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Abstract

We give an exact solution of a recently proposed self-organized critical model of biological evo-

lution. We show that the model has a power law distribution of durations of co-evolutionary

“avalanches” with a mean field exponent 3/2. We also calculate analytically the finite size effects

which cut off this power law at times of the order of the system size.
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Introduction. Recently, a simple dynamical model for Darwinian evolution on its slowest

time scale was introduced by Bak and Sneppen [1, 2]. The model describes an ecosystem of

interacting species which evolve by mutation and natural selection. The model is abstract

and focusses on only a few important aspects of evolution. It should be thought of as a

coarse grained description of biological evolution, i.e. a description on the largest time scale.

It provides a possible explanation for the characteristic intermittency of actual evolution,

called punctuated equilibrium by Gould and Eldredge [3, 4], and the apparent scale invariance

of extinction events described by Raup et al. [5–7]. Its principal idea is that, if life on Earth

is a self-organized critical dynamical system [8] then intermittency and scale invariance are

universal, hence robust consequences that do not depend on details of its dynamics, and so

would be present also in much more complicated systems.

The models described in [1, 2] retain the salient features of species evolving by adaptive

walks in rugged fitness landscapes and interacting by affecting the shape of each others

landscapes, as proposed by Kauffman [9] and analysed in [10, 11]. Even at this level of

abstraction details are ignored, however. Thus the state of an ecosystem of N species is

characterized simply by N real numbers (xi), i = 1, 2, . . . , N. The model is completely

specified by the following dynamical rule: at each time step, the xi with minimal value as

well as K − 1 others chosen at random, are replaced by K new random numbers.

The value of xi characterizes the effective barrier towards further evolution experienced

by the ith species while it exists at a local fitness maximum. The dynamics consists in

selecting the species with the lowest barrier value—it is the first to evolve—and replacing

that value, and those of K−1 other species, with new values. For simplicity, the new values

are assumed random, all drawn from the same uniform distribution in the interval [0, 1]. The

specification of which K − 1 other species are affected by change in a given species, defines

the interactions between species. Here, as in [2] and [11], we assume that the K − 1 other

species are a random selection among the N − 1 other species in the ecology. We assume

this randomness is annealed: the K − 1 species affected by change in a given species are

chosen anew every time it changes. This assumption facilitates calculations and does not

seem less realistic than other choices.

In the present paper we analyse the model for its mathematical consequences, with little

mention of their biological interpretation, using random walk techniques. We first treat the

simplest case of K = 2 in some detail, then briefly discuss the extension to the general case
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towards the end. We calculate the distribution of the duration of avalanches for an infinite

system and find that the system has the mean field exponent found in [2]. We also calculate

the finite size effects which appear as a cutoff in the distribution of avalanche life times.

Master equations. A simple quantity one can consider for this system is the number n

of variables xi which have values less than a fixed value λ. Let Pn(t) denote the probability

that this is the case at time t. ¿From the definition of the model one can then write the

following master equation for Pn:

Pn(t+ 1) =
N∑
m=0

Mn,mPm(t) (1)

where the matrix Mn,m for n ≥ 1 is given by

Mn+1,n = λ2 − λ2(n− 1)/(N − 1)

Mn,n = 2λ(1− λ) + (3λ2 − 2λ)(n− 1)/(N − 1)

Mn−1,n = (1− λ)2 + (−3λ2 + 4λ− 1)(n− 1)/(N − 1)

Mn−2,n = (1− λ)2(n− 1)/(N − 1), (2)

and for n = 0:

M0,0 = (1− λ)2 ; M1,0 = 2λ(1− λ) ; M2,0 = λ2. (3)

We note from Eq. (2) that if Pn(0) = 0 for n > N , this property remains true at any later

time.

One defines a λ-avalanche as the evolution taking place between two successive times

where the number n vanishes. Thus if one lets Qn(t) denote the probability of having n

numbers xi less than λ, given that the avalanche started t time steps ago, Qn(t) satisfies the

same master equation as Pn(t) does, but with M0,n replaced by 0. The probability q(t) of

avalanches having duration t is then the probability that an avalanche terminates at time t,

q(t) = (1− λ)2
(
Q1(t− 1) +

1

N − 1
Q2(t− 1)

)
, (4)

assuming it began at time t = 0. Figure 1 shows exact values of q(t) obtained by iterating

the master equation for several choices of N . One sees that q(t) is a power law t−3/2 at early

times with an N -dependent cutoff at late times. As N →∞ only the power law is seen.

Several other quantities could be obtained from the knowledge of Pn or Qn. For example,

one can calculate the probability distribution for the n’th smallest value x(n) of the N
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variables (xi) in the steady state,

Probability(x(n) = λ) = − ∂

∂λ

n−1∑
m=0

Pm(t). (5)

One could also calculate from the Qn(t) the maximum value of n reached during an

avalanche and the total number of different variables involved in an avalanche.

