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Abstract

The AdS/CFT conjecture in string theory suggests that quantum gravity in
Anti de Sitter space, as a low energy limit of some string theory configuration,
is equivalent to a conformal field theory on the boundary. One of the simplest
examples is the D1-D5 system that has a super-gravity limit in AdS3. It is
argued that the boundary theory has a point in its moduli space that is a 2
dimensional CFT with as target space the symmetric orbifold of a 4 dimensional
hyperkähler space. To compare both theories one has to study objects that do
not depend on the coupling constants. On the CFT side these objects can
be described from a conformal field theory point of view or by dimensional
reduction to a certain cohomology of the target space. In this thesis the link
between these two methods is studied. An explicit description of the cohomology
ring is given and the benefits of each description is discussed.
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3.1 Extensions of Poincaré Symmetry . . . . . . . . . . . . . . . . . . 5
3.2 Introducing SUSY . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Adding conformal symmetry . . . . . . . . . . . . . . . . . . . . . 8
3.4 Conformal symmetry in 2 dimensions . . . . . . . . . . . . . . . . 10
3.5 N = 4 Superconformal Algebra . . . . . . . . . . . . . . . . . . . 11
3.6 Bosonisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Correlation functions 15

4.1 The symmetric orbifold . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Raising the dimension . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Chiral Primaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 separating the geometry from the algebra . . . . . . . . . . . . . 22
4.5 Large N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.6 Vertex representation of the currents . . . . . . . . . . . . . . . . 26
4.7 The correlators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.8 Vertex representation of the chiral primaries . . . . . . . . . . . . 29
4.9 Calculation of the three point functions . . . . . . . . . . . . . . 31

5 Chiral rings, cohomology and some algebra 35

5.1 The chiral rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Orbifold cohomology of SnK3 . . . . . . . . . . . . . . . . . . . . 40
5.3 An algebraic intermezzo . . . . . . . . . . . . . . . . . . . . . . . 43

5.3.1 Frobenius Algebras . . . . . . . . . . . . . . . . . . . . . 43
5.3.2 The symmetric ring . . . . . . . . . . . . . . . . . . . . . 47

6 The cohomology ring of X [n] 51

6.1 The Hilbert Scheme of points . . . . . . . . . . . . . . . . . . . . 51
6.2 Heisenberg algebra of Nakajima . . . . . . . . . . . . . . . . . . . 53
6.3 The product of cycle based classes . . . . . . . . . . . . . . . . . 56

6.3.1 Symmetry and complex structure . . . . . . . . . . . . . . 56
6.3.2 comparing degrees . . . . . . . . . . . . . . . . . . . . . . 57
6.3.3 examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

iii



CONTENTS

7 Conclusions 63

A The Symmetric group 65

B Bosonic twists 69

C Complex Manifolds 71

D Algebraic geometry 75

D.1 Basics of schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
D.1.1 Fat points, an example . . . . . . . . . . . . . . . . . . . . 78

D.2 Flat families and functors . . . . . . . . . . . . . . . . . . . . . . 79

Tables 81

Bibliography 82

Index 85

Conventions 87

iv



Chapter 1

Introduction

The interplay between theoretical physics and mathematics has allways been
fascinating. One could say that most areas in mathematics have started out of
need for a description of physical phenomena, often diverging away from physics
only much later making contact again. A contact from which again whole new
branches of mathematics have emerged. Classical examples are development of
Riemannian geometry in the nineteenth century, swiftly followed by the discov-
ery of general relativity, which again has strongly influenced again the growth
of differentiable geometry.

This interplay has been particular strong in describing fermionic behaviour,
where one of the most important mathematical discoveries of last century, the
Atiyah-Singer index theorem, has been strongly influenced by the discovery by
Dirac of the equation that bears his name, describing the motion of spin 1/2
particles.

The discovery of supersymmetry in the early 1970s made a lot of more eso-
teric mathematics suddenly common good among theoretical physicists. Among
the surprising connections one can count the beautiful interplay between com-
plex structures and supersymmetric models. The search for a theory unifying
gravity and quantum field theory, both areas in physics that have been highly
successfull on their own, resulted in seeing string theory as the most likely
candidate we have today for this unification. String theory itself was created
first as a model for just strong interactions, but discarded because of certain
inconsistencies.

String theory as we know it today again needed a lot of new mathematical
concepts, partly not well known to the physical community, among them al-
gebraic geometric, topological and representation theoretical theories. On the
other hand many new insights in areas as algebraic topology and algebraic geom-
etry have emerged often first based on “physical intuition” that only later have
been made exact. Well known examples are new stringy types of cohomology,
like orbifold cohomology and quantum cohomology, Gromov-Witten invariants,
counting curves on a manifold, and mirror symmetry relating two seemingly
different manifolds to each other.

In this thesis we will touch upon some of these new concepts and show
how some esoteric mathematical objects that were discovered by Alexander
Grothendieck, one of the greatest mathematicians from the 20th century, sud-
denly are seen to be of practical use. This is done in the context of certain
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CHAPTER 1. INTRODUCTION

calculations on some singular spaces called orbifolds. The reason behind these
calculations is the conjectured duality between two previously unconnected the-
ories. One a theory describing gravity. The other a quantum field theory on a
flat space time totally unaware of any gravitational influence. This conjecture,
based on observations in string theory by Maldacena at the end of last century,
has made a big impact on theoretical research done in high energy physics of
the last decade and hopefully will help to unravel the puzzle of how to build
this long searched for unifying theory.

The theory on the boundary is in the case that we will consider, a certain
conformal field theory (CFT) for which a relevant set of correlators have been
calculated in a paper by Mathur and Lunin [1]. They managed to get analytic
expressions for a certain asymptotic region.

We will start doing a prcise analysis of their method. We will then analyse
the geometric meaning of these correlators from a topological point of view and
then try to formulate them in an algebraic topological language. Using some
recent results from algebraic geometry we are then able to give an algorithm that
makes it in principle possible to calculate an important part of these correlators
exactly.

We will do a comparison of both methods and will try to match the results.
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Chapter 2

The setting

One of the most remarkable, conjectured, dualities in string theory is the Mal-
dacena conjecture relating string theory in an AdS background to a conformal
field theory on the boundary. Several tests of this conjecture have been done,
the biggest obstacle being that the duality is a strong - weak coupling duality,
the weak string coupling, resulting in the supergravity limit, being dual to a
strongly coupled CFT.

Although the precise formulation of the conjecture is outside of the scope of
this thesis, we will briefly touch upon some of the aspects, the main reference
being [2]. String theory contains, next to closed and open strings also extended
objects that can be seen as hypersurfaces on which open strings can end. They
follow from imposing Dirichlet boundary conditions on some of the spatial open
string dimensions and so these hypersurfaces go by the name of D-branes. The
open strings living on the branes make them into dynamical objects. The low
energy description can be given as a decoupled system of closed strings in the
bulk, corresponding to supergravity in a Minkowski spacetime and a super Yang-
Mills theory describing the open string modes on the branes. One can also look
at the effective action of the dynamics of the D-brane excitations as they interact
with the closed strings. Far away from the branes this corresponds again to the
free supergravity solution. Close to the branes (one speaks of the near horizon
limit) the geometry is that of Anti de Sitter space and the theory is described
by a string theory in AdS.

Comparing both descriptions lead to the conjecture that string theory on
AdS should be equivalent to N = 4 SYM on the boundary of this AdS. One
special case, relevant to this thesis, is a system of Q5 D5 branes wrapped around
a 4-dimensional manifold M that is taken to be K3 or T 4 (see the appendix C
for definitions) and Q1 D1 branes stacked upon the D5 branes along the non
compactified direction. When we look at the near horizon-limit, the geometry
is that of AdS3 × S3. The boundary SYM theory has a point in its parameter
space that is given by a 2 dimensional CFT with as target space the symmetric
orbifold SNM . The symmetric orbifold is not the point dual to the low energy
supergravity theory though and this has to be taken into account when compar-
ing both theories. The number of copies of M in SNM is Q1Q5+1 for M = K3.
It is one less for T4.

To get a better handle on the theories on both side of the conjecture, it is
helpfull to consider a limit in which N goes to ∞ while keeping the combination
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CHAPTER 2. THE SETTING

g2N fixed. Here g is the Yang-Mills coupling constant. This limit is called the
’t Hooft limit. In the CFT this corresponds to a 1/N expansion, in lowest order
restricting to planar Feynman diagrams. On the supergravity side this limit
corresponds to a more tractable expansion in the string coupling constant.

One of the unexpected results [3] is that the three point functions of chiral
operators at small coupling in 4 dimensional N = 4 SYM (supersymmetric
Yang Mills) ,in the large N limit, are equal to the the three point functions
in the weak coupling supergravity limit in the dual AdS5 × S5. Combining
this with the AdS/CFT conjecture this would mean that the 3 points functions
are ”protected” when going from strong to weak coupling pointing to a kind
of nonrenormalisation. This is a concept common in supersymmetric theories,
meaning here that these 3 point functions do not receive any corrections from
higher loops.

The question one could pose is if this protection of 3 point functions also
occurs in the D1 −D5 system where the supergravity description is in AdS3 ×
S3 ×M with M a 4 dimensional manifold. It is believed that a sigma model
with as target space the symmetric orbifold MN/SN is contained in the moduli
space of the D1 −D5 system.
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Chapter 3

Supersymmetry

In this chapter we will, after a short motivating historical introduction, define
supersymmetry algebra’s, first in 4 dimensions, as an extension of the Poincaré
algebra. We will then review 2-dimensional conformal symmetry and extend it
to N = 4 superconformal symmetry. The appearance of some special states that
are annihilated by part of the supersymmetry generators is treated concisely as
preparation for the theories described in the main body of the thesis.

3.1 Extensions of Poincaré Symmetry

The discovery of an ever increasing amount of elementary particles in the sec-
ond half of last century made it clear that some symmetry principles where
needed to group the different particles, just like the Poincaré symmetry “con-
nects” the 4 components of the vector potential into one spin 1 photon. A very
attractive idea was the possibility to combine the extra continuous symmetries
with the Poincaré group in a non trivial way. The first attempt actually dates
already from 1937 [4] when Wigner tried to combine SU(2) isospin symmetry
with the Poincaré group resulting in an SU(4) symmetry for the combined spin
and isospin. Later SU(6) models looked promising, but all nontrivial exten-
sions of the Poincaré group lead to models that lacked realistic scattering. It
was finally the Coleman-Mandula theorem [5] that proved that only trivial ex-
tensions are possible, with the notable exception of conformal symmetry for
massless particles. The proof of this theorem hinges mostly on 2 basic concepts
: the almost everwhere analytic behaviour of the S-matrix and the discreteness
of the spectrum of particles (the finiteness axiom). If some generators, that form
the extension, would not commute with the Poincaré generators then it would
be possible to continuously transform from one one particle state to another
(with another mass) contradicting the finiteness axiom.

3.2 Introducing SUSY

With the discovery of supersymmetric theories, first in string theory [6] and
later in 4 dimensions [7] it became clear that by enlarging the allowed sym-
metries with anticommuting generators a non trivial extension of the Poincaré
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CHAPTER 3. SUPERSYMMETRY

algebra is possible. The theorem by Haag,  Lopuszański and Sohnius [8] is the su-
persymmetric version of the Coleman-Mandula theorem, classifying all possible
extensions of the Poincaré group but now including anticommuting generators
resulting in supersymmetric algebra’s for massive theories and superconformal
algebra’s in the massless case. The proof is based on Coleman-Mandula and
is for the rest purely algebraic. A sketchy overview of the constructions in 4
dimensions follows.

Lets start with the Poincaré group as the matrix group that leaves the
Minkowski metric, ηµν = − + ++, invariant (the Lorentz group) combined
with 4 dimensional translations . Expanding around the group unit we readily
find the Poincaré algebra:

[Pµ, Pν ] = 0

[Pµ,Mνρ] = i (ηµνPρ − ηµρPν)

[Mµν ,Mρσ ] = i (ηνρMµσ − ηνσMµρ − ηµρMνσ + ηµσMνρ)

The generator of translations, Pµ, is the momentum 4-vector. Since the concept
of a particle makes sense only if it is stable over (at least some) time, it is
natural to split the antisymmetric tensor Mµν in a conserved (commuting with
the generator of time translations P0) angular momentum Ji := 1/2εijkM

jk

and a boost vector Ki := M0i . Working out the commutation relations for
the complex combinations A±

i := Ji ± iKi, we find 2 decoupled copies of the
su(2) algebra. In this way we can classify the representations by giving the
”spin”of each SU(2) representation. A scalar is then noted as (0, 0), a Dirac
fermion as (1/2, 0) ⊕ (0, 1/2) and a vector as (1/2, 1/2). It is custom to write
the second spin index with a dot, indicating it transforms as the hermitian
conjugate representation, so for example spin 1/2 fermions are written as Qα or
Q̄α̇. From the definition of A±

i follows that the constructed finite dimensional
representations are not unitary representations of the Poincaré group, which is
not a big surprise since one can show that a non compact lie algebra has no
non-trivial finite dimensional hermitian representations.

From the Coleman-Mandula theorem we know that the only bosonic oper-
ators that are not in the centre of extensions of the Poincaré algebra are the
vector Pµ and the (1, 0)⊕ (0, 1) tensor Mµν , we see that the anti-commutator of
two fermionic generators can add up to at most spin 1, showing that these gen-
erators have spin 1/2. After some lengthy but rather straightforward algebra,
the most general extension for a massive theory can be shown to be [9]:

[Qαi,Mµν ] =
1

2
(σµν )

β
α Qβi (3.1)

[

Q̄iα̇,Mµν

]

= −1

2
Q̄i

β̇
(σ̄µν)

β̇

α̇
(3.2)

{Qαi, Q̄jβ̇} = 2δji (σµ)αβ̇ Pµ (3.3)

[Qαi, Br] = (br)
j
i Qαj (3.4)

[

Q̄iα̇, Br
]

= −Q̄jα̇ (br)
i
j (3.5)

[Br, Bs] = ic t
rs Bt (3.6)

[Qαi, Pµ] =
[

Q̄iα̇, Pµ
]

= 0 (3.7)

{Qαi, Qβj} = 2εαβZij (3.8)

6



CHAPTER 3. SUPERSYMMETRY

{Q̄iα̇, Q̄jβ̇} = 2εα̇β̇Z
ij (3.9)

All other commutators being zero. The Q’s are the spin 1/2 supercharges;
the B’s are internal symmetries; Zij are central charges, commuting with all
generators and related to the B generators through Zij = arijBr with the ar

antisymmetric matrices ; Zij := (Zij)
†
; ε the antisymmetric 2 × 2 tensor ( for

conventions see the end of the thesis ), with which we can lower and raise spinor
indices; σµν are spin matrices constructed from the Pauli matrices as follows :

σµ =
( �
.σi
)

, σ̄µ =
(

− �
.σi
)

σµν =
1

2
i (σµσ̄ν − σν σ̄µ)

One immediate result is, since the supercharges commute with P 2, that the
masses of particles in a supermultiplet are the same, so that supersymmetry
must be broken to yield a realistic model. The roman index on the supercharges
runs over the supersymmetry generations, N . When N = 1 one speaks of
unextended supersymmetry.

If there are no central charges the algebra is invariant under a U(N ) sym-
metry transforming the N supercharges into eachother. This symmetry goes
under the name of R-symmetry. R-symmetry

Since the central charges commute with the supercharges and with P µ it
is possible to choose particle representations in a supermultiplet that are also
eigenstates of the central charges. We can now rotate in the internal supercharge
space . Let Z = HU be the polar decomposition of Z, U unitary and H positive
hermitian. Define the supercharges

Tαi := Qαi − UijQ̄
j
α̇

Now forming the anticommutator and sandwitching between a one particle state,
|m〉 of mass m, |m〉, we find

0 ≤
∑

α,i

2 ‖ Tαi|m〉 ‖2= 〈m|{Tαi, T̄ α̇i}|m〉

=〈m|{Qαi, Q̄α̇i}|m〉 − Uij〈m|{Q̄jα̇, Q̄α̇i}|m〉
−
(

U †
)ji 〈m|{Qαi, Qαj }|m〉 + Uij

(

U †
)ki 〈m|{Q̄jα̇, Qαk}|m〉

=2N (σµ)
α̇
α 〈m|Pµ|m〉 − 2δα̇α̇〈m|UijZij |m〉

− 2δαα〈m|
(

U †
)ji

Zij |m〉 + 2Uij
(

U †
)ki

δkj (σµ)α̇α 〈m|Pµ|m〉
=8Np0 − 8〈m|TrH |m〉 (3.10)

Where the anti-commutation relations (3.3) and (3.8) have been used. Since
H is a positive operator we get a lower bound on the mass of the one particle
state:

m ≥ 1

N

N
∑

i=1

hi

Where the sum is over the eigenvalues of H . When the mass is the lowerbound
the state is called a BPS state , a terminology that has its origin in monopole BPS state
solutions in gauge theories. From the construction we see that a state in a
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CHAPTER 3. SUPERSYMMETRY

BPS multiplet is characterised by its annihilation by the Tαi . The multiplet
corresponding to BPS states is then also called a short multiplet. It is now
custom to call all multiplets that get annihilated by a supercharge BPS states.

3.3 Adding conformal symmetry

The Coleman Mandula theorem for massless particles allows for a nontrivial
extension by the generators of the conformal group.

As a side note, this is a somewhat misleading statement since even in 4
dimensional Minkowski space to give a rigorous definition of the conformal group
one has to define it on the conformal compactification of R3,1 In 2 dimensions
the confusion is much bigger, as we will see. First though we will continue with
the treatment of the R3,1 case, because the main features new to superconformal
algebras are easy to to calculate. We define a conformal transformation as an
orientation preserving diffeomorphism φ : U ⊃ R3,1 → O ⊃ R3,1 such that the
pull back of the metric equals the original metric up to a factor (the conformal
factor):

(φ∗g) (p)(X,Y ) = λ(p)2g(p)(X,Y ) (3.11)

where X,Y ∈ TpR
3,1 and the pull back is defined through the push forward of

the vectors in the tangent space:

(φ∗g) (p)(X,Y ) := g(φ(p))(φ∗X,φ∗Y ) = g(φ(p))(φ′ ◦X,φ′ ◦ Y ) (3.12)

Here the prime denotes the differential of the map. This is easy to define
through local coordinates as follows: suppose {xi} are some local coordinates
at a point p in R3,1 and {φi} local coordinates around the image of p under φ.
A tangent vector at p has in local coordinates the form: X = Xµ∂/∂xµ under
the diffeomorphism it gets mapped to a vector at φ(p). In local coordinates we
have for the image:

∂φν

∂xµ
Xµ ∂

∂φν

In physics literature, in case only one chart is needed, it is custom to express
everything in a local coordinate basis. Then we would say that the vector Xµ

gets mapped to the vector
∂φν

∂xµ
Xµ.

The conformal transformations as defined do not form a group since even
composition is not necessarily defined. We will first classify them locally. Lo-
cally we can define the conformal transformations through one parameter groups
resulting in the extra generators (next to the Poincaré generators that, as isom-
etry generators, are clearly also conformal) the dilatation generator, D and the
generators of the special conformal transformations, Kµ. In local coordinates
they can be written as:

D = −ixµ ∂

∂xµ

Kµ = −2ixµx
ν ∂

∂xν
+ xνxν

∂

∂xµ

8



CHAPTER 3. SUPERSYMMETRY

Exponentiating the special conformal generator generates the one parameter
group of transformations:

φµb (x, t) =
xµ−b

µt

1 − 2bνxν t+ bνbνxρxρt2

with b some fixed point. From this expression it is clear that for any nonzero
value of t the domain of the transformation is a subset of R3,1. Thats why one
has to conformally compactify R3,1, by embedding it in 5 dimensional projective
space, to properly define the conformal group. Since we won’t need global
properties for the discussion that follows we refer for the details to [10]. The
full conformal algebra is now:

[Pµ, Pν ] = [Kµ,Kν ] = 0

[Pµ,Mνρ] = i (ηµνPρ − ηµρPν)

[Mµν ,Mρσ ] = i (ηνρMµσ − ηνσMµρ − ηµρMνσ + ηµσMνρ)

[D,Pµ] = iPµ

[D,Kµ] = −iKµ

[Kµ, Pν ] = 2i (ηµνD −Mµν)

[Kµ,Mνρ] = i (ηµνKρ − ηµρKν)

We can combine the D,K and P into 2 extra indices of the ”rotation” generator
showing that the conformal group is isomorphic to SO(4, 2). When classifying
the particle content we then should search for projective representations or,
equivalently, representations of its (4 times) cover.

The conformal algebra can again be extended with supersymmetry charges
analogous to the Poincaré algebra. leading to the general 4 dimensional su-
perconformal algebra. An important tool in finding the maximal extension is
looking at the commutator of D with the generators, the ”dimension”, ∆ of
the generator A is defined by [D,A] = i∆A, so that M,P,K and D have di-
mensionality of 0, 1,−1 and 0. Combining the supersymmetry algebra with
the conformal algebra it is not hard to show that the dimensionality of the
supercharges is ±1/2 . Central charges do not appear, since they would have
dimensionality 0, commuting with the D but 1 when using (3.8) and the Jacobi
identity. An important feature follows from the Jacobi identity for D, k and Q:

[D, [Kµ, Qiα]] = [[D,Kµ], Qiα] + [Kµ, [D,Qiα]] = − i

2
[Kµ, Qiα]

so apparently when one includes supercharges with dimension 1/2, charges with
dimension −1/2 should also appear, lets call them Q and Q(1) . Finally the
anticommutator of the Q’s can be calculated combining the (anti)commutation
relations found :

{Qiα, Q(1)
jβ } = εαβδi,jD − δi,j(σµν )αβM

µν + iεαβOij

Where Oij is a hermitian (and traceless for N = 4) matrix. The essential nov-
elty is that the generalised R-symmetry (internal symmetry) is now interwoven
with the spacetime symmetries. Comparing the anticommutator with 3.8 we
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CHAPTER 3. SUPERSYMMETRY

see that the BPS condition will now, because of the appearance of the dilata-
tion and angular momentum generator, result in BPS states with a conformal
dimension that is quantised when angular momentum is. This means also that
the dimension of these BPS states will be constant, over a range of the coupling
constant for which the correlators are analytic as a function of the coupling
constant. This can be used to relate properties of BPS states in the (unknown)
strong coupling region to those in the weak coupling region, where perturbative
approximations can be used.

The supersymmetric extensions to other signatures of the metric and dimen-
sions larger than 2 have been classified by Nahm [11].

