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We briefly review the construction of multi-centered black hole solutions in type IIA
string theory. We then discuss a decoupling limit which embeds these solutions in M-
theory on AdS3×S2×CY, and discuss some aspects of their dual CFT interpretation.
Finally, we consider the quantization of these solutions and applications to the wall-

crossing formula and the “fuzzball” proposal.
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1. Introduction

Since the initial success of string theory in accounting for the entropy of supersym-

metric black holes by counting states in a field-theory1 there has been an ongoing

effort to understand understand exactly what the structure of these microstates is

and how they manifest themselves in gravity. In addition, the entropy of a large va-

riety of black objects has been successfully reproduced by counting states in suitable

dual field theories. In many, but not all cases (the BMPV black hole being a notable

exception), black objects can be embedded in a spacetime which is asymptotically

AdS by taking a suitable decoupling limit. The relevant dual field theory is then

simply the one that one obtains via AdS/CFT duality.

Here, we will consider a large class of black objects, namely bound states of

four-dimensional black holes in type IIA string theory compactified on a Calabi-

Yau manifold. These are of interest, since they are the largest known family of su-

persymmetric black objects, they include supersymmetric black holes with a large

macroscopic horizon so that several fundamental issues in black hole physics can

be addressed, and they also include a large family of smooth solutions which are

candidate microstates of supersymmetric black holes, as explained later. Further-

more, these black hole bound states play an important role in trying to find a

mathematically precise formulation of the notion of bound states of D-branes.

In what follows, we will describe in some detail the nature of the four-

dimensional black hole bound states and a decoupling limit which embeds them

in AdS3×S2×CY, showing that they should be amenable to a description in a dual
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two-dimensional conformal field theory. We will then describe some features of the

space of solutions and its quantization, and finally conclude with some possible ap-

plications of our results. Most of what we describe is based on results presented in

Refs 2 and 3.

2. Review of Four-Dimensional Solutions

In four dimensions Bates and Denef4 have constructed general multi-centered BPS

solutions of generic N = 2 supergravity theories, and in Ref. 5 Bena and Warner

classify the full set of BPS solutions for the special case of of the five-dimensional

N = 2 supergravity theory which is the truncation of the N = 8 theory (i.e. the the-

ory is invariant under 8 instead of 32 supersymmetries). The latter require specifying

a four-dimensional base metric that is restricted to be hyperkähler. A particularly

appealing class of hyperkähler manifolds are Gibbons-Hawking or multi-Taub-NUT

geometries which are asymptotically R
3×S1 and for which we have explicit metrics.

Moreover, it has been shown that the five dimensional solutions constructed using

a Gibbons-Hawking base manifold6 correspond to the four dimensional ones via the

4d/5d connection7,8 making them an interesting class of solutions to study.

The five dimensional solutions, although relatively complicated, are determined

entirely in terms of 2b2 +2 harmonic functions where b2 is the second betti number

of the compactification Calabi-Yau, X,

H
0 =

∑

a

p0
a

|x − xa|
+ h0 , H

A =
∑

a

pA
a

|x − xa|
+ hA , (1)

HA =
∑

a

qa
A

|x − xa|
+ hA , H0 =

∑

a

qa
0

|x − xa|
+ h0 .

Here the coordinate vector xa gives the position in the spatial R
3 of the a’th cen-

ter with charge Γa = (p0
a, p

A
a , q

a
A, q

a
0 ) (note here A runs from 1, . . . , b2). The IIA

interpretation of these charges is (D6,D4,D2,D0) wrapping cycles of X while in M-

theory the charge vector is (KK,M5,M2,P). Note that the harmonics have 2b2 + 2

constants h = (h0, hA, hA, h0) that together determine the asymptotic behaviour of

the harmonics and hence the solutions. We will also have frequent occasion to use

the notation Γ = (p0, pA, qA, q0) to refer to the total charge Γ =
∑

a Γa.

The position vectors have to satisfy the integrability constraints

∑

b

〈Γa,Γb〉
|xa − xb|

= 〈h,Γa〉 , (2)

where we define the symplectic intersection product

〈Γ1,Γ2〉 := −p0
1q

2
0 + pA

1 q
2
A − q1Ap

A
2 + q10p

0
2. (3)

By summing (2) over a we find that the constants h have to obey 〈h,Γ〉 = 0. Note

that even once the charges of each center have been fixed there is a large space

of solutions that may even have several disconnected components. In particular,
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the constraint (2) implies that the positions of the centers are generally restricted,

defining a complicated moduli space of (generically) bound solutions.

