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Abstract

We present a study of domain growth in the three-dimensional Ising model with locally con-

served magnetization. For the first time in a dynamical Ising model, the theoretically expected

growth exponent n = 1/3 is confirmed; we observe it over a wide range of temperatures. For

low temperatures, the transient phenomena are accurately described by a mean-field model. The

algorithm used for this study allows different types of transport processes to be controlled, and can

be applied to many other problems.
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After a binary mixture is quenched across a demixing phase transition, it does not sep-

arate into its coexisting phases instantaneously. Instead, domains of the coexisting phases

grow, their size often increasing as a power law of time. This phenomenon has been studied

extensively for binary alloys [1], liquid mixtures [2] and polymer blends [3]. The simplest

models for this coarsening process are dynamical Ising models with locally conserved mag-

netization. The coarse-grained magnetization of these models is believed to be described by

a Langevin equation (so-called Model B) [4]. If one phase occupies a small volume fraction,

the theory of Lifshitz, Slyozov and Wagner (LSW) [5] suggests that the domain size R will

grow as a power-law in time, R ≈ tn, with n = 1/3. The same exponent has been observed

in simulations of Model B in two and three dimensions [6], and in the two-dimensional Ising

model with locally conserved magnetization [7] over a large range of volume fractions. How-

ever, this exponent has never been observed in a three-dimensional dynamical Ising model,

and arguments exist for other growth laws in this model [8].

This paper firmly establishes the existence of power-law domain growth with an exponent

of n = 1/3 in a dynamical Ising model with spin-exchange dynamics. This power-law

behavior occurs after a long transient regime, the length of which we have been able to

measure for the first time. We do this by introducing a new algorithm for conserved-spin

dynamics which is of general applicability to lattice models. In the problem discussed in this

paper we obtain an increase in computational efficiency of about 10115 at T = 0.01Tc over

the Kawasaki spin exchange dynamics [9] that are usually used in such studies. Finally, for

low temperatures the transient phenomena are accurately described by a simple mean-field

model.

The Hamiltonian of the Ising model is:

H/kBT = −J
∑

<i,j>

σiσj (1)

where a spin σi is located at position ri and can take the values ±1, and where < i, j >

denotes a pair of neighboring sites. For conserved total spin, the Hamiltonian can be rewrit-

ten:

H/kBT = −4J
∑

<i,j>

δ(σi, 1)δ(σj, 1) (2)

up to an additive constant, where δ(α, β) is the Kronecker delta function. In our algorithm,
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for each site, we keep track of its coordination number (number of neighbors with equal spin

value): Q(j) =
∑

<i,j> δ(σi, σj). All sites j for which Q(j) = q are stored in a list with Nq

elements.

One step of our algorithm for a three-dimensional cubic lattice consists of:

a) increment time [10] by ∆t = 1/
∑

q [(1− q/6)Nq exp (−4Jq)].

b) select list q with probability Pq = ∆t(1− q/6)Nq exp (−4Jq)

c) select randomly one site i from list q.

d) select randomly a neighbor j of site i, with σj 6= σi.

e) flip σi and σj, adjust the Q-values of i, j and their neighbors, and update the lists.

The transition rate from configuration A to configuration B for this algorithm is given by:

TA→B =
1

∆t
Pq

1

Nq

1

6− q
=

1

6
exp (−4Jq) (3)

in which the factors arise from steps a, b, c, and d respectively. ¿From this equation,

detailed balance [11] can be easily verified, which in addition to ergodicity guarantees that

equilibrium is described by the Boltzmann distribution for Hamiltonian (1).

One can obtain Kawasaki dynamics by selecting a pair of neighboring sites < i, j >

with probability proportional to exp[−2J(Q(i) + Q(j))] instead of selecting a site i with

probability proportional to exp[−4JQ(i)], and randomly one of its neighbors j. This small

change has dramatic consequences for the dynamical behavior. Compare a ‘free’ spin (with

q = 0) to a ‘bound’ spin adjacent to a flat interface (with q = 1). For our new dynamics, the

rate for a move of the bound spin along the interface is exp(−4J) times smaller than the rate

for the free spin diffusing in the bulk; in Kawasaki dynamics, both spins move with equal

rates. Thus, surface diffusion is suppressed in our algorithm, relative to Kawasaki dynamics.

This suppression increases tremendously at low temperatures. Note that the transition rates

for all moves in the bulk diffusion of an isolated spin (i.e. detachment, bulk transport and
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reattachment) in our dynamics are identical to those in Kawasaki dynamics. Therefore the

time-scales of the two algorithms may be directly compared. In the LSW theory, the late-

time growth is due to the dominance of bulk diffusion over all other transport processes.