3.4 Conformal symmetry in 2 dimensions

In 2 dimensions it is dubious at least to speak of a conformal group in the way
it was discussed in the last sections. As is immediately clear from the conformal
Killing equation in 2 dimensions. Writing out (3.11) in local coordinates we
find:

(φ∗η)µνX
µY ν = ηij∂µφ

i∂νφ
jXµY ν = λ2(x, y)ηµνX

µY ν

For R2,0 the metric is ηµν = δµ,ν and by interpreting x,y (resp. φx, φy) as the
real, imaginary components of complex numbers it follows that the conformal
transformations correspond to the locally invertible holomorphic or antiholo-
morphic functions. It is impossible though to compactify R2,0 in a way to make
these conformal transformations into a group like we did in R3,1 . The best
we can get is to use at most linear conformal factors resulting in the finite di-
mensional group of Moebius transformations. So defined the conformal group is
isomorphic to SO(3, 1), but this captures only a small part of the symmetry. In
the 2 dimensional Minkowski space, R1,1, it is possible though to have a infinite
dimensional conformal group, again since we will define the theory only locally
we can do without and refer to the literature for details [10].

The 2 dimensional analogue of the local conformal algebra can be taken
to be 2 copies of the Witt algebra as generators of the holomorphic and anti-
holomorphic functions.The quantisation procedures shifts our interest into pro-
jective representations of the algebra, which translates back into representations
of central extensions of the Witt algebra, the Virasoro algebra (restricting our-
selves to the holomorphic part)

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0

Where the Ln represent the conformal transformation generators −zn+1∂z and
thus are the modes of the generator of conformal transformations:

T (z) =
∑

n∈Z

z−n−2Ln

Alternatively the Virasoro algebra can be expressed through the symmetry gen-
erating currents (energy mommentum density) OPE as:

T (z)T (w) ∼ ∂T (w)

z − w
+

2T (w)

(z − w)2
+

c

2(z − w)4

10
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The central charge of the theory depends on the field content. In case the
central charge is nonzero we don’t have conformal invariance anymore in our
theory on the quantum level and any conformal scaling of the metric needs to be
compensated for, as we do in the next chapter. In case of worldsheet conformal
invariance in string theory, where conformal invariance is a gauge invariance
and the quantised theory does not allow an anomaly, this restricts the allowed
theories.

The basic states, |φ〉 in the theory are eigenstates of L0 for which Ln|φ〉 = 0
for n > 0. These fields are called primary, the eigenvalue under L0 is their primary
conformal weight. conformal weight

The Virasoro algebra contains a finite dimensional subalgebra generated by
L−1, L0 and L1 corresponding to the group of global conformal transformations.
In contrast to higher dimensional conformal theories, there are many possible
extensions of the Virasoro algebra possible. Many of those have a nonlinear
algebra and are not easy to interpret geometrically. The N = 1 theory is the
superstring theory symmetry ( heterotic if it is the symmetry of just the left or
right movers ).

3.5 N = 4 Superconformal Algebra

One of the possible extensions is the (N , N̄ ) = (4, 4) algebra that is expected
to be a symmetry of the conformal field theory on the boundary of AdS3 where
a global SU(2) × SU(2) symmetry corresponds to the SO(4) symmetry of the
S3 in the AdS3 × S3 ×M D1 −D5 system.

The N = 4 superconformal current algebra extension is [12] (holomorphic
part only)

i, j, k ∈ {1, 2, 3} a, b ∈ {1, 2}

J i(z)J j(w) ∼ iεijkJk(w)

z − w
+

cδi,j

12(z − w)2
(3.13)

T (z)J i(w) ∼ ∂J i(w)

z − w
+

J i

(z − w)2
(3.14)

Ga(z)G̃b(w) ∼ 2T (w)δab
z − w

− 2(σi)ab∂J
i(w)

z − w
− 4(σi)abJ

i(w)

(z − w)2
+

2cδab
2(z − w)3

(3.15)

T (z)Ga(w) ∼ ∂Ga(w)

z − w
+

3Ga(w)

2(z − w)2
(3.16)

T (z)G̃a(w) ∼ ∂G̃a(w)

z − w
+

3G̃a(w)

2(z − w)2
(3.17)

J i(z)Ga(w) ∼ − (σi)abG
b(w)

2(z − w)
(3.18)

J i(z)G̃a(w) ∼ G̃b(w)(σi)ba
2(z − w)

(3.19)

J is the SU(2) R-symmetry current , Ga and G̃a are 4 supersymmetry currents
corresponding to a complex SU(2) doublet, with G̃a = (Ga)†, an other SU(2)
coming from the antiholomorphic version.

11



CHAPTER 3. SUPERSYMMETRY

The mode expansion depends on the boundary conditions we impose upon
the currents. Restricting ourselves to periodic bosonic currents we can choose
as boundary conditions for the super currents:

G1(e2πiz) = exp[−2πiη]G1(z) G2(e2πiz) = exp[2πiη]G2(z) (3.20)

G̃1(e2πiz) = exp[2πiη]G̃1(z) G̃2(e2πiz) = exp[−2πiη]G̃2(z) (3.21)

J±(e2πiz) = exp[∓2πiη]J±(z) (3.22)

Where J±(z) := Jx(z)±iJy(z). These boundary conditions correspond to mode
expansions of the form:

G1(z) =
∑

n∈Z

G1
n+ η

2 + 1
2
z−n−

η
2 −

3
2 G2(z) =

∑

n∈Z

G2
n+ η

2 + 1
2
z−n+ η

2 −
3
2 (3.23)

For η = 0 we get the Neveu-Schwarz algebra for the modes( n,m ∈ Z; r, s ∈
Z + 1/2):

[J im, J
j
n] = iεijkJkm+n +

c

12
mδi,jδm+n,0

[Lm, J
i
n] = −nJ in+m

{Gar , G̃b,s} = 2δabLr+s − 2(r − s)(σi)abJ
i
r+s +

c(4r2 − 1)

12
δab δr+s,0

{Gar , Gbs} = {G̃a,r, G̃b,s} = 0

[Lm, G
a
r ] =

(m

2
− r
)

Gam+r

[Lm, G̃a,r] =
(m

2
− r
)

G̃a,m+r

[J im, G
a
r ] = −1

2
(σi)abG

b
m+r

[J im, G̃a,r] =
1

2
G̃b,m+r(σ

i)ba

The algebras for different values of η are isomorphic . This is also called the
spectral flow connecting the Ramond algebra, for η = 1, with the Neveu-Schwarz
algebra. The modes for the supercurrents are related through:

G̃a,r = (Ga−r)
† (3.24)

It is interesting to note that there is a finite subalgebra consisting of just the
L0, L±1 and J i0, combined with ±1/2 modes of the supercurrent and that this
algebra does not contain a central charge, so that it is a symmetry for the
quantised field theory. This is the lie algebra that generates (together with the
antiholomorphic part), after conformal compactification, the group of global
(N , N̄ ) = (4, 4) superconformal symmetry with the global SU(2) × SU(2) R-
symmetry mentioned above.

The smallest possible representation is for c = 6, which can be realised by
4 bosons and 4 fermions. This is related to the lack of existence of a highest
weight state for smaller c.

Superconformal primary fields are fields that get annihilated by the posi-
tive modes, not only of the energy momentum density as in bosonic conformal
field theory, but also of the supercurrent and the R-symmetry current. The

12



CHAPTER 3. SUPERSYMMETRY

states that get annihilated by G̃1,−1/2 or G2
−1/2 are called left chiral, those chiral

that get annihilated by G̃2,−1/2 or G1
−1/2 left anti-chiral and the same for the anti-chiral

anti-holomorphic sector, but then as “right” variants. From the algebra we
immediately find the BPS conditions :

0 ≤ {Ga1/2, G̃a,−1/2}|φ〉 = (2L0 − 2(2δa,1 − 1)J3
0 )|φ〉 (3.25)

0 ≤ {Ga−1/2, G̃a,1/2}|φ〉 = (2L0 + 2(2δa,1 − 1)J3
0 )|φ〉 (3.26)

Apparently the primary states that are (anti)chiral, the so called chiral pri- chiral primaries
maries, fulfil the lower bound, identifying them as BPS states with R-symmetry
charge equal to their conformal weight in the chiral case and minus their con-
formal weight in the anti-chiral case. On the other hand we find for any BPS
state that it is a chiral primary by using the conjugacy relation (3.24) :

0 = 〈φ|{Ga±1/2, G̃a,∓1/2}|φ〉 =‖ G̃a,∓1/2|φ〉 ‖2 + ‖ Ga±1/2|φ〉 ‖2 (3.27)

Note that there is an ambiguity in the choice of direction in which we measure
the charge.

3.6 Bosonisation

The OPE of the exponential of a scalar field, φ, is equal to the OPE of a complex
fermion, ψ = (ψ1 + iψ2)/

√
2 where the ψi are Majorana fermions. Writing out

the holomorphic part (see [13]):

: eiφ(z) :: e−iφ(w) :∼ ei(φ(z)−φ(w) 1

(z − w)

: eiφ(z) :: eiφ(w) :∼ z − w

: e−iφ(z) :: e−iφ(w) :∼ z − w

Comparison with the fermion OPE

: ψ(z) :: ψ̄(w) :=
1

2
: (ψ1(z)+iψ2(z)) :: (ψ1(w)−iψ2(w)) :∼ 1

z − w
+ψ1(w)ψ2(w)

makes it natural to make the identification: ψ(z) ∼= eiφ(z) .
The fermion current is then

: ψ̄(z)ψ(z) := i∂φ(z) (3.28)

The operator S± := e±i/2φ is a vertex operator that maps a NS vacuum to an R
vacuum, commonly called a spin field. We could also let s vary continuously,in spin field
eisφ recovering the spectral flow from the previous section for the vacuum. In a
string picture it would correspond to a continuous stretching of the string along
the boundary. The spectral flow shows that the N = 4 superconformal algebras
for the Ramond sector and the NS sector are isomorphic. Note though that the
spin fields represent a spectral flow only on the vacuum.

The state resulting from this spectral flow from a NS vacuum has conformal
dimension s2/2 = 1/8 (as bosonic vertex operator with momentum 1/2). For
the Ramond groundstate of N = 4 this means, in the minimal 4 boson case,

13



CHAPTER 3. SUPERSYMMETRY

that the conformal dimension gets raised by 2 ·1/8 = 1/4 since there are 2 pairs
of fermions. In general the spectral flow raises the dimension of the Ramond
vacuum by c/24. Notice that we have 2 ground states for a generic s value. Only
the NS sector has one, degenerate, vacuum. When we continue the spectral flow
till s = ±1 we reach an excited NS state.

14



Chapter 4

Correlation functions

In this chapter we will describe a calculation of 3 point functions of chiral pri-
maries, as originally done by Mathur and Lunin in 2001 [1]. After a short
introduction to orbifolds, we will go in some detail through their calculations.
We will see how part of their results follow from the SU(2)⊗SU(2) R-symmetry
resulting in some pure spin algebra piece and a part from geometric origin. The
advantage of this method is that it is almost independent of the target manifold
that is the base of the symmetric orbifold, although, as we will see in the next
chapter, the N = 4 supersymmetry automatically implies a hyperkähler struc-
ture and so fixes the target manifold already for a big part. Furthermore this
method makes it possible to include other primaries from the chiral multiplet,
although it is unlikely that they are as rigid as the chiral primaries.

Disadvantages are that not all chiral primaries can be obtained with this
method and that it is in principle a large N approximation. The final result is
a slight, but not essential, generalisation of the original.

4.1 The symmetric orbifold

An orbifold is defined as the quotient of a manifold by a finite group G. This orbifold
means that we have to identify points on the manifold that transform into
eachother by the group action, that we assume to be continuous. We might
have fixed points of this action, meaning in other words that the action is not
free. Because of these fixed points the orbifold is not necessarily a manifold.

A simple example is the real line with inversion through the origin (fig.
4.1(a)). The group is the group of the elements, Z2 = {1, s} with s(x) = −x.
The origin is a fixed point.

When we start from the circle S1 ( this can be seen as the interval [−1, 1]
with the endpoints identified ), then we can construct the orbifold S1/Z2 (fig.
4.1 (b)). The symmetric orbifold MN/SN , is defined as the quotient of the symmetric orbifold
Cartesian product of N copies of a manifold, M , by the symmetric group of
N objects, SN (fig. 4.1 (c)). When we define a 2 dimensional conformal field
theory with with an orbifold as target space we can construct this theory by
means of projecting the states, defined on the original manifold as target space,
onto the orbifold. Since in our case the field theory is defined on a cylinder (the
boundary of AdS3), say with parameters σ0 and σ1, the bosonic fields should
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(c)

0

01/−1

1/−1

0

1−1

0

0

(a) (b)

PSfrag replacements

R

R

R/Z2

S1

S1/Z2

R2

R2/S2

C1

C2

Figure 4.1: The orbifolds R/Z2 (a), S1/Z2 (b) and R2/S2 (c)

be periodic around the cylinder modulo a twist by the group action:

φ(σ0, σ1 + 2π) = ĝφ(σ0, σ1)

These twisted states form a separate sector in the Hilbert space. The demand
of modular invariance ( i.e. the invariance of the complex structure under dif-
feomorphisms ) can be fulfilled by inclusion of all possible twisted sectors. An
other argument to include all the sectors is to realise that a loop in the untwisted
sector as parametrised by by a slice of the cylinder can, when reaching the fixed
point split into loops that are in twisted sectors. This is true in the case of
an Abelian group, although it is possible that we can have modular invariant
twisting by just a subset of the group. For example had we just used the original
theory, without any twisting and without projection onto invariant states, the
theory would have been modular invariant.

In the case of a non-Abelian group we have to be more carefull how to define
the twisted sectors. Let g ∈ G and φ a g-twisted field, then, because of the
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identification, we should have:

hφ(σ0, σ1 + 2π) = h ◦ gφ(σ0, σ1)

= (hφ)(σ0, σ1 + 2π)

= (h ◦ g ◦ h−1) ◦ hφ(σ0, σ1) for any h ∈ G

So the group action transforms a g-twisted state into one twisted by an element
in the same conjugacy class as g. The right prescription for forming an orb- conjugacy class
ifold, in this case, is to project a g twisted sector by the centraliser of g ( that centraliser
is the set of group elements that commute with g ), and then average over the
conjugacy class of which g is a representant. It is not complicated to show that
the resulting theory is indeed modular invariant and invariant under the group
transformations [14].

When studying the symmetric orbifold the finite group is the symmetric
group. We refer to appendix A for the structure of this group and its classes.
For the moment we will just concentrate on one cycle from the class it belongs
to. When we calculate correlation functions of operators from several, equal or
non equal, sectors the sum over the centralisers and representatives will give us
the final answer. We will see in the following that in the large N limit these
double sums will result in a series expansion in 1/N .

We will describe our theory in the complex plane with z = eσ0+iσ1 . When
we consider the bosonic field as a map from C to MN , then by imposing twisted
boundary conditions on the fields when going around a point z0 ∈ C, we make
this point into a branching point, also called a ramification point, for this branching point

ramification pointmap. This means that the map is multivalued in any neighbourhood of this
point. Suppose Σ is a Riemann surface and f : C → Σ is a map such that every
point in Σ has a neighbourhood whose preimage is a disjoint union of open sets
in C, each of which is homeomorphic to that neighbourhood under f , then f is
called a covering map. The nice thing is, that we can use covering maps to covering map
resolve the orbifold singularities as follows. We know that for an n-cycle twist,
after encircling the twist insertion n times, the bosonic fields will again have
the values they had originally. We can make a covering map that has the same
periodicity, that is periodic after n loops in the z plane, by cutting out a small
disk around the insertion and choosing a map to the complex plane that goes
close to insertion as

z = atn (4.1)

When we go around 0 in the t-plane once, we go around 0 in the z-plane n times .
Clearly the map is a covering map on the z plane with the small disk removed.
The bosonic fields, as coordinates on MN , get unwounded to fields that are
single valued on the t-plane. Such a map that lifts a non simply connected
surface to a simply connected cover is also called a monodromy map. We still monodromy map
need to specify boundary conditions around the disk that was cut out. As far
as the bosonic theory is concerned we will just glue in a flat disk in the t-plane,
choosing boundary conditions that reflect the single valuedness of the fields (i.e.
periodic under the map t 7→ exp(2πi)t ). We can now consider the theory as
a sigma model on the cover with as target space just one copy of M , since the
unwounded fields are equivalent. and we can make the choice to start with the
first copy of M in the cycle.

For fermions we have to be more carefull. As argument for a choice of
boundary conditions is the following [2]: since AdS3 is contractible a fermion on
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the boundary going around the cylinder is equivalent to a fermion in the centre
of AdS3 turning around its axis, so it should be, as a fermion, antiperiodic. In
other words the fermion is in the Neveu-Schwartz (NS) sector :Neveu-Schwartz

ψ(σ0, σ1 + 2π) = −ψ(σ0, σ1)

When changing coordinates to the z plane, we have to take into account that
fermions have conformal dimension 1/2, so that in the z-plane we have , with

w
def
= σ0 + iσ1

ψz(z) = ψw(w)(
dw

dz
)

1
2 = ψw(w)z−

1
2

making ψ(z) periodic. The choice of a Ramond vacuum on the other hand
would correspond to a minimal mass black hole [2]. We still have to check what
boundary conditions we have to impose on the cover that correspond to this.
We will do that in the next section.

4.2 Raising the dimension

A twist operator ωn(z), is defined as an operator that creates the lowest di-
mensional state, the vacuum, of a twisted sector from the untwisted one. It
does change the dimension of the vacuum. This can be calculated using the
energy-momentum tensor and a local mode expansion of the fields [15], but it
can be deduced in the following way: we go to a cylinder around the insertion
point. The vacuum contribution before we insert the twist operator is the stan-
dard Casimir energy of −c/24, with N copies of M we have c = 6N and so the
energy is −N/4. After the twist of n strings we have replaced the contribution
of these to the energy with the Casimir energy of a cylinder that has a circum-
ference of n times the original leading to a contribution of −1/4n2 per copy that
participates in the twisting, amounting to a total of −1/4n. The difference of
these energies gives us the dimension of the twist operator:

∆n =
1

4

(

n− 1

n

)

(4.2)

The vacuum in the NS sector has no R-symmetry charge. We will shortly see
that, depending on the cycle length, we might have to impose Ramond boundary
conditions along the disk cut out on the cover resulting in a charge of ±1/2.
In both cases though, the conformal dimension is bigger than the R-symmetry
charge so that they do not represent chiral operators (see the discussion on
chiral operators in section (3.5)).

The idea is now to construct chiral operators from twist operators by ap-
plying operators that raise the dimension slower than the charge until they
are equal. We start by defining ladder current operators in the standard way.
Starting from the current algebra (3.13): we define :

J±(z)
def
= J1(z) ± iJ2(z)

with OPE’s :

J3(z)J±(w) ∼ ±J
±(w)

z − w
(4.3)
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We now define a kind of fractional mode operators on the z plane in the sector
twisted by the cycle (1, 2, · · · , n):

J+,z
−m/n

def
=

∮

C

dz

2πi

n
∑

k=1

J+,z
k (z)e−2πim(k−1)/nz−m/n (4.4)

Where C is a loop around the origin, the z superscript on the first J just a
reminder on what surface the operator is defined and the k subscripts indicating
on which 4-manifold from the n that are twisted the current operator acts.The
exponential is chosen such that the integrand is single valued along the contour:

n
∑

k=1

J+,z
k (ze2πi)e−2πim(k−1)/n(ze2πi)−m/n =

n
∑

k=1

J+,z
k+1(z)e−2πim((k+1)−1)/nz−m/n

(4.5)

where J+
n+1(z)

def
= J+

1 (z). Changing the summation index gives the desired
result.

Since the J+,z
k (z) have conformal dimension 1, as can be seen from the OPE

with the energy momentum tensor, J+,z
−m/n raises the conformal dimension by

m/n, while it raises the charge corresponding to the left SU(2) ,with current

J i(z)
def
=
∑N

k=1 J
i
k(z), of the orbifold by one:

[∮

C

dz

2πi
J3(z), J+,z

−m/n

]

=

∮

C

dw

2πi

∮

C′

dz

2πi

n
∑

k,l=1

J3,z
l (z)J+,z

k (w)e−2πim(k−1)/nz−m/n

=

∮

C

dw

2πi

∮

C′

dz

2πi

n
∑

k=1

J+,z
k (w)

z − w
e−2πim(k−1)/nz−m/n

= J+,z
−m/n (4.6)

Where the contours in the commutator have been deformed and merged in the
usual way([16]) to change the commutator in a radial ordered product. C ′ is
a contour around w and the OPE (4.3) has been used. So , with |j〉 a J 3(z)
eigenstate with eigenvalue j, we find the usual su(2) relation:

J3(z)J+,z
−m/n|j〉 = (j + 1)J+,z

−m/n|j〉

Next we are going to lift the fractional modes (4.4) to the t-plane. We take the
contour, C, a circle around z = 0 and split it up in n connected arcs ,αk so that
each arc lifts to a full contour under the lifting map (4.1).

J+,z
−m/n =

∫

α1

dt

2πi
natn−1

n
∑

k=1

J+,z
k (atn)e−2πim(k−1)/na−m/nt−m (4.7)

twist Jk back to J1

= a−m/n
n
∑

k=1

∫

α1

dt

2πi
natn−1J+,z

1 (a(te2πim(k−1)/n)n)e−2πim(k−1)/nt−m

(4.8)
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changing variable t→ te
2πi(k−1)

n

= a−m/n
n
∑

k=1

∫

αk

dt

2πi

(

dt

dz

)−1

J+,z
1 (atn)t−m (4.9)

since the conformal dimension of J+,z
k is 1

= a−m/n
n
∑

k=1

∫

αk

dt

2πi
J+,t

1 (t)t−m (4.10)

= a−m/nJ+,t
−m (4.11)

We now have constructed an operator on the t-plane, J+,t
−m, that raises the

dimension with m/n and the charge with 1. The t superscript will be omitted
in the following unless possible ambiguity demands it. To define the theory on
the t-plane we need to define the vacuum to which we apply the current modes,
but the lift around a twist insertion might change the boundary conditions for
fermions. Remember that the fermions were periodic in the z plane so taking
into account the fermionic conformal dimension we find :

ψ(t) = (an)
1
2 t

n−1
2 ψ(z)

Apparently we need periodic boundary conditions around the twist insertion for
n odd, but anti-periodic ones for n even, this slightly changes the construction
of the chiral primaries.

