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Some geometrical aspects of W -algebras in string theory1

Jan de Boer2

Institute for Theoretical Physics, State University of Stony Brook,
Stony Brook, NY 11794-3840, USA

In this talk, the focus will mainly be on geometrical apects of W algebras as they appear
in string theories, rather than in integrable systems and so on. In string theory, W algebras
can play a role in two ways. Either they can appear as a ‘global’ symmetry algebra in ordinary
string theory, or they can be used as a local symmetry algebra to construct generalizations of
string theory usually called W -strings. In the first case the physical states are given by the
BRST cohomology of a BRST operator involving only the Virasoro algebra, in the second case
of a BRST operator involving the complete W algebra. We will first look briefly at the first
possibility, and then in somewhat more detail at the second. Several important open problems
will be mentioned; the resolution of some of these seems to be necessary before serious new
progress in the field can be made.

To see how W algebras can appear as global symmetry algebras and what consequences their
presence can have, we consider a non-linear supersymmetric sigma model

S =
∫
d2zd2θ(Gij +Bij)DΦiD̄Φj (1)

and look for higher spin conserved quantities of the form

W = Ωi1...inDΦi1 · · ·DΦin . (2)

(such a situation has been studied e.g. in [1]). Conservation D̄W = 0 of W implies that

∇(+)
k Ωi1...in = 0, (3)

where ∇(+)
k is the covariant derivative with torsion H = dB. The existence of solutions of

(3), i.e. the existence of covariantly closed differential forms, imposes certain restrictions on
the metric and anti-symmetric tensor field, and solutions will therefore typically only appear at
special points in the moduli space of the sigma model. The easiest way to derive a condition on
the target space geometry, given a solution to (3), is to work out [∇+

k ,∇
+
l ]Ωi1...in = 0, yielding

Rmi1klΩmi2...in + · · ·RminklΩi1...in−1m = 0. (4)

This is a linear equation for the curvature, and imposing constraints on the curvature usually
implies that the holonomy of the target space is reduced. This suggest a close relation between
points in the moduli space where enhanced world-sheet symmetries occur and points where the
target space has reduced holonomy. The first open problem we would like to mention is to
make this correspondence more precise: find consistent d-dimensional string backgrounds with
holonomy H ⊂ SO(d), and their corresponding enhanced symmetry algebras.

1Talk presented at W’95, Marseille, July 3-7, 1995
2email: deboer@insti.physics.sunysb.edu

1



We can only indicate some partial results here. If H = 1, then the target space is flat and
the (chiral part of the) enhanced symmetry algebra is generated by {∂φi, ψi}i=1...d. For more
general H ⊂ SO(d) we expect the algebra A to satisfy

{∂φi, ψi}
H

⊃ A ⊃
ˆSO(d)1

Ĥ1

(5)

where Ĥk denotes the affine Lie algebra based on H of level k. The right hand side of this
inclusion is a subalgebra of the left hand, which can be seen by realizing ˆSO(d)1 in terms of d
free fermions.

Three examples where A is known (and it is non-linear) are:

(i) Calabi-Yau manifolds. Here, H = SU(d/2), and A is an N = 2 superalgebra, containing an
N = 2 super Virasoro algebra, and a chiral and an anti-chiralN = 2 superfield of dimension
d/2. The latter are related to the existence of holomorphic and anti-holomorphic d-forms
on a Calabi-Yau manifold. For an application to d = 6 Calabi-Yau manifolds, see e.g. [2].

(ii) Seven dimensional real manifolds with H = G2 ⊂ SO(7). The algebra is an N = 1
superalgebra, that contains besides the N = 1 super Virasoro algebra two superfields
of dimension 3/2 and 2. The presence of these generators can be traced back to the
existence of a covariantly closed three-form whose dual four-form is also covariantly closed.
This algebra was first constructed in this context in [3, 4] and is actually isomorphic
to a Hamiltonian reduction of Osp(2|4) [5]. These manifolds are interesting for string
compactifications because they admit a covariantly constant killing spinor and hence lead
to target space supersymmetric string theories in three dimensions. Compact manifolds
with this holonomy were only recently constructed [6].

