an unreasonable assumption to make.



38 CHAPTER 3. M-THEORY ESSENTIALS

‘ Name ‘ A ‘ Isometry ‘ E > 0 theorem ‘ SUSY ‘

ds >0 SO(1,4) - -
Minkowski | 0 | Poincaré N4 V
AdS <0 | SO(2,3) v V

Table 3.1: Summary of properties of maximally symmetric spaces.

constant curvature and is in fact an Einstein space, ]o%,w = Ag,. Depending
on the sign of the cosmological constant A, an Einstein space with Lorentzian
signature can be either de Sitter (dS), Minkowski or anti-de Sitter (AdS)
space. Some of the most essential properties of these three spaces are listed
in Table 3.1. To ensure stability of the vacuum we need a positive energy
theorem and to have better control of the theory, we would like it to be
supersymmetric. So this restricts to values of the cosmological constant of
A <0.

It is at this point necessary to say a few words about this restriction on
the value of the cosmological constant. The reason is that current data [68]
seems to quite convincingly indicate* that we live in a de Sitter universe (i.e.
that the cosmological constant is small, but finitely positive). Many ideas
exist about ways to describe theories on de Sitter space, but these theories -
be it String Theory, M-theory, (Conformal) Field Theory or Supergravity -
all seem to have in common that it is quite hard to make them consistent and
that it is even difficult to precisely define basic things like entropy and local
particle properties. For an overview of this subject and a discussion of these
problems, see [79]. We would like to note, though, that it is possible to find
de Sitter solutions in supergravity if we take a different set of prerequisites.
It is for example possible to find de Sitter vacua if we consider warped
compactifications [44]. As this could be the subject of a thesis by itself and
the value of the cosmological constant is quite small, we consider for the most
part of this thesis only solutions with A = 0. It is our hope that quantum
effects beyond the tree-level approximation we do below and effects from the
full M-theory will somehow modify the cosmological constant to its observed
value. This is also related to the problem of supersymmetry breaking, as
these quantum effects should also generate a superpotential for the various
fields that forces the fields to choose a specific non-supersymmetric vacuum.

Now that we put some restrictions on My, let us do the same for X. For
X we demand that it obeys the Einstein equations and is compact. As in any
quantum mechanical theory, the spacing between states with momentum
in the extra dimensions is inversely proportional to the volume of these

“Note that this was first discovered by observing Type IA supernova explosions.
WMAP reconfirmed this result and (amongst other things) more accurately determined
the cosmological constant.
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dimensions. So, compactness of X is needed to ensure that the spectrum of
Kaluza-Klein states is non-continuous. The easiest way to achieve this is by
taking X to be an Einstein space, Rpmn = €gmn, as well. Furthermore, as
we will explain shortly, gauge symmetries in the low-energy effective theory
come from isometries of the compact space. So we would like X to have
continuous symmetries that lead to interesting physics. Now two theorems
become important.

Theorem 3.1 A compact Einstein space with Euclidean signature and ¢ < 0
has no continuous symmetries.

Theorem 3.2 A complete Einstein space with Euclidean signature and ¢ >
0 us always compact.

The first of these theorems was proven in [80] and the second in [60]. So
we conclude that we should look for solutions with ¢ > 0. If we find a
solution with ¢ > 0, we have constructed a solution that exhibits so-called
spontaneous compactification, meaning that the compactness of the extra
dimensions is an outcome of the theory instead of an input.

Now let us see how to determine the massless four-dimensional spectrum
of particles in this setting. To do this, we consider small fluctuations of the
fields around the classical solutions

gun(z) = ({MN(Z))j‘hMN(Z)a (3.4)
() = (2(2))+ ¢(2).

We now substitute these into the equations of motion, keep terms linear
in the fluctuations and solve these equations for the fluctuations. Now,
regardless of the exact form of the Lagrangian (3.1), we can always split
it in an interacting part and a part that contains standard kinetic terms
(i.e. (0¢)? terms for bosonic fields and @¢ terms for fermionic fields). These
terms can then be split into a four-dimensional and a k-dimensional part. If
we now do a Fourier transform to momentum space, we can recognize that
the four-dimensional mass-operator M? is essentially given by the Fourier
transform of the k-dimensional kinetic term. We can then write the solution
as an expansion in the eigenfunctions of this mass-operator® as

32) =3 @Y ), (3.

where

MY D (y) = my O (y). (3.7)

In the following we only keep terms with m; = 0.

*Note that it might be necessary to make a modification of these terms before we can
do this. See chapter 14 of [36] for details.
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We now turn to the question of how gauge symmetries arise in this
setting. The D-dimensional theory we start with has D-dimensional general
coordinate invariance. If we take spacetime to be My x X, part of this
symmetry will get broken. If however X retains part of this symmetry,
i.e. if it has a non-trivial isometry group G generated by Killing vector
fields K (y), massless representations of this unbroken symmetry group
will appear as gauge-bosons in the four-dimensional theory. This can be
made explicit by considering the Kaluza-Klein ansatz for the fluctuations of
the metric with mixed components,

dim(G)
hun(2) = > AD@ KD (y) + -+, (3.8)
i=1

where the K\ (y) are the Killing vector fields on X.% To see that the A,(f) ()
really appear as spin one gauge fields in four dimensions, we calculate how
they transform under the coordinate transformations that correspond to
gauge transformations in the effective theory. First of all, under a general
infinitesimal coordinate transformation 2™ — 2™ 4 ¢M the metric can be
shown [73] to transform as

Sgmn = Legun = gnpVuE” +E°Vpgun + gupVne”. (3.9)

As was explained in subsection 2.1.1, the isometry group is generated by the
Killing vectors, so we now consider the special infinitesimal local coordinate
transformation

eM(z) = (0,25@ (x) K (i)m(y)> - (3.10)

By noting that g,, = hy, (because (g,,) = 0) and inserting (3.8) in (3.9),
)

we see that the off-diagonal part of the metric transforms under (3.10) as’
0gun = GnpVu&? +EVphyn + hypy V&P (3.11)
KDV, + eDAQ [KOrv, K + KY)V, KOP] (3.12)

We now use the fact that the K(*) are Killing vector fields (2.2), the definition
of the Lie bracket [X,Y],, = XPV,Y,, — YPV,X,, (in which the ordinary
derivatives can be and have been replaced by covariant derivatives) and (2.4)
to write this as

6gun = K(i)aue(i) + E(i)A;(,l,j) [K(")PV,,K,QJ') — K(j)pvpK,(j)] (3.13)

_ Kni)aug(i)+€(i)Ag)[K(i)’K'(j)]n (3.14)
= EP8,e® 4 04D f1 g ®), (3.15)

5Note that in (2.65) it is shown that Killing vector fields are zero-eigenvalue eigenfunc-
tions of the k-dimensional Laplacian, so they in fact do correspond to massless fluctuations.
"We now use the summation convention for repeated indices (i), (5), etc. as well.
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If we now remember that a variation of course has the property that dg,, =
JAEZ)KT(LU + Ag)éKﬁf), we see that K and A,(f) transform as

SAD (2) = 9,V (@) + feV (@) AP (@) (3.16)
K@) = o, (3.17)

This shows that A, (z) transforms exactly as a non-Abelian gauge field of a
gauge group G.

So, to summarize Kaluza-Klein theory provides a way to reconcile the
apparent discrepancy between the observed number of spacetime dimensions
and the number of dimensions that we are led to by theoretical considera-
tions. Getting the cosmological constant to obtain the right value in this
setting is still a difficult problem. And if the compact extra dimensions form
a manifold with non-trivial isometry group G, then the massless spectrum
of the effective four-dimensional theory will contain gauge bosons that gen-
erate a gauge-group G. This is an exciting prospect, because this seems to
open up the possibility of realizing “Einsteins dream” of finding a purely
geometric description of the fundamental interactions. As we will see in
chapter 4, using the Kaluza-Klein procedure only in the way we describe in
this section is not enough to fulfill this dream, though.

3.2.2 The isometry group and the dimension of spacetime

As we saw in the previous subsection, the gauge group of the low energy
effective field theory can be identified with the isometry group of the compact
space. In 1981 Witten showed [75] that demanding this isometry group to
be large enough to be able to contain the Standard Model group gives a
lower limit on the number of extra dimensions. We repeat this reasoning
here.

Like before we take our spacetime to be of the form M = R>! x X, with
dimension dim(M) = dim(R*!) + dim(X) = 4 + k. We want the isometry
group G of X to contain or be equal to the Standard Model group Ggas:

G D Gy = SU(3) x SU(2) x U(1). (3.18)

In section 2.1.1 we explained that the minimal way to construct a manifold
with a given isometry group G is by taking it to be a homogeneous space
X = G/H. So if we take in this construction G = Ggy and H to be a
maximal subgroup of it, X will be the space of minimal dimension we are
looking for.

As explained in [36], if H would contain one of the factors of Ggys (i.e.
SU(3), SU(2) or U(1)) as an exact subgroup, identifying one of the factors
of G under one of these groups would then produce nothing but a trivial
action. This would reduce the isometry group to something smaller than the
Standard Model group (i.e. that factor would be removed). The maximal
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suitable subgroup of G is [75] H = SU(2) x U(1) x U(1), but for the reason
just given we cannot make the identification in the straight-forward way.
The SU(2) factor should be regarded as an isospin subgroup of SU(3). The
generators of the two U(1) factors should be linear combinations of the
hypercharge generator of SU(3), an arbitrary generator of SU(2) and the
U(1) of Ggpr- Now that we have established the right homogeneous space,
calculating the dimension of G/H is simple:

dim(G) = dim(SU(3) x SU2) x U(1)) =8 +3+1=12, (3.19)
dim(H) = dim(SU@2) xU(1) xU(1)) =3+1+1=5.  (3.20)

So the dimension of the homogeneous space G/H and the minimal dimension
of X is
min(k) = dim(G/H) = dim(G) — dim(H) = 7. (3.21)

This important result tells us that the minimal dimension in which we can
hope to construct the Standard Model group as a Kaluza-Klein reduction of
the gravitational field is dim(M) = 4+ 7 = 11. It is a surprising fact that
this number of dimensions coincides with the maximal dimension one can
define a supergravity theory in. Had the interactions of the fundamental
particles obeyed a different gauge symmetry, we would not have been able
to pursue this type of construction.

Note that this result holds if we consider the Kaluza-Klein mechanism to
be the only mechanism responsible for generating gauge symmetry. There
are many other well-known mechanisms to do this. For example, the five
String Theories are perfectly consistent theories in ten spacetime dimen-
sions and lead to symmetry groups that easily contain the Standard Model
group. The phenomenologically most attractive of these theories, the Het-
erotic String Theory, has Eg x Eg or SO(32) gauge symmetry. In compact-
ifications of the Heterotic String it is often a more interesting question of
how to break this symmetry to the Standard Model than it is to generate
more gauge symmetry. But still, the considerations made in this section add
to the feeling that something special is going on in eleven dimensions.

3.2.3 Action of eleven-dimensional supergravity

As we briefly described in the introduction, in eleven dimensions there is a
unique supergravity theory. This theory is /= 1 supersymmetric, which
means the it has only one supersymmetry generator @),. This generator is a
Majorana spinor and in eleven dimensions such a spinor has 32 components
(see Appendix B of [64]). This generator satisfies the algebra

{Qo, Qp} = —2PuThj. (3.22)

The massless bosonic fields in the supersymmetry multiplet of a D-dimen-
sional theory form representations of SO(D — 2). Note that massive fields
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form representations of SO(D — 1) and the way we go from the massive to
the massless case is by using the massless field equations, i.e. by going on-
shell. This removes one polarization of the field, resulting in the SO(D — 2)
representation. In eleven dimensions, there are 32 supersymmetries and
when we have a theory with this number of supersymmetries, the multiplet
is unique and only known on-shell [72]. In eleven dimensions the multiplet
contains two bosonic representations of SO(9): a traceless symmetric two-
index (spin 2) tensor gpsn and an anti-symmetric three-index (spin 1) tensor
Cunp- The first is of course the graviton and has % -9.10—-1 = 44
components. The anti-symmetric tensor is most easily written as a three-
form and has (§) = ;- 98- 7 = 84 components. So the bosonic part of
the multiplet in total contains 44 4+ 84 = 128 states. The fermionic part
contains only a single (spin 3/2) Majorana vector-spinor field (or Rarita-
Schwinger spinor) s, called the gravitino. The spinor index is usually
suppressed and takes 16 values. The vector index of course takes 9 values.
The total number of independent components is reduced by a condition on
the trace [64], leading to in total 16 - 9 — 16 = 128 states in the fermionic
sector. So the massless irreducible representation contains 256 states, half
of which are bosonic and half of which are fermionic. The fact that there
are as much bosonic as fermionic degrees of freedom is a natural feature of
any supersymmetric theory, as the generators (3.22) transform bosons into
fermions and vice versa.

Not only the field content of eleven-dimensional supergravity is unique.
The action we can make with these fields is unique® as well and has been
constructed already quite some time ago in [21]. The complete action, in-
dicated by Si1, contains a purely bosonic part Sg and a fermionic part Sg,
or in other words Si11 = Sp + Sp. The bosonic part of this action, written
conveniently in differential geometric notation, is

1 1 1
Sp=-—5 [R¥1—--GAxG—=-CAGAG]. (3.23)
2&11 M1 2 6

Here k11 is the eleven-dimensional gravitational coupling constant (related
to the eleven-dimensional Newtons constant by 2x%; = 167GL) and G is
the field strength of the three-form gauge field,

GMNPQ = 48[MCNPQ]7 or G=dC. (3.24)

The first term is the Einstein-Hilbert action in eleven dimensions and the
second term can be seen to be the eleven-dimensional analogue of the stan-
dard Maxwell action. This might become clearer if we write these terms of

8Without going into too much detail, we note that this is basically a consequence of
the fact that theories get more restricted if we add more supersymmetries. In eleven
dimensions the large number of supersymmetries (32) is enough to reduce the number of
possible consistent theories to one.
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the action in the ‘standard’ form

1 1
Seg +Svu = 22 dllz\/g[R — —GMNPQGMNPQ]. (3.25)
K1 48

The third term in (3.23) is a so-called Chern-Simons interaction term and
will prove to be very important later on®. It can similarly be written in
components (which are contracted with the totally anti-symmetric tensor),
but we will not do so as we will not gain much with it.

The fermionic part of the eleven-dimensional supergravity action is some-
what more complicated. It is given by

1 _ w+w

Sv o= 5o dllz\/g[le"MNPVN( )b (3.26)
k{1 2
1

T (J,MFMNPQR%N n 12IZPFRS¢Q) (Grors + GPQRS)].