The metric, gauge field and Kähler scalars of the solution are now given in terms

of the harmonics by

ds25d = 2−2/3Q−2
[

−(H0)2(dt+ ω)2 − 2L(dt+ ω)(dψ + ω0) + Σ2(dψ + ω0)
2
]

+2−2/3Qdxidxi , (4)

AA
5d =

−H
0

Q3/2
(dt+ ω) +

1

H0

(

H
A − LyA

Q3/2

)

(dψ + ω0) + AA
d ,

Y A =
21/3yA

√
Q

,

where x
i ∈ R

3 and ψ is an angular coordinate with period 4π, and the functions

appearing satisfy the relations

dω0 = ?dH0 ,

dAA
d = ?dHA ,

?dω = 〈dH,H〉

Σ =

√

Q3 − L2

(H0)2
, (5)

L = H0(H
0)2 +

1

3
DABCH

A
H

B
H

C − H
A
HAH

0 ,

Q = (
1

3
DABCy

AyByC)2/3 ,

DABCy
AyB = −2HCH

0 +DABC H
A
H

B .

Here the Hodge star is with respect to the flat R
3 spanned by the coordinates x

i

and DABC are the triple intersection numbers of the chosen basis of H2(X). Note

that the only equation in (5) for which there is no general solution in closed form is

the last one. In some cases, e.g. when b2 = 1, it is even possible to obtain a solution,

in closed form, to this equation.

From (4) and (5) it may seem that the solutions are singular if H
0 vanishes but

this is not the case as various terms in Q and L cancel any possible divergences due

to negative powers of H
0 (in fact, the BTZ black hole can, in the decoupling limit

introduced in the next section, be mapped to such a solution with H
0 vanishing

everywhere).

An additional complication is the fact that even solutions satisfying the con-

straint equation (2) may still suffer from various pathologies, most notably closed

time-like curves (CTCs). For instance, the prefactor to the dψ2 term in the metric

may become negative if Σ becomes imaginarya. Unfortunately there is no simple

aAs described in Ref. 8 this would also imply that the 4-dimensional metric associated with this

5-d solution (via the 4d/5d connection of Ref. 7) becomes imaginary as Σ appears directly in the

former.
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criterion which can be used to determine if a given solution is pathology free. To

fill in this gap Refs. 9 and 10 conjectured the physically well-motivated but mathe-

matically unproven attractor flow conjecture, a putative criterion for the existence

of (well-behaved) solutions.

An essential feature of these solutions is that they are stationary but not static.

In particular they carry quantized intrinsic angular momentum associated with the

crossed electric and magnetic fields of the dyonic centers9

~J =
1

2

∑

a<b

〈Γa,Γb〉~xab

rab
. (6)

This will be important when quantizing the solution space as it is a necessary

(but not sufficient) condition for the latter to be a proper phase space with a non-

degenerate symplectic form. A solution space with vanishing angular momentum

does not enjoy this property and must be completed to a phase space by the addition

of velocities (see e.g. Ref. 11).

3. Decoupling

To study the solutions described above using AdS/CFT we need to find a suitable

decoupling limit. Such a limit indeed exists and it can be taken in any proper

N = 2 theory, yielding an AdS3×S2 near horizon geometry 3. This decoupling

limit only works for microstate solutions whose total charge does not contain any

overall D6/KK-monopole charge so the relevant CFT is essentially the MSW CFTb.

Although the latter is not under very good control it is nonetheless possible to

determine, from the asymptotics of a given geometry, the CFT quantum numbers

of the corresponding state. It is also possible to use general CFT properties to

determine various quantities such as the number of states in a given charge sector.

It would, of course, be desirable to make progress in understanding this CFT as

this may yield significant insight into the microstate geometries.

In 3 the decoupling limit of the solutions described above is defined by taking

`5 → 0 (`5 is the 5-d plank length) while keeping fixed the mass of M2 branes

stretched between the various centers and wrapping the M -theory circle. In doing

so we also fix the volume of the Calabi-Yau and the length of the M -theory circle,

R, as measured in 5-d plank units. Since the mass of such membranes is given by

mM2 ∼ R∆x/`35, the coordinate distances between the centers, ∆x, must be rescaled

as `35. Alternatively, we can see this limit as a rescaling of the 5-d metric under which

the Einstein part of the action is invariant.