(iii) Eight dimensional real manifolds with holonomy spin(7) ⊂ SO(8). These manifolds have a
self-dual covariantly closed four form which gives rise to an N = 1 superalgebra containing
besides the N = 1 super Virasoro algebra a superfield of dimension 2. Compactifying
strings on such manifolds leads to supersymmetric string theories in two dimensions.

It is well known that string theories compactified on Calabi-Yau manifolds have a beautiful
property called mirror symmetry. It turns out that a generalized version of mirror symmetry
also applies to the other two cases [3], although it no longer identifies just two manifolds with
each other but whole families of manifolds. It seems that the smaller the symmetry algebra
is, the larger the mirror symmetry becomes, because smaller algebras have a smaller number
of quantum numbers, which can be used to distinguish different target spaces from each other.
In addition, although the algebras in cases (ii) and (iii) are just N = 1 algebras, they still
admit a version of spectral flow and topological twisting, in which the distinguished subalgebra

ˆSO(d)1/Ĥ1 plays an important role. It would be interesting to generalize these properties to
arbitrary H.

Finally, it is important to keep in mind that we assumed that the algebra is realized locally
here. This is definitely to weak, since it is known that using duality symmetries one can obtain
new sigma models that are equivalent to the old one, but where the symmetry algebra is realized
possibly in a non-local way [7, 8]. Conversely, given a symmetry algebra A it is definitely to
strong to require that the target space manifold must have holonomy H, but to find the most
general criterium for a sigma model to have a symmetry algebra A is an interesting and unsolved
problem (cf. [9]).

This concludes the discussion of W algebras as a global symmetry algebra. For the remainder
we will focus on W algebras as local symmetry algebras, i.e. W strings. Most of the discussion
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here is based on [10, 11]. W strings are obtained by coupling W matter to W gravity. In practise
one does this as follows. One starts with a conformal field theory whose chiral algebra is a W
algebra. Next, one gauges this W algebra, i.e. one couples the conformal field theory to gauge
fields in such a way as to make the theory invariant under W transformations with arbitrary
rather than holomorphic parameters. If φ denotes the matter fields, and Wα(φ) the generators
of the W algebra, then the gauged action looks like

S = Scft(φ) +
∫
d2zµαWα(φ) +

∫
d2zµ̄αW̄α(φ) + . . . (6)

where the dots denote terms of higher order in the gauge fields µα, µ̄α. In general there will be
terms of infinite order in the gauge fields in order to close the algebra, but one can in all known
cases write down a finite simple expression for the full gauged action involving some auxiliary
fields. Consider for example one free scalar field with as W algebra just the Virasoro algebra.
In that case one can introduce two auxiliary fields A, Ā, and the gauged action simply reads

S =
∫
d2z(

1
2
∂φ∂̄φ− (A− ∂φ)(Ā− ∂̄φ)− 1

2
µA2 − 1

2
µ̄Ā2) (7)

Integrating out the auxiliary fields we find that the action becomes 1
2

∫
d2z
√
ggµν∂µφ∂νφ, with

the metric given by the line element ds2 = |dz + µdz̄|2. This shows that gauging the Virasoro
algebra is the same as coupling to gravity, and furthermore that the gauge fields can be identified
with the Beltrami differentials. Note that the terms in (7) of second order in A, Ā are of the
form MijA

iAj , and that the determinant of M vanishes exactly when |µ| = 1. This is related
to the fact that only those Beltrami differentials are allowed that satisfy |µ| < 1.