In this action some new notation is introduced, which we shall now explain.
First of all, the the eleven-dimensional gamma matrices I'™ appear with
multiple indices. This stands for a totally antisymmetric product

I-\Nl...Np — I"[Nl e FNP] (3.27)

Furthermore, 1, := z'z/);rwfo and wps4p is the spin connection, a definition
of which can for example be found in [36]. Vs (w) is the covariant derivative
which acts on ¥ as

1
Vu(w)yn = 0w + ZWMABFAB”(ﬁN. (3.28)

Finally, a hat over a field indicates the supercovariant version of the field. A
supercovariant field is defined in such a way that its supersymmetry variation
does not involve derivatives of the infinitesimal Grassmannian parameter of
the transformation. The supercovariant versions of the spin connection and
the field strength are defined as

. 1
WMAB = WMAB*+ §¢PFMABPQ¢Qa (3.29)
Gunrg = Gunpq+3UmTnpig. (3.30)
The fact that these fields appear in the action in the combinations 1 (w + @)

and %(G + G) ensures that only the supercovariant fields & and G appear
in the equations of motion.

“Note that although the action presented here is unique and of the form (3.23) at tree-
level, higher order quantum effects force us to modify the action to maintain consistency.
Specifically, at one loop complicated terms need to be added to cancel discrete-symmetry
anomalies coming from this Chern-Simons term. See [29] for a short discussion.
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To obtain the equations, we vary the action with respect to the fields
gmnN, Cynp and ¥ as usual. Because of the complexity of the action, this
is quite a lengthy and tedious exercise, which we will not reproduce here.
The outcome of this calculation as given in [29] is

. 1 . 1,4 A 1 A A
Run (@) — §QMNR(U)) = E(GMPQRGNPQR - ggMNGPQRSGPQRSXSBU
. 1 A
rMmﬂvay—%%@N@“T—%%W”ﬂcmmﬂ¢pzo, (3.32)
~ 1 A A
VM((D)GMNINQNS + —ENI'"NHGN4...N7GN8...N11 = 0. (3.33)

1152

These equations might look a bit intimidating, so let us say a few words
about them. The first of these equations are just the Einstein equations with
the energy-momentum tensor given by some expression that is of quadratic
order in both G and %. The second bears resemblance with the massless
Dirac equation we are familiar with, if we forget about the terms involving
G. If we squint a bit, the third equation will start to look like a sophisticated
version of the Maxwell equations with source'®.

If we take the fermion-field to vanish (which we will often do), these
equations simplify a great deal. Equation (3.32) will then vanish identically
and in addition we can see from (3.29) and (3.30) that we can drop all
the hats. The third equation (3.33) will then take on a particularly clean
appearance if we write it in differential geometric notation:

d*G+%GAG=O. (3.34)

Besides obeying this equation, we note that because G is exact it is also
automatically closed, and hence satisfies

dG=0 or B[MGNPQR] =0. (335)

These equations represent the Bianchi identities for G.

We already know that this action has N'=1 supersymmetry and that it
should have eleven-dimensional general covariance, because it is a theory of
gravity. In the next subsection we will see that this complicated action has
a number of other symmetries as well.

3.2.4 Symmetries

The total supergravity action S11 = Sp + Sr and the equations of motion
(3.31)-(3.33) possess a number of important symmetries. In this subsection

10R eaders who own a copy of the Hitchhikers Guide to the Galazy are advised to look up
the standard techniques to lift the Somebody Else’s Problem Field that surrounds these
equations.
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we list what these symmetries are. To simplify notation, we now rewrite the
metric as an elfbein, using

gun(2) =: ey, (2)eB y (2)naB- (3.36)

For the same reason we did not derive the equations of motion, do not prove
these symmetries explicitly. We simply state that the action and equations
of motion are invariant under the following transformations [29]:

1. D=11 General Coordinate invariance (with parameter M)

sety = ety omeEN +Noney, (3.37)
0CynNp = 3CQ[MN(9P]§Q + anQCMNP (3.38)
S = YnomEN + NNy (3.39)
2. Local SO(1,10) Lorentz transformations (with anti-symmetric param-
eter ayup = —ap4)
(5€AM = —CYABeBM (3.40)
Cunp = 0 (3.41)
1
5¢M = —ZCKABFABlpM (3.42)

3. Three-form Gauge transformation (with an anti-symmetric parameter

Aun = —Anw)
setyy = 0 (3.43)
My = 0 (3.45)

The second of these transformations can more cleanly be written as
0C = dA, if we regard A as a two-form A = %AMNdzM AdzN.

4. Local N'=1 Supersymmetry (anti-commuting parameter 7)

1
sety, = —§ﬁI’A¢M (3.46)
3
0Cunp = =5l MNYP) (3.47)
. 1 A
pm = [VM(W) - ﬂ(FMQRST - 85?4TRST)GQRST]77 (3.48)

5. Odd number of space or time reflections together with

Cunp = —Cunp (3.49)
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The gauge symmetry of the C-field is actually quite easy to show, so we
will do that now. Because 6C = dA, we immediately see that 6G = d?A = 0.
Because the G-flux does not transform, all the terms in the action that
contain only G (and not C) do not contribute to the variation. So we
immediately see that the action transforms as

0511~ / AANGAG (3.50)
My
_ dANGAG) (3.51)
M1
- / AAGAG (3.52)
OM11
= 0. (3.53)

In going to the last line, we assumed the variation to vanish at the boundary,
i.e. at infinity. We postpone solving the equations of motion and a further
discussion of these symmetries to later chapters. We will instead continue
by showing what lies beyond the supergravity approximation and briefly
introduce a number of concepts that are important for learning more about
M-theory.

3.3 Towards M-theory

We now have mentioned M-theory several times, but we still do not know
what this theory is. Although we would have liked to be able to thoroughly
explain this in a few pages, the size of the subject, the many different per-
spectives from which it is being investigated and the uncertainty about its
precise formulation makes this impossible. So, this section will only give
the reader a nodding acquaintance with the subject and will mainly serve
as a guide to the literature. The analysis in the remainder of this thesis will
primarily be based on the low-energy supergravity approximation, so this
little bit of extra information is enough for our purpose. The outline of this
section is that we first quickly review what kind of considerations led to the
introduction of M-theory and then describe a number of tools that are being
used to study the theory.

3.3.1 M-theory < Type ITA String Theory duality

We start this section by considering the simplest possible Kaluza-Klein com-
pactification of eleven-dimensional supergravity, namely the one on S'. We
consider only the bosonic part of the eleven-dimensional supergravity action
(3.23) and take 2!? = y to be periodic over 2rR. In such a compactification
we expect the eleven-dimensional metric g}} \ to split into a ten-dimensional

metric g, a gauge field A, coming from g, and a scalar ¢ coming from
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9%5,10- This scalar will be called the dilaton. We use the following ansatz
for the metric to exhibit this splitting:

ds® = gitydzMdz" = e4¢/?’gi?,dx“da:” + e 2B(dy + A, de™)?. (3.54)

This is a generic metric ansatz for a spacetime of the form R'® x S* that is
invariant under translations in the periodic dimension. The factors with the
peculiar powers of the dilaton are included to make the final answer look
familiar.

Of course, the bosonic field content of eleven-dimensional supergravity
also contains the three-form Chsyp. We expect this field to similarly split
into a ten-dimensional three-form C),,, and a two-form B, . From general
Kaluza-Klein theory we know that states with momentum in the compact
dimension will have masses of size

2 n’

(3.55)
We now insert the ansatz for the metric and the C-field into the action and
integrate over y to obtain a ten-dimensional effective action. This effective
action will then contain terms for both the massless and massive fields. If
we now take R — 0, the massive fields become infinitely massive and will
decouple from the physics. Therefore we discard the massive field. If we
do this and carry out the integration over y, we will arrive at the following
effective ten-dimensional action:

1 1
S = —Q/dlox\/g[e_2¢(7z+4au¢a“¢_ 75 CurpC*")
2k, 12
]- v ]‘ vpo
= 1 BuwB" = 2 Cup "’ ] (3.56)
1
— —— | Ba A
4&%0 / 2 G4 A G47

where we have defined /ﬁl%o = k2, /27 R. This is exactly the Type ITA super-
gravity action in ten dimensions!

We explained in chapter 1 that the main development leading to the
concept of M-theory was the discovery of dualities. One of the ways to study
dualities is by looking at the low-energy limits of the dual theories. As we
mentioned, these low-energy limits are given by supergravity theories. The
circle compactification of eleven-dimensional supergravity we just described
looked like an innocent exercise in Kaluza-Klein compactification, but is
actually indicative of something much deeper. To understand what is going
on here, look at figure 3.1.

One of the fundamental scales in String Theory is set by the Regge slope
o, which related to the string-length by o/ = (2. The limit in which o/ — 0,
indicated in figure 3.1 by (b.), is basically the long-distance or low-energy
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high <— Energy — low

M-theory 11D Supergravity | D =11
strong A
T |
Coupling | R—0 (a)
\J |
weak |

Type IIA

String Theory o =0

Figure 3.1: Relation between M-theory, Type IIA String Theory and their
low-energy limits

limit of String Theory in which the strings start looking and behaving like
point particles. If we take this limit in Type ITA String Theory, we end up
with the effective Type IIA supergravity action given above. Furthermore,
we have just seen that if we take route (a.) from the eleven-dimensional
supergravity theory, we end up at this same theory. Now note that [54] the
radius of the compact dimension is related to the string coupling constant
g*! and the eleven-dimensional Planck length, roughly by

g~ (%)3/2. (3.57)

Basically because of this, it was conjectured in [76] that if we take the strong
coupling limit of Type ITA String Theory, an extra dimension appears and
we will end up with some eleven-dimensional theory, whose low-energy limit
is eleven-dimensional supergravity. But even if we know this, we still do
not know what this theory is, because we only know string theory well as a
perturbative theory and this perturbative expansion stops to be valid if we
go to strong coupling.

Then also in [76] it was conjectured that all string theories are related
in a similar way to each other and to eleven-dimensional supergravity. This
was the birth of M-theory and sparked the so-called “second string theory
revolution”. So, the duality between M-theory and Type ITA String Theory
is only one of many dualities that relate the different string theories to each
other and to M-theory. A small number of dualities directly involving M-
theory directy is listed in table 3.2. For more information about dualities,
see for example [64], [54], [8] and [67].

"'Note that in string theory g is not a free parameter, but is actually given by the
expectation value of the dilation, g = exp({¢}).
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‘ M-theory on ‘ Effective Theory ‘ Dual To ‘

T2 IIB on S* ITA on S! (T)

Stxsljz, |Hoon ST | He on S (T)
K3 | Mon K3 | He on 7% (S)
57y | MonT1%/7, | IIB on K3 (T)

Table 3.2: Some duality relations directly involving M-theory.

3.3.2 Tools to study non-perturbative effects

The Standard Model and all the five String Theories are in essence perturba-
tive theories. This means that interactions of the fundamental constituents,
i.e. the particles and strings, are calculated by making an expansion in
their corresponding coupling constants. Such an expansion is only valid
for a small number of interacting degrees of freedom and for small values
of the coupling constant. But we know already from quantum field theory
that there are many non-perturbative effects that are essential to under-
standing the observed behavior of the fundamental particles and the way
they interact. The most well-known phenomena are quark confinement, the
Higgs mechanism and dynamical symmetry breaking. Besides these quan-
tum effects, we can already at the classical level see that it is important to
know how to describe non-perturbative physics if we look at topologically
non-trivial field configurations like solitons, instantons and monopoles. As
the five String Theories and M-theory should in a certain limit contain the
Standard Model, the mentioned non-perturbative effects are with no doubt
present in these theories as well. In all likelihood, in these theories other
non-perturbative effects are important as well. Until not too long ago it was
quite hard to say anything useful about such effect in String Theory, but
in the last few years new methods based on supersymmetry and D-branes
have greatly enhanced our ability to learn more about the non-perturbative
physics of String Theory and M-theory.

One of the best tools for testing dualities (beyond their low-energy field
theory) and one of the best probes into the non-perturbative physics, are
so-called BPS states. As explained in [67], BPS states are states that are
invariant under only a part of the supersymmetry algebra and are character-
ized by two important properties: they belong to a so-called short multiplet
of the supersymmetry algebra and their mass is completely determined by
their charge. These two properties have analogues in the representation
theory of the Lorentz group. For example, a massless representation of the
Lorentz group is smaller than that of a massive state (compare the two
polarisations of the photon to the three polarisations of a massive vector).
The analogue of the second property is that a spin 1 representation of the
Lorentz group that contains only two states, must necessarily be massless.
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BPS states are extremely important for studying non-perturbative effects,
because the BPS property is independant of the values of the moduli in
the theory. Because the string coupling g, = e{?) is one of such moduli,
the BPS property will carry over to the non-perturbative regime. There-
fore these states can be used as important probes into the non-perturbative
physics and provide us with a way to test dualities beyond the level of their
low energy effective theories. We refer to [67] for more details.

Another important non-perturbative effect is the appearance of D-branes.
We will not give a treatment of these objects, because this can be found in
many places in the literature. [63]/[64] is an excellent starting point. The
only thing we mention is that D-branes in String Theory are object de-
fined by the property that open strings can end on them. M-theory also
contains brane states, but these are slightly different. A very handwaving
way to see that they are present, is by first noting that a (one-form) gauge
field in for example quantum electrodynamics couples naturally to the one-
dimensional world-line of a particle (electrically) charged under the gauge
group. Generalizing this, we infer that there must be a two-dimensional ob-
ject in M-theory, whose three-dimensional world-volume (electrically) cou-
ples naturally to the three-form gauge field C. There exist indeed solitonic
solutions to the classical equations of motion of eleven-dimensional super-
gravity that have this property: they are the so-called M2-branes or M-
theory membranes. This is the reason why one of the explanations of the
name M-theory is Membrane Theory. We further note (without explaining)
that M-theory also contains objects that are the magnetic duals of the M2-
branes. These are five-dimensional objects, analogously called M5-branes.
For more about brane-solutions of M-theory and how and when these objects
are BPS states, see for example [69].



Chapter 4

Smooth M-Theory
Compactifications

4.1 Introduction

In this chapter we explicitly carry out the Kaluza-Klein compactification
of eleven-dimensional supergravity on a smooth seven-dimensional manifold
X to obtain an effective four-dimensional field theory. Any N > 2 super-
symmetric theory in four dimensions is CPT-invariant and will therefore
not allow for chiral fermions [5]. On the other hand, we would still like a
supersymmetric effective theory, because we expect supersymmetry to be
broken at a scale that is much lower than the compactification scale. This
is augmented by the fact that supersymmetric compactifications are under-
stood much better than non-supersymmetric compactifications. So, these
considerations lead us to the requirement of A/ =1 supersymmetry for the
effective four-dimensional theory. If we make this demand in section 4.3 it
will finally become clear why G2-manifolds are so important to us: they are
the compactification manifolds that preserve exactly N =1 supersymmetry!