Suppression of surface diffusion should reduce the domain size at which bulk diffusion starts

to dominate, thus enabling us to reach the scaling region both earlier and with smaller

lattices.

To study domain growth, we quenched the three-dimensional Ising model on a 643 simple-

cubic lattice from infinite temperature (where J = 0 and the spins are randomly ±1), to

below the critical temperature (J larger than the critical coupling Jc = 0.22163). After the

quench, we let the system evolve using the dynamics described above. To measure the typical

domain size R, we calculate the two-point correlation function g(|r|, t) =
∑

i σ(ri)σ(r + ri)

and determine its first zero-crossing: g(R, t) = 0 [12]. In Figure 1 we have plotted R(t)

for final temperatures T/Tc = 0.7, 0.5, 0.4, 0.3, 0.2, 0.15 and 0.01, for which equilibrium

interface widths (thermal correlation lengths) are less than one lattice spacing [13]. In each

case, there is a transient regime in which R(t) ≤ 2, followed by an asymptotic regime where

R(t) shows an approach to power-law growth. The duration of the transient regime increases

drastically as T → 0.

At low temperature, steps in R(t) can clearly be seen. These steps are rounded at

higher temperatures. They correspond to a series of decays of fundamental excitations: the

sites with zero coordination number (isolated spins) wander until they find a more stable

environment, followed by the sites with coordination number one (spins adjacent to smooth

domain walls and pairs of spins), and so on [14].

These steps may be further understood by considering the evolution of the coordination

number distribution Nq. Figure 2(a) shows Nq over the course of a simulation, after a quench

to T = 0.05Tc. The transient behavior of the Nq may be divided into ‘decays’, during which

one of the Nq falls off over about one decade in time, and ‘plateaus’, during which all of the

Nq are essentially constant. One can clearly see the sharp (exponential) decays of N0, N1, N2

at successively later times. After each decay, the time step in our simulation grows by about

a factor of exp(4J): this enables us to reach extremely large times for low temperatures.
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At lower temperatures, the plateaus stretch while the decays continue to require about one

decade.

The initial dynamics of Nq are well described by a simple mean-field theory. In a cubic

lattice with N sites, the initial values for Nq immediately after a quench from T = ∞

are given by Nq(0) = 2−6N
(

6
q
)

in the limit of large N . Suppose we exchange spins at

neighboring sites i and j. If Q(i) = a and Q(j) = b before the move, then after the move,

Na and Nb are decreased by one, and N5−a and N5−b are increased by one.

Next we consider a neighbor of site i. If it has the same spin as site i before the flip, the

probability that this spin has coordination number q is qNq/(
∑

k kNk). After the flip, Nq is

reduced by one. There are a such spins neighboring i and b such spins neighboring j. If,

on the other hand, the neighbor had spin different from σ(i), the probability that it has q

identical neighbors is (6− q)Nq/(
∑

k (6− k)Nk). There are 10−a− b such spins next to site

i and j together. Finally, the probability to select two sites i and j with a and b identical

neighbors is proportional to Pa,b = exp[−4Ja](6 − a)Na(6 − b)Nb. The increase in time is

(∆t)−1 =
∑6

k=0(1− k/6)Nk exp(−4Jk)

Putting everything together leads to the following set of rate equations for the Nq:

dNq

dt
= (∆t)−1

5∑
a=0

5∑
b=0

(
Pa,b/

∑
k

∑
l

Pk,l

)(
(10− a− b)(6− (q − 1))Nq−1∑

k (6− k)Nk

+(a+ b)
(q + 1)Nq+1∑

k kNk

− (10− a− b) (6− q)Nq∑
k (6− k)Nk

−(a+ b)
qNq∑
k kNk

+ δq,5−a + δq,5−b − δq,a − δq,b

)
(4)

Figure 2(b) shows the solution of these equations for T = 0.05Tc. The agreement with the

simulation (Figure 2(a)) is good, up to the point where N2 begins to decay. Agreement up to

longer times can presumably be achieved by keeping track of the correlations between second-

nearest and more distant neighbors. In both Figure 2(a) and Figure 2(b), the time step

increases by a factor of exp(4J) after each rapid decay; this is evident from the dependence

of the time step on the Nq. The transient regime of the simulation ends and the asymptotic

regime begins when N3 starts to decay, at a time proportional to exp(12J).
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Why does the scaling regime begin when N3 begins to decay? What makes N3 different

from N0, N1 and N2? Apparently, configurations without ‘corner’ sites (with q = 3), such

as bicontinuous networks without ‘dangling ends’ are not attractors of our dynamics. The

class of scaling states that our dynamics tends to occupy consists of domain patterns with

at least dangling ends, if not isolated domains. Our rate equations for nearest neighbor

coordinations select a scaling state in which in addition, N2 has not decayed exponentially,

but the general behavior is similar to that of the simulation.

