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1

Introduction and Outline

The ingenious step that led Einstein from the special to the general theory of rela-
tivity, was to extend the invariance under Poincaré transformations by invariance under
general co-ordinate transformations. Later, similar ideas have been successfully applied
to other theories. In Maxwell theory, we have the freedom to add the divergence of
an arbitrary space-time dependent phase factor to the vector potential. If we replace
the phase factor by an arbitrary group, this leads to Yang-Mills theory with a local
non-abelian gauge invariance. Any matter theory with a rigid invariance can be made
into a gauge theory, by replacing the rigid invariance by a local one. A somewhat more
involved example is supergravity, which results from the passage from global to local
supersymmetry.

As an example, consider the action for a free complex scalar field,

S ∼
∫
d4x ∂µφ∂

µφ∗ (1.1)

The action is invariant under the rigid U(1) transformation φ → eiθφ. To make it
invariant under local U(1) transformations, i.e. with θ an arbitrary function of xµ, one
can use the principle of ‘minimal coupling’. Introduce a real gauge field Aµ(x), and
modify the action to

S ∼
∫
d4x (Dµφ)(Dµφ)∗, (1.2)

where Dµ = ∂µ + iAµ is the covariant derivative. If the gauge field transforms under a
local U(1) transformation as Aµ → Aµ − ∂µθ, the modified action has a local U(1) in-
variance. Associated to every rigid invariance is a conserved current or Noether current.
The integral of this conserved current is a conserved quantity, that can be identified
with the generator of the rigid symmetry. An important feature of the extended action
(1.2) is that the term linear in Aµ couples to the Noether current of the rigid symmetry.
Indeed, (1.2) contains the term

i
∫
d4xAµ(φ∂µφ∗ − φ∗∂µφ) ≡

∫
d4xAµJ

µ, (1.3)

where Jµ is the conserved current associated to the rigid U(1) invariance.
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The action (1.1) has another invariance, namely Poincaré invariance. To make this
invariance local, we also have to introduce a gauge field, but now minimal coupling does
not work. The role of the gauge field is played by a metric on space-time, and the
gauged action reads

S ∼
∫
d4x
√
−g gµν∂µφ∂νφ∗ (1.4)

If we write the metric as gµν = ηµν+hµν , where ηµν is the usual flat space metric, we can
expand the action in powers of h. The term linear in h is proportional to the Noether
current associated to the global translational invariance, which is the energy-momentum
tensor of (1.1). Thus, there is a close analogy between the coupling to a metric and the
coupling to a gauge field.

In both (1.2) and (1.4) the gauge fields are non-dynamical. To provide them with
some dynamics, a special Lagrangian has to be chosen, that does not break the gauge
invariance, and gives a kinetic term for them. For the U(1) gauge field this is the usual
Maxwell action

SMW ∼
∫
d4x (∂µAν − ∂νAµ)(∂µAν − ∂νAµ), (1.5)

whereas for gravity it is the Einstein-Hilbert action

SEH ∼
∫
d4x
√
−gR. (1.6)

The Maxwell action is renormalizable, and the quantization of the U(1) gauge field can
proceed without problems. In contrast, the Einstein-Hilbert action is non-renormalizable,
and it does not define a consistent quantum theory of gravity.

In this thesis we investigate the transition from rigid to local invariance in two-
dimensional field theory, treating all symmetries, including gauge symmetries and gen-
eral co-ordinate transformations, on an equal footing. The class of two-dimensional field
theories we will discuss have the special property that they are invariant under local
rescalings or Weyl transformations of the metric. These theories are called conformal
field theories. An example is the two-dimensional version of (1.4),

S ∼
∫
d2x
√
−g gµν∂µφ∂νφ∗. (1.7)

Usually conformal field theories are not presented in a covariant form, but in a form
where the symmetries (general co-ordinate invariance and Weyl invariance) have been
used to bring the metric in some fixed form. On a flat two-dimensional space, the
metric can always be brought in the form ds2 = dt2 − dx2. On a non-trivial curved
two-dimensional manifold, the space of metrics modulo general co-ordinate and Weyl
transformations is a finite dimensional space, called the moduli space of the manifold.
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This gives to rise to all kinds of extra complications, but we will ignore these for the
time being.

If we put the metric in the form ds2 = dt2−dx2, there still is an infinite-dimensional
residual group of co-ordinate transformations under which the metric transforms into a
scale factor times itself. Combined with a Weyl transformation, these leave the metric
unaltered. This infinite-dimensional group is the group of conformal transformations.
In terms of the light-cone co-ordinates x± = t±x, it consists of the co-ordinate transfor-
mations of the type x+ → f(x+), and similar for x−. Thus, it contains two-commuting
copies of the same algebra. Remarkably, the same holds for more general symmetry al-
gebras in two-dimensional conformal field theory: they consist of two-commuting copies
of the same algebra, one copy depending only on x+, and one only on x−. The first
half is called the chiral or holomorphic part of the symmetry algebra, the other the
anti-chiral or anti-holomorphic part. By a transition from rigid to local symmetries in
two dimensions we mean that we pass from the chiral and anti-chiral symmetry algebra
(of the conformal field theory in a fixed background metric) to the symmetry algebra
where the parameters may have arbitrary x+, x− dependence. An example is the pas-
sage from the conformal transformations to general co-ordinate transformations. This
can be accomplished by restoring the explicit metric dependence.

The specification of a kinetic term for the metric in two dimensions is a special
problem. In two dimensions, the graviton has no degrees of freedom, and this is reflected
in the fact that the Einstein-Hilbert action in two-dimensions is a topological invariant.
However, it turns out that the Weyl invariance is generically broken at the quantum
level, and that it can be restored for any conformal field theory by adding an appropriate
multiple of the non-local action

∫
d2x
√
−gR 1√

−g2
√
−gR (1.8)

to the conformal field theory. This action appears as the induced action for the metric
when integrating out the matter degrees of freedom from the conformal field theory,
and it can serve as the kinetic term for the metric. That has important implications
for string theory, which can be seen as follows. Conformal field theories can be seen as
theories of strings propagating in some target space, if we identify the two-dimensional
manifold on which the conformal field theory was defined with the surface swept out by
the strings as it moves in time. For example, (1.7) corresponds to a string moving in
a one-dimensional complex target space. The standard bosonic string moving in d real
dimensions is described by (i = 1, . . . , d)

S ∼
∫
d2x
√
−g gµν∂µφi∂νφi. (1.9)
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String theories are only consistent if the Weyl invariance is not broken at the quantum
level, leading in the case of the bosonic string to the well known constraint d = 26.
However, by including the induced action (1.8) as kinetic term for the metric, we can
circumvent this constraint on the number of dimensions and obtain a consistent theory
starting with any bosonic string theory, in particular with a lower number of dimensions.

Unfortunately, new problems appear in the presence of a propagating metric. If the
number of dimensions in which the bosonic string propagates is larger than one, tachyons
appear in the spectrum, and the theory is ill-defined. The main motivation for the work
described in this thesis, is that it is possible to make sense of theories in more than one
dimension, provided the maximal symmetry algebra of the conformal field theory is an
extension of the conformal group. In that case on can introduce additional gauge fields
besides the metric and construct kinetic terms for these extra gauge fields as well.

An example of an extension of the conformal group is the so-called W3 algebra.
This algebra is non-linear, and the transformation rules for the fields in the theory
under these symmetries contain typically second- and higher-derivatives of the fields.
This is one of the reasons why theories invariant under W3 transformations exhibit
intriguing complications. For an infinitesimal transformation δφ = ε∂X with ε constant,
one can immediately write down a global version, φ′ = exp(ε∂)φ(x) = φ(x + ε), and
observe that it is a co-ordinate transformation. For transformation rules like δφ =
ε∂2φ, the corresponding global transformation can formally be written down, it is just
φ′ = exp(ε∂2)φ, but these transformations have no obvious geometrical interpretation.
Nevertheless one can deal with W3 transformations in an elegant way by exploiting the
fact that W3 transformations can be described by field dependent gauge transformations
based on the group SL(3). This property does not only hold for the W3 algebra, but
for a much larger class of extensions of the conformal group, sometimes denoted by W
algebras.

Ultimately, one would like to have a complete understanding of these extended con-
formal algebras, and exactly solve the conformal field theories that possess a W algebra
as a symmetry algebra, especially in the presence of the extra gauge fields. In the sub-
sequent chapters we present a detailed study of these conformal field theories and their
properties.

This thesis is organized as follows. In chapter 2 we discuss some of the basic features
of two-dimensional conformal field theories and discuss a few examples. Subsequently
we show that one can construct an extended conformal algebra given any Lie algebra and
an sl2 that is embedded in it. We give explicit expressions for the Poisson brackets of
the classical versions of these algebras, and discuss the importance of the sl2 embedding.
The proof that these algebras exist on the quantum level is somewhat more technical
and uses BRST cohomology and spectral sequence techniques. We compute the central
charge of these algebras, show that they admit free field realizations and proof that they
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admit an N = 2 supersymmetric extension.

In chapter 3 we show how by introducing gauge fields, the transition from global
to local invariance can be made for the chiral or the anti-chiral part of the symmetry
algebra. The coupling to the gauge fields is simply linear and proportional to the Noether
currents as in (1.3). At the quantum level, the local invariance suffers from anomalies,
and the invariance can be restored by adding an action for the gauge fields. Although
we do not have an explicit expression for this ‘induced’ action for the gauge fields, we
can nevertheless quantize it to all orders in perturbation theory, and obtain an explicit
answer for the quantum effective gauge field action.

The obvious next step is to gauge the full symmetry algebra, both the chiral and anti-
chiral part. The coupling to the gauge fields is no longer linear, and can only be realized
in case the conformal field theory is a free field theory or a so-called WZNW theory.
The resulting gauged action contains auxiliary fields, and these cannot be integrated
out unless the symmetry algebra is linear. Furthermore, we give an expression for the
classical induced action for the gauge fields, which reduces to (1.8) is case the symmetry
algebra is just the conformal group. We discuss what is meant by W gravity, and present
a result for the covariant action in the conformal gauge, which is valid to all orders. This
quantum action for W gravity coupled to W matter is the main result of sections 3 and
4.

For W algebras, there is an analogue of the moduli space (the space of metrics
modulo co-ordinate and Weyl transformations). One cannot gauge away the gauge
fields completely, and the gauge-fixed path integral contains an integral over the relevant
moduli space. In chapter 5 we compute this moduli space for arbitrary W algebras, and
give the structure of W algebras on non-trivial manifolds. The induced actions on non-
trivial manifolds involve the WZNW action for non-trivial principal fiber bundles. We
show how such a generalized action can be constructed, and that it is regularization
dependent, but that the covariant action is independent of the chosen regulator. The
moduli space is closely connected to the theory of Higgs bundles, leading to an interesting
connection between the moduli space and the self-duality equations in four dimensions.
We also discuss the moduli space in the presence of marked points.

Finally, in chapter six we analyze the spectrum of the theories obtained so far, and
their correlation functions. For gravity, there are three approaches that give useful
information. We briefly review these, and comment on their extension to W gravity.
We demonstrate how the sum of two W algebras can be gauged, although W algebras
are non-linear, and use this to explain why non-critical W gravity coupled to W matter
has a BRST invariance. Furthermore, we use the insight obtained in chapters 3 and
4 to shed some light on the relation with N = 2 models and topological G/G models.
We use this to speculate about the generalized intersection theories that are relevant
for W gravity. In the last part of this chapter, we argue that the genus-zero correlation
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functions for W gravity can be obtained from a matrix model, and conjecture that the
correlation functions for genus larger than zero can be obtained from the same matrix
model. The integrable hierarchy that describes these correlation functions is given.

With the results in this thesis a more unified algebraic and geometrical framework
emerges, leading to a whole new class of exactly integrable field theories. Many exciting
open questions remain, which are still the subject of intense study.

This main part of the thesis is based on the work described in [12, 46-55], but several
new results have been included. Related material is presented in the PhD theses of J.
Goeree and T. Tjin [160, 301].



2

W Algebras

2.1. Conformal Field Theory

2.1.1. Why Conformal Field Theory?

Conformal field theories have many applications in physics, some of which we will
review in just a moment. Apart from these applications, the research interest in con-
formal field theories has been stimulated by the following fact: conformal fields theories
have a rich structure, which can be examined very deeply due to the infinite-dimensional
symmetry groups they posses, and have relations with many different branches of math-
ematics, which enables one quite often to express answers in a elegant and simple way.
But, as promised, we start by discussing some of the physical motivations to study
conformal field theories.

• Two-dimensional statistical systems are, in the neighborhood of a second-order
phase transition, described by conformal field theories [76]. The conformal invari-
ance, which arises owing to the fact that the correlation length diverges near a
second-order phase transition, can for instance be used to compute critical expo-
nents.

• Under certain conditions, the perturbative vacua of string theory are described
by conformal field theories. If one views string theory (or rather, string field the-
ory) as a candidate theory for the unification of the fundamental forces of nature,
it should allow a background independent formulation, because the structure of
space-time as we know it should somehow dynamically emerge from the theory,
rather than be put in from the start. Although a background independent formu-
lation of string theory has not yet been found, there are strong indications that
the relevant phase space for such a theory is the space of all two-dimensional field
theories, and that the solutions of its classical equations of motion correspond to
the conformally invariant ones. The first indication in this direction came from the
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study of non-linear sigma models, which can describe strings coupled to certain
background fields, that parametrize a subset of the space of two-dimensional field
theories. In [71, 289, 132] it was shown that if the equations of motion for the
background fields, when derived from their effective action, are satisfied, the beta-
functions for the background fields vanish. This, in turn, implies that the sigma
model is conformally invariant. It is not necessarily true that conformal invariance
implies vanishing of the beta-functions [179], because sometimes, in the presence
of non-zero beta-functions, the conformal invariance can be restored by adding a
local counterterm to the original sigma model action. These counterterms look
as if the sigma model were coupled to extra background fields. Therefore, the
equivalence of the equations for conformal invariance and for the vanishing of the
beta-functions is presumably restored if one includes all possible local couplings
to background fields in the sigma model action from the start. Further support
for the idea that conformal field theories correspond to perturbative vacua comes
from the fact that conformal invariance implies vanishing of the vacuum expecta-
tion value of any operator of non-zero dimension, one of the conditions that one
is dealing with a proper perturbative vacuum. In subsequent developments it was
proposed that the equations of motion of the string field coincide with renormal-
ization group equations [22], see also [228, 69, 68], and that the beta functions are
capable of reproducing the string theory S-matrix [72, 178] at tree-level (at the
loop level these relations have been studied in [303]). Zamolodchikov’s c-theorem
is also worth mentioning in this context [332], which states that on the space of
renormalizable two-dimensional field theories, there is a function c that strictly
decreases along renormalization group trajectories and takes its minimal values
at the points corresponding to conformal field theories, where it equals the cen-
tral charge. One of the main problems of this framework is the lack of a proper
description of the space of two-dimensional field theories that does not refer to
any particular background. A recent attempt at such a description for open string
field theories is given in [324], where the solutions of the equations of motion are
the BRST-invariant theories, corresponding to gauge fixed conformal field theo-
ries. In any case, from this point of view the classification of conformal invariant
field theories corresponds to the classification of the perturbative vacua of string
theory.

• In view of the above it is important to classify all conformal field theories. To find
the particular superstring theory that describes the perturbative vacuum we live
in, is a different problem. In fact, the only contact with experiment can presently
be made via superstring inspired standard models. There are by now many candi-
date conformal field theories that have three generations of chiral fermions and a
realistic symmetry breaking pattern. A detailed quantitative comparison of these
conformal field theories with experimental data is very difficult, but for some pa-
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rameters the results are encouraging. For example, extrapolations of recent LEP
measurements of low energy gauge couplings show that they are unified at a scale
∼ O(1016GeV) in the minimal supersymmetric standard model [112]. There is a
discrepancy between this value and the unification scale ∼ O(1018GeV) predicted
by string theory [194], but that can be partially explained by string treshold cor-
rections [9] or by considering extensions of the minimal supersymmetric standard
model [113]. A lot of work in this direction remains to be done before a definite
answer can be given to the question whether a string theory exists that give a
description of the forces of nature consistent with experiment.

• Conformal field theories are useful in describing physical phenomena that take
place in effectively two dimensions. An example is the fractional quantum Hall
effect, which takes place in two-dimensional electron gases (see [142] and references
therein).

• Four-dimensional string theory has been used to develop new computational meth-
ods in perturbative QCD [33].

• Several four-dimensional field theories can in an appropriate approximation be
reduced to two-dimensional conformal field theories. The exact solvability of the
latter may provide useful insights for the corresponding four-dimensional physics.
An example is the two-dimensional description of four-dimensional black holes
restricted to the radial and time co-ordinate [325, 73, 165].

2.1.2. Conformal Field Theory

We will be rather brief in this section, as many reviews of conformal field theory
have appeared in the literature. For more details, see [75, 76, 77, 157, 29, 140].

Consider a generally covariant Euclidean two-dimensional field theory defined on
some two-dimensional surface Σ with co-ordinates x1, x2. Unless specified otherwise, we
will assume that Σ is the complex plane. General covariance implies that the stress-
energy tensor is conserved, ∇µTµν = 0. Conformal field theory deals with those field the-
ories that in addition to the invariance under general co-ordinate transformations are also
invariant under (Weyl) rescalings of the two-dimensional metric, gµν → λ(x1, x2) gµν .
This invariance implies that the energy-momentum tensor is traceless. The invariance
under co-ordinate transformations can be used to put the metric in the form

ds2 = e−2ϕ dz dz̄, (2.1.1)

where z = x1 + ix2, z̄ = x1 − ix2. The equations for the energy momentum tensor read,
in terms of these complex co-ordinates, Tzz̄ = 0, ∂̄Tzz = 0 and ∂Tz̄z̄ = 0. From now on
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we will denote Tzz simply by T (z) and Tz̄z̄ by T̄ (z̄), indicating that T is a holomorphic
function of z, z̄ and that T̄ is an anti-holomorphic function of the complex co-ordinates.
If a function f is neither holomorphic nor anti-holomorphic, we will indicate this by
writing f(z, z̄). The residual group of co-ordinate transformations that preserve the
form (2.1.1) of the metric are the so-called conformal transformations. They are the
co-ordinate transformations (plus their anti-holomorphic counterparts) of the form z →
f(z), with f holomorphic, and are generated by T (z). Already at this level we see the
important role of complex co-ordinates, to which string theory owes part of its beauty.

We can use the conformal transformations to distinguish a special class of fields, the
primary fields. Primary fields φ of conformal weights or dimensions (h, h̄) transform
under conformal transformations as

φ(z, z̄)→
(
∂w

∂z

)h (
∂w̄

∂z̄

)h̄
φ(w, w̄). (2.1.2)

An important subset of the space of primary fields is the set of holomorphic primary
fields, i.e. the fields with h̄ = 0. These fields generate the chiral algebra A of the
theory. The holomorphic primary fields are conserved currents by virtue of the equation
∂̄(field) = 0 they satisfy, and as such they generate symmetries of the theory. The chiral
algebra is the maximally extended symmetry algebra of the theory. The stress-energy
tensor, being the generator of the conformal transformations, has weight (2, 0) and is
one of the generators of the chiral algebra. In the same way one defines the anti-chiral
algebra Ā as the set of anti-holomorphic primary fields

So far, we took the complex plane as the world-sheet of the two-dimensional field
theory. In terms of string theory, this corresponds to an infinitely long open string
propagating in time. To make contact with the theory of closed strings, we can start with
the complex plane without the origin. This is topologically equivalent to an infinitely
long cylinder, which we view as a closed string propagating in time. Going back to
the punctured complex plane, this means that time goes radially outwards, and that
the origin corresponds to t = −∞. Thus we need radial quantization to describe closed
strings. In particular this means that the charges associated to a conserved current, that
are given by an integral along constant time surfaces, are in this case given by a contour
integral around the origin. This has certain implications for the symmetry algebra of
the theory. Given two fields A1(z) and A2(z) of the chiral algebra, the charges that
generate the corresponding symmetries with parameters ε1(z) and ε2(z) are given by

Qi =
∮

0

dz

2πi
εi(z)Ai(z). (2.1.3)
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The commutator of the two charges is easily seen to be equal to

[Q1, Q2] =
∮

0

dw

2πi

∮
w

dz

2πi
ε1(z) ε2(w)A1(z)A2(w). (2.1.4)

This shows that the commutator is completely determined by the singular terms in the
short-distance operator product expansion (OPE) of A1 and A2,

A1(z)A2(w) ∼
∑
r≥0

{A1A2}r(w)

(z − w)r
+ regular terms (2.1.5)

In the same way we find that

[Q1, A2(w)] =
∮
w

dz

2πi
ε1(z)A1(z)A2(w) (2.1.6)

can also be evaluated using (2.1.5). Therefore, specifying the commutation relations
(2.1.4), specifying the OPE’s (2.1.5) or specifying the variations of the currents (2.1.6)
are three equivalent ways to describe the structure of the chiral algebra, and one can
use the formulas given above to go from one to the other. The commutation relations
(2.1.3) are usually given for the (Fourier) modes of Ai defined by

Am =
∮

0

dz

2πi
zm+hA−1A(z), A(z) =

∑
m

Amz
−m−hA . (2.1.7)

Operator product expansions can be defined for all local fields in the theory, not just
for those that are in the chiral algebra. The operator product expansion will in general
not only exhibit poles when z → w, but also when z̄ → w̄. To given an example
of an operator product expansion, consider an infinitesimal co-ordinate transformation
z → z + ε(z) generated by Q =

∮
0
dz
2πi
ε(z)T (z). From (2.1.2) one derives that

δQφ(w, w̄) = hφ∂ε+ ε∂φ. (2.1.8)

This leads to the operator product expansion

T (z)φ(w, w̄) ∼ hφ(w, w̄)

(z − w)2
+
∂φ(w, w̄)

(z − w)
+ regular terms. (2.1.9)

Naively, the same result is expected to hold for φ = T as well. However, one can argue
[75] that in general on the quantum level the OPE of T with itself is modified to

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
+ regular, (2.1.10)
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where c is the so-called central charge of the conformal field theory. For the modes
Lm =

∮ dz
2πi
z−m−1T (z) of T we find the following commutation relations

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0. (2.1.11)

This is the Virasoro algebra.

We conclude this section with some remarks on the Hilbert space of the theory. There
is a one-to-one correspondence between local fields and states in the Hilbert space as
follows:

|φ〉 ↔ lim
z,z̄→0

φ(z, z̄)|0〉. (2.1.12)

The Hilbert space can be decomposed in representations of the maximal symmetry
algebra of the theory, which is the product of the chiral algebra and the anti-chiral
algebra, A× Ā. In case the Hilbert space is a finite sum of irreducible representations
of A × Ā, we are dealing with a rational conformal field theory (RCFT). The name is
justified by the fact that the central charge and conformal dimensions of primary fields
in such theories are always rational [8]. These theories have features which resemble the
theory of compact groups. For instance, in a RCFT all unitary representations of A
occur with multiplicity one∗, one can extract the analogue of the representation ring, in
this case called the fusion rules, one has analogues of the Clebsch-Gordan coefficients,
etc. For these results and more, see [308, 88, 243, 46]

The simplest case is when A is the Virasoro algebra with central charge c. The
generator of time translations, L0 + L̄0, is to be identified with the Hamiltonian. Any
representation must have a state with lowest energy, say |h, c〉 with energy L0|h, c〉 =
h|h, c〉. Because there are no states with lower energy, Ln|h, c〉 = 0 for n > 0. These
are precisely the conditions for a highest weight module of the Virasoro algebra. Such
a highest weight module is spanned by the states

L−k1L−k2 . . . L−kj |h, c〉, (2.1.13)

with all ki > 0, and denoted by M(h, c). On M one can define a symmetric bilinear form,
compatible with the two conditions L†n = L−n and 〈h, c|h, c〉 = 1. If M is not irreducible,
it has null states that are orthogonal to every other state with respect to this bilinear
form. In that case one can prove that L(h, c) = M(h, c)/nullstates is an irreducible

∗This should be compared with the Peter-Weyl theorem for compact groups G, which states that
L2(G), which is a representation of G × G via (h1, h2) · f(g) = f(h1gh

−1
2 ), is isomorphic as G × G

representation to ⊕RR×R∗, where the sum is over all inequivalent unitary irreducible representations
of G with multiplicity one. The correspondence with an RCFT is Hilbert space↔ L2(G) and G×G↔
A× Ā.
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representation of the Virasoro algebra. Usually, M is called a Verma module, and L
an irreducible highest-weight module. If one demands in addition that L is unitary, i.e.
that there are no states of negative norm, one finds the following conditions on h and c
[141, 159]: either c ≥ 1 and h ≥ 0, or

c = 1− 6(q − p)2

pq
,

h =
(qr − ps)2 − (q − p)2

4pq
, 0 < r < p, 0 < s < q, (2.1.14)

for integers r, s, and q = p + 1 = 3, 4, . . .. The conformal field theories associated to
these series are called the unitary minimal models. There is also a set of nonunitary
minimal models. The expressions for c and h for these models are given by (2.1.14)
with p and q subject to 1 < p + 1 < q = 3, 4, . . .. In the sequel both the unitary and
nonunitary minimal models will be referred to as the (p, q) minimal models.

2.1.3. Operator Product Algebras and Field Algebras

The chiral algebra is an example of a field algebra or operator product algebra. Such
an algebra A is the vector space spanned by a collection of meromorphic fields Aα(z),
that satisfies the following properties

1. If Aα, Aβ ∈ A, then also ∂Aα, ∂Aβ, (AαAβ) ∈ A, where (AαAβ) denotes the normal
ordered product of Aα and Aβ, defined by point-splitting regularization [14],

(AαAβ)(w) ≡
∮
w

dz

2πi

Aα(z)Aβ(w)

(z − w)
. (2.1.15)

2. Associated to every pair of elements Aα, Aβ is an operator product expansion,
whose singular part is denoted by Aα(z)Aβ(w), which is a finite sum

Aα(z)Aβ(w) =
∑
r>0

{AαAβ}r(w)

(z − w)r
. (2.1.16)

Furthermore, {AαAβ}r ∈ A.

3. Operator product expansions satisfy Aα(z)Aβ(w) = Aβ(w)Aα(z) modulo regular

terms, which implies that

{AαAβ}r =
∑
t≥0

(−1)t+r

t!
∂t{AβAα}t+r. (2.1.17)
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4. The operator product expansion behaves as follows under ∂ and normal ordering

∂Aα(z)Aβ(w) = ∂z(Aα(z)Aβ(w)),

Aα(z) ∂Aβ(w) = ∂w(Aα(z)Aβ(w)),

Aα(z) (AβAγ)(w) =
1

2πi

∮
w

dx

(x− w)
(Aα(z)Aβ(x)Aγ(w) + Aβ(x)Aα(z)Aγ(w)).

(2.1.18)

The latter is precisely Wick’s theorem. Notice that the first line implies that
{∂AαAβ}1 = 0.

5. The normal ordering is neither commutative nor associative. However, the follow-
ing two relations are valid

(AαAβ)− (AβAα) =
∑
r≥0

(−1)r+1

r!
∂r{AαAβ}r,

(Aα(AβAγ))− (Aβ(AαAγ)) = ((AαAβ)Aγ)− ((AβAα)Aγ). (2.1.19)

6. Associativity of the operator product algebra. This states that for any function
f(x, z, w) the following identity holds∮

0

dx

2πi

∮
x

dw

2πi

∮
w

dz

2πi
(Aα(z)Aβ(w)Aγ(x)f(x, z, w))+

∮
0

dz

2πi

∮
z

dx

2πi

∮
x

dw

2πi
(Aβ(w)Aγ(x)Aα(z)f(x, z, w))+

∮
0

dw

2πi

∮
w

dz

2πi

∮
z

dx

2πi
(Aγ(x)Aα(z)Aβ(w)f(x, z, w)) = 0. (2.1.20)

Associativity of the operator product algebra is equivalent to crossing symmetry
of the four-point function (but see [65]).

A field algebra is a conformal field algebra if it contains a field T with OPE given by
(2.1.10), and it is generated by a set of primary fields that have an OPE of type (2.1.9)
with T . A field algebra is a quantum generalization of a Poisson algebra. Given any
Poisson algebra whose fields live on a circle, one can write down a set of OPE’s via the
correspondence†

Aα(z)Aβ(w) =
∑
r>0

{AαAβ}r(w)

(z − w)r
⇔

{Aα(z), Aβ(w)}PB =
∑
r>0

1

(r − 1)!
{AαAβ}r(w) ∂r−1

w δ(z − w). (2.1.21)

†On the level of charges the equivalence is
∮

dz
2πiε(z)A(z)↔

∫
dz ε(z)A(z).
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These OPE’s do not satisfy the definition of a field algebra. In particular, the algebra
is associative and commutative, and Wick’s theorem is replaced by

Aα(z) (AβAγ)(w) = Aα(z)Aβ(w)Aγ(w) + Aβ(w)Aα(z)Aγ(w). (2.1.22)

A set of fields and OPE’s that are obtained from a Poisson algebra via (2.1.21) will
be called a classical operator product of field algebra. In many cases it is possible
to introduce a parameter h̄ in the field algebra, such that in the limit where h̄ → 0, a
classical field algebra is recovered. In that case we call the field algebra a quantization of
the underlying Poisson algebra. Later on we will see plenty of examples of conformal field
algebras. We finish this rather abstract exposition by taking a look at the derivations of
field algebras. This knowledge is important if we want to use cohomological techniques
for field algebras. Given any Q ∈ A, we can associate a derivation δQ to it, given by

δQ(A(z)) = [
∮

0

dw

2πi
Q(w), A(z)] = {QA}1(z). (2.1.23)

It follows from (2.1.18) that this is indeed a derivation, meaning that δQ(∂A) = ∂δQA
and that δQ satisfies the Leibnitz rule δQ(AαAβ) = ((δQAα)Aβ) + (−1)εQεα(Aα(δQAβ)),
where εX = 0(1) if X is bosonic (fermionic). When is a derivation nilpotent? From the
associativity condition (2.1.20) one can derive that

{Aα{AβAγ}1}1 − (−1)εαεβ{Aβ{AαAγ}1}1 = {{AαAβ}1Aγ}1. (2.1.24)

If Aα = Aβ = Q and Q is fermionic, then (2.1.24) reads δ2
Q = δ 1

2
{QQ}, which vanishes if

{QQ}1 is a total derivative. Thus, to check for example whether a BRST operator is
nilpotent or not, we must compute {QQ}1 and check whether it is a total derivative or
not.

The reader may wonder why we introduced the concept of a field algebra, because
one can also work with the Fourier modes of the fields. In terms of these modes, the
associativity condition is just the Jacobi identity. However, the full algebra contains
certain infinite sums of products of modes, due to the normal ordered products of fields
that occur, and it is difficult to characterize which infinite power series are allowed and
which are not. In terms of fields, one always works with finite expressions. For this
reason it is much easier to prove things rigorously at the level of field algebras than at
the level of modes.
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2.1.4. The Free Scalar Field

The first example of a conformal field theory is the free scalar field described by the
action

S =
1

8π

∫
d2x
√
ggαβ ∂αX ∂βX. (2.1.25)

The factor in front has been chosen for convenience. In the conformal gauge (2.1.1) this
action reads

S =
1

2π

∫
d2z ∂X ∂̄X, (2.1.26)

where d2z is the metric associated to dx1 ∧ dx2 rather than dz ∧ dz̄, to avoid the
introduction of factors of i. The chiral algebra is generated by ∂X, the anti-chiral
algebra by ∂̄X. The corresponding symmetries are X(z, z̄) → X(z, z̄) + ε(z) and
X(z, z̄)→ X(z, z̄) + ε(z̄). Under a co-ordinate transformation z → z + ε(z) the field X
transforms as X → X + ε∂X. This is just a special case of the symmetry generated by
∂X, showing that the energy-momentum tensor is in this case not a new, independent
element of the chiral algebra but can be expressed in terms of ∂X. Of course, this
follows also immediately from (2.1.25), using the standard definition of the energy mo-
mentum tensor Tab = − 4π√

g
δS
δgab

. The two-point function of the field X is easily derived

from (2.1.26). It is given by

〈X(z, z̄)X(w, w̄)〉 = −πG(z, w), (2.1.27)

where G(z, w) is the Green’s function for the operator ∂∂̄. It can be computed from the
fundamental identity

∂̄z̄
1

z − w
= πδ2(z − w). (2.1.28)

Here, the delta function is with respect to the measure d2z. Of course, (2.1.28) should
be understood in the sense of distributions. Integrating this equation yields G(z, w) =
π−1 log |z −w|, showing that X itself is not a well-defined local field. For the two-point
function of ∂X we now immediately find

〈∂X(z) ∂X(w)〉 =
−1

(z − w)2
(2.1.29)

from which we find the OPE of ∂X with itself,

∂X(z) ∂X(w) =
−1

(z − w)2
. (2.1.30)
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The energy momentum tensor is given by

T = −1
2
(∂X∂X), (2.1.31)

and from Wick’s theorem (2.1.18) we find the OPE’s

T (z) ∂X(w) =
∂X(w)

(z − w)2
+
∂2X(w)

(z − w)
,

T (z)T (w) =
1/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
. (2.1.32)

Thus, ∂X is a primary field of conformal weight (1, 0), and T generates a Virasoro
algebra with central charge c = 1. The Hilbert space consists of the representations of
A×Ā that are obtained by acting on the states |p, p̄〉 with the elements of A×Ā. The
states |p, p̄〉 are created from the vacuum |0〉 by the vertex operators

Vp,p̄ = exp(ipX + ip̄X̄), (2.1.33)

where we decomposed X(z, z̄) = X(z) + X̄(z̄). The vertex operators Vp,p̄ are primary
fields of conformal weight (p2/2, p̄2/2). Using the two-point function of X one can in
principle compute the correlation functions of the vertex operators [310]. This is more
difficult than to compute correlation functions of elements of the chiral algebra. Because
the latter consists of conserved currents, the correlation functions are completely fixed by
Ward identities. However, when we compute correlation functions of arbitrary states in
the Hilbert space, these are only partially fixed by Ward-identities. Their computation
is, in a sense, the central problem of conformal field theory.

Any local primary field V with weights (h, h) can be added to the action without
affecting general covariance, if we include a suitable power of the metric:

∆S = λ
∫
d2z(
√
g)1−hV. (2.1.34)

Clearly, this term spoils conformal invariance unless h = 1, in which case the correspond-
ing perturbations are called marginal. Perturbations with h > 1 are called irrelevant,
perturbations with h < 1 are called relevant‡. An example of the latter is the addition

‡This terminology stems from the behavior of the perturbation under the renormalization group
flow, the fixed points of which correspond to conformal field theories. A conformal field theory with an
irrelevant perturbation added to it flows back to itself, whereas relevant perturbations push the theory
away from the original fixed point to another conformal field theory.
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of a mass term for the scalar field X in (2.1.25), although strictly speaking the field X
is not a primary field. An example of a marginal operator is

V = cos(
√

2X(z, z̄)) (2.1.35)

A priori it is not clear that the resulting theory will be conformal for noninfinitesimal
values of the coupling λ. An additional condition has to be satisfied [193, 90], namely
that the operator product expansion of V with itself may not contain any other primary
fields with h = h̄ = 1, as this would imply that in the perturbed conformal field theory
V becomes a linear combination of fields with different weights. This condition is easily
verified for the perturbation (2.1.35) using momentum conservation that exists because
the field X has a zero mode. Therefore we get a one-parameter family of conformal field
theories

S =
1

2π

∫
d2z ∂X ∂̄X + λ

∫
d2z cos(

√
2X(z, z̄)). (2.1.36)

What happens to the chiral algebra when we add a perturbation to the theory? To
investigate this, we take A ∈ Aunperturbed and consider how the perturbation transforms
under a transformation generated by A

δA

∫
d2wV (w, w̄) =

∫
d2w

∮
w

dz

2πi
ε(z)A(z)V (w, w̄)

=
∫
d2w

∮
w

dz

2πi

∑
r>0

ε(z){AV }r(w, w̄)

(z − w)r

=
∫
d2w

∑
r>0

∂r−1ε(w)

(r − 1)!
{AV }r(w, w̄)

=
∫
d2w ε(w)

∑
r>0

(−1)r−1

(r − 1)!
∂r−1{AV }r(w, w̄)

= −
∫
d2w ε(w){V A}1(w, w̄), (2.1.37)

where in the last line we used (2.1.17). From this last expression we see that A also
generates a symmetry of the perturbed action if {V A}1 = 0, or in other words, A ∈
ker(δV ). The effect of the perturbation is that it has broken part of the symmetry of the
original action. The derivation δV is a derivation of the full operator algebra, and need
not be a derivation of the chiral algebra. Nevertheless, it is easy to see that ker(δV )|A is
a closed subalgebra of A, that contains the Virasoro algebra. This subalgebra is usually
called the centralizer of the vertex operator V . For the free scalar field with perturbation
(2.1.35), the centralizer is precisely the Virasoro algebra generated by T = −1

2
(∂φ∂φ).