4.3 Chiral Primaries

In the odd cycle case we can start from the NS vacuum in the t-plane , where
we have, because of the twist, a conformal dimension on the z-plane, ∆n, given
by (4.2). The fastest change towards a chiral primary we get by applying the
lowest possible J+ mode to the twisted vacuum. J+

0 gives a state of zero norm
as can be seen from the affine su(2) algebra together with the fact that the NS
vacuum has no charge. So the first possible operator is J+

−1 resulting in a state
with charge q = 1 and dimension ∆ = ∆n + 1/n . By calculating the norm of
the resulting state, using the affine algebra, we see that the next lowest possible
mode operator is J+

−3 :(m ≥ 1)

〈0|J−
1 J

−
mJ

+
−mJ

+
−1|0〉 = 〈0|J−

1

(

J+
mJ

−
−m − 2J3

0 +
c

6
m
)

J+
−1|0〉

=〈0|J−
1

(

J+
−m

( c

6
mδm,1 − 2J3

m−1

)

+
(

−2 +
c

6
m
)

J+
−1

)

|0〉

=〈0|
( c

6
δm,1 − 2J3

1−m

)( c

6
mδm,1 − 2J3

m−1

)

+
( c

6
m− 2

) c

6
|0〉

m = 1 =
( c

6

)2

+
c

6

( c

6
− 2
)

= 0 for c = 6

m ≥ 2
(

m
c

6
− 2
) c

6
= 0 for m = 2 and c = 6
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The same result we can get after bosonisation (see section 3.6). Continuing in
this manner we arrive at the chiral primaries:

σ−
n

def
= a

−
q2

n J+
−(n−2)......J

+
−1|0〉 with q = ∆ =

n− 1

2
=: ∆−

n (4.12)

and σ+
n

def
= Aa

−
q2

n J+
−n......J

+
−1|0〉 with q = ∆ =

n+ 1

2
=: ∆+

n (4.13)

The factor in front of the primaries is a normalisation required to make the
definitions independent of the slope a of the cover map, as can be seen from
recursively applying (4.11), and so making it possible to define the primary from
the t-plane. From the construction we also get an excited chiral primary in the
untwisted sector:

σ+
1 = J+

−1|0〉 with q = ∆ = 1 (4.14)

Note that, somewhat confusingly, the primaries are given with respect to the
t-plane, but the dimension is calculated as seen from the z-plane. Of course
the dimension does not change under the conformal map from the z-plane with
punctures to the t-plane.

To differentiate in the following between the primaries as defined on the t-
plane and the primaries as defined on the z-plane we will use τ to denote the
latter:

τ±n (z) =

(

dz

dt

)−(n±1)/2

σ±
n (t) (4.15)

For even cycle length we need a Ramond vacuum around the lift of the twist
insertion point. We can use the spin fields from the appendix to create a Ramond
vacuum . Here we have 4 Majorana fermions or 2 complex fermions, ψ1 and
ψ2. They transform under the SU(2) R-symmetry, so we have a continuum of
directions for the spectral flow to choose from, the natural choice being along
the J3 direction. Combining the 2 complex fermions into a SU(2) doublet and
bosonising following the conventions of [1]:

Ψ
def
=

(

ψ1

ψ2

)

=

(

eiφ5

eiφ6

)

The SU(2) current can now be written as :

J i(z) = Ψ̄(z)σiΨ(z)

Where σi are the Pauli matrices. Written out in bosonic fields we find as current
components:

J3(z) =
i

2
(∂φ5 − ∂φ6)

J± = exp(±i(φ5 − φ6))

Our choice for the spinfields is then

S± def
= exp(± i

2
(φ5 − φ6))
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Targetting for a highest weight state we start from the Ramond vacuum |0+〉R =
S+|0〉NS. From this bosonised representation follows that the charge of this
vacuum 1/2 is. The conformal dimension is ( see section (3.6) ) 1/4 . The other
vacuum would have had charge −1/2. We are now in the position to construct
the chiral primaries analogous to the odd cycle length case to arrive at the two
chiral primaries:

σ−
n

def
= a

−
q2

n J+
−(n−2)......J

+
−2J

+
0 S

+|0〉 with q = ∆ =
n− 1

2
=: ∆−

n (4.16)

σ+
n

def
= a

−
q2

n J+
−n......J

+
−2J

+
0 S

+|0〉 with q = ∆ =
n+ 1

2
=: ∆+

n (4.17)

where we have used the fact that we now also need to transform back the
dimension change from the spinfield operator (since it was defined on the t-
plane), so that we have to add 1/n×1/4 to the twisted vacuum dimension, since
the vacuum energy gets raised as if it is one string out of n. We will slightly
generalise the primaries used in the calculations because charge conservation
otherwise would give us pretty boring results. A general primary used will be of
the form (J−

0 )kσ±
n . Where k ≤ n± 1, so we stay in the same SU(2) multiplet.

Combining with the antiholomorphic fields we get a total of 4 chiral primaries
to start from per cycle . They will be denoted by σ−−

n , σ−+
n , σ+−

n and σ++
n .

4.4 separating the geometry from the algebra

Our general objective is to calculate 3 point functions of the chiral primaries
defined above. The singularity at the twist insertions can be smoothed out by
first cutting out a small disk and then going to the cover using the monodromy
map. This can be done consistently for each value of n by using the spinfield
for even cycles. Before the lift to the cover we need to regularise the theory by
compactifying the z-plane. This is done by cutting off the z-plane at |z| = 1/δ
and gluing on a half sphere by switching to coordinates

z̃ =
1

δ2z
and metric ds2 = dz̃d¯̃z (4.18)

for z > 1/δ The construction of the lifting map was done in [17] as a rational
polynomial in terms of the quotient of Jacobi polynomials (appendix B). The
global conformal symmetry of the theory on the sphere ( section (3.5) ) can be
used to situate the insertions at z = 0, a and ∞. The covering map lifts the
insertions to t = 0, 1 and ∞. When calculating the path integral on the t-plane,
we should use in the Sigma model action the metric induced from the z-plane
by the lifting. The idea is to conformally scale this metric to a fiducial metric ,
ĝ, that we choose to be the same again as the z plane in the case the cover has
genus 0, with a cutoff at |t| = δ′. Although the action was classically conformal
invariant, this is not the case in the quantum theory. The conformal anomaly can
be accounted for by introducing an extra field, the Liouville field, to compensate
the conformal scaling of the metric. The n-points function generating partition
sum gets an extra factor after a conformal transformation. When 2 metrics are
conformally related through ds2 = eφdŝ2, the partition functions are related
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through:

Z(s) = eSLZ(ŝ)

Where SL is the Liouville action defined through:

SL =
c

96π

∫

d2t
√

−g(ŝ)
(

∂µφ∂νφg
(ŝ)µν + 2R(ŝ)φ

)

Note that the original metric is a fixed given metric inherited from the way we
have taken the limit to the boundary of the bulk AdS geometry, and it has no
gauge freedom in the metric, as in the worldsheet CFT, thus every conformal
transformation should be accounted for. As an example we will investigate the
effect on the partition function coming from the compactification of the z plane.
On the glued on half of the sphere, that is the region z > 1/δ, we have for the
metric a relative δ dependence of:

eφδ ∼ 1

δ4

In the Liouville action only the curvature term contributes since the scaling
is constant. For a sphere the curvature is easy to calculate by embedding the
sphere in R3 and changing to polarcoordinates. The metric is then:

g =

(

r2 0
0 r2sin2(x1)

)

and the curvature scalar is 1/r2. For the relative Liouville action we then find :

SφL = −4ln(δ)
1

2

c

48

∫ 2π

0

∫ π

0

dx2dx1r
2|sin(x1)|. 1

r2
= ln(

1

δ
c
3

)

And so the δ dependence of the partition function is :

Zδ ∼ (δ)
−
c

3

The whole process of compactification on the z plane and going from the metric
on the t plane, induced by the covering map, to a flat metric was carried out
in [17]. Of course the final results do not depend on δ nor on the size of the
compactification sphere in the cover Σ. Also the dependence on the size of the
disc that is cut out around the twist insertion does not enter the final results.
The induced metric on Σ, on the other hand, does depend on the specific twist
insertions in the n-point function. And so the Liouville term coming from the
change to a flat metric on Σ, does enter the final results in an essential way.
These calculations were done for the bosonic orbifold. The cover map that was
used in the construction can be found in appendix B. Since these results depend
on the geometry of the twists, they will be part of the n-point functions in the
superconformal theory.

We will now concentrate on the superconformal theory. A general n-points
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function for n, on one cycle based, chiral operators is given by :

〈τ[l1](z1) · · · τ[ln](zn)〉 =

n
∏

i=1





λ[li]

|[li]||C[li]|
∑

gi∈[li]

∑

hi∈Cgi



 〈ĥ1τg1(z1) · · · ĥnτgn
(zn)〉

=
1

(N !)n

n
∏

i=1



λ[li]li(N − li)!
∑

gi∈[li]



 〈τg1 (z1) · · · τgn
(zn)〉

(4.19)

Of course the projection onto the centraliser invariant subspace could have been
omitted from the start since we constructed our operators to be invariant. li is
the cycle length, [li] the conjugacy class and the λ′s are normalisation constants,

to be defined shortly, that we take to be constant within a class. The ĥ’s are
the action of the permutation on the fields. The orders of the cycle class, |[li]|,
and the centraliser, |C[li]| were determined in (A.9) resp. (A.8).

We will calculate first one term in the sum of (4.19) after which it will be
shown that the contributions of the individual terms in the projection on the
invariant space depend strongly on the topological properties of the cover. The
n-pointsfunction for one particular choice of twist insertions takes the following
form

〈τg1(z1)..τgn
(zn)〉 =

1

ZN0

∫ s
∏

m=1

D [Xm, ψm] e−
PN

j=1 S(Xj ,ψj)τg1(z1)..τgn
(zn)

(4.20)

Here Z0 is the partition sum for one copy of M :

Z0 =

∫

D [X,ψ] e−S(X,ψ) (4.21)

Notice that this is just a calculational convention. ZN0 is not the partition sum
of the untwisted sector, that would be ZN0 /N !. We now assume that just s
copies of the N get twisted by the insertions, resulting in

〈τg1(z1)..τgn
(zn)〉 =

1

Zs0

∫ s
∏

m=1

D [Xm, ψm] e−S(X1..Xs,ψ1..ψs)τg1(z1)..τgn
(zn)

(4.22)

In general the sum over the permutations in the conjugacy classes results in
cycles with different amounts of overlap. We will see though in the next section
that the dominant terms in a 1/N expansion are given by those combinations
that result in a sphere as cover. The lift of the path integral in (4.22) to the
cover Σ with the induced metric results in:

〈τ1(z1)..τn(zn)〉 =
1

Zs0

∫

Σ,induced

D [X,ψ] e−S(X,ψ)σ1(t1)..σn(tn)

the σs were defined in (4.15). We are now assuming a genus 0 cover and change
the metric to the flat one:

=
eSL

Zs0

(∫

Σ

D [X,ψ] e−S(X,ψ)

)

∫

Σ
D [X,ψ] e−S(X,ψ)σ1(t1)..σn(tn)

∫

Σ D [X,ψ] e−S(X,ψ)
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The Liouville term contains the data from the change of metric.

=
eSL

Zs−1
0

〈σ1(t1)..σn(tn)〉 (4.23)

In the last step we have used the definition of Z0. Note that Σ is identical to
the original space time up to the value of the cutoff on which the final results
do not depend.

4.5 Large N

It will now be shown that the main contribution comes from the sphere as cover.
First we have to define some normalisation of the cycle operators :

〈τcn
(0)τ †cn

(1)〉 = 1

Demanding the same normalisation from the full cycle based chiral operators
we find , using the group summation as in (4.19):

1 = 〈τ[cn](0)τ †[cn](1)〉 =
(λnn(N − n)!)2

(N !)2

∑

g1,g2∈[cn]

〈τg1 (0)τ †g2(1)〉

but the correlator is only nonzero for 2 matching twists

=
(λnn(N − n)!)2

(N !)2

∑

g∈[cn]

=
(λnn(N − n)!)2

(N !)2
|[cn]|

Resulting in:

λn =

[

n (N − n)!

N !

]−1/2

(4.24)

for 3 point functions the combinatorics is more complicated, since now the last
insertion cycle should match the permutation from the first 2 combined. So the
first 2 combined should end up into one cycle. This means that they should
have overlap. When we lift to the t-plane we note that the lifting map (4.1) has
a ramification index li (the number of sheets that come together at the branch
point). The Riemann-Hurwitz formula [18] then let us calculate the genus (the genus
number of handles) from the cover:

g =
1

2

∑

i

(li − 1) − s+ 1 (4.25)

Where s is the generic number of sheets, being the total number of copies of
M , s, that get twisted. An n-points function that has s twisted copies will have
a factor, corresponding to the different ways these s copies can be picked from
the total of N , of

(

N
s

)

∼ Ns for large N
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Figure 4.2: Change of contour

The normalisation by the 2 point functions contributes a factor of

λli ∼ N−li/2 for large N

So that we find as combinatoric factor for some given combination of cycles as
weight:

Ns−(
P

i li)/2 = N−g+(2−n)/2

We conclude that terms in the n-point functions leading to covers with g get
suppressed by a factor of N−g

4.6 Vertex representation of the currents

Having shown that the main contribution to the 3 points function in the large N
limit comes from the genus 0 covers we will concentrate on those from now on.
This has the big advantage that, since the fundamental group is trivial, there
are no topological obstructions to deform the contours around insertions. As a
consequence we can move the R-symmetry ladder operators through eachother,
picking up correlators of the N = 4 algebra. An example will illustrate this (
see figure 4.6 ):

Suppose we have in our correlator insertions of the form

∮

C1

ds

∮

a

dtJ−(t)J+(s)s−1

then we can write this as ( see figure 4.6 ):

∮

C2

ds

∮

a

dtJ+(s)s−1J−(t)

+
(

∮

C1

ds

∮

a

dtJ−(t)J+(s)s−1 −
∮

C2

ds

∮

a

dtJ+(s)s−1J−(t)
)

=

∮

C2

ds

∮

a

dtJ+(s)s−1J−(t) + [J−
0 , J

+
−1]

Where the change of order of operators is dictated by the radial ordering (
time ordering ). In this way we can rearrange the current operators until J−

0 is
next to the vacuum, resulting in a vanishing correlation function. We can now
conclude that the correlation functions only depend on the algebra and so we
can take a suitable representation for it. Following ideas from Kac and Frenkel
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[19] we construct a bosonic vertex representation. We start from a 2 complex
free boson, 2 complex free fermion representation ( and so c = 6 ):

J i(z) =
1

2
Ψ†σiΨ (4.26)

T (z) = ∂X†
i ∂Xi +

1

2
(Ψ† · ∂Ψ − ∂Ψ† ·Ψ)

G1(z) =
√

2ψ†
2∂X1 −

√
2ψ1∂X2 G2(z) =

√
2ψ†

1∂X1 +
√

2ψ2∂X2

G̃1(z) =
√

2ψ2∂X
†
1 −

√
2ψ†

1∂X
†
2 G̃2(z) =

√
2ψ1∂X

†
1 +

√
2ψ†

2∂X
†
2

Here Ψ
def
= (ψ1, ψ2) are the as vector combined fermions, σi the Pauli matrices.

We can check that the currents indeed satisfy the N = 4 currentalgebra (3.13).
For example we have:

J i(z)J j(w)

=
1

4
: Ψ†(z)σiΨ(z) :: Ψ(w)†σjΨ(w) :

=
1

4
(σi)αβ(σj)γδ

(

Ψ†
α(z)Ψβ(z)Ψ†

γ(w)Ψδ(w) + Ψ†
α(z)Ψβ(z)Ψ†

γ(w)Ψδ(w)

)

=
1

4
(σi)αβ(σj)γδ

(

δα,δ
z − w

+ : Ψ†
αΨδ(w) : +O(z − w)

)

(

δβ,γ
z − w

− : Ψ†
γΨβ(w) : +O(z − w)

)

+ O(z − w)

∼1

4
(δi,j + iεijkσk)αβ

(

2
Ψ†
αΨβ(w)

z − w
+

δα,β
(z − w)2

)

=
iεijkJk(w)

z − w
+

δi,j
2(z − w)2

(4.27)

Bosonising the 2 fermions as outlined in section (3.6), ψ1 =: exp(iφ1) respec-
tively ψ2 =: exp(iφ2), leads to the following bosonic representation of the SU(2)
currents and spin fields:

J3(z) =
i

2
e · ∂Φ(z) (4.28)

J±(z) = exp[±ie · Φ(z)] (4.29)

S±(z) = exp[± i

2
e · Φ(z)] (4.30)

Here Φ is the 2 component boson (φ1, φ2) and e is given by:

e
def
= (1,−1)

4.7 The correlators

We normalise the chiral operators through:

τ̌sn,m(z)
def
=

τsn,m(z)

〈τsn,m(0)(τsn,m)†(1)〉1/2 (4.31)
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We use the notation where n is the cycle length, m the number of ladder down,
J−, operators and the sign index s = ±1, denotes the basic chiral operatorsign index
choice. Global conformal invariance dictates the 2 and 3 point functions to be
of the form [13] (leaving out the antiholomorphic part):

〈τ̌s1n1,m1
(z1)(τ̌s2n2,m2

)†(z2)〉 =
A{1}{2}

z2∆1
12

δ∆1,∆2 (4.32)

〈τ̌s1n1,m1
(z1)τ̌s2n2,m2

(z2)(τ̌s3n3 ,m3
)†(z3)〉 =

A{1}{2}{3}

z∆1+∆2−∆3
12 z∆2+∆3−∆1

23 z∆3+∆1−∆2
13

(4.33)

The {i} subscripts are an abbreviation for the 3 parameters defining the operator

and zij
def
= |zi − zj |. The dimension depends on the cycle length and the sign

index through (4.2) ∆i = (ni + si)/2. Putting the insertions at 0, a and ∞ we
can define normalised correlation functions as:

〈τ̌s1n1,m1
(0)τ̌s2n2,m2

(a)(τ̌ s3n3 ,m3
)†(∞)〉

〈τ̌s3n3,m3(0)(τ̌ s3n3,m3)†(∞)〉

= lim
|z|→∞

C{1}{2}{3}|z|2∆3

|a|∆1+∆2−∆3(|a− z|)∆2+∆3−∆1 |z|∆3+∆1−∆2
=

C{1}{2}{3}

|a|∆1+∆2−∆3
(4.34)

With C{1}{2}{3} = A{1}{2}{3}/A{3}{3} Using (4.23) we can separate the topo-
logical part :

〈τ̌s1n1,m1
(0)τ̌s2n2,m2

(a)(τ̌ s3n3 ,m3
)†(∞)〉

〈τ̌s3n3,m3(0)(τ̌ s3n3,m3)†(∞)〉

= |a|∆3−∆1−∆2
〈τ̌s1n1,m1

(0)τ̌s2n2,m2
(1)(τ̌ s3n3,m3

)†(∞)〉
〈τ̌s3n3,m3(0)(τ̌ s3n3,m3)†(∞)〉

=
eSL([n1,0],[n2,a],[n

†
3,∞])− 1

2SL([n1,0],[n
†
1,1])−

1
2SL([n2,0],[n

†
2,1])+

1
2SL([n3,0],[n

†
3,1])

Z
s−1− 1

2

P

i(ni−1)
0

× e−SL([n3,0],[n
†
3,∞])

〈σ̌s1n1,m1
(0)σ̌s2n2,m2

(1)(σ̌s3n3,m3
)†(∞)〉

〈σ̌s3n3,m3(0)(σ̌s3n3,m3)†(∞)〉

The Liouville action SL([n1, z1], · · · ) has as parameters the cycle and the in-
sertion point of the twists involved. Since the cover is a sphere , using 4.25,
we find that the Z0 factor cancels from the denominator. The exponential of
the Liouville action was calculated in [17] and can be expressed, extracting its
a dependence, in a “bosonic fusion coefficient” Cn1,n2,n3 . Its formula can be
found in the appendix of [1]. The final result can then be written as:

〈τ̌s1n1,m1
(0)τ̌s2n2,m2

(a)(τ̌ s3n3 ,m3
)†(∞)〉

〈τ̌s3n3,m3(0)(τ̌ s3n3,m3)†(∞)〉

= (Cn1,n2,n3)6|a|−∆1−∆2+∆3
〈σ̌s1n1,m1

(0)σ̌s2n2,m2
(1)(σ̌s3n3,m3

)†(∞)〉
〈σ̌s3n3 ,m3(0)(σ̌s3n3,m3)†(∞)〉 (4.35)
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And analogous for the antiholomorphic part. Here σsn,m is defined as in (4.31)
above:

σ̌sn,m(t)
def
=

σsn,m(t)

〈σsn,m(0)(σsn,m)†(1)〉1/2 (4.36)

The exponent of Cn1,n2,n3 is the central charge of the theory. We have extracted
all a dependence and so contrary to the calculations in [1] we will set a = 1 in
what follows.

4.8 Vertex representation of the chiral primaries

Using the bosonic representation for the J± (4.29) and the spinfield (4.30) we
see that the chiral operators (4.12) should be of the form:

σ̌sn,0(t) = Aα
−
q2

n : exp[iqe · Φ(t)] :

Where, in light of the analogous expression for J3, q is the R-charge (n + s)/2
of the operator. The slope of the insertion is given by α. The normalisation
constant we can find using the cover map. For one n-twist insertion at z = 0
and one reverse twist at z = 1. We use the map:

z =
tn

tn − (t− 1)n
(4.37)

The slope of the map is at both insertions 1 and so we find that when we choose
A = 1 we have the right normalisation of 〈σsn,0(0)(σsn,0)†(1)〉 = 1.

Applying J−
0 recursively leads to other operators in the BPS multiplet. since

the weight of J−
0 is one we get in the t-plane after applying J−

0 once :

σsn,1(t) = α
−
q2

n

∮

duJ−
0 (u) : exp[iqe ·Φ(t)] : (4.38)

= α
−
q2

n

∮

du

2πi
: exp[−ie ·Φ(u)] :: exp[iqe · Φ(t)] : (4.39)

Wick contracting ( see for example [16])

= α
−
q2

n

∮

du

2πi
(u− t)−qe·e : exp[−ie · Φ(u)] + iqe · Φ(t)] : (4.40)

(4.41)

Now expand the exponential, retaining the residue:

σsn,1(t)

= α
−
q2

n
∞
∑

j=0

1

j!

