
THU-91/08
Revised Version

July 1991

Multimatrix Models and the KP-Hierarchy

Jan de Boer∗

Institute for Theoretical Physics

Princetonplein 5

P.O. Box 80006

3508 TA Utrecht

Abstract

We analyze the critical points of multimatrix models. In particular we find the
critical points of highest multicriticality of the symmetric two-matrix model with
an even potential. We solve the model on the sphere and show that these critical
points correspond to the (p, q) minimal models with p + q =odd. Based on this
experience we give a formulation of minimal models coupled to quantum gravity, in
terms of differential operators, that makes the w1+∞-constraints very transparent.
This formulation provides a natural setting to study many issues, such as flows
changing both p and q.
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1 Introduction and Summary

Due to the recent dramatic progress in solving quantum gravity in two dimensions
using matrix models [1, 2, 3, 4], the geometry of moduli space [5] and topological
quantum field theory [6], one is for the first time able to probe the nonperturbative
features of two-dimensional quantum gravity. After the proposal of Douglas [7] how
multimatrix models are related to minimal matter coupled to quantum gravity, one
has even been able to study all c < 1-minimal models coupled to quantum gravity
non-perturbatively. Much effort has been spent on obtaining a precise understanding
of the one-matrix model. However, the multi-matrix models turn out to be much
harder to deal with. In fact, only the two-matrix model [8, 9, 10, 11] and the
three-matrix model [12] have been solved completely for some simple cases.

Recently it has become clear that it is probably sufficient to consider just the
two-matrix model to obtain all minimal models [9, 10, 11], in contrast to an earlier
belief that the (p, q)-models can only be obtained from the matrix model with (p−1)
matrices. Having a better understanding of multimatrix models might shed light
on their relation with KdV hierarchies, and minimal models coupled to quantum
gravity. This relation still remains to be clarified.

Motivated by this, we perform in this paper a study of multimatrix models in the
spherical approximation. We restrict ourselves to genus zero, because exact solutions
are at present impossible to deal with, except in some simple cases [10, 11, 12], whose
analysis already involves rather tedious algebra. Furthermore, for the one-matrix
model we know that multicriticality in the genus-zero approximation is sufficient to
guarantee multicriticality at all orders, and we expect the same thing to be valid for
the multimatrix model.

In section 2, we review the genus-zero formulation of the multimatrix model.
As we will show, the complete genus-zero description of multimatrix models in the
continuum limit is remarkably similar to the exact description in terms of differential
operators. The difference is just that we have to replace ‘quantum’ commutators
of differential operators by ‘classical’ Poisson brackets, and ∂ by one of the two
canonical variables that define the Poisson bracket. Thus, in a sense, including
higher genus contributions amounts to quantizing the genus-zero multimatrix model.
This may be useful when, for instance, one wants to extend the genus-zero results
of [13] to higher genus. Finally, we analyze the continuum limit and show what fixes
the order of the differential operators P and Q introduced in [7]. Directly related
to the order of P and Q is the degree of multicriticality of the multimatrix model.

This analysis is applied to the case of the symmetric even two-matrix model in
section 3, but the same techniques should also be useful when one wants to determine
the critical potentials of other multimatrix models. In particular we determine the
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smallest potentials that are expected to be needed to obtain the minimal models
(p, p + 1) and (p, p + 3) in the continuum limit, thereby generalizing [10, 11] where
the potentials corresponding to (4, 5), (5, 6) and (3, 8) were found. We also compute
the minimal order the potential must have to obtain an arbitrary minimal model
(p, q) with p+ q =odd.

The main disagreement between quantum gravity and multimatrix models is that
multimatrix models seem to provide too many operators. Therefore it is interesting
to know which operators correspond precisely to the flows in the multimatrix model
generated by changes in the potentials. We show how one can very easily determine
these flows in the genus-zero approximation. The flows in terms of matrices have
been obtained for the two-matrix model [9, 14], and very recently for arbitrary
multimatrix models in [15]; they are related to certain Toda-hierarchies. As these
flows commute, they should, on the level of differential operators, be generated by
fractional powers of a certain differential operator. A priori it is not clear which
one that should be; there is no reason why, for instance, it should be Q rather
than P . As an example, we compute some operators of the two-matrix model
corresponding to the Ising model. All of these operators are fractional powers of
the third order differential operator occurring in the the [P,Q] = 1 description of
the Ising model, and not of the fourth order operator. Therefore, the Ising model
is not (p, q) symmetric, and this holds presumably for other multimatrix models as
well. This is the main obstruction to find the precise relation between multimatrix
models and quantum gravity.

The resolution of this problem probably relies heavily on the existence of W-
constraints in the multimatrix model. These constraints were first conjectured
in [16, 17] and their validity was proven in [18, 19]. Motivated by the multima-
trix model, we give a formulation of the W-constraints, in which they arise as the
reparametrization invariance of the space {∑ tabQ

aP b}. Alternatively, they can
be seen as a consequence of the invariance under canonical transformations of the
Heisenberg algebra generated by P and Q. This formulation is still completely
(p, q)-symmetric. Using this formulation, we then reconsider the relation between
multimatrix models and quantum gravity, and indicate possible ways to understand
these apparent discrepancies. We end the paper with some remarks.
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2 The p-Matrix Model

2.1 Review of the p-Matrix Model

The partition function of a general multimatrix model is given by [7]

Z =
∫ p∏

i=1

dMi exp β tr

− p∑
i=1

Vi(Mi) +
p−1∑
i=1

ciMiMi+1

 (2.1)

where the Mi are hermitean N ×N matrices. The integral over the angular parts of
the Mi can be done and we are left with the following integral over the eigenvalues
λi,n of the Mi

Z = const
∫ p∏

i=1

N∏
n=1

dλi,n4(λα,1)4(λα,p) exp β

− p∑
i=1

N∑
n=1

Vi(λi,n) +
p−1∑
i=1

N∑
n=1

ciλi,nλi+1,n


(2.2)

where 4(λα,r) =
∏
a<b(λa,r − λb,r) is a Vandermonde determinant.