In general, it may happen that at certain finite values of the coupling λ new symmetries
will appear, that were not present in the original theory. We will ignore this possibility
in the remainder.
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The observation that the Virasoro algebra is the centralizer of a vertex operator of
a free field algebra, is a very important one. If one can realize a chiral algebra as the
centralizer of a free field algebra, this can be extremely useful for the computation of
correlation functions [310, 124, 150, 115]. Later on we will see other examples of this
phenomenon.

Using the same principle, it is also possible to obtain the Virasoro algebra with
c 6= 1 from one free scalar field, which is important for the computation of correlators
in the minimal models (2.1.14), by introducing a background charge for the field X
[119, 140, 310]. At the level of actions, it amounts to adding to the the free field action
(2.1.25) a term which couples the free field to the curvature of the two-dimensional
surface§

S =
iα0

4π

∫
d2x
√
gRX. (2.1.38)

With this term, ∂X is strictly speaking no longer holomorphic, but satisfies ∂̄∂X =
iα0
√
gR/4, and is no longer part of the chiral algebra. However, if we imagine the

curvature R to be localized at infinity, ∂X is still holomorphic and the extra term
manifests itself in two ways: it imposes a selection rule on the correlation functions of
the theory, and the energy-momentum tensor is modified to

T = −1
2
(∂X∂X)− iα0∂

2X, (2.1.39)

with central charge

c = 1− 12α2
0. (2.1.40)

The parameter α0 is called the background charge of the field X. The background
charge term modifies the conformal weight of the vertex operators (2.1.33) from p2/2 to
p2/2 + α0p. In the presence of a background charge, the condition for the correlation
function of a product of vertex operators with momenta pi to be non-vanishing reads

∑
i

pi = −α0(2− 2h), (2.1.41)

where h is the number of handles of the two-dimensional surface.

2.1.5. First-Order Systems

First-order systems are described by actions with a first-order kinetic term. A stan-
dard example of a conformal field theory of this type is the free Majorana fermion in

§Our convention for the curvature is R = gabReabe.
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two dimensions. Two other examples that we will encounter later are the fermionic b,c
system and the bosonic β,γ system [140]. The fermionic b,c system is described by the
action

S =
1

2π

∫
d2z (b∂̄c+ c∂̄b) + c.c., (2.1.42)

where c has conformal weight (j, 0) and b has conformal weight (1 − j, 0). The chiral
algebra is generated by b and c. Associated to the invariance c → exp(iα(z))c and
b→ exp(−iα(z))b is the ghost-number current J = −(bc). The ghost-number operator
N =

∮
0
dz
2πi
J(z) satisfies [N, c(w)] = c(w) and [N, b(w)] = −b(w). The operator product

expansion of b and c is

b(z) c(w) =
1

z − w
, (2.1.43)

and the energy-momentum tensor is given by

T = (j − 1)(b∂c)− j(c∂b), (2.1.44)

with central charge c = −2(6j(j − 1) + 1). These b,c systems frequently arise as the
Faddeev-Popov ghosts that are needed when gauge-fixing a bosonic symmetry. To gauge-
fix a fermionic symmetry, we need bosonic β,γ systems. These are described by the
action

S =
−1

2π

∫
d2z (β∂̄γ − γ∂̄β) + c.c., (2.1.45)

where again γ has weight (j, 0) and β has weight (1 − j, 0). The operator product
expansion of β and γ is

β(z)γ(w) =
1

z − w
, (2.1.46)

and the energy-momentum tensor is given by

T = (1− j)(β∂γ)− j(γ∂β), (2.1.47)

with central charge c = 2(6j(j − 1) + 1).

2.1.6. The Wess-Zumino-Novikov-Witten Model

The third example of a conformal field theory we consider is the Wess-Zumino-
Novikov-Witten (WZNW) [313, 255, 320] theory [261, 148, 208, 123]. It is a non-linear
sigma model with as target space a group manifold and its action is given by

kS±wznw(g) = − k

8π

∫
Σ
d2x
√
ggαβ Tr(g−1∂αg g

−1∂βg)∓ ik

12π

∫
B3

Tr(g−1dg)3, (2.1.48)
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where B3 is a three-manifold with boundary ∂B3 = Σ, g is a group-valued field with
values in a compact, simply connected semisimple Lie group and Tr is an invariant form
on the Lie algebra g of G normalized such that the length squared of the longest root of
g is −2. It is related to the Killing form via Tr(XY ) = (2h)−1tr(ad(X)ad(Y )), where h
is the dual Coxeter number of the Lie algebra. For the Lie groups Al and Cl it is equal
to the trace in the fundamental representation, for Bl and Dl it is one half of that. In
(2.1.48) the parameter k is called the level, and must be an integer. The latter condition
arises due to the fact that one has the freedom to choose a three-manifold B3 and an
extension of g : Σ → G to g : B3 → G. If we choose two extensions B1

3 , g
1 and B2

3 , g
2,

with ∂B1
3 = ∂B2

3 = Σ, the difference between the WZNW action evaluated for these two
choices is

∓ ik

12π

∫
B

Tr(g−1dg)3, (2.1.49)

where B is the closed three-manifold B = B1
3 ∪ (−B2

3) and g = g1 ∪ g2. We can rewrite
(2.1.49) as

∓ ik
4π

∫
g(B)

ω, (2.1.50)

where ω is the three-form on G defined by ω(X, Y, Z) = Tr(g−1X[g−1Y, g−1Z]) for
X, Y, Z ∈ TgG. Now −ω/8π2 is the generator of H3(G,ZZ) [135], and therefore

∫
g(B) ω

equals −8π2 times the winding number n of g : B → G, from which we see that (2.1.50)
equals ±2πikn. In the Euclidean path integral this exponentiates to one, and the path
integral is therefore independent of the choice of extension.

The WZNW action (2.1.48) satisfies an important identity, the Polyakov-Wiegmann
identity

S−wznw(gh) = S−wznw(g) + S−wznw(h)− 1

π

∫
d2zTr(g−1∂g∂̄hh−1),

S+
wznw(gh) = S+

wznw(g) + S+
wznw(h)− 1

π

∫
d2zTr(g−1∂̄g∂hh−1) (2.1.51)

which can be derived from

Tr((gh)−1d(gh))3 = Tr(g−1dg)3 + Tr(h−1dh)3 − 3dTr(g−1dg ∧ dhh−1). (2.1.52)

The Polyakov-Wiegmann identities tell us that S−wznw is invariant under the infinitesimal
symmetries δg = ε(z̄)g + gε′(z). These are generated by the currents J = k g−1∂g and
J̄ = k ∂̄gg−1, that are the generators of the chiral and anti-chiral algebra respectively
(notice that the equations of motion imply ∂̄J = 0). The Poisson bracket of J with
itself is

{Ja(z)J b(w)}PB = kηab∂wδ(z − w) + fabc J
c(w)δ(z − w), (2.1.53)
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where we introduced a basis {Ta} of g, ηab = Tr(TaTb), η
ab is the inverse of ηab, f

c
abTc =

[Ta, Tb] and indices are raised and lowered using η. Using (2.1.21) the corresponding
classical OPE is

Ja(z)J b(w) =
kηab

(z − w)2
+
fabc J

c(w)

z − w
. (2.1.54)

One can show that this OPE does not get renormalized at the quantum level, so that it
defines a quantum operator product algebra, which is the chiral algebra of the WZNW
model. As was the case for the free scalar field, the energy-momentum tensor is not an
independent element of the chiral algebra, but a composite field given by

T =
1

2(k + h)
ηab(J

aJ b) (2.1.55)

with central charge

c =
k dim(G)

k + h
. (2.1.56)

The normalization factor (2(k+ h))−1 in the definition of the energy-momentum tensor
is fixed by the requirement that the operator product expansion of T with itself is of the
form (2.1.10). The modes of the currents Ja form an affine Lie algebra; these have been
studied extensively in the mathematics literature (see e.g. [271, 192]). The unitary rep-
resentations are labeled by the positive weights λ ∈ P+ of g that satisfy λ·ψ ≤ k, where ψ
is the highest root of g. There are only finitely many such representations, and therefore
WZNW theories are examples of rational conformal field theories. The representations
are obtained by acting with the chiral algebra on the states limz,z̄→0 rλ(g(z, z̄))|0〉 where
rλ is the representation of G corresponding to the highest weight λ.

For non-compact groups we use the same definition of the WZNW action, the only
difference is that for non-compact groups we require that Tr is such that the length
squared of the longest root is +2. This means that for Al and Cl we can still use the
trace in the fundamental representation, and that Tr is still (2h)−1 times the Killing form.
For non-compact groups the kinetic term is unbounded from below, whether one takes
k or minus k. Nevertheless we will frequently use the WZNW action for noncompact
groups in the sequel, and quantize it without worrying about the unboundedness of the
action. That the quantum theory makes sense lies in the fact that we never consider the
pure WZNW action for non-compact groups in itself, but only gauged and constrained
versions of it. The extra symmetries of these gauged and constrained WZNW theories
restore the boundedness of the spectrum, as in [146]. Also, there is no necessity to
restrict k to be integral in the case of non-compact real Lie algebras.

We have seen in section 2.1.4 that the Virasoro algebra could be obtained as the
centralizer of a vertex operator acting on the chiral algebra of one free scalar field. It
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turns out that a similar statement holds in the case of affine Lie algebras: all affine Lie
algebras are isomorphic to the centralizer of a collection of vertex operators acting on
the chiral algebra of a free field theory. The affine Lie algebra is the chiral algebra of
the free field theory perturbed by the vertex operators. The free field theory contains
in general both free scalar fields X as in section 2.1.4, with chiral algebra generated by
∂X, and first-order systems as in section 2.1.5, with chiral algebra generated by b, c or
β, γ. In particular this implies that all currents of the WZNW model can be expressed
in terms of free fields in such a way that the free field expressions have the same operator
product expansions as the currents. An expression of the currents in terms of free fields
is called a free field realization of the underlying affine Lie algebra. The existence of such
free field realizations was first shown by Wakimoto in the case of G = SL2 [311], and
generalized to arbitrary G in [150, 245, 59, 62, 122]. To express an affine Lie algebra
in terms of free fields, one needs rG = rank(G) free scalar fields, and a bosonic β, γ
system with j = 0 for every positive root of g. The affine Lie algebra is the centralizer
of rG vertex operators. Let us, without proof, give a free field realization for the case
G = SL3(IR). Working in the fundamental representation we decompose the current as

J = JaTa =

 H0 J1 J3

K1 H1 −H0 J2

K3 K2 −H1

 . (2.1.57)

For SL3(IR) we need two free scalar fields φi, i = 1, 2 and three β, γ systems, βi, γi, i =
1, 2, 3. The OPE’s are

∂φi(z) ∂φj(w) =
−δij

(z − w)2
,

βi(z) γj(w) =
δij

z − w
. (2.1.58)

To give the expressions for the currents in a more compact form, we combine (φ1, φ2)
into one vector φ, and introduce two vectors a1,a2 satisfying

ai · aj = −(δij + 1)(k + 3)

3
. (2.1.59)

The free field expressions for the currents read

J1 = β1 + (β2γ3),

J2 = β3,

J3 = β2,

H1 = (β1γ1) + (β2γ2) + a1 · ∂φ,
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H2 = (β2γ2) + (β3γ3) + a2 · ∂φ,
K1 = −(β1(γ1γ1)) + (β3γ2) + (k + 1)∂γ1 + (γ1(a2 − 2a1) · φ),

K2 = (β1(γ1γ3))− (β2(γ2γ3))− (β3(γ3γ3))− (β1γ2) + k∂γ3 + (γ3(a1 − 2a2) · φ),

K3 = −(β1(γ1γ2))− (β2(γ2γ2))− (β3(γ3γ2)) + (β1(γ1(γ1γ3)))− (k + 1)(γ3∂γ1)

+k∂γ2 + (γ1(γ3(2a1 − a2) · φ))− (γ2(a1 + a2) · φ) (2.1.60)

They generate the centralizer of the weight 1 vertex operators

V1 = (β1 exp((2a1 − a2) · φ/(k + 3))),

V2 = ((β3 + (γ1β2)) exp((2a2 − a1) · φ/(k + 3))), (2.1.61)

acting on the chiral algebra generated by ∂φi, βiγi. Free field realizations like (2.1.59)
have been used to compute correlation functions in the WZNW model, see [115].
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2.2. W Algebras

Historically, W algebras were first introduced in the work of Zamolodchikov [333],
who worked out the consistency conditions for an operator algebra that is generated by
a energy-momentum tensor T and a spin three field W . He found that there is precisely
one such algebra for every value of the central charge. Before continuing the general
discussion of W algebras, let us first demonstrate how one can encounter such algebras
when considering centralizers of vertex operators.

2.2.1. The c = 2 W3 algebra

We have seen that the Virasoro algebra is the centralizer of a vertex operator acting
on the chiral algebra generated by a free scalar field. The next natural step is to take
the chiral algebra generated by two scalar fields, and to see whether any interesting
extensions of the Virasoro algebra appear as the centralizer of vertex operators acting
on that chiral algebra. Thus we take two scalar fields with OPE

∂φi(z)∂φj(w) = − δij
(z − w)2

, (2.2.1)

and consider the action of vertex operators

Va1 = exp(i(a1 · φ)
√

2). (2.2.2)

To ensure that the centralizer of this vertex operator contains the Virasoro algebra, a1

must be a unit vector, so that Va1 has the proper conformal weight (1,0). (Henceforth
we will restrict our attention to the holomorphic part of the vertex operators). It is
straightforward to compute the centralizer of Va1 acting on the chiral algebra generated
by ∂φi. It contains in addition to the energy momentum tensor T = −1

2
(∂φ · ∂φ) the

spin one field U = a⊥1 ·∂φ, where a⊥1 is some vector perpendicular to a1. What happens
if we take another vertex operator Va2 simultaneously with Va1?. In that case one can
show that in general only the Virasoro algebra survives, unless (a1 · a2)2 = 1/4. If the
latter condition holds (so that a1 and a2 make an angle of π/3 or 2π/3) we find that the
centralizer of the chiral algebra is no longer generated by the energy-momentum tensor
alone, but that there is also a spin three field that survives, namely

W = 2(a2·φ(a2·φa2·φ))−3(a2·φ(a2·φa1·φ))−3(a2·φ(a1·φa1·φ))+2(a1·φ(a1·φa1·φ)).
(2.2.3)
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The operator algebra (for (a1 · a2) = +1/2) of T and W3 = 2iW/9
√

3 is equal to the
c = 2 version of the W3 algebra found by Zamolodchikov. The latter reads, for generic
central charge,

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
,

T (z)W3(w) =
3W3(w)

(z − w)2
+
∂W3(w)

z − w
,

W3(z)W3(w) =
c/3

(z − w)6
+

2T (w)

(z − w)4
+

∂T (w)

(z − w)3

+
1

(z − w)2
(

3

10
∂2T (w) + 2β2Λ(w))

+
1

z − w
(

1

15
∂3T (w) + β2∂Λ(w)), (2.2.4)

where Λ = (TT )− 3
10
∂2T and

β2 =
16

5c+ 22
. (2.2.5)

2.2.2. General W Algebras

A conspicuous feature of the W3 algebra is its nonlinearity. This makes the analysis
of the W3 algebra much more difficult than that of the Virasoro algebra, or an affine
Lie algebra. Soon after its discovery the W3 algebra was generalized to the so-called
WN algebras, which are nonlinear algebras containing fields of spin 2, . . . , N [116]. In
fact, many more algebras of W type exist; for a recent overview and an extensive list
of references see [57]. There seems to be no consensus as to which operator algebras
should be referred to as W algebras. One might take the presence of fields with spin
larger than two or the nonlinearity as the definition of a W algebra, but is seems to be
more natural to call any conformal operator algebra a W algebra. The W algebras that
we will be dealing with for a considerable part of this thesis, form a subset of the set
of conformal operator algebras that contains the ‘standard’ WN algebras. This subset
consists of the W algebras that are associated to an embedding of sl2 in a Lie algebra.
The specific properties of these W algebras greatly facilitate their analysis; we return
to their discussion in a moment.

2.2.3. Why W Algebras?

In addition to the general motivation to study conformal field theory, there are a
some more specific reasons to study W algebras, a few of which we want to mention.
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• Knowing the maximal symmetry algebra of a theory facilitates its analysis. In
particular, there are extra constraints on the correlation functions of the theory
via the Ward identities. For example, the 3-state Potts model [100, 141] has the
W3 algebra as its maximal symmetry algebra [114].

• W algebras are closely related to (new) integrable hierarchies [162]. In the math-
ematics literature, W algebras first arose in this way in the work of Drinfeld and
Sokolov and of Gelfand and Dickey [102, 147], who discovered the classical version
of the WN algebra.

• They are an interesting playground for theories with non-linear symmetries, or for
theories with a symmetry algebra with field dependent structure constants. Such
symmetry algebras play an important role in, for instance, theories of supergravity
[254], and one might hope to learn something from the two-dimensional techniques.

• They are relevant for non-conformal perturbations of conformal field theories. Re-
call our analysis in (2.1.37). The same derivation still holds if V has conformal
weight h 6= 1, but in that case the perturbed theory will no longer be confor-
mal invariant. Nevertheless, part of the chiral algebra might survive in the per-
turbed theory. Another possibility is that {V A}1 is nonzero, but equal to a to-
tal derivative. If this happens Q =

∮
0
dz
2πi
A(z) still generates a symmetry, but

only a global one (thus with ε = constant), and provides us with a conservation
law for the perturbed theory. For more on perturbed conformal field theory, see
[331, 125, 34, 195, 334, 203, 247, 126].

2.2.4. W Algebras From sl2 Embeddings

There are basically three ways to study W algebras. The first one is a direct general-
ization of the approach of Zamolodchikov, where one postulates a number of generators,
and tries to form a closed associative operator algebra [45, 196]. In the second approach
one takes any conformal field theory and tries to find the chiral algebra, or a subalge-
bra thereof, to see whether there are higher spin generators. Typical examples are the
Casimir algebras [14] and the coset construction [58, 312]. In the latter approach, one
studies the centralizer of an affine subalgebra of some affine Lie algebra.

The third approach is the Drinfeld-Sokolov approach. This approach relies heavily
on the connection with Lie algebras. The idea is to start with an affine Lie algebra, and
to impose certain constraints on the currents. Using Hamiltonian reduction [1] (or, more
precisely, Poisson reduction [258]) one obtains a (classical) reduced algebra. Consider
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for example the affine Lie algebra based on sl2 with current

J = JaTa ≡ J−T− + J0T0 + J+T+ =

(
J0 J+

J− −J0

)
. (2.2.6)

Recall that Poisson brackets and OPE’s are related via (2.1.21), and that the currents
have the OPE’s given by (2.1.54). These OPE’s generate both a classical and a quantum
operator algebra. These two differ only in their OPE’s of normal ordered products of
currents. If we speak about the Poisson algebra of currents, we always mean the Poisson
brackets corresponding to the classical operator product algebra defined by (2.1.54).
What happens when we impose the constraints c1 = J+− ξ = 0 and c2 = J0 = 0 on the
Poisson algebra generated by the currents (2.2.6)? (ξ is an arbitrary nonzero constant).
These constraints are second class, and therefore the reduced Poisson algebra is given
by the Dirac bracket

{J−(z), J−(w)}red = {J−(z), J−(w)}−
∫
dx
∫
dy {J−(z), ci(x)}∆ij(x, y){cj(y), J−(w)},

(2.2.7)
where ∆ij is the inverse of ∆ij = {ci, cj}. For ∆ij we find

∆ij(x, y) =

 0 1
J+(x)

δ(x− y)

− 1
J+(x)

δ(x− y) k/2
J+(x)J+(y)

∂yδ(x− y)

 , (2.2.8)

and the reduced bracket is

{J−(z), J−(w)} = − k3

2ξ2
∂3
wδ(z −w) +

2k

ξ
J−(w)∂wδ(z −w) +

k

ξ
J−(w)δ(z −w). (2.2.9)

Replacing J− by kT/ξ this bracket is exactly equal to the Virasoro algebra with c = −6k.
This is the prototype of the more general construction. We impose constraints on an
affine Lie algebra in such a way that there is an sl2 subalgebra on which the constraints
take the same form as for the example above. This will then guarantee that the reduced
algebra contains a Virasoro subalgebra, and is a candidate W algebra. Historically, the
connection between constrained current algebra and W algebras was first fully employed
in [36]. Before that, it had been realized that there is a close connection between the Vi-
rasoro algebra and the second Hamiltonian structure of the KdV equation [152, 202, 17],
and between classical WN algebras and generalized KdV hierarchies [18, 42, 329, 134].
The relation between the second Hamiltonian structure of generalized KdV hierarchies
and constrained current algebra was already explained in the work of Drinfeld and
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Sokolov, but the physics community was not really aware of this fact until [36] ap-
peared. There, the quantization of W algebras is studied from the constrained current
algebra point of view. Previously, the quantization of W algebras had been achieved
by directly quantizing the second Hamiltonian structure of the generalized KdV hier-
archies [116], but this is a less general method [57]. The quantization of the standard
WN algebras using constrained current algebra goes under the name ‘quantum Drinfeld
Sokolov reduction’ and was developed in more detail in [121, 120, 137, 139]. This is a
very powerful approach, as it allows one quite easily to construct a free field realization
for W algebras, and to reduce the representation theory of W algebras to that of affine
Lie algebras [138]. quantization of W algebras.

A different way to connect W algebras to constrained current algebra is via Toda
theory [222, 221, 220]. An example of a Toda theory is a theory of two free scalar fields,
perturbed by two vertex operators as in section 2.2.1. We saw that the chiral algebra
is reduced to a W algebra. The study W algebras as algebras of conserved currents
in Toda theories was pursued in [42] and later in [21, 19]. In the latter papers the
connection between Toda theories, and constrained current algebras was made. For a
review, see [20].

2.2.5. Why sl2 Embeddings?

Many of the papers on W algebras deal exclusively with the standard WN algebras.
However, it turns out that there are many more W algebras, which are on equal footing
with the WN algebras in that they can all be obtained from an embedding of sl2 in a
Lie algebra g. The standard WN algebras correspond to the principal embedding of sl2
in g, but in general there are many more possible inequivalent embeddings. The first
such nonstandard W algebra, called W

(2)
3 , was discovered by Polyakov and Bershadsky

[264, 38]. The more general case was first studied in [15] and later in [274]. The
quantization of these W algebras is performed in [54]. What is so special about sl2
embeddings that they always give a W algebra? Above we indicated one reason, namely
that the Drinfeld-Sokolov reduction of sl2 itself is the Virasoro algebra, and that the
sl2 embedding is responsible for the occurrence of a Virasoro subalgebra in the final
reduced algebra. A second reason for the occurrence of an sl2 embedding was given in
[52], where it was shown that if we demand that the components of a constrained current
transform under some special field-dependent gauge transformation as primary fields of
fixed conformal weights, then the constraints are always related to an sl2 embedding.
From this point of view, the constraints we impose on the current are only preserved
if we add to the standard co-ordinate transformations some extra compensating gauge
transformation, a procedure sometimes called ‘soldering’ [263], and the sl2 is intimately
related to the sl2(C) invariance of string theory. For the example of sl2 for which we
computed the Dirac bracket this works as follows. If Jconstr denotes the current with
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the constraints c0 and c1 imposed on it

Jconstr =

(
0 ξ
J− 0

)
, (2.2.10)

then we can look for gauge transformations that preserve the constraints, i.e. we look
for a Lie algebra valued X such that

δJconstr =

(
0 0
∗ 0

)
= k ∂X + [Jconstr, X]. (2.2.11)

This equation can be used to express the T0 and T− components of X in terms of its T+

component, which we denote by ε. The most general solution of (2.2.11) reads

X =

 k
2ξ
∂ε ε

− k2

2ξ2∂
2ε+ 1

ξ
J−ε − k

2ξ
∂ε

 =
ε

ξ
Jconstr +X ′(ε), (2.2.12)

where we separated X in a part proportional to Jconstr and a residual part X ′(ε). Taking
X proportional to Jconstr gives the standard transformation rule (δJ ∼ ∂(εJ )) for a
current under a co-ordinate transformation. This transformations does not preserve the
constraints, and we need the extra residual ‘soldering’ part X ′(ε) to bring the current
back into the constrained form. With X equal to (2.2.12) we find for δJ−

δJ− = − k3

2ξ2
∂3ε+

2k

ξ
J−∂ε+

k

ξ
∂J−ε. (2.2.13)

Thus, the ‘soldering’ term X ′(ε) modifies the transformation rule for J− under co-
ordinate transformations from the standard one to a Virasoro transformation, and ef-
fectively shifts the spin of J− from one to two.

As an important side remark, we note that (2.2.13) is precisely equal to

k

ξ

∫
dz {ε(z)J−(z), J−(w)}dirac, (2.2.14)

and that therefore the Dirac bracket is completely determined by the field-dependent
gauge transformations that preserve the constraints. These are much easier to compute
than the Dirac bracket. This (nontrivial) fact holds in fact for all W algebras that
can be obtained from sl2 embeddings [19]: the W transformations can be realized as



2.2.6. Gauge Invariant Polynomials and the Miura Transformation 31

field-dependent gauge transformations. We will frequently make use of this fact later
on.

Finally, a third reason why sl2 embeddings are necessary, and describe in some
sense a generic situation, was given in [64]. There it is shown that under certain mild
assumptions one can associate a Lie algebra and an sl2 embedding to any quantum W
algebra. For this to happen it is necessary that the W algebra exists for generic values
of the central charge (the W algebra is ‘deformable’), and is reductive (for the definition
of a reductive W algebra, see [64]).

In the recent paper [118] it is shown that an sl2 embedding can be associated to
every Drinfeld Sokolov reduction. Furthermore, evidence is given that the W algebras
corresponding to these sl2 embeddings exhaust the W algebras that may be obtained
from reductions of affine Lie algebras. This provides further motivation for considering
the W algebras associated to sl2 embeddings.

2.2.6. Gauge Invariant Polynomials and the Miura Transformation

Besides the two methods we have described so far to obtain the structure of the re-
duced sl2 algebra, namely via a computation of the Dirac bracket and via a computation
of the gauge transformations that preserve the constraints, there is a third method. This
method works as follows. Instead of starting with two second-class constraints, we can
also start with the constraint c1 = J+−ξ only, and define a reduced algebra by means of
Hamiltonian reduction. Since c1 is a first-class constraint, the constrained phase space
Mconstr, defined as the space of polynomials in {J+, J0, J−} and their derivatives modulo
the constraint c1, has a gauge invariance generated by the constraint. The reduced alge-
bra obtained from Hamiltonian reduction is then isomorphic to the subalgebra of gauge
invariant polynomials of Mconstr. The second constraint c2 plays the role of a gauge
fixing condition. For the example of sl2, these gauge invariant polynomials can easily be
determined. The gauge transformations generated by c1 are the gauge transformations
by lower triangular matrices. Now consider the current subject to the constraint c1 and
bring it into gauge-fixed form using a lower-triangular gauge transformation

n−1(J0, J−)

(
J0 ξ
J− −J0

)
n(J0, J−) + k n−1(J0, J−)∂n(J0, J−) =

(
0 ξ

T (J0, J−) 0

)
.

(2.2.15)
This uniquely fixes n(J0, J−) and T (J0, J−). It is easy to see that T (J0, J−) is gauge

invariant by construction: on the gauge orbit passing through

(
J0 ξ
J− −J0

)
there is

only one point where J0 = 0, and this point defines T (J0, J−). Therefore T is only a
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function of the orbit, and must be gauge invariant. We find

n =

(
1 0

−J0/ξ 1

)
, (2.2.16)

and

T (J−, J0) =
1

ξ
(J0)2 + J− − k

ξ
∂J0. (2.2.17)

Using the ordinary brackets for the currents we find once more that ξT/k generates a
Virasoro algebra with c = −6k. The same remains true if we drop the term proportional
to J− from (2.2.17). The expression for T without J− can also be obtained from the
differential operator identity

(k∂ − J0)(k∂ + J0) = (k2∂ − ξT ). (2.2.18)

This identity gives an algebra homomorphism from the Poisson algebra generated by
J0 to the Poisson algebra generated by T , which is known as the classical Miura trans-
formation [116]. It can be obtained from (2.2.15) by the following procedure. Two
matrix differential operators L1 and L2 are identical if and only if for all vectors ψ the
equation L1ψ = 0 is equivalent to L2ψ = 0. To apply this to (2.2.15) we introduce a
two-component vector (ψ1, ψ2) and rewrite (2.2.15) with J− = 0 as

(
k∂ +

(
0 ξ

T (J0) 0

))(
ψ1

ψ2

)
= 0⇔

(
k∂ +

(
J0 ξ
0 −J0

))
n(J0)

(
ψ1

ψ2

)
= 0.

(2.2.19)
Since n does not alter ψ1, we can rewrite the linear differential equations (2.2.19) as
second-order differential equations for ψ1,

(k∂ − J0)(k∂ + J0)ψ1 = 0⇔ (k2∂ − ξT )ψ1 = 0, (2.2.20)

and we have reobtained the Miura transformation (2.2.18). A free field realization of
T can be obtained if we replace J0 by a free field with the same OPE, for example

J0 = i
√

k
2
∂φ where φ is a free scalar field.

2.2.7. The Structure of the W Algebra

Everything we have said so far for the Virasoro algebra also holds, modulo some
changes, for W algebras related to sl2 embeddings. In this section we briefly describe



2.2.7. The Structure of the W Algebra 33

the corresponding statements for the general case. All our computations have so far
been restricted to classical W algebras. The quantization of these W algebras will be
the topic of the next sections.

The starting point of the construction is an embedding i of sl2 in a Lie algebra g.
The generators of sl2 are called {t−, t0, t+} with commutation relations [t0, t+] = t+,
[t0, t−] = −t− and [t+, t−] = t0. The images i(tr) are denoted by Λr, or sometimes also
by tr.

Associated to an embedding of sl2 in g is a decomposition g = g−⊕g0⊕g+, with g±
nilpotent. If adΛ0 has only integral eigenvalues, then the decomposition is with respect
to the sign of the eigenvalue. If adΛ0 has half-integral eigenvalues, then the situation is
somewhat more complicated. Let g 1

2
be the subspace of g of Λ0-eigenvalue +1

2
. On g 1

2

there is a non-degenerate skew-form ω(X, Y ) = Tr(Λ−[X, Y ]). Thus we can decompose
g 1

2
= I+ ⊕ I− into two maximally isotropic subspaces. Now there is a gradation of

g such that I± has degree ±1
2
, and Λ−,0,+ has degree 0. The sum of this gradation

and the gradation given by Λ0 defines a new gradation of g which is integral, and the
decomposition g = g−⊕g0⊕g+ is with respect to this new gradation, which we denote
by δ.

The W algebra is the result of imposing certain first-class constraints on J . If we
decompose J = JaTa and Λ+ = laTa in terms of a basis Ta of g, the constraints are

Ja ≡ χ(Ja) = ξla, Ta ∈ g+, (2.2.21)

where we introduced the one-dimensional representation χ of g+, and we assume that
the basis {Ta} is such that every basis element has a well-defined degree with respect
to δ and Λ0. The constraints (2.2.21) are first-class. They impose the constraint c1 on
the sl2 subalgebra i(sl2). If we would have taken g+ to be the positive degree part of
g with respect to the Λ0 gradation, (2.2.21) will not necessarily be first-class, and that
is the reason why we introduced a new gradation. The first-class constraints generate
gauge invariance, which in this case are the gauge transformations with parameter in
g−. These gauge transformations can be used to put J in the form

J = ξΛ+ +W,W ∈ ker ad(Λ−). (2.2.22)

There is a one-to-one correspondence between the independent components of W and
the representations of sl2 in which g decomposes under the embedding. The components
of W correspond to the lowest weights of these representations. For this reason, (2.2.22)
is sometimes referred to as the lowest weight gauge. It is possible to gauge fix the g−
symmetry differently, leading to other gauge choices for W . The advantage of this gauge
choice is that the components of W will automatically correspond to primary fields.
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At this stage one can employ any of the three techniques discussed previously to
compute the structure of the W algebra. The simplest one is to use the relation between
the W algebra and gauge transformations that preserve the constraints (2.2.22). The
parameter X of this gauge transformation must therefore satisfy

k∂X + [ξΛ+ +W,X] ∈ ker ad(Λ−). (2.2.23)

To solve this equation we introduce a linear operator L : g → g that is the inverse
of ad(Λ+) : im(ad(Λ−)) → im(ad(Λ+)), extended by 0 to the whole of g. In the next
chapter we show that L has a geometrical interpretation as an homotopy operator that
contracts gauge transformations into W transformations. Two basic properties of L are

L ◦ ad(Λ+) = Πimad(Λ−)
, ad(Λ+) ◦ L = Πimad(Λ+)

(2.2.24)

where ΠV denotes the orthogonal projection on the subspace V . The first of these
operators, when applied to (2.2.23), yields

ad(Λ+)(ξ + L(k∂ + ad(W )))(X) = 0, (2.2.25)

from which it follows that the general solution for X is

X =
1

1 + ξ−1L(k∂ + ad(W ))
F, (2.2.26)

where F has values in ker(ad(Λ+)), and contains the parameters for the W transfor-
mations. The denominator in (2.2.26) can be expanded in a power series. This power
series truncates after a finite number of steps, because L lowers the degree with respect
to the δ gradation by −1, and all the components of W have degree ≤ 0. Analogous to
the Virasoro case we can now establish the following general expression for the Dirac
brackets of the W algebra

∫
dz {Tr(F (z)W (z)),W a(w)}diracTa = (k∂+ξad(Λ+)+ad(W ))

1

1 + ξ−1L(k∂ + ad(W ))
F,

(2.2.27)
with W = W aTa. The stress-energy tensor of the W algebra is given by

T =
1

2k
Tr(ξΛ+ +W )2. (2.2.28)
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The parameter F for general co-ordinate transformations with parameter ε(z) can be
found from

∫
dzTr(F (z)W (z)) =

∫
dz ε(z)T (z), and equals

Fcoord(z) = (
ξ

k
Λ+ +

1

k
Π0W )ε(z), (2.2.29)

where Π0 is the projection on the centralizer of the sl2 embedding, so that Tr(WW ) =
Tr(Π0WΠ0W ). Inserting (2.2.29) into (2.2.27) yields the transformation rule

∫
dz {ε(z)T (z),W a(w)}diracTa = −k

2

ξ
Λ−∂3ε+ (1− adΛ0)(W )∂ε+ ∂Wε, (2.2.30)

which shows that all components of W except the one proportional to Λ− transform as
primary fields with weight given by the eigenvalue of 1 − adΛ0, and that T defined in
(2.2.28) generates a Virasoro algebra with c = −12kTr(Λ+Λ−).

The gauge invariant polynomials corresponding to the independent components of
W can be computed in the same way as in (2.2.15). The resulting gauge invariant
polynomials contain the currents Ja with Ta ∈ g0 ⊕ g+. The Miura transformation is
obtained by putting the Ja with Ta ∈ g− equal to zero. This does not change the algebra
generated by the gauge invariant polynomials. The Miura map is therefore an algebra
homomorphism from the W algebra into the affine Lie algebra based on g0. A free field
realization of the W algebra can subsequently be obtained by replacing the currents by a
free field realization of the affine Lie algebra based on g0. For the standard WN algebras,
g0 is just the Cartan subalgebra, and the corresponding abelian affine Lie algebra can
be expressed in terms of rank(G) = N − 1 free scalar fields. This expressions for the
W fields in terms of these N − 1 free scalar fields can be given as an identity between
two N th-order differential operators as in (2.2.20), which is the standard way to give
the Miura transformation. In general, the Miura transformation can be expressed as an
identity between two non-linear matrix differential operators of dimension ni×ni, where
ni is the number of different representations in which the fundamental representation of
g decomposes under the action of i(sl2).

2.2.8. Quantization of the W Algebra

So far we have only considered classical W algebras, i.e. they are given by Poisson
brackets. The corresponding OPE’s (using (2.1.21)) do not satisfy the criteria for an
operator product algebra. Let us call a collection of OPE’s that correspond to Pois-
son brackets a ‘classical operator product algebra’. Then a quantization of a classical
operator product algebra Aclass is an operator product algebra A depending on a free
parameter h̄ satisfying
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(i) A is a free C[[h̄]] module,

(ii) A/h̄A ' Aclass,

(iii) if π : A → A/h̄A ' Aclass denotes the natural projection, then for all Aα, Aβ ∈ A

π(Aα)(z)π(Aβ)(w) = π(
1

h̄
Aα(z)Aβ(w)). (2.2.31)

When we display a set of generators of A and their OPE’s, we usually put h̄ = 1, but it
can sometimes be instructive to restore the h̄ dependence in A.