We now define new rescaled coordinates, xi, and harmonic functions, H, as

xi = `−3
5 x

i H = `
3/2

5 H (7)

bThe “MSW” CFT is the theory that arises as the low-energy description of M5-branes wrapping

an ample divisor in the Calabi-Yau. It is an N = (0, 4) superconformal field theory and it owes its
name to the three autors of Ref. 12.
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By restricting to the region of finite xi we are essentially keeping the mass of trans-

verse, open membranes fixed while rescaling the original coordinates, x
i. One can

see that, in these new variables, the structure of the solution (in terms of the har-

monics) does not change in the decoupling limit except for an overall scaling of the

metric by a factor of `−2
5 . The rescaled harmonics do take a new form, however,

H0 =
∑

a

p0
a

|x− xa|
, HA =

∑

a

pA
a

|x− xa|
, (8)

HA =
∑

a

qa
A

|x− xa|
, H0 =

∑

a

qa
0

|x− xa|
− R3/2

4
.

In particular note that all the constants have disappeared except the D0-brane con-

stant which now takes a fixed value. Related to this is the fact that the asymptotic

value of the moduli are forced to the attractor point, Y A ∼ pA (this corresponds to

sending the 4-d Kähler moduli to JA = ∞ pA).

Recall that the coordinate locations of the centers must satisfy the integrability

constraint (2) and that this constraint depends on the value of the constants in the

harmonic functions. As a consequence it is possible that, in taking the decoupling

limit, some solutions cease to exist. Furthermore, even if a set of charges admits a

solutions that satisfies the constraint equations in the decoupling limit the solution

may develop other pathologies such as CTCs.

The decoupled solutions are asymptotically AdS3xS2 and by studying the sub-

leading behavior of the metric we can read off that

L0 =
(pA qA)2

2p3
− q0 +

p3

24
, (9)

L̃0 =
(pA qA)2

2p3
+
p3

24
.

and that the SU(2) R-symmetry charge associated with a solution is equal to the

angular momentum defined in (6). This charge plays a distinguished role in the

quantization of the system as its presence is necessary in order to have a non-trivial

symplectic form on the phase space.

4. Quantization

Next, we would like to quantize the phase space of supergravity solutions described

above directly. The quantization we will perform will be quite general in that it

will cover the original 4-d multi-center black hole configurations4, their 5-d uplift

discussed in section 2, and the decoupled version of the latter (which can be related

to the (0,4) CFT). The first step in the quantization procedure is to determine the

symplectic form on the phase space of solutions. This can, in principle, be derived

from the supergravity action as was done, for instance, in Ref. 13. In this case,

however, it is far more tractable to take a different approach3. As discussed in

Ref. 14, the four dimensional multi-centered solutions can also be analyzed in the
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probe approximation by studying the quiver quantum mechanics of D-branes in a

multicentered supergravity background. Moreover, a non-renormalization theorem14

implies that the terms in the quiver quantum mechanics Lagrangian linear in the

velocities do not receive corrections, either perturbatively or non-perturbatively. We

can use this fact to calculate the symplectic form in the probe regime and extend it

to the fully back-reacted solution; this because, for time-independent solutions, the

symplectic form depends only on the terms in the action linear in the velocity.

In Ref. 3 the symplectic form on the solution space is determined. The result is

that

Ω̃ =
1

4

∑

p6=q

〈Γp,Γq〉
εijk(δ(xp − xq)

i ∧ δ(xp − xq)
j) (xp − xq)

k

|xp − xq|3
. (10)

This is a two form on the (2N−2)-dimensional solution space which is a submanifold

of R
3N−3 defined by (2). Moreover, one can show that, on this submanifold, this

form is closed and, in the cases we will investigate below, non-degenerate. Thus it

imbues the solution space with the structure of a phase space.

Although the constraint equations (2) are invariant under global SO(3) rotations

these are nonetheless (generically) degrees of freedom of the system and this is

reflected in the symplectic form. If we contract (10) with the vector field that

generates rotations around the 3-vector ni (i.e. we take δxi
pq = εijknjxk

pq) then

the symplectic form reduces to

Ω̃ → niδJ i (11)

where J i are the components of the angular momentum vector defined in (6).

This is nothing more than the statement that the components J i are the conju-

gate momenta associated to global SO(3) rotations. In general the symplectic form

on any of our phase spacesc will have terms like the above coming from the global

SO(3) rotations, in addition to terms depending on other degrees of freedom. As

advertised (11) implies that solution spaces with any J i = 0 will have a degenerate

symplectic form and will therefore not constitute a proper phase spaced.