Next introduce (following [20]) orthogonal polynomials of order n An(x) = xn + . . .
and Bn(x) = xn + . . . satisfying

hnδn,m =
∫ p∏

i=1

dλiAn(λ1) exp β

− p∑
i=1

Vi(λi) +
p−1∑
i=1

ciλiλi+1

Bm(λp) (2.3)

We can write 4(λα,1) as detαβ(Aα(λβ,1)) and 4(λα,p) as detαβ(Bα(λβ,p)). Substi-
tuting this into the partition function (2.2) and expanding the determinant yields
the following well-known expression for the partition function

Z = const×N !
N−1∏
i=0

hi (2.4)

From now on we will use orthonormal polynomials, i.e. we make redefinitions
An → An

√
hn and Bn → Bn

√
hn. For the sake of brevity, write exp(−βµ) for

the exponential occurring in (2.3). As usual, we define certain infinite matrices by
their matrix elements with respect to the orthonormal polynomials An and Bm

Q(j)mn =
∫ p∏

i=1

dλi λjAn(λ1)e
−βµBm(λp) 1 ≤ j ≤ p (2.5a)
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P (1)mn =
∫ p∏

i=1

dλiA
′
n(λ1)e

−βµBm(λp) (2.5b)

P (p)mn =
∫ p∏

i=1

dλiAn(λ1)e
−βµB′m(λp) (2.5c)

In these equations, the prime denotes differentiation with respect to λ1 and λp
respectively. The use of indices may look a bit strange, but guarantees e.g. that the
matrix corresponding to an insertion of λ2

1 is just Q(1)2
nm ≡

∑
rQ(1)nrQ(1)rm. It is

straightforward to verify the following properties of the matrices P (i) and Q(i)

P (1)nm = 0 m ≤ n, P (1)m,m+1 = (m+ 1)
√
hm/hm+1 (2.6a)

P (p)nm = 0 m ≥ n, P (p)m+1,m = (m+ 1)
√
hm/hm+1 (2.6b)

Q(1)nm = 0 m < n− 1, Q(1)m+1,m =
√
hm+1/hm (2.6c)

Q(p)nm = 0 n < m− 1, Q(p)m,m+1 =
√
hm+1/hm (2.6d)

Another set of important identities can be obtained by considering

∫ p∏
i=1

dλi
d

dλr

(
An(λ1)e

−βµBm(λp)
)

= 0 (2.7)

for r = 1, . . . , p. This gives a set of relations expressing all matrices in terms of P (1)
and Q(1):

β−1P (1)− V ′1(Q(1)) + c1Q(2) = 0 (2.8a)

cr−1Q(r − 1)− V ′r (Q(r)) + crQ(r + 1) = 0 2 ≤ r ≤ p− 1 (2.8b)

β−1P (p)− V ′p(Q(p)) + cp−1Q(p− 1) = 0 (2.8c)

Finally, the multimatrix model has a set of discrete ’string equations’. Two of them,
[P (1), Q(1)] = [Q(p), P (p)] = 1, can be directly obtained from the definitions of P
and Q (2.5), the others then follow from (2.8) and simply read

βcr[Q(r), Q(r + 1)] = 1 (2.9)

These equations together are sufficient to determine the hi and therefore to evaluate
the partition function (2.4).

If all potentials are of finite degree, one can check that P (1), P (p) and Q(r) are
Jacobi matrices. This means that the (a, b)-matrix element is only nonvanishing if
|a−b| ≤ K for some integer K. For instance, using (2.6) and (2.8) one finds that for
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Q(1) we can take K =
∏p
r=2(deg(Vr)− 1). In the continuum limit, Jacobi matrices

are expected to become finite order differential operators.

To proceed, we define

fi =
hi
hi−1

(2.10)

and

Q(1)n−l,n =

√
hn−l
hn

R(l)
n (2.11)

for l ≥ 0. Similar expansions can be defined for the other matrices Q(j). Insert-
ing these into (2.8) and restricting (2.8a) and (2.8c) to the matrix elements where
P (1) and P (p) vanish, yield the usual recursion relations, which in general are very
complicated.

If we take the (m−1,m) matrix element of (2.8a) we find an equation, that later
will turn out to be equivalent to the string equation. It reads

m

β
= (V ′1(Q(1))m−1,m − c1Q(2)m−1,m)

√
hm
hm−1

(2.12)

Using the recursion relations mentioned above, we can in general eliminate all the
variables like the R(l)

n occurring in (2.11), so that the only variables left will be the
fi defined in (2.10). Then (2.12) takes the form

m

β
= W (fi) (2.13)

We now take the scaling limit in the standard way [2]. We let N → ∞, β/N → 1,
and replace discrete by continuous variables: x = m/β, ε = 1/N , fi → f(x),
R(l)
n → R(l)(x), etc. If in the planar limit, which will be described in just a moment,

the function W occurring in (2.13) behaves as

W (f) ' Wc − (f − fc)k (2.14)

we can take the double scaling limit which essentially amounts to amplifying the
region around f = fc. Let γ = −1/k denote the string susceptibility, and define the
lattice spacing a and the renormalized cosmological constant µR by

λa2−γ = ε (2.15)

Wc − a2µR = x (2.16)
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Here λ is the parameter that controls the genus expansion of the partition function,
Z =

∑
λ2g−2Zg. We will assume λ = 1, which can be accomplished by a redefinition

of a and µR. To obtain the string equation in the usual form, make expansions for
f and the R’s in terms of a−γ,

f(µR) = fc + a−2γf (1)(µR) + a−3γf (2)(µR) + . . . (2.17)

and similar for the R’s. Substituting these expansions back into the recursions
relations obtained from (2.8) and letting a→ 0 turns equation (2.13) into the string
equation.

2.2 Genus-Zero Formulation

To find the critical points, i.e. the potentials that yield a behavior as in (2.14), we
will now restrict ourselves to the planar limit. This means that we will neglect the
dependence of fi and R(l)

n on i and n, because this dependence is only relevant for
higher genus as can be seen from (2.15). The matrices can now be represented as
power series in the ‘shift’ operator

z =
∑
r

δr−1,r (2.18)

As can be seen from (2.6), the expansion for Q(1) reads

Q(1) =

√
f

z
+
∑
l≥0

R(l)

(
z√
f

)l
(2.19)

and from (2.6a) and (2.8a) we see that

P (1)(z)

β
= V ′1(Q(1)(z))− c1Q(2)(z) =

x√
f
z +O(z2) (2.20)

Given the Vi, we can in principal determine the P (i)(z) and Q(i)(z) as functions of
f . These equations are however highly nonlinear and difficult to solve. We will,
therefore, follow a reverse route, and will assume that the Q(i) are given. One may
then try to construct the potentials by using (2.8). The equations for the coefficients
occurring in the potentials are linear, but do not always admit a solution. For the
time being, we will restrict our attention to (2.8a). From this equation it is easy to

7



see that, given Q(1) and Q(2), V1 is completely and uniquely determined by requiring
V ′1(Q(1)(z))−c1Q(2)(z) to be of order O(z). Clearly, if Q(2)(z) = az−n+higher order,
V1 will be of order n+ 1.