We set the stage by making a number of assumptions on the structure
of the vacuum. Then we will how under these assumptions N =1 supersym-
metry leads to X having Go-holonomy. Then we will determine the massless
spectrum of the theory with the method of section 3.2.1 to find that this
first effort does not do much for us in terms of obtaining realistic parti-
cle physics. Most notably, the massless spectrum does not contain chiral
fermions that are charged under a non-Abelian gauge group. To be precise,
the effective theory resulting from the smooth G2 compactification will be
four-dimensional A" =1 supergravity coupled to b2(X) Abelian vector mul-
tiplets and b3(X) massless neutral chiral multiplets. This will not make us
abandon the idea of compactifications on G2-manifolds, because it will turn
out that singular Go-manifolds can fix the problems we find here. General
references for this chapter are [29] and [5].

52
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4.2 Ricci flat Supergravity vacua

As we have seen, at low energies M-theory admits a description in terms of
eleven-dimensional supergravity. In the Kaluza-Klein analysis we perform
in this chapter, we make the assumption that the full eleven-dimensional
spacetime is a Riemannian product of the form (M1, g) = (Max Mz, g4 X g7),
so we do not allow for a warp-factor. This means of course that we assume
the background metric to be of the form

<9/w> = éuu(x)a (gmn) = Gmn(y), <g;m> =0, (4.1)

where we take g, to be a irreducible metric. The supergravity approxima-
tion of M-theory is only valid on smooth spacetimes whose smallest length
scale is much larger than the eleven dimensional Planck length. This im-
plies that the supergravity description is only valid if the internal space My
is smooth and large compared to the eleven dimensional Planck length. On
the other hand, M7 also has to be compact and small enough for the massive
Kaluza-Klein modes coming from it to be so heavy as to be unobservable.
As we have seen in chapter 3 the eleven-dimensional N'=1 supergravity su-
permultiplet contains three fields: the graviton gyn, a gravitino ¥, and a
three-form gauge field C'yynyp. The first step in obtaining realistic compacti-
fications is to determine possible vacua of M-theory. A vacuum of M-theory
is defined as a tuple (M, (g),(C), (¥)), such that (g), (C') and (¢)) satisfy
the equations of motion (3.31)-(3.33) of eleven-dimensional supergravity.

As said, these equations too complicated to solve in all generality, so
we have to make a number of simplifying assumptions. As we explained
in section 3.2.1, we demand the four-dimensional part of the vacuum to be
Lorentz-invariant and maximally symmetric, so it should be one of the spaces
in table 3.1. An important consequence of the requirement of maximal
symmetry is that the vacuum expectation value of any fermion field has to
vanish. In particular, the vacuum expectation value of the gravitino field
should be zero:

(m) =0 (4.2)

This means that the equation of motion for the v-field (3.32) is trivially
satisfied, so we can completely ignore it. The equations for the metric (3.31)
and the C-field (3.33) thus carry all the information about the vacuum. And
in these equations we can now drop all the hats, as explained in chapter 3.
Because these are relatively complicated set of second-order equations, we
make a further simplification by setting (G) = 0. Solutions with (G) # 0
also exist (for example the Freund-Rubin solutions [31]), but these solutions
are considerably more complicated and have some problematic properties.
See chapter 6 for a discussion. If we make this assumption, the equation of
motion for C,

d*G+%G/\G:0, (4.3)
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is trivially satisfied.
The only non-trivial equations that remain are the Einstein equations
with vanishing energy-momentum tensor,

1
Run — §9MN'R =0. (4.4)

But if we contract this equation with g™, we find that R = 0, so we have
to conclude that

Ruyn =0. (4.5)
In other words, the complete eleven-dimensional spacetime has to be Ricci-
flat. Now consider the Christoffel symbols

1 0 0 0

Ty = §QPS{ agﬁf + ag;\/]fvp - ag;];JPN } (4.6)
It is not hard to see from this equation by looking at the various possibilities,
that because of our assumption of a Riemannian product spacetime (i.e.
because of (g,n) = 0), all the mixed components of the Christoffel symbols,
such as I'? . vanish. This implies that

muv
Ruw =R ,p, =R, (4.7)

and that R, does not depend on the metric g7. Similarly we find that R,
is strictly the Ricci tensor of (M7, g7) and does not depend on g4. So, the
Ricci curvature tensor splits completely in a four and a seven-dimensional
part. This means that the assumptions we have made lead us to vacua that
are Ricci-flat in both the macroscopic and the internal part of spacetime,

Ry = 0, (4.8)
Rom = 0. (4.9)

We also see from table 3.1 that this fixes My to be Minkowski space (R*, 7).

We would like to note that the fact that the macroscopic part of space-
time is four-dimensional Minkowski space is a consequence of our assumption
that the G-flux vanishes. If on the other hand we had assumed the vacuum
to be of the form (Mi1,g) = (R* x M7,n x g7), with R* Minkowski space
and My arbitrary but compact, (G) = 0 and Ricci-flatness of My would
have followed by demanding the vacuum to be supersymmetric. See [19] for
a proof of this statement. If we allow for a warp-factor, we find different
conditions on the G-flux [51]. Carrying on the program in the way we do in
this chapter, would then lead to G>-manifolds with torsion.

In the next subsection we will learn important things about the structure
of the internal space M, from supersymmetry considerations, but we want
to mention that at this point there are still many possible vacua. We could
for example take M7 to simply be the seven-torus 77. Why this does not
lead to interesting theories will be clear after reading the next section. We
will list a number of interesting possibilities for other Ricci-flat vacua with
some information about their relevance in subsection 4.5 (cf. table 4.1).



4.3. SUPERSYMMETRY AND Gy HOLONOMY 55

4.3 Supersymmetry and G5 holonomy

By doing the above analysis, we have established that the four dimensional
spacetime should be Minkowski space. In this subsection we will try to
learn something more about the internal space from supersymmetry consid-
erations. Since eleven-dimensional supergravity is N'= 1 supersymmetric,
the vacuum should be supersymmetric as well. This means that we demand
the supersymmetry transformations (3.46) (with @ = w and G = @) acting
on the vacuum to vanish,

1
dety =~ (vu) =0, (4.10)
3
Cunp = MmN (¥p)) =0, (4.11)
1
Sy = Vigw)n - @(P;QRS — 805 TQRS) (Gpors)n = 0. (4.12)

But because our vacuum has (¢5s) = 0, equations (4.10) and (4.11) vanish
identically. So only equation (4.12) leads to a non-trivial condition on the
vacuum. Of course our current vacuum also has (G) = 0, so equation (4.12)
further simplifies to

Vu(w)n = 0. (4.13)

On a product manifold like the one we are compactifying on, the I'-
matrices can be rewritten as

I* = 4*@1 (4.14)
' = 39", (4.15)

where T'® and I'* satisfy the four and seven dimensional Clifford algebra,
respectively. In a way similar to how we saw that the Christoffel symbols
with mixed indices vanish, we can see that the mixed components of the
spin connection vanish. Because of these two facts, the covariant derivative
V = Vudz™ decomposes into a four and a seven dimensional part,

1

VvV = (8M + ZwMABFAB)dzM (4.16)
1 1

= (9, + wagraﬁ )dz" + (O, + Zw,,mbra”)alym (4.17)

1 1
= (O + Zwuagyaﬂ ® 1)dz" + (O, + Zwmab]l ® yab)dym (4.18)

= V4@1+1Q V5. (4.19)

As explained in [64] and [72], in eleven dimensions the smallest possible
spinor representation of SO(1,10) has 32 real components. By compactify-
ing on a product manifold, this tangent space group is explicitly broken to



56 CHAPTER 4. SMOOTH M-THEORY COMPACTIFICATIONS

S0O(1,3) x SO(7). This inspires us to decompose the 32 component spinor
as 32 = 4 ® 8 like

n(z,y) = e(z) @ 6(y). (4.20)

Because 7 is an anti-commuting object and because we want € to have the
usual statistics associated with a spinor in four dimensions (i.e. be anti-
commuting), we have to demand that # is a commuting object. We do not
have to be troubled by the question of what it means for a spinor to commute,
because this is an object living in the internal space and our intuition is
purely based on observations in the macroscopic part of spacetime. We
can use these two decompositions to find a solution to (4.13), which is now
written as

Vie(z) ® 60(y) + e(x) @ V70(y) = 0. (4.21)

But in Minkowski space we can always find a set of four constant spinors,
so the condition for the vacuum to be supersymmetric finally becomes

V70(y) = 0. (4.22)

Taking all these considerations into account, the total number of solu-
tions of (4.13) will thus be four times the number the number of covariantly
constant spinors on M7;. We now assume that the supersymmetry in the
four-dimensional effective theory is generate by generation Q7 (I = 1,..,N),
where « is a spinor index and N indicates the number of supersymmetries.
But as explained in [64] and [72] in D =4 a spinor-index « runs from 1 to
4. But this then also implies that A is equal to the number of solutions of
(4.22), i.e. N is given by the number of covariantly constant spinors on Mjy.
So we are now looking for a Ricci-flat, seven-dimensional manifold that ad-
mits exactly one parallel spinor. Luckily, we know from Proposition 2.20 and
Corollary 2.22 that seven-manifolds with exactly one covariantly constant
spinor exist: they are the G2-manifolds we worked so hard for to thoroughly
introduce in chapter 2. We can make this statement even stronger. We know
from the discussion above (2.57) that the group G2 can alternatively be de-
fined as that subgroup of SO(7) that has exactly one covariantly constant
spinor. So, here we are indeed forced to consider manifolds of G2-holonomy
if we consider supersymmetric M-theory compactifications on irreducible
manifolds’.

After the work done in the last two sections, we now have enough infor-
mation about the vacuum to be able to determine the field content. In the
next subsection we will perform the Kaluza-Klein analysis of M-theory on a
manifold (R* x X, n x g), with X a compact Ge-manifold, to do just this.

1See below for a short discussion about compactification on reducible or product man-
ifolds.
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4.4 Kaluza-Klein reduction on a GGo-manifold

After having established the properties of the vacuum in the two previ-
ous subsections, we will now derive the field content of the effective four-
dimensional theory. Following the Kaluza-Klein procedure, we do this by
considering small fluctuations of the fields around their classical vacuum
expectation value?,

gun(z,y) = (gun(z,y)) + dgmn(z,y), (4.23)
CMNP(.TC,y) = (CMNp(x,y)) -I—(SCMNP(."E,y), (4.24)

where in the last line we have used (¢3/) = 0. Reviewing quickly section
3.2.1, we now look for fluctuations of the fields that are also solutions of the
equations of motion. To find these, we substitute the fluctuations into the
field equations and keep terms that are first order in the fluctuations. After
this we use the Kaluza-Klein ansatz (i.e. after expanding the fluctuations
in eigenfunctions of the four dimensional mass-operator) and subsequently
determine the massless field-content by only keeping the zero-eigenvalue
eigenfunctions.

4.4.1 Expansion of the C-field

To begin with, we substitute C' = (C) + dC in the equation of motion (3.34)
and expand to first order. Because we have put (G) = (dC) = 0 and the
equation of motion involves only G and not C, the only terms that survive
are the ones involving the fluctuations. Keeping only terms linear in the
fluctuations, we find

d*dG+%5GA5sz*5G:d*d60:O. (4.26)

Taking the Hodge dual of zero will of course also yield zero, so we can write
this equation as

(xd*)d6C = dTdsC = 0. (4.27)

Now remember that a solution to the equation of motion is invariant under
the variation (3.44). This will thus in particular be true for §C. We will use
this gauge symmetry to put 6C in a particular gauge. For this note that
any three-form C®) can be written as

CO) — da® 4 di D 4 A®), (4.28)

*Note that we now switch to a slightly different notation. Do not confuse the no-
tation of these fluctuations with the variation of the fields under a certain (symmetry)
transformation.
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with a € Q3(X), g € Q*X) and v € H3(X). If we now act with df on
this equation, we find dfC®) = dtda. If we now take C®) = §C and use its
gauge symmetry to make the transformation 6C — §C — da, we see that we
can always put 6C into the so-called Lorentz gauge,

d'6C = 0. (4.29)
If we choose this gauge, then equation (4.27) can be written as
(dtd + dd")6C = A116C =0, (4.30)

which is the eleven-dimensional Laplace equation.

Since we have taken spacetime to be a Riemannian product R®! x X, the
eleven-dimensional Laplacian separates in a four- and a seven-dimensional
part:

A110C = Ay0C + A76C = 0. (4.31)

From this equation we see that the seven-dimensional Laplacian can be iden-
tified with the mass-operator for the fields in the four-dimensional effective
theory coming from C. The Kaluza-Klein ansatz now tells us to expand the
fluctuations in a complete set of mass-eigenstates,

5C (z,y) = Zpi(x)ﬂi(y) + Z Al (z) A (y)
+Y B (x) AdF(y) + ) H'(2)g' (y). (4.32)
k l

In this expression p'(z), A%(z), B¥(x) and H!(x) are zero-, one-, two- and
three-forms on R*! and

o O(y) € Q3(X), such that A;Q(y) = )\’('3)Qi(y),

o Wi(y) € Q2(X), such that A7w’(y) = /\{Q)wj(y),

e af(y) € Q'(X), such that Aza*(y) = )\l(Cl)alc(y)
o and H'(y) € 0°(X) = F(X), such that A7H'(y) = Mg H'(y).