The classical W algebra was obtained by imposing constraints on the Poisson algebra
generated by some currents. Rather than trying to quantize the W algebra directly,
one can also first quantize the Poisson algebra generated by the currents (which is
precisely the affine Lie algebra based on g), and then impose the constraints. The
constraints (2.2.21) are first-class and can be imposed using the BRST formalism [210].
For simplicity we will take ξ = 1 in the remainder. The ξ dependence can always easily
be restored by the sl2 automorphism Λ± → ξ±1Λ±. From now on we let latin indices
a, b, . . . run over the entire basis of g, Greek indices α, β, . . . over a basis of g+ and
barred Greek indices ᾱ, β̄, . . . over a basis of g0 ⊕ g−, so that λαTα + λᾱTᾱ = λaTa.

The BRST formalism requires that we introduce in addition to the currents Ja a
bα, cα system for each constraint χ(Jα). Let F (Ωk) denote the operator product algebra
generated by these fields, where k refers to the level of the affine Lie algebra, i.e.

Ja(z)J b(w) =
h̄kηab

(z − w)2
+

h̄fabc
z − w

,

bα(z)cβ(w) =
h̄δαβ
z − w

(2.2.32)

The BRST operator is then [210] D(.) = [Q, .] where Q =
∮ dz

2πi
JBRST(z) and

JBRST(z) = (Jα(z)− χ(Jα(z)))cα(z)− 1

2
fαβγ (bγ(cαcβ))(z) (2.2.33)

D is of degree 1 (i.e. D(F (Ωk)
(l)) ⊂ F (Ωk)

(l+1)) and D2 = 0 which means that F (Ωk)
is a complex. One is then interested in calculating the cohomology (or Hecke algebra)
of this complex because the zeroth cohomology is nothing but the quantization of the
classical W algebra [210, 121, 139]. This problem has been solved for the so called ’finite
W algebras’ in [54].
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The first step is to split the BRST current into two pieces [121]

JBRST,0(z) = −χ(Jα(z))cα(z) (2.2.34)

JBRST,1(z) = Jα(z)cα(z)− 1

2
fαβγ (bγ(cαcβ))(z) (2.2.35)

and to make F (Ωk) into a double complex F (Ωk) =
⊕

rs F (Ωk)
(r,s) by assigning the

following (bi)grades to its generators

deg(Ja(z)) = (−k, k) if Ta ∈ gk

deg(cα(z)) = (k, 1− k) if Tα ∈ gk

deg(bα(z)) = (−k, k − 1) if Tα ∈ gk (2.2.36)

Here, gk is the subspace of g of elements of degree k with respect to the grading δ
that was defined in the beginning of section 2.2.7. The operators D0 : F (Ωk)

(r,s) →
F (Ωk)

(r+1,s) and D1 : F (Ωk)
(r,s) → F (Ωk)

(r,s+1) associated in the obvious way to JBRST,0

and JBRST,1 satisfy D2
0 = D2

1 = D0D1 + D1D0 = 0 verifying that we have obtained a
double complex.

Let us now calculate the action of the operators D0 and D1 on the generators of
F (Ωk). For this it is convenient to introduce Ĵa(z) = Ja(z) + faβγ (bγcβ)(z). One then
finds by explicit calculation

D0(Ĵa(z)) = −h̄faβγ χ(Jγ(z))cβ(z)

D0(cα(z)) = 0

D0(bα(z)) = −h̄χ(Jα(z))

D1(Ĵa(z)) = h̄fαaβ̄ Ĵ
β̄(z)cα(z) + kh̄ηaα∂cα(z)− h̄2fαeβ f

βa
e ∂cα(z)

D1(cα(z)) = − h̄
2
fβγα (cβcγ)(z)

D1(bα(z)) = h̄Ĵα(z).

From these formulas it immediately follows thatD(Ĵα(z)) = 0 andD(bα(z)) = h̄(Ĵα(z)−
χ(Jα(z))). This means that the subspace Fα(Ωk) of F (Ωk) generated by Jα(z) and bα(z)
is actually a subcomplex. The cohomology of this complex can easily be calculated and
one finds H∗(Fα(Ωk);D) = C[[h̄]]. Note also that due to the Poincare-Birkhoff-Witt
theorem for field algebras (which follows immediately from the relations (2.1.18)) the
normal ordering map

(. . .) : Fred(Ωk)⊗
⊗
α

Fα(Ωk)→ F (Ωk) (2.2.37)

defined by A1(z) ⊗ . . . ⊗ Al(z) 7→ (A1 . . . Al)(z) (where we always use the convention
(ABC)(z) = (A(BC))(z)) is an isomorphism of vector spaces. Due to this and the fact
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that the BRST operator acts as a derivation on F (Ωk) we have

H∗(F (Ωk);D) ' H∗(Fred(Ωk);D)⊗
⊗
α

H∗(Fα(Ωk);D)

' H∗(Fred(Ωk);D) (2.2.38)

Where in the first step we used a Kunneth like theorem given in [54].

In order to calculate H∗(Fred(Ωk);D) one uses the fact that Fred(Ωk) is actually
a double complex which makes calculation of the cohomology possible via a spectral
sequence argument [238, 121, 54]. The first term E1 of the spectral sequence is the D0

cohomology of Fred(Ωk). Note that we can write D0(Ĵ ᾱ(z)) = −h̄Tr([t+, T
ᾱ]T βcβ(z)).

Therefore D1(Ĵ ᾱ(z)) = 0 iff Tᾱ ∈ glw where glw is the set of elements of g that are
annihilated by adt− (the lowest weight vectors of the sl2 multiplets) and where we used
the fact [54] that Tᾱ ∈ Ker(adt−) iff T ᾱ ∈ Ker(adt+). It can also easily be seen that for

all β there exists a linear combination a(β)ᾱĴ
ᾱ(z) such that D0(a(β)ᾱĴ

ᾱ(z)) = h̄cβ(z).
From this it follows [54] that purely on the level of vector spaces we have

Hn(Fred(Ωk);D0) ' Flw(Ωk)δk,0 (2.2.39)

where Flw(Ωk) is the subspace of F (Ωk) generated by the fields {J ᾱ(z)}Tᾱ∈glw . Since the
only cohomology that is nonzero is of degree 0 the spectral sequence degenerates at the
first term, i.e. E∞ = E1 and we find the end result

Hn(Fred(Ωk);D) ' Flw(Ωk)δk,0 (2.2.40)

Having calculated the BRST cohomology at the level of vector spaces one now can
construct the cohomology (or W algebra) generators and their OPEs via a procedure
called the tic tac toe construction [56]. Consider a generator Ĵ ᾱ(z) of degree (p,−p) of
the field algebra Flw(Ωk) (i.e. Tᾱ ∈ glw) then the generator of cohomology associated to
this element is given by

W ᾱ(z) =
p∑
l=0

(−1)lW ᾱ
l (z) (2.2.41)

where W ᾱ
0 (z) ≡ J ᾱ(z) and W ᾱ

l (z) can be determined inductively by

D1(W ᾱ
l (z)) = D0(W ᾱ

l+1(z)) (2.2.42)

It is easy to check, using the fact that D0(J ᾱ(z)) = 0 for Tᾱ ∈ glw that indeed
D(W ᾱ(z)) = 0.
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The formalism presented above provides us with a completely algorithmic procedure
of calculating the W algebra associated to a certain sl2 embedding: First determine
the space glw. Then take a current Ĵ ᾱ(z) with Tᾱ ∈ glw and inductively calculate the
fields W ᾱ

l (z) using relations (2.2.42). The field (2.2.41) is then the corresponding W
generator and the relations in the W algebra are then just the OPEs between the fields
{W ᾱ(z)}Tᾱ∈glw calculated using the OPEs in F (Ωk).

In principle this algebra closes only modulo D-exact terms. But since we computed
the D cohomology on a reduced complex generated by Ĵ ᾱ(z) and cα(z), and this reduced
complex is zero at negative ghost number, there simply are no D exact terms at ghost
number zero. Thus the algebra generated by {W ᾱ(z)}Tᾱ∈ḡlw closes in itself.

As was shown in [54] for finite W algebras, the operator product algebra gener-
ated by the fields W ᾱ(z) is isomorphic to the operator product algebra generated by
their (bi)grade (0,0) components W ᾱ

p (z) (the proof in the infinite-dimensional case is
completely analogous and will not be repeated here). The fields W ᾱ

p (z) are of course

elements of the field algebra generated by the currents {Ĵ ᾱ(z)}Tᾱ∈ḡ0 . The relations (i.e.
the OPEs) satisfied by these currents are almost identical to the relations satisfied by
the unhatted currents

Ĵ ᾱ(z) Ĵ β̄(w) =
h̄kηᾱβ̄ + h̄2kᾱβ̄

(z − w)2
+
h̄f ᾱβ̄γ̄ Ĵ

γ̄(w)

z − w
(2.2.43)

where kᾱβ̄ = f ᾱλγ f
β̄γ
λ . Now g0 is a direct sum of simple subalgebras and u(1) subalgebras,

g0 '
⊕
j

g0,j. (2.2.44)

Within the g0,j component of g0 we have the identity

kᾱβ̄ = ηᾱβ̄(h− hj) (2.2.45)

where h is the dual Coxeter number of g and hj is the dual Coxeter number of g0,j. We

therefore find that the field algebra generated by the currents {Ĵ ᾱ(z)}Tᾱ∈g0 , denoted

from now on by F̂0, is nothing but the operator product algebra associated to a affine
Lie algebra. This affine Lie algebra is not simply g0 (whose operator product algebra
is generated by the unhatted currents) however, because in g0 all components have the
same level while in F̂0 the level varies from component to component as follows from
equation (2.2.45). This is just a result of the ghost contributions kᾱβ̄ in the OPEs of
the hatted currents.
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From the above we find that the map

W ᾱ(z) 7→ (−1)pW ᾱ
p (z) (2.2.46)

is an embedding of the W algebra into F̂0. This provides the quantization and general-
ization to arbitrary sl2 embeddings of the Miura map. The generalized Miura transfor-
mations for a certain special class of sl2 embeddings were also recently given in [83].

As a result of the generalized quantum Miura transformation any representation
or realization of F̂0 gives rise to a representation or realization of the W algebra. In
particular one obtains a free field realization of the W algebra by choosing a free field
realization of F̂0. Given our formalism it is therefore straightforward to construct free
field realizations for any W algebra that can be obtained by Drinfeld-Sokolov reduction.

2.2.9. The Stress-Energy Tensor

It is possible to give a general expression for the stress-energy tensor of a W algebra
related to an arbitrary sl2 embedding. For this purpose we write t0 as t0 = saTa, where
the sa is only nonzero if Ta lies in the Cartan subalgebra. Furthermore, let δα be the
eigenvalue of adt0 acting on Tα, thus [t0, Tα] = δαTα. From this it is easy to see that
δα = saf

αa
α . Then the stress-energy tensor is

T =
1

2(k + h̄h)

(
ηa0b0(Ĵa0 Ĵ b0) + 2ηbαĴ

bχ(Jα)− 2(k + h̄h)sa∂Ĵ
a + h̄ηbαf

bα
e ∂Ĵ

e
)
,

(2.2.47)
where the indices a0, b0 run only over g0, and h is again the dual Coxeter number. By
adding a D-exact term D(R) to (2.2.47), where

R =
1

k + h̄h
ηbα(J bJα) +

1

2(k + h̄h)
ηeαf

eβ
γ (bα(bγcβ)), (2.2.48)

we can rewrite it as

T =
1

2(k + h̄h)
ηab(J

aJ b)− sa∂Ja + (δα − 1)bα∂cα + δα∂b
αcα, (2.2.49)

which has the familiar form of improved Sugawara stress-energy tensor plus the stress-
energy tensors of a set of free b − c systems. The other generators of the W algebra
cannot in general be written as the sum of a current piece plus a ghost piece. Actually,
(2.2.49) is precisely what one would expect to get from a constrained WZNW model.
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Notice that δα is the degree of Tα with respect to t0, whereas α in (2.2.49) runs over g+

which was defined with respect to a new, different, integral grading of the Lie algebra.

In terms of the level k and the Cartan element of the sl2 embedding t0 (called the
’defining vector’ since it determines the whole sl2 subalgebra up to inner automorphisms)
the central charge of the W algebra is given by [166, 20]

c(k; t0) = d0 −
1

2
dim(g 1

2
)− 12Tr

(
ρ√
k + h

− t0
√
k + h

)2

(2.2.50)

where d0 is the dimension of the subspace of g of elements of degree 0 with respect to
the grading defined by t0, g 1

2
is the subspace of g of elements of degree 1/2 with respect

to that grading, and ρ is half the sum of the positive roots, ρ = 1
2

∑
a∈∆+ f b0aa Tb0 .

2.2.10. The Virasoro Algebra

The Virasoro algebra is now easily quantized. Using the same conventions as in the
previous sections for sl2, we find for the BRST operator Q =

∮
0
dz
2πi

(c+(z)(J+(z) − 1)),

for the hatted currents Ĵ± = J± and Ĵ0 = J0− (b+c+), and for the properly normalized
generator of the BRST cohomology

T =
1

k + 2h̄
(Ĵ− + (Ĵ0Ĵ0)− (k + h̄)∂Ĵ0). (2.2.51)

This is the generator of a Virasoro algebra with c = 13h̄− 6h̄2/(k + 2h̄)− 6(k + 2h̄), a
result first found by Bershadsky and Ooguri [36].

2.2.11. The W3 Algebra

The Zamolodchikov W3 algebra (with h̄ = 1) is given in (2.2.4). It is obtained from
the principal sl2 embedding in sl3 (see section 2.2.14). In terms of the following basis

JaTa =

 J4 + J5 J2 + J3 J1

J6 + J7 −2J4 J2 − J3

J8 J7 − J6 J4 − J5

 (2.2.52)

the sl2 embedding is i(t+) = T2, i(t0) = T5 and i(t−) = T7. The generators of the
cohomology (with h̄ = 1) and of the W3 algebra with central charge c = 50 − 24(k +
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3)− 24/(k + 3) are

T =
1

2(k + 3)
(Ĵ7 +

3

2
(Ĵ4Ĵ4) +

1

2
(Ĵ5Ĵ5)− (k + 2)∂Ĵ5),

W =

(
48

(5c+ 22)(k + 3)3

) 1
2

(Ĵ8 + 2(Ĵ5Ĵ6)− 2(Ĵ4Ĵ7)− (k + 2)∂Ĵ6 − 2(Ĵ4(Ĵ4Ĵ4))

+2(Ĵ4(Ĵ5Ĵ5))− (k + 2)(Ĵ4∂Ĵ5)− 3(k + 2)(Ĵ5∂Ĵ4) + (k + 2)2∂2Ĵ4). (2.2.53)

The Miura transformation is obtained by putting Ĵ6 = Ĵ7 = Ĵ8 = 0 in (2.2.53). A
free field realization follows from the Miura transformation by replacing Ĵ4 and Ĵ5 by

expressions in terms of free fields, i.e. Ĵ4 = i
√

(k + 3)/6∂φ1 and Ĵ5 = i
√

(k + 3)/2∂φ2.

2.2.12. The W
(2)
3 Algebra

The final example we discuss is the W
(2)
3 algebra [38, 264]. It is convenient to pick

a slightly different basis for sl3, namely

JaTa =

 J4 + J5 J2 J1

J6 −2J4 J3

J8 J7 J4 − J5

 (2.2.54)

The sl2 embedding is similar to the embedding of isospin in SU(3) under which the octet
decomposes into the four isospin representations (Λ,Ξ0,−, (p, n) and Σ−,0,+). Thus, the
W algebra will be generated by four fields. The sl2 embedding is i(t+) = T1, i(t0) = 1

2
T5

and i(t−) = 1
2
T8. This is an example where the grading given by Λ0 is non-integral, and

g 1
2

is spanned by T2 and T3. To get an integral gradation, we add to Λ0 the gradation

given by −T4/6, which assigns degree −1
2

to T2 and degree +1
2

to T3. Then we get the
integral gradation δ

 0 1
2

1
−1

2
0 1

2

−1 −1
2

0

+

 0 −1
2

0
1
2

0 1
2

0 −1
2

0

 =

 0 0 1
0 0 1
−1 −1 0

 , (2.2.55)

which also shows what the decomposition g = g− ⊕ g0 ⊕ g+ looks like. The correctly

normalized generators (h̄ = 1) of the BRST cohomology that form a W
(2)
3 algebra [38]

are

H = 2Ĵ4,

G+ = Ĵ6,
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G− = −Ĵ7 + (Ĵ2Ĵ5) + 3(Ĵ2Ĵ4) + (k + 1)∂Ĵ2,

T =
1

k + 3
(Ĵ8 + (Ĵ5Ĵ5) + 3(Ĵ4Ĵ4) + (Ĵ2Ĵ6) + (k + 1)∂Ĵ5), (2.2.56)

with central charge c = 25− 6(k + 3)− 24/(k + 3). In the case at hand the subalgebra
g0 is spanned by T2, T4, T5 and T6. Obviously g0 ' sl2⊕u(1). Therefore F̂0 is the direct
sum of an affine sl2 and an affine u(1) field algebra, and using (2.2.45) the levels of
these can be calculated to be k+ 1 and k+ 3 respectively. A free field realization of the
W

(2)
3 algebra can now be found by putting Ĵ7 = Ĵ8 = 0 in (2.2.56), and by replacing

the remaining hatted currents, that generate F̂ 0, by Wakimoto free field realizations.
Actually, given a free field realization of an affine Lie algebra, one can always obtain
another free field realization (‘conjugate Wakimoto realization’ [276]) by applying the
Chevalley automorphism Hα → −Hα and E±α → −E∓α to the free field realization.

This procedure gives two different free field realizations for W
(2)
3 . These are bosonic

versions of the two free field realizations of the N = 2 superconformal algebra, of which
the W

(2)
3 algebra is a bosonic version, that were recently discussed in [39]. Thus, several

free field realizations naturally fit into this framework.

2.2.13. Free Field Expressions for W Algebras

We have seen in some examples how a free field realization of the W algebra follows
through the Miura transformation. What we did not consider so far, was whether these
W algebras are the centralizer of a set of vertex operators acting on the field algebra
generated by the free fields. Here, we construct these vertex operators. The idea is
simply to first take a free field realization of the affine Lie algebra based on g. We
denote the field algebra generated by the free fields by Fφ⊗Fβ,γ. The affine Lie algebra
ḡ is the centralizer of vertex operators Vi, i = 1 . . . rg acting on the free field algebra,

ḡ ' ∩i ker δVi |Fφ⊗Fβ,γ . (2.2.57)

Clearly, the BRST operator (2.2.33) commutes with the action of the vertex operators,
because the BRST operator is build up from currents that commute, by definition,
with the vertex operators Vi. It is then easy to see that the W algebra can also be
obtained as the centralizer of the vertex operators action on H∗Q(Fφ ⊗ Fβ,γ ⊗ Fb,c),
where Q is equal to (2.2.33), with the currents replaced by free field expressions. If we
decompose Fβ,γ = Fβ0,γ0 ⊗Fβα,γα , where β0, γ0 correspond to the roots that have degree
zero with respect to the integral grading defined by δ, and βα, γα are the β, γ systems
corresponding to roots with positive degree, then the following ‘quartet confinement’
holds (for a suitable free field realization of ḡ)

H∗Q(Fφ ⊗ Fβ0,γ0 ⊗ Fβα,γα ⊗ Fb,c) ' Fφ ⊗ Fβ0,γ0 . (2.2.58)
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For sl2, this was proven in [36], for W3 in [129] and for WN in [128]. In the general case
the proof is as follows: there are many possible different free field realizations of affine
Lie algebras. They are constructed through Gauss decompositions [150]. In particular,
a free field realization is obtained via (after appropriate normal ordering)

J = kn−1∂n+ n−1(J0 + βαTα)n, (2.2.59)

where J0 contains an arbitrary free field realization of g0, and n ∈ exp g− is the lower tri-
angular matrix n = 1+ γαT

α. With this particular free field realization, the constraints
Jα = χ(Jα) are linearly equivalent to the set of constraints βα−χ(Jα). Therefore, there
exists a field redefinition of {βα, γα, cα, bα} such that the BRST operator takes the form

Q =
∮

0

dz

2πi
cα(βα − χ(Jα)). (2.2.60)

This major simplification allows us to compute

H∗Q(Fφ ⊗ Fβ0,γ0 ⊗ Fβα,γα ⊗ Fb,c) ' H∗Q(Fφ ⊗ Fβ0,γ0)⊗
⊗
α

H∗Q(Fβα,γα ⊗ Fbα,cα)

' H∗Q(Fφ ⊗ Fβ0,γ0)

' Fφ ⊗ Fβ0,γ0 (2.2.61)

where in the first line we used a Kunneth like theorem from [53], the second line follows
from a simple cohomology calculation on the subcomplex generated by βα, bα, γα, cα,
and the third line from the fact that Q = 0 on Fφ ⊗ Fβ0,γ0 . The vertex operators Vi are
BRST equivalent to certain vertex operators Ṽi acting on Fφ ⊗ Fβ0,γ0 . This proves that
the W algebra is equal to

∩i ker δṼi|Fφ⊗Fβ0,γ0
. (2.2.62)

To do this in practice, one need not always construct a new free field realization of
the type (2.2.59), but this procedure works for any free field realization as long as the
constraints can be brought in the form βα − χ(Jα). For example, if we take the free
field realization (2.1.60) the constraints for the W3 algebra are β1 = β3 = 1 and β2 = 0.
It follows that the W3 algebra is the centralizer of

Ṽ1 = exp((2a1 − a2) · φ/(k + 3)),

Ṽ2 = exp((2a2 − a1) · φ/(k + 3)) (2.2.63)

acting on Fφ1,φ2 . These free fields are free fields with a background charge. The back-
ground charge vanishes for k = −2, and precisely in that case this realization of the W3

algebra reduces to the one discussed in section 2.2.1.
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The same free field realization (2.1.60) can also be used to describe W
(2)
3 in this way.

The constraints are β3 = 0 and β2 = 1. The W
(2)
3 algebra is the centralizer of

Ṽ1 = (β1 exp((2a1 − a2) · φ/(k + 3))),

Ṽ2 = (γ1 exp((2a2 − a1) · φ/(k + 3))), (2.2.64)

acting on Fφ1,φ2 ⊗ Fβ1,γ1 .

This procedure can also be used to construct free field resolutions for irreducible
representations ofW algebras. (for the relation between quantum Hamiltonian reduction
and the representation theory of WN algebras, see [138]) However, rigorous proofs are
only available for the case sl2 [36, 35]. The structure of the resolutions for WN algebras
is conjectured in [60, 138].

2.2.14. Some Explicit Results for sln

The sl2 embeddings into sln are in one to one correspondence with the partitions of
n [106]. Let (n1, n2 . . .) be a partition of n with n1 ≥ n2 ≥ . . ., then one can define a
different partition (m1,m2, . . .) of n by letting mk be the number of i for which ni ≥ k.
Furthermore let st =

∑t
i=1mi. Then the sl2 embedding associated to the partition

(n1, n2, . . .) is given by

t+ =
∑
l≥1

nl−1∑
k=1

El+sk−1,l+sk ,

t0 =
∑
l≥1

nl∑
k=1

(
nl + 1

2
− k)El+sk−1,l+sk−1

,

t− =
∑
l≥1

nl−1∑
k=1

k(nl − k)

2
El+sk,l+sk−1

where Eij is as usual the n × n matrix with zeros everywhere except for the matrix
element (i, j) which is equal to one. The element δ which defines the grading on sln
that we use to impose the constraints is given by

δ =
∑
k≥1

mk∑
j=1

(∑
l lml∑
lml

− k
)
Esk−1+j,sk−1+j. (2.2.65)

One can check that in case the grading provided by t0 is integer then δ = t0.

The fundamental representation of sln decomposes into irreducible sl2 multiplets.
This we denote by n→ ⊕lnl ≡ ⊕ipii, where i is the i-dimensional representation of sl2.
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We then have the following identities that come in useful when calculating the central
charge for a certain specific case.

1

2
dim(ḡ 1

2
) =

∑
i>0,k≥0

ipipi+2k+1,

d0 = −1 +
∑
i>0

ip2
i + 2

∑
i>0,k>0

ipipi+2k,

Tr(ρ)2 =
1

12
(n3 − n),

Tr(t0)2 =
1

12

∑
i

pi(i
3 − i),

Tr(t0ρ) =
1

12

(∑
i

p2
i (i

3 − i) +
∑
i<r

i(i+ 1)(3r − i− 2)pipr

)
. (2.2.66)

2.2.15. Extensions of W Algebras

W algebras are extensions of the Virasoro algebra. One can also pose the question:
when does a certain W algebra A1 contain another W algebra A2? A sufficient condition
is:
If A1 is obtained from the Drinfeld-Sokolov reduction associated to the algebra homo-
morphism i1 : sl2 → g1, and A2 from i2 : sl2 → g2, then A1 ⊂ A2 if (i) g2 = g1⊕g′ and
i2|g1 = i1, or (ii) if there is an algebra homomorphism j : g1 → g2 such that i2 = j ◦ i1.

We want to illustrate this by proving that every W algebra that is obtained from
an embedding of sl2 in sln as in the previous section, admits an N = 2 supersymmetric
extension. Given a partition (n1, n2, . . .) of n, define n′i = ni − 1 and n′ =

∑
i n
′
i. Also

define m′k and s′t as in the previous section, for the integers n′i. Now consider the Lie
superalgebra g = sl(n|n′), with the following sl2 embedding:

t+ =
∑
l≥1

nl−1∑
k=1

El+sk−1,l+sk +
∑
l≥1

n′l−1∑
k=1

En+l+s′
k−1

,n+l+s′
k

t0 =
∑
l≥1

nl∑
k=1

(
nl + 1

2
− k)El+sk−1,l+sk−1

+
∑
l≥1

n′l∑
k=1

(
n′l + 1

2
− k)En+l+s′

k−1
,n+l+s′

k−1

t− =
∑
l≥1

nl−1∑
k=1

k(nl − k)

2
El+sk,l+sk−1

+
∑
l≥1

n′l−1∑
k=1

k(n′l − k)

2
En+l+s′

k
,n+l+s′

k−1
. (2.2.67)

This embedding factors via sl2 → sln ⊕ sl′n → sl(n|n′), and since the embedding in
the first component of sln ⊕ sl′n is identical to the one in the previous subsection, we
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conclude that the super W algebra obtained from Hamiltonian reduction of sl(n|n′)
contains the W algebra associated to (n1, n2, . . .). To prove that it contains the N = 2
superconformal algebra, we use the fact that the N = 2 superconformal algebra can also
be obtained via Hamiltonian reduction, namely of sl(2|1) [37]. In view of the conditions
mentioned in the beginning of this section, it is sufficient to show that the embedding
(2.2.67) factors via sl(2|1). This can be shown by explicit calculation. In terms of the
basis

J =


t0
2

+ t̂0
3

t+ s++
t−
2

− t0
2

+ t̂0
3

s+

s−− s−
2t̂0
3

 (2.2.68)

the remaining components of sl(2|1) are embedded in sl(n|n′) via

s+ =
∑
l≥1

∑
k=1

n′lkEsk+l,n+s′
k−1

+l

s++ =
∑
l≥1

∑
k=1

n′lEl+sk−1,n+l+s′
k−1

s− =
∑
l≥1

∑
k=1

n′lEn+s′
k−1

+l,sk+l

s−− =
∑
l≥1

∑
k=1

n′l(nl − k)En+s′
k−1

+l,sk−1+l

t̂0 =
n∑
l=1

n′

n+ n′
El,l +

n′∑
l=1

n

n+ n′
En+l,n+l. (2.2.69)

Closer inspection reveals that all original W fields are now the top components of an
N = 2 multiplet. The lowest components of these multiplets also form a W algebra,
associated to the partition (n′1, n

′
2, . . .) of n′. The same procedure should in principle

allow one to construct more general extensions ofW algebras, e.g. such that they contain
an extended superconformal algebra. For the standard WN algebras, the procedure given
here says that N = 2 extended WN algebras can be obtained via Hamiltonian reduction
of sl(n|n − 1). This has been shown more explicitly in [188, 253]. Curiously enough,
N = 2 algebras also show up in computations of the BRST cohomology of reductions
of sl(n1 + n2), associated to the sl2 embedding n1 + n2 → n1 ⊕ n2 [197]. It is not clear
whether this is related to the N = 2 algebras constructed in this section.
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Chiral W gravity

3.1. Gauging the Chiral Algebra

Consider the action S(φ) for some conformal field theory with a corresponding chiral
algebra. Any element A of the chiral algebra generates a symmetry of the action. These
are characterized by parameters ε that are holomorphic, and the associated symmetry
generated by

∮
0
dz
2πi
ε(z)A(z). These symmetries are independent of z̄, and one might say

that they are ‘global’ with respect to z̄. Gauging the A symmetry means that we want
to make the action invariant under A symmetries that are ‘local’ with respect to z̄, so
that it is invariant under the action of Q =

∮
0
dz
2πi

ε(z, z̄)A(z). The variation of the action
under δQ reads

δQS(φ) = − 1

π

∫
d2z A(z, z̄)∂̄ε(z, z̄). (3.1.1)

To compensate for this variation, we introduce a gauge field µ, which transforms as
δQµ = ∂̄ε(z, z̄) + . . ., and add a term to the action in which the gauge field couples
linearly to the current A,

S ′(φ, µ) = S(φ) +
1

π

∫
d2zµA. (3.1.2)

The variation of the extra term in (3.1.2) under δQ is

δQ

(
1

π

∫
d2z µA

)
=

1

π

∫
d2z ((δQµ)A+ µ

∑
r>0

∂r−1ε

(r − 1)!
{AA}r), (3.1.3)

and we see that the action can only be made invariant by adding extra terms to the µ
transformation rule if {AA}r contains A for each r. When the latter is not the case,
we have to introduce new gauge fields corresponding to all the extra fields that appear
in the OPE of A with itself. This does not come as a surprise: of course we can only
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gauge a closed subalgebra of the chiral algebra. Suppose this subalgebra is generated
by {Aα}, then the gauged action simply reads

S ′(φ, {µα}) = S(φ) +
1

π

∫
d2z

∑
α

µαAα. (3.1.4)

Under a general variation generated by Q =
∮

0
dz
2πi

∑
α εα(z, z̄)Aα(z, z̄) the variations of

the gauge fields read

δQµα = ∂̄εα −
D

DAα

 ∑
β,γ,r>0

µβ
∂r−1εγ
(r − 1)!

{AγAβ}r

 , (3.1.5)

where the ‘derivatives’ D/DAα are defined quite arbitrarily, as long as for all X

∫
d2z X =

∫
d2z

∑
α

Aα
DX

DAα
. (3.1.6)

This is a quite cumbersome way of writing down the transformation rules. In practise
one just performs a transformation and directly reads of the transformation rules for the
µα. There is an ambiguity in doing this, however. If for example the transformation rule
for Aα contains εAβAγ, one can compensate this by by adding to the µβ transformation
rule −εµαAγ, but also by adding to the µγ transformation rule the term −εµαAβ. The
freedom in the choice of ‘derivatives’ D/DAα is a reflection of this ambiguity. Put
differently, there are several different ways to rewrite a non-linear algebra as a linear
algebra with field-dependent structure constants.

That (3.1.4) is sufficient to gauge the chiral algebra was first shown for the W3

algebra in [181] and later for arbitrary chiral algebras in [182]. Note that the identity
operator must also be gauged if any of the OPE’s has a central term. This can sometimes
happen, for example for a free boson (as is illustrated in the next subsection), although
the discussion here uses only the classical OPE’s. Of course if we gauge the identity
operator, the theory will be invariant under any transformation, by adding a suitable
transformation rule for the identity gauge field. To avoid problems of this kind, we will
assume that we use the gauge field of the identity operator only to absorb the central
terms in the OPE’s. We will see later that we can sometimes replace the identity gauge
field by a complicated function of the remaining gauge fields, which would spoil the
simple linear form of the gauge couplings in (3.1.4). Before proceeding with the general
discussion, let us first discuss the example of the free scalar field.
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3.1.1. The Free Scalar Field

The chiral algebra for the action

S =
1

2π

∫
d2z ∂X∂̄X (3.1.7)

is generated by J = ∂X. Let us try to gauge fix the symmetry generated by J . Under the
transformations generated by

∮
0
dz
2πi

εJ the field X transforms as δX = −ε. According
to the general scheme outlined above, the gauged action is

S ′ =
1

2π

∫
d2z ∂X(∂̄X + 2µJ) (3.1.8)

where µ transforms as δµ = ∂̄ε. However, we expect a problem due to the central term
in the OPE of J with itself. Indeed, S ′ is not invariant but we have

δS ′ = − 1

π

∫
d2z ∂εµJ . (3.1.9)

This reflects the fact that we also need to include a gauge field for the identity operator.
With this extra gauge field the gauged action is

S ′ =
1

2π

∫
d2z ∂X(∂̄X + 2µJ) +

1

π

∫
d2zµ1. (3.1.10)

Supplemented with the transformation rule δµ1 = µJ∂ε for the identity gauge field, this
action is invariant. Notice that none of the transformation rules contains µ1, suggesting
that it may be possible to express µ1 in terms of the other fields in the theory. In the
case at hand, it is easy to write down such an expression for µ1, µ1 = 1

2
µJ

∂
∂̄
µJ . Using

this the gauged action simply reads

S ′ =
1

2π

∫
d2z ∂(X +

1

∂̄
µJ) ∂̄(X +

1

∂̄
µJ) (3.1.11)

which is manifestly invariant. Unfortunately, it is a nonlocal action, because of the
presence of the inverse of the derivative ∂̄.

The complication with the gauge field for the identity operator does not exist if we
gauge the Virasoro algebra, since (classically) the energy momentum tensor T (X) =
−1

2
(∂X∂X) has c = 0. The gauged action reads

S =
1

2π

∫
d2z ∂X∂̄X +

1

π

∫
d2z µT (X) =

1

2π

∫
d2z ∂X(∂̄ − µ∂)X, (3.1.12)
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with transformation rules δX = ε∂X and δµ = ∂̄ε− µ∂ε + ε∂µ. The interesting obser-
vation is that the right hand side of (3.1.12) is precisely the ‘covariant’ action for a free
scalar field (2.1.25) in the metric

ds2 = e−2ϕ(dz + µdz̄)dz̄. (3.1.13)

The (−1, 1) differential µ in (3.1.13) is known as the Beltrami differential, and the gauge
field can be identified with this particular component of the metric. From now on we
will call the gauge choice (3.1.13) for the metric the chiral gauge. By analogy we hope
that the gauge fields for possible other spin s fields of the chiral algebra are components
of some tensor field Aµ1···µs , in such a way that the gauged action is equal to a fully
covariant action in some generalized chiral gauge. Such an identification would make it
easier to write down actions that are manifestly invariant under some chiral algebra or
under some W algebra, and shed light on the geometrical structures that underly the
chiral algebra. We will come back to this problem later, when we discuss the gauging
of the full symmetry algebra A× Ā.

3.1.2. The Identity Gauge Field

One might wonder whether it is always possible to express the identity gauge field
µ1 in terms of the other fields, since it does not occur in any of the transformation rules.
If µ1 is a function of the other fields, it must satisfy the following equation,

∫
d2z

(∑
α

(
δµ1

δµα
δQµα +

δµ1

δAα
δQAα

))
=
∫
d2z

∑
γ

εγ
∑
β

(−1)hβ+hγ∂hβ+hγ−1

(hβ + hγ − 1)!
µβ{AγAβ}hγ+hβ .

(3.1.14)
The left hand side is just δQ

∫
d2z µ1, and the right hand side contains all the central

terms of the algebra we are gauging; hβ and hγ are the conformal weights of Aβ and Aγ.
Upon partial integrating the left hand side of this equation, we obtain a set of partial
differential equations for δµ1/δµα and δµ1/δAα. These can be solved order by order in
µα and Aα. However, since we will never need the explicit form of the solution, we do
not pursue the study of the identity gauge field any further.