The requirement that V ′1(Q(1)(z)) − c1Q(2)(z) is of order O(z) is met for every
value of f . Taking for instance u = f , we see that there exist Q(1)(z, u) and Q(2)(z, u)
labeled by one extra parameter u, such that V ′1(Q(1)(z, u)) − c1Q(2)(z, u) is still of
order O(z). The reason that we bother to introduce a new variable u here, is that we
will assume that everything depends analytically on u, which need not necessarily
be the case for u = f . To find the exact u dependence would require a knowledge
of V1. We can, however, find an equation which does not explicitly depend upon V1,
by differentiating (2.8a) with respect to both z and u, which gives two equations
from which V ′′1 can be eliminated. The result of this is the following equation

β−1{P (1), Q(1)}z,u = c1{Q(1), Q(2)}z,u (2.21)

where the ‘Poisson’ bracket {}z,u is defined by

{A(z, u), B(z, u)}z,u = z
∂A

∂z

∂B

∂u
− ∂A

∂u
z
∂B

∂z
(2.22)

The extra z has been introduced for later convenience. (2.21) looks like a ‘classical’
analog of the equation β−1[P (1), Q(1)] = c1[Q

(1), Q(2)] which is valid in the original
matrix model. As we will now show, the planar approximation is nothing but the
replacement of ‘quantum’ commutators by ‘classical’ Poisson brackets. Consider A =
X(u)zl and B = Y (u)zk. On the level of matrices, this means A =

∑
αXα(u)δα−l,α

and B =
∑
β Yβ(u)δβ−k,β. In the planar approximation the commutator of A and B

can be calculated as follows

[A,B] =
∑
α

(Xα−kYα −XαYα−l)δα−k−l,α

=
∑
α

[
(Xα − k

∂Xα

∂i
)Yα −Xα(Yα − l

∂Yα
∂i

)

]
δα−k−l,α

=
∑
α

(
lXα

∂Yα
∂i
− k∂Xα

∂i
Yα

)
δα−k−l,α

→
(
lX

∂Y

∂i
− k∂X

∂i
Y

)
zk+l

= z
∂A

∂z

∂B

∂i
− ∂A

∂i
z
∂B

∂z

=
∂u

∂i
{A,B}z,u

= β−1∂u

∂x
{A,B}z,u
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In particular, this gives the following version of the planar string equation

{P (1)(z, u), Q(1)(z, u)}z,u = β

(
∂u

∂x

)−1

(2.23)

Indeed, taking P (1)(z, u) ≡ P (z, u) = βzW (f)/
√
f+O(z2) andQ(1)(z, u) ≡ Q(z, u) =√

f/z +O(1), a short calculation shows

{P,Q}z,u = β
∂f

∂u
W ′(f) +O(z) (2.24)

which combined with (2.23) gives ∂W (f)/∂x = 1, in agreement with (2.13).

2.3 The Continuum Limit in Genus Zero

Let us now consider the differential operators that P and Q will become in the
continuum limit. In that limit we have

z = e−ε∂/∂x = ea
−γ∂/∂µR (2.25)

In the planar approximation ∂/∂µR commutes with everything, and can be replaced
by a commuting object which we will denote by ξ. Instead of z and u we can also
think of P and Q as functions depending on ξ and u. Because z∂/∂z = aγ∂/∂ξ we
find that

{A(z, u), B(z, u)}z,u = aγ{A(ξ, u), B(ξ, u)}ξ,u (2.26)

where {}ξ,u denotes the usual Poisson bracket {A,B}ξ,u = ∂ξA∂uB − ∂uA∂ξB. As
β ∼ aγ−2, and by using (2.16), we find the string equation in terms of ξ

− ∂u

∂µR
{P (ξ, u), Q(ξ, u)}ξ,u = 1 (2.27)

From now on we will assume that u = a2γ(f − fc); u will be finite if we let a → 0
at fixed µR. Obviously, we can write β−1P as P0 +

∑
n≥p Pna

−nγ and Q = Q0 +∑
n≥qQna

−nγ, where Pn and Qn are polynomials in ξ and u of degree n (ξ has degree
1 and u has degree 2). P0 and Q0 will not contribute to the string equation and we
will ignore these constants. Naively, one would think that p and q are the orders
of the differential operators that P and Q become in the double scaling limit. This
is, however, not always true. If, for instance, p = q = 2 and P2 = Q2, it is clear
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that {P2, Q2} = 0 and that we cannot consider P2 and Q2 as the scaling limit of
P and Q while preserving the string equation. What is essential is that (2.27) is
invariant under P → P +

∑
aiQ

i and also under Q → Q +
∑
biP

i, and in some
cases such redefinitions are necessary to find then true orders of P and Q. If e.g.
q ≤ p, we try to find the operator P ′ = P +

∑
aiQ

i that is of highest order, as
it is this what survives in the string equation, and not P † Actually, we only need
to determine the true orders of P and Q for u = 0, because (2.27) can be used to
find the u-dependence, without lowering the order of either P or Q. (2.27) (More
precisely, we need (2.23)) together with (2.8a) for u = 0 imply that (2.8a) is also
valid for u 6= 0.

If Q = Q0 +
∑
n≥qQna

−nγ and β−1P ′ = P ′0 +
∑
n≥p P

′
na
−nγ, we define

Q̂ = lim
a→0

aqγ(Q−Q0) (2.28)

P̂ = lim
a→0

apγ(P ′0 − β−1P ′) (2.29)

The string equation turns into (µ = µR)

∂u

∂µ
βa−(p+q)γ{P̂ , Q̂}ξ,u = 1 (2.30)

To get something finite, we must have γ − 2 − pγ − qγ = 0, so that γ = −2/(p +
q−1), coinciding with the KPZ result for a (p, q)-minimal model [22]. Furthermore,
{P̂ , Q̂}ξ,u must be independent of ξ and is therefore proportional to u(p+q−3)/2. Then
the string equation implies u ∼ µ−γ.

Something interesting happens when p + q =even. In this case, the above does
not work, as {P̂ , Q̂} can never be independent of ξ (unless it vanishes). The reason
that it does not work is that γ−1 is not an integer. Looking at (2.14) we see that
the parameter upon which everything depends analytically is

√
f − fc rather that

(f − fc). Indeed, we can repeat the above taking u = aγ
√
f − fc, and we find

correctly that γ = −2/(p+ q − 1) and that
√
f − fc ∼ u ∼ µ−γ/2.

One should bear this in mind when comparing the above with the spherical
formalism of [23]. There, the commutator of f∂a and g∂b is computed in the spherical
approximation by keeping only first derivatives and dropping higher ones. The result
is therefore (afg′ − bgf ′)∂a+b−1. If we replace ∂ by ξ and assume f and g depend
on a certain variable u, then this is precisely equal to ∂u/∂µ{fξa, gξb}ξ,u. Thus,
our formalism is equivalent to their formalism. However, we should be careful when

†There is some ambiguity in these redefinitions, but these are irrelevant. This will become
clearer when we discuss the w1+∞ constraints in section 5. This method has also been applied in
[10, 11, 21].
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using their formalism to expand everything in either u or
√
u depending on whether

p+ q is odd or even.