For W -strings, the µα form a set of generalized Beltrami differentials that are part of a
generalized ‘W -metric’. In the same way as the Polyakov path integral for string theory involves
an integration over the matter fields as well as over the metric, the path integral for W strings
involves an integral over the matter fields and the generalized Beltrami differentials.

In ordinary string theory, an extremely important role is played by the moduli space of
Riemann surfaces, which is the set of metrics modulo diffeomorphisms and Weyl rescalings. In
the path integral, after gauge fixing the diffeomorphism symmetries, one is still left with an
integral over the moduli space of Riemann surfaces, which one has to do by hand in order to
compute for example correlation functions. In addition, this moduli space plays an important
role in the beautiful geometrical structures that have been shown to underly pure gravity and
gravity coupled to minimal models. In order to compute correlation functions for W strings,
to examine claims about embeddings of W strings and about the equivalence of W strings to
ordinary strings, as well as to find similar geometrical interpretations for pure W gravity and
W gravity coupled to W minimal matter, it is unavoidable to have a good understanding of
the structure of the moduli space of W strings. It is not necessary to cook up any artificial
definition of this moduli space, the definition follows immediately from the path integral. In
the case of ordinary strings, the moduli space is the space of metrics modulo diffeomorphisms
and Weyl rescalings, or equivalently, as one sees from the path integral, it is the set of Beltrami
differentials modulo Virasoro transformations. In the same way, the path integral defines for us
the moduli space of W strings to be given by

MW =
{W -gauge fields µα}
W -transformations

. (8)

Restricting for simplicity our attention to chiral W gravity from now on (i.e. µ̄α = 0), we
can define an induced action Γ(µα) for pure W gravity by integrating out the matter fields from
(6)

e−Γ(µα) =
∫
Dφe−Scft(φ)+

∫
µαWα(φ) (9)
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Taking Γ(µα) as the definition of the action of pure W gravity, we can also quantize this theory,
leading to an effective action Γ(Wα) for pure W gravity

e−Γ(Wα) =
∫
Dµαe

∫
µαWα−Γ(µα) (10)

The fields Wα here are independent fields and have nothing to do with the original generators
Wα(φ) of the W algebra. If hα denotes the spin of Wα(φ), then this is also the spin of Wα,
and these fields are naturally paired via

∫
µαWα to the Beltrami differentials, which are fields

of spin (1− hα, hα). We will find it more convenient to use as definition for the moduli space of
W gravity the dual version of (8), namely

MW =
{W -fields Wα}

W -transformations
. (11)

From here on we will assume that the W algebra has been obtained by Drinfeld-Sokolov
reduction of an affine Lie algebra ĝ with respect to some sl2 subalgebra {t−, t0, t+} of g. In
that case, the effective action Γ(Wα) can be shown, modulo normalizations, to be equal to a
constrained WZNW model,

Γ(Wα) = SWZNW (g)|g−1∂g=t++W (12)

where t+ + W is the standard form of a Drinfeld-Sokolov constrained current, e.g. for the W3

algebra it reads  0 1 0
T 0 1
W T 0

 (13)

Furthermore, one can show that W transformations act in this context as those gauge transfor-
mations of the constrained connection ∂ + t+ +W that preserve its form. Hence

MW =
{DS-constrained connections}
special gauge transformations

. (14)

If t+ + W could really always be written in the form g−1∂g, it would always be pure gauge,
and the moduli space M would be trivial. We have, however, been very careless in defining
everthing so far, and basically assumed we were working on the complex plane. If one wants to
define the same objects on an arbitrary Riemann surface, one has to be more careful.