3.1.3. The Chiral Induced Action

We now gauge a (classical) subalgebra Acl
sub of the full classical chiral algebra Acl,

and assume that this subalgebra has no central terms in its OPE’s, so that the identity
gauge field is not needed. In that case the coupling to the gauge fields is simply linear.
Since the number of gauge fields is equal to the number of symmetries, we would naively
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expect that the induced action Γ[µα] defined by (where we restored h̄ dependence)

e−
1
h̄

Γ[µα] =

∫
Dφ e− 1

h̄
(S(φ)+ 1

π

∫
d2z µαAα)∫

Dφe− 1
h̄
S(φ)

=
〈
e−

1
πh̄

∫
d2z µαAα

〉
S(φ)

(3.1.15)

is independent of the gauge fields µα. However, when we quantize the theory, the
classical algebra Acl is replaced by a quantum operator product algebra A, and it may
happen that the quantization Asub of Acl

sub has central terms. These central terms spoil
the gauge invariance of Γ[µα], and make it a non-trivial function of the gauge fields∗.
The derivatives of Γ with respect to µα generate the insertion of Aα in the path integral.
The precise relation between the quantum operator this insertion represents, and the
classical field Aα that occurs in the action, depends on a choice of a regularization
prescription, for instance, specified by a particular normal ordering. We will use the
same symbol Aα both for the classical field in the action, and for the corresponding
quantum operator. If there is danger of confusion, the latter will be denoted by fq(Aα).
The following identity holds

∫
Dφ e− 1

h̄
(S(φ)+ 1

π

∫
d2z µαAα)∫

Dφ e− 1
h̄
S(φ)

=
〈
e−

1
πh̄

∫
d2z µαfq(Aα)

〉
OPE

(3.1.16)

Using the representation (3.1.15) we derive a Ward identity for Γ†

π∂̄
δΓ

δµα(z)
= ∂̄

〈
Aα(z)e−

1
πh̄

∫
d2z′ µαAα

〉
〈
e−

1
πh̄

∫
d2z′ µαAα

〉

= ∂̄

〈
−1
πh̄
Aα(z)

∫
d2w

∑
β

µβ(w)Aβ(w)e−
1
πh̄

∫
d2z′ µαAα

〉
〈
e−

1
πh̄

∫
d2z′ µαAα

〉
∗For this reason these central terms are often identified with anomalies. We choose not to use this

terminology here, because these terms can already be present at the classical level and are not pure
quantum objects.
†In this derivation we use the fact that the correlation function of a product of Aα’s can be evaluated

using only the singular part of their OPE’s. There are at least two different ways to see this. The first
one is to express the fields in terms of their (Fourier) modes. The correlation function of a product of
modes can be evaluated using only their commutators, and the commutators are completely fixed by
the singular part of the OPE’s. The second one is to put

∮
C
dz1
2πi ε(z1) in front of 〈A1(z1) . . . An(zn)〉,

where the contour encloses all the points z2, . . . , zn. The contour can written as a sum of contours
around each zi separately, and to evaluate these contour integrals one only needs the singular part
of the OPE of A1 with Ai. Since the resulting identity holds for all ε, we find 〈A1(z1) . . . An(zn)〉 =∑n
i=2〈A2(z2) . . . Ai−1(zi−1)A1(z1)Ai(zi)Ai+1(zi+1) . . . An(zn)〉.
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= ∂̄

〈
−1
πh̄

∫
d2w

∑
β,r>0 µβ(w)

{AαAβ}r(w)

(z−w)r
e−

1
πh̄

∫
d2z′ µαAα

〉
〈
e−

1
πh̄

∫
d2z′ µαAα

〉
=

〈
−1
h̄

∫
d2w

∑
β,r>0 µβ(w){AαAβ}r(w) 1

(r−1)!
∂r−1
w δ2(z − w)e−

1
πh̄

∫
d2z′ µαAα

〉
〈
e−

1
πh̄

∫
d2z′ µαAα

〉
=

〈
1
h̄

∑
β,r>0

(−1)r

(r−1)!
∂r−1(µβ{AαAβ}r)e−

1
πh̄

∫
d2z′ µαAα

〉
〈
e−

1
πh̄

∫
d2z′ µαAα

〉
=

1

h̄

∑
β,r>0

(−1)r

(r − 1)!
∂r−1(µβ{AαAβ}r)|Aγ→π δΓ

δµγ
,... (3.1.17)

Here we used (2.1.28). In the last line the dots stand for the replacements of normal
ordered products of fields by expressions in terms of Γ[µα]: in the one but last line the
OPE of Aα with Aβ can contain, besides the generators of Asub, also normal ordered
products of these generators. We want to replace these by expressions in terms of
Γ[µα], since our goal is to derive a Ward identity for Γ[µα]. If {AαAβ}r is linear in the
generators of Asub, this is easy, we use

〈
Aγ(z)e−

1
πh̄

∫
d2z′ µαAα

〉
S(φ)〈

e−
1
πh̄

∫
d2z′ µαAα

〉 = π
δΓ

δµγ(z)
. (3.1.18)

If {AαAβ}r is non-linear in the generators, the situation is more complicated. To find
the answer we must go back to the definition of the normal ordered product. It was
defined in section 2.1.3 by point-splitting regularization,

(A1A2)(z) ≡ lim
z→w
{A1(z)A2(w)− terms that are singular as z → w} (3.1.19)

Replacing normal ordered products by their point-splitting regularized definition enables
us to find expressions in terms of Γ[µα]. If, for example, {AβAγ}r contains the normal
ordered product (AγAδ), this leads to the following replacement rule for (AγAδ)

(AγAδ)(z) ≡

〈
(AγAδ)(z) e−

1
πh̄

∫
d2z′ µαAα

〉
S(φ)〈

e−
1
πh̄

∫
d2z′ µαAα

〉
= lim

z→w

(
π2 δΓ

δµγ(z)

δΓ

δµδ(w)
− h̄π2 δ2Γ

δµγ(z)δµδ(w)
− . . .

)
, (3.1.20)

where the dots stand for the terms that are singular when z → w.



54 Chiral W gravity

Since the classical gauged algebra had no central terms, Γ is of order h̄, and if the
algebra is nonlinear we see from (3.1.20) that the Ward identity contains higher-order
functional derivatives of Γ with respect to µα. Even if we expand Γ =

∑
i≥1 h̄

iΓ(i) and
focus on the leading part Γ(1), the higher-order functional derivatives still contribute
to the Ward identity. The presence of such terms makes it much more difficult to
solve the Ward identities. If they are absent, the Ward identities are a set of nonlinear
inhomogeneous partial differential equations for δΓ/δµα, which one could attempt to
solve using standard techniques. So it seems that we are in a difficult situation to extract
any information about Γ if the gauge algebra is nonlinear. However, it turns out that Γ
can in many cases be expanded in another parameter, such that the Ward identities for
the leading part of Γ in this expansion do not contain higher-order functional dervatives.
This is the case if the gauge algebraAsub is the special caseAsub(c0; h̄) of a one-parameter
family of algebras Asub(c; h̄), where the parameter c is equal to the central charge. Let
Γ[c, h̄] denote a solution of the Ward identities for the gauge algebra Asub(c; h̄). Suppose
furthermore that the coefficients for the normal ordered products of k fields that occur
in the operator product expansions of Asub(c; h̄) behave for large c as O(c1−k) ‡. Then
Γ[c, h̄] admits an expansion

Γ[c, h̄] =
∑
i≥0

c1−iΓ(i)[h̄] (3.1.21)

as can be seen from the Ward identities. It is clear from (3.1.20) that the higher-
order functional derivatives of Γ do not contribute to the Ward identity for Γ(0). Also,
the coefficients in the operator product expansions can be truncated to their leading c
behavior if we want to extract the Ward identity for Γ(0) from (3.1.17). This truncated
version of Asub(c; h̄) is actually a classical operator product algebra. To see this, let
Asub(c; h̄; h̄2) denote the algebra obtained from Asub(c; h̄) by rescaling c → c/h̄2 and
Aα → Aα/h̄2. Then the classical limit of Asub(c; h̄; h̄2) with respect to h̄2 is precisely
the classical operator algebra that we need to compute Γ(0)§.

As an example, suppose that we gauge the Virasoro algebra starting with a free
scalar field. Then Asub(c; h̄; h̄2) is the algebra

T (z)T (w) =
ch̄h̄2/2

(z − w)4
+

2h̄h̄2T (w)

(z − w)2
+
h̄h̄2∂T (w)

z − w
, (3.1.22)

and Asub is the special case c = c0 = h̄, h̄2 = 1. The classical limit with respect to h̄2

is the Virasoro algebra with nonvanishing central charge, whereas the classical limit of
Asub is a Virasoro algebra with c = 0. It is an amazing fact that the classical centerless

‡Almost all known operator algebras satisfy this condition. A counterexample is the W4,6 algebra
in [196].
§Recently, the same result for quadratic non-linear algebras was obtained in [290].
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gauge algebra is promoted to a classical algebra with center when considering the Ward
identity of Γ(0).

If we would have started with a gauge algebra with central terms, and would not
have added the identity gauge field, we can still define the induced action as in (3.1.15),
although we now expect that the induced action is of order h̄0 rather than h̄1, because
the gauged action is not gauge invariant to start with. In any case, the whole derivation
of the Ward identities given above still holds, and the structure is precisely the same.
For example, for the free scalar field with background charge, the classical gauge algebra
is a Virasoro algebra with central charge −12α2

0, and this gets promoted to a classical
Virasoro algebra with central charge c = 1 − 12α2

0 when considering the Γ(0) Ward
identity. Because the structure is the same whether we start with a gauge algebra with
or without center, we will from now on treat both cases at the same time, assuming we
did not include the identity gauge field in the gauging. The subtleties associated to the
identity gauge field will be completely ignored in the what follows.

3.2. Solution of the Ward Identity

In this section we compute the lowest-order part Γ(0) of the induced action in case
the classical algebra Acl

ind that describes the Ward identity for Γ(0) is a W algebra related
to an sl2 embedding.

3.2.1. The Virasoro Algebra

In case Acl
ind is a Virasoro algebra with central charge c, the Ward identity for Γ(0)[µ]

reads

∂̄
δΓ

δµ
=

c

12π
∂3µ+ 2

δΓ

δµ
∂µ+ µ∂

δΓ

δµ
. (3.2.1)

Since the Virasoro algebra is linear, Γ(0) is equal to the all-order induced action Γ[µ].
The equation is solved by rewriting it as

δΓ

δµ
=

c

12π
(∂̄ − 2∂µ− µ∂)−1∂3µ (3.2.2)

which can be integrated to [265]

Γ[µ] =
c

24π

∫
d2z µ ∂2(1− 1

∂̄
µ ∂)−1∂

∂̄
µ (3.2.3)
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The exact solvability in due to the linearity of the Virasoro algebra. The same trick
does not work for non-linear W algebras. However, the fact that W algebras can be
seen as constrained current algebras will still enable us to write down a solution for
Γ for all W algebras. The connection between Γ[µ] and sl2 current algebra was first
discussed in [265, 207, 36]. The induced action for the case when Acl

ind is the W3 algebra
was constructed, using its connection with sl3 current algebra, in [256]. Before we treat
the general case, let us briefly illustrate the method by showing the relation between
the Virasoro Ward identity (3.2.1) and constrained currents. If T denotes πδΓ/δµ, then
(3.2.1) can be written in the form of a zero-curvature equation

∂ +

 0 ξ
k

T
ξ

0

 , ∂̄ +

 1
2
∂µ ξ

k
µ

− k
2ξ
∂2µ+ 1

ξ
µT −1

2
∂µ

 = 0. (3.2.4)

Quite remarkably, the z-part of the connection is precisely of the form (2.2.10), whereas
the z̄-part is of the form (2.2.12)! This relation between the Ward identities and the
machinery developed in chapter 2 holds for arbitrary W algebras. The next step in
the computation of Γ is to notice that the WZNW action also satisfies a zero-curvature
equation. Combining these facts enables us to express Γ in terms of a WZNW action,
as we now demonstrate for the general case.

3.2.2. The General Case

To treat the general case and make contact with current algebra, we rewrite the
Ward identity (with arbitrary value of the central charge, but h̄ = 1) using (2.1.17)

π∂̄
δΓ(0)

δµα(z)
=

∑
β,r>0

(−1)r∂r−1

(r − 1)!
(µβ{AαAβ}r)|Aγ→π δΓ(0)

δµγ

=
∑
β,r>0

(∂r−1µβ)

(r − 1)!
{AβAα}r|Aγ→π δΓ(0)

δµγ

=
∑
β

∮
0

dz′

2πi
µβAβ(z′)Aα(z)|

Aγ→π δΓ
(0)

δµγ

= {
∫
dz′

∑
β

µβAβ(z′), Aα(z)}|
Aγ→π δΓ

(0)

δµγ

. (3.2.5)

The right hand side can be explicitly computed using (2.2.27). Since the algebra of the
Aα’s is isomorphic to that of the W a’s by assumption, we can choose a basis of Aα’s in
such a way that they are proportional the components of W , say

Aαcα = W a(α). (3.2.6)
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If we furthermore fix F (µα) ∈ ker ad(Λ+) by the requirement

Tr(F (µα)W ) =
∑
α

µαAα, (3.2.7)

the Ward identity (3.2.5) can be rewritten as

[∂ +
1

k
(ξΛ+ + ad(W )), ∂̄ +X(µα)]|

Wa(α)→cαπ δΓ
(0)

δµα

= 0, (3.2.8)

where X(µα) is expressed in terms of F (µα) through (2.2.26). This is the generalization
of (3.2.4) to arbitrary W algebras. We see that in the general case the Ward identity
can also be written as a zero-curvature equation, with the z-part of the connection in
the form of a constrained current, and with the z̄-part in the form of a parameter of
a constraint-preserving gauge transformation. This is a crucial observation, because it
enables us to connect the Ward identity with the Ward identity for a WZNW theory.
The action of the WZNW theory satisfies the following zero-curvature equation

[∂ +
1

k
J , ∂̄ − kπδS

−
wznw

δJ
] = 0. (3.2.9)

It has almost the same form as (3.2.8). To bring (3.2.8) in the proper form we introduce
the ‘effective’ action¶

e−
1
h̄

Γ[Aα] =
∫ ∏

α

Dµαe−
1
h̄

Γ[µα]+ 1
πh̄

∫
d2z µαAα (3.2.10)

which is essentially the Fourier transform of Γ[µα]. The effective action also admits an
expansion Γ[Aα] =

∑
i≥0 c

1−iΓ(i)[Aα], and

e−
1
h̄

Γ(0)[Aα] =
∫

saddlepoint

∏
α

Dµαe−
1
h̄

Γ(0)[µα]+ 1
πh̄

∫
d2z µαAα , (3.2.11)

where the integral should be evaluated in the saddle point approximation around c→∞,
which is not necessarily the same as h̄→ 0. Equation (3.2.11) follows from (3.2.10), as
the Γ(i)[µα] with i > 0 do not contribute to Γ(0)[Aα], and neither do the one and higher

¶This terminology is a bit sloppy. Strictly speaking, Γ[Aα] is neither the effective action for the Aα,
because that is defined as the Legendre transform of Γ[µα], nor is it the effective action for the µα,
which is the Legendre transform of Γ[Aα] itself. Nevertheless we will call Γ[Aα], which really is the
generating functional for connected correlation functions of the µα, the effective action.
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loop contributions of the path integral in (3.2.10). The Ward identity for Γ(0)[Aα] is
identical to that for Γ(0)[µα], with the replacements

π
δΓ(0)[µα]

δµα
↔ Aα, µα ↔ −π

δΓ(0)[Aα]

δAα
. (3.2.12)

Comparison of the Ward identity for Γ(0)[Aα] with (3.2.9) now yields the important
result that

Γ(0)[Aα] = kS−wznw(g)|kg−1∂g=ξΛ++W (3.2.13)

where Aα and W are connected through (3.2.6), and c = −12Tr(Λ+Λ−)k (see below
(2.2.30)). The induced action Γ[µα] is computed from (3.2.13) via

e−Γ(0)[µα] =
∫

saddlepoint

∏
α

DAαe−Γ(0)[Aα]− 1
π

∫
d2zµαAα , (3.2.14)

yielding

Γ(0)[µα] = −kS+
wznw(g)− ξ

π

∫
d2zTr(Λ+g−1∂̄g), (3.2.15)

where g is expressed in terms of µα by the following two conditions

Πimad(Λ+)
(kg−1∂g) = ξΛ+, Πkerad(Λ+)

(g−1∂̄g) = F (µα). (3.2.16)

This concludes our discussion of the lowest-order contribution to the chiral induced
action. We now turn to the quantization of the chiral induced action.

3.3. Quantization

The chiral induced action can provide a kinetic term for the gauge fields, as the
example (3.2.3) demonstrates for the gauge field µ. Recalling that µ has the interpre-
tation as a component of the metric, we see that Γ[µ] is a ‘gravitational’ action for
the metric in a particular gauge, the chiral gauge. By analogy, we will call Γ[µα] the
chiral induced action for W gravity. This terminology will be further discussed in the
next chapter. The quantization of the induced action is performed by computing the
effective action (3.2.10), which is the generating functional for the correlation functions
of the gauge fields. For gravity, we explicitly know Γ[µ] = Γ(0)[µ] to all orders (3.2.6),
and we could in principle compute Γ[T ] order by order. This has been done up to one
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loop [241, 335, 207, 161], and the one loop result is Γ(1) = −25Γ(0) + 13T δΓ(0)

δT
, so that

the total result up to one loop can be written as (c− 25)Γ(0)[(1 + 13
c

)T ]. This suggests
[335] that the all-order result for Γ[T ] is given by ZkcΓ

(0)[ZTT ], for certain constants
Zk and ZT that are power series in 1/c. However, it is clear that it will become more
and more cumbersome to go to higher orders, so we will consider a different strategy for
computing Γ[T ].

Going back to the original definition (3.1.15) we find that, in terms of the original
conformal field theory S(φ), the effective action (3.2.10) is expressed as

e−Γ[T ] =
∫
Dφe−S(φ)δ(T − T (φ)). (3.3.1)

In general, it is difficult to perform the path integral over the φ fields in the presence of
this delta function, but it turns out that if we start with a constrained Sl(2, IR) WZNW
theory as an action, it is possible to perform this path integral and thus to compute
the effective action for gravity to all orders. This construction is closely related to the
construction of W algebras from constrained current algebra discussed in chapter 2,
and to the construction of the induced action in the previous section. The constrained
WZNW model is given by the original WZNW model plus one extra term, which is
a Lagrange multiplier times the constraint J+ − ξ, that we used in sects. 2.2.4-6 to
construct the Virasoro algebra. In section 2.2.6, we saw that this constraint generates a
gauge invariance. The same gauge invariance is shared by the action for a constrained
WZNW model, and can be used to put the current in the form (2.2.10)

Jconstr =

(
0 ξ
J− 0

)
. (3.3.2)

The Poisson bracket for J− is, in the presence of the constraints J+− ξ = 0 and J0 = 0,
the same as for an energy momentum tensor. This statement has counterparts both on
the level of Ward identities and on the level of actions. On the level of Ward identities,
the WZNW Ward identity becomes the Ward identity for Γ[µ]. On the level of actions,
J− becomes the energy-momentum tensor of the theory. Therefore the delta function in
(3.3.1) becomes a delta function for a current of the WZNW theory and can be integrated
out. For this last step one has to perform a change of variables in the WZNW theory
from the group variable g to the current kg−1∂g, and take the corresponding Jacobian
into account. The result of all this is that the effective action Γ[T ] is indeed of the form
ZkcΓ

(0)[ZTT ]; Zk and ZT will be given later, see (3.3.49).

Here we present this calculation for W3 gravity. Ordinary gravity can be treated in
the same way, and we leave the corresponding but easier calculation for ordinary gravity
to the reader. The induced action for W3 gravity depends, besides on µ ≡ µT , on an
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extra field ν ≡ µW that couples to the W3 field. A difference with ordinary gravity is
that the explicit form of Γ[µ, ν] is not known; for W3 gravity Γ[µ, ν] is known up to
Γ(2) [283]. Therefore we cannot simply try to quantize Γ[µ, ν], and we have to rely on
other methods, like the one presented here. For W3 gravity we start with a constrained
SL(3, IR) WZNW model. As we explained in chapter 2, imposing certain constraints
on an sl3 current algebra reduces the current algebra to a W3 algebra. The fields T (g)
and W (g) that couple to the W3 gauge fields µ, ν are the generators of this W3 algebra.
Furthermore, T (g) and W (g) can be chosen such as to preserve the gauge invariance
of the constrained WZNW model. This enables us to perform a BRST quantization of
the model. Because the BRST operator is nilpotent only on-shell, we need the Batalin-
Vilkovisky quantization procedure to compute the quantum action.

To complete the computation, we need the Jacobian for the change of variables from
g to g−1∂g. This is a rather subtle point, of which our understanding is incomplete.
This point is discussed in section 3.3.3, where it is shown that knowing this Jacobian is
equivalent to knowing the effective action for ordinary WZNW theory. Using the ansatz
that this effective action is proportional, up to an overall and field renormalization,
to the WZNW action, we then complete the calculation of the effective action of W3

gravity. The result agrees with one-loop calculations[161, 284] for W3 gravity if the mul-
tiplicative renormalizations of the WZNW model agree with the one-loop calculations
for the WZNW model given in [262, 280]. The resulting effective action for W3 gravity is
proportional to a constrained WZNW model, as conjectured in [284]. Thus, W3 gravity
can be seen as an example of completely integrable nonlocal field theory. The crucial
ingredient in establishing this integrability is the requirement of BRST invariance at
the quantum level. The result also shows that the level of the sl3 current algebra in
W3 gravity is given by a KPZ-like formula as proposed in [236, 36]. We would like to
stress that these conclusions only hold if the effective action of the WZNW model is
proportional to a WZNW action itself.

Actually, Knizhnik, Polyakov and Zamolodchikov derived their result for the level
of the sl2 current algebra in gravity by an analysis of the gauge fixing of the covariant
induced action for gravity [207]. This procedure is closely related to the one used here,
and can be generalized to W3 gravity by gauge fixing the covariant action, see the
next chapter. The advantage of this approach is that it makes the sl3 current algebra
structure in W3 gravity very clear. The disadvantage is that it is difficult to extract
all-order results from it, because the covariant action is only known to lowest order in
1/c.

3.3.1. The Induced Action of W3 Gravity

We start with the action for a constrained SL(3, IR) WZNW model. To get the W3

algebra we have to impose three first class constraints (cf section 2.2.11) that we add
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with corresponding Lagrange multipliers to the action. Thus, the action is given by [36]

S1 = kS−wznw(g)− 1
π

∫
d2z (Ā1(J1 − ξ) + Ā2(J2 − ξ) + Ā3J3), (3.3.3)

where the current J = kg−1∂g is parametrized as in (2.1.57). The action contains three
gauge fields Āi (i = 1 . . . 3), that play the role of Lagrange multipliers. The constraints
J1 = J2 = ξ, J3 = 0 reduce the sl3 current algebra to a W3 algebra, see section 2.2.11.
The action (3.3.3) has an invariance under the gauge transformations generated by the
subgroup N− = exp(g−) of lower triangular matrices. Explicitly, the action (3.3.3) is
invariant under δεJ = k∂ε + [J , ε] (or δεg = gε) and δεĀ

1 = −∂̄ε1, δεĀ
2 = −∂̄ε2, and

δεĀ
3 = −∂̄ε3 + Ā2ε1 − Ā1ε2, where

ε =

 0 0 0
ε1 0 0
ε3 ε2 0

 . (3.3.4)

As explained in the previous section we intend to couple this theory to the W3 gauge
fields µ, ν by adding a term

∫
µT (J ) +

∫
νW (J ) to the action, while preserving the

gauge invariance. To find T (J ) and W (J ) one uses the fact that there is a unique
gauge transformation given by a lower triangular matrix n with ones on the diagonal
(see section 2.2.6), such that

 0 ξ 0
T (J )/2ξ 0 ξ
W (J )/ξ2 T (J )/2ξ 0

 = n−1

 H0 ξ 0
K1 H1 −H0 ξ
K3 K2 −H1

n+ kn−1∂n. (3.3.5)

The factors 1/2ξ and 1/ξ2 have been included for later convenience. The polynomials
T (J ) and W (J ) are invariant under N− gauge transformations of the constrained
current Jconstr = J |J1=ξ,J2=ξ,J3=0 that appears in (3.3.5). Under a gauge transformation
of the full current J , T (J ) and W (J ) are only invariant up to terms proportional to
J − Jconstr. Therefore, if we add

∫
µT (J ) +

∫
νW (J ) to the action (3.3.3), the action

is N− invariant up to terms proportional to the constraints. It is possible, by modifying
the transformation rules for Āi, to make the action exactly N− invariant.

If we compute T (J ) and W (J ) from (3.3.5) and add these to the action (3.3.3), the
resulting action S2(Ā, g, µ, ν) reads

S2 = kS−wznw(g)− 1
π

∫
d2z (Ā1(J1 − ξ) + Ā2(J2 − ξ) + Ā3J3)

+NT
π

∫
d2z µ((H0)2−H0H1 + (H1)2 + ξ(K1 +K2)− k∂(H0 +H1))
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+NW
π

∫
d2z ν((H0)2H1 −H0(H1)2 + ξ(H1K1 −H0K2) + ξ2K3 + 1

2
kξ∂(K2 −K1)

+1
2
k2∂2(H0 −H1) + k(−H0∂H0 +H1∂H1 + 1

2
H0∂H1 − 1

2
H1∂H0)), (3.3.6)

where we have introduced two normalization factors NT and NW . As explained above,
the N− transformations that leave this action invariant are still given by δεJ = k∂ε +
[J , ε] for the current, while for Āi they are extended to

δεĀ
3 = −∂̄ε3 + Ā2ε1 − Ā1ε2 − ε3(−NT (µ(H0 +H1) + 2k∂µ)

+NW (ν(−(H0)2 + (H1)2 + ξ(K2 −K1) + k∂(H0 −H1)) + k
2
∂ν(H1 −H0))),

δεĀ
2 = −∂̄ε2 −NTµ(ε2(H0 − 2H1)− ξε3) + kNT ε2∂µ

−NWν(−ε2H0(H0 − 2H1)− ξε3H1 + ξε2K
1 + kε2∂H

0)

−k
2
NW (ε2∂ν(H0 + 2H1)− ξε3∂ν)− k2

2
NW ε2∂

2ν,

δεĀ
1 = −∂̄ε1 −NTµ(ε1(2H0 −H1) + ξε3) + kNT ε1∂µ

+NWν(−ε1H1(H1 − 2H0) + ξε3H
0 − ξε1K2 + kε1∂H

1)

+k
2
NW (ε1∂ν(2H0 +H1) + ξε3∂ν) + k2

2
NW ε1∂

2ν. (3.3.7)

As a special case of (3.1.15) we consider the chiral induced action Γ[µ, ν] defined by

e−Γ[µ,ν] =
∫ DĀDg

gauge volume
e−S2(Ā,g,µ,ν). (3.3.8)

The quantization of S2(g, Ā, µ, ν) is most easily performed using BRST quantization
(cf. [36]). The BRST transformation rules for g and Ā are defined by replacing the pa-
rameters εi of the gauge transformations δεg = gε and (3.3.7) by anti-commuting ghosts
ci. We denote these transformation rules by δBg and δBĀ. The BRST transformation
rules for the ghosts read δBc1 = δBc2 = 0 and δBc3 = c1c2. However, due to the extra
terms we added to the Ā transformation rules in (3.3.7), the BRST operator δB no
longer satisfies δ2

B = 0. It only satisfies δ2
B = 0 when we use the Ā equations of motion.

In such a case a proper quantization and BRST gauge fixing of the theory requires that
we use the Batalin-Vilkovisky formalism [27].

For all fields in the theory we introduce antifields (Ā∗i , g
∗ and ci∗) with opposite

statistics. Because δ2
B = 0 only on-shell, we typically need to include terms that are

quadratic in the ghosts cα and in the anti-fields to find a solution to the master equation.
Because only δ2

BĀi 6= 0, the only terms quadratic in the antighosts that are needed are
terms quadratic in Ā∗i . Furthermore, if we compute δ2

BĀi, we find that each term in the
answer contains at most one derivative, and that the answer is proportional to the Āi
equations of motion. This leads us to write down the following ansatz for the minimal
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solution to the master equation

Smin = S2 +
∫
Ā∗i δBĀ

i +
∫
g∗δBg −

∫
c3∗c1c2 + π

∫
Ā∗i Ā

∗
jE

ij,αβcαcβ

+π
∫
Ā∗i Ā

∗
jF

ij,αβcα∂cβ + π
∫
Ā∗i∂Ā

∗
jG

ij,αβcαcβ. (3.3.9)

If we denote by φI the set of fields (Āi, g, ci) and by φ∗I the corresponding set of anti-fields
(Ā∗i , g

∗, ci∗), then the master equation reads (Smin, Smin) = 0, where

(P,Q) =

←
∂P

∂φI

→
∂Q

∂φ∗I
−

←
∂P

∂φ∗I

→
∂Q

∂φI
. (3.3.10)

Here,
←
∂ and

→
∂ correspond to right and left derivatives respectively. Working out the

master equation for (3.3.9) yields, among others, the equation

δ2
B(Āk) =

δπS2

δĀj

(
(2Ejk,αβ − ∂Gjk,αβ)cαcβ + (2F jk,αβ −Gjk,αβ +Gjk,βα)cα∂cβ

)
−∂

(
δπS2

δĀj

)
(Gjk,αβ +Gkj,αβ)cαcβ. (3.3.11)

From this one can compute the tensors E, F and G. The components of these tensors
either vanish, or can be determined from the following relations

Ejk,αβ = = −Ekj,αβ = −Ejk,βα,

E12,12 = 1
4
(NTµ− 2NWH

0ν + 2NWH
1ν),

E13,13 = 1
4
(−NTµ− 2NWH

0ν − kNW∂ν),

E23,23 = 1
4
(−NTµ+ 2NWH

1ν + kNW∂ν),

Gjk,αβ = Gkj,αβ = −Gjk,βα,

G12,12 = G13,13 = −G23,23 = −k
4
NWν,

F jk,αβ = −F kj,αβ = F jk,βα,

F 12,12 = F 13,13 = −F 23,23 = −k
4
NWν. (3.3.12)

If we substitute this back into (3.3.9), we find that the master equation is satisfied. The
full quantum action is given by

Sq = Smin −
∫
d2z (b∗1B1 + b∗2B2 + b∗3B3), (3.3.13)

where b∗i are the anti-fields for the anti-ghosts bi, and the Bi are Lagrange multipliers,
also known as the Nakanishi-Lautrup fields, that will impose the gauge condition. The
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gauge fixing is done by replacing the antifields φ∗ by ∂Ψ/∂φ in the full quantum action
(3.3.13), where Ψ, the gauge fermion, represents a particular gauge choice. We will
choose

Ψ =
−1

π

∫
d2z (b1Ā

1 + b2Ā
2 + b3Ā

3), (3.3.14)

so that we put ci∗ = g∗ = 0, Ā∗i = −1
π
bi and b∗i = −1

π
Āi in (3.3.13). The resulting gauge

fixed action is off-shell BRST invariant under the BRST transformations

δ′Bφ
I = −

←
∂Sq
∂φ∗I

∣∣∣∣∣∣
φ∗I=∂Ψ/∂φI

. (3.3.15)

Note that the transformation rules for Ā with respect to δ′B are different from those with
respect to δB, but we are going to integrate out the Ā, we do not give those (lengthy)
transformation rules here. The gauge fixed action we have obtained can be written in a
form that is remarkably similar to (3.3.6),

Sgf = kS−wznw(g) + 1
π

∫
d2z (b1∂̄c1 + b2∂̄c2 + b3∂̄c3)

− 1
π

∫
d2z (Ā1(Ĵ1 − ξ −B1) + Ā2(Ĵ2 − ξ −B2) + Ā3(Ĵ3 −B3))

+NT
π

∫
d2z µ((Ĥ0)2 − Ĥ0Ĥ1 + (Ĥ1)2 + ξ(K̂1 + K̂2)− k∂(Ĥ0 + Ĥ1))

+NW
π

∫
d2z ν((Ĥ0)2Ĥ1 − Ĥ0(Ĥ1)2 + ξ(Ĥ1K̂1 − Ĥ0K̂2) + ξ2K̂3 + 1

2
kξ∂(K̂2 − K̂1)

+1
2
k2∂2(Ĥ0 − Ĥ1) + k(−Ĥ0∂Ĥ0 + Ĥ1∂Ĥ1 + 1

2
Ĥ0∂Ĥ1 − 1

2
Ĥ1∂Ĥ0)), (3.3.16)

where the hatted currents are the components of an SL(3, IR) valued object Ĵ and are
defined by

Ĵ1 = J1 + c2b3, Ĵ2 = J2 − c1b3, Ĵ3 = J3,

Ĥ0 = H0 + c1b1 + c3b3, Ĥ1 = H1 + c2b2 + c3b3,

K̂1 = K1 + c3b2, K̂2 = K2 − c3b1, K̂3 = K3. (3.3.17)

A simple way to define these hatted quantities is by means of the following expression

Ĵ = J −


 0 0 0
c1 0 0
c3 c2 0

,
 0 b1 b3

0 0 b2

0 0 0




+

, (3.3.18)
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where [, ]+ denotes an anticommutator. The meaning of these hatted currents becomes
clear once we integrate out Bi from the gauge fixed action Sgf , giving

Sgf2 = kS−wznw(g)− 1
π

∫
d2z (b1∂̄c1 + b2∂̄c2 + b3∂̄c3)

+NT
π

∫
d2z µT (Ĵ ) + NW

π

∫
d2z νW (Ĵ ). (3.3.19)

The BRST transformation rules for the anti-ghosts bi now read

δBb1 = J1 − ξ + c2b3,

δBb2 = J2 − ξ − c1b3,

δBb3 = J3. (3.3.20)

If we compare the BRST transformation rules of H i and Ki with those for Ĥ i and K̂i,
we see that the transformation rules for Ĥ i and K̂i can be obtained from those for
H i and Ki by replacing J1 and J2 by ξ and J3 by 0, and H i and Ki by their hatted
counterparts. The BRST transformation rules for Ĥ i and K̂i are therefore determined
by the way the constrained current behaves under N− gauge transformations, whereas
the transformation rules for H i and Ki were determined by the way in which the uncon-
strained current transformed under gauge transformations. Because T (J ) and W (J )
were constructed in such a way as to be exactly invariant under N− gauge transforma-
tions of the constrained current, this automatically implies that T (Ĵ ) and W (Ĵ ) must
be BRST invariant. As the reader may have observed, the hatted currents appeared
previously, namely in section 2.2.8, where we quantized the W algebras using BRST
quantization. Of course, this should not come as a surprise, as the calculation here is
just a path integral counterpart of the algebraic procedure in section 2.2.8. It is amusing
that the hatted currents appear quite naturally in the path integral framework, whereas
they were introduced in section 2.2.8 only as an algebraic simplification. The classi-
cal BRST operator that generates the BRST transformations of (3.3.19) is identical to
(2.2.33),

Q =
∫
dz(c1(J1 − ξ) + c2(J2 − ξ) + c3J

3 + b3c1c2), (3.3.21)

and T (Ĵ ) and W (Ĵ ) are the generators of the classical BRST cohomology of Q.

Now we come to a difficult question, namely what are the quantum operators that
correspond to T (Ĵ ) and W (Ĵ )? Or, in the language of equation (3.1.16), what are
Tq ≡ fq(T (Ĵ )) and Wq ≡ fq(W (Ĵ ))? It is not clear how we should replace T (Ĵ )

and W (Ĵ ) by normal ordered expressions involving the currents and the ghosts. For
instance, on the quantum level it is not true that (H0K2) = (K2H0), so that we a
priori do not know by what we must replace the classical product H0K2. Two normal
orderings of a product of a certain number of currents always differ by terms that
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contain fewer currents than the original product. This indicates that the coefficient in
front of the term with the largest number of currents is the same, both for the classical
expressions T (Ĵ ),W (Ĵ ) and their normal ordered versions Tq,Wq

‖. To obtain the full
expressions for Tq and Wq, we need some extra regularization principle that tells us how
to do this. The extra regularization principle we choose is that of BRST invariance.
As T (Ĵ ),W (Ĵ ) were classically BRST invariant, we require that Tq,Wq are quantum
BRST invariant. Together with the requirement that the coefficients for the terms with
the largest number of currents do not change, this will completely fix the form of Tq
and Wq. The quantum BRST operator is given by the same expression as (3.3.21), with
products of fields replaced by normal ordered products. Notice that there is no normal
ordering ambiguity in the definition of Q. The OPE’s of the ghosts and the currents are
given by

ci(z) bj(w) =
δij

(z − w)
,

Ja(z) J b(w) =
kηab

(z − w)2
+
fabc J

c(w)

(z − w)
, (3.3.22)

where we decomposed the current J = JaTa. It is now a straightforward to obtain Tq
and Wq from (2.2.53) via a basis transformation

Tq = (Ĥ0Ĥ0)− (Ĥ0Ĥ1) + (Ĥ1Ĥ1) + ξ(K̂1 + K̂2)− (k + 2)∂(Ĥ0 + Ĥ1),

Wq = (Ĥ0(Ĥ0Ĥ1))− (Ĥ0(Ĥ1Ĥ1)) + ξ((Ĥ1K̂1)− (Ĥ0K̂2)) + ξ2K̂3

+1
2
(k + 2)ξ∂(K̂2 − K̂1) + 1

2
(k + 2)2∂2(Ĥ0 − Ĥ1)

+(k + 2)(−(Ĥ0∂Ĥ0) + (Ĥ1∂Ĥ1) + 1
2
(Ĥ0∂Ĥ1)− 1

2
(Ĥ1∂Ĥ0)), (3.3.23)

form a quantum W3 algebra, with central charge

c = 50− 24

(
(k + 3) +

1

(k + 3)

)
. (3.3.24)

If the normalization constants NT and NW are chosen to be equal to

NT =
1

k + 3
,

NW =
( −6

15k4 + 146k3 + 519k2 + 792k + 432

) 1
2

=

(
48

(k + 3)3(5c+ 22)

) 1
2

,(3.3.25)

‖The same is true in ordinary quantum mechanics, if we want to replace the classical operator paqb

by a quantum operator via the replacement p→ h̄
i
∂
∂q .
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the gauge fields µ and ν couple to the generators of the W3 algebra with their standard
normalization.

