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Since their introduction in 1995 [1], D-branes have played a tremendously important role
in string theory. It therefore does not come as a surprise that the low-energy effective action
for D-branes, the Dirac-Born-Infeld action, has been studied in great detail. The effective
action for a single Dp-brane in a curved (closed string) background was found in [2],

S ∼
∫
dp+1σe−φ

√
− det(Gab +Gi(a∂b)X i +Gij∂aX i∂bXj + α′Fab) (1)

where
Gµν = Gµν(σ

a, xi(σa)) (2)

is the induced metric on the brane. It is an exact result to all orders in α′ for slowly
varying field strengths of the world-volume gauge field. Once we start to consider multiple
D-branes, the situation becomes much more complicated. Due to the Chan-Paton factors,
the world-volume gauge field A as well as the scalar field X i that parametrize the transverse
fluctuations of the D-brane become matrix-valued. The effective action for these non-abelian
degrees of freedom is given by a dimensional reduction of ten-dimensional super Yang-Mills
theory [3],

S ∼
∫
dp+1σe−φTr

[
1

2
F 2
ab +DaX

iDaX
i +

1

2
[X i, Xj]2

]
+ . . . , (3)

at least for a flat brane embedded in flat space, and to lowest order in α′.
Interestingly, the generalization of (3) to curved space is unknown, even to lowest order

in α′. The problem is that the formal generalization of (2),

Gµν = Gµν(σ
a, X i(σa)) (4)

is ill-defined due to the fact that the right hand side of this equation has ordering problems.
In other words, we need to find a metric on the space of matrix-valued fields, given the
space-time metric, and there is no canonical way to do this.

There are several reasons why it would be interesting to understand the coupling of
multiple D-branes to closed string background fields in more detail.

- It provides the effective action in brane world scenario’s where cosmological solutions
are obtained by embedding curved branes in curved backgrounds.

- New geometrical structures can appear. For example, in the presence of a closed
string NS-NS B-field, the action for D-branes remains similar except that the ordinary
product of fields is replaced by a non-commutative ∗-product [4, 5]. The fact that
commuting coordinates are replaced by non-commuting matrices when we go from one
to multiple D-branes suggests that non-commutative geometry may play a crucial role
in the formulation of the coupling of other closed string background fields like the
metric as well.

- In string theory there is no invariant notion of space-time geometry, rather it depends in
a non-trivial way on the object that is being used to probe the geometry. In particular,
closed strings see a different geometry from the one seen by open strings or the one seen
by D-branes. As explained in [6], the metric seen by a single D0-brane is a well-defined
quantity and is referred to by the term ‘D-geometry’. The geometry that is seen by N
coincident D-branes provides an interesting generalization of D-geometry, and at the
same time contains information about the scattering of D-branes off each other.
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- By studying probe branes in the background of other source branes one can obtain low
energy effective actions in gauge theory.

- There are many interesting physical phenomena for D-branes in non-trivial back-
grounds, such as the enhancon [7], giant gravitons [8] and the Myers effect [9]. We
would like to know whether there exist purely gravitational versions of these phe-
nomena, for example in black hole backgrounds, which could perhaps give a natural
explanation of the non-commutativity of the black hole horizon encountered in [10].

Still, one may wonder whether a local well-defined action for the transversal matrix-valued
fields actually exists, given that the only quantity unambiguously available from string theory
is the S-matrix. If we believe that there is a local formulation of string field theory, the action
for N D-branes can be computed by integrating out massive string degrees of freedom. One
expects a local action as long as the masses of open strings stretched between the branes
is much smaller than the masses of all other massive open string degrees of freedom. This
implies that the expectation value of the scalar fields (except for the U(1) part) has to be
much smaller than ls. In addition, the momenta of these fields (along the brane) have to be
much smaller than 1/ls so that we can neglect higher derivative terms, and string loop effects
are suppressed as long as the string coupling gs � 1. Our results will be applicable in this
regime only. Indeed, provided the graviton momenta are chosen to scale in an appropriate
way, it appears possible to find a consistent α′ → 0 limit for multiple graviton scattering,
just as one is able to do for a single graviton or other closed string modes [11, 12, 13, 14, 15].