(∮

du

2πi
(u− t)−2q+j lim

r→t

(

∂jr : exp[−ie ·Φ(r) + iqe ·Φ(t)] :
)

)

= α
−
q2

n
1

(2q − 1)!
lim
r→t

(

∂(2q−1)
r : exp[−ie · Φ(r) + iqe · Φ(t)] :

)

(4.42)
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the other operators we get by repeating this procedure:

σsn,2(t) =
α
−
q2

n

(2q − 1)!
lim
r1→t

∮

du

2πi
: exp[−ie · Φ(u)] : ∂(2q−1)

r1

: exp[−ie · Φ(r1) + iqe ·Φ(t)] :

=
α
−
q2

n

(2q − 1)!
lim
r1→t

∂(2q−1)
r1

∮

du

2πi

(u− r1)e·e

(u− t)qe·e

: exp[−ie · Φ(u) − ie · Φ(r1) + iqe · Φ(t)] :

=
α
−
q2

n

(2q − 1)!
lim
r1→t

∂(2q−1)
r1

∞
∑

k=0

∮

du

2πi

1

k!(u− t)2q−k
lim
r2→t

∂kr2

(r2 − r1)2 : exp[−ie · Φ(r2) − ie · Φ(r1) + iqe · Φ(t)] :

=
α
−
q2

n

(2q − 1)!
lim
r1→t

∂(2q−1)
r1

1

(2q − 1)!
lim
r2→t

∂(2q−1)
r2 (r2 − r1)2

: exp[−ie · Φ(r2) − ie · Φ(r1) + iqe ·Φ(t)] : (4.43)

and we find using induction:

σsn,m(t) = α
−
q2

n





m
∏

j=1

limrj→t

(2q − 1)!
∂(2q−1)
rj









∏

k<j

(rj − rk)2





: exp[−i
m
∑

l=1

e ·Φ(rl) + iqe · Φ(t)] : (4.44)

The normalised operators we can find using the SU(2) commutation relations,
writing σ̌sn,0(t)|0〉 = |q, t〉, q = (n+ s)/2 :

〈(σsn,m)†(0)σsn,m(1)〉 = 〈q, 0|(J+
0 )m(J−

0 )m|q, 1〉 (4.45)

|q, t〉 is a highest weight state so J+
0 |q, t〉 = 0

= m(2q + 1 −m)〈q, 0|(J+
0 )m−1(J−

0 )m−1|q, 1〉 (4.46)

by induction

=
m!(2q)!

(2q −m)!
〈q, 0|q, 1〉 =

m!(2q)!

(2q −m)!
(4.47)

Since σ̌sn,0 is a normalised operator. With this result the normalised chiral
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operator is given by:

σ̌sn,m(t) = α
−

(n+ s)2

4n

(

(n+ s−m)!

m!(n+ s)!

)1/2




m
∏

j=1

limrj→t

(n+ s− 1)!
∂(n+s−1)
rj









∏

k<j

(rj − rk)2



 exp[−i
m
∑

l=1

e · Φ(rl) + i
(n+ s)

2
e · Φ(t)] : (4.48)

4.9 Calculation of the three point functions

To calculate the three point functions we will need the explicit covering maps
as constructed in [17]. Since the normalised chiral operators, with insertions
at 0, 1 and /infty depend explicitly on the slope of the cone close around the
insertion we will need the asymptotic shape of the covering map (B.1) when
approaching the ramification points.

t→ 0 : z ≈ s!(s− n3)!(s− n2)!

n1!(s− n1)!(n1 − 1)!
tn1

t→ 1 : z ≈ 1 +
s!(s− n3)!(s− n1)!

n2!(s− n2)!(n2 − 1)!
(t− 1)n2 (4.49)

t→ ∞ : z ≈ (s− n3)!(n3 − 1)!n3!

s!(s− n1)!(s− n2)!
tn3

Where s = (n1 +n2 +n3−1)/2 is the number of copies of M that participates in
the twisting. We will now choose the insertions at a and ∞ to be chiral. Thus
we are calculating

〈τ̌s1n1,m1
(0)τ̌s2n2,0

(a)(τs3n3,0
)†(∞)〉

〈τ̌s3n3,0
(0)(τs3n3,0

)†(∞)〉

= (Cn1,n2,n3)6a−∆1−∆2+∆3
〈σ̌s1n1,m1

(0)σ̌s2n2,0
(1)(σs3n3 ,0

)†(∞)〉
〈σ̌s3n3,0

(0)(σs3n3 ,0
)†(∞)〉 (4.50)

The operator inserted at ∞ is not explicitly normalised. It first of all doesn’t
need to be because the denominator cancels the constant, and the point z = ∞,
corresponding to z̃ = 0 (4.18), is in another chart then the reference points.

We now use the vertex representation as defined in the previous section to
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calculate the operator product of the first 2 insertions:

σ̌s1n1,m1
(0)σ̌s2n2,0

(1) = a
−

(n1+s1)2

4n1
1 a

−
(n2+s2)2

4n2
2

(

(n1 + s1 −m1)!

m1!(n1 + s1)!

)1/2





m1
∏

j=1

limrj→0

(n1 + s1 − 1)!
∂(n1+s1−1)
rj









∏

k<j

(rj − rk)2





: exp[−i
m
∑

l=1

e · Φ(rl) + i
(n1 + s1)

2
e ·Φ(0)] :: exp[i

n2 + s2
2

e · Φ(1)] :

= a
−

(n1+s1)2

4n1
1 a

−
(n2+s2)2

4n2
2

(

(n1 + s1 −m1)!

m1!(n1 + s1)!

)1/2




m1
∏

j=1

limrj→0

(n1 + s1 − 1)!
∂(n1+s1−1)
rj









∏

k<j

(rj − rk)2









m
∏

j=1

(1 − rj)
−n2−s2





: exp[−i
m
∑

l=1

e · Φ(rl) + i
(n1 + s1)

2
e ·Φ(0) + i

n2 + s2
2

e · Φ(1)] :

= a
−

(n1+s1)2

4n1

1 a
−

(n2+s2)2

4n2

2

(

(n1 + s1 −m1)!

m1!(n1 + s1)!

)1/2




m1
∏

j=1

limrj→0

(n1 + s1 − 1)!
∂(n1+s1−1)
rj









∏

k<j

(rj − rk)2









m
∏

j=1

(1 − rj)
−n2−s2





: exp[i

(

(n1 + s1)

2
+
n2 + s2

2
−m

)

e ·Φ(0)]

(

1 + i

(

n2 + s2
2

−
m
∑

l=1

rl

)

e · ∂Φ(0) + higher derivatives

)

: (4.51)

In the end when calculating the 3 points function we are contracting with an
exponential operator at t = ∞. ∂Φ has conformal weight 1 and so we find for
the operator on the chart for large t (t > 1/δ′ ) where we switch to coordinates
t′ = 1/t:

Φ′(t′) =

(

∂t′

∂t

)−1

Φ(t) = t2Φ(t)

and so for Φ′(t′) to be analytic at t′ = 0, Φ should go at least as t−2. With this
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argument we can neglect the higher derivative terms resulting in:

〈σ̌s1n1,m1
(0)σ̌s2n2,0

(1)(σs3n3,0
)†(∞)〉

〈σ̌s3n3,0
(0)(σs3n3,0

)†(∞)〉

= a
−

∆2
1

n1
1 a

−
∆2

2
n2

2 a
∆2

3
n3
3

(

(2∆1 −m1)!

m1!(2∆1)!

)1/2




m1
∏

j=1

limrj→0

(2∆1 − 1)!
∂(2∆1−1)
rj









∏

k<j

(rj − rk)2









m1
∏

j=1

(1 − rj)
−2∆2





〈: exp[i (∆1 + ∆2 −m1) e ·Φ(0)] :: exp[−i∆3e · Φ(∞)] :〉

= a
−

∆2
1

n1
1 a

−
∆2

2
n2

2 a
∆2

3
n3
3

(

(2∆1 −m1)!

m1!(2∆1)!

)1/2




m1
∏

j=1

limrj→0

(2∆1 − 1)!
∂(2∆1−1)
rj









∏

k<j

(rj − rk)2









m
∏

j=1

(1 − rj)
−2∆2



 δq1+q2,q3 (4.52)

Remember that the R-charge is related to the dimension through qi = ∆i −
mi. The delta function just tells us that charge is conserved. There are no
restrictions on dimensions in this part of the correlator, those will come from
the demand that the cover has genus 0. Using the slopes from the cover map
from (4.49) and the bosonic fusion coefficients from [17] the final form of the 3
point functions was, based on numerical calculations, conjectured to be:

〈τ̌s1n1 ,m1
(0)τ̌s2n2,m2

(a)(τ̌ s3n3,m3
)†(∞)〉

〈τ̌s3n3,m3(0)(τ̌ s3n3,m3)†(∞)〉 = |a|∆3−∆1−∆2Ĉs1,s2,s3n1,n2,n3

(

∆1 ∆2 ∆3

q1 q2 −q3

)

(4.53)
(

∆1 ∆2 ∆3

q1 q2 −q3

)

is the 3j symbol [20] taking care of the SU(2) part of the

correlator. The “reduced” fusion coefficient is defined through:

Ĉs1,s2,s3n1,n2,n3

def
=

(

(
∑

i sini + 1)2

4n1n2n3

)1/2

(

(
∑

i ∆i + 1)!(−∆1 + ∆2 + ∆3)!(∆1 − ∆2 + ∆3)!(∆1 + ∆2 − ∆3)!

(2∆1)!(2∆2)!(2∆3)!

)1/2

(4.54)

These results hold in the case of a genus 0 cover. We will now show that the
contributions of covers of this type dominate over higher genus surfaces in the
sum over the conjugacy classes that we still have to do. We know that the first
2 cycles should combine to one cycle, namely the last one. The cycles should
have some overlap or else the result will be two cycles. We can take the second
cycle to have part of the first cycle in reverse order, and part containing new
elements. To be specific:

ω1 = (1, · · · , k, k + 1, · · · , n1) (4.55)

ω2 = (k, k − 1, · · · , 1, n1 + 1, · · · , n1 + n2 − k)
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they combine into

ω3 = (k, k + 1, · · · , n1 + n2 − k)

resulting in a third cycle with length n3 = n1 + n2 − 2k + 1.The total number
of copies of M that get twisted is then s = n1 + n2 − k and the genus of the
corresponding cover is g = (n1 − 1 + n2 − 1 + n3 − 1)/2− s+ 1 = 0. Any other
choice of the second cycle will either result in more then one cycle or a longer
cycle resulting in a higher genus.

The fraction of all possible choices from the 3 classes resulting in a genus 0
cover is determined as follows:

1. the first cycle we can choose freely from its class

2. we have n1 choices for the start of the overlap k

3. we have

(

N − n1

n2 − k

)

(n2 − k)! choices for the remaining n2 − k members

of the 2nd cycle

4. the 3rd cycle is fixed with the choice for the first two

5. we have to divide through the class size of the 2nd and 3rd cycle class

The final factor is thus

n1

(

N − n1

n2 − k

)

(n2 − k)!

(

N
n2

)

(n2 − 1)!

(

N
n3

)

(n3 − 1)!

=
n1n2n3(N − n1)!(N − n2)!(N − n3)!

N !N !(N − s)!

(4.56)
Combining this with (4.24) results for large N in:

〈τ̌s1[n1],m1
(0)τ̌s2[n2],m2

(a)(τ̌ s3[n3 ],m3
)†(∞)〉

〈τ̌s3[n3],m3
(0)(τ̌ s3[n3],m3

)†(∞)〉 '

(
n1n2n3

N
)1/4

(

〈τ̌s1n1,m1
(0)τ̌s2n2,m2

(a)(τ̌ s3n3 ,m3
)†(∞)〉

〈τ̌s3n3,m3(0)(τ̌ s3n3,m3)†(∞)〉

)

g=0

(4.57)

Where n1, n2 and n3 are chosen so that they combine to a twist, whose cover is
a sphere and simlar for the anti-holomorphic sector ( that is the reason for the
exponent of 1/4th. ).
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Chapter 5

Chiral rings, cohomology

and some algebra

The chiral primaries that we studied in the previous chapter were defined purely
algebraic. To get a picture of the geometry behind these objects we need some
understanding of the σ-model. This will lead us first to the beautiful interplay
between differentiable structures and supersymmetry and the relation between
the cohomology of the target space and the chiral primaries, this will make
it possible to extract three point functions of chiral primaries from the ring
structure of the cohomology ring. The first section is a brief incomplete review
of these concepts. Our next task is the construction of the cohomology ring. We
will first describe this from the orbifold description where we will see how some
of the structure characteristics can be compared to those of the cohomology ring
of a resolution of the singularities of the orbifold. Before we end this chapter, we
will define a symmetric algebra out of the cohomology ring of the original K3
manifold. In that construction already some concepts of the previous chapter
will show up and the resulting construction will turn out to be essential for the
ring construction in the next chapter.

5.1 The chiral rings

The chiral primaries can be divided into four groups according to the choice of
chiral or anti-chiral two from the holomorphic, “left”, combined with 2 from the
anti-holomorphic “right” sector. We know from invariance under scaling that
the OPE of the product of 2 chiral primaries should be of the form (see eg. [10]):

φi(z)φj(w) ∼
∑

k

Cijk(z − w)hk−hi−hjφk(w) (5.1)

Where the sum is over all primary fields, secondary fields allways being less
singular. We know that the charges of φi and φj , being chiral primary operators,
are equal to their conformal weights. The charge of their product is the sum of
the respective charges since

[J3
0 , φiφ2] = [J3

0 , φi]φj + φ1[J3
0 , φj ] = (qi + qj)φiφj
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and so we find as exponent in the OPE (5.1) hk− qk. But now we can make use
of the BPS condition (3.25) to conclude that the OPE has no singular terms,
and although the primaries in the OPE are not necessarily chiral, in the limit
z → w the only terms that survive are the chiral ones. The chiral primaries
apparently close under multiplication thus forming a ring 1, the chiral ring,chiral ring
under pointwise multiplication and addition. Analogous we find that the anti-
chiral primaries form a ring. Combining the left and right movers we thus find 2
sets of 2 rings that we denote by (c, c) and (a, c) and their conjugate rings (a, a)
and (c, a). Of course there is actually for every ring a two dimensional space
of charges that annihilates it because we have N = 4 supersymmetry. Next to
these rings we can use 0 mode ladder operators as we did in the last chapter
to create operators within the chiral multiplet. In the Ramond sector it would
have boiled down to a rotation within the chiral ring.

An instructive way to build the supersymmetric σ-model action is using the
superspace formalism where the supersymmetry is inherent in the construction
process (see for example [21]). For a Riemann surface Σ with a flat metric the
resulting action is given by:

S =

∫

dσdτ(−gij(φ)∂µφi∂µφ
j + igijψ̄iD+ψ

j + igijψ
jD−ψ̄

j (5.2)

+R(φ)ijklψ
iψjψ̄kψ̄l)

The fields φ are the coordinates in a target manifold, whose metric is given by
g. The ψ’s are left chiral fermions. The barred fermions are right chiral. D±

are covariant derivatives with respect to g:

D±ψ
i = (∂τ ± ∂σ)ψi + Γ(φ)ijk(∂τ ± ∂σ)φjψk (5.3)

Rijkl is the Riemann curvature. Since the metric depends on the bosonic fields,
the action is called nonlinear. Note the resemblance to Yang-Mills theory if we
look upon the target space as an internal gauge manifold. For us the flat metric
on the 2d plane will be good enough. In case the 2 dimensional space time
is curved the covariant derivative has to be modified with an extra term that
defines how spinors are to be compared at different points in two dimensional
spacetime, the so called spin connection.

The action is invariant under the following supersymmetry, that can be
defined on any target space with a Riemannian metric:

δφi = εψ̄i − ε̄ψi

δψi = iε̄(∂σ + ∂τ )φi + εΓijkψ
jψ̄k (5.4)

δψ̄i = iε̄(∂σ − ∂τ )φi + ε̄Γijkψ
jψ̄k

This symmetry also commutes with coordinate transformations from the target
space. Here ε is an infinitesimal grassman number ( an anticommuting num-
ber ). When we try to define a second supersymmetry we find that we need a
complex structure. In fact the target space has to be Kähler [22]. A third super-
symmetry corresponds to a change from a complex structure to a quaternionic
structure resulting in a hyperkähler manifold automatically admitting a fourth

1it is a ring since not every element has an inverse and multiplication is not per se com-
mutative
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supersymmetry. This is an important aspect for our further discussions since
we will lift our symmetric orbifold to a smooth manifold that we now know has
to be hyperkähler to be able to describe an N = 4 supersymmetric theory.

Supersymmetry is not the only symmetry that restricts our choice of target
manifold. We also want our theory to be conformally invariant. For this to
be true in the quantum theory we should have a vanishing Ricci tensor on the
target manifold [21]. Equivalent to the disappearing Ricci tensor is the the
triviality of the canonical bundle of the target space. This is defined for an canonical bundle
analytic 2n-dimensional manifold as the line bundle of holomorphic top forms.
That is of differential forms that in a local basis in complex coordinates can be
written as adz1 ∧ ·dzn, with a ∈ C. These demands restrict the possible allowed
target manifolds to be so called Calabi-Yau manifolds ( see appendix C.

Let’s now consider the chiral ring by spectral flow from the Ramond sector
perspective. The chiral ring corresponds here to the groundstates. The argu-
ment is that the ground states can have no nonzero momentum and thus we
just need to retain the zero modes of the fields, effectively reducing the theory
to one dimension [23]. To see where this leads to we are going to look briefly at
a one dimensional N = 2 model first

When we take the target space to be Kähler, the resulting (N = 2) La-
grangian is [21]

L = gij̄
dφi

dt

dφ̄j̄

dt
+ igij̄ψ̄

j̄Dtψ
i + igij̄ψ̄

iDtψ
j̄ +Rij̄kl̄ψ̄

iψkψj̄ψ̄l̄ (5.5)

This action has the following supersymmetries:

δφi = ε+ψ̄
i − ε−ψ

i δφ̄ī = ε̄+ψ
ī − ε̄−ψ̄

ī (5.6)

δψi = iε̄−
dφi

dt
− ε+Γijkψ̄

jψk δψ̄ī = −iε−
dφ̄ī

dt
− ε̄+Γīj̄k̄ψ̄

j̄ψk̄ (5.7)

δψ̄i = −iε̄+
dφi

dt
− ε−Γijkψ̄

jψk δψī = iε+
dφ̄ī

dt
− ε̄−Γīj̄k̄ψ̄

j̄ψk̄ (5.8)

We are going to use canonical quantisation for this system. but first we need to
extract the Noether charges for the supersymmetries. They can be calculated
to be:

Q+ = gij̄ψ
iφ̄j̄ Q− = gij̄ψ̄

iφ̄j̄ Q̄+ = gij̄ψ̄
j̄φi Q̄− = gij̄ψ

j̄φi (5.9)

Apart from supersymmetry there are symmetries that rotate the phase of the
fermions resulting in two fermion numbers:

FV =gij̄(ψ̄
j̄ψi − ψ̄iψj̄) FA =gij̄(ψ̄

j̄ψi + ψ̄iψj̄) (5.10)

For the quantisation we need the conjugate momenta for the fields:

πφi = gij̄
φ̄j̄

dt
πφ̄j̄ = gij̄

φj

dt

πψi = igij̄ψ̄
j̄ πψj̄ = igij̄ψ̄

i

From canonical quantisation we find the following anticommutation relations
for the fermions:

igkj̄{ψi, ψ̄j̄} = iδik ⇒ {ψi, ψ̄j̄} = gj̄i (5.11)

igjk̄{ψī, ψ̄j} = iδīk̄ ⇒ {ψi, ψ̄j̄} = gīj (5.12)
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We can now choose the operator odering for the Hamiltonian H such that the
charges satisfy the following (anti-)commutation relations:

{Q+, Q̄+} = {Q−, Q̄−} = H (5.13)

[FV , Q±] = −Q± [FV , Q̄±] = −Q̄± [FA, Q±] = ∓Q± [FA, Q̄±] = ±Q̄±

The anti-commutation relations of the conjugate fermions makes the algebra
constructed out of products of these fields into an exterior product algebra, like
the algebra of differential forms on a manifold. This analogue can be extended to
a representation of the whole algebra, constructed above, with the identification:

algebra ψ̄i ψ̄ī ψi ψī Q− Q̄+ Q+ Q̄−

geometry dzi dz̄ ī gj̄iıj̄ gījıj −i∂ −i∂̄ i∂̄† i∂†

The ∂s are the Dolbeault operators ( see appendix C ) and the ıi is the inner
product operator of the basis vector ∂/∂zi. The Hamiltonian translates in
this language to the Laplacian so that we can identify the groundstates with
harmonic forms. And thus with cohomology classes.

A state made out of the product of ψ̄is and ψ̄īs is an eigenvector of FV and
FA with eigenvalue −p+ q and p+ q. with p and q counting the number of ψ̄is
and ψ̄īs. This follows directly from the commutation relations (5.13).

When we compare these results finally with the zero mode algebra of the
N = 4 theory in the Ramond sector:

{Ga0 , Gb0} = {G̃a,0, G̃b,0} = 0 {Ga0 , G̃b,0} = (2L0 −
c

12
)δab (5.14)

[J3
0 , G

1
0] = −1

2
G1

0 [J3
0 , G

2
0] =

1

2
G2

0 [J3
0 , G̃1,0] =

1

2
G̃1,0 [J3

0 , G̃2,0] = −1

2
G̃2,0

Comparing this with (5.13) leads to the identification of G1
0 or G2

0 with Q− The
Q+ can be identified with charges in the antiholomorphic part of the algebra.
The 3-direction of the R-symmetry current, here just in the holomorphic part
of the algebra, measures the holomorphic degree, up to a constant, and so we
have the identification J3

0 +c/12 ↔ ±(FA−FV )/4, the sign depending on which
of the two choices we make for Q−. The construction on the antiholomorphic
part of the algebra goes analogous

We have established a correspondence between the ring of groundstates of
the Ramond sector and the Dolbeault cohomology ring. With spectral flow we
have now also the identification of the (a, c) or (c, c) ring with the cohomology
ring. In fact we have we have a whole sphere of directions in which we can flow
to from the Ramond sector to the NS sector. In the geometry this is related
to the choice of complex structures we have on a hyperkähler manifold. In the
next chapter we will come back to the SU(2) symmetries behind this purely
from the cohomology point of view.

We now take the central charge of the N -fold symmetric orbifold: c = 6N
The spectral flow from the Ramond sector in the J3 direction with s = ±1 takes
the following form on the zero modes of the supercharges and R symmetry:

J3
0 → J3

0 +
N

2
s J±

0 → J±
∓s (5.15)

G1
0 → G1

−s/2 G2
0 → G2

s/2 G̃1,0 → G̃1,s/2 G̃2,0 → G̃2,−s/2
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We see that depending on s we either arrive in the chiral or in the anti-chiral
ring. The R-symmetry charge is for operators in the (anti-)chiral ring half
of the Dolbeault degree in cohomology language. Notice also that the zero-
mode ladder operator, that moved us around in the Ramond groundtate SU(2)
multiplet does not map to the chiral ring anymore, but to operators in the chiral
multiplet that are outside of the chiral ring. The J±

∓s on the other hand do map
to the chiral ring and it are just those operators that made it possible to move
inbetween the two chiral primaries within one cycle class in the last chapter.