This shows that Γ[µ, ν] is indeed the all-order induced action for W3 gravity, where
c is related to k via (3.3.24). The constant ξ can be chosen arbitrarily.

To summarize, we have shown that the constrained WZNW model can be coupled
to the W3 gauge fields in such a way that the resulting induced action for the W3 gauge
fields is precisely the all-order (chiral) induced action for W3 gravity.

3.3.2. The Effective Action of W3 Gravity

The effective action for W3 gravity is obtained by quantizing the induced action, and
is defined by the following path integral (cf. (3.2.10))

e−Γ[T,W ] =
∫ DgDĀ

gauge volume
DµDνe

1
π

∫
d2z (µT+νW )−S2(g,Ā,µ,ν), (3.3.26)

where S2 is the action (3.3.6). In the previous section we performed a BRST quantization
of S2(g, Ā, µ, ν), by gauge fixing Āi = 0. This is a convenient gauge condition for
proving that the induced action for µ and ν is the same as the induced action for W3

gravity, but not for the computation of the effective action. Therefore, we will use a
different gauge here, namely H0 = H1 = K1 −K2 = 0. Because the BRST operator δB
satisfies δ2

BH
0 = δ2

BH
1 = δ2

B(K1 −K2) = 0, there is no need to use Batalin-Vilkovisky
quantization here. Under gauge transformations H0, H1 and K1 −K2 transform as

δεH
0 = J1ε1 + J3ε3,

δεH
1 = J2ε2 + J3ε3,

δε(K
1 −K2) = (H1 − 2H0)ε1 + (H0 − 2H1)ε2 + (J2 − J1)ε3

+k∂(ε1 − ε2). (3.3.27)

This shows that gauge fixing H0 = H1 = K1 − K2 = 0 produces a Faddeev-Popov
contribution to the path integral which is equal to

∫
Dβ1Dγ1Dβ2Dγ2Dβ3Dγ3 exp

(
− 1
π

∫
d2z (ξβ1γ1 + ξβ2γ2 + 2ξβ3γ3 + kβ3∂(γ1 − γ2))

)
,

(3.3.28)
where we put J1 = J2 = ξ and J3 = 0, which can be done safely after performing the Ā
integration. It is clear that (3.3.28) is just some numerical factor, and we will ignore this
factor. Then we can remove the volume of the gauge group in (3.3.26) by inserting the
combination δ(H0)δ(H1)δ(K1−K2) into the path integral. The Ā and µ, ν integrations
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yield five more delta function insertions in the path integral. Altogether this shows that

e−Γ[T,W ] =
∫
Dgδ(J1 − ξ)δ(J2 − ξ)δ(J3)δ(H0)δ(H1)δ(K1 −K2)

δ(T −NT ξ(K
1 +K2))δ(W −NW ξ

2K3)e−kS
−
wznw(g). (3.3.29)

It seems that we are already done, as the delta functions absorb all the degrees of
freedom, and that we are left with a constrained WZNW model. However, before we
can integrate out the delta functions, we must first change variables from g to g−1∂g,
and compute the corresponding Jacobian. This change of variables is a rather tricky
point, which we now discuss in some detail.

3.3.3. The Effective Action of the WZNW Model

It is generally believed [261, 262], that the Jacobian corresponding to the change of
variables from Az = g−1∂g to g leads to∗∗

DAz = exp(2hGS
−
wznw(g))Dg, (3.3.30)

where hG is the dual Coxeter number of the group under consideration. The com-
putation of this Jacobian proceeds by noticing that δAz = ∂Az(g

−1δg), so that the
Jacobian is equal to det(∂Az), and then by writing this determinant as the path integral∫
DψDψ̄ exp(−

∫
ψ̄∂Azψ), where ψ, ψ̄ are fermions transforming in the adjoint represen-

tation of the group. Finally, one can derive a Ward identity for this fermionic path
integral and show that the solution to this Ward identity is indeed given by (3.3.30)††.

Actually, (3.3.30) is in disagreement with one-loop calculations for the WZNW model
[262, 280]. If (3.3.30) were true, then one could easily compute the effective action for
the WZNW model to all orders: first, we compute the generating functional of connected
diagrams G[Jz̄], given by

exp−G[Jz̄] =
∫
DAz exp(−kS−wznw(Az) + 1

π

∫
d2zTr(AzJz̄)). (3.3.31)

In the spirit of the beginning of this chapter G[Jz̄] is the induced action for the WZNW
model with its full chiral algebra gauged. If we change variables from Az to g with

∗∗The symbols Az and Jz̄ used in this section should not be confused with Āi and Ji used in the
previous sections.
††See also chapter 5. In general, if r is a representation of g, then log det(∂ + r(Az)) = S−wznw(Az),

where in the WZNW action the trace should be taken in the representation r.
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Az = g−1∂g, and parametrize Jz̄ by Jz̄ = (k − 2hG)∂̄hh−1, we can use the Polyakov-
Wiegmann identity (2.1.51) to write the right-hand side of (3.3.31) as∫

Dg exp(−(k − 2hG)S−wznw(gh) + (k − 2hG)S−wznw(h)). (3.3.32)

We can safely replace the variable g by g′ = gh−1, because this does not change the
measure Dg, and we see that if we ignore an infinite factor, the generating functional
G[Jz̄] = −(k − 2hG)S−wznw(h). The effective action Seff (Az) is the Legendre transform
of G[Jz̄],

Seff (Az) = min
Jz̄

(
−G[Jz̄]− 1

π

∫
d2zTr(AzJz̄)

)
= min

h

(
(k − 2hG)S−wznw(h)− (k−2hG)

π

∫
d2zTr(Az∂̄hh

−1)
)

= min
h

(
(k − 2hG)S−wznw(h−1) + (k−2hG)

π

∫
d2zTr(Azh

−1∂̄h)
)
.(3.3.33)

The extremum is attained for Az = h−1∂h, and we find that the effective action is simply

Seff (Az) = −(k − 2hG)S−wznw(Az). (3.3.34)

On the other hand, one can also perform a one-loop computation of the effective
action [262, 280], and check the above result. In (3.3.31), the saddle point of the action
−kS−wznw(Az) + 1

π

∫
d2zTr(AzJz̄) is at A(0)

z (Jz̄), where A(0)
z is defined by the equation

F (A(0)
z , −1

k
Jz̄) = 0‡‡. If we write Az = A(0)

z + Ãz, and Jz̄ = k∂̄hh−1, so that A(0)
z =

−∂hh−1, then we can expand (3.3.31)

exp−G[Jz̄] =
∫
DÃz exp(kS−wznw(h) +

k

2π

∫
d2zTr(Ãz∂

−1

A
(0)
z

∂̄
A

(0)
z̄
Ãz) + . . .), (3.3.35)

where ∂
A

(0)
z

= ∂ + ad(A(0)
z ) and ∂̄

A
(0)
z̄

= ∂̄ + ad(A
(0)
z̄ ), with A

(0)
z̄ = − 1

k
Jz̄. This shows

that the one-loop contribution to G[Jz̄] is given by 1
2

log det(∂−1

A
(0)
z

∂̄
A

(0)
z̄

). If we assume

that this determinant is equal to 1
2

log det(∂̄
A

(0)
z̄

)− 1
2

log det(∂
A

(0)
z

), then we can compute

these determinants as explained below (3.3.30), to obtain

Gone−loop[Jz̄] = hGS
+
wznw(A

(0)
z̄ )− hGS−wznw(A(0)

z )

= hGS
−
wznw(h)− hGS+

wznw(h)

= 2hGS
−
wznw(h) + hG

π

∫
d2zTr(h−1∂hh−1∂̄h). (3.3.36)

‡‡F (Az, Az̄) denotes the curvature of the connection ∂ + Az + ∂̄ + Az̄, and is given by F = ∂Az̄ −
∂̄Az + [Az, Az̄].
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The effective action up to one loop can be computed in the same way as in (3.3.33)

Seff (Az) = min
h

(
(k − 2hG)S−wznw(h−1)− hG

π

∫
d2zTr(h−1∂hh−1∂̄h)

+ k
π

∫
d2zTr(Azh

−1∂̄h)
)

= min
h′

(
(k − 2hG)S+

wznw(h′) + k−hG
π

∫
d2zTr(Azh

′−1∂̄h′)
)
, (3.3.37)

where in the last line we changed variables from h to h′, with h′−1∂̄h′ = (1 + hG
k

)h−1∂̄h.

The extremum is at Az = (1− hG
k

)h′−1∂h′, and we find that up to one loop the effective
action is given by

Seff (Az) = −(k − 2hG)S−wznw((1 + hG
k

)Az). (3.3.38)

The disagreement between (3.3.34) and (3.3.38) is due to the fact that the action
S−wznw(Az) is non-renormalizable, and we can get any result for the effective action
we want. At least, as long as we do not impose any additional constraint by hand.
Consider, for example, the factorization of the determinants we used above. The same
principle applied to 1

2
log det(∂̄

A
(0)
z̄
∂
A

(0)
z

) would yield 1
2

log det(∂̄
A

(0)
z̄

) + 1
2

log det(∂
A

(0)
z

),

but 1
2

log det(∂̄
A

(0)
z̄
∂
A

(0)
z

) can also be computed with a regularization prescription that

preserves the vector gauge invariance, and then the result is zero. Several proposals
have appeared in the literature [262, 280, 291, 293], see also [302] and the related papers
[99, 7, 214, 85]. All have one thing in common: the effective action for the WZNW
model is given by

Seff (Az) = −kZkS−wznw(ZAAz), (3.3.39)

where Zk = 1− 2hG/k, and ZA = 1 +O(hG/k). The rest of our calculations are based
upon this form of the effective action. We keep the explicit ZA dependence in our final
answers. If the effective action is of the form (3.3.39), one can deduce the following path
integral identity

∫
DAz f(Az) exp(−kS−wznw(Az)) =

∫
Dg f(Z−1

A g−1∂g) exp(−kZkS−wznw(g)). (3.3.40)

For the proof of this identity one first decomposes the function f into Fourier modes,
and then parametrizes an arbitrary mode with a group valued variable h via

fh(Az) = exp( 1
π

∫
d2zTr(ZAZkk∂̄hh

−1Az)). (3.3.41)

Some manipulations, using the Polyakov-Wiegmann identity and the definition of the
effective action, are then sufficient to derive (3.3.40) for an arbitrary Fourier mode, and
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thus for arbitrary functions f . If we take f(Az) = g(Az) exp(−lS−wznw(Az)) with an
arbitrary functional g, we can evaluate the left hand side of (3.3.40) in two different
ways. The two answers agree for generic g only if ZA = 1 and Zk = 1 + a

k
for some

constant a. Thus, this suggests that self-consistency requires

ZA(k) = 1. (3.3.42)

This is precisely the value for ZA obtained in (3.3.34), the value that follows from the
‘KPZ’ approach [291], and the value that follows from a calculation with a Pauli-Villars
regularization method [293].

A different, but presumably related, question, is what the effective action of the
WZNW action is, not as a function of Az, but as a function of the group variable g. Since
the WZNW action is renormalizable, this is a well-defined question. Some naive path
integral manipulations show that the corresponding Z-factors are Zwznw

k = Zwznw
A = 1,

which is confirmed by the analysis in [219]. On the other hand, in [302] it is argued
that Zwznw

k = 1− hG
k

. The shift is half of that for the effective action of S−wznw(Az). The
reason is that the latter is a chiral action, in contrast to S−wznw(g), which is non-chiral.
Recent two-loop calculations [314], in which the effective action is defined as that of the
non-linear sigma model corresponding to the WZNW theory, yield Zsigma model

k = 1− hG
k

and Zsigma model
A = 1. It would be nice to have a better understanding of the relations

between these different Z factors.

3.3.4. The Effective Action of W3 Gravity, Continued

Using (3.3.40) and Zk = (1 − 2hG
k

) it is straightforward to work out the effective
action for W3 gravity. Starting with (3.3.29), and using that hG = 3 for SL(3, IR), one
finds:

e−Γ[T,W ] =
∫
Dgδ(J1 − ξ)δ(J2 − ξ)δ(J3)δ(H0)δ(H1)δ(K1 −K2)

δ(T −NT ξ(K1 +K2))δ(W −NW ξ
2K3)e−kS

−
wznw(g)

=
∫
DAzδ(J ′1 − ξ)δ(J ′2 − ξ)δ(J ′3)δ(H ′0)δ(H ′1)δ(K ′1 −K ′2)

δ(T −NT ξ(K
′
1 +K ′2))δ(W −NW ξ

2K ′3)e−(k+6)S−wznw(Az), (3.3.43)

where J ′ = kZA(k+6)Az. We can substitute the delta functions into the WZNW action,
and obtain the effective action for W3 gravity to all orders. The final result reads, in
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terms of the renormalized level kc = k + 6:

Γ[T,W ] = kcS
−
wznw


0 ξ

(kc−6)ZA(kc)
0

T
2NT ξ(kc−6)ZA(kc)

0 ξ
(kc−6)ZA(kc)

W
NW ξ2(kc−6)ZA(kc)

T
2NT (kc−6)ZA(kc)

0

 . (3.3.44)

The induced action for W3 gravity to lowest order, Γ(0)[T,W ], can be computed as was
explained in section 3.2. If T and W are normalized to be the standard generators of
the W3 algebra, the result for Γ(0)[T,W ] reads [256]

Γ(0)[T,W ] = kS−wznw


0 α 0

βT 0 α

γW βT 0

 , (3.3.45)

where c = −24k, 2αβk = 1, and γ2 = −10β2/α2. Both (3.3.44) and (3.3.45) contain
one free parameter, and we can choose ξ/(kc − 6)ZA(kc) = α = 1. This proves that

Γ[T,W ] = ZkΓ
(0)[ZTT, ZWW ], (3.3.46)

and using (3.3.24) and (3.3.25) we find that kc and the central charge c are related
through

c = 50− 24

(
(kc − 3) +

1

(kc − 3)

)
(3.3.47)

and that the renormalizations Zk, ZT and ZW are given by

Zk =
−24

c
kc = 1− 122

c
+ . . . ,

ZT =
−c(kc − 3)

24(kc − 6)2ZA(kc)2
,

ZW =
ic
√

(5c+ 22)(kc − 3)3/2

48
√

30(kc − 6)3ZA(kc)3
. (3.3.48)

These results are in agreement with the one-loop results obtained in [161, 284], if
ZA(kc) = 1 + 3

kc
+ O(1/kc)

2, as predicted by (3.3.38). However, in [161] one has to
deal with momentum routing ambiguities, whereas the calculations in [284] use the
same factorization of determinants as the one that led to (3.3.38). Probably, the cal-
culation of the effective action of W3 gravity suffers from the same ambiguities as the
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calculation for the WZNW model. Note that the ‘KPZ’ relation between the level kc
and c given in (3.3.47) is independent of ZA, and always comes out of this analysis as
long as Zk = 1 − 2hG

k
. Clearly, the techniques used here can be applied to WN gravity

for arbitrary N , and in particular to 2-d quantum gravity, yielding

Γ[T ] = ZkΓ
(0)[ZTT ],

c = 13− 6

(
(kc − 2) +

1

(kc − 2)

)
,

Zk =
−6

c
kc,

ZT =
−c(kc − 2)

6(kc − 4)2ZA(kc)2
. (3.3.49)

These results agree with those obtained in [207, 335, 241, 161], if ZA(kc) = 1 + 2
kc

+

O(1/kc)
2.

3.3.5. Remarks

The relation between the constrained WZNW model presented here and Toda theory
becomes clear if one picks in (3.3.26) the gauge choice K1 = K2 = K3 = 0. Ignoring the
non-trivial contribution of the Faddeev-Popov ghosts in this case, the action (3.3.26)
reduces to a Toda action, and T and W can be identified with the conserved currents
of the Toda theory.

For a general W algebra associated to an sl2 embedding, the effective action reads
as follows∗. As was explained in section 2.2.8, the BRST invariant expressions for the
generators of the quantum W algebra are always of the form Aα = Nα[k]Ĵ ᾱ+ . . ., where
Tᾱ ∈ glw and k is the level of the current algebra. For large k, Nα[k] has an expansion
N (0)
α kdα +N (1)

α kdα−1 + . . .. Define kc via the equation (cf (2.2.50))

c = d0 −
1

2
dim(g 1

2
)− 12Tr

(
ρ√

kc − h
− t0

√
kc − h

)2

, (3.3.50)

and let hα denote the conformal weight of Aα. Then

Γ[Aα] = ZkΓ
(0)[ZαAα], (3.3.51)

where

Zk =
−12Tr(t0)2

c
kc,

∗Recently, lots of new examples were worked out, including supersymmetric ones; see [291, 292].
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Zα =
N (0)
α

Nα[kc − 2h](kc − 2h)hαZg
A(kc)hα

(
−c

12Tr(t0)2

)dα+hα

. (3.3.52)
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Covariant W Gravity

4.1. Gauging Non-Chiral Algebras

In the previous chapter we explained how to gauge a subalgebra of the chiral algebra.
The answer (3.1.4) was particularly simple, it contained only linear couplings to the
gauge fields. In this section we take a look at the more general and more difficult
problem of gauging a subalgebra of the full symmetry algebra A × Ā. In fact, the
problem is that A× Ā does not constitute a direct product in the sense of algebras, so
that Asub × Āsub is not necessarily a closed subalgebra of A× Ā

4.1.1. Example: Free Scalar Field

Suppose we want to gauge both the holomorphic and anti-holomorphic Virasoro
algebra for the free scalar field. Based on the construction of the previous chapter, we
write down as a first attempt

S =
1

2π

∫
d2z ∂X∂̄X +

1

π

∫
d2z (µT + µ̄T̄ ). (4.1.1)

However, this action is not invariant. Under a transformation generated by

∮
0

dz

2πi
ε(z, z̄)T (z), (4.1.2)

the anti-holomorphic stress-energy tensor transforms non-trivially, δεT̄ = −∂̄X∂̄(ε∂X),
which implies

δεS =
1

π

∫
d2z µ̄ (−∂̄ε ∂X ∂̄X + ε ∂T̄ ). (4.1.3)

The first term is proportional to neither T nor T̄ , so that the the action cannot be
made gauge invariant by a suitable modification of the µ and µ̄ transformation rules.
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To restore the gauge invariance, we need to add terms of higher order in µ and µ̄.
Rather than doing this by hand order by order, we can in this special case guess the
final answer, owing to the observation made in section 3.1.1. There we noticed that the
chiral gauged action was nothing but the free scalar field in the non-trivial background
metric ds2 ∼ (dz + µdz̄)dz̄. In the same way the anti-chiral gauged action corresponds
to a background metric ds2 ∼ dz(dz̄ + µ̄dz). This suggests that the fully gauged theory
corresponds to the metric ds2 ∼ (dz + µdz̄)(dz̄ + µ̄dz) ∼ |dz + µdz̄|2, yielding an action

S =
1

2π

∫
d2z

1

1− µµ̄
(∂ − µ̄∂̄)X (∂̄ − µ∂)X. (4.1.4)

To first order in µ and µ̄, this action coincides with (4.1.1), and the transformation rules
for the fields agree with those in (4.1.1). Furthermore, (4.1.4) is invariant under gen-
eral co-ordinate transformations (as is clear from (2.1.25)), and is therefore the correct
gauged action. It contains terms of arbitrary order in µ, µ̄, so that adding terms order
by order to (4.1.1) would not have been a particularly efficient procedure to obtain the
complete result.

What is important, is that by gauging both Virasoro algebras, we have re-obtained
the covariant formulation of the free scalar field coupled to a metric, provided that we
identify the gauge fields with components of the metric. This is our main motivation for
studying the gauging of more general non-chiral algebras. We expect that the gauged
actions are covariant (or even better, W -covariant) versions of the original action, and
that the gauge fields can be identified as components of some W analogue of the metric.
The ultimate goal of this program is to give some kind of W tensor calculus, so that
one can write down actions that are manifestly W -invariant, in the same way as this
can be done for co-ordinate transformations. Unfortunately, this goal is still far ahead.
The problem of gauging an arbitrary algebra is still only partially solved, as we discuss
below.

4.1.2. General Case

The reason why in the previous example the naive linear gauging did not work, is
that there is a nonvanishing OPE between T and T̄ . There is an alternative way to
think about this. In the linear gauged action (3.1.4) the gauge fields can be interpreted
as Lagrange multipliers that impose the constraints Aα = 0. The condition that the
Aα generate a closed algebra is equivalent to the condition that the constraints Aα = 0
are first-class. Thus, in terms of constraints, the problem is that T = 0 and T̄ = 0 do
not form a set of first class constraints. Only a subalgebra that corresponds to a set of
first class constraints can be linearly gauged. Therefore, the gauging is straightforward,
once we manage to replace T = 0 and T̄ = 0 by two equivalent, first-class constraints.
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This can be done by means of the following trick: we introduce a set of auxiliary
fields, both for the generators of the chiral and of the anti-chiral algebra. We include
them in the action in such a way that on-shell they are identical to the generators of the
chiral and anti-chiral algebra. Subsequently, we define Poisson brackets for the auxiliary
fields. With respect to these Poisson brackets, the auxiliary fields associated with the
generators of the chiral algebra form an algebra that is isomorphic to the chiral algebra,
but one that does commute with the copy of the anti-chiral algebra generated by the
remaining auxiliary fields. If we replace in this set-up the subalgebra we want to gauge
by the corresponding expressions in terms of auxiliary fields, we have a set of first class
constraints that can be gauged in a linear fashion. Then the complete gauged action
is obtained by integrating out the auxiliary fields. This method was first employed
in [285], where the auxiliary fields were introduced by hand after an order-by-order
construction of the gauged action for W3 × W̄3 symmetry. There, the auxiliary fields
arise as components of a ‘nested covariant derivative’, see also [282]. The same action,
but in a different form, was obtained in [32]. Yet another point of view was given in [242],
where the same type of gauged actions were obtained from a Hamiltonian formulation.
The problem with higher spin algebras like the W3 algebra is that the gauged actions
contain terms of order larger than two in the auxiliary fields, and integrating out the
auxiliary fields yields a non-polynomial action. In general, it is thus more convenient to
keep the auxiliary fields in the action.

We briefly sketch the Hamiltonian approach here, because it enables us to connect
the different approaches. Let (qi, pi) be the canonical variables of the theory, and H0 its
Hamiltonian. The index i can be discrete, continuous or both. In the presence of a set
of first-class constraints Gα, the action reads

S ∼
∫
dt (piq̇

i −H0 − µαGα), (4.1.5)

where the gauge fields µα play the role of Lagrange multipliers. The charge Q = εαGα

generates a symmetry of the action,

δpi = {Q, pi}
δqi = {Q, qi}

δµα = ε̇α − µβ
D{Q,Gβ}
DGα

− D{Q,H0}
DGα

(4.1.6)

where the derivation ‘D’ is defined as in (3.1.6).

Now suppose that the Poisson algebra generated by qi and pi contains a copy of
A and a copy of Ā that mutually commute. In that case we can gauge an arbitrary
subalgebra of A×Ā without any problems, assuming that the Hamiltonian does preserve
the algebra. If we gauge an algebra of symmetries, this is the case, and the scheme given
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here immediately yields the gauged action, and integrating out the momenta then gives
the Lagrangian form of the gauged action. Integrating out the momenta is precisely
what can generate the non-linear terms in the gauge fields.

This formulation is the one presented in [242]. To make contact with [285, 32], we
introduce auxiliary fields Fα for each generator Aα(q, p) of the chiral algebra, and simi-
larly F̄α for each generator of the anti-chiral algebra. The auxiliary fields are included
in the action via

S ∼
∫
dt (piq̇

i −H0 − µαGα(F, F̄ ) + λα(Fα −Aα(q, p))2 + λ̄α(F̄α − Āα(q, p))2). (4.1.7)

The first class constraints are now expressed in terms of F instead of Aα. The Poisson
brackets of Fα are identical to those of Aα(q, p), which guarantees that (4.1.6) is still a
symmetry of the action including the auxiliary fields. We can integrate out the momenta
pi from (4.1.7), which gives an action still containing the auxiliary fields Fα, F̄α. For a
suitable choice of constants λα, λ̄α this action is precisely the one obtained in [285, 32].

For the free scalar field this procedure is easily implemented. In terms of the co-
ordinates τ, σ related to z, z̄ via τ = z+ z̄, σ = z− z̄, the canonical variables for the free
scalar field are X and P = ∂τX. The chiral algebra is generated by ∂X, the anti-chiral
algebra by ∂̄X. The mutually commuting copies of these algebras are generated by the
functions P + ∂σX and P − ∂σX. With λ = λ̄ = 1/2 the action (4.1.7) becomes, when
gauging the holomorphic and anti-holomorphic Virasoro algebra,

S ∼
∫
d2z

(
P∂τX − (

1

2
P 2 +

1

2
(∂σX)2) +

1

2
(F − P − ∂σX)2 +

1

2
(F̄ − P + ∂σX)2

−µ
2
F 2 − µ̄

2
F̄ 2
)

(4.1.8)

Integrating over the momentum P gives

S ∼
∫
d2z

(
1

2
∂X∂̄X − (F − ∂X)(F̄ − ∂̄X)− µ

2
F 2 − µ̄

2
F̄ 2
)
, (4.1.9)

and a subsequent elimination of the auxiliary fields leads to (4.1.4). The precise con-
nection between this formulation and the Hamiltonian one without auxiliary fields can
be found by first integrating out the auxiliary fields from (4.1.8), which yields

S ∼
∫
d2z

(
P∂τX − (

1

2
P 2 +

1

2
(∂σX)2)− µ

2(1 + µ)
(P + ∂σX)2 − µ̄

2(1 + µ̄)
(P − ∂σX)2

)
.

(4.1.10)
Thus, the standard Hamiltonian formulation is equivalent to the one with auxiliary fields
up to a field redefinition for µ and µ̄.
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Given a realization of a W algebra in terms of an arbitrary number of free scalar
fields with background charges, together with an arbitrary number of first-order systems,
this procedure can directly be applied to gauge W × W̄ . For first-order systems the
holomorphic and anti-holomorphic chiral algebra are completely decoupled, and there
is no need to go to the Hamiltonian formulation for that sector of the theory.

4.1.3. Gauging the WZNW Model

Besides free scalar fields and first-order systems we treated one more fundamental
conformal field theory in section 2.1, the WZNW model. The phase space of the WZNW
model is, from the Hamiltonian point of view, the cotangent bundle of the loop group of
G. For a discussion of the phase space of the WZNW model, see [257]. The phase space
variables are conveniently parametrized in terms of a Lie algebra valued current J and
a group valued variable g. We also introduce what is going to be the anti-holomorphic
current

J̄ ≡ gJ g−1 − 2k
∂g

∂σ
g−1. (4.1.11)

The Hamiltonian is given by

H0 = − 1

4πk

∫
d2zTr(J 2 + J̄ 2). (4.1.12)

The variables (g,J ) are not canonical variables, and therefore the symplectic form [16]
is not the usual one. This means that the expression for the action has to be modified
to

S =
1

4i
(
∫
d−1ω −

∫
dτH0) (4.1.13)

where ω is the symplectic form. The factor of 1/4i has been included to make contact
with our Euclidean formulation, dσdτ = 4id2z. The symplectic form for the WZNW
model is not closed, which leads to the non-local term in the WZNW action. We have
[304]

∫
d−1ω =

−1

π

∫
dσdτTr((J − kg−1 ∂g

∂σ
)g−1 ∂g

∂τ
)− k

3π

∫
B3

Tr(g−1dg)3 (4.1.14)

and integrating out the current J from (4.1.13) gives the usual WZNW action S−wznw.
The nice thing is that J and J̄ commute, and the gauging of an arbitrary subalgebra
can proceed along the same lines as in the previous section. In particular this enables us
to write down non-chiral gauged actions for W algebras for which a Casimir construction
is known [14]. The two different types of gauged actions that we described previously
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can be obtained from one action, by introducing a pair of auxiliary currents F , F̄ and
by adding the quadratic terms

− 1

2πk

∫
dσdτ (Tr(F − J )2 + Tr(F̄ − J̄ )2) (4.1.15)

to the action. The subalgebra to be gauged can be expressed in terms of either J and
J̄ , or in terms of F and F̄ . In the latter formulation the current J can be integrated
out, which gives for the ungauged action the expression

S = kS−wznw(g) +
1

πk

∫
d2zTr((F − kg−1∂g)g−1(F̄ − k∂̄gg−1)g). (4.1.16)

To illustrate the method, suppose we want to gauge ḡ1× ḡ2 ⊂ ḡ× ḡ, where ḡ denotes
the affine Lie algebra based on g. For this purpose we introduce a g1 valued gauge field
Az and a g2 valued gauge field Az̄, and add to the action (4.1.16) the term

1

π

∫
d2z (µ1 − Tr(AzF̄) + Tr(Az̄F)), (4.1.17)

where we included a gauge field for the identity operator which is needed if ḡ1 × ḡ2 has
a center. If we integrate out the auxiliary fields F , F̄ we get

S = kS−wznw(g) +
k

π

∫
d2z (−Tr(Az∂̄gg

−1) + Tr(g−1∂gAz̄) + Tr(AzgAz̄g
−1)) +

1

π

∫
d2z µ1.

(4.1.18)
The identity gauge field can be expressed in a non-local way in terms of Az and Az̄.
Write Az = g−1

1 ∂g1 and Az̄ = g−1
2 ∂̄g2, then

1

π

∫
d2z µ1 = kS−wznw(g1) + kS+

wznw(g2). (4.1.19)

and with the same parametrization the whole action is actually equal to kS−wznw(g1gg
−1
2 ),

which makes the g1 × g2 invariance completely obvious. However, a drawback of this
action is that it is non-local in the gauge fields, unless S−wznw(g1) = S+

wznw(g2) = 0, as is
for instance the case if g1 and g2 are nilpotent.

The subgroups for which it is possible to write down an expression for the identity
operator that is local in the gauge fields, are usually called anomaly-free subgroups (for
a classification see [319]). The main anomaly-free subgroups are vector subgroups, and
axial abelian subgroups. In the case of a vector subgroup (δg = εg− gε), we can replace

1

π

∫
d2z µ1 → −

k

π

∫
d2zTr(AzAz̄), (4.1.20)
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with (for unitary groups) the additional requirement Az̄ = −A†z. This is the usual
formulation of the gauged WZNW model [328, 145] that describes coset conformal field
theories [23, 159]. In terms of the group variables g1, g, g2 ≡ g1 the action reads

S = kS−wznw(g1gg
†
1)− kS−wznw(g1g

†
1), (4.1.21)

but on a surface of non-trivial topology one cannot always globally write Az = g−1
1 ∂g1,

and we have to go back to the formulation in terms of the gauge fields.

For axial abelian subgroups (δg = εg + gε) we can replace

1

π

∫
d2z µ1 → +

k

π

∫
d2zTr(AzAz̄), (4.1.22)

so that in terms of the group variables g1, g, g2 ≡ g†1 the action equals

S = kS−wznw(g1gg1)− kS−wznw(g1g
†
1). (4.1.23)

In this case the condition for A is Az̄ = A†z.

4.2. W Gravity

4.2.1. What is W Gravity?

In four dimensions, the field equations for the metric in Einstein’s theory of general
relativity can be recovered from the Einstein-Hilbert action

S =
−1

16πG

∫
d4x
√
gR, (4.2.1)

and in the presence of matter fields by adding the action of a generally covariant field
theory to this one. It is natural to start with the same definition of gravity in two
dimensions. In two dimensions the Einstein-Hilbert action is, however, trivial:

∫
Σh

d2z
√
gR = −4πχ(Σ), (4.2.2)
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where χ(Σh) = 2− 2h is the Euler characteristic of Σh, with h is the number of handles
of the Riemann surface Σh. Thus the definition of gravity in two dimensions is just
‘any covariant field theory’. Now if this field theory happens to be a conformal field
theory, the theory has besides the invariance under the group of general co-ordinate
transformations also an invariance under Weyl rescalings of the metric. Since

metrics on Σh

co-ordinate + Weyl transformations
=Mh, (4.2.3)

where Mh is the 3h − 3 complex dimensional moduli space of Riemann surfaces, one
would naively expect that all the gravitational dynamics are reduced to some dynamics
on the moduli space. However, we saw in the previous chapter that the chiral induced
action Γ[µ] was non-vanishing and not invariant under co-ordinate transformations,
because the classical centerless Virasoro algebra got replaced by a quantum Virasoro
algebra with central charge c 6= 0 upon quantizing the matter part of the theory. This
shows that the matter theory may induce some non-trivial dynamics for the metric.
This is what we will call the induced action for gravity. Thus,

e−Γind[gαβ ] =
∫
D φe−S(φ,gαβ). (4.2.4)

A priori the structure of Γ[gαβ] could depend on the precise details of the field theory
defined by S. The fact that the structure of the induced action Γ[µ] only depended on
the value of the central charge of the quantum Virasoro algebra already suggests that
Γind[gαβ] should not depend on the precise details of the field theory, but only on the
value of central charge of the theory, which should play the role of a coupling constant
for the induced action. Unfortunately, the induced action arises purely from an anomaly
that is classically absent, which allows one the freedom to add any local counterterm to
the induced action, corresponding to the different regularization schemes that one can
use to compute the induced action (4.2.4). To fix its form, we will in addition require
the induced action to be itself generally covariant, which is an essential property of the
Einstein-Hilbert action.