Since we are interested in the massless spectrum right now, we only consider
solutions with Aé3) = ’\€2) = )‘261) = )\l(o) = 0. Hodge’s theorem tells us [61]
that the space of harmonic p-forms on X, Harm? (X), is isomorphic to the p-
th cohomology group of X, Harm?(X) = HP(X). Consequently, the number
of massless (3 — p)-form fields in four dimensions is given by the p-th Betti
number of X,

dim(Harm? (X)) = dim(HP(X)) = bP(X). (4.33)
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With this knowledge, we can now rewrite the expansion as

b3 (X)
ny) = Y P ZAJ ) Awi(y)
=1

b!(X) b0(X)
+ Z BF(x) Ad¥(y) + Z H'(z)g'(y) 4 ... massive states...]. (4.34)
k=1

In section 2.3.3 we determined the Betti-numbers for manifolds of G2-ho-
lonomy. From equation (2.68) we know that 4°(X) = 1 and b*(X) = 0
and that b?(X) and bP(X) depend on the specifics of the Go-manifold. This
implies that we can reduce the expansion to

b*(X) b%(X)
0C(x,y) = Z Z Al (z) A (y)
i=1
+H(x)g(y) + [ ... massive states... ]. (4.35)

To make this expression even clearer, we write it in terms of the components
of the massless fields (i.e. with all the indices explicitly included),

b3(X)

6Crmnp(T,y) = P (@) Q0 (v), (4.36)
i=1
b?(X)

6Cmp(@,y) = AD (@)wid) (y), (4.37)
7j=1

0Cuwp(z,y) = Hup(x). (4.38)

From these equations we can easily read off what the massless fields in four
dimensions are that come from the three-form gauge field C. From (4.36)
we see that there are b3(X) real four-dimensional scalars. But because of
the symmetry (3.49) of the C-field these transform not as ordinary scalars,
but as pseudo-scalars. Furthermore, equation (4.37) shows that the four-
dimensional theory contains b?(X) vector fields A,(f) (). If we look at how
these vectors transform under the transformation (3.44), we see that these
are in fact Abelian gauge fields. In equation (4.38) we have dropped the g(y)
factor, because any harmonic function on a compact manifold must be con-
stant. This constant has been absorbed into H(x). But more importantly,
on-shell a three-form in four dimensions does not have any dynamical de-
grees of freedom (for a discussion of on-shell counting, see section 3.2.3). So,
H(x) does not make any contribution to the four-dimensional physics.
Since C' and ¢ are part of the same supermultiplet in eleven dimensions,
we expect the four-dimensional fields found above to have superpartners
coming from the Kaluza-Klein expansion of g. This believe is strengthened
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by the fact that a generic Go-holonomy metric contains b3(X) moduli (see
proposition 2.24); so we expect another b*(X) scalars to come from the
expansion of the metric, which can then combine with their superpartners
from the C-field to form supermultiplets. But let us not get too far ahead
of ourselves and just start with the Kaluza-Klein expansion of g.

4.4.2 Expansion of the metric

We now repeat the procedure followed above for the equation of motion
(3.31). This means that we should substitute (4.23) and (4.24) into this
equation and again expand to first order. Because the energy-momentum
tensor (the right hand side) is quadratic in the fluctuations of C, we again
end up with a condition for Ricci-flatness,

Run(gpq) =0, (4.39)

but this time evaluated using the perturbed metric (4.23). So what we now
need to calculate is the variation of the Ricci tensor to first order. This cal-
culation is done in appendix C with the result that the first-order variation
is given by the so-called Lichnerowicz operator (C.15). It is important to
note that during this calculation we have gone to a specific gauge for metric.
It is the so-called harmonic gauge, in which the metric satisfies

1
VMsgun — 5v]\,égMM = 0. (4.40)

In the case at hand, we have that 7O€W = Rmn = 702,m = (), so the Lich-
nerowicz operator simplifies to

ALdgun = VZ3gun — 2Rypngdgt? = 0. (4.41)

We will now study the solutions of this equation for three different sets of
indices.

1. We begin by investigating the equation for ég,,. In this case the
equation of motion simplifies to

AL‘Sg/u/ = VnguV_2éuPqugPQ
= V25gu, — 2R,pn0g""
= (Vi+V3)égu =0, (4.42)
where IO%M,W, = 0 because the four-dimensional part of spacetime is

just Minkowski space. Again V? splits into two parts, because our
vacuum is a product space. We now make the Kaluza-Klein ansatz

S ,) = W () (1), (4.43)
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with {t'} a set of eigenfunctions of V2. Substituting this in the equa-
tion of motion gives

Apdgu = Y [(Vihi )t + b, V3]
%
= > [(Vihi, + Nhi)t] =0. (4.44)

i

So now we see that the massless field coming from this ansatz (the
unique solution with A/ = 0) in four dimensions is a symmetric (0, 2)
tensor that obeys the Laplace equation (on a curved manifold) V3h,, =
0. This field can be identified with the four-dimensional graviton.

2. We now turn to the equation of motion for dg,,. We explained in sec-
tion 3.2.1 that these are the fluctuations from which the non-Abelian
gauge fields in four dimensions originate, so this is a particularly im-
portant case. Now the Lichnerowicz equation again simplifies to the
Laplace equation in curved space, because the vacuum Riemann tensor
with mixed indices vanishes. Explicitly, we get

V26g,n = (V3 + V3)3gum = 0. (4.45)

As we explained in section 3.2.1, we now have to make the ansatz

6gun(ajay> = ZAL(Q:)K:L(?J) +teoe, (446>

where Ki(y) (i = 1,...,dim(G) are Killing vector on X and G is
its isometry group. But proposition 2.26 showed that a Ge-manifold
admits no Killing vectors! Therefore, we have to conclude that no
massless modes arise from 6g,,. In particular, we will not find any
Yang-Mills gauge fields in the four-dimensional effective theory. The
only gauge symmetry we have is generated by the Abelian gauge fields
coming from the C-field.

3. Finally, we focus on possible massless modes coming from §gm,,- The
Lichnerowicz equation for the fluctuations tangent to X is

v2‘59mn - 2j%mpnqégpq =0. (4.47)

Here V? is still the full D =11 operator, which of course again can be
split as V2, = V4 + V2. If we do this, we see that the Lichnerowicz
operator in seven dimensions, Ay, 7, can be identified with the mass-
operator in four dimensions,

(V?l + AL,7)69mn =0. (4.48)
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So now we again make the Kaluza-Klein ansatz, but instead of ex-
panding in eigenstates of the Laplacian, we expand in eigenstates of
the Lichnerowicz operator:

where . o
Substituting (4.49) in (4.48) gives us
(Vis'(m) = N's" () b (y) = 0, (4.51)

so the zero eigenvalue modes of the seven-dimensional Lichnerowicz
operator Ar 7 give us massless scalars in four dimensions. It can be
shown [5] that if we define a three-form on X by

Wmnp += ‘Pn[pqhﬂnv (452>

with ¢ the Go-invariant three-form on X, the following equivalence
can be established:
Arh=0< Aw = 0. (4.53)

This implies that there are exactly b3(X) massless scalars coming from
the expansion of the metric components tangent to X. We can combine
these scalars with the pseudo-scalars we found from the expansion of
C into complex scalars like

'(y) =" (y) +p'ly) (i=1,...,05(X)). (4.54)

We would like to note that in [5] it is shown that these complex scalars
can be rewritten in a natural way like

Bi(y) = / lp+ 80 +iC). (4.55)

Here the «; form a basis of the third homology group and ¢ is the Go-
invariant three-form and Jy are the fluctuations of the metric rewritten
in terms of ¢.

In principle we could now repeat the same procedure for the gravitino

field 95 to determine its massless spectrum. But because our vacuum is
N =1 supersymmetric in four dimensions, we can completely determine
the field content already with our current knowledge. All the bosonic fields
we have found will get superpartners from the Kaluza-Klein reduction of
Y. We will find b%(X) + b3(X) Majorana spinors plus a superpartner of
the four-dimensional graviton, the gravitino. These spinors combine with
the bosonic fields we found into b%(X) vector multiplets and b*(X) scalar
multiplets (each of which contains a scalar and a pseudo-scalar), as was
originally found by [62].
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4.5 Other Ricci flat compactifications

On of the assumptions we made was that the metric of the compact manifold
X is irreducible. As explained in chapter 2 this basically excludes compacti-
fication manifolds that are products themselves. Generically such manifolds
have a smaller holonomy group, leaving more supersymmetry unbroken and
therefor leading to effective field theories with N > 1 supersymmetry. We
would like to mention here that there is at least one other way to obtain
N =1 supersymmetry in four dimensions.

As we just mentioned, there are a number of other solutions to the equa-
tions of motion that are compatible with the assumption of Ricci-flatness,
but not with the irreducibility of the compact metric. For example, we can
use the simplest possible seven-manifold, the seven-torus 77, to compactify
supergravity. This manifold is Ricci-flat and has a trivial holonomy group.
Because the holonomy group is trivial, every spinor is covariantly constant
and thus we get maximal N =8 supersymmetry in four dimensions. This
theory was constructed in [20]. Another example of a well-known Ricci-flat
vacuum is R* x K3 x T3, whose four-dimensional effective theory was con-
structed in [28]. K3 has holonomy group SU(2) (see Appendix B), which
implies that half of the supersymmetry is broken upon compactification on
K3. The T? again conserves all supersymmetry, so we find V' =4 supersym-
metry in four dimensions.

Of course we have already seen that the compactification of eleven-
dimensional supergravity yields Type ITA supergravity in ten dimensions.
This ten-dimensional theory can thereupon be compactified further down
to four dimensions on a Calabi-Yau three-fold to yield a N'=2 supersym-
metric theory (the precise form of which depends on the chosen CY;. A
very important other compactification of eleven-dimensional supergravity
down to ten dimensions was constructed by Hofava and Witten [43] in 1996.
They conjectured that if supergravity in D =11 is compactified on the orb-
ifold S1/Zy (which is isomorphic to the unit interval, causing spacetime to
have two boundaries), we find the strong coupling, low-energy limit of the
Heterotic Eg X Eg String Theory in ten dimensions. It is this theory that
received the most attention of people doing String Theory phenomenology
before the “Second String Theory Revolution” in 1995, because if we com-
pactify this theory on a C'Y3 manifold, we get a N =1 supersymmetric field
theory in four dimensions. What makes this theory even more interesting is
that such compactifications lead to chiral fermions in the four-dimensional
theory! These results are summarized in table 4.1.
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| Vacuum | Effective theory |
R0 x ST Type ITA String Theory
RO x St/jz, | Eg x Eg Heterotic String Theory
R* x T N =8 SO(8) supergravity
REXK3XTS | N =4 supergravity coupled to 22 vector multiplets
R x CYyx ST | N =2 supergravity
R*x CY3 x §'/Zy | N'=1 supergravity

Table 4.1: Other (reducible) Ricci-flat M-theory vacua

4.6 Final Considerations

So to sum up our results until now, by compactifying M-theory (or more ac-
curately eleven-dimensional supergravity) on a manifold of G2-holonomy we
have found an effective N'=1 supersymmetric four-dimensional supergrav-
ity theory, coupled to b%(X) Abelian vector multiplets and b3(X) neutral
chiral multiplets. This clearly indicates that we are still far from our goal of
obtaining a realistic effective field theory from by compactifying M-theory.
Two of the basic ingredients of the Standard Model, non-Abelian gauge sym-
metry and chiral fermions charged under this symmetry, are not present in
the effective four-dimensional theory. As we will see in the following chap-
ters, it is possible to get these features from Gy-compactifications, but we
need another complication to accomplish this. The compactification space
should be a singular space with G-holonomy. The next chapter is devoted
to studying such compactifications. The only thing left is to make a few
comments about how the discussion in this chapter might be extended.

Low energy effective action

In principle it will be possible to derive a low-energy effective action for the
massless fields in the compactified theory right now. Because we already
know that we will not find the physics we are looking for, we will not pur-
sue this road. We refer to [64], chapter 17.4, for the general procedure of
constructing such an effective action and [62] for some words about this.

Wittens no-go theorem

First of all, we did all this work to compactify eleven-dimensional super-
gravity on a G-manifold only to find that no interesting physics can ever
result from these kinds of compactifications. To make things worse we now
bring up that we should not at all be surprised to get this result: Witten al-
ready proved in 1983 [74] that no chiral matter can be found if we compactify
eleven-dimensional supergravity on any smooth seven-dimensional manifold.
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This gives us an even stronger indication that we should be studying singu-
larities, branes or some other defects in our Ga-manifolds where the chiral
fermions might live. This is again exactly what we are going to do in the
upcoming chapter.

But if we knew this up front, then why do all this work? Well, the
analysis in this chapter taught us a lot about how to solve the equations of
motion of eleven-dimensional supergravity, showed us the explicit connection
between supersymmetry and manifolds of G5 holonomy and pointed out why
flux-free solutions get the most attention. We will be able to build on these
results in what lies ahead.

Anomalies

An important thing to check is whether the theory we obtained after com-
pactification is free of anomalies. A theory is said to contain an anomaly if
a certain symmetry of the classical theory is no longer present after quanti-
zation. A thorough examination of the presence of anomalies in all the men-
tioned M-theory compactifications and a good introduction into the subject
of anomalies is given in the impressive thesis [59] and references therein. We
simply mention that the theories we study are free of anomalies.



Chapter 5

M-theory on Singular
Go-manifolds

5.1 Introduction

We have seen in the previous chapters that in our search for realistic ef-
fective four dimensional physics within the M-theory framework, we were
led to compactifications on G2-manifolds. Although this setting held much
promise, carrying out the actual Kaluza-Klein compactification showed us
that it could not live up to it. It was already hinted at that we need singu-
larities or D-branes to have any hope of constructing a non-Abelian lower
dimensional gauge theory with chiral matter fields. In this chapter we will
explore the influence of (metric) singularities on the the lower-dimensional
effective theories of M-theory, while in the next chapter we will show the
importance of D-branes.

The presence of singularities complicates the analysis greatly. To be-
gin with, the supergravity description of M-theory is only valid on smooth
manifolds. So, if we want to work with singular spaces, we have to use new
techniques that stem from the full M-theory framework. For example, in
this chapter we explain how non-Abelian gauge symmetry is generated by
M2-branes wrapping cycles in ADE singular spaces. Secondly, the construc-
tion of spaces with the right geometry is not an easy feat. Using Joyce’s
construction it is possible to create compact manifolds with embedded ADE
singularities, but a compact space of Ga-holonomy containing an isolated sin-
gularity has not yet been constructed. And isolated singularities are needed
to find chiral fermions in the four dimensional effective physics. Therefore,
we are forced to use local descriptions of the spaces around a singularity.
This is usually no problem as most of the physics is determined by the
local properties of the space in the neighborhood of the singularity. And
non-compact Go-metrics with isolated singularities have been constructed
(as cones over CP3, SU(3)/U(1)? and S x S3). As a matter of fact, the

66
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asymptotically conical spaces described in section 2.3.4 which are smooth at
generic points of their moduli space, become exactly these conical spaces if
we go to special points in their moduli space.

The structure of this chapter is as follows. In section 5.2, we explain
in detail how non-Abelian gauge symmetry arises from ADE singularities.
Then in section 5.3 we will see that chiral fermions live at isolated singu-
larities of the compactification manifold. Finally, we briefly explain how
these two constructions can possibly be combined into a M-theory model
that leads to realistic particle physics.