The restriction we have that the cohomology ring Hpq(X) is identical zero
for p or q larger than 2N for our 4N -dimensional targetspace2 we recover from
the N = 4 algebra by examining the ±3/2 modes from the supercurrents, for
example in the chiral ring:

{G1
3/2, G̃1,−3/2} = {G2

−3/2, G̃2,3/2} = 2L0 − 6J3
0 + 4N (5.16)

for chiral primaries we find:

0 ≤‖ G1
3/2|φ〉 ‖2= 2h− 6q + 4N = −4q + 4N

and so we find the sought for restriction that the Dolbeault degree 2q is bounded
by 2N .

The only missing link is how we can recover the three-point functions from
the cohomology. In principle the answer was already given in the the OPE of
the chiral primaries (5.1). The structure constants of the cohomology ring are
the fusion coefficients of the chiral primaries from the previous chapter. As
we mentioned above, this holds only for true chirals. The primaries that were
generated by adding J−

0 operators do not appear in the cohomology ring, They
would if the ring would have been in the Ramond sector groundstate, but under
spectral flow the J−

0 changes in J−
±1, the sign depending on the diretion of the

flow. On the other hand is the cohomology ring much richer then the two chiral
primaries per sector we found using the CFT-construction.

In the symmetric orbifold ( or in general any orbifold ) the simple description
outlined above can not be the whole picture. The theory also contains twisted
sectors that are not reflected in the topology of the target manifold and won’t
appear in normal cohomology. It is possible to take into account the twisted
sectors in a manner related to the way we have calculated correlation functions
in chapter (4) by defining an orbifold cohomology[24]. This is in fact based orbifold cohomology
on ideas coming from string theory [14] where an orbifold cohomology, for an
orbifold X/G, is defined as: ( this is in essence equivalent to (4.19 ):

• For each conjugacy class [g] in G we pick a member, g, and consider the
subspace Xg of fixed points under the action of g.

• Let H∗
[g](X) be the part of the cohomology ring of Xg invariant under the

centraliser Cg of g.

• The orbifold cohomology is now defined as

H∗(X/G)
def
= ⊕[g]H

∗
[g](X) (5.17)

2It is “almost everywhere” 4N dimensional and the smooth resolution is that everywhere
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We could also try to resolve the singularity of the orbifold and calculate the
cohomology of the resulting nonsingular space. From the previous considerations
concerning the target manifold, namely the Ricci flatness, or equivalently the
disappearing of the first Chern class, we should make the same demand from
the resulting smooth resolution. In other words we should demand that the
canonical bundle is again trivial. There is of course the problem that in the way
we have defined the canonical bundle, such an object does not exist on general
varieties and even less if they are singular. There exists though a construction
called a canonical divisor [25] that corresponds to the canonical bundle in case
the variety is an analytic manifold. We will just abuse the word canonical bundle
in the text. The symmetric orbifold of K3 has a trivial canonical bundle in thus
loose sense and we would like to have a resolution which has the same. Such
a resolution of singularities in which the canonical line bundle stays essentially
the same is called a crepant resolution. It is generally believed that orbifoldcrepant resolution
cohomology is isomorphic to the cohomology of its crepant resolution in the
hyperkähler case. For a K3 surface this has recently been shown to be true by
construction of an explicit ring isomorphism of the two rings [26].

In the case of the n-fold symmetric orbifold of a complex surface a crepant
resolution is the, to be defined, Hilbert scheme of n points of that surface and
it is hyperkähler when the original surface is. This space can be seen as the
moduli space of n points from that surface. The description of this space and
construction of the cohomology ring will be of prime interest, its treatment
will follow in the next chapter. We will start though doing some calculations
concerning the orbifold cohomology and will see how this ring can be described
in terms of a Fock space of string modes. The appearance of this algebra of
oscillator modes has been a source of inspiration for the research done in that
last 10 years in Hilbert scheme cohomology. We will then show how one can
algebraicly construct an equivalent structure starting from the cohomology ring
of the original surface. In the next chapter these two ideas will be used to give
a full ring description of the cohomology ring of the crepant resolution of the
orbifold and thus resulting in principle in the possibility to calculate 3-point
functions of all the chiral primaries.

5.2 Orbifold cohomology of SnK3

The calculation of a generating function for the Euler characteristic of the sym-
metric orbifold of a projective surface, in orbifold cohomological sense, was
carried out by Hirzebruch and Höfer [27] and compared with the calculation
of the Euler characteristic of its crepant resolution as carried out by Göttsche
[28]. The orbifold calculation can be done using a Fock space description with
a stringy interpretation of the twisted sectors [29]. The appearance of a Heisen-
berg algebra in this picture was formalised in the Hilbert scheme cohomology
picture independently by Nakajima [30] and Grojnowski [31]. In this section we
will briefly describe the calculation of the orbifold Euler characteristic using the
Fock space language and show how the symmetric ring of the previous section
is isomorphic to this Fock space.

Let’s first consider the cohomology ring of the untwisted sector. This is the
sector corresponding to the trivial conjugacy class [Id], whose centraliser is the
whole group. The invariant subspace is just the whole n-fold symmetric product
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of the surface. Using the Künneth formula [32] we find:

H∗
[Id](×nX) =

(

H∗(×nX)
)Sn

=
(

H∗(X)⊗n
)Sn

(5.18)

In the first step we used the fact that the symmetrisation operator commutes
with the exterior derivative. A way to think about this expression is as an n-
particle state of (anti) commuting bosons and fermions, corresponding to the
even respectively odd part of the cohomology ring. Although we will finally only
need a bosonic Fock space, since Hn(K3) = 0 for n odd, let’s for the time being
keep it general. We take {ai} to form a basis of H∗(X). We define creation
operators, p̃−1(ai), that (anti-)commute with each other. We can then write
5.18 symbolically as

H∗
[Id](×nX) = {

n
∏

i=1

p̃−1(aji)|0〉}

Now for a sector twisted by a permutation given in terms of a partition of n
the invariant subspace is given by the cartesian product of one copy of X for
each cycle in the partition. The centraliser of the permutation permutes cycles
of equal length. This should look familiar by now! It is thus appropriate to
introduce one set of creation operators for each cycle length separately. We will
write them tentatively as p̃−l(ai).

We can even make the picture complete by adding appropriate annihilation
operators p̃l(ai) while imposing the usual string oscillator (anti) commutation
relations:

[p̃l(a), p̃m(b)]± = lδl,−mT (ab) (5.19)

where the brackets define an anti commutator when both basis vectors have odd
degree, This algebra is called an infinite dimensional Heisenberg algebra. the
bilinear form T (ab) is defined, up to a sign, as the integral over the cup product.
We won’t need the “annihilation operators” in this section, but we will come
back to T (ab). We next construct a zero mode Virasoro operator as a derivation
on this algebra:

[L0, p̃−1(a)] = lL0 (5.20)

It counts the cycle length of the cycle created by p̃−1(a). The direct sum of
the orbifold cohomology rings of all symmetric orbifolds of X corresponds then
to the “Fock space of particles”, V(H) generated by a basis of states created
from the vacuum by the p̃−l(ai) for l > 0. A basis-state is uniquely defined by
giving a partition per cohomology class. The demand that a state

∏

p̃−li(ai)|0〉
represents a class in H∗(SnX) translates then to a demand that its conformal
weight equals n. V(H) can be written as a direct sum of components of weight
n states :

V(H) = ⊕nV(H)n

We would like to know the Euler characteristic for SnX in the orbifold Euler characteristic
sense, meaning that we take the sum over the dimension of the orbifold coho-
mology groups (the orbifold Betti numbers). It is easier though to calculate the
generating function, since by summing over all n we loose the constraint that
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all states need to have a fixed weight and just count states in the whole Fock
space. This is in fact a common aspect of constructions related to the sym-
metric group: usually calculations are far easier to carry out when considering
the sum over all n. In principle we are calculating string partition functions!
The combinatorial calculations were already done by Euler some centuries ago
though so let us make use of them:

∞
∑

n=1

qnχ(SnX) =

∞
∑

n=1

qn
∑

m

(−1)m dimHm(SnX)

|p(n)| is the number of partitions of n. For fermions the degree depends on
the weight and we only should consider partitions p̃(n)where no integer occurs
twice

=
∏

i even

(

∞
∑

ni=0

qni |p(ni)|
)bi(X)

∏

i odd

(

∞
∑

ni=0

(−q)ni |p̃(ni)|
)bi(X)

=
∏

i even

(

∞
∑

ni=0

qni |p(ni)|
)bi(X)

∏

i odd

(

∞
∑

ni even

qni |p̃(ni)| −
∞
∑

ni odd

qni |p̃(ni)|
)bi(X)

This are the Euler functions [13]

=

∞
∏

n=1

∏

i odd(1 − qn)bi(X)

∏

i even(1 − qn)bi(X)
(5.21)

The bi(X) are of course the Betti numbers of the surface X . Göttsche calculated
actually the generating function for the Poincaré polynomial of X [n], definedPoincaré polynomial

as Pt(X)
def
=
∑

i t
iH i(X). Later this calculation was refined to the HodgeHodge polynomial

polynomial, defined as h(X [n] : xy)
def
=
∑

p,q h
p,q(X [n])xpyq, among others by

Cheah [33]. His result was:

∞
∑

n=0

qnh(X [n] : xy) =

∞
∏

k=1

(

∏

r+s odd(1 + xr+k−1ys+k−1qk)h
r,s(X)

∏

p+q even(1 − xr+k−1ys+k−1qk)hr,s(X)

)

(5.22)

From which it is easy to recover Göttsches result by realizing that bi(X) =
∑

k h
k,i−k(X) and thus

∞
∑

n=0

qnPt(X
[n]) =

∞
∑

n=0

qnh(X [n] : tt)

=

∞
∏

k=1

(∏

i odd(1 + t2k+i−2qk)bi(X)

∏

i even(1 − t2k+i−2qk)bi(X)

)

(5.23)

From which the Euler characteristic follows by taking t = −1, leading indeed to
the same result as the orbifold calculations. In the case of K3 the generating
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function for the Euler characteristic takes the form:

∞
∑

n=1

qnχ(SnK3) =

∞
∏

n=1

(1 − qn)−24 (5.24)

From (5.2) we could in principle read off all the Hodge numbers for any weight,
or from (5.23) all the Betti numbers.

Although the dimensions of the cohomology rings are the same this doesn’t
mean that they have the same ring structure. When Vafa and Witten described
the construction of the orbifold Euler characteristic, making use of stringy con-
cepts as the infinite Heisenberg algebra it was natural to ask how theses struc-
tures could appear in the description of the cohomology ring of the correspond-
ing Hilbert schemes. The next chapter will finally introduce the main concepts
of these schemes, describe the appearance of an Heisenberg algebra and finally
show how the cohomology ring of X [n] can be calculated from H∗(X) using the
symmetric algebra construction of section (5.3).

5.3 An algebraic intermezzo

Although the cohomology ring of the Hilbert scheme was known [34] to be
isomorphic, as a vector space, to the Fock-space appearing in the orbifold coho-
mology calculation from a physical point of view (section 5.2), an explicit ring
isomorphism, needed to calculate the structure constants of the cohomology
ring, was not explicitly known. For compact surfaces with a trivial canonical
bundle the explit ring structure was described in [35].

We first will build a so called graded Frobenius algebra on the cohomology
ring of the surface, that will be isomorphic to the Fock space in the orbifold co-
homology description of the last section. To start we will introduce the concept
of a Frobenius algebra and investigate some of its properties, stressing those
aspects that will be essential in forthcoming calculations. The notation of [35]
will be used.

5.3.1 Frobenius Algebras

The cohomology ring of an even dimensional manifold is the prime exampe of
special kind of algebra. So the real dimension of the manifold X , from which we
are going to describe the cohomology ring, will be even and we will write it as 2d.
For the case that we will consider mostly, K3, d = 2. We start by defining an
inner product on the cohomology ring. Although we should consider cohomology
with rational coefficients as a consequence of the algebraic description of the
varieties, in practice it is sufficient to work with de Rham cohomology ( real
coefficients ) and we will be sloppy with the use of manifolds versus varieties and
integration of forms, versus evaluation on cycles. So for example when we write
∫

a for a class a ∈ H2d(X), then we mean evaluation over the fundamental fundamental cycle
cycle representing the manifold X , or from a more practical point of view,
integration over the manifold, of a top form representing the class .

Since X is compact we don’t have to differentiate between normal coho-
mology and cohomology with compact support and will freely move, using
Poincaré duality, between elements in H∗(X), as cycles or closed submanifolds,
and classes in H∗(X).
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Integration over the manifold provides us with a map from the cohomology
ring to Q, from which we can construct a non degenerate bilinear map on the
cohomology ring as follows:

T (αβ) := −
∫

(α ∧ β) for α, β ∈ H∗(X)

where the integral is zero for components not in the top class, the minus is
a matter of convention. Note that the statement that T is nondegenerate is
equivalent to Poincaré duality. It is notationally handy to work with a shifted

cohomology ring, H∗(X)
def
= H∗(X)[d] where the degree of a class is the coho-

mological degree −d, making the grading symmetrical around zero. The wedge
product now has degree d so that we can add the degrees when multiplying
2 elements. When there is no confusion possible we will shorten the notation

even further by defining H def
= ⊕dn=−dHn(X). H is an example of a Frobenius

algebra:

Definition 5.3.1. A (graded) Frobenius algebra is a (graded) associativeFrobenius algebra
algebra A over a field k with a unit and a bilinear form T : A×A→ k such that

1. T is nondegenerate: T (a, b) = 0, ∀b ∈ A⇔ a = 0

2. T is associative: T (ab, c) = Ta, bc)

We will call d also the degree of the algebra. We write |a| = k for the degreedegree
of an element a ∈ Hk The unit has degree −d and is here naturally the element
1 ∈ Q ∼= H0(X)

On the n-fold tensor product of H we define the multiplication as.

∆(n)∗(α1⊗α2⊗· · ·⊗αn, β1⊗β2⊗· · ·⊗βn)
def
= sign({α}{β})α1∧β1⊗⊗ · · ·⊗αn∧βn

Where sign({α}{β}) is the reorderings signature needed to pair the compo-signature
nents, given by a factor (−1)|a||b| when interchanging two elements a and b.
We won’t be taking the signature into account in the following, since the co-
homology ring of K3 is even graded. The whole construction is nonetheless
easily extended to any Frobenius algebra, by just using the signature whenever
an operation exchanges two elements. The reason for the notation used for the
product operator will become clear in the following.

We get again a graded Frobenius algebra, now of degree dn using as map to
Q:

T (α1 ⊗ · · · ⊗ αn) := T (α1) · · ·T (α1) (5.25)

This construction of a tensor product can be generalised to a tensor product
with respect to any indexset, I with finite cardinality n, by symmetrising over
all bijections to [n] in a two step process:

1. Take the direct sum over the n-fold tensor product by all bijections, defin-
ing the algebra product per component. For example if the index set is
{a, b} a typical product of two algebra elements looks like:

(αa ⊗ αb ⊕ αb ⊗ αa) · (βa ⊗ βb ⊕ βb ⊗ βa) =

αa · βa ⊗ αb · βb ⊕ αb · βb ⊗ αa · βa
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2. Make the tensor product symmetric by dividing out by the action of Sn
on the indexset [n]. In the above example by the equivalence:

αa ⊗ αb ⊕ αb ⊗ αa ∼ αb ⊗ αa ⊕ αa ⊗ αb

The final general tensor product can be written as:

H⊗I def
=
(

⊕
f :[n]

∼
→I

(

Hf(1) ⊗ · · · ⊗ Hf(n)

))

�Sn (5.26)

The usefulness of this definition lies in the way any isomorphism f : [n] → I
induces a canonical isomorphism between H⊗[n] and H⊗I

The multiplication in H can be seen as a pullback from the diagonal embed-
ding as follows:

∆(2) : X → X ×X (5.27)

p 7→ (p, p)

wedge product : ∆∗ : H(X) ⊗H(X) ' H(X ×X) → H(X) (5.28)

Where in the last line again the Künneth formula ([32]) has been applied. Du-

alising using T we also have a coproduct, ∆
(2)
∗ : H(X) → H(X) ⊗H(X) also coproduct

of degree d explicitly we have :

(

−
∫

(∆
(2)
∗ α)1 ∧ β1

)(

−
∫

(∆
(2)
∗ α)2 ∧ β2

)

= −
∫

α ∧ β1 ∧ β2 (5.29)

It is an immediate consequence of the (anti)symmetry of the product that the
coproduct is symmetric, that is to say that given an element a ∈ H, there exists

a b ∈ H, perhaps zero, such that ∆
(2)
∗ (a) = b⊗ b, although b is not necessarily

of pure degree. This is one of the properties of the coproduct that will be of use
in forthcoming calculations so lets state and proof it in a proper way:

Theorem 5.3.1. Let H be a Frobenius algebra, its coproduct has the following
properties

1. symmetry a ∈ H there is a (unique) b ∈ H such that ∆
(2)
∗ a = b⊗ b

2. commutes with scalar multiplication ∆
(2)
∗ λa = λ∆

(2)
∗ a for all λ ∈ Q, a ∈ H

Proof. 1. Suppose ei is a basis of H. It suffices to proof the statement for

a = ei. Since ∆
(2)
∗ ei ∈ H ⊗ H we can write ∆

(2)
∗ ei = f jki ej ⊗ ek. By

definition we have

T
(

∆
(2)
∗ ei · a1 ⊗ a2

)

= f jki T
(

ej ⊗ ek · a1 ⊗ a2

)

= f jki T
(

ej · a1

)

T
(

ek · a2

)

= T
(

ei · a1 · a2

)

= T
(

ei · a2 · a1

)

= T
(

∆
(2)
∗ ei · a2 ⊗ a1

)

= fkji T
(

ej · a1

)

T
(

ek · a2

)

and comparing the second line with the last we conclude that fijk = fkji .
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2. Using again the definitions:

T
(

∆
(2)
∗ (λa) · (b1 ⊗ b2)

)

= λT
(

a · b1 · b2
)

= λT
(

∆
(2)
∗ (a) · (b1 ⊗ b2)

)

and the stated follows from the non degeneracy of T .

Using the coproduct we define the Euler class3 of the Frobenius algebra as:Euler class

e := ∆(2)∗∆
(2)
∗ (1)

Since, both multiplication and co-multiplication, have degree d, we see that
|e| = d.

A surjective map φ from [n] onto [m] induces a natural “pullback”, φ∗ from
H∗(X)⊗n to H∗(X)⊗m of degree d(n − m), by multiplying the elements that
get mapped to the same index, and because of the nondegeneracy of T a dual
“pushforward”. φ∗ in the opposite direction and of the same degree. They are
pullbacks and pushforwards from the appropriate diagonal embeddings. In the

case m = 1 we will use the notation ∆
(n)
∗ and ∆(n)∗. This n- fold coproduct

has again the same symmetry properties as in the 2-fold case mentioned above.
These maps have a natural generalisation to surjective maps between finite
index sets I and J , and their induced pullbacks and pushforwards between the
generalised tensor products as introduced above. This is a direct consequence
of the canonical isomorphism between H⊗[n] and H⊗I . It is easy to see that
these maps both have a degree d(|I | − |J |)

The extension of the Euler class to an n-fold tensor product can be given
formally, using the constant map φ : [n] → [1], as

e[n] := en−1 (5.30)

= ⊗i∈[1]e
−1

With |φ−1(i)| we get the number of elements that get mapped to i. Since e has
degree d It is easy to check that this is indeed the right expression in the sense
that e[n] = φ∗φ∗(1) at least formally since in fact e[n] = 0 for n larger then 1.
The use of this definition is in the possibility to extend it to general index sets
φ : I → J as

eI,J := ⊗i∈Jeφ
−1(i)−1. (5.31)

with the property : eI,J = φ∗φ∗(1J). An even more general definition can be
made using a function ν : I → N0 and the definition:

eν := ⊗i∈Ieν(i) (5.32)

3The name Euler class is more than suggestive: the normal bundle of ∆(2)(X) in X × X

is isomorphic to the tangent bundle, TX. Since
Z

X×X

(α1 ⊗ α2)∆
(2)
∗ (1) =

Z

X

α1

Z

X

α2

we see that ∆
(2)
∗ (1) corresponds in fact with the Thom class of the normal bundle and the

Euler class in cohomology is the pullback of the Thom class by the zero section inclusion [32].
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To calculate the degree of eν we use the fact that |e| = d and that multiplication
also has degree d:

|eν | =
∑

i∈I

|eν(i)|

=
∑

i∈I

(d(ν(i) − 1) + dν(i))

the first term comes from the multiplication, the second term from the degree
of e

= 2d
∑

i∈I

ν(i) + d|I | (5.33)

The reader might object that this manipulation is ill defined since any power
of e larger than 1 gives zero, but the cohomology ring is a ring over Q and
so we still can formally set |en| = dn We will need this definition to define a
multiplication in the twisted tensor product. There ν will be the equivalent of
the genus of the cover from chapter 4 with respect to three matching twists.

5.3.2 The symmetric ring

As we know now from the previous section we can equip H⊗n with a bilinear
form that makes it again a graded Frobenius algebra. The first step we will take
is to define an analogue to the Fockspace approach of Vafa and Witten in terms
of this algebra. It is clear that the symmetric group will have an important part
in this construction. We start by defining the analogue of the genus of the cover
(4.25): the graph defect of two permutations π and σ ∈ Sn is defined as a graph defect
map from the orbitspace of the subgroup generated by both π and σ to N :

g(π, σ)(o)
def
=

1

2
(l(o) + 2 − |〈π〉\o| − |〈σ〉\o| − |〈πσ〉\o|) (5.34)

where o ∈ 〈π, σ〉\[n], l(o) is the orbitlength as defined in the appendix (A) and
with |〈π〉\o| we mean the order (number of elements), of the resulting orbitspace.
As an example we consider S3. From the multiplication and orbit tables for S3,
table A and A.2 on page 65, we can read off the needed values to find (up to
conjugacy) :

That this graphdefect is a nonnegative integer can be proven straight away
geometrically. For us it is nice to use the intuition from our previous calculations
in section 4.5) Let σ, π and σπ be the cycles corresponding to the 3 insertions.
We suppose that the two cycles do overlap and that o is the orbit representing
the copies of m that get permuted, the other orbits all being trivial (having
length 1). Note that l(o) corresponds to s, the total number of copies of M that
gets permuted, and l(o) − |〈σ〉\o| + 1 is equal to the ramification index for an
insertion corresponding to the cycle σ. We can conclude that the two equations
indeed match. This is a nice correspondence since it was argued in that first
calculation that only genus zero contributions mattered in the large N limit.

