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Abstract. Various exact two-dimensional conformal field theories with AdS2d+1

target space are constructed. These models can be solved using bosonization techniques
and are examples of a more general novel type of coset construction. Some of them can
be used to build perturbative superstring theories with AdS backgrounds, including
AdS5.

1. Introduction

In view of the relation between conformal field theories and string theory on AdS

spaces (for a review see [1]), the latter have attracted considerable interest. The main

problem in studying them is that they generically involve RR backgrounds, which makes

quantization quite difficult.

Quantization in the NSR [3] and Green-Schwarz [2] formalism essentially leads to

perturbation theory around flat space, and the calculations are as difficult as those

that one would need to do in order to compute higher order corrections involving

RR fields to the supergravity effective action. An alternative approach involves the

hybrid formulation of string theory due to Berkovits (see the talk by N. Berkovits in

these proceedings and references therein [4]). This formulation has been worked out for

AdS2×S2 [5] and AdS3×S3 [6], and is a good starting point to do perturbation theory.

The hybrid formulation involves theories that look like a WZW theory, but with an

unconventional Wess-Zumino term. The only exception is the theory on AdS3×S3 with

NS fluxes, which is described by a PSU(2|2) WZW theory coupled to ghost-like fields.

This theory can be quantized using exact conformal field theory techniques. Turning

on RR fields corresponds to changing the coefficient in front of the Wess-Zumino term.

Although the resulting sigma model is still exactly conformal, it is not known whether

there is a corresponding exact conformal field theory description.

Having an exact conformal field theory description is clearly advantageous,

especially if we are interested in questions that go beyond perturbation theory. Here

we will summarize the construction of exact conformal field theories with AdS2d+1
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backgrounds described in [7], study their symmetries and compute their central charges.

All these theories are holographic, and we expect that they can be continuously deformed

to AdS backgrounds with RR fields. Perturbation theory around these exact conformal

field theories would presumably lead to a much better description of string theories with

RR backgrounds than perturbation theory around flat spaces, since the starting point

is already holographic and involves AdS spaces.

2. From AdS3 to AdS2d+1

The simplest way to describe the construction of the exact conformal field theories with

AdS2d+1 backgrounds is to start with the well-known case of the SL(2, R) WZW model.

The conformal sigma model with AdS3 target space is given by the WZW action for

SL(2, R) in the Gauss parametrization and reads [8]

S =
k

2π

∫
d2z (∂φ∂̄φ+ e2φ∂γ̄∂̄γ). (1)

This theory has an sl2 current algebra, and describes Lorentzian or Euclidean AdS3

depending on whether we view γ and γ̄ as independent and real, or as each others

complex conjugate, respectively. By introducing auxiliary fields β, β̄ and rescaling φ the

action can be rewritten as

S =
1

4π

∫
d2z (∂φ∂̄φ+ β∂̄γ + β̄∂γ̄ − ββ̄e−2φ/α+ − 2

α+

φ
√
gR) (2)

where α+ =
√

2(k − 2). This latter action describes a free field φ with some background

charge and two free β, γ systems, perturbed by the exactly marginal operator V =

−ββ̄e−2φ/α+ . The operator V is of the form SS̄, with S = βe−2φ/α+ a dimension

(1, 0) operator known as the screening current. The contour integral of S is known

as the screening charge of the theory. The only holomorphic operators in the theory

that commute with
∮
S are those constructed out of the sl2 currents. In addition, the

correlation functions of the theory can, after an appropriate number of screening charges

have been inserted, be computed in the free field approximation.

To write down sigma models for AdS2d+1, we simply take d copies of the single

fields γ, γ̄, β, β̄, and write down the same actions as above. The background charge in

(2) remains unchanged in order for the perturbations to be exactly marginal. However,

if we integrate out the fields β, β̄ we now generate a nonzero background charge in

(1), because each pair of β, β̄ contributes +2/α+ to the background charge. Thus, the

appropriate generalizations of (1) and (2) read

S =
k

2π

∫
d2z (∂φ∂̄φ+ e2φ∂γ̄r∂̄γr) +

1

2π

∫
d2z (d− 1)φ

√
gR. (3)

and

S =
1

4π

∫
d2z (∂φ∂̄φ+ βr∂̄γr + β̄r∂γ̄r − βrβ̄re−2φ/α+ − 2

α+

φ
√
gR) (4)

where r = 1, . . . d is summed over, and α+ =
√

2(k − 2d).
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In (3) we recognize a standard sigma model on AdS2d+1 with nonzero B field,

B = e2φdγr∧dγ̄r, and linear dilaton Φ = (d−1)φ. One can verify that these background

fields solve the (lowest order in α′) supergravity equations of motion.