5.2 Non-Abelian Gauge Symmetry From ADE Sin-
gularities

What will be made clear in this section is that the ADE singularities that
we introduced in section 2.2.2 can be used to generate non-Abelian gauge
symmetry in M-theory compactifications. Since our ansatz throughout this
thesis has been that spacetime of the form R*! x X, with X a G-manifold,
we would like to find out how to compactify on an X that contains ADE
singularities. Although it is possible to construct via the Joyce construction
compact Go-manifolds with embedded ADE singularities, the most impor-
tant physical implications of their presence can be understood by just con-
sidering a small neighborhood of these singularities. So it will suffice for now
to just make a local analysis of M-theory on an non-compact space with an
ADE singularity. These non-compact spaces are far easier to construct. In
other words, we now take X be of the form X ~ R® x C?/Tapg, so that
we are actually “compactifying” M-theory on R%! x C2/T4pp to seven di-
mensions. In section 5.3 we instead take X = Q x C2/Tapp and see what
properties the three-dimensional manifold @ has to have in order to define
a (non-compact) Ga-manifold with isolated singularities.

As the name implies, the gauge groups that can be constructed using
ADE singularities are one of SU(N), SO(2k) and Eg 7. We will mainly
focus on the SU(N) case, but note that a similar analysis can be done for the
SO(2k) case (by considering the singular limit of a so-called Atiyah-Hitchin
manifold). Currently no geometry is known that leads in a similar way to
one of the Fg7g groups. Typically the gauge groups constructed in this
way in M-theory model building function as a GUT-group, which should
later somehow be broken down to the Standard Model group. Because
the exceptional group Eg has been used to construct fairly realistic Grand
Unified Theories, it would be very interesting if such a metric could be
constructed.

We start by describing in great detail a smooth four-dimensional metric
on a resolved Ay _1 singularity. The space this metric describes will turn out
to contain (N —1) two-spheres. The M-theory membranes that wrap around
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these two-spheres will become massless if we deform the metric in such a
way that is becomes singular. These will consequently be responsible for
generating the non-Abelian SU(N) gauge symmetry in the effective seven-
dimensional theory. The logic of this section is based on [66], but is expanded
to far greater detail.

5.2.1 The geometry of gravitational instantons

In 1978 Gibbons and Hawking found a family of classical solutions to the
four-dimensional Einstein equations that they called “gravitational multi-
instantons” [33]. Without going into too much detail, they were given this
name because these solutions (i.e. metrics) obeyed equations that were very
similar to ones that instantons in non-Abelian gauge theories obey!. Later
it was realized that these metrics were valuable as M-theory backgrounds
as well, because they give an explicit formulation of the Ay _; singularities
that are responsible for the symmetry enhancement mechanism described in
this section.

This four-dimensional non-compact metric describing a collection of N
instantons at locations 7 (i = 1,...,N) has SU(2) holonomy and is given
by

ds? = V(F)di® + V(7) " (dz* + A - di)?, (5.1)

where 77 = (2!, 22, 2%), di”? is the Euclidean metric on R? and z* is the fourth
coordinate. The two functions V and A are defined by

1. R
V(f‘):e+§izzl|f,_m (5.2)
and
VxA=VV, (5.3)

where the curl and gradient are the usual operators in R®. From (5.1) we
see that the metric is invariant under a combined reparametrization of z*
and a gauge transformation on A like

o =2t + A=z™), A=A, - op\z™) (5.4)

As we can see, the metric contains a number of parameters: ¢, R and the 7’s.
We will study the metric for € fixed to either ¢ = 0 or € = 1, this parameter
is not to be treated as a modulus. At first sight this seems to lead to a
(3N +1)-dimensional moduli space, but not all variations of these parameters
lead to inequivalent metrics. Rigid motion of the N instantons (i.e. a
combination of translations and translations leaving invariant the orientation

1To name one of these similarities: these solutions have a self-dual Riemann tensor
(meaning Ruvab = S€abca R, ), just as Yang-Mills instantons obey F' = *F.
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of the instantons with respect to each other) produces an equivalent metric.
This removes six degrees of freedom, so the dimension of the moduli space
is actually [26]

dim(M) =3N -3-3+1=3N—-5 N>2. (5.5)

For the case N = 2, things go a bit differently. We simply state that in
this case we have a three-dimensional moduli space?. For a calculation
of the metric on these moduli spaces, as originally found in [53], see [26]
and references therein. We will now analyze the geometry of this space for
different values of these parameters to get a better understanding of the

geometry.

Asymptotically Locally Euclidean spaces

We start with by putting ¢ = 0 and studying the geometry for different
values of .

N =1 In the case of a single instanton it is easiest to work in a spherical
coordinate system which is centered around the instanton (i.e. we put
the instanton in the origin). With this choice, the potential (5.2) is
simply V (r) = R/2r. Rewriting the metric in these coordinates gives
us

ds? = g (dr* + r?d6? + r* sin® 0d¢?) (5.6)
2
= (da* + Apdr + 17 Agd + rsin 0A4de)” .

+
To find a solution to (5.3) we can make the simplifying assumption that
A, = Ap = 0, as we can always use the transformation (5.4) to write
A in a more general gauge. Under this assumption, equation (5.3) in
spherical coordinates is reduced to a set of differential equations for
Ay given by
Rsinf 0

o s E(TAd)) = O. (57)

g .
%(sm 6Ay) = —

These are easily solved to give

_ Rcost  Rf(e)
~ 2rsinf  2rsing’

¢ (5.8)

We choose f = 0 and put this solution back into (5.6). To make
its geometry clearer, we again make a coordinate transformation by

2As we shall see below, this case actually corresponds to the Eguchi-Hanson space.
This space has one modulus that determines the size of the two-sphere at the tip of the
cone and two (trivial) moduli that correspond to rotations of this two-sphere.
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putting r = % p? and z* = %w. This transforms our metric into the
form

1

2 _ 12
ds® =dp +4

p? [d6® + sin® 0d¢* + (dy + cos 0de)?] . (5.9)
So this metric appears to have a conical singularity in the origin, where
p = 0. But if we take 1 to be periodic with a period of 47, then the part
in the square brackets is exactly the round metric on S given in (2.46).
But as we discussed underneath definition 2.12, if the base manifold of
a cone is a round sphere, the singularity is only a coordinate singularity
and the space is just flat space. So what we just found is that if we
periodically identify z* = 2% 4+ 27 R, the metric is completely smooth
and just a fancy way to describe four-dimensional Euclidean space R*.

N = 2 It should not come as a surprise that if we consider the case with two

instantons, the geometry becomes more complicated and interesting.
With two instantons, we can center our coordinate system around
either one of the instantons. For any which choice, if we take the
limit 7 — 0 we expect the influence of the second instanton to become
negligible and the metric to approach the form (5.9). This implies that
just as in the N = 1 case, * must have periodicity 27 R to make the
metric free of conical singularities at the locations 7 and 7.

If we now take the limit » — oo, the separation between the instantons
becomes negligible and the metric should approach that of a single
instanton with potential V' = R/r. The solution for Ay is now two
times (5.8) and the metric is asymptotically again of the form (5.9)
if we make the coordinate transformation ¢ = z*/R. Because of the
periodicity of z*, 1/ this time has periodicity 2x. If it would have been
47, the space would again be a cone over S2. We see instead that this
space is asymptotically a cone over S3/Z5, with the Z action given
by ¥ — ¢ + 27.

In summary, we now have a smooth space of SU(2) holonomy which is
asymptotically a cone over S$/7,. If the reader feels like the similarity
between this space and the one we described in section 2.2.4 is to
great to be a coincidence, he is right: this space is just the Eguchi-
Hanson space EHs (2.42) in a different coordinate system. For the
coordinate transformation that shows this equivalence, see [65]. For
this and a number of other metrics reducing to the Eguchi-Hanson
metric (including solutions with non-zero cosmological constant), see
[56]. Recall from section 2.2.4 that F'Hs is the metric on a resolved
Aj singularity and that it contains a two-sphere at its tip.

N > 2 In a way similar to the one given above we can argue that the case

with general IV is an asymptotically conical space as a boundary the
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so-called Lens space S3 /Zn. All these spaces are completely smooth
if z* = 2* 4+ 27R and all the 7; are spatially separated. Because a
cone over S%/7 is diffeomorphic to Euclidean space identified under
a discrete group, R*/Zy, we call these spaces Asymptotically Locally
Euclidean (ALE). Just as EHs (which is the simplest example of an
ALE space), the multi-ALE space contains (N — 1) two-spheres and
gives a metric on a resolved Ay _; singularity. How we can understand
this statement is explained in the next subsection.

It is interesting to note that the topology of the multi-ALE space has the
same general structure as the asymptotically conical Go-metrics as depicted
in figure 2.2. In this case the tip of the cone is T = S2, the collapsing
fibre F = S', the asymptotical base is Y = $3/7,, and the whole space is
asymptotic to X = R*/Z,.

Multi-centre Taub-NUT spaces

After having analyzed the metric (5.1) with € = 0 in detail, we now do the
same for the multi-centered Taub-NUT geometry, which is nothing more
than (5.1) with e = 1. The geometry changes completely if we make this
change. This is already clear from the single instanton (N = 1) case, where
the geometry is not that of 4-dimensional Euclidean space anymore.

N =1 Starting with the potential V' =1+ R/2r obviously changes nothing
in the calculation of Ay. After inserting the same solution into the
metric and again making the coordinate transformation r = ﬁpQ,
zt = gz/z we see that in the limit 1 — 0 the metric again approaches
that of (5.9). By the same argument made before, z* therefore still
has to have periodicity 2w R. If we take the limit r — oo the metric

takes a different form. In the r-coordinate it asymptotically becomes

ds? = dr? + r*(d6* + sin”® 0d¢*) + (dz*)? + Rcosfdz*dp.  (5.10)
The first two terms constitute a Euclidean R® metric and because z*
is periodic over 27 R, the third term is a flat metric on a circle S of
constant radius R. From the form of the metric (5.1) we see that the
radius of the circle for general r is given by

R
a(F) = Vo) (5.11)

The above implies that topologically the space is asymptotic to a cylin-
drical space R? x S'. Geometrically it is not simply a trivial bundle,
as the last term shows that the S' is fibered over R3 in a non-trivial

way. Normally, if the base space of a fibre bundle is contractible to
a point, it should be possible to make a coordinate transformation
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T — 00

RS

Figure 5.1: Graphical representation of the single-centre Taub-NUT metric

that removes a twist in the bundle. Here this is impossible, because
the metric (5.10) is clearly only valid for » — oo and in the complete
metric the topological defect in the origin (the instanton) prevents us
from making such a transformation®. In figure 5.1 the geometry of
this space is shown schematically.

N > 1 We have just seen that in the single-centre Taub-NUT space we have

a circular fourth dimension which goes to constant size far away from
the defect and shrinks to zero size at the position of the defect. When
we have a space with multiple instantons, (5.11) is obviously still true,
which means that the S' shrinks to zero size at all the locations ;.
If we consider a generic path between two of the instantons and erect
an S! of radius a at every point along the path, we see that this
corresponds to the topology of a two-sphere. Naively we would expect
there to be %N (N — 1) different two-spheres, corresponding to the
total number of ”links” between NN distinct points. However, in the
next subsection we will see that the multi-centered Taub-NUT space
topologically also only contains (N — 1) homologically non-trivial two-
spheres instead.

Note that close to the instantons the space locally again looks like
flat Euclidean space. Far away from the configuration of instantons
however, the geometry is more complicated, like in the ALE case. It
is again a twisted S' bundle over S2%, but it is not an ALE space,
because the S' has finite size. It is not an ALE space, but an example
of an Asymptotically Locally Flat (ALF) space. Topologically it has

®Note that even if (5.10) would have been our complete space, the singularity at 7 = 0

would have prevented us from making this transformation.
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the same structure as the one we described for the ALE case, but this
time Y = §2 x S' and X =R3 x §'.

With this detailed analysis of the geometry associated with (5.1) we
have given ourselves a solid basis to understand the physics of M-theory
compactified on such a space. In the next subsection we will explore in
detail what we have already briefly mentioned. Namely, the multi-instanton
metric contains (N — 1) 2-spheres and describes the smooth geometry of
a resolved An_1 singularity, when all the 7; are distinct. When k of the
instantons are brought to the same location, the space degenerates and will
contain an Aj_; singularity.

5.2.2 Intersection numbers for two-cycles

In this subsection we will calculate the intersection numbers between the
two-cycles we saw to be present in the gravitational instanton metric. In
order to do this, we will first show that there are (N — 1) homologically
inequivalent two-cycles, then we explain why these intersect transversally
and finally we calculate the intersection numbers to see that the matrix
made up by all these numbers (the intersection matriz) is exactly equal to
the Cartan matrix of the Ay_; = SU(N) Lie algebra.

Consider an oriented straight path c;; through R? from the point 7 to
7;. Erect an oriented circle S at each point p € ¢;; of radius (5.11) (which
vanishes at all 75) and call the two-cycle that we create in this way S;;. If we
take the orientation of S! to respect, say, the right hand rule with respect
to the orientation of ¢;;, we will have given S;; a definite orientation. We
have seen in section 2.1.4 that it is necessary for the intersecting cycles to
be oriented in order to be able to calculate the intersection numbers.

Because the total number of paths between N distinct points is Zf\i JHN-
i) = $N(N — 1), we would naively expect there to be this number of two-
cycles. That the actual number is smaller can be understood by remember-
ing that because we are trying to find the topology of the space, we should
count cycles in the same homology class only once. To see which cycles are
homologically equivalent, we look at the configuration of three instantons as
depicted in figure 5.2. All the possible oriented paths between the instan-
tons are c12, co3 and c13. But if we deform c19 and cy3 to the dashed paths
€12 and Ca3 respectively, we see that the vertical paths cancel and we have
effectively constructed the third path ci3. So in this particular case we have
N — 1 = 2 homologically inequivalent cycles.

Now add a point 74 to this configuration and connect it to either 7 or 73,
with the orientation respecting the line ¢12c23. It is not hard to see that now
the all the lines connecting 74 to any of the other points can be constructed
by deforming adding up a combination of the paths already present. In
a similar way we can add an arbitrary number of additional points to the
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T3

Figure 5.2: Deformation of oriented lines. c¢i3 can be constructed by de-
forming c1o and ca3 to €12, €23 in the way indicated.

configuration. Each of these points adds only one homologically inequivalent
two-cycle. So the total number of two-cycles in both the ALE and Taub-
NUT spaces is given by the minimal number of links in a chain connecting
N points, which is (N —1). Note that this configuration corresponds exactly
to the Dynkin diagram of the Ax_1 algebra. From this we also see that we
can take the S;; 1) with 1 <4 < (IV — 1) to be a basis for the independent
two-cycles.