From the graded Frobenius algebras H⊗n we build the following twisted twisted tensor product
tensor product:

H{Sn} def
=
⊕

π∈Sn

(H⊗〈π〉\[n], π) (5.35)
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g(Id, σ)(o) =
1

2
(l(o) + 2 − l(o) − 1 − 1) = 0 for σ ∈ S3, o ∈ 〈σ〉\[3]

g((12), (12))({1, 2}) =
1

2
(2 + 2 − 1 − 1 − 2) = 0

g((12), (12))({3}) =
1

2
(1 + 2 − 1 − 1 − 1) = 0

g((12), (13))({1, 2, 3}) =
1

2
(3 + 2 − 2 − 2 − 1) = 0

g((12), (123))({1, 2, 3}) =
1

2
(3 + 2 − 2 − 1 − 2) = 0

g((123), (132))({1, 2, 3}) =
1

2
(3 + 2 − 1 − 1 − 3) = 0

g((123), (123))({1, 2, 3}) =
1

2
(3 + 2 − 1 − 1 − 1) = 1

Table 5.1: S3 graph defects

The tensor product in the above is in the generalised sense as defined in (5.26)
indexed by elements in the orbit space. We will use the convention to order the
tensor product in decreasing size of the orbit length. We will call n the weightweight

and |(a, π)| def
= |a| the degree of an element of H{Sn}. The rationale behinddegree

calling n the weight will become clear in the next section.

We next will give this vector space a ring structure by adding a multiplica-
tion. When G ⊂ H are both subgroups of Sn then there is a natural surjection
f(G,H) : G\[n] → H\[n] and so we can define pullbacks and pushforwards as
introduced in the previous section. We use the notation:

fG,H
def
= f(G,H)∗ : H⊗G\[n] → H⊗H\[n] for the pullback (5.36)

fH,G
def
= f(G,H)∗ : H⊗H\[n] → H⊗G\[n] for the pushforward (5.37)

The multiplication in H{Sn} is now defined as:

(a, π) · (b, ρ)
def
=
(

f〈π,ρ〉,〈πρ〉(f
〈π〉,〈π,ρ〉(a)f 〈ρ〉,〈π,ρ〉(b)eg(π,ρ)), πρ

)

(5.38)

The claim is that with this product the twisted tensor product is a ring. Per con-
struction the pullbacks f 〈π〉,〈π,ρ〉 and f 〈ρ〉,〈π,ρ〉 both map to H⊗〈π,ρ〉\[n]. Since
〈π, ρ〉 is the smallest subgroup containing both permutations, H⊗〈π,ρ〉\[n] is the
“largest” tensor product where both elements can be pulled back to. The prod-
uct of the images, multiplied by a weight that more or less measures the triviality
of the overlap of the permutations involved, gets pushed forward to H⊗〈πρ〉\[n].
The Euler factor takes care of the associativity of the product. See for the
rather technical proof of the associativity [35]. Note that for 〈π〉 = 〈ρ〉 = Id
we recover the untwisted n-fold tensor product multiplication. To calculate the
degree of the multiplication we have to take into account the degrees of all maps
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and elements involved:

|(a, π) · (b, ρ)| =|a| + |b| degree of arguments

+ 2(|〈πρ〉\[n]| − |〈π, ρ〉\[n]|) f〈π,ρ〉,〈πρ〉

+ 2(|〈π〉\[n]| − |〈π, ρ〉\[n]|) f 〈π〉,〈π,ρ〉

+ 2(|〈ρ〉\[n]| − |〈π, ρ〉\[n]|) f 〈ρ〉,〈π,ρ〉

+ 4
∑

o∈〈π,ρ〉\[n]

g(π, ρ)(o) − 2|〈π, ρ〉\[n]| eg(π,ρ) from (5.33)

+ 2|〈π, ρ〉\[n]| 2 multiplications

using 5.34 we find that:

∑

o∈〈π,ρ〉\[n]

g(π, ρ)(o) =
1

2
(n+ |〈π, ρ〉\[n]| − |〈π〉\[n]| − |〈ρ〉\[n]| − |〈πρ〉\[n]|

and so:

|(a, π) · (b, ρ)| = |a| + |b| + 2n (5.39)

showing that the multiplication has degree 2n.
On H{Sn} we have a natural Sn action as follows: let (a, σ) ∈ (H⊗〈σ〉\[n], σ).

For each π ∈ Sn we define f(π) : 〈σ〉\[n] → 〈πσπ−1〉\[n] in the natural way,.
Since this is a bijection we can define an isomorphism through the pullback
f(π)∗, like we previously defined, and an automorphism π̂ : H{Sn} → H{Sn}
through:

π̂(a, σ)
def
= (f(π)∗a, πσπ−1) (5.40)

We finally define H[n] to be the invariant subring of H{Sn} under this action.
That this is indeed a subring and thus closes under multiplication is a straight-
forward consequence of the definitions for details we refer again to [35]. As an
example we will construct the different rings for S3. Let’s start with H{Sn}.
The orbitspace structure for S3 is given in table A.2 on page 67. From there it
is easy to read off the ringstructure:

H{S3} =(H⊗3, Id) ⊕ (H⊗2, (12)) ⊕ (H⊗2, (13)) ⊕ (H⊗2, (23))

⊕ (H, (123)) ⊕ (H, (132)) (5.41)

To work out multiplication in H{S3} we use the results from table A and ta-
ble 5.1. Two examples are worked out below.

(a1 ⊗ a2, (12)) · (b1 ⊗ b2, (12)) =
(

f〈(12)〉,〈Id〉((a1 ⊗ a2)(b1 ⊗ b2)(e0 × e0), Id
)

=
(

f〈(12)〉,〈Id〉 (a1b1 ⊗ a2b2) , Id
)

=
(

∆
(2)
∗ (a1b1) ⊗ a2b2, Id

)

(a, (123)) · (b, (123)) =
(

f〈(123)〉,〈(132)〉(abe
1), (132)

)

= (abe, (132))

The multiplication table for H{S3} can be found on page 81.
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Note again that since e is a topform en = 0 for n > 1 and so for example in
H{S5}:

(

a, (1234)
)

·
(

a, (1234)
)

=
(

f〈(1234)〉,〈(1234)〉(abe
2), (14523)

)

=
(

0, (14523)
)

From the multiplication table we can see that the multiplication is commutative
up to conjugacy and so we see that indeed H[n] is a subring.

Now for H[3]. The elements in this ring are of the form:
(

a⊗ b⊗ c, Id
)

⊕ · · · ⊕ all permutations of a, b and c
(

a⊗ b, (12)
)

⊕
(

a⊗ b, (13)
)

⊕
(

b⊗ a, (23)
)

(

a, (123)
)

⊕
(

a, (123)
)

So that we find

H[3] ' S3H⊕ (H⊗H) ⊕H (5.42)

The general recipe to build the symmetric ring H[n] is the following:

• draw all different Young diagrams corresponding to the partitions of n

• each row ( cycle ) corresponds to a copy of the shifted cohomology ring

• take the tensor product of the rows, symmetrising over rows of equal
length.

• H[n] is the direct sum of the resulting tensor products from all Young
diagrams

The following construction of H[4] illustrates the process:

Young diagram Tensor product

H

H⊗H

S2H

H⊗ S2H

S4H
H[4] ' S4H⊕H⊗ S2H⊕ S2H⊕H⊗H⊕H

Table 5.2: construction of H[4]

We see now that there is a vector space isomorphism, through the Young
diagrams that define the basis from this symmetric algebra to the Fock space
representing the symmetric orbifold cohomology ring for all n:

Φ : H[n] → V(H)n (5.43)

since symmetrising over rows of equal length corresponds to symmetrisation
over equal mode oscillator operators.
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Chapter 6

The cohomology ring of X
[n]

After introducing the concept of the Hilbert scheme of points, we will discuss the
construction of the Heisenberg algebra analogue from the orbifold calculations,
but now seen from the Hilbert scheme perspective. Build upon these concepts an
explicit ring isomorphism can be constructed between the symmetric Frobenius
ring and the cohomology ring of K3[n]. This can finally be used to give an
explicit prescription how to calculate 3 point functions of chiral primaries in
the symmetric orbifold using as ingredient the cohomology ring structure of the
original surface. We will use a shifted cohomology ring also on the Hilbertscheme
side of the story and so define:

Hn
def
= H∗(X [n])[2n]

H
def
= ⊕nHn (6.1)

6.1 The Hilbert Scheme of points

Although the language of schemes will be used in this chapter, for which the
appendix (D) gives the key concepts, the scheme that will be of interest to us
is in fact a smooth variety as far as the original surface is a smooth variety. All
schemes will be projective.

The symmetric orbifold is of course perfectly regular almost everywhere,
that is in all points where the coordinates of the different copies of the defining
surface differ from each other. There where 2 or more “coordinates” coincide
the space will be singular though since in a sense the tangent space in those
points becomes smaller. Technically the scheme we will describe now is a blow
up of these singularities.

When talking about a moduli space of schemes we need to have some moduli space
notion of what we demand of schemes to be in the same set of schemes. We
first need the notion of a family of schemes. The analogue in the realm of
differentiable manifolds is a fibre bundle where the fibres are the manifolds in
the “family” parameterised by the base manifold. A family of schemes is defined family
as morphism between two schemes, φ : A → B. The fibres above any point in B
are the schemes that make up the family: {φ−1(p)|p ∈ B}. This is still a very
vague notion since those fibres can be totally different from each other.! On the
other hand it is not possible to translate the notion of local triviality because

51



CHAPTER 6. THE COHOMOLOGY RING OF X [N ]

of the coarseness of the Zariski topology. The right way to proceed is to start
from the algebraic concept of flatness of modules (see appendix D.2). In the
case of nonsingular varieties it happens to be that the fibres close to each other
are similar enough such that any family is flat (see [36]).

This flatness is alltogether a pretty abstract notion, it can be shown though
that it is the unique extension that reduces to the idea that any fibre can be
seen as the limit of fibres close by “whenever this makes sense” [37]. The
most important geometrical consequence of flatness, for our discussion, is that
some numerical properties of projective schemes, related to the dimension of the
scheme and degree of the defining polynomials are constant throughout a flat
family. Hereto we have to introduce the notion of the Hilbert polynomial.

Roughly speaking the Hilbert polynomial, PX of the scheme X, is theHilbert polynomial
unique polynomial mapping integers into integers such that PX(n) equals the
dimension of the homogeneous part of degree n of its coordinate ring (remember
our schemes are projective) for sufficiently large n. The degree of the polynomial
is the dimension of the scheme. In the case the scheme consists of a finite number
of points, the degree is indeed 0, implying that the the polynomial is constant.
The uniqueness of the polynomial is an old result by Hilbert.

The importance of the Hilbert polynomial is that a family of schemes is flat
iff the members have the same polynomial. Knowing this we can now, given
any (projective) scheme X , try to construct a flat family of closed subschemes
of X having a given Hilbert polynomial, in particular we could consider the flat
family of zero dimensional subschemes of given length.

Now this is easily stated, but where does this scheme structure come from
that we put on the collection of subschemes. The answer is actually a rather
deep result from Grothendieck. For some details and references to the literature
see appendix D.2. What is important for us is that we can identify the collection
of zero dimensional subschemes of fixed length n with a projective scheme that is
called the Hilbert scheme of points in X . We will use the common notationHilbert scheme of points
X [n] for this scheme. The length corresponds to the number of points in the
fibre.

As was mentioned in the last section, X [n] is a crepant resolution of the
symmetric orbifold SnX , of course under the assumption that X does not con-
tain singularities. This is true in the case X is 2 dimensional (here we mean 2
complex dimensions !) . The smoothness of X [n] is a result from Fogarty (1968).
That the resolution is crepant was proved by Beauville in 1983. For a proof of
these theorems the main reference is [34], where most of the basics concerning
these Hilbert schemes is explained in great detail. A preliminary version of this
book might still be available in electronic format on the internet.

In case X is one dimensional (eg. a Riemann surface) the Hilbert scheme
is in fact equivalent to the symmetric product, for higher dimensional varieties
the Hilbert scheme of points is not smooth, so the relation between the Hilbert
scheme and the symmetric product is really special for complex surfaces. The
crepancy of the resolution furthermore implies thatX [n] is hyperkähler whenever
X is.

The resolution map from X [n] to SnX is called the Hilbert-Chow mapHilbert-Chow map
and it maps a point in X [n] to the sum over the points in the subscheme it
represents ( in other words over the cycles in the subscheme ) weighted by their
multiplicity ( by the length of the cycle ).

To get a better understanding of the geometry of the Hilbert scheme we will
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first look at the Hilbert scheme of points in C. A subscheme of C of length n is
described by a polynomial of degree n with complex coefficients:

n
∑

i=0

aiz
i and an 6= 0

since an 6= 0 we can normalise it to 1 and so can describe the scheme as a point
in Cn. Now it happens to be that also SnC ' Cn this can be seen by noticing
that a point (z1, · · · , zn) ∈ SnC with z1 ≤ z2 ≤ · · · ≤ zn can be mapped to
(z1 + · · ·+ zn,

∑

i<j zizj , · · · , z1 · · · zn) and that this map is a bijection since the
symmetric functions are linearly independent.

Now lets look at C2. In this case a generic point in (C2)[n] would consist of
n different points in C2 and corresponds to a nonsingular point in SnC2. At the
moment two of the n coordinates coincide the Hilbert-Chow map would map
this point to one singular point in SnC2, but as a subscheme there is a direction
in C2 attached that distinguishes from what direction the points approached
each other. In a sense is the reduction in dimension of the tangent space by
the addition of one more point to the cluster automatically compensated by the
addition of the direction that point came from. This concept is described in
slightly more detail in appendix D. In higher dimensions this compensation is
not enough anymore and the resulting scheme can be shown to be singular for
n larger than three.

6.2 Heisenberg algebra of Nakajima

In this section the appearance of the Heisenberg algebra of string oscillators
in the cohomology ring of the Hilbert scheme of points will be reviewed. It
is not the intention to be very precise, first of all since we will only need the
final results and secondly because a precise treatment could easily fill a book,
without enhancing the needed understanding. For the reader that wants to get
a more in depth treatment several review articles [38],[39] next to Nakajima’s
book [34] are highly recommended.

As we know from the orbifold cohomology calculations from section (5.2), it
is advantageous to treat all Hilbert schemes at once. It is only in this context
that one can expect to be able to define a Heisenberg algebra structure. In the
orbifold case the we constructed oscillator modes pl(ai) that map a state in the
H∗(SnX) sector to one in the H∗(Sn+lX) sector. To translate this concept
to the Hilbert scheme picture we want an operator on the full collection of
cohomology rings, H (see 6.1) based on elements from H∗(X), that maps a
class in Hn to a class in Hn+l for any n. To accomplish this Nakajima defined
first incidence schemes as pairs of subschemes of X [n] and X [n+l] that differ in
just one point :

Zl,n
def
= {(I, x, I ′) ∈ X [n] ×X ×X [n+l]|I ′ ⊂ I, supp(I/I ′) = x} (6.2)

Zl
def
=
⊔

n

Zl,n (6.3)

Let us convince ourselves that this definition makes sense. A point I in X [n]

consists of a prime ideal of a polynomial ring that has n zeros. I ′ has l zeros
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more all at the same point and so as ideal is a subset of I , moreover since the
difference is just x the quotient has its support there.

We define the projection maps pr1, pr2 and pr3 as the maps projecting from
X [n] ×X ×X [n+l] to its respective component. We now define the searched for
oscillator modes as endomorphisms on H whose action on a class in Hm is given
by:

p−l(a)(y)
def
= PD−1(pr3∗(PD(pr∗2(a) ∪ pr∗1(y)) ∩ [Zl])) (6.4)

PD is the Poincaré duality map. The structure of this definition is the following:
pr∗2 and pr∗1 pull the classes a in H∗(X) and y in Hn first back to a class in
H∗(X [n] × X × X [n+l]). The corresponding cycle is then intersected with the
incidence scheme, or actually the fundamental homology class of the incidence
scheme. The resulting class is finally pushed forward to a class in H∗(X [n+l]).
This use of a subvariety, namely Z, of a Cartesian product as an operator on the
homology ring is called a correspondence. There are a lot of intricacies leftcorrespondence
out, for example it can be extended to non compact surfaces, but in that case
one needs a replacement for Poincaré duality, relating homology with compact
cohomology. Also is homology not allways a well defined concept when working
with schemes and more appropriate would it be to work with the Chow ring
[36]. But the main idea of the construction should be clear and is pictured in
the following diagram:

H∗(X [l] ×X×X [n+l])
∩[Zl]- H∗(Zl,n)

y

pr∗2

6

a

pr∗1

6

p−l(a)(y)

pr3∗

?

The main result of [30] (up to a constant) was that these indeed are Heisen-
berg algebra operators in the sense that:

[pl(a), pm(b)]± = lδl,−mT (ab)1H (6.5)

Here the vacuum is naturally 1 ∈ Q ' H0. That H0 ' Q can be seen by
realising that X [0] consists of 1 point, the empty set, and so the cohomology
ring is indeed Q.

Li et. al. constructed [40] a complete set of generators for H, that Lehn
and Sorger managed to express in the Heisenberg operators defined above [35]
in case the canonical bundle is trivial. It is interesting to know that they used
some vertex algebra techniques to proof this. We will take this as our definition
of the generators:

a[n] def
=

n
∑

m=0

(p−1(1))n−m

(n−m)!

∑

α∈p(m)

∏

l≥1(p−l)
⊗|αl|(∆

(|α|)
∗ (cαa))

m!
1H (6.6)
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cα is a partition dependend class in H∗(X). that is, based on numerics, conjec-
tured to be:

cα =
(−1)||α||−|α|

∏

l αl!

(

1 +
|||α||| − 1

24
e

)

(6.7)

e being again the Euler class of X . We recognise in (6.6) already a lot of
structure we have seen previously when treating the orbifold cohomology ring
and also in the threepoint calculations by Lunin and Mathur. If we just forget
for the moment the dependence on the cohomology class of X , then it looks as
if the generators are labelled by the way we twist. So for a given weight n the
untwisted sector would then be represented by m = 0 We will see in the next
section that this correspondence does not hold.

From the existence of the Heisenberg algebra as well as the dimensions from
the cohomology group versus the Fock space dimension it is not hard to deduce
that both structures are isomorphic as vector spaces :

Ψ : V(H) → H (6.8)

p̃−m(a) 7→ p−m(a) (6.9)

And so by composition with (5.43) we obtain a vectorspace isomorphism Γ
def
=

Ψ ◦ Φ. For the calculations needed to obtain the 3 point functions within the
chiral ring, a vectorspace isomorphism is not enough, we need to know how
to multiply elements in the Hilbert scheme cohomology ring. Lehn and Sorger
finally proved, that the isomorphism created is in fact a ring isomorphism and
thus respects the ring product. The obtained ring generators can now be ex-
pressed through a set of generators from the symmetric algebra:

a[n] =

n
∑

m=0

∑

α∈p(m)

(

n

m

)

Γ
(

Pn
(

∆
(|α|)
∗ (cαa) ⊗ 1⊗(n−m), πα

)

)

(6.10)

Here with πα we mean an element from Sn that consist of (n −m) 1 cycles in
addition to the cycles from the partition α. The Pn operator is the projection
to the invariant subspace we have encountered in earlier chapters that we can
write using the group action (5.40)as

Pn
def
=

1

n!

∑

ρ∈Sn

ρ̂ (6.11)

So the claim is that with a running through generators of H∗(X), the resulting
a[n] form a complete set of generators for the cohomology ring of X [n]. The
statement that Γ is not only a vectorspace isomorphism, which is comparatively
easy to infer from the construction of the Heisenberg algebra, but that it is in
fact a ring isomorphism is the result we need.

Unfortunately though the generators a[n], although of pure weight n, are
not of pure degree. This is not totally surprising, knowing how hard it is to
relate different bases of symmetric functions to each other. On the other hand
the existence of a ring isomorphism makes it possible to define a basis in Hn

through a basis in H [n] formally using Γ. So to compare the cohomology ring
structure to the calculations from chapter 3 we could try to find a suitable set
of elements in H[n] that correspond to chiral primaries. We will see in the next
section that this is not an easy task.
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6.3 The product of cycle based classes

To relate the cohomology ring structure to the correlation functions as calculated
by Mathur and Lunin we need to find the classes in the cohomology ring of K3[N ]

that correspond to the chiral primaries as constructed in (4.12),(4.16).

6.3.1 Symmetry and complex structure

We look now at the cohomology ring for a Hilbert scheme of a fixed number of
points N , using capital N to conform to the notation of chapter 3. We want
now to assign to a cycle of length n with n < N a ring element in the symmetric
algebra As we noted in section 5.1, the chiral ring contains an SU(2) ⊗ SU(2)
symmetry, that was for example given by the triple J+

−1, J
−
1 , J

3
0 for the holo-

morphic chiral NS sector. Of course we also need a splitting of the cohomology
in Dolbeault cohomology

We start by fixing a complex structure I and its associated Kähler form
ωI . This will give us a splitting up of Hn(X) in a direct sum of Dolbeault
cohomology groups:

Hn(X) =
⊕

p+q=n

Hp,q(X) (6.12)

Now corresponding to the Kähler form we can define, following [41] an operator
that raises the grading of a p, q-form to p+ 1, q + 1 as follows:

LI(a)
def
= a ∧ ωI

Next we introduce the operator ΛI as the dual under the Hodge pairing:

∫

ΛIa ∧ ∗b =

∫

a ∧ ∗(LIb)

and an operator H that just multiplies by the total degree of the form:

Ha
def
= (p+ q)a for a ∈ Hp,q(X)

These three operators form a Lefschetz triple, satisfying the algebraLefschetz triple

[LI ,ΛI ] = H [H,LI ] = 2LI [H,LI ] = −2LI (6.13)

This is an su(2) algebra, by multiplying the generators by 1/2 it is in the more
familiar form of ladder and charge operators, where the charge is now the total
degree of the form. This fixing of a complex structure defines how we complexify
the real manifold, but since K3 is hyperkähler we have two complex structures
J and K left that give also rise to Lefschetz triples (LJ ,ΛJ , H) and (LJ ,ΛJ , H).

Although each of the Kähler forms is a (1, 1) form with respect to its own
complex structure, that is not the case with respect to one of the other complex
structures as can be easily checked from the definitions and the hyperkähler
relation I ◦ J = −K. For example are ωJ and ωK (2, 0) ⊕ (0, 2) forms. Of
course they still raise the total de Rham degree by two. We can define though
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holomorphic and antiholomorphic 2-forms with respect to the complex structure
I as follows [42]:

J+ def
=

1

2
(LJ + iLK) : Hp,q(X) → Hp+2,q(X) (6.14)

J− def
=

1

2
(ΛJ − iΛK) : Hp,q(X) → Hp−2,q(X)

J̄+ def
=

1

2
(LJ − iLK) : Hp,q(X) → Hp,q+2(X)

J̄− def
=

1

2
(ΛJ + iΛK) : Hp,q(X) → Hp,q−2(X)

Thus providing operators that do raise and lower the Hodge index in just the
(anti)-holomorphic sector. We are now set to build a set of classes in X [N ] that
have the same kind of SU(2) structure we had in the orbifold construction.