It is also instructive to compare this formalism with that of the topological
models in [13, 24]. What they call x is our ξ and their t0 is our µ. Therefore
any result in the differential operator formalism of matrix models can be simply
translated into their results by replacing commutators by a Poisson bracket with
respect to x and t0. For instance (for details see [13, 24])

[Li+1
+ , L] = {Li+1

+ , L}x,t0 =

(
∂Li+1

+

∂x

∂L

∂t0
−
∂Li+1

+

∂t0

∂L

∂x

)
= ∂xL

i+1
+ (2.31)

3 The Symmetric Even 2-Matrix Model

To illustrate the genus-zero formulation of sections (2.2) and (2.3), let us now con-
sider the symmetric 2-matrix model with even potential in some more detail (see also
[9, 10, 11]). In this case, on the level of matrices P (1) = P (2)† and Q(1) = Q(2)†,
or equivalently P (1)(z, u) = P (2)(1/z, u) or P (1)(ξ, u) = P (2)(−ξ, u). Note that
now (2.19) contains only odd powers of z. Only one equation is left from (2.8),
namely

β−1P − V ′(Q) + c1Q
† = 0 (3.1)

The relevant condition for criticality is now that Q(ξ, 0) starts at order ξp, that is
Q(ξ, 0) = Q0 + aξp + . . .. Equivalently, ∂Q/∂ξ must have a zero of order p − 1 at
ξ = 0. Going back to z, this means that z∂Q(z, 0)/∂z must have a zero of order
(p− 1) at z = 1. Because ∂Q(z, 0)/∂z depends only on z2, we must have that

∂Q(z, 0)

∂z
=

1

z2
(1− z2)p−1A(z2) (3.2)

for some polynomial A(z2). As Q(z, 0) starts of at
√
fc/z it follows that

Q(z, 0) =
∫ dz

z2
(1− z2)p−1(−

√
fc + z2B(z2)) (3.3)

Here the integration is such that Q(z, 0) contains only odd powers of z.

3.1 (p,p+1) Minimal Models

We first consider the simplest case of 3.3. The maximal power of z occurring in
Q(z, 0) is (degV − 1), and therefore the minimal potential needed to realize this
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level of multicriticality must correspond to B = 0, or degV = 2p− 2. Taking B = 0
in (3.3), we find the coefficients in (2.19)

R(2l+1)
c = (−1)l

(fc)
l+1

2l + 1

(
p− 1
l + 1

)
(3.4)

The potential V is easily determined by requiring V ′(Q(z, 0))− c1Q(1/z, 0) to be an
analytic function of z. Expanding the potential gives

V (φ) =
(−1)p−2c1

fp−2
c (2p− 2)(2p− 3)

φ2p−2 +
(−1)p−3(p− 1)c1

(2p− 5)fp−3
c

φ2p−4

+
(−1)p−4(p− 1)(p− 2)(6p2 − 26p+ 19)c1

3(2p− 6)(2p− 7)fp−4
c

φ2p−6 + · · · (3.5)

The freedom to choose c1 is related to the fact that the matrices Mi in the original
matrix model can always be arbitrarily rescaled.

What is the order of β−1P? It is, up to powers of Q, equal to −c1Q†. Using (2.19)
and (3.4) we can substitute (2.25) to find Q as function of ξ

1√
fc
Q(ξ, 0) =

p−1∑
l=0

∞∑
s=0

(−1)l−1

(
p− 1
l

)
(2l − 1)s−1

s!
(a−γξ)s

=
22p−2(

2p− 2
p− 1

) +
2p−1

p
(−a−γξ)p − 2p−1(p− 2)

p+ 1
(−a−γξ)p+1 +O(ξp+2)

(3.6)

Therefore the highest order for P/β is reached by taking P/β = −c1(Q†− (−1)pQ).
Then P has order p + 1, and therefore this potential is expected to correspond to
the (p, p+ 1) minimal model. However, a full proof of this would require taking the
full continuum limit at all orders of the genus expansion.

3.2 (p,p+3) Minimal Models

What about the other minimal models? A simple argument shows that in general P
and Q will be an adjoint and a skew-adjoint operator, and that always p+ q =odd,
due to the Z2 symmetry of this model. So let us consider the next series of minimal
models, the (p, p + 3) models. Clearly, Q must have the same form as in (3.3).
If we write Q(ξ, 0)/

√
fc = A0 + Apξ

p + Ap+1ξ
p+1 + . . . and take for P/β again

−c1(Q†− (−1)pQ), we see that P/β is proportional to (1 + (−1)p)A0− 2Ap+1ξ
p+1−
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2Ap+3ξ
p+3 + . . .. Therefore, in order to reach the (p, p+ 3) model, we must require

Ap+1 = 0 so that P/β starts at order p+ 3. This is only true for p ≥ 3. If p = 3 we
can make the order of P/β even higher by adding λ(Q− A0)

2 to it, so as to cancel
the order ξ6-term in P/β. Then P/β will be of order 8, so that taking Ap+1 = 0 will
give either (3,8) or (p, p + 3) with p 6= 3. Using (3.6) it is easy to check that the Q
of minimal order must be given by

Q(z, 0)√
fc

= −
∫ dz

z2
(1− z2)p−1(1− p− 2

p
z2) (3.7)

The coefficients of (2.19) are

R(2l+1)
c = (−1)l

(fc)
l+1

2l + 1

((
p− 1
l + 1

)
2

p
+

(
p

l + 1

)
p− 2

p

)
(3.8)

The potential V is of degree 2p and the first few terms are given by

V (φ) =
(−1)p−1(p− 2)c1

2p2(2p− 1)fp−1
c

φ2p +
(−1)p−2(p3 − 2p2 − 2p+ 6)c1

p2(2p− 3)fp−2
c

φ2p−2

+
(−1)p−3(p− 1)(6p6 − 26p5 + 3p4 + 130p3 − 132p2 − 176p+ 240)c1

6p3(2p− 5)(p− 2)fp−3
c

φ2p−4 + · · ·

3.3 General Minimal Models

We see that in general, given r constraints on the parameters occurring in the
expansion in Q(ξ, 0)/

√
fc, we need a potential of order φ2r to realize a Q that

satisfies these constraints. If p is even, we can repeat the above procedure to put
the parameters Ap+1, Ap+3, . . . , Ap+2l+1 equal to zero, which gives a P/β of order
p + 2l + 1. The total number of constraints is (p − 1) + l, so if P is even we can
realize the (p, p+ 2l + 1) model with a potential of order 2(p+ l − 1).