Note that in [7] a way was presented to come to the same conclusion
without knowing an explicit metric. In this article the same result is ob-
tained by carefully carrying out the blow-up procedure for an C?/7 y orbifold
singularity. If we carry out this procedure, (N — 1) exceptional divisors CP?
will be generated that are linked in a chain in the same way as above. And
because CP! = §2, this corresponds to the same geometry we found here.
In his later lectures [8] and the original article, further details about this
blow-up procedure can be found.

The only place the two-cycles intersect (after a deformation if necessary)
is at the ;. The next thing to do is to show that here the two-cycles Si;_1y;
and Sj(;;1) indeed intersect transversally. To show this, we need to find
bases for the tangent spaces T7;S(; 1), Ir;Si(i+1) that span the total four-
dimensional tangent space at 7;. A basis wherein one of the vectors in
tangent to the S! is not suited, as the S' degenerates at the point 7. We
already mentioned for both the ALE and Taub-NUT cases, close to the
instantons the space looks like flat Euclidean space R*. So we expect to
find that the tangent spaces of these two-spheres at 7; are just two planes
in R* that (for generic mutual orientations) intersect transversally. To see
this explicitly, we go to a different (quaternionic) coordinate system that
demonstrates the transversality. This idea is taken from [24], which was
in turn inspired by [35]. For the definition of quaternions, see Appendix
A. Here we will only consider the case of an ALE space, but it should be
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possible to do something similar for the Taub-NUT metric.

Because a quaternion consists of a one-dimensional real and a three-
dimensional imaginary part, we expect to be able to identify these with
the periodic and Euclidean coordinates of the ALE metric respectively. For
reasons that will become clear shortly, we do not make this identification in
the obvious ‘one-on-one’ way. First note that any quaternion ¢ = w + zi +
yj + zk can be written as ¢ = cel?, where ¢ is a pure imaginary quaternion
and ¢ € (0,27]. Now o can be identified with z* by ¢ = z*/R. The
combination ¢ig can be seen to be independent of o and pure imaginary*.
With this, we define

1 1
§qi(j = 5(102 + 22 —y? = 2D)i+ (zy +w2)j + (xz — wy)k (5.12)
= zli+ (2?4 2%k = 2t — 2% + 22k (5.13)

Near the instanton at 7, the ALE metric looks like ds? = 1/rdi? + r(dz* +
A -dF)%. After carrying out the coordinate transformation defined above and
noting that any quaternion can be written as ¢ = a + bj (a,b € C), we find
that the metric can be written as:

ds® = dqdd = dada + dbdb. (5.14)

This form again expresses the fact that this space locally looks like C? = R*.
The tangent spaces T}, 5;_1); and Ty, S;(;11) are just two-dimensional planes
in R*. If it happens to be that they coincide or intersect along a line, we
can deform one of the two-cycles so that its tangent plane gets rotated in
such a way that they only intersect in 7;. This means that their intersection
number is either +1 or —1, depending on whether we can define an oriented
basis for R* using basis vectors of these two tangent spaces. It turns out
that this is possible, so the intersection number between all cycles S 1);
and S;(;41) is positive. If we call the intersection number between the cycles
Si(z'—l—l) and Sj(j—|—1) I;;, we thus find I(i—l)i =1

Calculating the self-intersection of, say, Sj;41) (= S for now) takes a
bit more work. To calculate this intersection, we make a new cycle by
deforming the surface within its homology class and then calculate the in-
tersection number of this cycle with the original cycle. Because the points
75, Tit+1 stay fixed, these cycles necessarily intersect there, so we expect the
self-intersection to be either +2 or —2. If we consider the surface as an
embedding in C2, a deformation of the surface corresponds to a section in
its normal bundle Ng. The self-intersection is then given by the number of
zeros of this section. This can be calculated by integrating the first Chern
class over the cycle [8],

#(5+8) = [ a(Vs). (5.15)

S

4 Also note that ¢ig = cic.
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We can then use the adjunction formula [8]
Cl(TE\S) =c1(Ns) + c1(Ts) (5.16)

to find a calculable expression for (5.15). In the expression on the left
hand side E|g is the embedding space restricted to S, which in our case is
C2. Because the tangent bundle of C? is a trivial bundle, its first Chern
class ¢1(T¢2) = 0. But this will also mean that the first Chern class of the
restriction of this bundle to any subset will be zero. If we use this and then
integrate (5.16) over S, we find

#(5-8) = [ a@s). (5.17)
S

But the Gauss-Bonnet theorem for a complex manifold M of complex di-

mension m states that [30]

/ em(M) = x(M), (5.18)

where x(M) is the Euler characteristic. For a complex orientable one-
dimensional surface (a so-called Riemann surface) of genus g, the Euler
characteristic is widely known to give x(M) = 2 — 2¢g. Since our two-sphere
can be considered as a zero-genus complex surface, we finally find

#(S-S) = —2. (5.19)

The fact that the number of zeros in a section is given by a negative number
is a result of our chosen conventions. So for all 1 < i < N — 1, we have
I;; = —2.

It should be clear from our configuration of two-cycles that the cycles
Sij with j ¢ {i —1,4,i4 1} do not intersect and hence have I;; = 0. Taking
all of the above into account, we finally see that the intersection matrix is
the following symmetric (N — 1) x (N — 1) matrix:

2 -1 0 -+ 0 0
-1 2 -1 0 0
o -1 2 - 0 0
I=—-{ . . . , N (5.20)
o 0 0 - 2 -1
o 0 0 .- -1

This is exactly minus the Cartan matrix of the SU(N) algebra. Using
different conventions it could have been possible to get exactly the Cartan
matrix. This, together with the fact that the blow-up of an Ay _1 singularity
gives us the Dynkin diagram of the SU(N) algebra, is a first indication of
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the fact that there is a deep relation between the discrete subgroups of
SU(2) (which have an ADE classification) and the simply-laced Lie groups.
This has been stated [8] to be one of the most miraculous interrelations in
mathematics. It was discovered in 1980 [57] and is known as the McKay
correspondence.

In the next subsection we will see that if we have M2-branes wrapping the
two-spheres of this space, an enhanced SU(N) gauge symmetry is generated
by these branes if we take the singular limit.

5.2.3 Enhanced gauge symmetry from wrapping branes

Consider first a configuration of only two monopoles (so effectively Eguchi-
Hanson space) and for simplicity choose a coordinate system in which 7 =
(2,0,0) and 7 = (y,0,0) (with y > x). The area of cycle Si2 corresponding
to the straight path between 7 and 7 is simply given by the integral

Yy [r2ma
Apy = / / VV (P detdz* = 2nR(y — ), (5.21)
x 0

where the factor 1/V (7) comes from the scaling of R? in (5.1) and a is given
by (5.11). The obvious generalization to any straight path is

Ay = 27TR/ || = 27 R|7 — 7| (5.22)
Cij

and we expect that the area of any other two-cycle will be proportional to
the length of the curve c;;. So the two-cycle corresponding to the straight
path is actually the cycle with minimal area.

As we have discussed in chapter 3, eleven-dimensional supergravity clas-
sically admits an M2-brane solution. If such an M2-brane is wrapped around
a two-cycle in a compactification manifold, it will look from the lower-
dimensional perspective like a point-particle. The mass of a wrapped M2-
brane is proportional to its area and tension Tjs2, so in our case we simply
have

mi; = 2 RT 2|75 — 75| (5.23)

Because of their tension the M2-branes will seek to wrap the cycle with
minimal area. This configuration will have minimal mass and will in fact
be a BPS state [12] as described in chapter 3. Such a state will be invariant
under only a part of the supersymmetry algebra, which means that it will
live in a short representation of this algebra. The cycle about which it is
wrapped is actually a calibrated submanifold and what we have just said is
precisely the reason why these are often also called supersymmetric cycles
(see section 2.1.3). One of the implications of a wrapped M2-brane being a
BPS state is that its (classical) mass 5.23 will not get quantum corrections.
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For a two-sphere by(S?) = 1, which implies that we have exactly one
harmonic two-form w on our two-cycle. Furthermore, b;(S2) = 0, so there
is no harmonic one-form and b3(S?) is identically zero. If we now make the
Kaluza-Klein ansatz for the three-form field, C(z,y) = A(z) Aw(y) + -,
we see that get one U(1) gauge field in the effective seven-dimensional field
theory. In section 5.2.1 we showed that the moduli space of the Eguchi-
Hanson space is three-dimensional. Just as in chapter 4, these moduli will
give us three scalar fields in the effective theory. An Abelian vector multiplet
in seven dimensions contains precisely one gauge field and three scalars [5],
so our effective field content is exactly that of an Abelian gauge multiplet.
We have implicitly wrapped the M2-branes with a certain orientation. If we
had done this with the opposite orientation, the seven-dimensional gauge
field would have gotten the opposite charge under the U(1) gauge group.
These particles look rather like the W*-bosons, except that they do not
generate a SU(2) symmetry (yet).

If we now bring the two monopoles close together, the Eguchi-Hanson
space will degenerate and develop an A; singularity. The wrapped M2-
branes will in this singular limit become massless. In the lower dimensional
effective theory we will thus find extra massless oppositely charged vector
multiplets, which turn out to have exactly the right quantum numbers to
generate an A; = SU(2) gauge symmetry.

In a similar way, if we take an N-centered gravitational instanton metric
to begin with, we find at a generic point in the moduli space (N —1) Abelian
vector multiplets, generating a U(1)" gauge symmetry. If we now move to
a special point in the moduli space, where all of the instantons coincide,
the space will develop an Ax_1 singularity. The extra massless degrees of
freedom will in that case generate an enhanced gauge symmetry SU(N).

One might object that since the metric (5.1) describes a non-compact
space, we have a continuous particle spectrum in the effective field theory.
This would also imply that the states we describe here would not be the only
massless states we find. Although that might be true, we already indicated
that we only use this as a local description and hope to embed these types
of singularities in a compact space. What we are doing here is describe the
states that would be massless if we were to do this.

The importance of ADE singularities in symmetry enhancement in the-
ories with wrapping membranes was first pointed out in the famous paper
[76]. Later in [25] this statement was expanded upon and the relation be-
tween these singularities and so-called ‘quiver-diagrams’ was found. Then in
[25] this mechanism was carried over into the Matrix-theory [10] description
of M-theory and shown to be consistent with the previous description. For
more on this, see for example [11].
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5.3 Chiral Fermions from Isolated Singularities

In the previous section we learned how to get non-Abelian gauge groups from
M-theory compactifications on singular Go-manifolds. To find a realistic
four-dimensional theory from these kinds of compactifications, we still need
to find out how to incorporate charged chiral fermions - the second basic
ingredient of the Standard Model. As we will find out in this section, we
need to compactify on a manifold X which contains isolated singularities to
be able to find them.

There are actually four ways to show that chiral fermions can be sup-
ported at isolated singularities. One is via the duality with the Heterotic
string [4], the second is using anomaly cancellation ([77] and below), the
third is by treating a specific conical metric [9] and finally we can utilize the
duality with Type ITA string theory (see [22] or [71] for a review). This last
method will be shortly discussed in the next chapter.

The first mechanism through which we can see that our low-energy ef-
fective theory can contain chiral fermions is by doing an analysis of the
anomalies in the theory. A theory is said to contain anomalies if a certain
(gauge) symmetry that was present in the classical theory disappears after
quantization. As anomalies indicate inconsistencies in the theory, some-
thing has to added to the theory to exactly cancel the anomalies. Anomaly
cancellation has been a recurring theme in both Field and String Theories.
Suppose we have a space with isolated singularities that can locally be de-
scribed as conical singularities. Because a full M-theory description is still
lacking, we would like to try to find a supergravity solution on such a space.
But because at a conical singularity the curvature blows up, supergravity is
not valid on such a space. What we can try to do is cut out a small region
around the singularity to see if we can model the effect of the singularity
by describing supergravity on manifold with boundary. It turns out that
this is possible. Now remember that eleven-dimensional supergravity has
a gauge invariance under C — C' + dA. This gauge symmetry is broken if
we put supergravity on a manifold with boundary. The anomaly we find
can exactly be cancelled by adding chiral fermions at the location of the
singularity. This idea was first put forward in [77] and our treatment of the
subject is based on this article. For a very thorough treatment of the pres-
ence of anomalies in G2-compactifications in general and some more details
about this particular mechanism, see [59].

Suppose we have Gp-manifold X, which is smooth, except for isolated
singularities that are located at points P, € X, a = 1,...,s. Assume as well
that near these singularities, the space can be modeled as a cone over some
six-dimensional base-manifold Y, (see Definition 2.12). If we now excise the
singularity from the space by cutting out a small open neighborhood of P,,
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then we end up with a manifold-with-boundary X', whose boundary is
0X' = —U,Y,. (5.24)

The minus sign is included to give the boundary a convenient orientation
[13]. Because the manifold X’ is smooth, we can now use the standard
Kaluza-Klein mechanism to determine its low energy effective theory. We
have seen that if X would have been smooth, the gauge bosons in four
dimensions come from the Kaluza-Klein ansatz

Z Al (z) Awily o (5.25)

where the w; € H2(X;Z) are harmonic two-forms on X and the gauge group
is U(1)%2(X). However, things go a bit differently in the current situation as
we now have a manifold with boundary. In [77] it was stated that in this case
the w; are arbitrary harmonic two-forms on Y, independent of the radial co-
ordinate r, and that the low-energy gauge group is now H2(X';U(1)). Note
that although strong circumstantial evidence for this statement is present,
it was not explicitly proven.

We will consider here only anomalies that come purely from the gauge
field C. If we include one-loop quantum corrections in the eleven-dimensional
supergravity action (see e.g. section 14.1 of [29] for a short discussion), we
find terms in which the metric couples to the C' field. For the cancella-
tion of these so-called mixed gauge-gravitational anomalies, we refer to [77].
The only term in the action (3.23) that leads to anomalies is the Chern-
Simons term, as the Yang-Mills term is manifestly gauge-invariant even on
a manifold with boundary. By integrating this term over M’ = R* x X’
and dropping the exact factors in front of it, we see that under the gauge
transformation C' — C' 4 dA the Chern-Simons term transforms like

5S~ | dAAGAG. (5.26)
MI

Note that here we have made use of d?’A = 0. If we now remember that
dG = 0 and then use Stokes’ theorem, we see that this can be written as

5S ~ / (AAANGAG+ANIGAG+ANGAG)  (5.27)
MI

_ / dAAGAG) (5.28)
.