6.3.2 comparing degrees

In the orbifold construction every cycle has 2 × 2 primaries attached, forming
the corners of a Hodge diamond. The J±

∓1 and J̄±
∓1 operators connect the

four corners of these Hodge diamonds. The (1, 1) centre of the diamond won’t
appear in this construction. Recall that a cycle of length n corresponds to chiral
primaries with Dolbeault degree p = n± 1 The groundstate corresponds to the
1-cycle twist. Combining the Dolbeault classes in de Rham cohomology, the
result is that an n cycle corresponds with 4 classes, one with degree 2n− 2, two
with degree 2n and one with degree 2n+ 2. A top form in the orbifold we can
reach only from the untwisted sector by applying the ladder up to the ground
state of each copy of M . The symmetrisation over the full group SN , which is
the centraliser of the unit element, does not change the degree of the resulting
primary. Nonetheless this topform will never appear in the construction of one
cycle based chiral primaries.

If we compare this with the construction of the symmetric ring then we see
that the topform can also only be reached from the unit element, since it has
the maximum number of N orbits. If we try to map one of the four n cycle
based primaries to an n cycle based symmetric ring element, as defined through
the symmetrised version of the twisted ring definition (5.35), it seems to be
impossible! The simple ring elements based on an N -cycle for example have a
degree of at most 4, although the chiral primaries corresponding to that same
cycle would be of degrees 2N − 2, 2N or 2N + 2. These last values lie in the
centre of the Hodge diamond of the 4N -dimensional smooth resolution of the
orbifold (table 6.1).

The clue is that one should not calculate the cohomology degree just from
the tensor product. So the cohomology degree is not the sum of the Frobenius
algebra degrees of the elements plus the dimension of the base algebra times
the number of tensor components, as it would be seen purely as a tensored
Frobenius algebra. The degree should be calculated relative to N . Let us write
the cohomology degree of an element as ‖ a ‖ then:

‖ a1 ⊗ · · · ⊗ ak ‖ =

k
∑

i=1

|ai| + 2N (6.15)

= |a1 ⊗ · · · ⊗ ak| + 2N (6.16)
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h2N,2N

. . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . hN+1,N+1 . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . hN+1,N hN,N+1 . . . . . . . . . .
hN+1,N−1 hN,N hN−1,N+1

. . . . . . . . . . hN,N−1 hN−1,N . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . hN−1,N−1 . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . .

h0,0

Table 6.1: Hodge diamond for with N cycle chiral primaries

With this relation between cohomology degree and Frobenius degree we can
easily build candidates that correspond to chiral primaries from the CFT. To
match the Dolbeault degrees good candidates would be of the form:

an = P (a⊗ 1⊗(N−n), (n)) (6.17)

The operator P is again the symmetrisation. We take a to be a zero, two or
topform, for example 1, the two-form that squares to the Euler form

√
e, and

the Euler form e. Note that ∆
(
∗2)(1) =

√
e ⊗ √

e. The cohomology degree is
then

‖ an ‖= 2n+ |a| (6.18)

In the case of a topform “a = e”, we need a small modification to be able
to calculate the cup product from the classes corresponding to the CFT chiral
primaries. The reason is the following: when we multiply two cycle based ring
elements n1 and n2 we will first need to contract the element corresponding to
the orbit of the cycle with a number of the elements that correspond to the
other one element orbits. This is allways the case since the orbit space from
the group generated by both cycles is never larger than the original orbitspaces
and only equal to them in the case the 2 cycles have a total overlap. That
only happens in case the cycles are, per construction (4.55), each others inverse.
After this we might have to expand again the resulting element since the final
cycle can again have a larger orbitspace. We will now analyse what kind of
contraction/expansion we can have. First of all the cohomology degrees should
match :

2(n1 + s1) + 2(n2 + s2) = 2(n3 + s3) (6.19)

Where si ∈ −1, 0, 1 is total sign index (holomorphic plus anti holomorphic)
defined in section 4.7. We also know the relation between the cycle lengths with
respect to the (positive) overlap k:

n3 = n1 + n2 − 2k + 1 (6.20)

Combining these two relations shows that the overlap can only be 1 or 2. The
orbitlength of the non trivial orbit from the group generated by n1 and n2, or
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equivalently the total number of copies of M that gets twisted, is n1+n2−k. An
expansion through the co-product can only happen in the case the cyclelength
n3 is strictly smaller than this total orbit length and this happens only in the
case the overlap k = 2. That again corresponds to values of s1 = s2 = −1. The
size of the expansion is just 1. In these cases the element corresponding to the

cycle is 1 and an expansion can at most lead to 1 → ∆
(2)
∗ (1) =

√
e⊗√

e. So we
come to the following modification:

a−n
def
= P (1 ⊗ 1⊗(N−n), (n))

a0
n

def
= P (

√
e⊗ 1⊗(N−n), (n))

a+,1
n

def
= P (

√
e⊗√

e⊗ 1⊗(N−n−1), (n))

a+,2
n

def
= P (e⊗ 1⊗(N−n), (n)) (6.21)

This is all we need, since a+,i
n can only combine with a−n′ in a k = 1 overlap.

6.3.3 examples

We will work out a couple of three-point functions for N = 3. Let us start with
the chiral primaries. Since we won’t be able to calculate three-point functions
on the CFT for combinations that have a non-zero genus, we won’t be able to
calculate the fusion coefficient for the fusion of 2 threecycles into a threecycle or
into a one cycle ( see the table of graphdefects 5.1 ). We use the following nota-

tion for the fusion coefficients as defined in (4.34) : (ns
1

1 , n
s2
2 |ns33 ) for the fusion

of τ̌
s1,2

n1,2,0
into τ̌s3n3,0

. To calculate the fusion coefficients are easy to calculate.
The 3jsymbols simplify to:





n1 + s1
2

n2 + s2
2

n3 + s3
2

n1 + s1
2

n2 + s2
2

−n3 + s3
2



 =
1√

n3 + s3

The fusion coefficients are given for one sector (holomorphic or anti-holomorphic,
while the normalisation is given for the whole three-point function ( holomor-
phic and anti-holomorphic parts ). The last two entries result in 4 different
Dolbeault classes, since holomorphic and antiholomorphic parts are allowed to
differ as long as the twist is the same. The full 3 point functions can be eas-

fusion normalisation

(1+, 2−|2+) 1/2 2/
√

3

(1+, 3−|3+) 1/3
√

3

(2−, 2−|1+) −1/2 2/
√

3

(2−, 2−|3−) −
√

3/2
√

2

(2+, 2−|3+) −1/
√

3
√

2

Table 6.2: fusion of chiral primaries

ily obtained from table 6.3.3. They can be combined in a way to reflect the
structure constants of the de Rham cohomology as:

In the cohomology ring we have, following the definition from last section,
the following classes: As an example we calculate one multiplication:

59



CHAPTER 6. THE COHOMOLOGY RING OF X [N ]

holomorphic anti-holom. cohomology structure constant

(1+, 2−|2+) (1+, 2−|2+) [4] ∧ [2] 1/(2
√

3)

(1+, 3−|3+) (1+, 3−|3+) [4] ∧ [4] 1/(3
√

3)

(2−, 2−|1+) (2−, 2−|1+) [2] ∧ [2] 1/(2
√

3)

(2−, 2−|3−) (2−, 2−|3−) [2] ∧ [2] 3/
√

2

(2+, 2−|3+) (2+, 2−|3+) [6] ∧ [2]
√

2/3

(2+, 2−|3+) (2−, 2−|3−) [4] ∧ [2] 2
√

2

Table 6.3: fusion of chiral primaries

twist name element degree

1 a−1 P (1⊗3, Id) [0]
a0
1 P (

√
e⊗ 1⊗2, Id) [2]

a+,1
1 P (

√
e⊗√

e⊗ 1, Id) [4]

a+,2
1 P (e⊗ 1 ⊗ 1, Id) [4]

2 a−2 P (1 ⊗ 1, (2)) [2]
a0
2 P (

√
e⊗ 1, (2)) [4]

a+,1
2 P (

√
e⊗√

e, (2)) [6]

a+,2
2 P (e⊗ 1, (2)) [6]

3 a−3 P (1, (3)) [4]
a0
3 P (

√
e, (3) [6]

a+
3 P (e, (3)) [8]

Table 6.4: cycle based ring elements

a−2 ∧ a−2 = P (1 ⊗ 1, (2)) ∧ P (1 ⊗ 1, (2)) (6.22)

=
2

3
P (1, (3)) +

1

3
P (

√
e⊗√

e⊗ 1, Id) (6.23)

=
2

3
a−3 +

1

3
a+,1
1 (6.24)

The fractions in front are easy to calculate from the symmetrisation and is
analogous to the calculations as done in the CFT 4.56. The the cohomology
ring multiplication table that corresponds to the fusion of the chiral primaries
of table 6.3.3 is given below: As can be seen from table 6.3.3 the two + variants

a+,1
1 ∧ a−2 2/3a+,1

2 + 1/3a+,2
2

a+,2
1 ∧ a−2 a+,2

2

a+,1
1 ∧ a−3 a+

3

a+,2
1 ∧ a−3 a+

3

a−2 ∧ a−2 2/3a−3 + 1/3a+,1
1

a+
2 ∧ a−2 a+

3

a0
2 ∧ a−2 a0

3

Table 6.5: cohomology ring multiplication

are needed. The (+, 2) class is the one that corresponds best with the + chiral
primary in the CFT calculations. The (+, 1) could have been implemented in
the CFT calculations by adding an extra J+

−1 operator to one of the copies of
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M that do not get twisted. This wouldn’t make the calculations more difficult
since it doesn’t have an effect on the geometry of the CFT.

In principle it should be possible to use the Lefschetz operators to separate
the de Rham classes into Dolbeault classes, starting with the lowest class in
the sector: P (1⊗(N−n+1),(n) to P (J+1⊗ 1⊗(N−n),(n), P (J−1⊗ 1⊗(N−n),(n) and
P (J−J+1 ⊗ 1⊗(N−n),(n).

The normalisation is not as easy to generate from the cohomology. A pos-
sibility would be to use Hodge duality to normalise the classes. It is unlikely
to yield the same results as the CFT calculations. Nonetheless it seems to be
possible to extract the normalisation from the CFT calculations and then gener-
alise the threepoint functions to higher graphdefect correlation functions using
the cohomology construction. From the definition of the symmetric ring prod-
uct (5.38) we see that only genus 1 combinations give a non-vanishing result,
making the large N approximation by restricting to genus zero more robust.

Apart from the normalisation, that is in principle not an approximation for
large N in the CFT, there doesn’t seem to be any obstacle in using cohomology
to calculate the correlators in thr large N limit. When restricting calculations
in the cohomology ring also to genus zero in the large N limit, there is only
a limited amount of combinations of classes allowed, as outlined above. This
simplyfies the calculations rather much.

61





Chapter 7

Conclusions

We have seen two ways in which to calculate three point functions from chiral
primaries. The original CFT calculations have the benefit that they also incor-
porate elements that are in the chiral multiplet but not in the chiral ring. This
benefit is in the physical context not totally clear though, since these states are
probably not protected in the same way chiral primaries are and so might be
more sensitive to how far away we are from the exact boundary theory CFT.
The calculations do reveal the R- symmetry in a much more natural context
then in the proposed cohomology classes. As a drawback we have to point out
that exact calculations, are most likely very hard to carry out, because of the
difficulties in doing CFT calculations on higher genus surfaces. It is likely that
higher genus contributions can be neglected in the large N limit, but the con-
straint on how high a genus is still relevant for the calculations does not follow
immediately from the calculation. If we would solely concentrate on the chiral
primaries then this limitation to genus zero might be more severe.

The cohomology calculations show that it is in principle possible to make
exact calculations for all the chiral primaries in the theory. Even in the large N
limit, the calculations are comparatively straightforward to carry out and are
easy to generalise to all classes in the cohomology ring.

To do a direct translation between these two methods seems to demand still
some work. Although we have succeeded in creating a set of classes that are to
a large extend equivalent to the class of primaries that were constructed by the
monodromy map. It might be interesting to develop a normalisation procedure
for the cohomology ring that would be comparable to the normalisation for the
chiral primaries. It is on the other hand not immediately clear to me if the
normalisation is truly relevant in the AdS/CFT correspondence. One possible
normalisation procedure might be using Hodge duality pairing :

∫

a∗a = 1, but
this type of normalisation certainly will not correspond to the chiral anti-chiral
two point function normalisation as done on the CFT side. It is furthermore not
clear to me if such a normalisation would be of any importance to the AdS/CFT
correspondence. In other words is the Hodge Riemann pairing protected? This
seems to be crucial for having any relevance for the physics.

Overall is the final cohomology ring much simpler then beforehand expected
and is it clear that most of the decoration in the CFT calculations were caused
either by the normalisation procedure or by the inclusion of non-chiral primaries
from the chiral multiplet in the correlators.
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The final goal is to make a comparison of the structure of the cohomology
ring with the structure of geometry fluctuations in AdS3. Hereto it would help
to have the R-symmetry made explicit. For this we should use some form of the
Lefschetz symmetry. To make the comparison it is essential to work in the large
N limit. An interesting test would be to compare the structure of the 3 point
functions with those from the supergravity side. As far as I know a comparison
has not been made thus far.
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Appendix A

The Symmetric group

The symmetric group, Sn, consists of all possible permutations of n objects. symmetric group
A common notation for a permutation, π, is the following:

(

i1 i2 . . . in
π(i1) π(i2) . . . π(in)

)

(A.1)

Where an object with an index from the upper row gets permuted to a slot
with index underneath it. A cycle of length l is a cyclic shift of l elements cycle
: (i1, i2, . . . , il) 7→ (il, i1, . . . , il−1). The notation for cycles can simplified as
follows:

(i1, i2, . . . , il) :=

(

i1 i2 . . . il
il i1 . . . i(l−1)

)

(A.2)

We can build any permutation by the disjoint product of cycles , this can be
seen by iteration: pick an object and then follow the chain of permutations
until we reach the starting object again, this defines a cycle; if all elements are
used we are done, else pick an object from the remaining set and restart the
procedure until all objects are used.

As an example the product table for S3 is shown below:

Id (12)(3) (13)(2) (23)(1) (123) (132)
Id Id (12)(3) (13)(2) (1)(23) (123) (132)
(12)(3) (12)(3) Id (123) (132) (13)(2) (1)(23)
(13)(2) (13)(2) (132) Id (123) (1)(23) (12)(3)
(1)(23) (1)(23) (123) (132) Id (12)(3) (13)(2)
(123) (123) (1)(23) (12)(3) (13)(2) (132) Id
(132) (132) (13)(2) (1)(23) (12)(3) Id (123)

Table A.1: S3 multiplication : first the row then the column

The product of 2 overlapping cycles can result in one or several disjoint
cycles , like the following examples show:

(34) ◦ (123) = (1243)

(345) ◦ (1234) = (124)(35)
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Where the group action is from right to left. One cycles will be omitted from
the notation from now on since they act trivially anyway. Taking the conjugate
of an l-cycle results in a permuted l-cycle:
(

1 . . . n
π(1) . . . π(n)

)

◦
(

i1 . . . il
i2 . . . i1

)

◦
(

π(1) . . . π(n)
1 . . . n

)

=

(

1 . . . n
π(1) . . . π(n)

)

◦
(

π(i1) . . . π(il)
i2 . . . i1

)

=

(

π(i1) . . . π(il)
π(i2) . . . π(i1)

)

= (π(i1), π(i2), · · · , π(il))

Furthermore are two l-cycles related by conjugacy:
(

i1 . . . in
j1 . . . jl

)

◦
(

i1 . . . il
i2 . . . i1

)

◦
(

j1 . . . jl
i1 . . . il

)

(A.3)

= (j1, j2, · · · , jl) (A.4)

Apparently we can label the conjugacy classes by their cycle structure, or equiv-
alently by the way we can split up the total number of objects in smaller groups:
in a partition of n: α = (1α12α2 · · · ). We will use the notation p(n) for the setpartition
of partitions of n. Given a partition α, the following definitions will be usefull:partition length

partition norm
the length |α| def

=
∑

i

αi (A.5)

the norm ||α|| def
=
∑

i

iαi = n (A.6)

the permutation number |||α||| def
=
∑

i

(

i+ 1

2

)

αi (A.7)

A graphical way to label the conjugacy classes is by means of Young diagramspermutation number

Young diagrams where each row corresponds to a cycle. For example the class in S9 given by
one 4 cycle , two 2 cycles and a 1 cycle is given by:

≡ [(1234)(56)(78)(9)]

The conjugacy classes from S3 are:

≡ [(123)] ≡ [(12)(3)] ≡ Id

The degree |π| of a permutation π is defined as the minimum number of 2degree
cycles needed to build it.
The centraliser of a permutation can be described, in terms of the disjoint cycles
it decomposes into, as permutations that permute cycles of the same length and
the cyclic permutations within a cycle [43] .For a cycle, cl, of length l the the
order, |Ccl

|, of the centraliser is:

|Ccl
| = l(n− l)! (A.8)
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Namely n− 1 permutations of the remaining cycles of length 1 and l choices for
the start of the cycle, or equivalently the order of Zl. The order, |[cl]|, of the
conjugacy class it belongs to is given by:

|[cl]| =

(

n

l

)

(l − 1)! (A.9)

because we have to choose l cycle members out of n objects . These cycle
members have l! permutations each permutation being equivalent to l−1 other,
because they define the same cycle. Note that the product of the conjugacy
class order and the order of the centraliser is equal to the group order n!, as
could have been expected.

The action of a subgroup H ⊂ Sn on the set [n] = 1, · · · , n splits the set up
in orbits of the group action, namely a set of numbers that are generated from orbits
one number by the H action . The resulting orbitspace we will write as H\[n]. orbitspace
We will write 〈π1, · · · , πk〉 for the subgroup generated by these k elements. The
orbitlength, l(x), of an orbit x ∈ H\[n] is the number of points in the orbit. orbitlength
Below as illustration the orbits of the subgroups up to conjugacy of S3. The
first row gives a choice of generators for the subgroup.

generator subgroup orbits orbitlength l(x)
〈Id〉 Id {1} 1

{2} 1
{3} 1

〈(12)〉 {(12), Id} {1, 2} 2
{3} 1

〈(123)〉 {(123), (132), Id} {1, 2, 3} 3
〈(12), (13)〉 S3 {1, 2, 3} 3

Table A.2: S3 subgroup orbit table

67





Appendix B

Bosonic twists

In [17] correlation functions for a bosonic symmetric orbifold were studied. Since
the calculations of the chiral primaries as explained in chapter 4 depend on some
results from this paper, the needed results are collected in this appendix.
The covering map to a sphere for 3 “matching” twist insertions was found to be

z = atn
P

(−n1,−n2)
s−n1

(1 − 2t)

P
(−n1,−n2)
s−n3

(1 − 2t)
(B.1)

Here P
(α,β)
n (x) are Jacobi polynomials. The n!, n2– and n3-cycle based twist

insertions are placed at z = 0, a resp. ∞ and mapped to t = 0, 1 resp. ∞.
The twists should match in a way that the genus of the resulting cover is zero.
s = (n1 + n2 + n3 − 1)/2 is the number of copies of M that participates in the
twist.
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Appendix C

Complex Manifolds

In this appendix , some of the basic facts on complex differential geometry will
be given. References used for this appendix are [44] and [45]. Also the first
part of [21] is a usefull reference. A complex manifold is defined analogous to a
real differentiable manifold as a (Hausdorff, locally compact) topological space
with an atlas of charts to Cn with holomorphic transition functions between
intersecting charts. The dimension, given as the real dimension, has to be even.

The tangent space has a natural automorphism, I , defined through the mul-
tiplication by i. In the natural coordinates given by zi = xi + iyi this au-
tomorphism sends the vector ∂/∂xi to ∂/∂yi and ∂/∂yi to −∂/∂xi. Such an
automorphism is called an almost complex structure. almost complex structure

An interesting question is: given an even dimensional manifold and an almost
complex structure on it, does it represent a complex manifold? For this to
be true the almost complex structure needs to match on overlapping charts.
The criteria for this to be possible can be expressed in the disappearing of the
Nijenhuis tensor defined through Nijenhuis tensor

N(v, w) := [v, w] + I [Iv, w] + I [v, Iw] − [Iv, Iw]

which is a measure for the torsion of the almost complex structure, v and w being
arbitrary tangent vectors. In the case N ≡ 0 we call I a complex structure. complex structure

Let (X, J) be a manifold with complex structure. A Riemannian metric, g
on X is called hermitian if g(v, w) = g(Jv, Jw). In that case we can define the hermitian
hermitian form as ω(v, w) := g(Jv, w) from which we can recover again the hermitian form
metric. A hermitian metric is called Kähler if its hermitian form is closed. The Kähler
hermitian form is then called a Kähler form. Equivalent to the existence of Kähler form
a Kähler form is the disappearing of the Levi-Civita connection of the complex
structure, implying that the holomorphic and anti-holomorphic parts of the
tangent bundle don’t mix under parallel transport.

We can also construct a manifold over the quaternions with a holonomy holonomy group
group, the group of equivalence classes of vectors under parallel transport
along loops, equal to Sp(n), the symplectic group. This corresponds to a 4n-
dimensional real manifold. Seen from the perspective of this real manifold the
quaternionic structure corresponds to the existence of 3 complex structures I, J
and K that compose ( remember they are automorphisms on the tangent bundle
) as I ◦ J = −J ◦ I = H . Since Sp(n) ⊂ SU(2n), using the to be discussed the-
orem by Yau, we can conclude that the manifold Kähler is. It is in fact Kähler
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with respect to all 3 complex structures. Such a manifold is called hyperkähler.hyperkähler
In fact there is a whole sphere of complex structures since any linear combina-
tion of I, J and K that stays within the unitsphere is automatically a complex
structure.

Recall that on a real Riemannian manifold we can use the metric to define
an inner product on differential forms using the Hodge star operation thatHodge star
sends a k-form to an (n− k)- form. The inner product, the Hodge pairing, isHodge pairing
defined on the k-forms

〈α, β〉 def
=

∫

α ∧ ∗β (C.1)

using this inner product we can define on a closed (so that we won’t get boundary
terms), compact Riemannian manifold the adjoint d† of the exterior derivative
with respect to the inner product:

〈α, d†β〉 = 〈dα, β〉

The Laplacian is defined as: 4 def
= dd† + d†d. Note that since d makes anLaplacian

r + 1 form out of an r-form, d† lowers the degree of the form and the resulting
Laplacian doesn’t change the degree. When the metric is the Euclidean metric,
the Laplacian is the standard calculus Laplacian.