What does it actually mean to do a Hamiltonian reduction on an arbitrary Riemann surface
Σ? In the process of doing a Hamiltonian reduction, we impose certain constraints on the
components of the currents of a WZNW model. In the WZNW model, the currents transform as
spin one fields on Σ. In order to put some of them equal to a non-zero constant, which transform
as a spin zero field, we first have to change the conformal weight of the relevant components
of the current to zero. Algebraically this is implemented by improving (or sometimes called
twisting) the energy-momentum tensor, i.e. by adding the total derivative of some components
of the current that live in the Cartan subalgebra to the energy-momentum tensor,

T ∼ (JaJa) → T ∼ (JaJa) + ha∂J
a. (15)

Algebraically, this is a rather trivial operation, but geometrically the consequences are quite
drastic. Namely, it implies that t+ + W is no longer part of a connection on a trivial bundle,
but on a non-trivial one. Thus the algebraic procedure of twisting the energy-momentum tensor
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corresponds geometrically to a genuine twisting procedure. For example, for W3, the components
of the currents change their spins as follows K1 K1 K1

K1 K1 K1

K1 K1 K1

 →

 K1 K0 K−1

K2 K1 K0

K3 K2 K1

 . (16)

where Kh denotes the line bundle of holomorphic h-differentials, i.e. sections of the hth power
of the holomorphic cotangent line bundle. The current or connection on the right hand side of
(16) is actually a connection on the rank three vector bundle V = K−1 ⊕ K0 ⊕ K+1, as one
may easily check. More generally, if t0 = diag(d1, . . . , dn) then the twisted current is part of a
connection on the vector bundle

V = K−d1 ⊕K−d2 ⊕ · · · ⊕K−dn (17)

A second problem that arises on non-trivial Riemann surfaces is that A = t+ +W transforms
as a connection when going from one co-ordinate patch to another, and its transformation rule
contains an inhomogeneous term which would spoil its specific constrained form. On a trivial
surface, one co-ordinate patch suffices, and one does not have to worry about this problem. On
a non-trivial surface, one is forced to introduce a background connection B, and one has to
impose the constraints on A−B rather than A. Since B also has an inhomogeneous term in its
transformation rule, A − B does not, and it transforms as an End(V ) valued one-form, where
V is the vector bundle in (17). In the case at hand, the structure group of V can be reduced to
GL(1), and if we equip Σ with a background metric ds2 = ρdzdz̄, a choice for B is

B = diag(d1∂ log ρ, . . . , dn∂ log ρ) (18)

We can now give the correct definition of W algebras on an arbitrary Riemann surface Σ:
W -transformations are those gauge transformations that preserve the form of the connection

DW = ∂ + t+ +W +B. (19)

The appearance of the somewhat arbitrary background connection B may seem unnatural,
but it actually already appeared in the work of Quillen [12] on determinants of Cauchy-Riemann
operators. More physically, it can be understood as a regularization ambiguity of the path
integral

det(∂ +Az) ∼
∫
Dψ̄Dψe−

∫
ψ̄(∂+Az)ψ (20)

We can now easily write down actions for W gravity on an arbitrary Riemann surface, using
the generalized WZNW action for non-trivial bundles

kSwznw(A;B) = − k

8π

∫
Tr((A−B) ∧ ∗(A−B))− ik

12π

∫
Tr(A−B)3 (21)

which shares many properties with the usual WZNW action, like the following version of the
Polyakov-Wiegmann identity

S(A;B) = S(A;C) + S(C;B)− k

π

∫
Tr((A− C)z(C −B)z̄). (22)

Using this generalized WZNW action one can for example reproduce the actions for induced
gravity on an arbitrary Riemann surface as found in [13]. in which the background connection
B appears as a reference projective structure.
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Coming back to what we were after, namely a description of the moduli space of W gravity,
we have so far established it is given by

MW =
{∂ +B + t+ +W}
W -transformations

(23)

The dimension of the tangent space to the moduli space can now be found from the cohomology
of the complex