Let us now compute the induced action for a simple case, namely for the free scalar
field

e−Γind[gαβ ] =
∫
DXe−

1
8π

∫
d2x
√
ggαβ∂αX∂βX . (4.2.5)

Following [173] we decompose X = X0 +X ′ where X0 is the zero mode of the Laplacian
2 = − 1√

g
∂α
√
ggαβ∂β, and X ′ parametrizes the remaining modes of X. Then

e−Γind[gαβ ] = (det 2′)−
1
2

∫
DX0

∫
DX ′e−

1
8π

∫
d2x
√
g(X′)2

(4.2.6)
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The zero mode integral gives a factor proportional to the volume of space-time. The
ultralocality principle [260] tells us that

∫
DXe−

1
8π

∫
d2x
√
g(X)2

= eµ
2
1

∫
d2x
√
g, (4.2.7)

for some constant µ1. Separating DX = DX0DX ′ in this expression gives

∫
DX ′e−

1
8π

∫
d2x
√
g(X′)2

=

(
8π2∫
d2x
√
g

)− 1
2

eµ
2
1

∫
d2x
√
g. (4.2.8)

If λi are the eigenvalues of 2, then we use the manifestly covariant heat kernel regular-
ization principle to derive

δ log det 2′ = δ
∑
λi>0

log λi

=
∑
λi>0

δλi
λi

= lim
ε→0

∑
λi>0

δλi

∫ ∞
ε

dt e−tλi

= lim
ε→0

∫ ∞
ε

dtTr(δ2e−t2). (4.2.9)

Under a Weyl transformation δgαβ = λgαβ of the metric this gives

δ log det 2′ = lim
ε→0

∫ ∞
ε

dtTr(−1

2
gαβδgαβ2e

−t2)

= lim
ε→0

Tr(−1

2
gαβδgαβe

−ε2) +
1
2

∫
d2x
√
ggαβδgαβ∫

d2x
√
g

= lim
ε→0

Tr(−1

2
gαβδgαβe

−ε2) + δ log
∫
d2x
√
g. (4.2.10)

The extra term in the two last lines originates from the t → ∞ contribution to the
integral in the first line. Altogether this shows that

δ(Γind[gαβ] + µ2
1

∫
d2x
√
g) =

1

2
lim
ε→0

Tr(−1

2
gαβδgαβe

−ε2). (4.2.11)

The heat kernel expansion of the Laplacian is well known [155]. It is

Tr(Y e−ε2) =
1

4πε

∫
d2x
√
gY − 1

24π

∫
d2x
√
gRY +O(ε). (4.2.12)
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The role of ε is the same as that of a cutoff. The eigenvalues of the Laplacian larger
than 1/ε are suppressed, corresponding to a cutoff Λ ∼ ε−1/2. We find the following
equation for the variation of the induced action under a Weyl transformation of g

δ(Γind[gαβ] + (µ2
1 +

Λ2

8π
)
∫
d2x
√
g) =

1

96π

∫
d2x
√
gRgαβδgαβ. (4.2.13)

From the identity

Reρg = e−ρ(Rg −2gρ) (4.2.14)

we deduce that under a Weyl transformation

δ(
√
gR) = −1

2

√
g2g(g

αβδgαβ), (4.2.15)

which implies that the right-hand side of (4.2.13) can be rewritten as

δ

(
−1

96π

∫
d2x (

√
gR)

1
√
g2

(
√
gR)

)
. (4.2.16)

Since there are no Weyl invariant covariant functionals of the metric except the constant
one, this shows that

Γind[gαβ] =
−1

96π

∫
d2x (

√
gR)

1
√
g2

(
√
gR)− (µ2

1 +
Λ2

8π
)
∫
d2x
√
g (4.2.17)

This is the original result of Polyakov [267]. The second term is the cosmological constant
term, and we will ignore it for the time being. It is easy to verify that if we would have
started with an arbitrary conformal field theory with central charge c, the coefficient in
front of (4.2.17) gets simply replaced by −c/96π. As a check, we work out the covariant
action for the metric ds2 = (dz + µ̄dz̄)dz̄. Then R = −4∂2µ, 2 = 4(∂µ∂ − ∂∂̄),
and (4.2.17) reduces to (3.2.3). The structure of the induced action becomes somewhat
clearer if we decompose the metric as g = e−2ϕĝ, where ĝ is the metric ds2 = |dz+µdz̄|2.
We find

Γind[gαβ] = SL(ϕ, ĝ) +K[µ, µ̄] + Γ[µ] + Γ[µ̄] (4.2.18)

where SL is the Liouville action

SL(ϕ, ĝ) =
−c
24π

∫
d2z (

√
ĝϕ2ĝϕ+

√
ĝRĝϕ), (4.2.19)
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and K[µ, µ̄] is a local expression involving µ and µ̄. Altogether we see the following
picture arise: the covariant action for gravity consists of a local counterterm plus two
non-local chiral induced actions Γ[µ] and Γ[µ̄]. The local counterterm shifts the diffeo-
morphism anomalies of Γ[µ] and Γ[µ̄] to the Weyl anomaly of Γind[gαβ] and restores the
general covariance.

This leads to the following definition of covariant W gravity, where W can be any
operator algebra that exists for generic values of the central charge. An action for
covariant W gravity Γcov is an action that is (i) of the form Γ[µα] + Γ[µ̄α] + a local term,
(ii) is invariant under W × W̄ transformations and (iii) contains a free parameter that
parametrizes the different values of the central charge. Such a covariant action will,
like the induced action Γ[µα], allow an expansion in 1/c. The lowest-order term of the
covariant action is the ‘classical’ covariant action for W gravity. The covariant action
will in general contain extra fields in addition to µα, µ̄α. These fields can be auxiliary, or
be analogues of the Liouville field in that they are components of a W analogue of the
metric. However, as long as there is no canonical geometrical formulation of W gravity,
there is no canonical choice of extra variables, and the covariant action is not uniquely
defined by this definition. In fact, starting with any conformal field theory whose chiral
algebra contains aW W algebra with center, we can define a covariant action, by gauging
the W × W̄ algebra and replacing the identity gauge field by −Γ(0)[µα]− Γ(0)[µ̄α]. The
resulting action is a candidate for Γ(0)

cov. So, we need some kind of guiding principle that
tells us how we should select the ‘natural’ covariant action for W gravity.

One guiding principle might be to look for the ‘minimal’ conformal field theory that
contains the W algebra in its chiral algebra. Given any free field realization of the W
algebra, a typical candidate would be the associated free field theory. The number of
free fields is always equal to the number of generators of the W algebra. That number
is the minimal number of extra fields that one needs in order to construct a covariant
action for W gravity.

For those W algebras associated to sl2 embeddings, a ‘geometrical’ interpretation
was given in chapter 2, where we explained that W transformations can be seen as field
dependent gauge transformations. In the next section we show that from this point of
view there is a natural covariant action for these W algebras, that has the structure of
a gauged Toda theory. Toda theories are the natural generalization of Liouville theory,
and for this reason W gravity has sometimes been defined via Toda theory, although
the full structure of the gauged Toda theory was unknown.

The main motivation to study W gravity lies in the fact that they present new
examples of conformal field theories, and hence provide us with new string theories. If
we start with a conformal field theory coupled to gravity, and quantize both the matter
and gravitational degrees of freedom, everything will be tuned in such a way that the
resulting theory has no conformal anomaly, i.e. c = 0. This can be understood from
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the path integral point of view: integrating over the metrics means that the resulting
theory does not depend on the metric any more. This greatly simplifies the structure
of these theories, and they essentially become topological theories, with only a few
degrees of freedom of the original conformal field theory left. We will come back to this
point in chapter 6. If the conformal field theory that couples to gravity has a central
charge larger than one, gauging the gravitational degrees of freedom is not sufficient to
produce a consistent theory. This is where W algebras come into play. If we do not
only gauge the gravitational degrees of freedom, but the maximal symmetry algebra of
the conformal field theory, it has a much better chance of becoming a simple consistent
theory. In particular, if the conformal field theory is a rational conformal field theory,
it will become a simple topological field theory. Thus, W algebras allow one to obtain
string theories starting with conformal field theories with central charge larger than
one∗. Some of these string theories may have an interesting target space interpretation,
like the black holes obtained from c = 1 matter coupled to gravity [325]. For example,
c = 2 matter coupled to W3 gravity seems to describe a string propagating in a black
hole like geometry in a four-dimensional target space with signature (2, 2).

For more on W gravity, see the review papers [286, 268, 183].

4.2.2. The Classical Covariant Action for W Gravity

To construct the covariant action we need to find the local counterterm ∆Γ[µα, µ̄α, . . .]
that should be added to Γ[µα] + Γ[µ̄α] in order to make the action W × W̄ invariant.
Using a Fourier transformation as in section 3.2.2, we find that ∆Γ[µα, µ̄α, . . .] is related
to a local counterterm ∆Γ[Aα, Āα, . . .] with the same properties by

e−∆Γ[µα,µ̄α,...] =
∫ ∏

α

DAαĀαe−∆Γ[Aα,Āα,...]+
1
π

∫
d2z (µαAα+µ̄αĀα). (4.2.20)

The lowest-order contribution to Γ[Āα] can be found in the same way as in section 3.2.2.
It is

Γ(0)[Āα] = kS+
wznw(g2)|kg−1

2 ∂̄g2=ξ̄Λ̄++W̄ , (4.2.21)

where ξ̄ is a new parameter not necessarily equal to ξ, Λ̄+ ≡ (Λ+)† and W̄ contains the
anti-holomorphic fields Āα. For convenience we write (3.2.13) in the form

Γ(0)[Aα] = kS−wznw(g1)|kg−1
1 ∂g1=ξΛ++W . (4.2.22)

∗For W algebras obtained from an sl2 embedding, the c = 1 barrier is shifted to a barrier at
c = d0 − 1

2 dim(g 1
2
)− 24(|t0||ρ| − Tr(t0ρ)), see (2.2.50).
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Now recall (section 2.2.7) that a W transformation acts on g1 as a field dependent
gauge transformation δg1 = g1X(ε), where X is of the type (2.2.26). In a similar
way W̄ transformations act on g2 via δg2 = g2X̄(ε̄). Such transformations can be
compensated for by introducing an auxiliary group-valued field G with transformation
rule δG = −X(ε)G + GX̄(ε̄), since then the combination g1Gg

−1
2 is W × W̄ invariant.

This leads to the following proposal

Γ(0)[Āα] + Γ(0)[Aα] + ∆Γ(0)[Aα, Āα, . . .] = kS−wznw(g1Gg
−1
2 ) (4.2.23)

which yields, using the Polyakov-Wiegmann identities (2.1.51), for ∆Γ

∆Γ(0)[Aα, Āα, . . .] = kS−wznw(G)− 1

π

∫
d2zTr((ξΛ+ +W )∂̄GG−1)

+
1

π

∫
d2zTr(G−1∂G(ξ̄Λ̄+ + W̄ ))

+
1

kπ

∫
d2zTr((ξΛ+ +W )G(ξ̄Λ̄+ + W̄ )G−1) (4.2.24)

and which becomes local for a suitable parametrization of G. Thus this action satisfies
all the criteria for a covariant action. It is quite similar to the action for a gauged WZNW
model (4.1.18), with a W × W̄ algebra gauged instead of a Lie subalgebra. There is
no simple reality condition for the pair of connections (Az, Az̄) = (ξΛ+ +W, ξ̄Λ̄+ + W̄ )
unless ξ̄ = −ξ. Precisely in that case Az̄ = −A†z, the same condition as for unitary
groups.

Next, we want to compute

e−∆Γ(0)[µα,µ̄α,G] =
∫

saddlepoint

∏
α

DAαĀαe−∆Γ(0)[Aα,Āα,...]+
1
π

∫
d2z (µαAα+µ̄αĀα), (4.2.25)

by solving the equations of motion for W and W̄ . It is convenient to introduce F (µα)
and F̄ (µ̄α) defined by

Tr(F (µα)W ) =
∑
α

µαAα, Tr(F̄ (µ̄α)W̄ ) =
∑
α

µ̄αĀα. (4.2.26)

Another ingredient that goes into the computation is a certain decomposition of the
linear operator AdG : g → g defined by AdG(X) = G−1XG as a product of three
other operators, AdG = LG+L

G
0 L

G
−. The Lie algebra g can be written as the direct sum

V1 ⊕ V2, where V2 = ker ad(Λ−), and V1 its orthocomplement. A second decomposition
g = W1⊕W2 is defined by taking W1 = ker ad(Λ−)† and W2 its orthocomplement. With
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these definitions, the three operators LG+, L
G
0 , L

G
− are uniquely defined by requiring that

with respect to g = V1 ⊕ V2 they have the form

LG+ ∼
(

1 ∗
0 1

)
, LG0 L

G
− ∼

(
∗ 0
∗ ∗

)
, (4.2.27)

and with respect to g = W1 ⊕W2 the form

LG− ∼
(

1 0
∗ 1

)
, LG+L

G
0 ∼

(
∗ ∗
0 ∗

)
. (4.2.28)

With these bits of notation the saddle point equations for W and W̄ can be solved to
give

W = (LG−)−1(LG0 )−1(ΠV2(−kG−1∂G− ξG−1Λ+G+ kF̄ )),

W̄ = LG+L
G
0 (ΠW1(k∂̄GG−1 − ξ̄GΛ̄+G−1 + kF )), (4.2.29)

and

∆Γ(0)[µα, µ̄α, G] = kS−wznw(G)− 1

π

∫
d2zTr(ξΛ+∂̄GG−1)

+
1

π

∫
d2zTr(ξ̄G−1∂GΛ̄+)

+
1

kπ

∫
d2zTr(ξξ̄Λ+GΛ̄+G−1)

− 1

kπ

∫
d2zTr(ΠV2(−kG−1∂G− ξG−1Λ+G+ kF̄ )

LG0 (ΠW1(k∂̄GG−1 − ξ̄GΛ̄+G−1 + kF ))). (4.2.30)

This is the final result for the covariant action. The transformation rules for the fields
under W and W̄ transformations can easily be obtained from those for the fields in the
Fourier transformed picture.

As an example, we work out the action for gravity. Decomposing G as

G =

 1 0

k
ξ
ω 1

 eϕ 0

0 e−ϕ

 1 −k
ξ̄
ω̄

0 1

 (4.2.31)

yields

∆Γ =
k

π

∫
d2z ∂ϕ∂̄ϕ− 2k

π

∫
d2 (ω + ∂ϕ)(ω̄ + ∂̄ϕ)
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+
1

kπ

∫
d2z ξξ̄(1− µµ̄)e−2ϕ

+
k

π

∫
d2z µ(∂ω − ω2) +

k

π

∫
d2z µ̄(∂̄ω̄ − ω̄2). (4.2.32)

The first and the third line of this expression are precisely like the expressions for a free
scalar field with a gauged holomorphic and anti-holomorphic Virasoro algebra that we
considered in the beginning of this chapter. The form of the stress-energy tensor, ∂ω−ω2,
shows that the free scalar field has a background charge, and that the Virasoro algebra
has a center, in agreement with the discussion in the previous section. If we integrate
out the auxiliary fields ω, ω̄, the first and third line become exactly SL(ϕ, ĝ) + K[µ, µ̄]
as in (4.2.18). The second line of (4.2.32) is a cosmological constant term

ξξ̄

kπ

∫
d2z
√
g. (4.2.33)

The sign of the cosmological constant term depends on the way in which we choose the
sl2 embeddings. Only the sign is important, the magnitude of the cosmological constant
can be changed by shifting ϕ with a constant. The cosmological constant term forms,
together with the action for the free scalar field, a Toda theory, and the covariant action
is essentially a gauged Toda theory. The vertex operator is the one which reduces the
chiral algebra generated by ∂ϕ to the Virasoro algebra. It is possible to get rid of the
vertex operator by taking ξ = ξ̄ → 0 in the action (4.2.32) and in the transformation
rules. Then the covariant action reduces exactly to R2−1R.

In conclusion, the group theoretically motivated construction for the covariant action
is, for ordinary gravity, identical to the covariant action calculated using a covariant
regularization procedure.

4.2.3. The General Structure of the Covariant Action

In general the classical covariant action is a gauged generalized Toda theory [274, 20].
By varying the sl2 embeddings, one can tune the coefficients in front of the vertex
operators that are part of the Toda action. It is possible to scale them away altogether,
resulting in the ‘minimal’ covariant action.

The original derivation of the covariant action for WN gravity [50, 49] used the con-
nection between the induced action Γ[µα] and Chern-Simons theory, that was discovered
previously in the context of gravity [309]. In this setup, extra fields are introduced in
addition to µα, and a local term is added to Γ[µα] in such a way that the resulting action
is a wave function in Chern-Simons theory. The inner product of these Chern-Simons
theory wave functions is then expressed as a path integral of an action that is identical
to the covariant action for W gravity.
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The construction of the covariant action given here is based on the geometrical
interpretation of W transformations as field dependent gauge transformations, and this
is reflected in the fact that the auxiliary fields we needed to introduce were group valued.
Alternative approaches, not using the group theoretical structure, have been attempted
for W3 gravity in [78, 180]. In [78] a part of the covariant action was constructed by
hand working with the formalism of [282], and in [180] it was shown that to lowest order
in the gauge fields the covariant action has an R 1

2
R like structure for some generalized

curvature. Whether there exist another geometrical formulation of W3 gravity, besides
the group-theoretical one, in which a simple nice formula for the covariant action can be
written down is unknown. The most obvious generalization of the metric to W gravity is
to introduce symmetric tensor fields gµ1...µs for each pair of generators W, W̄ of conformal
weight (s, 0) and (0, s) respectively. The components of such a tensor correspond to fields
of spins† s, s− 2, . . . ,−s. The spectrum of spins of the fields µα, µ̄α, G of the covariant
action consists of a sequence s, s − 1, . . . ,−s for each generator of spin s of the W
algebra. This indicates that the covariant action might allow for a formulation where
the fields have been organized in symmetric tensor fields, and for each spin s generator
of the W algebra there are two tensor fields, one with s indices and one with s − 1
indices. It would be interesting to investigate this possibility in some more detail.

It is often claimed that gravity has a hidden SL(2, IR) symmetry. It is at this stage
not (yet) clear where the reality condition should come from. The equation kg−1∂g =
ξΛ++W has only under special circumstances a solution with g ∈ SL(2, IR), andG in the
covariant action is definitely not real, for ξ̄ = −ξ it is Hermitian, which is quite something
different. The covariant action is real. The Liouville part is bounded from below for
c < 0 (recall c ∼ −6k) and positive cosmological constant. To check whether the full
spectrum is bounded from below is more difficult. This requires a detailed analysis of the
quantization of the Liouville theory [288]. For general W gravity, analogous statements
hold, with Liouville theory replaced by the appropriate Toda theory. We will come back
to the connection with sl(N, IR) in the next chapter.

4.3. Quantum Aspects of the Covariant Action

4.3.1. All-Order Results for the Covariant Action

So far we only succeeded in computing the lowest-order part ∆Γ(0) of the covariant
action. Thanks to our analysis in section 3.3, we know what the all-order result for
Γ[Aα] looks like (3.3.51). It is equal to kcS

−
wznw(g1), where g1 is expressed in terms of

†The spin of a field with conformal weights (h, h̄) is h− h̄.
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the Aα involving quite complicated factors. In the same way, the all-order result for
Γ[Āα] is kcS

+
wznw(g2) where g2 is expressed in terms of Āα. Thus, the all-order covariant

action that is invariant under the renormalized W × W̄ transformations is given by

Γcov[Aα, Āα, G] = kcS
−
wznw(g1Gg

−1
2 ). (4.3.1)

From this one can in principle compute ∆Γ in terms of µ and µ̄. It is not sufficient
to simply solve the Aα, Āα equations of motion and to substitute these back into the
action. There are extra contributions that are a function of det(M) if the quadratic
terms in ∆Γ are of the form AαMαβĀβ. For a discussion of such terms, see [325, 70].
Here, we just want to show that

∆Γ[G] ≡ ∆Γ[µα, µ̄α, G]|µα=0,µ̄α=0 (4.3.2)

is identical to a gauged WZNW model that describes a Toda theory. Actually, the
equivalence can be established for

e−∆Γ[G0] ≡
∫
DG+DG−e−∆Γ[G] (4.3.3)

rather than for G. Here, the decomposition G = G−G0G+ is a Gauss-like decomposi-
tion that corresponds on the Lie algebra level to the decomposition of g discussed in
section 2.2.7. We introduce B = g−1

1 ∂g1 and B̄ = g−1
2 ∂̄g2, and call the renormalized

constraints, that are imposed on g1 and g2 in order to obtain the all-order result for
Γ[Aα], respectively kcB = ξrΛ

+ +Wr and kcB̄ = ξ̄rΛ̄
+ + W̄r. Then

e−∆Γ[G0] =
∫ ∏

α

DAαDĀαDG−DG+

× exp
(
−kcS−wznw(g1Gg

−1
2 ) + kcS

−
wznw(g1) + kcS

+
wznw(g2)

)
=

∫ ∏
α

DAαDĀαDG−DG+DBDB̄

×δ(kcB − ξrΛ+ +Wr)δ(kcB̄ − ξ̄rΛ̄+ + W̄r)

× exp
(
−kcS−wznw(g1Gg

−1
2 ) + kcS

−
wznw(g1) + kcS

+
wznw(g2)

)
=

∫
DG−DG+DBDB̄δ(ΠV1(kcB − ξrΛ+))δ(ΠW2(kcB̄ − ξ̄rΛ̄+))

× exp
(
−kcS−wznw(g1Gg

−1
2 ) + kcS

−
wznw(g1) + kcS

+
wznw(g2)

)
, (4.3.4)

where V1 and W2 were defined above (4.2.27). We can now replace (cf. the analysis
in section 3.3; we are following a reverse route compared with that one) half of the
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delta functions by integrals over Lagrange multipliers A and Ā that are g+ and g−
valued gauge fields. The remaining delta functions constrain the components of B, B̄ in
V 0−

1 ≡ V1 ∩ (g0 ⊕ g−) and W 0+
2 ≡ W2 ∩ (g0 ⊕ g+). We get

e−∆Γ[G0] =
∫
DG−DG+DBDB̄DADĀδ(ΠV 0−

1
(kcB))δ(ΠW 0+

2
(kcB̄))

× exp
(
−kcS−wznw(g1Gg

−1
2 ) + kcS

−
wznw(g1) + kcS

+
wznw(g2)

+
1

π

∫
d2zTr(Ā(kcB − ξrΛ+) + A(kcB̄ − ξ̄rΛ̄+))

)
. (4.3.5)

In the same way as we gauge fixed the gauge symmetry in section 3.3.2, we can now re-
store a G−×G+ symmetry and eliminate the delta functions. Again, the Faddeev-Popov
contribution is just a numerical factor that can be ignored. Although the measures for
B and B̄ are not gauge invariant, one can replace them by a gauge invariant measure.
This renormalizes the coefficients in front of S−wznw(g1) and S+

wznw(g2). One can com-
pensate for this change by rescaling A and Ā so that the exponential in (4.3.5) contains
a constrained WZNW model at a shifted value of the level, which is manifestly gauge
invariant. The remaining part of the action, S−wznw(g1G−G0G+g

−1
2 ) is also manifestly

gauge invariant because we integrate over G− and G+. The result is

e−∆Γ[G0] =
∫ DG−DG+DBDB̄DADĀ

gauge volume

× exp
(
−kcS−wznw(g1Gg

−1
2 ) + kcS

−
wznw(g1) + kcS

+
wznw(g2)

+
1

π

∫
d2zTr(Ā(kcB − ξrΛ+) + A(kcB̄ − ξ̄rΛ̄+))

)
. (4.3.6)

The B, B̄ integration can be performed, because the action is simply quadratic in B and
B̄. The quadratic term is proportional to BGB̄G−1. In principal integration over B, B̄
could give rise to extra terms proportional to the determinant of ad(G). However, since
we integrate over all g-valued gauge fields B, it is easy to see that this determinant is
equal to one‡. In view of this observation we can simply replace B, B̄ by the solutions
of their respective equations of motion. If we in addition replace G→ G−1 we get

e−∆Γ[G−1
0 ] =

∫ DG−DG+DADĀ
gauge volume

× exp

(
kcS

−
wznw(G) +

kc
π

∫
d2zTr(AGĀG−1)

+
1

π

∫
d2zTr(Ā(kcG

−1∂G− ξrΛ+))

+
1

π

∫
d2zTr(A(−kc∂̄GG−1 − ξrΛ+))

)
. (4.3.7)

‡This need not be true if one integrates over connections B, B̄ with values in a subalgebra.
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This is the standard form of a gauged WZNW model (cf. (4.1.18) and section 3.3). It is
the field theoretic counterpart of the construction of W algebras from the constrained
current algebra point of view [21, 19]. If one extracts Liouville theory (4.2.19) from the
covariant action, the measure for the Liouville field ϕ is not yet the one for a free scalar
field. One can replace the the measure by the one of a free field; this renormalizes the
background charge of Liouville theory. This renormalization has been computed in a
somewhat heuristic way (the so-called DDK analysis) [82, 97], and later more rigorously
[237, 175]. Alternatively, one can start with the gauged WZNW theory given here and
derive correctly normalized Liouville theory from it [273, 95, 185].

The DDK analysis has been repeated for WN gravity [232], starting from the ansatz
that the effective action for WN gravity in the conformal gauge is given by a Toda theory.
The same results have been reproduced [189] using the sigma model interpretation of
gauged WZNW models [302, 26]. The analysis in this section proves that the Toda
actions obtained from gauged WZNW models indeed describe the all-order effective
action for W gravity in the conformal gauge, and the exact values of the background
charges of the Toda theories can be computed in this way.

The gauged WZNW model (4.3.7) is based on a WZNW model of level −kc. Fur-
thermore, if we gauge fix the W, W̄ symmetries of the covariant action in order to put
µα = µ̄α = 0, we have to introduce Faddeev-Popov ghost systems corresponding to each
generator of the W algebra. The central charge of the gauged WZNW model (4.3.7) is
given by (2.2.50), with k replaced by −kc. The central charge of the ghosts is

cgh = −2
∑
i

(6hi(hi − 1) + 1)

= −2
∑
hi∈ZZ

(6hi(hi − 1) + 1)− 2
∑

hi∈ZZ+ 1
2

(6hi(hi − 1) + 1)

= −12
∑
hi∈ZZ

hi(hi − 1)− 12
∑

hi∈ZZ+ 1
2

(hi −
1

2
)2 − 2d0 + dim(g 1

2
)

= −24
∑
hi∈ZZ

hi−1∑
k=1

k − 24
∑

hi∈ZZ+ 1
2

hi− 3
2∑

k=0

(k +
1

2
)− 2d0 + dim(g 1

2
)

= −24
∑
α∈∆+

Tr(t0hα)− 2d0 + dim(g 1
2
)

= −48Tr(t0ρ)− 2d0 + dim(g 1
2
) (4.3.8)

where the sum is over the generators of the W algebra and hi is the conformal weight
of each of the generators. Finally, the central charge of the original matter system was
related to kc via (3.3.50). Thus the total central charge of the gauge fixed system is

ctot = cmat + ctoda + cghost
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= d0 −
1

2
dim(g 1

2
)− 12Tr

(
ρ√

kc − h
− t0

√
kc − h

)2

+d0 −
1

2
dim(g 1

2
)− 12Tr

(
ρ√

−kc + h
− t0

√
−kc + h

)2

−48Tr(t0ρ)− 2d0 + dim(g 1
2
)

= 0. (4.3.9)

This is in perfect agreement with our discussion at the end of section 4.2.1. Starting
with any matter system, coupling to W gravity will produce an exactly conformally
invariant theory, that is a candidate to be a consistent string theory.

4.3.2. KPZ Approach

We saw that the gauge fixed covariant action has total central charge zero. A different
way to obtain this result is to start with the classical covariant action Γ(0)

cov[µα, µ̄α, G] =
Γ(0)[µα] + ∆Γ(0)[µα, µ̄α, G] + Γ(0)[µ̄α]. This action is invariant under W × W̄ transforma-
tions, whose transformation rules can easily be obtained from the framework presented
in this chapter. One can then perform a BRST quantization of this action. Decom-
posing G = G−G0G+, and using the W × W̄ symmetries to impose the gauge fixing
conditions µ̄α = 0 and G0 = 0 leads to the generalization of the KPZ analysis of gravity
[207]. The resulting gauge fixed action has a BRST symmetry. This BRST operator is,
not surprisingly, closely related to the BRST operator that arises in quantum Hamil-
tonian reduction, and makes the g structure of W gravity very clear. Demanding that
this BRST operator satisfies Q2 = 0 on the quantum level then gives the same kind
of renormalizations for the level k as we have obtained in the last two chapters. The
physical states can now be found by computing the cohomology of Q.

An alternative gauge fixing of the W×W̄ symmetry is to fix µα = µ̄α = 0, which leads
to covariant W gravity in the conformal gauge. Again, the (classical) BRST operator
follows directly from the transformation rules for the fields in the covariant action, and
demanding closure Q2 = 0 on the quantum level gives the quantum BRST operator of
W gravity in the conformal gauge. For W3 this procedure is worked out in detail in [48],
and gives the same BRST operator as was found previously for non-critical W3 gravity
in [40, 31].
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The Moduli Space of W Gravity

5.1. W Algebras on Riemann Surfaces

So far we restricted our attention to W algebras and actions that were defined on
the complex plane. In particular we assumed that it is possible to choose the conformal
gauge µα = µ̄α = 0. This is certainly true on the complex plane, but on higher-
genus Riemann surfaces there may be global obstructions to choosing this gauge. In
general, the space of W gauge fields µα, µ̄α modulo W transformations will not be a
point, but a finite dimensional moduli space. Such a moduli space can for instance
parametrize winding numbers of the gauge fields along non-contractable loops in the
Riemann surface. If we want to answer questions like ‘what is the moduli-space of
W algebras’, we have to discuss W algebras on higher-genus Riemann surfaces, as on
the complex plane one can choose globally well-defined co-ordinates, and it is sufficient
to express everything in terms of these co-ordinates. One need not bother about the
transformation properties of the different objects one encounters under a change of co-
ordinates, and generally there are no moduli. In this section we study W algebras
on general Riemann surfaces. In previous chapters we have seen how one can use the
formulation of W algebras in terms of zero-curvature equations and field dependent
gauge-transformations to obtain the chiral and covariant actions for W gravity, and we
will use the same formulation to go to arbitrary Riemann surfaces.

To illustrate the problem, consider the constraints (2.2.10). Naively all the compo-
nents of a current J are primary fields of dimension (1, 0), because J = kg−1∂g and g
is simply a map Σ → G. If we view Az ≡ 1

k
J as the (1, 0) part of a connection, then

the fact that g is simply a map Σ → G is translated in the fact that Az is part of a
connection on a trivial bundle. If V is the fundamental representation of SL2, then Az is
also a connection for this associated (trivial) vector bundle. Now consider the equation
(∂+Az)ψ = 0, with ψ a two-component vector in the fundamental representation of sl2.
The second component of ψ can be expressed in terms of the first one, ψ2 = −k

ξ
∂ψ1.

Under the gauge transformation (2.2.12) ψ transforms as δψ1

−k
ξ
∂δψ1

 = −

 k
2ξ
∂ε ε

− k2

2ξ2∂
2ε+ 1

ξ
J−ε − k

2ξ
∂ε

 ψ1

−k
ξ
∂ψ1

 , (5.1.1)
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from which we find

δψ1 = −1

2
∂(
k

ξ
ε)ψ1 + (

k

ξ
ε)∂ψ1. (5.1.2)

Since we want to identify these gauge transformations according to the ‘soldering’ phi-
losophy with co-ordinate transformations, this equation tells us that ψ1 is an object
with weight (−1

2
, 0). Or, if we denote by K the holomorphic cotangent line bundle

T ∗CΣ, ψ1 must transform as a section of K−
1
2 . On an arbitrary Riemann surface, this is

generically a non-trivial line bundle, and we conclude that V is no longer a trivial vector
bundle, and ∂ + Az is no longer a connection on a trivial bundle. In the case at hand,
V ' K−

1
2 ⊕K 1

2 . This is the geometrical counterpart of the soldering procedure. The
constraints force us to twist the trivial bundle V into a nontrivial one. Correspondingly,
the components of Az transform no longer as objects of dimension (1, 0), but as

V :

(
K0

K0

)
→

(
K−

1
2

K
1
2

)

Az :

(
K1 K1

K1 K1

)
→

(
K1 K0

K2 K1

)
.

(5.1.3)

On the algebraic level, the same twisting of the spin assignments of the components
of the current is realized by adding the improvement term −Tr(t0∂J ) to the standard
Sugawara energy-momentum tensor (2.1.55). This improvement is necessary to let the
top right component of Az transform as a scalar, so that it can be put equal to a constant
globally on a Riemann surface.

However, apart from the necessity to change the global structure of the bundles
involved, there is a second problem, related to the fact that Az does not transform
as a one-form, but as a connection. This means that as we go from one co-ordinate
patch to another, Az does not transform into g−1Azg but picks up an extra term g−1∂g.
This extra term makes it impossible, even if we twist the bundle for which Az is a
connection, to put a component of Az globally equal to constant. The resolution of
this problem is to introduce a fixed background connection B0

z , and to impose the
constraints on Az−B0

z rather than Az. The different choices of B0
z correspond to different

regularization prescriptions, which will become clear when we discuss WZNW action for
twisted bundles. With these observations in mind we now describe the structure of W
algebras related to sl2 embeddings on arbitrary Riemann surfaces.

5.1.1. General Case

Consider a Lie algebra g with sl2 embedding t−, t0, t+, and an n-dimensional repre-
sentation R : G → V of G, the Lie group corresponding to g. Using, if necessary, an
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inner automorphism of g, one can put t0 in the Cartan subalgebra of g, and R(t0) is
diagonal, say diag(d1, . . . , dn). The twisted vector bundle relevant for this sl2 embedding
is

V = K−d1 ⊕ · · · ⊕K−dn . (5.1.4)

The vector bundle V determines a non-trivial principal fiber bundle P over Σ with
structure group G. This bundle is constructed from an auxiliary n × n matrix vector
bundle W , whose columns are isomorphic to V . To go from GL(V ) to R(G) we need
to impose extra restrictions fi on M ∈ GL(V ). The same restrictions, when imposed
on M ∈ W , determine locally a copy R(G) ⊂ W . To find out whether these patch
together properly, consider the group element g = exp(rt0). It acts on V by multiplying
the jth component of V by erdj . Since fi(M) = 0 ⇔ fi(gM) = 0, the conditions
that characterize R(G) as subset of W are co-ordinate invariant, and R(G) ⊂ W patch
together to form a non-trivial principal fiber bundle P over Σ with structure group G.
However, due to the special structure of V and P the structure group can be further
reduced to GL(1,C).

A connection on P is locally a one-form with values in ad(P ), the adjoint bundle of
P . It is isomorphic to the restriction to R(g) of End(V ), the bundle of endomorphisms
of V . The structure of both P and ad(P ) is independent of the representation R one
chose in the beginning. Locally, a section of ad(P ) can be written as SaTa, and it is
easily verified that Sa transforms as a section of K1−δa , where [t0, Ta] = δaTa. This is
the same twisting as is accomplished on the algebraic level by adding the improvement
term −Tr(t0∂J ) to the stress-energy tensor.

The description of W algebras via field dependent gauge transformations is now
relatively straightforward. We introduce once and for all a fixed background connection
B0
z on the vector bundle V . The connection B0

z acts on V via the representation R, but
we will from here on no longer display representation R. The constraints on Az are

Az −B0
z =

ξ

k
Λ+ +

1

k
W (5.1.5)

and the W transformations are by definition those gauge transformations that preserve
the constraints. To convert these to operator product expansions is more complicated
than on the complex plane, because we need the exact Green function G(z, w) for the
operator ∂̄, that was for the complex plane simply given by 1/(z − w), but is more
difficult on non-trivial Riemann surfaces. Nevertheless, explicit expressions for the W
transformations can be given. They are particularly simple if we work in isothermal
co-ordinates ds2 = ρdzdz̄. Then a globally well-defined background connection B0

z is

∇z ≡ ∂ +B0
z = ∂ + diag(d1∂ log ρ, . . . , dn∂ log ρ) (5.1.6)
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and with this choice the W transformations act via the following generalization of
(2.2.27)

∫
dz {Tr(F (z)W (z)),W a(w)}diracTa

= (k∂ + kad(B0
z ) + ξad(Λ+) + ad(W )) 1

1+ξ−1L(k∂+kad(B0
z)+ad(W ))

F.
(5.1.7)

Equation (2.2.30) is accordingly modified to

∫
dz {ε(z)T (z),W a(w)}diracTa

= −k2

ξ
Λ−(∂ − ∂ log ρ)∂(∂ + ∂ log ρ)ε+ (1− adΛ0)(W )(∂ + ∂ log ρ)ε

+(∂ − (1− adΛ0)∂ log ρ)Wε

= −k2

ξ
Λ−(∂ − ∂ log ρ)∂(∂ + ∂ log ρ)ε+ (1− adΛ0)(W )∂ε+ ∂Wε.

(5.1.8)

These results can all easily be found by replacing ∂ by covariant derivatives. The metric
ds2 = ρdzdz̄ induces a natural metric on Kj and the associated covariant derivative on
sections of Kj is just ∂ − j∂ log ρ. A different but related construction of W algebras
on a Riemann surface has been given in [130]. For a discussion of operator product
expansions on arbitrary Riemann surfaces, see [107].

5.2. The Moduli Space Associated to a W Algebra

5.2.1. The Moduli Space Associated to a Chiral Algebra

In the previous chapter we tacitly assumed that it is possible to use the W × W̄
symmetries to gauge away the gauge fields µα and µ̄α completely. This is true on the
complex plane, but on an arbitrary Riemann surface there may be obstructions to doing
this. The simplest example is gravity. The gauge fields µ, µ̄, also known as Beltrami
differentials, cannot be gauged away. The quotient

Beltrami differentials

Vir× V̄ir
(5.2.1)

is the Teichmüller space of the Riemann surface. The moduli space is the quotient of
this space by the modular group, which consists of the diffeomorphisms of the Riemann
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surface that cannot continuously be deformed into the identity map. The space of
Beltrami differentials is canonically dual to the space of quadratic differentials via the
pairing

∫
d2zµT , and Teichmüller space admits an equivalent description as the space

of quadratic differentials modulo Vir × V̄ir. If we generalize this to an arbitrary chiral
algebra (cf. [326]), this gives the following definition of A-Teichmüller space:

A-Teichmüller space is the quotient of the space of smooth fields Aα(z, z̄) modulo the
space of A-transformations. A-moduli space is the quotient of A Teichmüller space by
the action of the modular group.

As long as there is no geometrical interpretation of A-transformations, there is no
definition of global A transformations, apart from the modular group which can be
seen as the group of global Virasoro transformations. Furthermore, since we started by
gauging a set of local symmetries, this is the natural definition at this point. We now
specialize to the case where the chiral algebra is a W algebra corresponding to an sl2
embedding.