There are several ordering problems in the theory of multiple branes. For example, the
terms higher order in α′ in (1) also suffer from an ordering problem (see e.g. [16]). We will
restrict attention to the ordering problem associated with the space-time metric, and for
simplicity focus on the case of N D0-branes moving on a space of the form R×M9, where
R represents the time direction. For such a space we can choose a static gauge where the
world-volume time coincides with the time coordinate in space-time. If we restrict attention
to the bosonic fields, and choose the gauge A0 = 0, the action schematically (up to ordering
problems) looks like

S ∼
∫
dτTr(Gij(X)Ẋ iẊj +

1

2
Gij(X)Gkl(X)[X i, Xk][Xj, X l]) (5)

where now i, j = 1 . . . 9.
In the literature, there are several approaches to the ordering problems of the action (5).

- In [6, 17] axioms for “D-geometry” were formulated, and implemented on the action
(5). In terms of the action (5), these axioms read (1) the action should be single trace,
(2) it should be invariant under global U(N) transformations, (3) the classical moduli
space obtained from (5) should be (M9)N/SN , the space of N unordered points on
M9, (4) the action should have the right U(1) limit, and (5) if we expand the action
around diagonal matrices,

X i =


xi(1) 0

. . .

0 xi(N)

+


0 yαβ

. . .

y∗αβ 0

 (6)
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and expand the action to second order in yαβ, the masses of these fluctuations should
be equal to the geodesic distance d(x(α), x(β)) between x(α) and x(β). The latter re-
quirement follows from the observation that yαβ corresponds to the creation operator
for an open string that starts at x(α) and ends at x(β). The mass of this open string is
proportional to the geodesic distance between the two points. In [6, 17] it was found
that the above axioms can be imposed in the action but do not fix it. It was also
found that once we impose supersymmetry, the axioms can only be imposed if the
background is Ricci flat (for a six-dimensional transverse space). We will not run into
this latter situation since we will restrict our attention to the bosonic sector only and
not impose any supersymmetry.

- In [18, 19] the linear coupling to the background metric was derived using the matrix
theory interpretation [20] of the action of N D0-branes. The result of of this analysis
is that the coupling is given by a completely symmetrized trace; this means that we
expand the metric as

Gij(x) =
∞∑
n=0

1

n!
xk1 . . . Xkn∂k1 . . . ∂knGij(0), (7)

replace the coordinate xk by the hermitian matrix Xk, substitute this into (5), com-
pletely symmetrize the resulting expression, and than take the trace. In the sym-
metrization, commutators are viewed as a single entity. The resulting symmetrized
coupling can also be written in the following suggestive form. If we Fourier decompose
the metric

Gij(x) =
∫
d9kGij(k)eikx (8)

the action can be rewritten as

S =
∫
dτd9k

∫ 1

0
dλGij(k)Tr

[
eiλkXẊ iei(1−λ)kXẊj + eiλkX [X i, X l]ei(1−λ)kX [Xj, X l]

]
.

(9)
This looks remarkably similar to the observables in non-commutative gauge theory
introduced in [21], that consist of gauge theory operators smeared along open Wilson
lines. We will make some more comments about the relation with non-commutative
gauge theory later. Notice that (9) only contains the linearized coupling of the graviton;
from a world-sheet point of view, this action is obtained by summing disc diagrams
with a single insertion of a graviton vertex operator.

- The action (1) was derived by computing the beta-functions for open strings in a curved
background. In [22] an attempt was made to generalize this to the non-abelian case. A
priori this is difficult because turning on arbitrary non-diagonal vevs for the scalars X i

does not have a classical geometrical interpretation (though it could have a geometrical
interpretation in a suitable non-commutative geometry). In addition, turning on vevs
for non-diagonal X i involves turning on massive string degrees of freedom and it is
very difficult to set up a beta-function calculation that includes such massive modes
(see e.g. [23]). In [22] vev’s for X i were included in the world-sheet path integral via
the inclusion of a term

P exp
∮
∂Σ
Xµ(y)∂ny

µds. (10)
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Due to the structure of the divergences in this theory, one can only obtain results order
by order in the graviton; at linearized order the kinetic term in (9) was reproduced.

- The linear coupling to the background metric can also be derived directly using world-
sheet methods [12, 13] by computing disc diagrams with a graviton vertex operator
in the interior of the disc and zero momentum scalar field vertex operators on the
boundary of the disc. For the superstring, the symmetrized trace is reproduced but
for the bosonic string a different answer was found [12]. As we will see later, this is
consistent with the notion of diffeomorphism invariance that we will introduce.