0 DW→ {allowed parameters} DW→ δW
DW→ 0. (24)

where the allowed parameters are those parameters for infinitesimal gauge transformations that
preserve the form of DW . This cohomolgy seems difficult to compute, that it is nevertheless
possible is due to the following observation. Denote by L the inverse of ad(t+), extended by
0 on the cokernel of ad(t+). There is a method to map one complex into another in such a
way that the cohomology of the complex does not change, by means of a so-called homotopy
contraction. For this one needs a homotopy operator, and it turns out that L is precisely such
a homotopy operator. If we start with a complex as in (24), but now with arbtirary parameters
and arbitrary variations δW that may change the form of DW ,

0 DW→ Ω0(Σ; sl(V )) DW→ Ω1(Σ; sl(V )) DW→ 0, (25)

and perform repeatedly a homotopy contraction of this complex, we end up, after a finite
number of steps, with precisely the complex (24)! (for details, see [10, 11]). In other words, W
transformations are a homotopy contraction of ordinary gauge transformations. One of the nice
consequences of this observation is that one can obtain a simple explicit formula for arbitrary
W transformations and W algebras in terms of L. Furthermore, it implies that to compute the
cohomolgy of (24) we only need to compute the cohomology of (25). From the Riemann-Roch
theorem, it follows that the cohomology of (24) satisfies

dimH1 − dimH0 = (g − 1) dim(G). (26)

Comparing dimensions one can now show that

MW =
{∂ +B + t+ +W |∂̄W = 0}

{gauge trafos that preserve this form}
(27)

The denominator contains only those gauge transformations with a constant parameter with
values in the centralizer of the embedded sl2, which is e.g. zero dimensional for the WN algebras,
and one-dimensional for W (2)

3 . Thus, (27) provides us with a simple finite dimensional model of
the moduli space!

The next question which arises, is whether these moduli spaces have a natural interpretation.
The theory developed by Narasimhan and Seshadri [14] associates flat G bundles to moduli
spaces of connections of the type we are considering here. Unfortunately, the anti-holomorphic
structure that appears in our case is not stable in their sense, and we have to go beyond their
theory. It turns out that the proper generalization exists already in the literature and goes under
the name of Higgs bundles [15]. A Higgs bundle is a pair (V, θ) with V a holomorphic vector
bundle and θ a holomorphic section θ ∈ H0(Σ; End(V )⊗K), and their is an obvious map from
MW to the space of Higgs bundles, with V as in (17), and θ equal to t+ + W , with ∂̄W = 0.
Using the results in [15] this implies thatMW is a subset of the moduli space of flat GC bundles.
For the WN algebras, one can be more precise and, using a certain symmetric bilinear form,
prove that MWN

is actually a component of the moduli space of flat sl(N,R) bundles.
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An open problem is to find whether there is a corresponding interpretation for W -algebras
obtained from non-principally embedded sl2’s. For example, for W (2)

3 ,

M
W

(2)
3

=
{J,G+, G−, T,holomorphic|G+ 6= 0 or G− 6= 0}

{C \ {0}}
(28)

where λ ∈ C acts via G+ → λG+ and G− → λ−1G−.
In the case of the WN algebra, to actually construct the flat sl(N,R) connection correspond-

ing to a Higgs bundle (V, θ), one needs the so-called Hermitian-Yang-Mills metric on the Higgs
bundle, which is given by a Hermitian object Ω transforming in a suitable way such that the
inner product of two section s1, s2 of V is given by

∫
ρd2z(s†1Ωs2). In our case the condition

that the metric given by Ω is Hermitian-Yang-Mills equations reads

−∂̄(Ω−1∂Ω) + [θ,Ω−1θ†Ω] = 0. (29)

This is a very interesting equation; for θ = t+ it is precisely the Toda equation for sl(N), but for
other θ it describes a Toda equation in some kind of W background. In the case of sl2, it can be
explicitly solved for any θ and one recovers the usual expression for constant curvature metrics
in terms of holomorphic quadratic differentials. In addition, one finds that positive definiteness
of the metric implies that |µ| < 1. All this suggests that Ω could play the same role for WN as
the usual metric plays for the Virasoro algebra, and it is an interesting open problem to see if
W gravity can be reformulated as a theory of metrics on V . Furthermore it would be worthwile
to further explore the solutions of (29) and to see whether this leads for example to a suitable
generalization of the condition |µ| < 1 to WN . A different but related connection between Higgs
bundles and Toda theory has been studied in [16]