The exact central charge follows from the free field representation (4), and is given

by

c = (2d+ 1) +
6

k − 2d
. (5)

3. Reality Conditions, Holography, and Symmetries

The string backgrounds described by (3) describe Euclidean AdS2d+1 geometries if γr
and γ̄r are each others complex conjugates, and Lorentzian AdS2d+1 geometries if we take

one pair of γr, γ̄r real and independent. The B field is real in the Lorentzian directions,

and imaginary in the Euclidean directions. It is rather awkward to have imaginary

B-fields from the space-time point of view. However, the world-sheet conformal field

theory is perfectly well-defined for such B-fields, as the example of Euclidean AdS shows.

Thus, we will simply view the string theory as defining a set of correlation functions of

some boundary theory. It would be interesting to know whether this boundary theory

is unitary or not. But even if it is not, the AdS2d+1 sigma model may still contain

important and interesting information about the unitary deformations of the boundary

theory.

In the Euclidean case the B-field defines a complex structure on the boundary

of AdS2d+1. From this it is clear that the Lorentz group SO(2d) of the boundary is

broken to at most U(d). A more careful analysis shows that, ignoring the dilaton, the

background preserves (d + 1)2 symmetries of the full SO(2d + 1, 1) isometry group of

AdS2d+1. In addition, there are d+ 1 holomorphic and d+ 1 antiholomorphic currents.

It would be interesting to analyze the complete chiral algebra of the theory.

If we approach the boundary of AdS2d+1, the description in terms of free fields given

by (4) becomes very useful. Both the string coupling and the perturbation become very

small near the boundary. On the other hand, it seems that the space-time theory

is strongly coupled near the boundary, because the string coupling goes to infinity.

However, the growth of the strength of the string interactions has to compete against

the rate at which points at fixed γ, γ̄ separate near the boundary. The situation has

some similarities to the one discussed in [9]. To analyze these competing effects, it is

better to pass to the Einstein frame. In the Einstein frame, the metric on AdS2d+1

becomes

ds2
E = e2φ/(2d−1)(e−2φdφ2 + dγrdγ̄r). (6)

Because of the positive power of eφ in front of this expression, distances on the boundary

parametrized by γr, γ̄r go to infinity as φ goes to infinity, and therefore we expect

holographic behavior for large φ as in [9].
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4. Superstrings with AdS2d+1 Backgrounds

Any bosonic sigma model can classically be promoted to a NSR type sigma model with

N = (1, 1) supersymmetry, by rewriting it in terms of superfields. If we apply this to

(4) and work out the component formulation of the result, we obtain

S(AdS2d+1, α+) =
1

4π

∫
(− λL∂̄λL + ∂φ∂̄φ+ ∂λRλR

− σ̄r∂ψ̄Rr + β̄r∂γ̄r − σr∂̄ψLr + βr∂̄γr

− e−2φ/α+(β̄r −
2

α+

λRσ̄r)(βr −
2

α+

λLσr)

− e−4φ/α+σrσ̄rσsσ̄s −
2

α+

φ
√
gR).

(7)

Here, λ, ψ, σ are fermionic degrees of freedom.

If we want to construct a critical string background, we also need to correct central

charge. The central charge of

S(AdS2d1+1, α+) + S(AdS2d2+1, iα+) (8)

equals c = 3(d1 + d2 + 1), so a critical string background is obtained e.g. by taking

d1 = d2 = 2. Notice that the second term in (8) has an imaginary background charge

iα+. In the case of S(AdS3, iα+), it is precisely this theory combined with an analytic

continuation φ → iφ that has been used to compute the correlation functions of the

SU(2) WZW theory, although the action does not resemble that of the SU(2) WZW

theory at all. This is all very suggestive, and we expect that the analytic continuation

of the S(AdS2d+1, iα+) theory is closely related to the theory of strings propagating on

the sphere S2d+1.