If p is odd the situation is more complicated: we may have to add higher powers
of Q(ξ, 0) to Q(−ξ, 0) to find the true order of P/β, as happened above for the (3,8)
model. In general this adding of higher powers prevents the occurrence of models of
type (p, np). To analyze this situation in some more detail, suppose that we want
to construct (p, p+ 2l + 1) with p odd. Define the following (even) function f(ξ)

f(ξ) =
(
Q(ξ, 0) +Q(−ξ, 0)− 2A0

√
fc

)
+

[ l
p
+ 1

2
]∑

r=1

a2r(Q(ξ, 0)−Q(−ξ, 0))2r (3.9)
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where the a2r are certain parameters, and [x] denotes the largest integer smaller
than or equal to x. Suppose that f(ξ) starts at order ξ2p+l+1. Formally we can solve
f(ξ) = 0 to find a power series for Q(−ξ, 0) in terms of Q(ξ, 0), say Q(−ξ, 0) =∑
bi(Q(ξ, 0) − A0

√
fc)

i. The error we make in doing so is also precisely of order
ξ2p+l+1. Therefore if we take

P/β = −c1
(
Q(−ξ, 0)−

∑
bi(Q(ξ, 0)− A0

√
fc)

i
)

(3.10)

P/β will have the required order. Requiring f(ξ) to start at order ξp+2l+1 puts
l constraints on the coefficients in Q(ξ, 0) and the a2r together. Effectively, the
number of constraints on the coefficients of Q is therefore l − [l/p + 1/2]. As there
are also p− 1 constraints to make Q(ξ, 0) of order p, we find that for p odd, we can
realize the (p, p + 2l + 1) model with a potential of order 2(p + l − 1− [l/p + 1/2]).
For some lowest order potentials, the models corresponding to the points of highest
multicriticality are summarized in the following table.

order V models
4 (2,5) (3,4)
6 (2,7) (3,8) (4,5)
8 (2,9) (3,10) (4,7) (5,6)
10 (2,11) (3,14) (4,9) (5,8) (6,7)
12 (2,13) (3,16) (4,11) (5,12) (6,9) (7,8)

The Ising model [8] corresponds to (3,4), the points (3,8) and (4,5) were obtained
in [10], and (5,6) in [11]. The points (2, 2m+1) have been included for completeness,
but in fact correspond to the case where c1 = 0, so that the two matrix model
essentially reduces to two copies of the one matrix model, for which these points
are well known. If we do not impose the maximum number of constraints on Q, we
will in general find planes of lower multicriticality, the multicritical points lying in
the intersection of such planes. The (p, q)-models with p+ q =even can presumably
also be obtained from the two-matrix model, with different potentials V1 and V2.
For instance, in [11], the (3,5) minimal model was found in an antisymmetric even
two-matrix model with 8th order potential.

To illustrate some of the things said above, let us determine the constraints we
have to impose for the (3,14) model. Let Q(ξ, 0) = A0

√
fc + 1

2
(t3ξ

3 + t4ξ
4 + · · ·).

Requiring f(ξ) in (3.9) to be of order ξ14 gives 5 constraints

0 = t4

0 = t6 + a2t
2
3

0 = t8 + 2a3t3t5

0 = t10 + 2a2t3t7 + a2t
2
5
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0 = t12 + 2a2t3t9 + 2a2t5t7 + a4t
4
3

From these constraints it is easy to eliminate a2 and a4 and we end up with the
following three conditions of the ti

0 = t4

0 = t8t3 − 2t5t6

0 = t10t3 − 2t6t7 − t5t8

Putting B(z2) = b0 + b1z
2 + b2z

4 into (3.3), we can translate these three conditions
into three conditions on the bi. Solving these then enables you to write down a 10th
order potential. The scaling limit of the corresponding matrix model should now be
the (3,14) model.

4 Flows in the Multimatrix Model

4.1 Flows in Genus Zero

The flows in the multimatrix model are generated by deformations of the potentials.
General arguments show that the resulting flows on the matrices P (i) and Q(i)
will be given by commutators (for a clear explanation, see [25]). In the planar
approximation the flows will then be given by certain Poisson brackets. To study
these flows, consider again the equations

β−1P (1)− V ′1(Q(1)) + c1Q(2) = 0 (4.1)

cr−1Q(r − 1)− V ′r (Q(r)) + crQ(r + 1) = 0 2 ≤ r ≤ p− 1 (4.2)

β−1P (p)− V ′p(Q(p)) + cp−1Q(p− 1) = 0 (4.3)

and assume that apart from z and u, the P (i) andQ(i) depend on an extra parameter
λ. The potentials also depend on this deformation parameter λ. From the string
equation (2.23) and the related equations (2.9) we know that we there exists a
function ψ(u) such that

ψ(u) = β−1{P (1), Q(1)}z,u = cr{Q(r), Q(r+1)}z,u = β−1{Q(p), P (p)}z,u (4.4)

The flows on the matrices P and Q are given by commutators. Translating this
into Poisson brackets shows we have to write down the following set of equations
describing the flows in the planar approximation

{
∂P (1)/∂λ = ψ(u)−1{X1, P

(1)}z,u
∂Q(1)/∂λ = ψ(u)−1{X1, Q

(1)}z,u
(4.5)
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{
∂Q(r)/∂λ = ψ(u)−1{Xr+1, Q

(r)}z,u
∂Q(r+1)/∂λ = ψ(u)−1{Xr+1, Q

(r+1)}z,u
(4.6)

{
∂Q(p)/∂λ = ψ(u)−1{Xp+1, Q

(p)}z,u
∂P (p)/∂λ = ψ(u)−1{Xp+1, P

(p)}z,u
(4.7)

It is straightforward to check that ∂{P (1), Q(1)}z,u/∂λ = 0, and similar for the other
cases, so that the string equations (4.4) are preserved under these flows. The reader
will have noticed that we have doubly defined ∂Q(r)/∂λ, which is of course not
allowed, unless both definitions give the same result. In this case this implies that
Xr+1 −Xr must have vanishing Poisson bracket with Q(r), and in general it will be
a function of Q(r). To determine the Xr, we differentiate (4.1) with respect to λ and
z, and eliminate V ′′1 (Q(1)) from these two equations. The result can be written

β−1{P (1), Q(1)}z,λ − c1{Q(1), Q(2)}z,λ +
∂V ′1
∂λ

(Q(1))z∂zQ
(1) = 0 (4.8)

Inserting (4.5) into this gives −z∂zX1 + z∂zX2 = (∂V ′1/∂λ)z∂zQ
(1) which can be

easily integrated to X2 − X1 = ∂V1/∂λ. The integration constant is irrelevant,
because the Xr are only defined up to a constant. This analysis can be repeated for
the other equations (4.2) and (4.3) and the final result is

Xr+1 −Xr =
∂Vr
∂λ

(Q(r)) (4.9)

which indeed has vanishing Poisson bracket with Q(r) as required. Adding (4.9)
for all r we find Xp+1 − X1 =

∑
r ∂Vr/∂λ. This equation itself does not fix the Xi

completely. For that we must also demand that the structure of Q(1) =
√
f/z + . . .

and of Q(p) = . . .+z
√
f are preserved under the flows. This completely fixes the Xr.