= —Z/ AANGAG. (5.29)
2 JRiXY,

In [77] it was then stated that if we write F? = dA® for the four-
dimensional field strength and make the Kaluza-Klein ansatz for C as above
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and for A as

A(z) = Z A (z)wi(y), (5.30)

with A® harmonic functions on R*, that then the contribution of the a-th
singularity to the anomaly is given by

6aS~/ ZAi/\Fj/\Fk/ w; N wj N W (5.31)
Sy Yo

Since anomaly cancellation should be a local phenomenon (i.e. it should be
satisfied at all P,’s individually), they then set forth that this anomaly
should be cancelled by adding massless charged chiral multiplets ®¢ of
charges ¢f at all the P,. These charges take their value in a set T, that
depends on the location P,. By comparing the form (5.31) to the anoma-
lies we find in four-dimensional gauge theories, it can be seen that anomaly
cancellation is realized if we take the Y, to satisfy

/ wi Awy Awg = Y a7 ¢7qF.- (5.32)
@ o€Ty
What this equation means is that if Y, is such that the right hand side is not
zero, chiral fermions ®7 with charges ¢f need to be added at P, to cancel
the anomalies. That the complete theory is then anomaly free can be seen
by summing (5.32) over all . Anomaly cancellation is guaranteed, because
this gives

YD dda = Z/ w; A wj A wy (5.33)
o o

o g€Ty
= d(w; AN wj A wy) (5.34)
XI
= 0, (5.35)

because dw; is zero for all <.

It is interesting to note that in [14] a minor flaw in this line of reasoning
was discovered. The procedure outlined above we apply Stokes theorem to
equation (5.28) to write it as a sum over contributions from the s boundaries.
Although this is perfectly correct mathematically, it does not allow us to
conclude that in the steps leading to (5.33) we are forced to considering
local anomaly cancellation. So, the above line of argument only gives us a
prescription for global anomaly cancellation. After a careful reconsideration
[14], the conclusion remained the same, though.

5.4 Model building with singular G5-manifolds

In this chapter we have established two things: that if the compactification
manifold contains ADE singularities, the effective four-dimensional field the-
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ory will have non-Abelian ADE gauge symmetry and that chiral fermions
are supported at isolated singularities. So, we now have ways to construct
the two basic components of the Standard Model in framework of M-theory.
But we have not discussed how one goes about constructing a (quasi) real-
istic model of particle physics within this setting. We will shortly describe
a possible procedure here.

Because ADE singularities are codimension four, we need them to be
supported on a three-dimensional manifold ¢ in X. We could for example
take X to be some fibre bundle over (), with fibres K3. We then take the
K3 fibres to have points in their moduli space were they develop at (several)
points ADE singularities of some specific type. We saw in section 2.3.4
that Ga-manifolds with A;-singularities exist, but it has been shown [49]
that they exist with the other types of ADE singularities as well. The most
promising possibilities are those that correspond to one of the well-studied
Grand Unified gauge groups, i.e. one of Ay = SU(5), D5 = SO(10) or Es.

X should then develop isolated (conical) singularities at a number of
points on (), which can support chiral fermions that transform in appro-
priate representations of the ADE gauge group. The exact nature of the
isolated singularity determines in what specific representation these chiral
fermions live. It is not at all obvious that Go-manifold with the needed sin-
gularities exist, but it can be motivated in (at least) two ways that this has
to be the case. The first is by making use of the duality with the Heterotic
String Theory [5]. If we compactify this theory on singular Calabi-Yau
manifolds, we can construct many different models with chiral fermions.
In the dual M-theory picture these compactifications can be shown to cor-
respond to singular Ga-compactifications, which means that Gs-manifolds
should exist that have the right kind of singularities to construct these chiral
fermions. The second way to motivate this is by making use of the duality
with the Type ITA String Theory [71]. In this model many different types
of chiral fermions can be constructed by considering D6-branes intersect-
ing so-called orientifold O6-planes® at slight angles. These types of models
also lead to N =1 supersymmetric theories in four dimensions with chiral
fermions, which in the lift to M-theory (i.e. in taking the limit of the ra-
dius of the eleventh circular dimension to infinity) corresponds to singular
Go-compactifications. As was discussed at the end of chapter 2, compact
(G2-manifolds with isolated singularities have not been constructed yet, but
we know from these considerations that they have to exist. If we take X to
contain for example Ay-singularities, we would like to find a manifold that
has three conical singularities that give chiral fermions transforming in the
5 of SU(5) and three leading to chiral fermions transforming in the 10 of
SU(5). This would correspond to the field content of the Grand Unified

5Orientifold planes are basically D-branes with some additional identification under a
reversal of orientation.
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Theories constructed using this group.

If we then take () to be non-simply connected, like for example QQ =
S3/7,, we can use Wilson lines (see e.g. [63] for a definition) to break the
SU(5) group to the Standard Model group SU(3) x SU(2) x U(1). In [78]
such models are described and a method is provided for so-called doublet-
triplet splitting, i.e. a mechanism that prescribes how the pentaplet of SU(5)
splits into a doublet of leptons and a triplet for the quarks.



Chapter 6

Conclusions

After this long exposition, we are now about to comment on the merits of
the path we have chosen for doing M-theory phenomenology and - more
importantly - on the open problems that remain to be solved. But before
we do so, let us briefly review how we built up the story in this thesis.

6.1 Summary

In chapter 1 we set the stage by explaining that the Standard Model - al-
though a phenomenal experimental success - is believed by many to be only
a low-energy limit of an as yet unknown theory. On a road passing through
Grand Unified Theories, Supersymmetry, Supergravity and String Theory
we were led to the idea that M-theory might be this theory. Although an
explicit definition of the theory is still lacking, it has been conjectured that
M-theory allows for a description as a Matrix Theory [10]. It is certain
that the eleven-dimensional low-energy limit of M-theory should be eleven-
dimensional supergravity. In chapter 3 we introduced this theory and ex-
plained the general Kaluza-Klein mechanism for dimensional reduction. We
then showed that Kaluza-Klein compactification of eleven-dimensional su-
pergravity on a circle yields the Type ITA Supergravity theory in ten dimen-
sions. This ten-dimensional theory is itself the low-energy limit of Type ITA
String Theory. M-theory is conjectured [76] to be the strong coupling limit of
Type ITA String Theory, but it is hard to make sense of that theory at strong
coupling, because we do not yet know how to describe it non-perturbatively.

It turns out that the holonomy group of the compactification manifold
is important for counting the number of supersymmetries that survive in
the lower-dimensional theory. In order to maintain hope for finding chiral
fermions in the effective field theory, we want at most A/ =1 supersymmetry
to survive the compactification, because any N > 1 supersymmetric theory
is always CPT-invariant. In compactifying eleven-dimensional supergravity
on a seven-manifold, imposing N =1 supersymmetry leads to G2-holonomy

84
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for the compactification manifold X. As was explained in chapter 3, in
standard Kaluza-Klein theory the four-dimensional effective theory has a
non-Abelian gauge group if the isometry group of X is non-Abelian. But in
chapter 2 we showed that the isometry group of a manifold of Go-holonomy is
always trivial. In chapter 4 we carried out this compactification and for the
given reason we found that the effective field theory has only Abelian gauge
symmetry, which originated from the three-form C-field. Furthermore, in
1983 it was shown [74] that these compactifications can not yield chiral
fermions. These facts dimmed enthusiasm for doing research into eleven-
dimensional supergravity compactifications considerably for some ten years.

However, in 1995 it was put forward [76] that degrees of freedom living
on codimension four ADE singularities can be used to generate non-Abelian
gauge symmetry. Manifolds of Go-holonomy that contain ADE singularities
are known [49]. Later, in [77] it was concluded that chiral fermions can
be supported at isolated singularities in the compactification space. The
asymptotically conical non-compact G-manifolds introduced in chapter 2
can develop such singularities. The Kaluza-Klein procedure does not work
on non-compact manifolds, because it would lead to a continuous spectrum
of Kaluza-Klein states. Therefore, the asymptotically conical G2-manifolds
can only be used as local descriptions of the physics close to the singularity.
Furthermore, because spaces with isolated singularities contain curvature
singularities, the supergravity approximation of M-theory is not valid on
such spaces. Therefore, we cannot use standard Kaluza-Klein theory to do
a compactification on a singular space. Without going into the question of
which exact procedure we can use, we know that these singularities need to
be embedded in a compact space in order to get a discrete spectrum in the
four-dimensional effective theory. And as discussed at the end of chapter 2,
such manifolds have not been constructed.

6.2 Discussion

Besides mathematical difficulties, there are from the perspective of physics of
course also still enormous challenges to be met. First of all, until a complete
description of M-theory is found, we are limited to using indirect methods
for understanding phenomena beyond the supergravity approximation. One
of the best methods is using the various dualities of M-theory with the five
String Theories, as we have seen various times throughout this thesis. One
of the other big open questions is how to break supersymmetry. The models
we have discussed all have low-energy supersymmetry. Low energy here
means compared to the Planck scale. We still need to find a good method
to break supersymmetry at some intermediate scale (between the Planck
and the Standard Model scale) that breaks supersymmetry.
After describing the generic features of Ga-compactifications, let us quickly



86 CHAPTER 6. CONCLUSIONS

discuss how these models hold up to basic phenomenological tests. The first
question we address is that of proton stability. Some Grand Unified and
Supersymmetric models predict that there is a small but finite chance that
an individual proton spontaneously decays. To test these models, the sta-
bility of the proton has been measured and a lower bound on its average
decay time has been established of about 10%° years. Because this has been
measured to great accuracy, this has become one of the standard checks
for validity of new theories. Research described in [32] showed that proton
stability is guaranteed in M-theory compactifications on Ga-manifolds. The
second question is that of doublet-triplet splitting. In theories that on some
intermediate energy scale are described by a Grand Unified Theory with
gauge group SU(5), a mechanism has to be provided that prescribes how
the pentaplet splits into a doublet of leptons and a triplet for the quarks.
In [78] such a prescription was provided in the context of M-theory com-
pactifications. Finally, first studies into cosmological implications of various
String and M-theory models [50] seem to indicate that G2-compactifications
of M-theory may be one of the few models that lead to observational cos-
mological effects. If this statement proofs to be true, it would open up an
exciting possibility for testing these types of models.

We now come back to the statement made in the last sentence of the pre-
vious section about the need for compact G2-manifolds with isolated singu-
larities. To this date no compact manifolds with G2-holonomy and isolated
singularities have been constructed. Furthermore, the fact that there is no
analogue of Yau’s theorem for Go-holonomy metrics on a seven-dimensional
manifold, complicates the construction of G-manifolds. Compared to the
big stream of Calabi-Yau manifolds being constructed, G2-manifolds seem
to only slowly trickle into the literature. These are the two great mathe-
matical challenges still to be resolved. One possible generalization of the
models described here is considering compactifications with a G-flux turned
on in a way that is consistent with the other assumptions we made about
the vacuum. If we do this, it turns out that we are led to the concept of
weak Ga-holonomy. One of the reasons that these are interesting models to
consider is that complete compact weak Ga-holonomy metrics with isolated
singularities have been constructed in [14]. Furthermore, compactifications
with fluxes might provide us with a mechanism for moduli fixing and an ex-
planation of the hierarchy of Yukawa couplings. For a taste of this subject,
see [1], [3] and [2]. However, the presence of a non-zero G-flux complicates
the story greatly and leads to a number of problems as well. The biggest
problem is probably that these kinds of compactifications typically lead to
a negative (possibly very big) cosmological constant and observations teach
us that we live in a Universe with a positive cosmological constant.
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6.3 Conclusion

In this thesis we have only been able to scratch the surface of a vast subject.
In a sense, the place at which this thesis ends, should actually be the starting
point for the more interesting research. The two directions that strike us
as the most promising are intersecting D-brane models in Type ITA String
Theory (as shortly described at the end of chapter 5) and compactifications
with fluxes.

All in all; we can conclude that this subject knows a number of mathe-
matical difficulties that have made progress in the field slower than maybe
many people would have hoped. Slowly these mathematical challenges are
being resolved, which opens up the arena for discovering fascinating physics
from M-theory compactifications and at the same time enabling us to learn
more about the structure of M-theory itself.



Appendix A

Notation and conventions

Throughout this thesis - unless stated otherwise - we use D = d + k to
indicate the dimension of the complete spacetime, d for the dimension of
the macroscopic (observable) part of spacetime and k for the dimension of
the internal (compact) space. The following conventions for indices and
coordinates are used:

| dim | Indices* | Range | Coordinates |
D | M,N,P.../ABC...|0...D—1 M
d | uv,p... ] a,B,y... 0...d—-1 xh
E | mn,p... /[ ab,c... d...D—-1 y™

*: Spacetime/Tangent space (vielbein) Indices
We use the following convention for the signature of the metric:
n = diag(—-1,1,...,1). (A.1)

A curved metric is always written as gy y and we define g := /| det g n .
The (anti)symmetric versions of multi-index objects are defined as

1
Toymy) o= EZTMM)"'MM)’ (A-2)
7T
1
T[Ml---Mp] = 2ﬁZ:SgIl(7'{')T]\/17r(1)...]\47r(p). (A?))
m

When proofs are given ¢ Proof: indicates the beginning of the proof and [
signifies the end of the proof.

Quaternions

The quaternions are defined as the set

H={¢=w+azi+yj+zk | w,z,y,z € R}, (A.4)
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where the unit vectors i, j, k are defined by
i2=j?=k’>=-1=ijk. (A.5)

Note that conjugation g reverses the sign of all imaginary components: § =
w — xi — yj — zk. A pure imaginary quaternion is one for which w = 0.
Conjugation of a bilinear satisfies pg = gp. Also note that any quaternion
can be written as ¢ = a + bj with a,b € C.



Appendix B

Kahler Geometry and
Calabi-Yau Manifolds

In section 2.1.2, we saw that having special holonomy could imply that the
manifold had the so-called Kahler property. This is the case for manifolds
with holonomy U(n), SU(n) and Sp(n). Specifically, if the manifold has
holonomy SU(n), not only is it then Kéahler, but it is then also Ricci-flat.
Because chapter 2 is aimed at the introduction of G3-manifolds, we have not
gone into any details of the geometry of Kdhler and Calabi-Yau manifold,
but would like to devote this appendix to this for two reasons. Firstly,
Kahler geometry shows beautifully that imposing a certain holonomy group
(U(n) in this case) can lead to a dramatic simplification in the geometry of
the space and secondly, Calabi-Yau manifolds have played and still play a
central role in string theory compactifications.

B.1 Kahler differential geometry

In this section we briefly list the defining qualities and properties of Kahler
manifolds, but we omit the proofs. The corresponding proofs can be found
in many places in the literature. See for example [37]. To be able to define
a Kéhler manifold, we first need to define

Definition B.1 (Hermitian metric) Let g be the metric on a complex
manifold X. The metric g is called Hermitian if in local coordinates, the
components satisfy g;j = g7 = 0.