For the usual NSR strings, the spacetime supersymmetry generators are constructed

by bosonizing the fermions, and involve a factor eϕ/2 where ϕ comes from the bosonized

superghosts. Similar operators can be constructed for (8), but there is a new ingredient,

namely the zero modes of γr and γ̄r are well-defined and we can multiply any of the

usual supersymmetry generators by an arbitrary function of these zero modes and still

get a candidate supersymmetry generator with the right conformal weight. However,

not all of these are good operators in the theory defined by (8). Good operators have

to satisfy additional requirements, namely the supersymmetry operators need to have

the right operator product expansions with the generators of the N = 1 superconformal

symmetry of (7), and in addition they need to commute with the screening charges.

These conditions were analyzed in [7] and it was found that there are 2(d1 + 1)(d2 + 1)

supersymmetry generators that survive. In particular, for “AdS5 × S5” we find that

the theory has 18 supersymmetries. If we denote the RR ground states as usual with

five ± signs, then the nine left-moving ground states correspond to those combinations

(±,±,±,±,±) for which the first two signs are not both minus, the last two signs are

not both minus, and for which the product of all signs is +1.

One may wonder how it is possible to have a four dimensional theory with 18

supersymmetries. Usually, the number has to be a multiple of four, but this argument
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assumes unbroken SO(4) Lorentz invariance. In our case Lorentz invariance is broken

to U(2), and the number no longer needs to be a multiple of four.

5. A Novel Coset Construction

The AdS2d+1 sigma model given by (3) is an example of the sort of sigma models that

can be obtained by means of a novel type of coset construction. Anti-de Sitter spaces

are homogeneous spaces of the form G/H, and it seems natural to construct conformal

field theories for such spaces using a coset construction. However, in the usual coset

construction we identify g ∼ hgh−1 rather than g ∼ hg, and the resulting space is

usually singular. Furthermore, its isometries form the group ZH × ZH , where ZH is

the centralizer of H in G. On the other hand, homogeneous spaces have a much larger

isometry group, namely ZH ×G. Thus usual cosets never describe homogeneous spaces.

The novel cosets also generically do not describe homogeneous spaces, but resemble

them more than usual cosets, and in particular they have more isometries than usual

cosets.

Hints for the existence of these novel cosets appeared in [10], where it was noticed

that given a group G and a subgroup H = H1 × H2 × ..., such that the levels of the

corresponding current algebras satisfy kG + cGV = kH1 + cH1
V = ..., one can attempt to

define some sort of “coset” theory, by getting rid of the degrees of freedom residing

in H. The basic idea of this construction is to do a partial bosonization of the G

currents, by expressing them in terms of the H currents and extra β, γ, φ systems, and

to subsequently set the H currents to zero. The partial bosonization is based on on

a Gauss-like decomposition G = G+HG0G− of G, explicit expressions for the currents

and screening operators are given in [11].

In order to remove the H degrees of freedom, it would be nice to do some sort of

gauging of the theory. However, we have not been able to find a gauging that reproduces

the novel coset construction (see also the comments in the final section). Alternatively,

one could attempt to impose H = 1 by means of some BRST procedure. This is

problematic, because the conformal weight of H is nonzero in the quantum theory, so

that H and 1 do not have the same conformal weight. The only way we found to get

rid of H is to put H = 1 by brute force, by subsequently bosonizing the theory and by

adjusting the background charges so that the screening charges have precisely conformal

weight one. It turns out that there is always a unique answer for the background charges

that works. Let us illustrate this with the example of SL(3)/SL(2). We first write

G =


1 γ̄1 γ̄2

0 1 0

0 0 1

H


e−2φ 0 0

0 eφ 0

0 0 eφ




1 0 0

γ1 1 0

γ2 0 1

 (9)

where H is an SL(2) element embedded in the bottom right 2× 2 block. Next we drop

H and evaluate SWZW [G+G0G−], and obtain

S =
1

2π

∫
(3∂φ∂̄φ+ e3φ(∂γ̄1∂̄γ1 + ∂γ̄2∂̄γ2)). (10)



String Theory on AdS Backgrounds 6

Bosonization of this theory leads to the same action as the one given in (4), but with

the background charge −2/α+ replaced by −4/α+. In the final step we replace −4/α+

by −2/α+, so that the screening charges have conformal weight one, and we recover the

action given in (4) with d = 2.

More generally, the novel cosets based on SL(d+ 1)/SL(d) yield the sigma models

with AdS2d+1 backgrounds given in (3). General G/H models have a holomorphic

current algebra corresponding to the group G+G0, and an anti-holomorphic current

algebra corresponding to G0G−, and dimG+dimG0 isometries. The group of isometries

does not contain a subgroup isomorphic to G (and therefore the target spaces are not

the homogeneous spaces G/H, but they could be a different homogeneous space), but

does contain a subgroup isomorphic to H.