Defining for g(z) =
∑
aiz

i the plus and minus piece by g+(z) = a0/2+
∑
i>0 aiz

i and
g−(z) = g(z)− g+(z), we find that Xp+1 must have vanishing plus part to preserve
the structure of Q(p). Similarly, X1 must have vanishing minus part. We can now
write down the unique solution of (4.9) that is compatible with these requirements.
It reads

Xr =
∑
i<r

(
∂Vi
∂λ

(Q(i))

)
−
−
∑
i≥r

(
∂Vi
∂λ

(Q(i))

)
+

(4.10)

Using identities like {A+, B+}− = {A−, B−}+ = 0 it is possible to prove that these
flows commute. It is, however, not easy to see what these flows correspond to after
taking the double scaling limit. We do not know what the analog of taking the
+ or − part is on the level of differential operators. A natural approach to these
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flows might be to introduce singular potentials as was done in [4], see also [26]. For
instance, for the (p, p+ 1) models equation (3.6) suggests to add terms like

tr

(
M1√
fc
− 22p−2/

(
2p− 2
p− 1

))s/p
(4.11)

to the matrix model potential as possible candidates of KdV-flows, but we have not
worked this out in detail.

For the full flows in terms of matrices, almost the same expressions should be
valid, where - now refers to upper triangular and + refers to lower triangular ma-
trices. For the two-matrix model, this has been shown in [9, 14], and for arbitrary
multimatrix models in [15].

4.2 Flows in the Ising Model

As an example, we consider the Ising model in some more detail. The Ising model
has been considered previously in great detail in [8, 21, 27]. from (3.5) we read of
that the critical potential is V (φ) = −c1φ4/12fc+2c1φ

2. By requiring V ′(Q(z, u))−
c1Q(1/z, u) to be an analytic function of z and using u = a2γ(f−fc) we can determine
the precise form of Q(z, u)

Q(z, u) =

√
fc + a−2γu

z
+ 4

√
fc + a−2γu

2fc + a−2γu
z − (fc + a−2γu)3/2

3fc
z3 (4.12)

Upon taking the continuum limit, we find that Q(ξ, u) equals ξ3 + 3ξu/2. We have
computed (Qn(z, u))− for n smaller than 20, taking fc = 1 for convenience. In
these expressions we then replaced z by exp(a−γξ), and expanded them in powers
of a. Taking appropriate linear combinations of powers of Q one can construct the
(spherical) differential operators that correspond to the flows (4.10). It turned out

that all fractional powers (ξ3 +3ξu/2)
k/3
+ with‡ k ≤ 9 can be made in this way, either

by taking only even, or either by taking only odd powers of Q. This confirms once
more the doubling of the degrees of freedom in the matrix model. Furthermore, this
strongly suggests that in the multimatrix model the flows are given by commutators
with the fractional powers of Q, in agreement with the usual KdV picture.

‡Here the + means that we only keep nonnegative powers of ξ
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5 w1+∞ Constraints in Multimatrix Models

What has been very important in our discussion so far, is that instead of the pair
of operators (P,Q), we might as well have taken (P + f(Q), Q), where f is some
polynomial, to represent the string equation. We can even take (P + f(Q), Q +
g(P + f(Q))), which for suitable f and g is just equal to (Q(2), Q(3)). The set
of these allowed transformations of the string equation is generated by (P,Q) →
(P + εQn, Q) and (P,Q)→ (P,Q+ εPm). We claim that invariance under these two
transformations just corresponds to the w1+∞ constraints. To prove this, we will
first formulate the KP-hierarchy in a somewhat different way, in which the so-called
non-isospectral symmetries [28] of this hierarchy play an important role.

5.1 Reformulation of the KP-Hierarchy

Consider the vector space VL ≡ V (L, ∂/∂L) of pseudo differential operators, spanned
by (

∂

∂L

)a
Lb a ≥ 0, b ∈ Z (5.1)

where L = ∂ + . . . is a first order and ”∂/∂L = −x + . . .” a zeroth order pseudo
differential operator, satisfying [∂/∂L, L] = 1. We demand that L has no ∂0 term,
and that ∂/∂L has no ∂−1 term. One can simultaneously diagonalize L and ∂/∂L
as L = K∂K−1 and ∂/∂L = −KxK−1. Given a pseudo differential operator A, A+

will denote the differential operator part of A, and A− = A − A+, as usual. Note
that if A ∈ VL, it is not necessarily true that A+ ∈ VL or A− ∈ VL.

In appearance, VL looks very much like the Lie algebra

w1+∞ = {
∑

tab

(
∂

∂z

)a
zb|a ≥ 0, b ∈ Z} (5.2)

and if we define a Lie bracket on VL by taking commutators of pseudo differential
operators, w1+∞ is isomorphic to VL via

g =
∑

tab

(
∂

∂z

)a
zb ∈ w1+∞ → X(g) =

∑
tab

(
∂

∂L

)a
Lb ∈ VL (5.3)

If we want to stress the L-dependence of X, we will write XL instead of X.
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Given g ∈ w1+∞, we can define a flow by defining for arbitrary W ∈ VL§

∂W

∂tg
= [X(g)−,W ] (5.4)

It is easy to see that this flow preserves the structure of VL, because all the flows
can be summarized by the one equation ∂K/∂tg = X(g)−K. Let us now take
g, h ∈ w1+∞ and compute the commutator of the two flows defined by g and h(
∂

∂tg

∂

∂th
− ∂

∂th

∂

∂tg

)
W =

∂

∂tg
[X(h)−,W ]− ∂

∂th
[X(g)−,W ]

= [[X(g)−, X(h)]−,W ] + [X(h)−, [X(g)−,W ]]

− [[X(h)−, X(g)]−,W ]− [X(g)−, [X(h)−,W ]]

= [[X(g)−, X(h)]− + [X(h)−, X(g)−]− [X(h)−, X(g)]−,W ]

= [[X(g), X(h)]−,W ]

= [X([g, h])−,W ] (5.5)

We see that the flows do not commute. Rather, the flows are compatible with the
Lie algebra structure on w1+∞. This means that, at least locally, the flows can
be exponentiated to an action of the group exp(w1+∞) on the infinite dimensional
manifold consisting of all vector spaces V (L, ∂/∂L). The usual KP-flows are the
flows generated by the abelian subalgebra H ⊂ w1+∞ = {∑a>0 taz

a}.
If we consider pth-reduced KP-hierarchies we impose the extra constraint Lp− = 0

on L. To incorporate this into the above picture, we must study the behavior of
differential operators R, satisfying R− = 0, under the w1+∞ flows. So consider
R(L) ∈ VL satisfying R(L)− = 0. Under an infinitesimal flow L′ = exp(εg)L,
g ∈ w1+∞, we will in general no longer have R(L′)− = 0. However, the remarkable
thing is that we can define R′(L′) ∈ VL′ which still has the property R′(L′)− = 0.
Define

R′(L′) = R(L′)− ε[XL′(g), R(L′)] (5.6)

then to first order in ε

R′(L′) = R(L) + ε[XL(g)−, R(L)]− ε[XL(g), R(L)]

= R(L) + ε[R(L), XL(g)+] (5.7)

From (5.6) we read off that R′(L′) ∈ VL′ , and from (5.7) that R′(L′)− = 0. This
suggests to define the following flow on differential operators R with R− = 0

∂R

∂tg
= [R,XL(g)+] (5.8)

§To justify the word flow, one should think of VL as being embedded in a much larger space of
pseudo differential operators, in which VL moves around
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Note that this flow is different from the flow defined on VL. Similarly as in (5.5), we
find in this case that (

∂

∂tg

∂

∂th
− ∂

∂th

∂

∂tg

)
R = [R,X([g, h])+] (5.9)

and we can therefore also locally exponentiate these flows. In summary, if R ∈ VL
and R− = 0 we can consistently define L′ = eεgL and R′ = eεgR. Although both
actions are different, we still have R′− = 0 and R′ ∈ VL′ .