5.2.2. A Finite Dimensional Model of the Moduli Space for W Algebras

The space of smooth W fields is the same as the set of connections M = {∇z + Λ+ +
W}. For simplicity we take ξ = k = 1 in the rest of this section. Each operator D′ ∈M
defines an anti-holomorphic structure on the bundle V (5.1.4). Such an anti-holomorphic
structure is determined by defining what the local anti-holomorphic sections of the vector
bundle are. In the anti-holomorphic structure corresponding to D′ these are just the
local sections s that satisfy D′s = 0. The space of anti-holomorphic structures M
must be divided by the set of W transformations. To do this, introduce the following
equivalence relation on M : two operators D′1, D

′
2 ∈ M are equivalent, D′1 ∼ D′2, if

there is a gauge transformation, g ∈ π0(Gc) relating the two, D′1 = (D′2)g. The moduli
space we are looking for is the space MW = M/ ∼. The transformations that relate
two different D′ are what one might call global W transformations. The infinitesimal
transformations of this type are precisely the W transformations considered previously.
Note that the equivalence relation D′1 ∼ D′2 is not generated by the action of a group
on M , as the precise form of the gauge transformation relating two different D′ depends
explicitly on the precise form of these D′. Thus, we cannot viewMW as the quotient of
some space by a group action, and this makes the study ofMW somewhat more difficult.
One of the things we would in particular like to compute is the dimension of theMW , or
equivalently, of its tangent space. If one were to consider the full set of anti-holomorphic
structures on V modulo gauge transformations, i.e. the space M = {∇z + Az}/π0(Gc),
the tangent space TD′M at D′ ∈ M is given by the (1, 0)-cohomology of the short
complex

0
D′−→ Ω0(Σ; ad(P ))

D′−→ Ω1,0(Σ; ad(P ))
D′−→ 0. (5.2.2)
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Here, Ωp,q(Σ; ad(P )) denotes the space of (p, q)-forms with values in ad(P ). To compute
the tangent space TD′MW forMW , we should replace this complex by some kind of W
complex containing the W transformations. There is an interesting connection between
the two, which we will now explain. This connection relies heavily on the existence
of the operator L that was defined as the inverse of ad(Λ+) above equation (2.2.24).
Because L is an operator of degree −1 with respect to the gradation defined by t0, it
provides us with an ‘integration’ operator

Ω1,0(Σ; ad(P ))
L−→ Ω0(Σ; ad(P )). (5.2.3)

As an analogy one might think of the operation of integrating over the nth co-ordinate
in IRn, which maps p-forms on IRn to (p − 1)-forms on IRn−1. This latter operator can
be used to show that the cohomology of IRn is the same as the cohomology of IRn−1,
by constructing a so-called homotopy-equivalence between the de Rham complexes for
IRn and IRn−1 [56]. Here we can perform a similar construction using the ‘integration’
operator L. Defining the two operators

f0 = 1− L ◦D′, f1 = 1−D′ ◦ L, (5.2.4)

we can construct the following commutative diagram

0
D′−→ Ω0(Σ; ad(P ))

D′−→ Ω1,0(Σ; ad(P ))
D′−→ 0yf0

yf1

0
D′−→ f0(Ω0(Σ; ad(P )))

D′−→ f1(Ω1,0(Σ; ad(P )))
D′−→ 0

(5.2.5)

which gives actually a homotopy equivalence of complexes∗, implying that the cohomol-
ogy of both complexes in (5.2.5) is the same. The next step is to iterate this construction
a number of times, until the complex does not change anymore. Let us denote the cor-
responding limit complex, if it exists, by

0
D′−→ f∞0 (Ω0(Σ; ad(P )))

D′−→ f∞1 (Ω1,0(Σ; ad(P )))
D′−→ 0. (5.2.6)

Using the properties of L one can show that a sufficient condition for the limit complex
to exist is that the operator L ◦ (D′ − ad(Λ+)) is nilpotent, and that in that case

f∞0 = (1− L ◦D′)∞ =
1

1 + L(D′ − ad(Λ+))
◦ Πker ad(Λ+),

f∞1 = (1−D′ ◦ L)∞ = Πker ad(Λ−) ◦
1

1 + (D′ − ad(Λ+))L
. (5.2.7)

∗Indeed, denoting by f both maps f0 and f1, we have 1− f = L ◦D′+D′ ◦L, so that L is precisely
an homotopy operator as defined in [56].
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Specializing to the case of W algebras, we take D′ = ∇z + Λ+ + W and find, upon
comparing the limit complex with (5.1.7), that the limit complex precisely contains the
W transformations, and is the W complex we were looking for. To illustrate how this
works in practice, we take the simplest example G = Sl(2) as in section 2.2. The limit
complex is reached by applying f0 and f1 two times. The operator L is given by

L :

(
p0 p+

p− −p0

)
=

(
−p+/2 0
p0 p+/2

)
, (5.2.8)

and if we represent an arbitrary element of Ω0(Σ; ad(P )) by

(
ε0 ε+

ε− −ε0
)

, and an el-

ement of Ω1,0(Σ; ad(P )) by

(
a0 a+

a− −a0

)
, we find the following diagram, where γ =

∂ log ρ: (
ε0 ε+

ε− −ε0
)

D′−→
(
a0 a+

a− −a0

)
yf0

yf1(
1
2
∂ε+ + 1

2
ε+γ ε+

ε+T − ∂ε0 −1
2
∂ε+ − 1

2
ε+γ

)
D′−→

(
1
2
∂a+ 0

a− − (∂ − γ)a0 + Ta+ −1
2
∂a+

)
yf0

yf1(
1
2
∂ε+ + 1

2
ε+γ ε+

ε+T − 1
2
∂2ε+ − 1

2
∂(ε+γ) −1

2
∂ε+ − 1

2
ε+γ

)
D′−→

(
0 0

a− − (∂ − γ)(a0 + (1
2
∂ − T )a+) 0

)

Working out the action of D′ in the last line we find

D′
(

1
2
∂ε+ + 1

2
ε+γ ε+

ε+T − 1
2
∂2ε+ − 1

2
∂(εγ) −1

2
∂ε+ − 1

2
ε+γ

)
=

(
0 0

δε+T 0

)
, (5.2.9)

where δε+T = −1
2
(∂ − γ)∂(∂ + γ)ε+ + 2∂ε+T + ε+∂T which indeed describes the trans-

formation of T under a co-ordinate transformation.

Altogether we reach the remarkable conclusion that W transformations are nothing
but a homotopic contraction of ordinary gauge transformations. Under a homotopy
equivalence the cohomology does not change, and therefore the Riemann-Roch theorem
can be applied to the W complex (5.2.6) to give

dimH1,0 − dimH0,0 = (g − 1) dimG. (5.2.10)

This is a useful formula which we need to prove the following: for genus g > 1, MW =
M/ ∼= Mhol/ ∼, where Mhol = {∇z + Λ+ +W | ∂̄W = 0}†. In other words, the fields

†Notice that ∂̄ is a globally well-defined connection on the holomorphic bundle V (5.1.4).
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W can always be made holomorphic using a global W transformation. To prove this, it
is sufficient to show that if we write down an even further reduced complex containing
D′ ∈ Mhol and only those W transformations that preserve the condition D′ ∈ Mhol,
this complex still has the same cohomology as (5.2.6). It might happen that in this
way one misses certain connected components of MW , but that is not a problem here:
M = MW is connected, because we are working with bundles of a fixed topological
type.

The infinitesimal gauge transformations that preserve the condition ∂̄W = 0, are
given by the ε satisfying

∂̄(∇z + ad(Λ+) + ad(W ))ε = 0. (5.2.11)

If we choose a metric of constant curvature Rzz̄ = [∇z, ∂̄], then L(Rzz̄) is proportional
to the Lie-algebra element Λ−. This shows that [L(Rzz̄),W ] = 0 and

[∇z + Λ+ +W, ∂̄ − L(Rzz̄)] = 0 (5.2.12)

for the W that satisfy ∂̄W=0. Note that (5.2.12) gives a solution to the zero-curvature
equations for these W . The ε that satisfy (5.2.11) must also be of the form ε = (1 +
L(∇z + ad(W )))−1F with F ∈ Πker ad(Λ+)g in order to preserve the form of W . If

we substitute this in (5.2.11) and use the fact that [L(Rzz̄), δW ] = 0, (5.2.11) can be
rewritten as

(∂̄ − L(Rzz̄))(∇z + ad(Λ+) + ad(W ))
1

1 + L(∇z + ad(W ))
F = 0⇔

(∇z + ad(Λ+) + ad(W ))(∂̄ − L(Rzz̄))
1

1 + L(∇z + ad(W ))
F = 0⇔

(∇z + ad(Λ+) + ad(W ))
1

1 + L(∇z + ad(W ))
∂̄F = 0. (5.2.13)

Locally, ∂̄F can be written as
∑
α fα(z̄)Gα(z), where the fα are linearly independent

antiholomorphic functions, and the Gα are holomorphic sections with respect to ∂̄ of
(Πker ad(Λ+)ad(P ))⊗ K̄. Substituting this in (5.2.13) yields

∑
α

fα(∇z + ad(Λ+) + ad(W ))
1

1 + L(∇z + ad(W ))
Gα = 0. (5.2.14)

Because the fα are linearly independent, each Gα must satisfy (∇z+ad(Λ+)+ad(W ))(1+
L(∇z + ad(W )))−1Gα = 0. Locally, there are a finite number of solutions Gα to this
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equation. Globally, such Gα do not exist, as (Πker ad(Λ+)ad(P )) ⊗ K̄ is a direct sum

of line bundles Kr with r < 0 (upon identifying K̄ with K−1), and these do not have
any global holomorphic sections. Therefore (5.2.13) implies that ∂̄F = 0. F is a section
of a direct sum of line bundles Kr with r ≤ 0. These do, for genus g > 1, not have
global holomorphic sections unless r = 0, in which case the only holomorphic sections
are the constant ones. The piece of F which transforms as a section of K0 is precisely
the piece that has degree zero with respect to the gradation of the Lie algebra. The
subalgebra in which this piece of F lives is Π0g

‡, the centralizer of the sl2 embedding
(see (2.2.29)). For a constant F ∈ Π0g the parameter ε of the gauge transformation
is given by ε = (1 + L(∇z + ad(W )))−1F = F , and the gauge transformation reads
δW = [W,F ]. The reduced complex we were looking for is

0
D′−→ Π0g

D′−→ TD′M
hol D′−→ 0. (5.2.15)

To show that the cohomology of this complex agrees with that of (5.2.6) we need only
compute the difference dimH1,0−dimH0,0 of (5.2.15). In (5.2.15) only finite dimensional
spaces occur, and therefore the index dimH1,0−dimH0,0 equals dimTD′M

hol−dim Π0g.
The dimension of Mhol equals

∑
iH

0
∂̄(Σ;Ksi), where si are the spins of the different

components of W . The dimension of H0
∂̄(Σ;Kr) equals (2r − 1)(g − 1) for r > 1, and g

for r = 1. Thus we find

dimH1,0 − dimH0,0 =
∑
i,si>1

(g − 1)(2si − 1) +
∑
i,si=1

g − dim Π0g

=
∑
i

(g − 1)(2si − 1) = (g − 1) dimG, (5.2.16)

which indeed agrees with (5.2.10). Altogether this proves that MW = Mhol/ ∼, and so
we have a simple finite dimensional model of W moduli space at our disposal.

5.2.3. The Connection with Higgs Bundles

The dimension (5.2.16) is equal to the dimension of the moduli space of flat GIR
connections, where GIR is the maximal non-compact real subgroup of G. Furthermore,
topological field theory and the matrix model approach to two-dimensional gravity seem
to suggest that the moduli space for WN gravity is somehow related to the moduli space
of flat SL(N, IR) bundles [89, 225, 94]. However, it is at this stage not clear what the

‡That Π0g is actually a subalgebra is related to the fact that Π0g contains the Kac-Moody symme-
tries that survive the reduction to the W algebra. One can in principle impose further constraints on
the W algebra so as to get rid of these residual Kac-Moody symmetries [117], but we will not do that
here.
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precise relation between our moduli space and the moduli space of flat GIR bundles
should be. The zero-curvature equations associate a flat connection to all operators
D′ = ∇z + ad(Λ+) + ad(W ), but a priori these flat connections are flat GC connections,
and it is not easy to see whether they can be written as flat GIR connections using an
appropriate gauge transformation. The main difficulty is that GIR is a non-compact
group, and therefore one cannot simply use the Narasimhan-Seshadri theorem [252] (see
also [11]), which essentially states that for compact groups the space of anti-holomorphic
structures on an associated vector bundle modulo complexified gauge transformations is
the same as the space of flat connections modulo ordinary gauge transformations. In this
theorem, the anti-holomorphic structure is required to satisfy a certain condition called
stability, and this condition is not valid for the special bundles under consideration.

There exists an extension of the work of Narasimhan-Seshadri where the compact
group is replaced by the general complex Lie group GC. This is the theory of Higgs
bundles [170, 294], and this seems to be the natural setting for W moduli space. A
Higgs bundle is a pair consisting of a holomorphic vector bundle V and a holomorphic
section θ ∈ H0(Σ; End(V ) ⊗ K). In our case we are interested in the situation where
V is given by (5.1.4), the holomorphic structure is given by the operator ∂̄, the group
Gl(n,C) is reduced to GC and θ = Λ+ + W , where W is holomorphic. The group GC
acts in a natural way on Higgs bundles, and one can define a moduli space for Higgs
bundles by identifying two that are equivalent under a GC-transformation. To obtain a
good moduli space one has to impose a condition on the Higgs bundle that is also called
stability. A Higgs-bundle is called stable if for every holomorphic subbundle V ′ ⊂ V
that satisfies θ(V ′) ⊂ V ′ ⊗K, the slope µ(V ′) of V ′ is smaller than the slope µ(V ) of
V . The slope is defined as the first Chern class divided by the rank of the bundle.

Let us see whether the Higgs bundle with θ = Λ+ + W is stable. The slope of V
vanishes, and therefore every subbundle V ′ with θ(V ′) ⊂ V ′ ⊗ K must have a neg-
ative slope for stability. The sl2 algebra {t−, t0, t+} acts via left multiplication on
the vector bundle V . Under this action the n-dimensional representation furnished
by V decomposes in a direct sum of irreducible sl2-representations, V =

⊕nl
l=1 Vl, of

spin jl, and Vl ' K−jl
⊕
K1−jl⊕ . . .

⊕
Kjl . The slope of each of the Vl is zero, as

they have vanishing Chern class. Λ+ preserves Vl and all subbundles of Vl of the type
K−jl

⊕
K1−jl⊕ . . .

⊕
Kjl−t for some t > 0. These all have strictly negative slope, and

therefore the only problematic subbundles of V are direct sums of the Vl, as these
are the only holomorphic subbundles preserved by Λ+ that have a nonnegative slope.
The same bundles are also the bundles that might threaten the stability of (V, θ) with
θ = Λ+ + W . A component W corresponding to an irreducible subrepresentation of
Vl ⊗ Vl′ mixes between the bundles Vl and Vl′ . Therefore if sufficiently many of these
components are nonzero, no direct sum of Vl’s will be invariant under Λ+ + W any-
more, because V was obtained from an irreducible representation of G, and all proper
holomorphic subbundles, if they exist, will have negative slope.
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Another, equivalent way to express this condition is to demand that ker ad(W )(Π0g) =
0, so that Π0g acts faithfully on Mhol. If we therefore define Mhol

red = {∇z + Λ+ + W |
∂̄W = 0∧ker ad(W )(Π0g) = 0}, then the quotient space Mhol

red/Π0g has no singularities,
and it is naturally a subspace of the moduli space of stable Higgs bundles, of complex
dimension (g − 1) dim(G).

The dimension of the moduli space of Higgs bundles is 2(g−1) dim(G), which is twice
as large as the dimension of the W moduli space. These correspond to flat irreducible
GC bundles over the Riemann surface Σ [170, 295]. One might wonder which property
characterizes the flat GC connections that correspond to points in the W moduli space.
For generalW algebras we do not know the answer to this question, but for the ‘standard’
WN algebras the answer is, that only those flat Sl(N,C) connections which are reducible
to a flat Sl(N, IR) connections can correspond to points in the W moduli space. To
prove this, we use lemma 3.20 in [294]. This lemma states that a Higgs bundle (V, θ)
corresponds to a flat real connection if and only if there exists a bilinear symmetric form
S(u, v) on V ⊗ VC , where VC is the Higgs bundle (V,−θ), such that

∂̄S(u, v) = S((∂̄ + θ)u, v) + S(u, (∂̄ − θ)v). (5.2.17)

For the standard W algebras such a symmetric form S exists. The vector bundle V is
in this case

V =
N⊕
l=1

Vl, Vl ' K
l−N−1

2 (5.2.18)

and the symmetric form S is given by

S(u, v) =
N∑
l=1

ul vN+1−l. (5.2.19)

It is an easy exercise to show that (5.2.17) indeed holds for (5.2.19). Putting everything
together we conclude that, for standard W algebras, W moduli space is a component
of the moduli space of flat irreducible Sl(N, IR) connections. This parametrization of a
component of the moduli space of flat Sl(N, IR) connections in terms of certain Higgs
bundles is similar to the one studied by Hitchin [169, 172]. The relevant component is
specified by the topological type of the real vector bundle on which the flat Sl(N, IR)
connection lives. To really construct this flat connection explicitly, one needs to know
the so-called Hermitian-Yang-Mills metric on the Higgs bundle, see [295]. This metric,
and the associated flat connection are very easy to describe if W = 0. In that case
one picks a constant curvature metric on the Riemann surface, and uses the metric this
induces on K to construct a metric on V . This is already the Hermitian-Yang-Mills
metric and the corresponding flat connection is

D = ∇z + ∂̄ + Λ+ − L(Rzz̄). (5.2.20)
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The real vector bundle for which this defines an Sl(N, IR) connection is given by the
bundle left invariant by an involution of V that commutes with D. The involution
σ : V → V is given by sending u ∈ Kr → ū ∈ K̄r ' K−r, where the metric is used to
identify K̄ with K−1.

As an example, consider ordinary gravity. In that case G = Sl(2,C), and V =

K−
1
2
⊕
K

1
2 . The involution σ is in local co-ordinates with metric ds2 = ρdzdz̄ given by

σ :

(
u1

u2

)
→
(
ū2/
√
ρ

ū1
√
ρ

)
. (5.2.21)

The corresponding real bundle is one of Euler class 2(g−1), and the W moduli space as
defined here is the Teichmüller space of Σ, which is indeed closely related to the moduli
space of Riemann surfaces, and has occurred before in studies of 2D quantum gravity
[309]. For details, see [170].

It is a very interesting problem to characterize the flat Sl(N,C)-bundles that are
related to the moduli space of the nonstandard W algebras obtainable from slN . We
have checked for a few cases that it is impossible to construct a symmetric bilinear
form satisfying (5.2.17) for those W algebras, and therefore they do not correspond
to flat Sl(N, IR) connections. If we replace V by Sl(V ), and consider the Higgs bundle
(Sl(V ), θ) with θ : Sl(V )→ Sl(V )⊗K given by θ(X) = [Λ+ +W,X], then the existence
of symmetric bilinear form satisfying (5.2.17) for this Higgs bundle would show that the
flat Sl(N,C) connections for theseW algebras are always reducible to a flat g connection,
where g is some Lie algebra whose complexification is sl(N,C). However, for the cases
we checked it was impossible to construct a symmetric form S for (Sl(V ), θ) either,
and therefore it is still unclear what precisely characterizes the nonstandard W moduli
spaces.

Instead of looking at Mhol
red/Π0g, one could also look at different ‘strata’ of Mhol,

by defining Mhol
k = {∇z + Λ+ + W | ∂̄W = 0 ∧ dim ker ad(W )(Π0g) = k}. The space

MW,k = Mhol
k /Π0g is presumably related to ‘singular’ configurations of W fields, and

deserves some further study as well.

The simplest nonstandard W algebra is W
(2)
3 (section 2.2.12). For this W algebra,

Λ+ and W are given by

Λ+ =

 0 0 1
0 0 0
0 0 0

 , W =

 H/2 0 0
G+ −H 0
T −G− H/2

 , (5.2.22)

where J has spin 1, G+, G− have spin 3/2 and T has spin 2. The space Mhol has
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dimension 8g − 7, and Π0g consists of the constant matrices

X =

 ε/2 0 0
0 −ε 0
0 0 ε/2

 , and δεW = [W,X] =

 0 0 0
3
2
εG+ 0 0
0 3

2
εG− 0

 . (5.2.23)

From this we see that Mhol
red = {J,G+, G−, T |G+ 6= 0 or G− 6= 0}, and that MW,0 is

topologically the product of C4g−3 and a weighted projective space of dimension 4g− 5.
Clearly, MW,1 is topologically a vector space of dimension 4g − 3. We see that for this
W algebra the moduli space is non trivial.

The discussion of W moduli space in this section has so far been limited to genus
g > 1. Most of the analysis can also be carried through for genus g = 0, 1. The main
difference with g > 1 is that for the latter case, W moduli space is in a natural way a
subspace of the moduli space of stable Higgs bundles. For g = 0, 1 this is no longer the
case, because the Higgs bundles one obtains for g = 0, 1 are not stable any more, the
reason for this being the fact that the first Chern class of K is given by c1(K) = 2(g−1),
and changes sign at g = 1. Let us briefly indicate what the moduli spaces for g = 0, 1
look like.

For g = 0, the line bundle Kr with r > 0 has no global holomorphic sections.
Therefore Mhol is contains only D′ = ∇ + Λ+ and has dimension 0. The gauge trans-
formations that act trivially on ∇+ Λ+ are given by δΛ+ = 0 = [Λ+, F ], where F is an
arbitrary holomorphic section of Πker ad(Λ+)ad(P ) ' ⊕iK1−si . For genus g = 0 the

line bundle K1−si has (2si− 1) holomorphic sections, and the dimension of the space of
gauge transformations that act on Mhol equals

∑
i(2si − 1) = dimG. This shows that

dimH1,0 − dimH0,0 = − dimG, in agreement with the Riemann-Roch theorem (5.2.6),
which is valid for arbitrary genus.

For g = 1, the line bundles Kr are all trivial and have precisely one holomorphic
section. If dW denotes the number of generators of the W algebras, then dimMhol = dW ,
and the space of gauge transformations that acts on Mhol also has dimension dW . These
gauge transformations act on Mhol via δW = [Λ+ + W, (1 + LadW )−1F ], where F is
an arbitrary holomorphic section of Πker ad(Λ+)ad(P ). Again, (5.2.6) is satisfied. A

natural candidate for the moduli space is in this case

MW = {∇+ Λ+ +W | dimCg(Λ+ +W ) = rank g}/ ∼ , (5.2.24)

where Cg(X) is the centralizer of X, i.e. the set of elements of g that commute with X,
and g should be identified with the holomorphic sections of ad(P )⊗K. The dimension
of the genus 1 moduli space equals the rank of g.
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5.2.4. Reconstruction of the Metric

For gravity, it is possible to construct the flat SL2 connection explicitly for every
point in the moduli space, i.e. for every quadratic differential T ∈ H0

∂̄(Σ;K2). It is
instructive to see how this works. We start with a Higgs bundle (V, θ). A hermitian
metric for the bundle V is locally given by a hermitian matrix Ω that determines the
inner product of two sections s1, s2 ∈ Γ(V ) via (s1, s2) =

∫
Σ d

2z ρ s†1Ωs2. If the holo-
morphic structure on V is given by the operator ∂̄ + Ā, then the metric determines a
connection DΩ on V ,

DΩ = ∂ + Ω−1∂Ω− Ω−1Ā†Ω + θ + ∂̄ + Ā+ Ω−1θ†Ω. (5.2.25)

The condition that this connection is flat is equivalent to the statement that the metric
Ω is a Hermitian-Yang-Mills metric. (this equivalence holds because the first Chern
class of V vanishes [294]). The zero-curvature equation for DΩ is

[Ω−1(∂ − Ā†)Ω, ∂̄ + Ā] + [θ,Ω−1θ†Ω] = 0. (5.2.26)

For the holomorphic bundle V with Ā = 0, this equation reduces to

−∂̄(Ω−1∂Ω) + [θ,Ω−1θ†Ω] = 0. (5.2.27)

For gravity, with

θ =

(
0 1
T 0

)
, (5.2.28)

the zero curvature equation is satisfied with

Ω =

(
ρ

1
2 0

0 ρ−
1
2

)
(5.2.29)

if the background metric ρ satisfies

1

2ρ
∂∂̄ρ =

1−
∣∣∣∣∣Tρ
∣∣∣∣∣
2
 . (5.2.30)

For T = 0 this equations says that ds2 = ρ dz dz̄ is a constant curvature metric. For
T 6= 0 the equation is a kind of vortex equation [190]. It is equivalent to the constant
curvature equation for the metric

ds2 = ρ

∣∣∣∣∣dz +
T̄

ρ
dz̄

∣∣∣∣∣
2

. (5.2.31)
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This metric is a representative of the point in Teichmüller space corresponding to T [170].
The equation (5.2.30) is at the same time the equation of motion for Liouville theory
coupled to the background metric (5.2.31) with an appropriate choice of cosmological
constant term. This is nothing new; the relation between Liouville theory and the
geometry of Riemann surfaces is well known [299]. The merit of the construction given
here is that it is easy to generalize it to arbitrary W algebras, and seems a fruitful
direction to search for the geometrical meaning of W algebras. However, for W algebras
the analysis is much more difficult. Already for W3 it is not sufficient to take a diagonal
Ω to solve (5.2.27), which could well be related to the fact that the covariant action
contains auxiliary fields besides the Toda fields that cannot be integrated out explicitly.
Whether the solution has any other interpretation apart from being a flat SL(3, IR)
connection, is unclear.

For genus h ≤ 1, curious things can happen. Consider for example gravity on the
torus, which we identify with the square [0, 1] × [0, 1] with metric ds2 = dzdz̄. The
relation between the modular parameter τ of the torus and the constant T is

τ =
1− T̄
1 + T̄

i, (5.2.32)

so that the modular transformation τ → −1/τ simply corresponds to T → −T . On
the torus, gauge transformations can exist that are not homotopic to the identity gauge
transformation, and relate different values of T with each other. The equation

G−1

(
0 1
T1 0

)
G+G−1∂G =

(
0 1
T2 0

)
(5.2.33)

can be solved for G, resulting in

G =

 4

√
T2

T1
cos(2α) −i

4√T1T2
sin(2α)

−i 4
√
T1T2 sin(2α) 4

√
T1

T2
cos(2α)

 (5.2.34)

where

α = 2Im(z(
√
T1 −

√
T2)). (5.2.35)

The gauge transformation is well-defined globally on the torus if√
T1 −

√
T2 ∈ πiZZ + πZZ. (5.2.36)

The interpretation of this condition and the corresponding gauge transformations is
completely unclear to us. They certainly do not correspond to modular transformations.
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5.2.5. Relation to Self-Duality Equations

The name Higgs bundle suggests that these geometrical objects have something to
do with a Higgs field. In this section we explain this connection [169].

We start with the self-duality equations on IR4 for some principal bundle P with
connection dA and associated curvature two-form F . The self-duality equations are

F = ∗F (5.2.37)

where ∗ is the Hodge star operator§. The self-duality equations arise naturally when
considering the extrema of the Yang-Mills action

∫
IR4 Tr(F ∧ ∗F ). (5.2.38)

Here, Tr is a positive definite bilinear form on g. In terms of standard co-ordinates
(x1, x2, x3, x4) on IR4 the connection can be written as A1dx

1 +A2dx
2 +A3dx

3 +A4dx
4.

The idea is now to dimensionally reduce the self-duality equations. Therefore we
assume that A does not depend on one co-ordinate, say x4. Calling φ = A4, the self-
duality equations can be rewritten as

F12 = F34 = (dA)3φ,

F13 = F42 = −(dA)2φ,

F23 = F14 = (dA)1φ (5.2.39)

which is equivalent to

F = ∗dAφ. (5.2.40)

These equations are known as the Bogomolny equations. They arise when considering
the minima of the dimensionally reduced Yang-Mills action, which reads

∫
IR3(Tr(F ∧ ∗F ) + Tr(dAφ ∧ ∗dAφ)). (5.2.41)

This action is the λ→ 0 limit of the Yang-Mills-Higgs functional

∫
IR3(Tr(F ∧ ∗F ) + Tr(dAφ ∧ ∗dAφ) + λ(1− Tr(φ2))2). (5.2.42)

§On a Riemannian manifold of dimension n the Hodge star operator is the operator that maps p
forms to n − p forms defined by the condition that for all p-forms α the equation α ∧ ∗β = (α | β)τ
holds. Here, τ is the volume form

√
gdx1 ∧ . . . ∧ dxn, and the inner product (α|β) of two p-forms

1
p!Ai1...ipdx

i1 ∧ . . . ∧ dxip and 1
p!Bi1...ipdx

i1 ∧ . . . ∧ dxip is 1
p!Ai1...ipB

i1...ip .
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Taking the limit λ→ 0 but keeping the asymptotic condition Tr(φ2)→ 1 as x→∞ is
known as the Bogomolny-Prasad-Sommerfield limit, and in that limit the solutions of
the Bogomolny equations are called magnetic monopoles.

Higgs bundles appear by a further dimensional reduction of the self-duality equations
to IR2. Thus, assume that the connection A does not depend on both x3 and x4, and
call A3 = φ1 and A4 = φ2. The self-duality equations become

F12 = F34 = [φ1, φ2],

(dA)1φ1 = F13 = F42 = −(dA)2φ2,

(dA)2φ1 = F23 = F14 = (dA)1φ2. (5.2.43)

In terms of the complex co-ordinate z = x1 + ix2 and Φ = (φ1 − iφ2)/2 they become

Fzz̄ = −[Φ,Φ∗],

(dA)z̄Φ = 0. (5.2.44)

The second equation expresses the fact that Φ is a holomorphic section, so that with
θ = Φ this is precisely our previous definition of a Higgs bundle. To go back from a
Higgs bundle (V, θ) to the two equations given here, we need the Hermitian-Yang-Mills
metric (5.2.26). For a stable Higgs bundle such a metric always exists, and given a

solution Ω one defines Φ∗ = Ω−1Φ†Ω and Az = Ω−1∂Ω− Ω−1Āz̄
†
Ω.

Although equations (5.2.44) are defined on IR2, they are conformally invariant and
can therefore also be defined on a compact Riemann surface. Alternatively, one could
have started with the self-duality equations on Σ× IR2 and reduce these.

The Higgs bundles that are relevant for the W moduli space were of a special type
with θ = Λ+ + W . For W = 0, these special Higgs bundles have an interpretation in
terms of the self-duality equations, namely they are related to spherically symmetric
solutions of the self-duality equations [306, 222]. These solutions are constructed as
follows: we start with the self-duality equations on IR4, and replace x2, x3, x4 by spherical
co-ordinates r, θ, ϕ. Subsequently one imposes spherical symmetry under the rotations
generated by the angular momentum operator Ji = Li+Ti, i = 2, 3, 4, where L generates
rotations in x2, x3, x4 space and T generates an SU(2) subgroup of the group G which
was the fiber of the principal bundle P . The self-duality equations, subject to the
condition of spherical symmetry, take a simple form in the complex co-ordinates y, z
defined by

dy = dr + idt, dz = r(dθ − i sin(θ)dϕ). (5.2.45)

Expressed in terms of the gauge fields

By = Ay + iTy/r, Bȳ = Aȳ − iTȳ/r (5.2.46)
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and

Φ = Az + iTz/r (5.2.47)

the self-duality equations are equivalent to the equations (5.2.44) for a Higgs bundle.
This is not very surprising, as spherical symmetry can be used to eliminate the θ, ϕ
dependence, and causes also a dimensional reduction from four to two dimensions. A
difference with the previous derivation of (5.2.44) is that the rotation group has three
generators instead of two. This gives an extra constraint on Φ, and in an appropriate
gauge the constraint is

Φ = f(z)Λ+. (5.2.48)

Since z, z̄ are co-ordinates on the right half-plane, there is a freedom to multiply Φ
by an holomorphic function. If we replace the right half-plane by a compact Riemann
surface, on which no global holomorphic functions exist, this freedom disappears and
what remains is Φ ∼ Λ+, precisely what we found in the case of W algebras.

The reason that the same Φ occurs both for spherical symmetric solutions of the
self-duality equations and for W algebras, is related to the fact that both have to do
with a kind of soldering procedure. The conditions for spherical symmetry are with
respect to J = L + T , a combination of space and gauge transformations. The same
combination of co-ordinate transformations and gauge transformations led to the W
algebra in section 2.2.5. This raises the interesting question to what kind of solutions to
the self-duality equations the Higgs bundles with θ = Λ+ +W for generic W correspond.
The equation (5.2.27) with θ = Λ+ and Ω restricted to exp(g0) is the equation of motion
of a generalized Toda theory. This suggest (as is true for gravity) that for W 6= 0 they
are related to Toda equations coupled to a non-trivial W background. Going back to
the self duality equations, this would mean that the corresponding solutions of the self-
duality equations are spherical symmetric with respect to some kind of W -metric for the
co-ordinates x1 and r. This would be an interesting observation, as it would enable us
to construct spherically symmetric solutions of the self-duality equations on a manifold
with non-trivial metric, and might give rise to new monopole solutions. These issues
are left to future investigation.

5.3. Generalized Actions

Having formulated W algebras on arbitrary Riemann surfaces, a next natural step is
to reconsider the induced and covariant action for W gravity on an arbitrary Riemann
surface. As the WZNW action played an essential role in these constructions, our first
goal will be to generalize the WZNW action to non-trivial principal fiber bundles over
a Riemann surface.
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As mentioned in the beginning of section 3.3.3, the WZNW action can be obtained
from a fermionic path integral, S−wznw(Az) ∼ log det(∂ + Az). This definition is easy to
generalize to non-trivial bundles. Let P be a principal fiber bundle with group G over
Σ, and A a connection on P . Furthermore, let V be the vector bundle associated to a
representation r of G, and consider the action

S(ψ,Az) =
1

π

∫
d2zTr

(
ψ̃(∂ + Az)ψ

)
(5.3.1)

and its induced action

eSind(Az) =
∫
Dψ̃Dψe−S, (5.3.2)

where ψ transforms as a section of V ⊗ (K̄)
1
2 , and ψ̃ as a section of Ṽ ⊗ (K̄)

1
2 . The

bundle Ṽ is associated to the representation r−1 of G, acting from the right on the same
vector space as the one on which r acts. The action (5.3.1) is gauge invariant under
ψ̃ → ψ̃h, ψ → h−1ψ, and A→ h−1Ah+ h−1∂h. The two-point function Gpk(Az; z, w) =
〈ψp(z)ψ̃k(w)〉 satisfies (∂δlp+(Az)lp(z))Gpk(Az; z, w) = πδlkδ(z−w). From this one finds
the following rule for the change of G under a gauge transformation h: Gp′k′(A

h
z ; z, w) =

h(z)−1
p′pGpk(Az; z, w)hkk′(w). For z → w G behaves as

G ∼ 1

z̄ − w̄
+ χz̄(z)− Az(z)

z − w
z̄ − w̄

+ terms that vanish as z → w. (5.3.3)

Under the gauge transformation Az → Ahz = h−1∂h + h−1Azh we find, by expanding
h(w) = h(z) + (z̄ − w̄)∂̄h(z) + (z − w)∂h(z) + . . ., that χz̄ → h−1χz̄h + h−1∂̄h, i.e.
χz̄ transforms as a connection. Furthermore, if locally Az = 0 we know that G is
exactly given by 1/(z̄ − w̄). Combining these facts we deduce that the curvature of
the connection one-form Azdz + χz̄dz̄ must vanish. To express this fact in terms of the
current

(Jz̄)pk ≡ −π
δSind(Az)

δ(Az)pk
, (5.3.4)

we must first define what we mean by Jz̄. The naive definition Jz̄ = limz→wG(Az; z, w)
does not work, due to the singularity of G as z → w. This means we have to regularize
Jz̄, and a standard way of doing this is by using point splitting regularization: one
defines Jz̄ = limz→w(G(Az; z, w)−G0(Az; z, w)) where G0 is some function that has the
same singular behavior as G. This means that

G0 ∼
1

z̄ − w̄
+B0

z̄ (z)− Az(z)
z − w
z̄ − w̄

+ terms that vanish as z → w. (5.3.5)
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Here, B0
z̄ (z) is some fixed field that transforms as the dz̄-part of a connection. Unfortu-

nately, one cannot just take B0
z̄ equal to zero, because zero is not a globally well-defined

connection. The current Jz̄ is

Jz̄ = χz̄ −B0
z̄ , (5.3.6)

and the Ward-identity (expressing the fact that the current Jz̄ is not conserved) reads

DAzJz̄ = ∂̄Az +DAzB
0
z̄ . (5.3.7)

This identity should come from some kind of generalized WZNW action. The WZNW
action S−wznw(g) is really a functional on the space of gauge transformations, and on the
complex plane this space is isomorphic to maps from the plane to G. The terms g−1∂g
in the WZNW action are just 0g, where 0 is the trivial connection on the complex
plane, and the superscript g refers as usual to a gauge transformation. Even on the
complex plane one sees that the WZNW action is not invariant if one chooses a different
trivialization of the (trivial) bundle P . If one chooses a different trivialization, related
to the first one via a gauge transformation h, then 0g → (0h)h

−1gh, because g transforms
as a section of the adjoint bundle Ad(P )¶. However, (0h)h

−1gh = (gh)−1∂(gh), and as
is well known, Swznw(gh) 6= Swznw(g). As the WZNW action should not depend on the
choice of trivialization of P , there is something wrong with the identification of g−1∂g
with 0g. Actually, there is another possibility, which turns out to be the right one,
namely to identify g−1∂g with 0g − 0. Under a change of trivialization

0g − 0→ (0h)h
−1gh − (0h) = h−1(0g − 0)h, (5.3.8)

and the WZNW action is invariant, because the h and h−1 cancel each other inside the
traces in the WZNW action.