- An alternative approach is to use the fact that non-commutative gauge theories can be
obtained from commutative lower dimensional ones in the N →∞ limit, by expanding
the matrix-valued fields as X = x̂+ A(x̂) where the x̂ are operators (see e.g. [24] and
references therein). In this way, one finds a relation between the coupling of closed
strings to commutative non-abelian theories and non-commutative abelian theories.
To first order in the graviton, one again recovers the fully symmetrized answer [14].
In [25] open Wilson lines were used to find find the linearized coupling to all massive
string modes in non-commutative gauge theories, but so far none of these approaches
has been generalized to the non-linear level.

- One can try to use the connection with matrix theory and the known coupling of the
supermembrane to background fields to determine the precise form of the coupling [26].

- One could try to use κ-symmetry as e.g. in [27], or one can consider specific curved
backgrounds as in [28] in order to learn something about the coupling in the general
case.

In the remainder, we will focus on a simpler question, namely what is the meaning of
space-time diffeomorphism invariance for matrix-valued fields? Somehow, we expect that
ordinary diffeomorphisms have to be replaced by matrix-valued diffeomorphisms, but what
is the right symmetry principle?

For a single D0-brane, diffeomorphism invariance uniquely determines the kinetic term
to be of the form

S[g, x] =
∫
dτgij(x)ẋiẋj (11)

and for multiple D0-branes this becomes an action of the form

S[g,X] =
∫
dτGIJ(X)ẊIẊJ ≡

∫
dτGiαβ,jγδ(X)Ẋ iαβẊjγδ. (12)

To distinguish the various metrics, we have called the closed string metric gij, and the metric
appearing in the D0-brane action GIJ . The capital indices I are multi-indices I = iαβ, where
i = 1 . . . 9, and α, β = 1 . . . N are the matrix indices. Thus, the multiple D0-brane action
looks like the action for a single D0-brane, but with 9N2 instead of 9 transverse coordinates.
For flat space,

Giαβ,jγδ = δijδαδδβγ (13)

and the action reduces to
∫
dτTr(Ẋ iẊj).
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Clearly, GIJ has to be a functional of gij. In other words, given a metric in 9 dimensions
we have to construct a metric in 9N2 dimensions. What about the meaning of diffeomorphism
invariance? Since physics should not depend on the choice of coordinates, given two metrics
g and g′ that are related by a diffeomorphism, we would expect that there exists a field
redefinition X → X ′ such that

S[g,X] = S[g′, X ′]. (14)

Actually, it is rather problematic to impose (14). If we denote by DIFF the group of
matrix valued diffeomorphisms X → X ′(X) and by diff the group of ordinary diffeomor-
phisms, then there is an obvious map DIFF→diff that simply forgets the ordering, but one
can show that there is no group homomorphism diff→DIFF [29]. Furthermore, starting from
the linearized coupling of the graviton found in [18, 19] one can attempt to find higher order
terms in the action using the Noether procedure. This procedure fails at second order in
the graviton. In both cases, we assume that matrix diffeomorphisms are of the form X ′(X).
However, in order to have equivalent physics in two different coordinate systems it is in
principle sufficient that there exists a field redefinition X ′(X, g) that can also involve the
metric. Thus, it is sufficient to require

S[g,X] = S[g′(g), X ′(g,X)]. (15)

Though it may seem rather peculiar that we need explicit metric dependence in the matrix
version of diffeomorphisms, it does not contradict anything, as long as ordinary diffeomor-
phisms are recovered in the U(1) limit. The fact that diffeomorphisms depend explicitly on
the background metric is reminiscent of the Seiberg-Witten map in non-commutative gauge
theory [30] where the gauge parameter of the commutative theory depends non-trivially
on the non-commutative gauge field. Here the matrix-valued gauge transformation depends
non-trivially on the gauge field for space-time gauge transformations, which is the space-time
metric.

There is a large amount of redundancy in (15), and in order to remove some of that we will
use Riemann normal coordinates and the corresponding covariant background field expansion
[31, 32]. Recall that Riemann normal coordinates are obtained by choosing a basepoint x̄,
and by using the coordinates on the tangent space at x̄ to parametrize a neighborhood of
x̄. For a tangent vector v at x̄, a point in the manifold is obtained by following a geodesic
x(t) with x(0) = x̄ and ẋ(0) = v for unit time. In Riemann normal coordinates and in
the covariant background field expansion, only space-time tensors appear. For example, the
expansion of the metric through order x4 reads

gij(x) = δij +
1

3
Riklj(x̄)xkxl +

1

6
∇mRiklj(x̄)xkxlxm (16)