An explicit expression for the full flat connection is only known in general if θ = t+. It reads

D = ∂ +B + t+ + ∂̄ − L(Rzz̄), (30)

where a constant curvature reference metric with curvature Rzz̄ is assumed.
Coming back to applications to W -strings, the moduli space plays an important role if we

want to compute correlation functions. However, if there are operators present on the surface,
what we are really interested in the moduli space for W -gravity for surfaces with punctures (or
marked points). Unfortunately, this moduli space is much less well understood than the case
without punctures.

Let us review how one computes in practise in gravity correlation functions in genus zero.
Rather than writing down a suitable set of Beltrami differentials that parametrize the moduli
space of the punctured sphere, one takes one fixed sphere and integrates over the locations of
the punctures. The reason that this is possible is that starting with some Beltrami differential,
one can always make a co-ordinate transformation so as to get rid of the Beltrami differential,
but at the cost of moving the punctures around. Thus, the moduli space of the N -punctured
sphere is simply (S2)N/SL(2). The SL2 can be used to fix three of the punctures at prefered
points, and what remains is an integration over the location of the remaining N − 3 punctures.

For WN gravity, we have only very limited knowledge of the moduli space in the presence
of punctures, and this is one of the main unsolved problems in the field. Without proper
understanding of this moduli space, we can never compute general correlation functions in
W gravity. For ordinary gravity, each extra puncture introduces one extra modulus and the
dimension of the moduli space of the N -puntured sphere is N − 3. One can also see this
from the fact that the operators one puts at the location of the puncture have ghost number
one. In WM gravity, the standard tachyonic operators have ghost number M(M − 1)/2, and
thus the dimension of the moduli space of the N -puntured sphere in the case of WM gravity
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should be NM(M − 1)/2 − (M2 − 1). This immediately suggests a candidate for this moduli
space as the space of flat sl(n,R) bundles with a reduction of the structure group to a Borel
subgroup of sl(n,R) at the marked points. This has the correct dimension, but we do not have
a good parametrization of the generalized Beltrami differentials for this case at our disposal.
Even if we would have such a description it would, as in gravity, be highly preferable to have a
description analogous to (S2)N/SL(2). Purely on dimensional grounds, this should be something
like XN/SL(M), with X a M(M − 1)/2-dimensional complex manifold, and X ⊃ S2. Clearly,
besides the location of the puncture, X contains many new ‘hidden’ co-ordinates. These new
co-ordinates, together with the old one, constitute what is presumably a W -superspace. This
is another object whose existence has not been established yet, but which would be extremely
useful. On this W -superspace, W -transformations should be realized geometrically, and it should
be possible to extend every field from one on S2 to one on this space X. For example, for W3,
one would like to define a field depending on three co-ordinates, so a natural guess would be
something like[17]

φ(z1, z2, z3) ∼ exp(z1L−1) exp(z2W−1) exp(z3W−2)φ(0, 0, 0) (31)

Unfortunately, this naive definition makes no sense as it stands here, which can be seen e.g. from
the commutation relations of the W3 algebra. In our opinion, finding the correct definition and
interpretation of the space X and fields on it is the central theme in the quest for the solution
to the ill-posed problem ‘what is W -geometry?’.

Yet another open problem is to find the correct geometrical interpretation for the states
with a different ghost number that exist in W -strings. Is the corresponding moduli space the
moduli space of flat sl(n,R) bundles with reductions to different Borel subgroups at the punc-
tures? Despite all these problems, there are some correlation functions in W -strings that can
be computed, namely those for which the moduli space is exactly zero-dimensional. However, it
is important to keep in mind that these correlation functions constitute only a small subset of
all correlation functions, and claims in the literature regarding W -strings where either moduli
are ignored or only correlation functions corresponding to zero-dimensional moduli spaces are
computed, should be regarded with a certain amount of criticism.