To extract the power-law exponent for late times neff = lim
t→∞ (d logR/d log t) from our

simulation results, we generated a set of 16 R(t) curves for each anneal temperature. We

then constructed 50 samples from each set using the bootstrap technique [15]. For each

sample we carried out a least-square fit of the (log(t), log(R)) data to the form log(R) =

neff log(t/t0) + exp(−c log(t/t1)), in the regime where R ≥ 2.0. The second term in this

function corrects for the transient behavior just before the asymptotic regime. Our results

are neff = 0.37(3), 0.35(2), 0.31(4), 0.28(2), 0.30(3), 0.33(3) and 0.32(3), for T/Tc = 0.01,

0.15, 0.2, 0.3, 0.4, 0.5 and 0.7, respectively. This is the first demonstration of domain growth

in a dynamical Ising model in three dimensions with an exponent close to n = 1/3. This

exponent has been observed in simulations of domain growth in Model B [4] at critical

concentration. Our results suggest that our dynamics are in the Model B growth kinetics

universality class.

If we rescale the time for each simulation by the characteristic time τ = exp(12J),

the asymptotic R(t) curves collapse. This is illustrated in Figure 1 by the dashed lines

R(t) = A[t/τ ]1/3, with τ = exp(12J) and A = 1.6, which fall close to the asymptotic R(t)

values from the simulations, over a large range of temperatures and times. Thus, the typical

time scale in the asymptotic regime is set by the binding energy for a spin with three aligned

neighbors.

In Figure 2(a), Nq for q = 3, 4, 5 appear to approach power-law decays with exponents

close to -1/3. This can be easily understood from the scaling hypothesis, which predicts

a single scale R for the domains and thus that domain walls occupy a fraction 1/R of the

system volume [4]. For R much bigger than the domain wall thickness (thermal correlation
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length), the fractions of the domain wall regions made up of q = 3, 4 and 5 sites should

be independent of R. Thus they should each decay as t−1/3. Obviously this requires N6 to

approach its equilibrium value with the same power law.

In summary, we have observed domain growth according to LSW theory for the first

time in a dynamical 3D Ising model. This has been done by the use of a new dynamics,

which, compared to Kawasaki dynamics, has identical bulk diffusion but suppresses surface

diffusion. At low temperatures, the transport is highly activated, leading to a postponement

of the scaling regime to a time of order τ = exp(12J). This strong activation explains why

n = 1/3 was not previously observed in the 3D Ising model, particularly at low temperatures.

We have also presented a novel mean-field approximation for the dynamical behavior. In its

crudest form, it quantitatively describes the early stages of our simulations, during which

the number of sites with coordination number zero and one decay successively.

Our method for simulating 3D Ising kinetics will be useful in the study of a variety

of problems. We have developed a related model which stimulates surface diffusion and

suppresses bulk diffusion, along with including next-nearest neighbor interactions, which is

tailored to the study of equilibrium crystal shapes. Our methods could also be effective in

studying non-equilibrium crystal shapes or other interfacial kinetics. It is straightforward

to account for surface fields in order to model non-equilibrium wetting kinetics, spinodal

decomposition near surfaces, and lattice-gas kinetics in porous media. Ising models have

well-known equilibrium phase diagrams and are preferable to Langevin equations for these

types of studies.
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FIG. 1: Solid curves indicate simulation results for the domain size R as a function of time t,

after a quench from T = ∞ to (from left to right) T/Tc =0.7, 0.5, 0.4, 0.3, 0.2, 0.15 and 0.01.

The asymptotic behavior is well described by the dashed lines, which are the power laws R(t) =

A[t/τ ]1/3, with τ = exp(12J) and A = 1.6. Note that the (logarithmic) time scale is contracted in

the range 1012 to 10112 in order to show the lowest temperature data.

FIG. 2: Number of sites Nq with coordination number q, as a function of time after a quench from

T =∞ to T = 0.05Tc. Results are obtained from (a) simulation on a 643 cubic lattice, and (b) our

mean-field model.
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