+
2

45
Riklp(x̄)Rp

mnj(x̄)xkxlxmxn +
1

20
Riklj;mn(x̄)xkxlxmxn +O(x5).

Since the action (12) involves a 9N2 dimensional metric, we can apply Riemann normal
coordinates to matrix space as well. Although we could expand around any fixed set of
matrices, we will expand around matrices proportional to the identity matrix

X i = x̄i11 (17)

5



which corresponds to a stack of coincident D-branes located at x̄i. The expansion of the
metric GIJ is similar to that in (17),

GIJ(X) = δIJ +
1

3
RIKLJ(x̄)XKXL +

1

6
∇MRIKLJ(x̄)XKXLXM (18)

+
2

45
RIKLP (x̄)RP

MNJ(x̄)XKXLXMXN +
1

20
RIKLJ ;MN(x̄)XKXLXMXN +O(X5).

Therefore, in these coordinates it is sufficient to find the tensors RIJKL(x̄), ∇MRIJKL(x̄), etc.
Since the metric GIJ(X) was constructed out of gij(x), the corresponding curvature tensors
in matrix space have to be constructed out of gij(x) as well. One can use string theory to
argue [29] that matrix space tensors evaluated at X i = x̄i11 have to be expressed in terms
of space-time tensors evaluated at x̄i. For instance, RIJKL(x̄) ≡ Riα1α2,jβ1β2,kγ1γ2,lδ1δ2(x̄) will
typically involve terms of the form

Rijkl(x̄)(δα2β1δβ2γ1δγ2δ1δδ2α1) + . . . (19)

Once we construct our matrix space tensors in terms of space-time tensors, we have
effectively achieved diffeomorphism invariance for all diffeomorphisms that leave x̄ fixed,
since they simply act as x̄-dependent rotations of xi and X i.

The remaining diffeomorphisms are the ones that map normal coordinates based at x̄
to normal coordinates based at a different point z̄. Invariance under these diffeomorphisms
means that the form of the action should remain exactly identical under the corresponding
change of matrix normal coordinates, except that x̄ is replaced everywhere by z̄. Indeed,
if we imagine computing the action directly using world-sheet techniques, the amplitudes
obtained when the branes are located at a point x̄ are identical to those obtained when the
branes are located at z̄, except that all quantities are evaluated at z̄ rather than x̄. This
base-point independence significantly constrains the possible form of RIJKL,∇MRIJKL, etc.
A change of base-point is not merely a change of coordinates from the world-sheet point
of view, it also involves a condensation of the scalar fields that parametrize the transverse
fluctuations of the branes, since the location of the branes has to be moved as well.

We are now ready to formulate a set of axioms that the curvatures RIJKL and their
covariant derivatives have to obey, in order that they give rise to a diffeomorphism invariant
action for multiple D0 branes.

(a) The curvature tensor RIJKL has to have to usual symmetries, meaning antisymmetric
in the first and second pair of indices, and symmetric under exchange of the first and
second pair.

(b) It should have cyclic symmetry.

(c) Covariant derivatives ∇I should obey the Bianchi identity, ∇[MRIJ ]KL = 0.

(d) Multiple covariant derivatives should, when anti-symmetrized, yield the usual rules,
e.g. [∇I ,∇J ]RKLMN = RIJK

PRPLMN + 3 more terms.

(e) The U(N) indices should be contracted in a single trace style, as the action contains a
single trace.
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(f) To have the right behavior under change of basepoint, we require that

δαβ∇iαβ(anything) = ∇i(anything) (20)

(g) To first order in the curvature, the symmetrized trace prescription, found in [18, 19]
should emerge.

(h) It should have the right U(1) limit for diagonal matrices.

Conditions (a) through (d) guarantee that the curvature tensors and their derivatives
all come from a single metric gIJ(X). If we would just write down some random tensors
that would violate one of the conditions (a) through (d), they could never correspond to the
curvature tensors of some metric gIJ(X).

Condition (e) implies that the curvatures and its covariant derivatives can be written as
sums of ordinary tensors with indices i, j, k, l, . . . times tensors ∆αβγδ, where the latter are
defined as

∆αβγδ = δα2β1δβ2γ1δγ2δ1δδ2α1 (21)

and similarly with more indices. The tensors ∆ are cyclically invariant, and yield single trace
expressions when contracted with matrix-valued coordinates.

Condition (f) is crucial, and expresses the constraint of base-point independence. In the
way we have set things up, it is guaranteed that under an infinitesimal change of base point
all tensors transform as T → εiδα1α2∇iα1α2T . However, we want this to be equivalent to
a change of the base point in all ordinary tensors that appear in T , without affecting the
matrix structure. Therefore, we demand that εiδα1α2∇iα1α2T = εi∇iT for all T .