6. Conclusions

One interesting set of novel cosets is obtained by applying the general construction

to cosets of supergroups, especially in view of the results of [5, 6]. For example,

SL(3|3)/SL(2)XSL(2) yields a sigma model with target space AdS5 × S5, 18 anti-

commuting scalars, central charge c = −8, and with both bosonic and fermionic B fields

turned on. The number 18 is similar to the number of space-time supersymmetries that

appeared in the NSR formulation of “AdS5×S5”, and it is tempting to think that one is

some kind of Green-Schwarz reformulation of the other (although the supercoset does not

have any κ-symmetry). Another example is SL(4|4)/SP (2)2, which also has AdS5×S5

target space, 32 anti-commuting scalars (again suggesting a relation to the GS string)

and c = −22. At this stage, these supercosets are just conformal field theories, and it is

not known how to promote them to full-fledged string theories and in particular what

the space-time interpretation of these theories is. Once their space-time interpretation

is understood, one could analyze whether they do in fact describe theories with some

RR background turned on (we suspect that RR backgrounds are related to fermionic

screening charges) or whether one needs to perturb the theories away from the “WZW”

point in order to turn on RR backgrounds.

We already mentioned that it would be desirable to understand the holographic

properties and unitarity of the AdS sigma models better, and to what extend they

are really exactly solvable conformal field theories. It would also be helpful to know

whether they arise as the near-horizon limit of some brane configuration. The only

brane configurations with only NS charges are configurations of fundamental strings

and NS fivebranes, and a suitable delocalized superposition of them corresponds to the

AdS sigma models. The meaning of these configurations is, however, rather obscure.

Recently, there was considerable interest in noncommutative Yang-Mills theories

that arise on branes in the presence of B-fields, and one naturally wonders whether

there is a relation between our AdS sigma models and noncommutative gauge theories.

The B-field that appears in (3) is proportional to e2φ, whereas the supergravity solution

for D3 branes in the presence of a background B field [12] involves B fields of the form
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B = ae4φ/(1 + be4φ), which behaves differently from e2φ for both large and small φ.

Therefore the AdS sigma models are at most relevant for some intermediate regime.

So far we only described AdSp spaces with odd p. It should also be possible

to construct sigma models for theories involving AdSp with p even. For example,

AdS2 × S2 × S1 with B-field given by dB = dθ ∧ (dvol(S2) + dvol(AdS2)), with θ

the angular coordinate along S1 and dvol indicating the volume form, is a solution of

the supergravity equations of motion and should be described by some exact CFT.

The analysis of the AdS sigma models would be simplified considerably if we would

know how to realize them in terms of e.g. gauged WZW models. In fact, many

exact solutions of string theory can be obtained from various gauged WZW models

(see e.g. [13] and references therein). An interesting set of gauged WZW theories are

the following. Write H = H+H0H−. One can now easily construct a gauged WZW

theory where one gauges H+ from the left, H− from the right, and one gauges H0 either

axially or vectorially. As far as we know, these gauged WZW models, which we could

also denote by G/H, have not been considered in the literature, and are much closer

to our novel coset than the usual coset construction. However, by looking at a simple

example one quickly sees they do not give rise to AdS sigma models. A derivation of the

AdS sigma models directly from WZW theory remains an interesting open problem‖.
Finally, what about string theories on AdS5 × S5 with RR flux¶? One way to

construct such a string theory could be as follows. First one rewrites the AdS5 × S5

sigma model with NS flux in terms of the ten-dimensional U(5) covariant hybrid variables

that were introduced in [14]. Subsequently one deforms the theory by turning on a RR

background and by turning off the NS background. Since the theory already has the

right target space geometry, it should be considerably easier to do this than to deform

the theory starting from flat space. The U(5) covariant hybrid formulation has five

anticommuting scalars, and an interesting candidate for the final theory is that it is a

deformation of the novel coset GL(3|3)/GL(2|2), but more work remains to be done to

find out whether this can be made more precise.
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‖ One way to see why the AdS sigma models do not correspond to ordinary WZW cosets is by looking
at their central charge (5), which can not in any obvious way be written as the difference of the central
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¶ Another interesting string theory to think about is the description of string theory on AdS3×S3×S3

with RR flux, for which one suspects a close relation to the D(2, 1, α) WZW theory.
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