If we have a reduced KP-hierarchy corresponding to Lp− = 0 and restrict our
attention to the ordinary KP-flows only, then the ‘correction’ (5.6) vanishes, and
this discussion does not tell us anything new. Only as soon as we start to flow
outside the usual pth-reduced KP-hierarchies, we get something different.

5.2 w1+∞-Constraints

What is the relevance of all of this to multimatrix models? These models provide
us with two differential operators P and Q [7], satisfying P− = 0, Q− = 0 and
[P,Q] = 1. We claim that we can always write P and Q as elements of some VL,
so that we can directly apply the above framework to this case. The flows (5.8)
will preserve P− = 0, Q− = 0 and [P,Q] = 1, and the above strongly suggests that
locally the space of couplings of the theory is a submanifold of the group manifold
of w1+∞.

The w1+∞ constraints now take a simple form. Because (QaP b)− = 0, if we
define F ⊂ w1+∞ = {X−1

L (
∑
tabQ

aP b)} we see that

g ∈ F ⇒ ∂

∂tg
L = 0 (5.10)

As we will show in a moment, this statement is equivalent to the w1+∞-constraints
found previously [18, 19]. It is clear from (5.5) that these constraints, when com-
puting their commutators, form an algebra isomorphic to the positive half of the
w1+∞-algebra: F ' w+

1+∞. Looking at the definition (5.8), we see that P and Q
change under the w1+∞ constraints: if X = QaP b, then under a small flow

Q → Q− εbQaP b−1 (5.11)

P → P + εaQa−1P b (5.12)

in which one recognizes the canonical transformations generated by X. Indeed, these
transformations include those that were so prominently present in the multimatrix
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model. We can therefore conclude that regardless with which of the pairs (2.9)
of matrices in the original matrix model one starts with, they all essentially give
the same P and Q, and in particular the same multicriticality, everything being
connected together via the w1+∞ constraints.

Let us compare the the constraints as written here with the w1+∞-constraints in
[18]. Consider a critical point where P has order p and Q has order q. We must make
a choice how we represent P and Q in VL. The specific choice which corresponds to
the usual formulation of the string equation is

Q = Lq (5.13)

P = ”
∂

∂Lq
” + Lp ≡ 1

2q

(
L1−q ∂

∂L
+

∂

∂L
L1−q

)
+ Lp (5.14)

Given these representations of P and Q, L and ∂/∂L are completely and uniquely
defined by the two equations P− = 0 and Q− = 0. As we expect from the matrix
model, we can assign degree q to Q and degree p to P , so that L has degree 1 and
∂/∂L has degree p + q − 1. As soon as we leave this critical point, it is no longer
true that we can assign a well-defined degree to P and Q. To turn on the couplings
we look at the flow generated by the group element

g = exp(
∑
i≥1

tiL
i) (5.15)

Performing the flow using (5.6) yields

Q = Lq (5.16)

P =
1

2q

(
L1−q ∂

∂L
+

∂

∂L
L1−q

)
+ Lp +

∑
i≥1

i

q
tiL

i−q (5.17)

Given this representation of P and Q in terms of L and ∂/∂L, the w1+∞ constraints
of [18] are now easily seen to be equivalent to (QaP b)− = 0, showing the equivalence
of the two formulations.

The formulation given here is closely related to the formulation in terms of an
infinite dimensional Grassmann manifold as given in [19]. P− = 0 and Q− = 0
translate into two conditions on points of the Grassmann manifold, that can be
expressed as the invariance of a certain vector space under two differential operators.
The two differential operators together generate w+

1+∞, in the same way as P− = 0
and Q− = 0 generate (QaP b)− = 0.

The representation of P and Q as two elements of some VL is not unique. If we
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take an arbitrary g ∈ w−1+∞ where

w−1+∞ = {
∑

tab

(
∂

∂z

)a
zb|a ≥ 0, b < 0} (5.18)

then ∂P/∂tg = ∂Q/∂tg = 0 which is clear from (5.8). However, ∂L/∂tg 6= 0, but
∂L/∂tg = [X(g)−, L] = [X(g), L], so that L′ = eεgL will still be in VL. These
transformations correspond to basis transformations: VL = VL′ .

5.3 Multimatrix Models as Models of Quantum Gravity

Let us now compare the contents of multimatrix models with that of minimal matter
coupled to quantum gravity. Multimatrix models give us two operators P and Q, but
they do not give us VL. Therefore, it should not come as a surprise that it is not really
important how we represent Q and P in VL. In the standard representation (5.13)
and (5.14), the physical quantities are extracted by relating the second derivative of
the free energy with respect to the cosmological constant µ with L¶ [23]

∂2F

∂µ2
= −2res(L) (5.19)

Under a flow with g ∈ w−1+∞, ∂res(L)/∂tg = −(res(X(g)))′, which is always a
polynomial in x, and therefore res(L) changes at most by a term analytic in the
cosmological constant. Usually, such terms are called ‘nonuniversal’ and neglected.
Here we see they are nonuniversal in the sense that they depend on the specific basis
choice for VL.

Given P and Q in some VL, an important issue is to find the right set of com-
muting flows the matrix model gives us. Such commuting flows will in general be
generated by powers of a first-order differential operator O, that has a well defined
degree. A priori, there is no obvious reason why we should take O = Q1/q, and not
for instance O = P 1/p or O = PQ−1. However the analysis of the Ising model in
the previous section showed that in that case O = Q1/3 up to O9, and we suspect
that this is the case for all multicritical points (p, q) of the multimatrix model with
p > q.

However, the ambiguity still exists for quantum gravity coupled to minimal mat-
ter. If we take take two different possible operators O1 and O2, we can read off
from (5.13) and (5.14) that (O1)

k
+ = (O2)

k
+ for k < p+ q− 1, but not necessarily for

¶res(A) denotes the term in front of ∂−1 in A, as usual.
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k ≥ p + q − 1. The case k < p + q − 1 corresponds to the order parameters of the
minimal model, and this is precisely the set of flows that has been analyzed in [23],
so this ambiguity has not been resolved yet‖.

