material discussed in class

Roughly 3.1-3.3 in the book.

exercises

• Show that the requirement that $\nabla_\mu A_\nu$ is a tensor implies the transformation rule

$$\Gamma^\nu_{\mu\lambda} = \frac{\partial x^\mu}{\partial x'^\mu} \frac{\partial x^\lambda}{\partial x'^\lambda} \frac{\partial x'^\nu}{\partial x^\lambda} - \frac{\partial x^\mu}{\partial x'^\mu} \frac{\partial x^\lambda}{\partial x'^\lambda} \frac{\partial^2 x'^\nu}{\partial x^\lambda \partial x^\lambda}$$ \hspace{1cm} (1)

• Compute the eight Christoffel symbols $\Gamma^\lambda_{\mu\nu}$ for the two-sphere of unit radius.

• Consider the unit two-sphere, and consider the vector A^μ_0 which is the unit vector in the θ-direction, at the point p_0 which is $\theta = \pi/2$, $\phi = 0$ in polar coordinates. What happens to the vector if we parallel transport it once around the equator, i.e. along the path $(\theta(\lambda), \phi(\lambda)) = (\pi/2, \lambda)$ with $0 \leq \lambda \leq 2\pi$? Next consider a curve which consists of four separate pieces,

$$\gamma_1(\lambda) = \left(\frac{\pi}{2}, \lambda\right) \text{ for } 0 \leq \lambda \leq \lambda_1$$
$$\gamma_2(\lambda) = \left(\frac{\pi}{2} - \lambda, \lambda_1\right) \text{ for } 0 \leq \lambda \leq \lambda_2$$
$$\gamma_3(\lambda) = \left(\frac{\pi}{2} - \lambda_2, \lambda_1 - \lambda\right) \text{ for } 0 \leq \lambda \leq \lambda_1$$
$$\gamma_4(\lambda) = \left(\frac{\pi}{2} - \lambda_2 + \lambda, 0\right) \text{ for } 0 \leq \lambda \leq \lambda_2$$

with $0 \leq \lambda_1 \leq 2\pi$ and $0 \leq \lambda_2 \leq \pi/2$. Find out what happens to the vector A^μ_0 once we parallel transport it around this closed path. What is the area of the two-sphere enclosed by this closed curve? Is this area somehow related to the result of the parallel transport?

• Consider the length of a path which is everywhere timelike,

$$\Delta \tau = \int_{\lambda_0}^{\lambda_1} d\lambda \sqrt{-g_{\mu\nu} \frac{dx^\mu}{d\lambda} \frac{dx^\nu}{d\lambda}}.$$

Work out the variation of this expression, keeping in mind that now $g_{\mu\nu}$ is also a function of x. After computing the variation, change the parameter λ to proper time τ, so that

$$d\tau = \sqrt{-g_{\mu\nu} \frac{dx^\mu}{d\lambda} \frac{dx^\nu}{d\lambda}} d\lambda.$$

Show that demanding that the variation vanishes leads to the geodesic equation with the parameter λ replaced by τ.

1