There are several other approaches to W -geometry (see e.g. [18]), based upon generalized
projective structures, jet bundles and special embeddings of Riemann surfaces in target spaces.
It is important to understand moduli also in these frameworks, how to build a field-theoretical
description for W -strings based upon them, and how to interpret (from a string point of view)
the genus dependence of the target spaces in which the Riemann surfaces are embedded in some
of the approaches.

Some further open problems are:
-does topological W -gravity describe intersection theory on the moduli space of flat slN (R)
bundles?
-is is possible to compute correlation functions for non-critical W strings by viewing them as
some topological field theory, e.g. a topological Landau-Ginzburg theory?
-what is the modular group for W -gravity? The moduli space we have been considering here
is more like the Teichmüller space for W -gravity, since we have no good description of global
W transformations. Also, what is the generalization of the condition |µ| < 1 to the case of W
gravity?
-what is the metric and the analytic structure of the moduli space?
-Do W strings count the number of ‘W -holomorphic’ maps into some target space?
-Compute the generalized β-functions for W -strings, and examine their phenomenological po-
tential.
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Finally, we would like to mention some recent developments in mathematics3 that may be
relevant for some of these issues. In [19] Beilinson and Drinfeld introduce the notion of a g-oper,
which is closely related to Hamiltonian reduction on an arbitrary surface, and to the moduli
space of W -gravity. For example, an sln-oper on Σ is a rank n holomorphic vector bundle V
with a filtration 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V , and a connection D : V → V ⊗ K such that
D(Vi) ⊂ Vi+1 ⊗K and D induces an isomorphism Vi/Vi−1

∼→ (Vi+1/Vi)⊗K. Therefore, V can
be identified with the vector bundle given in (17), if we use the principal embedding of sl2 in
sln, and the filtration is 0 = (t−)n(V ) ⊂ (t−)n−1(V ) ⊂ · · · t−(V ) ⊂ V . In addition, each of the
connections in (27) satisfies the properties required to call V together with this connection a g-
oper. Thus, there is a natural one-to-one correspondence between the moduli space forW -gravity
and the set of isomorphism classes of analytic g-opers, called Op(g)Σ. This space is further
analyzed in [19], in particular it is shown that is the quotient of the space of projective structures
on Σ times the vector space of holomorphic fields W (as in (27)), modulo an equivalence relation
where one changes both the projective structure and the holomorphic quadratic differential in
the set {W} by another holomorphic quadratic differential. Furthermore, the space of opers
with singularities, which is relevant for the moduli space of puntured surfaces, has been studied
in [19]. Unfortunately, it is not yet clear whether the results obtained in [19] will be helpful to
obtain a useful description of the moduli spaces for W -gravity, and opers have been defined for
principal embeddings only, but this is certainly a connection worth exploring further. Opers also
appear in a geometric version of Langlands duality (see e.g. [20]). If gL denotes the Langlands
dual of g, then there is a correspondence between the set of gL-opers, and certain D-modules
on the moduli space of principal G-bundles on Σ. These D-modules describe certain integrable
systems, which can be worked out explicitly in the case Σ is a sphere with marked points.
Whether this relation can lead to further useful insights in the structure of the moduli space of
W -gravity remains to be understood.

To summarize, starting from the path integral description of W -strings, one can derive,
without the need to make any ad-hoc hypothesis, what one should consider as being the moduli
space of W -strings. The main problem which has not been solved so far is to find a useful
description of the W -moduli space of surfaces with punctures, in particular a W -superspace
description of this moduli space. It seems hard to make a lot of further progress in W -strings
before these issues are better understood.
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