4.1. Quantizing the Two-center Phase Space

The inter-center position of a two center configuration is fixed in terms of the

charges and the moduli at infinity but the axis of the centers can still be rotated so,

neglecting the center of mass degree of freedom, we are left with a solution space

cThis does not hold for solutions spaces with unbroken rotational symmetries, such as solution

spaces containing only collinear centers or only a single center. In these cases some SO(3) rotations

act trivially, do not correspond to genuine degrees of freedom and do not appear in the symplectic

form.
dAs mentioned in footnote c this does not hold in the two center case where some SO(3) directions

decouple. There are also potential subtleties with solution spaces where J = 0 at a single point.
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that is topologically a two-sphere with diameter

x12 =
〈h,Γ1〉
〈Γ1,Γ2〉

. (12)

The symplectic form (10) is proportional to the standard volume form on the two-

sphere and is entirely of the form (11) (note here that, as mentioned in footnote c,

collinearity of the solution implies that one U(1) ⊂ SO(3) decouples). In terms of

standard spherical coordinates it is given by

Ω̃ =
1

2
〈Γ1,Γ2〉 sin θ dθ ∧ dφ = |J | sin θ dθ ∧ dφ. (13)

We can now quantize the moduli space using the standard rules of geometric quan-

tization, and we find the usual 2|J | + 1 Landau levels on the sphere. However, we

have been a bit sloppy by ignoring the fermionic degrees of freedom in the theory.

Including those changes the number of states to 2|J | 3.

4.2. Quantizing the Three-center Phase Space

The phase space of the three center case is four dimensional. Placing one center at

the origin (fixing the translational degrees of freedom) leaves six coordinate degrees

of freedom but these are constrained by two equations. This leaves four degrees of

freedom, of which three correspond to rotations in SO(3) and one of which is related

to the separation of the centers. We will take as coordinates three angular variables

θ, φ, σ on SO(3) plus the norm of the angular momentum j. The symplectic form

in these coordinates is (see Ref. 3 for a derivation):

Ω̃ = j sin θ dθ ∧ dφ− dj ∧Dσ (14)

with Dσ = dσ−A, j = | ~J |, and dA = sin θ dθ∧dφ, so that A is a standard monopole

one-form on S2. The gauge field A implements the non-trivial fibration of σ over

the S2. A convenient choice for A is A = − cos θ dφ so that finally the symplectic

form can be written as a manifestly closed two-form

Ω̃ = −d(j cos θ) ∧ dφ− dj ∧ dσ. (15)

The angular momentum spans a range j ∈ [j−, j+] and the solution space is a toric

Kähler manifold which turns out to be equal to the second Hirzebruch surface F2.

Counting the number of states is straightforward using the toric polytope and after

proper inclusion of the fermionic degrees of freedom we obtain

N = (j+ − j−)(j+ + j−). (16)

5. Applications and Conclusions

To conclude, we mention a few applications of the above results.
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• Entropy Enigma: the entropy enigma10 is the puzzle that for suitable large

charges, configurations consisting of bound states of two or more black holes

entropically dominate single center black holes. This goes against the lore

that single center black holes should dominate the entropy for large charges.

After taking the decoupling limit, it turns out that the entropy enigma

precisely appears whenever the radius of a single center black hole becomes

less than the curvature radius of AdS3. One can show that there then is a

supersymmetric version of the Gregory-Laflamme transition and that the

black hole localizes on the S2, removing most of the mystery surrounding

the entropy enigma2.

• Wall Crossing: When the moduli of the Calab-Yau are varied, bound states

of black holes can appear and disappear from the space of solutions. When

this happens the moduli are at a wall of marginal stability and the number

of boundstates jumps. The amount by which they jump is given by the wall-

crossing formula10 which contains two components: the entropy of the black

constituents that make up the bound state, plus an overall factor which is

the entropy in the wave function that makes up the bound state. One can

show that both in the two-centered case and the three-centered case the

number of states obtained from our quantization procedure matches exactly

with the wall-crossing formula, a highly non-trivial check of the consistency

of the whole framework.

• Fuzzball Proposal: For suitable choices of the charges of all the centers,

in particular if all the charges are those of single D6 or anti-D6 branes

with only world-volume fluxes turned on, the supergravity solutions are

completely smooth. The states obtained from the quantization procedure

are therefore candidate fuzzball microstates for large supersymmetric black

holes with the same overall charges. Though many smooth solutions and

fuzzball states can be found in this way, it remains for now unclear whether

there are enough to account for a significant fraction of the black hole

entropy, or even whether one can construct states which could be considered

typical. Clearly, much more work is needed in this direction.
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