general relativity – February 3, 2011

material discussed in class

Roughly equal to sections 1.4-1.8 in Carroll. It is recommended that you read these sections as well.

exercises

• Recall that $\Lambda^{\mu'}{}_{\mu}$ and $\Lambda^{\mu}{}_{\mu'}$ are not the same, but each others inverse, in other words

$$\Lambda^{\mu'}{}_{\mu}\Lambda^{\mu}{}_{\nu'} = \delta^{\mu'}_{\nu'}.$$

Use this to show that $\eta^{\mu\nu}$ is a tensor, i.e.

$$\eta^{\mu'\nu'} = \Lambda^{\mu'}{}_{\mu}\Lambda^{\nu'}{}_{\nu}\eta^{\mu\nu}.$$

Verify also that δ^{ν}_{μ} is a tensor.

• Define the charge and current of a collection of point particles which have charge q_n and move along trajectories $x_n^i(t)$ (i = 1, 2, 3) as follows

$$Q(t,x) = \sum_{n} q_n \delta^{(3)}(x - x_n(t))$$
$$J^i(t,x) = \sum_{n} q_n \delta^{(3)}(x - x_n(t)) \frac{dx_n^i(t)}{dt}$$

Here, x is shorthand for x^i , i = 1, 2, 3, and similarly $x_n(t)$ is shorthand for $x_n^i(t)$, i = 1, 2, 3. Furthermore, $\delta^{(3)}(x - x_n(t))$ is the three-dimensional delta function

$$\delta^{(3)}(x - x_n(t)) \equiv \delta(x^1 - x_n^1(t))\delta(x^2 - x_n^2(t))\delta(x^3 - x_n^3(t)).$$

Why are these the correct definitions of the charge density and current of a collection of point particles? These combine nicely into a four-vector $J^{\mu} = (Q, J^i)$ which indeed transforms as a vector under Lorentz transformations. Verify this. Hint: first show that if the trajectories are parametrized more generally as $x_n^{\mu}(\lambda)$, we can rewrite J^{μ} as follows:

$$J^{\mu}(x^{\nu}) = \sum_{n} \int d\lambda \ q_{n} \frac{dx_{n}^{\mu}(\lambda)}{d\lambda} \delta^{(4)}(x^{\nu} - x_{n}^{\nu}(\lambda)).$$

- Show that J^{μ} is a conserved current, $\partial_{\mu}J^{\mu} = 0$.
- Show that $Q = \int d^3x J^0(x)$ is conserved, i.e. time-independent, using only the fact that $\partial_{\mu}J^{\mu} = 0$, and not the detailed form of J^{μ} .
- Exercises 1.6-1.7 in Carroll.