A hermitian metric can therefore always be expressed as
g= gijdzi ®dz + gzjdéi ®dz. (B.1)
The following theorem obviously shows that this notion is very useful:

Theorem B.2 A complexr manifold always admits a Hermitian metric.
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With the definition of Hermiticity given, we can proceed to the definition
of a Kahler manifold.

Definition B.3 (Kéhler form) Given a Hermitian metric g on X, we can
locally define a form J € Qb1(X) by

J = igizdz* A dF. (B.2)
This (1,1)-form is called the Kahler form.

Definition B.4 (Ké&hler manifold) A Kahler manifold is a Hermitian
manifold whose Kdhler form is closed, i.e. dJ = 0.

Without showing it explicitly, we would like to mention that the K&hler form
J we is actually a calibration and the corresponding calibrated submanifolds
are the holomorphic curves in the Kédhler manifold. Actually, all the powers
of the Kéhler form (with the multiplication given by the wedge product),
JE k! for all 1 < k < dime(X), are calibrations on X as well.

Perhaps surprisingly, the closure of the Kéhler form results in a drastic
simplification in the description of the geometry of X. First of all, it can be
shown that any K&hler metric can locally (on a chart Uj) be written as

K,
917 ooz
where K, € F(U,) is known as the Kdhler potential. Note that this potential

can be deformed by so-called Kahler transformations without changing the
metric:

(B.3)

K(z,2) = K(2,2) + f(2) + 9(2) (B-4)

with f(z) and g(z) strictly holomorphic and anti-holomorphic functions re-
spectively.

With a little bit of algebra one can show that with the above form of the
metric, numerous cancellations occur in the curvature tensors. Concretely,
when written in complex coordinates, all the Christoffel symbols with mixed
indices vanish. The only non-zero components are

: i5 O9ks i _ 2599k
R ¥ S, v _ _ s Jks
My = 927 r 7 557 (B.5)
Because of this the curvature tensors simplify greatly as well. For the Rie-
mann tensor the only non-vanishing components are

ors

— g It
_gZ§ 8Zk 9 <B6)

Rz‘j}ci
and so for the Ricci tensor they become

k
Ry =i =T

7k
T iir-w o (B.7)
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Just as with a plain Riemannian manifold, the Riemann and Ricci tensors
satisfy a number of symmetry conditions in the indices. We refer to the
literature [61] for these properties.

It’s not hard to come up with examples of Kahler manifolds. The sim-
plest examples are: C", the Riemann surface (orientable complex manifold
of complex dimension 1) and CP"™. An important singular space admit-
ting a Kahler structure is the weighted projective space WCP™. This space
is like CP"™, but with the identifications of the inhomogeneous coordinates
weighted by different factors in different directions.

B.2 Calabi-Yau Manifolds

Like we stated in section 2.1 and above, a Calabi-Yau manifold is a complex,
compact Kéahler manifold of dim¢ X = n that has SU(n) holonomy. As could
already be seen in table 2.1 and the remarks accompanying it, an equivalent
definition could be that a Calabi-Yau manifold is a complex, compact Kahler
manifold which admits a Ricci-flat metric. Generally it is quite hard to
determine whether X admits a Ricci-flat metric or not. Owing to Yau, who
in 1977 proved a conjecture made by Calabi in 1957, we now have a much
simpler condition. To understand it we first define

Definition B.5 (Chern class) Define the total Chern class of X by
c(X)=det(L+R), (B.8)
where R is the matriz-valued 2-form

R = RF;;dz" A d2. (B.9)

Then the k-th Chern class ci,(X)! is an element of H?*(X) defined from the
exTpansion

o(X) =1+ ¢(X)=1+uR+[ERAR - 2(tR)*]+....  (B.10)
j

Although they are constructed from the (local) curvature tensor the
Chern classes are topological invariants. It’s not hard to prove the following
theorem.

Theorem B.6 Let (M,g) be a Kahler manifold. If M admits a Ricci-flat
metric h, then its first Chern class must vanish.

Yau’s theorem goes the other way: it states that if ¢;(X) vanishes, there
exists a Ricci-flat metric on X.

1The notation ck(X) actually is a bit sloppy, as the Chern class should be defined using
the tangent bundle T'x. We stick to the sloppy notation cx (X) instead of writing cx(Tx ).
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Theorem B.7 (Yau) If X is a complex Kdihler manifold with vanishing
first Chern class and with Kdhler form J, then there exists a unique Ricci-
flat metric on X whose Kdhler form J' is in the same cohomology class as

J.

So now we basically have another equivalent definition of a Calabi-Yau man-
ifold. It is in general not hard to compute the first Chern class and, in par-
ticular, find examples with ¢;(X) = 0. With this knowledge, people have
been able to construct thousands of Calabi-Yau manifolds, while on none of
these manifolds we know an explicit Ricci-flat metric. Often a lot can be
learned about the physics without knowing the exact form of the metric.

It is important to note that for any Calabi-Yau manifold the Hodge
numbers satisfy h%® = b0 =0 for 1 < s < n and that ™% = 0" = 1. This
together with the Poincaré duality leaves only a limited number of Hodge
numbers to be determined.

In the next two subsections we will concretely describe Calabi-Yau man-
ifolds in two and three complex dimensions, but before we do so we mention
that on every C'Y, manifold we can define a complex n-form 6, called the
holomorphic volume form. The real part of this form (possibly even multi-
plied by a phase factor), Re(e??6), is a calibration on X and the correspond-
ing calibrated submanifolds are called special Lagrangian submanifolds.

B.2.1 The K3 Surface

We define a K3 manifold simply as a Calabi-Yau manifold of complex di-
mension two. We can also define a K3 surface in such a way that it can
include singularities, but we refer to the literature [47] for that. Because of
the following theorem (which we will not prove) things turn out to be quite
simple for K3 surfaces as

Theorem B.8 Any two K3-surfaces are diffeomorphic.

So there is basically one topologically distinct K3 surface and if we have
found one, we have found them all. The simplest example of the construction
of a K3 surface is the so-called Fermi quartic

FQ:={[20,...,2] € CP?|2¢ + 2} + 24 + 24 = O}. (B-11)

Another interesting example is the so-called Kummer construction of K3-
manifolds. Let T* be a complex torus defined by 7% = C2/A, where A is
some lattice in C2. Then T*/Z is a complex orbifold with 16 singularities,

each locally isomorphic to C?/Z5. Now let T%/Z5 be the smooth complex
manifold resulting from blowing up all the singularities in the way described

in section 2.2.3. Then T*/7Z5 can be shown to admit a metric of SU(2)
holonomy, which means that it is a K3 manifold.
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It can be shown that the Betti numbers of a K3 are ¥ = b* = 1,
b' = b3 = 0 and > = 22. Its only Hodge number which was not yet
determined at the end of the previous subsection is ! = 20.

K3 surfaces are almost omnipresent in string theory dualities. Because
we need for example the duality between M-theory on K3 and heterotic
string theory on T to be able to determine that non-Abelian gauge groups
can arise from singularities, the K3 surface is very important to us.

B.2.2 (C'Y; manifolds

Calabi-Yau 3-folds have received considerable attention over the years, be-
cause they provided the first spaces on which we could compactify string
theory to yield quasi-realistic particle phenomenology. Specifically, as was
first pointed out in [18], when we compactify heterotic string theory on a
CY3, we find an N =1 supersymmetric gauge theory with gauge group Es.
This gauge group can be seen as a GUT-group to be broken in such a way
to give reasonable particle phenomenology.

The most straight-forward construction of CY3’s is as an intersection
of hypersurfaces. Consider a set of r polynomials of degree ki,...,k, in
CPr*+3. With techniques from algebraic geometry it can be shown that the
total Chern class is

(1 + J)r+4
14k J)---(1+ k)’
where J is the Kahler form normalized in a certain way. If we expand

the right hand side in a power series, then the ith Chern class is the term
proportional to J* (which is zero if ¢ > 3). So ¢; vanishes if and only if

c= (B.12)

,
 ki=r+4 (B.13)
=1

Since a linear subspace of CP" is just CP" !, we are only interested in

solutions with all k; > 2. If this is the case, there are only five possibilities:

e (r = 1) a quintic equation in CP*

e (r =2) a quartic and quadratic equation or a pair of cubic equations
in CP°

e (r = 3) a cubic and two quadratic equations in CP°
e (r = 4) four quadratic equations in CP7

So the simplest example of a Calabi-Yau 3-fold is the quintic

Q :={[z0,...,24] €CPYz5 +--- + 25 = 0}. (B.14)
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Note that the defining equation can be deformed without changing the first
Chern class (and hence the possibility of finding a Ricci-flat metric of SU(3)
holonomy) by adding terms like

4
Zzz~5+>\ZoZ§+H282:{’+‘”:O' (B.15)
i=0

All such manifolds are diffeomorphic, but they have different complex struc-
tures.

Just as in the case of K3, we can also construct Calabi-Yau’s by means
of singularity resolution. We can for example take the product of three com-
plex tori TZ-2 = C/A defined and divide by a Z3 action of a transformation
a;: T? x T§ x T2 /ajasag = T®/73. This space has 27 singularities. If we
resolve these singularities in a certain way, we can construct a compact man-

ifold T6/Z3 with vanishing first Chern class. A resolution which preserves
the defining properties of a Calabi-Yau manifold is called a crepant resolu-
tion. For Calabi-Yau 3-orbifolds (and certain other classes of singularities),
crepant resolutions always exist.

To only thing we still want to mention about the Calabi-Yau manifolds
constructed in the way described above, is that they are simply connected
and that spinors can sensibly be defined on them. In other words, they are
spin manifolds. The fact that they are spin manifolds can most easily be
seen by observing that the second Stiefel-Whitney class ws vanishes. This
is the case because wsy is the mod 2 reduction of ¢;.



Appendix C

Harmonic Operators

C.1 Hodge-de Rham Operator

The Hodge-de Rham operator or Laplacian, /\ : QF(M) — QF(M), is defined
as

A =dd" +dfd = (d+ d')?, (C.1)
where d is the exterior derivative and df the adjoint exterior derivative. A
k-form w is called harmonic if Aw = 0. This is the case iff it is both closed
and co-closed,

dw = dlw=0. (C.2)

The set of harmonic k-forms on a manifold M is denoted Harm®(M). The
set Harm®*(M) can be shown to be isomorphic to H*(M), the k-th coho-
mology group, on a compact orientable Riemannian manifold. This fact
is known as Hodge’s theorem. When acting 0-, 1-, 2- and 3-forms we get
respectively

Aw = =V (C.3)
Awy = —Viw, + R, wy (C.4)
ANwmn = —V2w0nn — 2Rypngw?? — 2Rp[mwn]p (C.5)
Dwmnp =~V wmnp — 6Ry, " wpigr + 3Ry, Wnplr (C.6)

This Laplacian is basically the curved space version of the ordinary Euclidian
Laplacian. Note that on 7-manifolds (which is of course a case we're very
interested in), we don’t need the expressions for the Laplacian acting on
k-forms with & > 3. The reason is that we can use the Hodge star *, which
commutes with the Laplacian, to map k-forms into (7-k)-forms. We finally
state the important Hodge decomposition theorem.

Theorem C.1 Every k-form w € Q¥(M) on a compact orientable Rieman-
nian manifold M can be uniquely written as

w=da+dB+wn, (C.7)

96



C.2. DERIVATION OF THE LICHNEROWICZ OPERATOR 97

with o € QF(M), p € QF~Y (M) and wy € Harm®(M).

We restrict ourselves to to these rather minimal facts. For more information,
consult [61], [30] or [17].

C.2 Derivation of the Lichnerowicz operator

In this Appendix, we calculate the variation of the Ricci tensor to first
order in the metric. Doing this will lead us to the definition of the so-called
Lichnerowicz operator, which is a natural generalization of the Laplacian
working on tensors on curved manifolds. After a few straight-forward steps,
the variation of the Ricci tensor can be seen to be

RMN = %QPQ [VNVmdgrg — VeV ndgom — VeVudgon + VoVpigun]

(C.8)
where the covariant derivatives are of course calculated using the background
metric. See for example [73], page 290, for a derivation of this result. We
now use the fact that the metric is covariantly constant, Vpgyn = 0, to
pull g9 inside the derivatives:

26RMN = VeV Sgun +VnVidgt p—VpVnig 1 —VpVudghy (C.9)

After this we need the commutator of two covariant derivatives to get the
derivatives in the last two terms in the same order. In [73], page 140, the
following formula for the commutator acting on a (1,1) tensor is derived:

[VM, VN] TPQ == TSQRPSMN - TPSRSQMN (ClO)

Using this gives us

20Run = V35gun +VnVubdg s —VnVedg: y — VuVedgh
+ 5QSMRPSPN - 59P5RSMPN
+ 5QSNRPSPM - 59PSRSNPM7 (C.11)

where quantities with superscripted zeros are calculated using the vacuum
metric.

Our equation of motion at this point has an invariance under infinites-
imal coordinate transformations. Basically, if we make an infinitesimal
tranformation 2™ — M = ;M — ¢M () the metric changes to §¢'(z) =
09(z) + Leg(z), where L is the Lie-derivative. If we look at this another
way, we have here a set of transformations which change the field dg, but
correspond to the same physical situation; in other words, there is a gauge
invariance. It turns out that we can always choose a so-called harmonic
coordinate system, in which the metric has the property

1
VMg — §VN59MM =0, (C.12)
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which can alternatively be seen to be just a specific gauge for the metric.
This gauge is known in the literature as the Lorentz gauge, Einstein gauge,
Hilbert gauge, de Donder gauge or Fock gauge, depending on where you
look. We have a hard time resisting the urge to add insult to injury and
call this the harmonic gauge, but we opt instead to conform to the Lorentz
gauge. It has to be noted that there’s still a residual gauge freedom: we can
change the coordinates by a harmonic function and not change the physics.
In the Lorentz gauge, the variation of the Ricci tensor simplifies greatly.
Using (C.12), subsequently (C.10), the algebraic properties of the Riemann

tensor,
Rynpg = Rpoun = —Rnmpg = —Rumngp, (C.13)

and the second Bianci identity,
Rpoun + Rpnom + Rpung =0, (C.14)

it’s a straight-forward calculation to obtain the variation of the Ricci tensor
in its final form

26R N = V23gun — 2Rupngdg™? + RY 1, 09n)q = Ardgun.  (C.15)

This last equation gives the definition of the Lichnerowicz operator Ayp.
Notice the striking similarity with the expression of the Laplacian acting on
a 2-form (C.5).
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