Case of N =∞. The limit N →∞ makes the analytical approach much easier. We first

treat the case of an infinite system and then discuss how the limit N → ∞ is approached.

If N →∞, n being kept fixed, Eqs. (1–3) read

P0(t+ 1) = (1− λ)2 [P0(t) + P1(t)] , (6)

P1(t+ 1) = 2λ(1− λ) [P0(t) + P1(t)]

+(1− λ)2P2(t), (7)

P2(t+ 1) = λ2 [P0(t) + P1(t)]

+2λ(1− λ)P2(t) + (1− λ)2P3(t), (8)

and for n ≥ 3

Pn(t+ 1) =

λ2Pn−1(t) + 2λ(1− λ)Pn(t) + (1− λ)2Pn+1(t). (9)

These equations describe a biased random walk with a reflecting boundary a n = 0. As

t→∞, Pn(t) evolves to the time-independent solution to this equation. When λ < 1/2 this

solution is a geometric series for n ≥ 2,

P0 = 1− 2λ (10)

P1 = (1− 2λ)((1− λ)−2 − 1) (11)

Pn = (1− 2λ)λ2n−2(1− λ)−2n. (12)

We see that the assumption n = O(1) is satisfied where Pn is not exponentially small,

provided λ remains fixed at a value less than 1/2 in the limit N → ∞. As λ → 1/2, all

the Pn → 0, meaning that the probability that n remains of order 1 vanishes. The scaling

limit λ → 1/2 and N → ∞ is discussed below. For λ > 1/2, Eqs. (6–9) predict that

Pn → 0 as t→∞, and this is because the distribution in the steady state is peaked around

n = (2λ− 1)N .
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For λ < 1/2, one can also calculate q(t) by using the biased random walk picture. An

avalanche started at time t = 0 has P0(0) = 1, hence has initial condition Q1(1) = 2λ(1−λ),

Q2(1) = λ2, Qn(1) = 0 for n ≥ 3. Using the method of images [12, p. 236], one finds

Qn(t) =
2n(2t+ 1)! λt+n−1(1− λ)t−n+1

(t+ n+ 1)! (t− n+ 1)!
(13)

Using Eq. (4) with N = ∞, one gets for the probability that an avalanche terminates at

time t:

q(t) =
(2t)!

(t+ 1)! t!
λt−1(1− λ)t+1 . (14)

It is easy to calculate the generating function of q(t),

∞∑
t=1

xtq(t) =
1− 2xλ(1− λ)− [1− 4xλ(1− λ)]1/2

2λ2x
. (15)

One can then check that q(t) is normalised and that the average value of t diverges as

λ→ 1/2,

〈t〉 =
∞∑
t=1

tq(t) = (1− 2λ)−1. (16)

For large values of t, the asymptotic form of Eq. (14) is

q(t) ' (1− λ) [4λ(1− λ)]t

t3/2 λ
√
π

, (17)

and when λ → 1/2 this gives a power law with the usual mean field exponent 3/2 of

self-organized criticality [2].

Scaling limit N → ∞ and λ → 1/2. As λ → 1/2, finite size effects start to become

important. We consider now the scaling limit

N →∞ with λ =
1

2
+

α√
N
. (18)

In this limit, Pn becomes a function of n/
√
N

Pn =
1√
N
f(

n√
N

) (19)

and by requiring that Eq. (19) is a steady state solution of Eq. (1), one finds for large N

that f should satisfy
1

4

d2

dx2
f + (x− 2α)

d

dx
f + f = 0 (20)
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which leads to the following expression for the steady state probabilities Pn in the scaling

regime (18):

f(x) = e−2(x−2α)2
(∫ ∞

0
dye−2(y−2α)2

)−1

. (21)

In the scaling regime (18), the distribution of durations of avalanches can also be calcu-

lated. The distribution Qn(t) defined as above (see paragraph between Eq. (4) and Eq. (5))

has the scaling form

Qn(t) =
1√
N
g(

n√
N
,
t

N
). (22)

Qn(t) satisfies the same equation as Pn(t) except at the boundary n = 0. Consequently, one

can substitute the scaling form of Qn(t) in the master equation, and find that the function

g(x, τ) satisfies
∂g

∂τ
= g + (x− 2α)

∂g

∂x
+

1

4

∂2g

∂x2
. (23)

We shall only discuss the critical case α = 0 here, because this makes the solution of Eq. (23)

easier. In the limit τ → 0 the solution must coincide with the expression (13) in the limit

1� n� t, i.e. with

g(x, τ) =
4x

√
πτ 3/2

√
N

exp(−x2/τ) (24)

With this initial condition, the solution of Eq. (23) is

g(x, τ) =
4x

√
π
√
N

(
2

1− e−2τ

)3/2

e−τe−2x2/(1−e−2τ ). (25)