Just like forms that can be written as the exterior derivative of another form
are called exact, forms that can be written as d†a are called co-exact. Formsexact

co-exact that map to zero under the Laplacian are called harmonic. An important tool
harmonic in the study of harmonic forms is the Hodge decomposition theorem that
Hodge decomposition tells us that any form is uniquely writable as the sum of an exact, a co-exact

and a harmonic form. An important consequence is that every class in de Rham
cohomology corresponds to one unique harmonic form.

On a complex manifold we can decompose the exterior differential and its ad-
joint in differential operators ∂̄, ∂̄†, ∂, ∂† working only on the (anti-)holomorphic
part of forms. Just like the exterior differential the co-boundary operator is for
the de Rham complex are the (anti)holomorphic exterior differential operators,
co-boundary operators for the Dolbeault complex of (p, q)-forms Where theDolbeault complex
first index is the holomorphic-, the second one the antiholomorphic degree. The
resulting cohomology is called the Dolbeault cohomologyDolbeault cohomology

One can now define two Laplacians each defining their harmonic forms:

4∂
def
= ∂∂† + ∂†∂ 4∂̄

def
= ∂̄∂̄† + ∂̄†∂̄

In the case of a Kähler manifold all three Laplacians are essentially the same :

24∂ = 24∂̄ = 4

We have also in the complex case a Hodge decomposition from which we can
conclude that every Dolbeault cohomology class corresponds to one harmonic
form (for compact manifolds).

The Hodge numbers hp,q are defined as the dimension of the (p, q) Dol-Hodge numbers
beault cohomology group, H (p,q)(X). In the case of a Kähler manifold, as a
result of the equality of the Laplacians, the Hodge numbers are related to the
Betti numbers, the dimensions of the de Rham cohomology groups, throughBetti numbers
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bi =
∑

p+q=i

hp,q

Poincaré duality and the equality of the Laplacians combined with the Hodge
decomposition makes the so called Hodge diamond symmetric with respect Hodge diamond
to the horizontal and the vertical axis.

b6 h0,0

b5 h1,0 h1,0

b4 h2,0 h1,1 h2,0

b3 h3,0 h2,1 h2,1 h3,0

b2 h2,0 h1,1 h2,0

b1 h1,0 h1,0

b0 h0,0

Table C.1: Hodge diamond for a 6 dimensional Kähler manifold

The renormalisability condition of the nonlinear σ-model translates into the
demand that the target space is Ricci-flat, meaning that the Ricci form dis-
appears. So there is a particular interest in Ricci flat manifolds. Now one
of the basic theorems in complex differentiable geometry tells us that an 2n-
dimensional Kähler manifold Ricci flat is iff its restricted holonomy group, restricted holonomy
the holonomy group of contractable loops, is contained in SU(n). In case the
canonical bundle is trivial, Ricci flatness is equivalent to the full holonomy group
being contained in SU(n). Compact Kähler manifolds with holonomy equal to
SU(n) are called Calabi-Yau manifolds. Named after a conjecture by Calabi, Calabi-Yau
proved by Yau, that given a Kähler manifold, there exist an unique metric, with
Kähler form in the same class as the original, such that the Ricci form equals,
up to a factor of 2π, the first Chern class c1(X) ( This is a characteristic class first Chern class
that measures the number of zeroes of a typical section of the canonical bundle
in ). So when we have a Kähler manifold with trivial canonical bundle, then
there exists a metric that makes the manifold Ricci flat. In 4 dimensions we have

b2 = 1 1
b3 = 0 0 0
b2 = 22 1 20 1
b1 = 0 0 0
b0 = 1 1

Table C.2: Hodge diamond and Betti numbers for K3

accidentally that, since Sp(1) = SU(2), a Calabi-Yau manifold also hyperkähler
is. These manifolds are called K3. The four torus, T 4, has holonomy group
that is a subgroup of SU(2) and is not always considered to be Calabi-Yau.
An important property of K3 surfaces ( it has 2 complex dimensions ) is that
they are all diffeomorphic and so the Betti numbers are fixed, as are the Hodge
numbers as can be seen from the Hodge diamond for K3 (table C.2
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Algebraic geometry

This appendix collects the basic notions of algebraic geometry and schemes in
particular as far as they are used in the main text. Algebraic geometry and in
particular schemes are usually seen as a highly esoteric subject. And it is true
that at first the amount of abstraction used and needed does not seem to have
a lot of benefit in physics. Nonetheless in the last decades, especially due to
the complexity of string theory, more and more ideas of algebraic geometry have
penetrated the physics literature. At the same time a lot of new subjects in alge-
braic geometry have been developed out of string theory, with some remarkable
results. A modest example shines through in the main text and although not
many details to understand the theory behind these calculations are needed, I
thought it to be of some use to give some hints of what these schemes actu-
ally are. Of course in an appendix we can only scratch the surface and many
concepts necessarily stay vague. Hopefully the few concepts that become clear
after reading the text will entice the reader to a more thorough study of this
vast subject. The standard reference is Hartshorne’s book [36] a more gentle
approach covering the Hilbert scheme in more detail is [37].

D.1 Basics of schemes

Instead of defining spaces through charts to Rn algebraic varieties are locally
defined as the zero locus of a set of polynomials over a closed field (closed
meaning that you can always take roots, think C). The reason for taking a
closed field is that in that case the “dimension” of the locus is more or less
the same everywhere, since the number of roots of a complex polynomial is
equal to its degree. The polynomials form a ring since we can add and multiply
polynomials.

Just like the, to many physicists more familiar, description of locally compact
Hausdorff spaces through the C∗-algebra of continuous functions on that space,
ideals in a polynomial ring are the main objects in algebraic geometry. Here by
an ideal we mean a subset I of the polynomial ring R that is its own image ideal
under multiplication: IR = I . The points in the original space would correspond
to maximal ideals in the ring, these are ideals that are not contained in any maximal ideals
other “proper” ideal (the ring itself is not considered proper)1. As an example

1This is quite analogous to the normed ring of continuous functions where the maximal
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we look at the polynomial ring over C, notation C[z], in one variable. This goes
by the name of the affine line. A maximal ideal would be generated by theaffine line
monomial (a− z) with a ∈ C, meaning that the ideal consists of all polynomials
that contain a factor (a− z). We now have a correspondence between maximal
ideals and points in C by identifying a maximal ideal with the zero locus of all
its polynomials.

But we would like to give more structure to a variety than just the set
of points. One approach would be to include also the lines that are in this
space and the surfaces and ... all subspaces of a fixed dimension. The right
choice is to look at prime ideals of the ring. These are ideals such that noprime ideals
element is decomposable into the product of elements that are not in that ideal.
The collection of prime ideals of a ring R is denoted as Spec(R) and form theSpec(R)
topological data of the scheme. To see what this means let us consider the
ring of polynomials in two variables: A2 = C[z1, z2]. A maximal ideal in this
ring would be of the form (a− z1)(b− z2) ( here we use the convention to just
write down the generators of the ideal between brackets ). And indeed these
correspond to all the points in C2. Of course these ideals are also prime, but
there are more prime ideals that are not maximal, like the ideals (a − z1) or
(a− z1− z2, both corresponding to lines in the plane. Also the zero polynomial,
corresponding to the whole plane is considered to be a prime ideal. These kind
of ideals are called generic points of Spec(R), for the obvious reason that ifgeneric points
we want to talk about some property for generic points ( in the linguistic sense
) on a line, we could investigate the generic point corresponding to that line.

To make a topological space out of Spec(R) the normal procedure would
be to first define the set of functions and then define the topology in such a
way as to make those functions continuous, because thats what topologies are
for. Nonetheless there are no natural functions to a topological space available,
although one could approach the construction of a topology also from a function
perspective (see [37] for details). We will take another approach and start with
defining a basis of closed sets. Let’s consider a general subset S ⊂ R and define
the set V (S) ⊂ Spec(R) as the set of all prime ideals containing S. Notice first
that if I is the ideal generated by S then V (I) = V (S), so we just have to
look at the ideals of R, furthermore the smaller the ideal the bigger the “set
of zeroes” is. These sets have the property that the intersection of a collection
of these subsets of Spec(R) again writable is as V (J) for some ideal J . The
same holds for a finite union. So the collection {V (I)} could be a basis for the
closed sets of a topology. This topology is called the Zariski topology. It isZariski topology
a rather unusual topology in that it is usually non-Hausdorff and even in an
rather extreme way. An example will illustrate this:

One of the basic theorems in commutative algebra, Hilbert’s nullstellensatz
[46], tells us that ideals in C[z] are finitely generated, meaning that we need
just a finite number of polynomials to generate the ideal. This implies that the
closed sets in the Zariski topology consist of a finite number of points, next to
the empty set and Spec(C[z]) itself. The open sets are then, as complements of
closed ones, huge, covering all of the Spec up to a finite number of points, but
then 2 different points are never separated in the Hausdorff sense. Now that’s
pretty extreme. Most of the use of the Zariski topology lies in the possibility to
define a generalisation of the concept of vector bundles on schemes, as we will

ideals can be identified with the underlying space through the Gelfand transform.
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see next. The topology should really be seen as a tool. When trying to visualise
a scheme that is more or less a manifold, a point we will return to at the end of
this section, it is better to stick to the normal topology.

One important structure ingredient is still missing from our definitions. In
differential geometry we still had the transition functions between charts and
most of the properties of manifolds depend on them, like homotopy, cohomology
and so on. The topological invariant classes of algebraic topology, of which the
Chern classes and the Euler class make their appearance in the main text, are
encoded in the tangent bundle of the manifold. It is clear that we do need these
kind of concepts to make the scheme into a geometric object, but the idea of
vector bundles depends heavily on the existence of local charts which we lack in
the scheme structure. The only concept of locality is through the open sets and
so we will attach vector space like objects to every open set in an “appropriate
way”.

These construction are called sheaves. The objects we attach are general sheaves
abelian groups, but they are allowed to have more structure of course, a vec-
torspace for example. To mimic the common vector bundles, there are some
demands on how elements of this sheaf are related. First of all the restriction
of a such a group defined on some open set to an open subset should exist and
be unique in the sense that, if we restrict a sheaf first to an open set U and
then restrict that restriction to the intersection of U with another openset V ,
the resulting sheaf should be the same as the restriction first to V and then to
U . The other important property is that they glue together in a proper way, so
if F (U) is attached to the open set U ( elements of such an abelian group F (U)
are called the sections of F ) and U1 ,U2 are two open subsets of U that form sections
a cover then these sections should add up to sections on U .

Now using this sheaf structure we can in essence generalise the concept
of charts in an algebraic geometrical way. We define the regular functions at
an element p ∈ Spec(R) as the quotient of two polynomials in R, where the
denominator is not contained in p. This can be extended to open sets in Spec(R)
by taking as ring the rational polynomials that are regular all over that set.
Now the logic behind the Zariski topology shines through: since the closed
sets are defined as the finite collection of prime ideals that represent zeros of
polynomials, the open sets are those prime ideals representing points where a
finite set of polynomials is not zero! The resulting sheaf OSpec(R) is called the
structure sheaf of the scheme. You could see them as the equivalent of the structure sheaf
transition functions between overlapping charts and thus more or less define the
geometry of the scheme. These regular functions at a prime ideal form a so
called local ring, which means that this ring contains just one maximal ideal. local ring
In this particular case it is called the coordinate ring at the point p, where coordinate ring
the “at a point” is meant in a limiting way. This limit of sheaves to a point (it
is called an inductive limit ) results in what is like the counterpart of a fibre
in vector bundle language and goes by the name of stalk. We will write it as stalk
OX,p.

The main idea in scheme theory is to turn this rather heavy machinery
around, forget that the ring was originally a ring of polynomials, but just define
it as a pair (X,OX) where X is some topological space, OX a sheaf of local
rings and such that it looks locally as the Spec of a ring.

Usually the schemes that are used in this thesis can be seen just as subspaces
of the original polynomial rings and are then the more familiar algebraic vari-
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eties. When the scheme is a subspace of a projective space then that scheme
is called projective. If it is an open subset of a projective space it is called
quasi-projective.

Morphisms between schemes are defined, as to be expected, so that they
respect all the structures. That means a continuous f : X → Y map for the
topological part of the scheme and a map between the structure sheaves. But
that map can normally only be defined in the opposite direction, by associating
the sections on an open set U ⊂ Y to the open set f−1(U) ⊂ X and taking the
appropriate limit to get a sheaf over all of X . We use the notation f# for the
map of sheaves. This last map should now also be a homomorphism ( in the
sense of local rings ).

It is easy to see how one could define an open subscheme: since the in-subscheme
tersection with the open sets of the scheme are again open in the subscheme,
using the induced topology, we can just use the structure sheaf from the original
scheme. For a closed subscheme it is a bit more subtle. The intersection are in
this case in general not open and so have a priori no sections defined on them.
The trick is to use the inclusion map and demand that the induced map from
the structure sheaf of the scheme to that of the subscheme surjective is.

As a final notion we will briefly mention the definition of dimension ofdimension
a topological space. In an Euclidean space the dimension can be described
by counting how many times one can drop a dimension until the empty set is
reached: for example a 3 dimensional space has 2 dimensional surfaces as closed
subspaces , a surface has lines and a line points, that make a total of 3. This
sound like a difficult way of describing something obvious, but it makes it clear
how one could define the dimension of a general topological space : just see
how to filter a topological space by an inclusion of closed irreducible2 subspaces
: Z0 ⊂ · · · ⊂ Zn ⊂ X the dimension of X is then the supremum of n for all
possible filtrations. In algebraic geometry there is an in this context equivalent
definition but now using the inclusion of prime ideals. This is called the KrullKrull dimension
dimension. From the above it looks reasonable to suspect that both definitions
coincide since the prime ideals either represent the points, or the generic points
representing just the closed irreducible subspaces.

D.1.1 Fat points, an example

As an illustration of some of the hardcore concepts defined in the previous
section and especially to show how “fat points” can get separated in the scheme
context, an important aspect in the course of this thesis, we will consider a
the subscheme of the affine line generated by the ring C[ε]/(ε2). The Spec
of this ring consists of just one point , namely the prime ideal generated by
(ε). The reason is that any ideal generated by (ε − a) for nonzero a can be
written as (ε − a + bε2) = (ε − a1)(ε − a2) ( since ε2 ∼ 0! ) so it is not prime.
The structure sheaf we get from the inclusion map, as a closed subscheme, as
outlined above. The local ring on the only open subset, and it is at the same
time the stalk above the only point, has non-zero regular functions of the form
az, higher degree polynomials getting mapped to zero or one of this form by
the inclusion. One could say that the single point of the closed subscheme has a

2irreducible meaning that it can’t be written as the union of two closed nonintersecting
subspaces
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Figure D.1: 2 inclusions of a double point subscheme in a plane

one dimensional tangent space attached to it, that somehow distinguishes how
two points collapsed into one single point. The degree of the polynomial that
defined the subscheme in this case indicates how big the resulting tangent space
is. When we construct the same subscheme in the affine plane, we would see that
there are many ways to embed it, corresponding to the different directions two
points can collide from in the plane (fig. D.1.1). This is the same mechanism
we encounter in the Hilbert scheme of points in the plane, where subschemes
containing points with a multiplicity higher than one remembers from what
direction those points collided. Another way to look at it is to realise that we
have to count the ways we can embed such a scheme in the original scheme.

D.2 Flat families and functors

In this second section on algebraic geometry we will focus on the concepts of
flat families and how to represent families by a scheme. This will give some
understanding of how the Hilbert schemes are formally constructed.

We will start with a short description of categories. Although pervading categories
many branches of mathematical physics nowadays, it seems appropriate to give
the basic definitions. In short the idea behind categories is define different
structures in mathematics in such a broad sense that it is possible to relate
seemingly unrelated structures to each other. A structure in a category does
not consist only of elements, but also maps in between elements. There are two
building blocks in a category C: the objects, Ob(C) and the arrows, Hom(C),
connecting objects.

Examples are the objects of “finite sets”, topological spaces, Lie groups,
commutative algebras,... The arrows are the morphisms in the category, for
example they are continuous functions in the category of topological spaces,
group diffeomorphisms for lie groups and so on. Besides the obkects and the
arrows, there is still the composition map for the arrows, a source and a target
map that map arrows to their respective source and target object and an identity
map that maps an object to the identity map for this object. Note that not all
objects need to be connected to each other by an arrow and so composition is
only defined if the source of one arrow is the target of the next one.

A functor is a map between two categories and has naturally two parts: one functor
that maps the objects and a second one for the arrows. If the functor reverses
the direction of the arrows it is called contravariant else it is covariant. A contravariant

covariant
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typical example of a functor is the forgetfull functor to the category of sets that
forgets about all the structure that category had. An example of a contravariant
functor is the functor that maps from the category of commutative rings to the
category of affine schemes that maps R to Spec(R) (see [36]).

The concept of flatness of a module M , over a ring R, is a rather technicalflatness
concept that says that when this module is tensored with any 2 modules over the
same ring that are related by an injective morphism 3 , the induced morphism
between the tensor product is again injective. It can be shown that modules
over a field, like R or C are allways flat. For a more thorough treatment of
flatness the book of Atiyah and Macdonald [46] could be consulted.

When f : R → S is a map between rings, S is called flat over R if it is flat
as an R-module. Now we finally make again contact with schemes by defining
family φ : A→ B of schemes to be flat when the the local ring OA,p is flat over
OB,φ(p).

Now we are ready to tie some concepts together that makes it possible to
speak of a Hilbert scheme of points. We are going to construct a functor from
the category of schemes to the category of sets. Let X be a scheme define a
contravariant functor PX called the functor of points as follows:functor of points

• on objects to the morphisms between schemes

P(X,1) : ObjScm → ObjSet

Y 7→ HomScm(Y,X)

• on arrows by composition g ∈ HomScm(Z,X) 7→ g ◦ f ∈ HomScm(Y,X)

P(X,2) : HomScm → HomSet

HomScm(Y, Z) 3 f 7→ ◦f ∈ HomSet(HomScm(Z,X), HomScm(Y,X))

the morphisms in HomScm(Y,X) go by the name of Y valued points of X In
the case we have a contravariant functor from Schemes to Sets and there exists
a scheme X such that that functor can be written as its functor of points, then
the functor is called representable by X . This is exactly the situation we haverepresentable
in the case of Hilbert schemes: We look for a given scheme B at the set of flat
families AB → B with as fibres subschemes of some projective scheme X with
a constant Hilbert polynomial ( these are zero dimensional subschemes of given
length as explained in (6.1) ). Grothendieck has shown that the functor that
assigns this set to the scheme B representable is as a functor of points of the
scheme X [n]. For a deeper understanding of these ideas the book of Eisenbud
and Harris [37] is a good point to start.

To close this appendix some words about the way schemes are related to
analytic manifolds [36]. Since usually in physics we assume all functions to
be sufficiently differentiable, a question that comes to mind is under what cir-
cumstances schemes , in all its abstraction, can be seen as common, everyday
manifolds, and conversely, is every complex manifold a scheme? In all general-
ity the answer is no in both directions. Riemann surfaces can always be seen
as schemes and all projective schemes and projective analytic manifolds can be
shown to be equivalent. In other cases one needs some rationality conditions
before an analytic manifold can be made into a scheme.

3such a morphism is called a monomorphism. In categorical language it means that com-
position is injective
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Tables

(

b1 ⊗ b2 ⊗ b3, Id
) (

b1 ⊗ b2, (12)
) (

b1 ⊗ b2, (13)
)

(

a1 ⊗ a2 ⊗ a3, Id
) (

a1b1 ⊗ a2b2 ⊗ a3b3, Id
) (

a1a2b1 ⊗ a3b2, (12)
) (

a1a2b1 ⊗ a3b2, (13)
)

(

a1 ⊗ a2, (12)
) (

a1b1b2 ⊗ a2b3, (12)
) (

∆
(2)
∗ (a1b1) ⊗ a2b2, Id

) (

a1a2b1b2, (132)
)

(

a1 ⊗ a2, (13)
) (

a1b1b2 ⊗ a2b3, (13)
) (

a1a2b1b2, (123)
) (

∆
(2)
∗ (a1b1) ⊗ a2b2, Id

)

(

a1 ⊗ a2, (23)
) (

a1b1 ⊗ a2b2b3, (23)
) (

a1a2b1b2, (123)
) (

a1a2b1b2, (132)
)

(

a, (123)
) (

ab1b2b3, (123)
) (

∆
(2)
∗ (ab1b2), (13)

) (

∆
(2)
∗ (ab1b2), (23)

)

(

a, (132)
) (

ab1b2b3, (132)
) (

∆
(2)
∗ (ab1b2), (23)

) (

∆
(2)
∗ (ab1b2), (12)

)

(

b1 ⊗ b2, (23)
) (

b, (123)
) (

b, (132)
)

(

a1 ⊗ a2 ⊗ a3, Id
) (

a1b1 ⊗ a2a3b2, (23)
) (

a1a2a3b, (123)
) (

a1a2a3b, (132)
)

(

a1 ⊗ a2, (12)
) (

a1a2b1b2, (132)
) (

∆
(2)
∗ (a1a2b), (23)

) (

∆
(2)
∗ (a1a2b), (13)

)

(

a1 ⊗ a2, (13)
) (

a1a2b1b2, (123)
) (

∆
(2)
∗ (a1a2b), (12)

) (

∆
(2)
∗ (a1a2b), (23)

)

(

a1 ⊗ a2, (23)
) (

a1b1 ⊗ ∆
(2)
∗ (a2b2), Id

) (

∆
(2)
∗ (a1a2b), (13)

) (

∆
(2)
∗ (a1a2b), (12)

)

(

a, (123)
) (

∆
(2)
∗ (ab1b2), (12)

) (

abe, (132)
) (

∆
(3)
∗ (ab), Id

)

(

a, (132)
) (

∆
(2)
∗ (ab1b2), (13)

) (

∆
(3)
∗ (ab), Id

) (

abe, (123)
)

Table D.1: S3 multiplication in H{S3} for K3
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Krull dimension, 78
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Conventions

The 4 dimensional Minkowski metric is ηµ = (−,+,+,+)
The Pauli matrices are defined as:

σx =

(

0 1
1 0

)

σy =

(

0 −i
i 0

)

σz =

(

1 0
0 −1

)

The total antisymmetric tensor for spinor algebras:

εαβ =

(

0 1
−1 0

)

εαβ =

(

0 −1
1 0

)

εβα = δβα
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