Finally, conditions (g) and (h) are obvious. Condition (g) is not implied by the others,
and if we drop it, more general solutions for the matrix curvatures RIJKL can be found. This
is in agreement with the non-symmetrized trace answer found for the bosonic string in [12].
Since this latter result was derived using world-sheet calculations, it should nevertheless be
diffeomorphism invariant.

Conditions (a)-(h) are the “axioms” of the matrix geometry. Once the curvature ten-
sors have been specified, the action in normal coordinates follows directly by applying the
expansion (17) to (12).

We have analyzed these conditions for terms up to order X6, for which we need the
curvature tensor and its first two derivatives. The curvature tensor and its first covariant
derivative are given by a fully symmetrized answer, but the second derivative schematically
looks like

∇M∇NRIJKL = symmetrized(∇m∇nRijkl) + terms quadratic in R. (22)

There are 120 different terms quadratic in R that can appear in (22), and after imposing
(a)-(h) a 32-parameter family of terms survives. The full result is very lengthy, a simpler
two-parameter family is given explicitly in [29]. The action therefore contains many terms
that are of the form Tr(ẊXXẊXX) times something quadratic in R. Interestingly, the
action always contains terms that do not appear in the U(1) limit. Therefore, the action
cannot be obtained by starting with the U(1) result and ordering the terms that appear
there in a suitable way.
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So far, we have focused exclusively on the kinetic terms in the action. Of course, the
complete non-abelian DBI action has many more terms; it has a potential term, fermionic
terms, Wess-Zumino terms and higher order derivative terms. Obviously, these terms all
have to be separately covariant. For those terms that only involve the transversal scalar
fields X, the notion of covariance is identical to that for the kinetic terms. In other words,
the terms should admit an expansion in terms of space-time tensors evaluated at x̄, and they
should be base-point independent. Suppose that we have determined the kinetic term up to
a certain order, then we know the transformations for XI that implement a change of base-
point up to that order. The same transformation should also yield a change of base-point
for all other terms in the action, which are thereby severely constrained.

Interestingly, it is possible to write down a potential in curved space in terms of the
matrix valued metric GIJ(X) that is completely covariant, and that reduces to the usual
potential in flat space. To write the potential, we introduce a matrix version of the vielbein
by writing

GIJ(X) =
∑
A

EA
ItEA

Jt , GIJEA
ItEB

Jt = δAB, (23)

where A,B = 1 . . . dN2. Here I t denotes iβα for I = iαβ. The base point independence
of the action GIJẊ

IẊJ implies a simple transformation rule for EA
ItẊI under a change of

basepoint, namely it rotates by an SO(dN2) transformation. Notice that EA
I ≡ EA

iαβ is a

matrix, which we will denote by EA
i . Thus it is Tr(EA

i Ẋ
i) that transforms nicely. Now

observe that taking the time derivative acts as a derivation on the algebra of matrices (i.e. it
satisfies the Leibnitz rule), but so does the operation V : X → [X, V ] for fixed V . Therefore,
Tr(EA

i [X i, V ]) = Tr([EA
i , X

i]V ) will also transform nicely under a change of base-point, if
we keep V inert. We claim that a covariant version of the potential is

1

2
Tr([X i, Xj]2)→

∑
A,B

1

4
Tr([EA

i , X
i][EB

j , X
j][EA

k , X
k][EB

l , X
l]). (24)

We just explained that Tr[EA
i , X

i] transforms under a base-point changing transformation in
a simply way, via an SO(dN2) transformation. Eq. (24) is therefore automatically covariant.
One can also verify that in flat space, it reduces to the usual answer. Moreover, we know
the full linearized coupling of the potential term to the metric [18, 19, 12]; it is given by a
fully symmetrized expression. A somewhat tedious calculation shows that this is correctly
reproduced by (24). This is strong evidence that eq. (24) is the correct curved-space version
of the potential. One can even show that the masses of the off-diagonal fluctuations are
given by exactly the geodesic distance [29], which was one of the axioms of D-geometry of
[6].