An intriguing possibility is that this ambiguity is altogether irrelevant. We al-
ready saw that O1 and O2 can be related to each other via a basis transformation
of VL. More generally, it might be that flows corresponding to different choice of
the operator O can be analytically related to each other. A clue for this is provided
by the w+

1+∞-constraints. These correspond to non-commuting flows, but can be
expressed completely in terms of the commuting flows generated by Qα/q. Recently,
it has been shown that analytical redefinitions of the couplings (or, equivalently,
contact terms) may be the clue to establish the precise relation between multima-
trix models and minimal models coupled to quantum gravity [29]. Such redefinitions
are not sufficient to relate the flows of different operators O, because these redef-
initions involve higher order differential operators in the couplings, and analytical
redefinitions of the couplings are only capable of producing first order operators.

The full flow structure of both multimatrix models and quantum gravity remain
obscure. For multimatrix models, picking O = Q1/q is certainly only correct near
a multicritical point. These flows never change the order of Q, which is something
that must happen at some point in the multimatrix model, as it contains critical
points with both different p and q. A possibility is that at the points where the
order of Q changes, a singularity occurs, and that it is fundamentally impossible to
interpolate smoothly between the different critical points. We already know that
there is problem with such flows in the usual KdV picture of quantum gravity [30, 31].

For quantum gravity, there still is the problem that the matrix model gives too
many operators. If we take O = Q1/q, then the flows generated by Okq are trivial, as
they leave L invariant. The flows Ol with l 6= 0 mod q survive. On the other hand,
if we would have taken O = P 1/p, Ol with l 6= 0 mod p survive. The problem is that
in quantum gravity, both l = 0 mod q and l = 0 mod p do not occur. This has been
shown by computing BRST-cohomology [32], see also [27, 33], and by considering
the genus 1 partition function [34].

An alternative point of view is that the multimatrix models give too few oper-
ators. We can use the w+

1+∞-constraints to rewrite all correlators in terms of the
correlators of Ol where l is not of the form ap + bq, a ≥ 0, b ≥ 0. There are pre-
cisely (p − 1)(q − 1)/2 such values of l. Obviously, these should correspond to the
primary fields of the minimal model. Because in quantum gravity there is also one
state for each null state in the minimal model, we apparently must identify Ol,
l = ap+ bq, a > 0, b > 0 with the null states, whose correlators can be expressed in

‖It is therefore not entirely clear that multimatrix models really describe minimal models cou-
pled to quantum gravity
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terms of those of the primary fields. Finally, we must use P n
− = 0 and Qn

− = 0 to
dispose of the flows Ol with l = ap or l = bq. Note that in this latter picture the
choice of O is not important, so in a sense it is (p, q)-symmetric.

To conclude, we note that the condition that we are dealing with a reduced
hierarchy, i.e. Lq− = 0, is not only preserved by the usual KdV-flows, but also by
an extra Virasoro-algebra, even if we are not dealing with quantum gravity [28, 35].
Consider P,Q ∈ VL satisfying [P,Q] = 1 and assume Q = Lq, Q− = 0, but that
P is arbitrary, as is the case for an arbitrary q-reduced hierarchy. The flows that
preserve Lq− = 0 are determined by observing that

∂Lq−
∂tg

= 0⇒ [X(g)−, L
q] = 0⇒ [X(g)−, Q]− = 0⇒ [X(g), Q]− = 0 (5.20)

The only positive operators that are available in general, are
∑
i≥0 aiQ

i. Hence

X(g) =
∑
i≥0

aiPQ
i +

∑
bαQ

α/q (5.21)

Therefore the ‘symmetries’ of a q-reduced hierarchy, that are available in this space
of w1+∞-flows, are the KdV-flows Qα/q, plus a Virasoro algebra {PQi}. The quan-
tum gravity τ -functions distinguish themselves because they are fixed points of this
symmetry.

6 Remarks

In summary, we have performed a rather detailed study of multimatrix models in
the spherical approximation. One of the things which we encountered was that in
order to describe minimal models with p+ q =even, we need to work with

√
f − fc

rather than (f − fc) as analytic expansion parameter. In principal this approach
should also be valid for c = 1, in which case we have an infinite chain of matrices.
To make contact with the results for c = 1 [36, 37], one somehow needs to reach a
point where the multicriticality condition (2.14) reads

W (f) ' Wc − eλ(f−fc) (6.1)

As analytic expansion parameter one can take u = exp(λ(f − fc)), and with u we
can repeat the same story as for the multimatrix model. However, now the second
derivative of the free energy is not proportional to res(L), but rather to log(res(L)),
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giving precisely the logarithmic deviation from scaling behavior. We have checked
that if we start with a (p, q) minimal model, and take for the second derivative of
the free energy log(res(L)) rather than res(L), we also get correlation functions (on
the sphere) that are similar to those predicted from Liouville theory [38]. It would
be interesting to see whether this picture can be extended beyond genus zero.

We have not given a rigorous proof that the continuum limit really exists, as this
would require a more detailed knowledge of the behavior of the matrix coefficients.
It may be that one can take other continuum limits that lead to different structures.
As an example, suppose that we define instead of zk =

∑
l δl,l+k the following ‘shift’

operators for α = 0 . . . s− 1

Z(k)
α =

∑
l=αmod s

δl,l+k (6.2)

In the continuum limit, we replace Z(k)
α by Eα,α+ke

k∂ where Eij is the s× s matrix
with 1 in its (i, j)-position and zeroes everywhere else, and α+k should be computed
modulo s. If we expand Q and P in terms of these new Z(k)

α , one can obtain matrix
differential operators if we tune the coefficients of the matrix model in an appropriate
way. The resulting models will probably be intimately related to multi-cut matrix
models as considered in [39].

A final remark concerns the w1+∞-constraints. If P and Q where just two co-
ordinates, the w1+∞-constraints would be related to the area-preserving diffeomor-
phisms of the (P,Q)-plane, leaving dP ∧ dQ invariant, as can be seen from (5.11)
and (5.12). It is not easy to see from this what the analog of the w1+∞-constraints
for finite matrices is. They should be related somehow to invariance under area
preserving diffeomorphisms of the (M1,M2)-plane. Because M2 is almost ∂/∂M1, a
candidate would be to study the Ward identities obtained by inserting Ma

1 (∂/∂M1)
b

into the matrix integral, in the same way as one obtains the Virasoro constraints
for the one-matrix model [40]. Very recently, this has been accomplished [41] by
inserting expressions of the form

∑
i,n εi(λi,n)a(∂/∂λi,n)b in the integral (2.2).
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Note Added
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After completion of this work we received [42, 43], where it is shown that (p, q)-
duality holds as long as one puts the ti with i > p+ q in 5.15 equal to zero. In this
case, the order of P in 5.17 will not exceed p and one can perform a basis transforma-
tion of VL, together with a transformation P → cf−1Pf and Q→ 1

c
f−1Qf for some

constant c and some function f , to put P in the form P = Lp. This interchanges
the role of P and Q and amounts to a nonlinear transformation of the ti in 5.15.
We also received [44], in which the critical potential 3.5 for the (p, p + 1)-model is
also computed.
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