Using Eq. (4), one then finds

q(t) =

√
8√

πN3/2

e2t/N

(e2t/N − 1)3/2
. (26)

For t/N � 1 this result is identical to Eq. (17) at λ = 1/2, as it should be. Figure 2 shows

the same results as Figure 1, but in a scaling form, i.e. t3/2q(t) versus t/N . As N increases,

the results agree better and better with the scaling form (26). The average duration of an

avalanche at the critical point follows also from Eq. (26),

〈t〉 =
∑
t

q(t) t '
√

2πN. (27)

Case of generic K-value. Let us now discuss briefly the model for general K. The

matrix elements Mn,m in Eq. (1) become for m ≥ 1

Mn,m =
N∑
k=1

Bn−m+k;KHk−1;K−1;m−1;N−1, (28)
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and for m = 0

Mn,0 = Bn;K . (29)

Here

Bk;K =

 K

k

λk(1− λ)K−k (30)

is the binomial distribution and

Hk−1;K−1;m−1;N−1 =

m− 1

k − 1


 N −m

K − k

/
 N − 1

K − 1

 . (31)

is the hypergeometric distribution [13, 26.1.21]. In Eq. (28) the hypergeometric distribution

gives the probability that K − 1 numbers randomly chosen among N − 1 yield k − 1 with

values less than λ when there are m − 1 such numbers among the N − 1. The binomial

distribution gives the probability that out of K numbers assigned equiprobable random

values between 0 and 1, n −m + k numbers are given values less than λ. Each value of k

denotes a different way that m values less than λ may change into n such values in a single

time step. We have everywhere used the convention, or analytical extension, K

k

 = 0 for k ≤ −1 or k ≥ K + 1, k integer. (32)

For n = O(1) and N → ∞, the limit of the master equation is obtained by using

Hk−1;K−1;m−1;N−1 = δk,1 in that limit, hence the generalization of Eqs. (6–9) is

Pn(t+ 1) = Bn;KP0(t) +
min(K,n)∑
k=0

Bk;KPn−k+1(t). (33)

As t → ∞, Pn(t) evolves to the time-independent solution to this equation, which can be

calculated using generating functions. For λ < 1/K this solution is a sum of K−1 geometric

series for n ≥ 2,

P0 = 1−Kλ (34)

P1 = (1−Kλ)((1− λ)−K − 1) (35)

Pn = (1−Kλ)
K−1∑
k=1

(1− zk)(1− λ+ λzk)

1− λ− (K − 1)λzk
z−nk (36)

where (zk), k = 1, . . . , K − 1 are the K − 1 roots of the polynomial (1− λ+ λz)K − z which

differ from 1. These roots all have modulus larger than 1 for λ < 1/K, so Pn decreases
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exponentially fast with increasing n. Thus the assumption n = O(1) is satisfied, provided λ

remains less than 1/K in the limit N →∞. The critical value is λ = 1/K.

The calculation in the scaling limit done above for K = 2 is easily extended to generic

values for K. If in this case one defines α by

λ =
1

K
+

α√
N
,

one finds that Eq. (23) becomes

∂g

∂τ
= (K − 1)g + [(K − 1)x−Kα]

∂g

∂x
+
K − 1

2K

∂2g

∂x2
. (37)

By a rescaling of τ , x, and α, one recovers Eq. (23). As a consequence, we expect that for

a finite system the expression which generalizes Eq. (27) becomes, for λ = 1/K (hence for

α = 0)

〈t〉 = a(K)
√
N, (38)

where a(K) is a constant which depends on K.

Conclusion. We have obtained exact expressions for several steady state properties of

the random neighbor model, in particular an exact expression for the finite size effects which

cut off the t−3/2-law.

For the same model a number of other quantities could be calculated, for example corre-

lation functions like the probability of having n′ xi-values less than λ′ at time t, assuming

there were n such values less than λ at time t = 0. One could also extend the model by,

instead of removing at each time step the minimal xi-value, allow to remove any xi with a

probability which depends on xi.

An interesting question would be to extend our analytical results to other choices for the

species affected by change in a given species. In the limit N →∞ with other parameters held

fixed, results obtained in the present paper with annealed randomness of species interactions

should remain valid for a model with quenched random interactions [14], hence also for any

mixture of quenched and annealed interactions.
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FIG. 1: Dotted and dashed lines: distribution of avalanche life times q(t) at critical point for N = 5,

25, 125, 625, and 3125. Full line: analytical expression (26). All cases have K = 2 and λ = 1/2.

The results for finite N are exact, obtained by iterating the master equation (1–3) numerically.

FIG. 2: Same results as Fig. 1, except that we show t3/2q(t) versus t/N so that the pure t−3/2

power law behaviour corresponds to a straight horizontal line.
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