Because of the covariance and base-point independence of the metric, the result that
the masses of off-diagonal fluctuations equals the geodesic length will remain valid in any
coordinate system. This leads to the interesting conclusion that the geodesic distance in
space-time can be directly read off from GIJ(X), evaluated on diagonal X. There is no need
to integrate a line element along a geodesic. More precisely, if we write the kinetic term in
the form ∑

t

Tr(P t
ij(X)Ẋ iQt

ji(X)Ẋj) (25)
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with some set P t
ij, Q

t
ji, then the geodesic distance d(x, y) satisfies

d(x, y)2 =
∑
t

P t
ij(x)Qt

ji(y)(x− y)i(x− y)j. (26)

It would be interesting to find similar covariant expressions for the other terms in the
action, such as the higher derivative terms. As long as these only depend on the space-
time metric gij, one may hope that they admit an expression in terms of the vielbein so
that covariance can be made manifest. This is presently under investigation. Inclusion of
fermions presumably requires some new ingredients.

One can try to use a similar strategy to study the couplings to other closed string back-
ground fields. If we work again in matrix Riemann normal coordinates, that would involve
finding a matrix version of the closed string background field and its covariant derivatives.
For instance, if the closed string field is a scalar function F , we would need to determine
F (x̄),∇IF (x̄),∇I∇JF (x̄) etc in terms of F (x̄), ∇iF (x̄), and the curvature and its covariant
derivatives. Again, these matrix covariant derivatives have to obey consistency conditions,
such as ∇[I∇J ]∇KF = RIJK

L∇LF , as well as the requirement of base point independence
δαβ∇iαβ(anything) = ∇i(anything). It would be interesting to understand whether there is
some unifying principle at work here, perhaps one involving non-commutative geometry.

A role for non-commutative geometry is of course suggested by the fact that for mul-
tiple D-branes, the transverse coordinates are replaced by matrices. In non-commutative
geometry, the space of functions is replaced by a non-commutative algebra, and the obvious
candidate here would be to consider the algebra

A = C∞(M)⊗MN(C). (27)

This algebra does not yet carry any metric information. From the representation theoretical
point of view, it is very close to the original algebra C∞(M) (they are Morita equivalent).
Following Connes, the construction of a Riemannian structure requires a spectral triple
(A,H, D) which in addition to A also contains a Hilbert space H and a self-adjoint operator
D obeying certain properties [33]. It would be interesting to find triples (A,H, D) that
describe in a natural way metrics relevant for multiple D-branes, and that incorporate the
notion of covariance. The form of the action and the potential suggest that the vielbein EA

I

introduced in (23) will play an important role in such a construction.
As we explained before, the linearized coupling to the graviton can also be derived us-

ing the connection between non-commutative abelian gauge theories and commutative non-
abelian gauge theories. It would be very interesting to see whether a similar connection can
be made at higher order. The following remarks are suggestive that such connections may
exist.

1 There is a close relation between the world-sheet calculations involving gravitons for
non-commutative gauge theories and D-branes [13, 12]. Both lead to a result where
certain operators are smeared along some kind of Wilson line (see (9)) . This structure
becomes more complicated when more than one graviton vertex operator is involved
[34], and the precise geometry underlying such calculations has not been uncovered.

2 Non-commutative spaces are constructed in deformation quantization from commuta-
tive spaces equipped with a closed two-form, and this is also how they arise in string
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theory. The diffeomorphisms of the commutative space that preserve the two-form
become gauge transformations of the non-commutative space (they are just canonical
transformations). Thus, there should also be a relation between the coupling of a gauge
field in non-commutative gauge theory and the coupling of the graviton in non abelian
gauge theory.

3 There is a one-to-one correspondence between single trace expressions one can write
down in terms of matrix valued coordinates X i, and expressions involving ordinary
coordinates and a closed two-form BIJ . Open string amplitudes depend only on the
combination F = B + F and T-duality maps F ↔ [X,X]. This map extends to

X iXj +XjX i ↔ 2xixj

[X i, Xj] ↔ Bij

[Xk, [X i, Xj]] ↔ Bkl∂lB
ij (28)

etcetera. (Due to the Jacobi relation, the B-field must obey certain constraints. These
are equivalent to the integrability constraints in deformation quantization [35].) This
suggests there should be a relation (some kind of Seiberg-Witten map) between a single
D brane in a transversal B-field, and multiple D-branes without a transversal B-field.

Altogether, we have uncovered a glimpse of an intricate geometrical structure that en-
codes the behavior of multiple D-branes in curved space. The precise mathematical structure
underlying this geometry, and the corresponding stringy fuzziness of space-time, are still
waiting to be uncovered.

Nevertheless, there are several directions in which the results here can be extended.
A covariant formulation of the coupling to other closed string background fields, and an
investigation of analogs of the Myers effect in curved backgrounds are two such issues, which
are presently being investigated.
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