If P is a non-trivial bundle, one cannot take 0 as a well-defined connection, and it
must be replaced by some other, fixed connection B = B0

zdz + B0
z̄dz̄. It turns out that

we must require B to be flat. As Az is identified with g−1∂g, we must replace g−1∂̄g
by a function Az̄(Az) determined by requiring the curvature of the connection one-form
A(Az) = Azdz + Az̄dz̄ to vanish. This leads to the following definition of the WZNW
action

kS±wznw(A;B) = − k
8π

∫
Σ

Tr((A−B0) ∧ ∗(A−B0))∓ ik
12π

∫
M

Tr(Ã− B̃0)3, (5.3.9)

where ∂M = Σ, and Ã, B̃0 denote flat extensions of A,B0 on a bundle P̃ on B that
restricts to P on Σ. The ∗ is the Hodge star on the Riemann surface Σ, where we

¶Ad(P ) is defined as (P × G)/G, where one the G-action on P × G is given by the standard left
action on P and by the adjoint action on G.
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assume that some metric compatible with the complex structure on Σ is given. That
an extension P̃ of P exists can be seen as follows [56]: it is sufficient to construct a
complex vector bundle Ṽ over B, that extends V (5.1.4). The vector bundle V is the
pull-back of a universal vector bundle over a certain Grassmannian Gr. The map we
use to pull back this universal vector bundle maps Σ into an element of the second
homology of the Grassmannian, and it is precisely this element of H2(Gr) that gives the
obstruction to construct an extension Ṽ . Because this element is essentially the first
Chern class of V , and the first Chern class of V vanishes, we know Σ maps to zero in
H2(Gr) and an extension Ṽ indeed exists. It may seem surprising that one needs an
additional connection B to write down the WZNW action, but this is necessary if one
wants to write down an action for chiral fermions only. It also appears when considering
determinant bundles associated to operators such as DAz [272].

Let us demonstrate that (5.3.9) indeed satisfies the Ward-identity (5.3.7), if we iden-
tify the two B0

z̄ ’s with each other. Consider a small variation A → A + δA. From the
zero-curvature equation dA+A∧A = 0 we find dδA+A∧δA+δA∧A = 0, with similar
equations for Ã. Using this we compute

δTr(Ã− B̃0)3 = 3Tr(δÃ ∧ (Ã− B̃0) ∧ (Ã− B̃0))

= 3Tr(Ã ∧ δÃ ∧ (Ã− B̃0) + δÃ ∧ Ã ∧ (Ã− B̃0)−
δÃ ∧ Ã ∧ Ã+ δB̃0 ∧ B̃0 ∧ B̃0)

= 3Tr(−d(δÃ) ∧ (Ã− B̃0) + δÃ ∧ (dÃ− dB̃0))

= −3Tr(d(δÃ ∧ (Ã− B̃0))). (5.3.10)

This gives for the total variation of the WZNW action

kδS−wznw(Az;B
0) = −k

4π

∫
Σ

Tr(δA ∧ (∗ − i)(A−B0)) = −k
π

∫
Σ
d2z Tr(δAz(A−B0)z̄),

(5.3.11)
because (∗ ∓ i)/2 are precisely the operators that define the complex structure. This

shows that this action indeed solves the Ward-identity (5.3.7) with Jz̄ = −π δS
−
wznw(Az)
δAz

, if

we identify the B̄0’s with each other. Therefore the induced action Sind(Az) is precisely
S−wznw(Az) with k = 1 and the trace taken in the same representation as the fermions
live in.

Having defined a generalized WZNW action, it is interesting to see whether this
action shares some of the properties of the ordinary WZNW action. Using a calcula-
tion similar as (5.3.10), one can verify the following version of the Polyakov-Wiegmann
formula

kS−wznw(A;B) = kS−wznw(A;C)+kS−wznw(C;B)− k
π

∫
Σ
d2zTr((A−C)z(C−B)z̄), (5.3.12)
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from which the usual Polyakov-Wiegmann formula follows by putting A = (gh)−1d(gh),
C = h−1dh and B = 0 for a trivial bundle P . Another issue is whether Swznw(A;B)
depends on the choice of extension Ã and B̃. Choosing a different extension will change
the action by a term k

12π

∫
M Tr(Ã− B̃)3, where now Σ ⊂ B and ∂B = ∅. Let U denote

the space of flat connections Ã on such a B such that Ã |Σ= A, and consider the function
rB̃ : U →C given by rB̃(Ã) = k

12π

∫
Tr(Ã− B̃)3. From the identity

Tr((Ã− B̃)3 + (B̃ − C̃)3 + (C̃ − Ã)3) = 3Tr(d((Ã− B̃) ∧ (B̃ − C̃))) (5.3.13)

it follows that rB̃(Ã) + rC̃(B̃) = rC̃(Ã). This implies that rB̃(Ã + δÃ) − rB̃(Ã) is of
third order in δÃ, and therefore that rB̃ is locally constant on U , i.e. rB̃ descends to
a map π0(U) → C. We see that the WZNW action is invariant under a continuous
change of the choice of extension. To find out whether or not k is quantized is not very
easy as it requires knowledge of π0(U). However, in the case that U/G is connected,
where G is the space of gauge transformations acting on U , one can say a little bit more,
using the fact that is this case all connected components of U can be reached from a
fixed one using gauge transformations. To do this, one has to take a slightly different
look at the function rB̃. For any group G one can write down an element of H3(G)
by extending the three-form ω(X, Y, Z) = k

12π
Tr(X[Y, Z]) on the Lie algebra of G all

over the group G. One can choose k such that ω defines actually an (possibly trivial)
element of H3(G,ZZ) (see section 2.1.6). This three-form is invariant under the adjoint
action of G, and therefore defines an element of ω̃ ∈ H3(Ad(P̃ ),ZZ) which restricts to
ω on each fiber. A simple computation now shows that rB̃(B̃g) =

∫
M g∗ω̃, which is

an integer, because g∗ω̃ is an element of integral cohomology and evaluating such an
element on a three manifold without boundary always gives an integer. We conclude
that k must sometimes be restricted to those values for which ω̃ is an element of integral
cohomology (so that upon quantizing the model everything is independent of the choice
of extension), but if for instance ω̃ = 0 in H3(Ad(P̃ ),ZZ) for a k 6= 0, k can be taken
arbitrarily.

5.3.1. Classical Actions for Chiral and Covariant Gravity on Higher Genus

With the generalized WZNW action, it is straightforward to write down the form
of the classical chiral and covariant actions. The chiral actions depend on a choice of
basepoint, but in the covariant action the basepoint dependence drops out. This is a
natural thing to happen (cf. [272]), since the covariant action cannot be factorized in a
holomorphic and anti-holomorphic part while keeping the W, W̄ invariance.

We choose once and for all a fixed flat background connection B0, representing a
choice of regularization procedure. The chiral induced action (3.2.13) on an arbitrary
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Riemann surface reads

Γ(0)[Aα;B0] = kS−wznw(A;B0)|kAz=ξΛ++W+kB0
z
. (5.3.14)

The Ward identity (3.2.8) is replaced by

[∂ +B0
z +

1

k
(ξΛ+ + ad(W )), ∂̄ +X(µα;B0)]|

Wa(α)→cαπ δΓ
(0)

δµα

= 0, (5.3.15)

where X(µα;B0) is a modified version of (2.2.26). If all nonzero components of B0
z have

degree less than or equal to zero, then an explicit expression for X can be given,

X =
1

1 + ξ−1L(k∂ + kad(B0
z ) + ad(W ))

(F +
k

ξ
L(∂̄B0

z )). (5.3.16)

The anti-chiral induced action is

Γ(0)[Āα;B] = kS+(A;B)|kAz̄=ξ̄Λ̄++W̄+kB0
z̄
, (5.3.17)

and the full covariant action is given by the following extremely simple expression, in
which the basepoint no longer appears

Γ(0)[Aα;B] + Γ(0)[Āα;B] + ∆Γ(0)[Aα; Āα;G;B] = kS−wznw((A1)G, A2) (5.3.18)

where (A1)G is the gauge transform of A1 and

k(A1)z = ξΛ+ +W + kB0
z ,

k(A2)z̄ = ξ̄Λ̄+ + W̄ + kB0
z̄ . (5.3.19)

The same framework can also be used to write down the correct actions for constrained
and gauged WZNW models on an arbitrary Riemann surface, if the principal G bundle
is non-trivial.

5.3.2. Example: Gravity

Let us demonstrate what this implies for gravity. We take a basepoint

B0
z =

(
b0 0
b− −b0

)
(5.3.20)
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so that

B0
z +

1

k
(ξΛ+ + ad(W )) =

(
b0

ξ
k

b− + T
ξ
−b0

)
(5.3.21)

and

X(µ;B) =

 b0µ+ 1
2
∂µ ξ

k
µ

b−µ+ 1
ξ
µT + k

ξ
∂̄b0 − k

ξ
µ∂b0 − k

ξ
b0∂µ− k

2ξ
∂2µ −b0µ− 1

2
∂µ

 . (5.3.22)

The Ward identity that follows from the zero-curvature equation is

(∂̄ − µ∂ − 2∂µ)(T + ξb− + kb2
0 − k∂b0) = −k

2
∂3µ. (5.3.23)

This form is equivalent to the Ward identity derived in [216], if one takes b0 = 1
2
∂ log ρ,

and b− a quadratic differential such that the sum of the projective connection kb2
0−k∂b0

and ξb− is a holomorphic projective connection.

The explicit form of the covariant action on an arbitrary Riemann surface is easy to
obtain in this framework [47]. The result agrees with the expressions obtained in [206,
330, 336] (for the generalization to supergravity on super Riemann surfaces, see [2]). The
modifications with respect to the actions on the complex plane are quite modest. The
basically involve the introduction of certain background projective connections, and the
covariantization of the differential operators that occur in the action. Covariantization
of differential operators can also serve as a starting point to study W algebras, see
[119, 134, 154]. A construction of Toda field theories on Riemann surfaces that is in
spirit closely related to the constructions in this chapter is given in [5].

5.4. Remarks

5.4.1. The Geometrical Description of W Algebras

In the literature, several attempts at a geometrical description of W algebras have
appeared, and we want to indicate briefly what the relation is with the approach in this
chapter. The advantage of our approach is that it makes maximal use of the underlying
group theoretical structure of W algebras, and that the moduli space is relatively easy
to obtain. However, an interpretation of W transformations as the natural co-ordinate
transformations in some W -superspace has not yet been found.
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In [153, 297] W geometry is connected with the geometry of surfaces embedded
in certain target spaces. The connection with constrained connections is most easily
understood by looking at the differential operators ∂ + Λ+ + W . The vector bundle V
has a natural filtration

V ⊃ Λ+(V ) ⊃ (Λ+)2V ⊃ · · · ⊃ (Λ+)rV ⊃ 0, (5.4.1)

where r is the largest integer such that (Λ+)rV 6= 0. We denote (Λ+)rV by Vred. Two
sections f, g of Vred are equivalent at z ∈ Σ if (1 + L∂)−1f = (1 + L∂)−1g in z. The
equivalence classes of the sections of Vred over z give a generalized jet, which patch
together to the jet bundle ΓΛ. An admissible local frame of V is a collection of n
independent sections ψi, where n is the rank of V , such that the matrix which has
the ψi as columns is an element of G, and such that each section can be written as
(1 +L(∂+ b))−1ψredi , with ψredi ∈ Vred and b ∈ B− ≡ exp(g−⊕g0). Two local admissible
frames {φi}, {ψ′i} are equivalent if there is an n ∈ exp(g−) such that for each i, ψ′i = nψi.
Then the equivalence classes of admissible frames are in one-to-one correspondence with
a set of W fields, and deformations of these frames correspond to W transformations.
Alternatively, this can be described in terms of deformations of flags of type (5.4.1) for
the jet bundle ΓΛ. From this point of view, W geometry has been discussed in [235].

The nice feature of the standard WN algebras is that there is a natural gauge choice
for the space of admissible frames modulo equivalence. Take an arbitrary section of
IP(V ⊕nred ), the projectivization of the direct sum of n copies of Vred (which is one-
dimensional), say (ψ1, . . . , ψn) in homogeneous co-ordinates, and define the frame by
((1 + L∂)−1ψ1, . . . , (1 + L∂)−1ψn). This frame defines a set of W fields. The fact that
Vred is globally non-trivial on a Riemann surface of genus h 6= 1 makes it in general
impossible to view ψ1, . . . ψn as co-ordinates on CIPn, so that the interpretation of W
‘surfaces’ as Riemann surfaces immersed in CIPn is not obvious. If any such interpreta-
tion exists, it is probably closely related to the branched covers of the Riemann surface
that arise as the solution space of the equation det(x−Λ+−W ) = 0, and are subspaces
of the cotangent bundle of the Σ [168].

A related parametrization of W fields by sections ψi has been used to compute the
symplectic leaves of the W algebra on the circle [201].

A different approach to W geometry has been proposed in [184]. The idea is to
take a W algebra that is realized in terms of one free scalar field φ (such realizations
will usually be reducible), and to gauge the W × W̄ symmetry as in section 4.1. The
resulting action is written as ∫

d2xF (xα, ∂αφ), (5.4.2)
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with

F (xα, yα) =
∑
n≥2

1

n
Aα1...αn(xα)yα1 . . . yαn . (5.4.3)

The symmetric tensor fields Aα1...αn contain the W gauge fields. The function F satisfies
a complicated set of constraints, that can be obtained from the much simpler Hamilto-
nian formulation of the gauged action via a Legendre transformation. The constraints
on F are translated in constraints on a family of Kähler potentials Kx defined by

Kx(ζ, ζ̄) = F (xα, ζα + ζ̄α) (5.4.4)

where ζα, ζ̄α are complex co-ordinates on IR4. The metrics corresponding to these Kähler
potentials describe self-dual geometries on IR4 with two Killing vectors. This looks a lot
like our discussion in section 5.2.5, where we examined the relation between Higgs bun-
dles and self-duality equations. It would be interesting if we could make this connection
more precise. The relation between the self-duality equations in four dimensions and
two-dimensional theories has been considered from different points of view in [164, 10].

5.4.2. The Moduli Space for a Surface with Punctures

In this section we compute the dimension of the moduli space in the presence of
marked points. For gravity, the answer is well-known, dimMg,n = 3g − 3 + n. The n
extra moduli correspond to the locations of the marked points. The vector field ∂

∂z
|z=zi

moves the marked point located at z = zi around, and can be seen as a tangent vector
to the moduli space. Thus, the moduli space in the presence of marked points is not
the quotient of the space of complex structures modulo diffeomorphisms, but modulo a
subgroup of the group of diffeomorphisms, obtained by modding out the vector fields
∂
∂z
|z=zi from the group of all diffeomorphisms. The vector field ∂

∂z
is locally a section

of K−1. In the SL2 picture, the parameters of gauge transformations transform as
sections of ad(P ), and K−1 corresponds to the top-right component. The remaining
two components span a parabolic subalgebra b of sl2, and modding out certain vector
fields at z = zi can in the bundle language be rephrased by saying that at z = zi the
bundle is reduced to B, the parabolic subgroup corresponding to b.

To generalize this toW gravity, we need to know what the generalization of the vector
field ∂

∂z
|z=zi is to ‘W punctures’. Since all negative powers of K have an interpretation

as a bundle of differential operators, we take as the generalization of the vector fields
for gravity those gauge transformations whose parameter at z = zi is an element of the
subalgebra n+ of g corresponding to negative powers of K, or to a positive eigenvalue
of ad(t0). The corresponding parabolic algebra is the subalgebra b of g consisting of
eigenvalues less than or equal to zero of t0. The moduli space for W gravity with marked
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points is the same as for the moduli space without marked points, but in addition we
require that the corresponding bundle P has a reduction to B at all marked points zi
(cf. [171, 239]).

This definition is expressed in terms of gauge transformations. To find out what this
means for W -transformations, we have to push this definition through the homotopy
contraction that related the gauge and W transformations. The parameters εα of the W
transformations transform as a section of Πker adΛ+(ad(P )) ' ⊕αK1−hα . The W trans-
formations that should be seen as tangent vectors to the moduli space have parameters
that are in the neighborhood of zi given by

εα =
[hα−3/2]∑
l=0

ε(l)α (z − zi)l. (5.4.5)

The dimension of the moduli space is

dimMg,n = (g − 1) dim(G) + n dim(n+)

= (g − 1) dim(G) +
n

2
(dim(G)− d0) (5.4.6)

5.4.3. From Teichmüller space to the Moduli Space

The final step in finding the moduli space for W algebras is to take the quotient of the
Teichmüller spaces we computed so far (although we called them moduli spaces) by the
action of the modular group. Unfortunately, this is not so straightforward as it seems,
because for this one needs to know the action of the modular group on H0(Σ;Khα).
Since we worked in a fixed complex structure all the time, the action cannot simply
be induced from its action on Σ. We have to specify the embedding of the ordinary
Teichmüller space in the W Teichmüller space. The most obvious way to do this is
via the sl2 embedding. In that case, W moduli space is simply given by a bundle over
ordinary moduli space, whose fiber is the W moduli space restricted to T = 0. However,
the details of this procedure are not yet entirely clear to us.

For arbitrary chiral algebras A, the analysis for W algebras suggests the following
result for the Teichmüller space: it is given by the vector space of holomorphic A fields,
modulo the transformations generated by the spin one currents in A with constant
parameter. The moduli space is a bundle over ordinary moduli space with fiber given
by A Teichmüller space restricted to T = 0. If {hα} denotes the set of weights of the
generators of A, the dimension of the moduli space is

dimMA
g,n =

∑
α

(g − 1)(2hα − 1) + n
∑
α

[hα −
1

2
]. (5.4.7)
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Towards an Exact Solution?

In the previous chapters we have focused our attention on the construction of the
action that describes (induced) W gravity coupled to W matter. One of the main results
is given in section 4.3.1, where we showed that in the conformal gauge the action consists
of three pieces: a matter part, which can be represented by a constrained WZNW model
at level kc − 2h, a gravitational part, represented by a constrained WZNW model at
level −kc, and a free ghost part. The total central charge is equal to zero. The obvious
next step is investigate the properties of this action, in particular one may investigate
whether it describes a sensible theory, what is the spectrum and what are the correlation
functions.

For gravity, there has been tremendous progress in answering these questions, espe-
cially when the matter theory is a minimal model or a c = 1 theory. There are three
different ways in which one can study gravity coupled to matter, each having its own
merits. These are the continuum approach, the topological approach and the discrete
approach. In this chapter we take a closer look at each of these, and comment on their
possible extensions to W gravity.

6.1. Continuum Approach

6.1.1. Gravity

Consider the action of the constrained SL2 WZNW theory at level k,

S = kS−wznw(g)− 1

π

∫
d2z Ā(J+ − ξ). (6.1.1)

It can be argued that this action, when integrating out the gauge field, becomes equiv-
alent to the action of a free scalar field [273, 95, 185, 189]

S =
1

8π

∫
d2x

√
ĝĝαβ∂αφ∂βφ+

iα0

4π

∫
d2x

√
ĝRĝφ (6.1.2)
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with background charge

α0 =
1√
2

(
1√
k + 2

−
√
k + 2

)
. (6.1.3)

In (6.1.2) we restored the dependence on an arbitrary background metric ĝ, to make clear
that the free field has a background charge. We ignore the vertex operator that should
be added to (6.1.2) to reduce its chiral algebra to the Virasoro algebra (cf. section 2.1.4).
More precisely, the chiral algebra of (6.1.1), which is the Virasoro algebra, coincides with
the centralizer of this vertex operator acting on the chiral algebra of (6.1.2) under the
equivalence (6.1.1)↔(6.1.2). Using this equivalence and the results of section 4.3.1. we
can express both the matter part and the gravity part of the covariant action (in the
conformal gauge) in terms of one scalar field each. Denoting these by φL (the Liouville
field) and φM (the matter field), the covariant action reads (with ĝ ∼ dz dz̄)

Scov =
1

2π

∫
d2z (∂φM ∂̄φM + ∂φL∂̄φL) +

1

4π

∫
d2z

√
ĝRĝ(iαMφM +αLφL) +

1

π

∫
d2z b∂̄c.

(6.1.4)

The values of the background charges are αM =
√

(1− c)/12 and αL =
√

(25− c)/12.
The action has problems for c > 1, because tachyonic divergencies appear in the partition
function for for c > 1 [287, 213]. See also the remark below (6.1.9). Alternatively, the
breakdown of this approach for c > 1 can be explained by the fact that in this regime
the branched-polymer configurations dominate the functional integral over 2-d metrics
[105]. To avoid all these problems, we assume henceforth that c ≤ 1.

The action (6.1.4) has been extensively studied, especially the Liouville part of it.
We refer the reader to [79, 152, 151, 259] and the review papers [234, 288, 287, 259, 6,
156, 84, 82, 174] for a more detailed discussion.

In section 4.3.2 we explained that (6.1.4) is a gauge-fixed version of the covariant
action, and that there is a BRST operator associated to this gauge fixing. It is given by

Q =
∮ dz

2πi
c(TM + TL +

1

2
Tgh) (6.1.5)

where TL,M,gh denote the energy-momentum tensors of the respective sectors of (6.1.4).
The BRST operator is nilpotent because the sum of the central charges cM+cL+cgh = 0.
The physical states of (6.1.4) are given by the BRST cohomology of Q. This BRST
cohomology has been computed in [223, 61], see also [316, 323, 266, 204, 246]. For c = 1
there are only BRST non-trivial physical states at a finite set of ghost numbers. This
is different for c < 1. For the (p, q) minimal model (cf. (2.1.14)) with

c = c(p, q) = 1− 6(p− q)2

pq
(6.1.6)
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the cohomology is spanned by operators, labeled by an index n, of the form

OneαnφL ,
αn
γ

=
p+ q − n

2q
, n ≥ 1, n 6= 0 mod p, n 6= 0 mod q, (6.1.7)

where ∗ γ = 1√
12

(
√

25− c−
√

1− c), and On is an operator made of matter, ghosts and
derivatives of φL. The ghost number of On depends linearly on n.

The simplest explicit example of operators that are in the BRST cohomology are
operators of the type (the ‘Distler-Kawai’ states [97])

V = c eiλMφM eλLφL . (6.1.8)

A straightforward calculation shows that [Q, V ] = 0 if V has vanishing conformal weight,

λ2
M

2
+ αMλM −

λ2
L

2
+ αLλL − 1 = 0. (6.1.9)

We rewrite this equation as

∆M −
1

2
(λL − αL)2 +

1− c
24

= 0, (6.1.10)

which can be read as an Euclidean on-shell condition in target space [156]

1

2
E2 +

1

2
p2 +

1

2
m2 = 0. (6.1.11)

Here, E = i(λL − αL). We see that the condition for no tachyonic divergencies, i.e.
p2 +m2 > 0, reads

min
M

(∆M +
1− c

24
) ≥ 0. (6.1.12)

For unitary theories, minM ∆M = 0, and beyond the c = 1 barrier the theory suffers
from tachyonic divergencies.

The expressions for the gravitational dressed scaling dimensions derived in [207] can
be found from (6.1.9). They are defined by

∆ = 1− λL(h)

γ
(6.1.13)

∗The parameter γ is defined such that the operator eγφL has weight one; this operator plays the role
of the cosmological constant operator.
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where γ was defined under (6.1.7), and λL(h) is the solution of (6.1.9) with λ2
M/2+αMλM

replaced by the conformal weight h of the matter part of the operator V .

The operators (6.1.8) have conformal weight zero, and it makes sense to consider
the correlation function of products of these operators located at certain fixed points
on the surface. So far we tacitly assumed that it is possible to completely gauge away
the Beltrami differential µ. This is true on the complex plane, but not on a general
surface. On a general surface one can only impose the gauge-fixing condition µ = µ̂,
with µ̂ representing a point in the moduli space Mg,n. The path integral includes an
integration over the moduli space. Since the coupling of the covariant action (4.2.30)
to the moduli µ̂ is quite complicated, it is difficult to compute correlation functions in
this way. For this reason, progress has been limited to the computation of correlation
functions for genus 0 and 1 surfaces [163, 278, 266]. In genus zero, one can replace the
integration over the moduli spaceM0,n by an integration over the locations of the vertex
operators. To do this, we first have to change the operator V into a BRST invariant
operator V (1) of conformal weight one, in order to be able to integrate it over the surface.
This ‘change of picture’ is accomplished via the descent equation (cf. [321])

[Q, V (1)] = [
∮ dz

2πi
[Q, b], V ]. (6.1.14)

Notice that [Q, b] is nothing but the total stress-energy tensor of the system, and its
contour integral is the L−1 Fourier mode that acts as ∂/∂z. The operator V (1) is given
by V without the c-ghost,

V (1) = eiλMφM eλLφL . (6.1.15)

On the sphere, the computation of correlation functions of products of vertex operators
is now reduced to the computation of correlators of operators V (1), together with an
integration over the location of these operators. In the latter picture, no explicit knowl-
edge of the moduli is needed, which is the reason for the solvability of the genus-zero
correlation functions.

Let us now discuss what extra complications occur if we try to generalize this dis-
cussion to W gravity.

6.1.2. Generalization to W Gravity: BRST Operator

The first problem we have to deal with is the construction of the BRST operator for
W gravity coupled to W matter (see also section 4.3.2). For critical (cM = 100) matter,
the gravitational W algebra decouples, and the construction of the BRST operator can
proceed as in [300, 281]. However, for non-critical W gravity coupled to W matter, it
is a priori not at all clear that such an operator should exists. The problem is the non-
linearity of the W algebra. For linear algebras with central terms, one can construct a
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new algebra from two commuting copies of the original algebra by taking the diagonal
subalgebra. The central charges simply add up. For non-linear algebras, this statement
is definitely not true. For W gravity coupled to W matter, the algebra we want gauge
and which gives us the BRST operator is generated by the sum of the matter and gravity
W algebra, and does not have the structure of a W algebra. On the other hand, the
fact that we were able to construct a covariant action for W gravity guarantees that a
BRST operator must exist, obtained by gauge fixing the covariant action. So what is
going on here?

Actually, it is not necessary to have a closed non-linear algebra to be able to write
down a BRST operator. According to [133, 167], it is sufficient to have a closed algebra
of soft type, i.e. with an closed algebra with field-dependent structure constants. We
claim that this is precisely what is going on here, at least classically: the sum of the W
generators of the gravity and matter sector form a closed algebra with field-dependent
structure constants.

To demonstrate this, we employ the general expression (2.2.27). Consider two copies
of the same W algebra, obtained from the WZNW model at level ki with constraints
ξiΛ

+, i = 1, 2. We compute

{
∫

Tr(F (W1 +W2)),W1 +W2}dirac ={
(k1∂ + adW1) 1

1+ξ−1
1 L(k1∂+adW1)

+ (k2∂ + adW2) 1
1+ξ−1

2 L(k2∂+adW2)

}
F ={

1
1+(k1∂+adW1)ξ−1

1 L
(k1∂ + adW1) + (k2∂ + adW2) 1

1+ξ−1
2 L(k2∂+adW2)

}
F =

1
1+(k1∂+adW1)ξ−1

1 L

{
(k1∂ + adW1)(1 + ξ−1

2 L(k2∂ + adW2))

+(1 + (k1∂ + adW1)ξ−1
1 L)(k2∂ + adW2)

}
1

1+ξ−1
2 L(k2∂+adW2)

F =

1
1+(k1∂+adW1)ξ−1

1 L
{(k1 + k2)∂ + ad(W1 +W2)

+(k1∂ + adW1)L(k2∂ + adW2)(ξ−1
1 + ξ−1

2 )
}

1
1+ξ−1

2 L(k2∂+adW2)
F.

(6.1.16)
Taking k1 + k2 = ξ−1

1 + ξ−1
2 = 0, this expression simplifies to

1

1 + (k1∂ + adW1)ξ−1
1 L

ad(W1 +W2)
1

1 + ξ−1
2 L(k2∂ + adW2)

F. (6.1.17)

We therefore reach the important conclusion that for k1 = −k2 and ξ1 = −ξ2 the sum
of the two W algebras forms a closed algebra with field dependent structure constants.
Remakably, (4.3.7) shows that (classically) the gravitational constrained WZNW model
has k and ξ with the opposite sign compared with those of the matter constrained
WZNW model.
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In conclusion, the classical BRST operator can be obtained in the standard fashion
from

S = kS−wznw(g1)− 1

π

∫
d2z Ā1(J1 − ξΛ+)− kS−wznw(g2)− 1

π

∫
d2z Ā2(J2 + ξΛ+)

+
1

π

∫
d2zTr(F (µα)(W1 +W2)), (6.1.18)

by gauge fixing the symmetries generated by W1 +W2. In (6.1.18), W1 and W2 contain
the gauge invariant polynomials of the respective constrained WZNW models.

To find the quantum BRST operator, one can use the classical one as inspiration.
Often, it is sufficient to replace the coefficients in front of each term in the classical
BRST operator by an arbitrary one, followed by demanding that Q2 on the quantum
level. An explicit expression for the W3 BRST operator is given in [48, 40, 31]. Further
properties of the BRST operator are studied in [30].

6.1.3. The Spectrum

The spectrum of W3 gravity coupled to W3 matter and of the critical (cmatter = 100)
W3 string has been analyzed in [40, 39, 48, 276, 80, 270, 269, 136, 230, 63]. Due to the
complicated structure of the W3 BRST operator, the determination of the spectrum is
is a difficult problem, and has not yet completely been solved.

For the W algebras that are not obtained from the principal sl2 embedding, we do
not even know what the irreducible representations look like, and nothing is known
about the spectrum of these theories.

A class of states that can be written down for all W gravity theories are the gener-
alizations of the states (6.1.8). Any weight Λ of g gives a state in a reduced WZNW
theory based on g. Combining two such states for the W matter and the W gravity
part gives

|ψ〉 = |ΛM〉 ⊗ |ΛL〉 ⊗ |0〉gh (6.1.19)

where |0〉gh is a state in the ghost Hilbert space that will be specified in a moment.
The conformal weight of the state |ψ > can be computed using the expressions for the
energy-momentum tensors of the two constrained WZNW theories,

hψ =
(ΛM |ΛM + 2ρ)

2(kc − h)
− (t0|ΛM) +

(ΛL|ΛL + 2ρ)

2(h− kc)
− (t0|ΛL) + hgh (6.1.20)

Introducing the ‘background charges’ αM = ρ− (kc− h)t0 and αL = ρ+ (kc− h)t0, this
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equation can be rewritten as

hψ =
(ΛM + αM |ΛM + αM)

2(kc − h)
+

(ΛL + αL|ΛL + αL)

2(h− kc)
+ 2(ρ|t0) + hgh. (6.1.21)

If some Weyl group element w ∈ W exists such that

w(ΛM + αM) = ΛL + αL (6.1.22)

then the first two terms in (6.1.21) cancel against each other, and

hψ = 2(ρ|t0) + hgh. (6.1.23)

Now there is a ghost cα of weight 1−hα for every generator of the Wα of the W algebra.
If |0〉sl2 denotes the standard sl2 invariant ghost vacuum, then the ghost Hilbert space
contains the state

|0〉gh ≡
∏
α

[hα−3/2]∏
i=0

∂icα|0〉sl2 (6.1.24)

and no states with lower conformal weight, since the ghosts anti-commute. The confor-
mal weight of |0〉gh is easily computed, it is

hgh = −
∑
α∈∆+

(t0|Hα) = −2(t0|ρ). (6.1.25)

Combining everything, we have obtained a state of conformal weight zero for every
weight ΛM together with a Weyl group element w that specifies the W gravitational
dressing of the matter field. For WN gravity these states are indeed in the BRST
cohomology for generic values of ΛM [63]. For gravity, the Weyl group contains two
elements, plus one and minus one. If ΛM is in the fundamental Weyl chamber, there
are physical reasons to keep only the state with w = +1, known as the Seiberg bound
[288, 287]. See also section 3.6 in [156]. One expects a similar criterion to hold for
W gravity, but its precise form is unknown [39]. Another open problem is to prove
that the states (6.1.19) are in the BRST cohomology for nonprincipal embeddings†. In
addition the BRST cohomology can have additional states at other ghost numbers or
with an other structure. The states with ghost number zero and conformal weight zero
constitute the so-called ground ring [323, 316]. The structure of the ground ring for

†Before doing this it would be nice to have a good description of the representation theory of these
W algebras, and to know which minimal models (or RCFT’s) can be made from them
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W3 gravity is conjectured in [63]. To prove and extend these results to arbitrary W
algebras is yet another open problem. Finally, let us mention two different approaches
to the computation of the spectrum of W gravity plus W matter. The first one is to use
the relation with G/G models, which we discuss in section 6.2.3. The second one is to
compute the spectrum in a different gauge than the conformal gauge, for instance in the
light-cone gauge [207]. In the light-cone gauge, the BRST operator differs significantly
from the one in the conformal gauge. For gravity, the spectrum in the light-cone gauge
has been studied in [187] and more recently it has been shown [233] that the spectrum
agrees with the spectrum obtained in the conformal gauge. The BRST operator for
W3 gravity in the light-cone gauge, together with a preliminary investigation of its
cohomology, is given in [48, 160].

6.1.4. Correlators

Correlators of states of the type (6.1.19) can in principle be computed by going to
a free field realization of the Toda theories that are part of the covariant action, and
by using free field techniques similar to those employed for gravity. These correlation
functions include an integral over the moduli space of a punctured W surface. This can
also be seen from the fact that the ghost number of the operators (6.1.19) is equal to the
number of extra moduli that are introduced by a puncture in a W surface (section 5.4.2).
The structure of the ghost part of the operators (6.1.19) closely resembles the structure
of the vector fields we modded out in section 5.4.2 to obtain the punctured moduli space.
This correspondence does not hold for, for instance, ground ring operators, or more gen-
eral for operators whose ghost structure is not given by (6.1.24). If such operators have
conformal weight zero, we can consider their correlation functions by attaching them to
some marked points on the Riemann surface. The computation of the correlation func-
tion now involves an integral over a modified moduli space, whose structure resembles
the ghost structure of the operators. These moduli spaces correspond to the case where,
in the terminology of section 5.4.2, the bundle P has reductions to different parabolic
subalgebras Bi at the marked points zi [239]. For ground ring generators, this parabolic
subalgebra is g itself, so that the punctures do not introduce any extra moduli.

For gravity, we could trade of the integral over the genus-zero moduli space for an
integral over the locations of the punctures. For W gravity, a similar procedure may be
conceivable once we have a better understanding of the structure of the moduli space of
a surface with punctures. If an explicit description of this moduli space were available,
one could write down generalized descent equations, and replace the integral over the
moduli space by an integral over the location of the operator plus some extra internal
space, representing part of the W moduli space. This would at the same time answer
the question what W geometry is, because the extra internal space is precisely the W
‘superspace’, in which all the W transformations have a clear geometrical meaning.
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Unfortunately, this final goal is still far ahead.

For critical W3 strings, correlation functions in genus zero were computed in [136,
230]. These computations are, however, not generic. The rely on a special realization
of the cM = 100 W3 algebra, in terms of a scalar field ϕ with background charge and
a matter system with cM = 51

2
. For this special realization of the W3 algebra the

correlation functions can be expressed in terms of correlation functions of the Ising
model and a c = 51

2
Virasoro string, and no special new W techniques are needed to

compute them.

6.2. Topological Approach

The second approach to the solution of gravity we discuss is the topological approach.
In this approach, the independence of the metric is built in from the start, and does not
arise from some ‘anomalous quantization’ procedure like the one we used to compute the
covariant action. A whole zoo of topological field theories exists, each of which seems to
be equivalent to theories of ordinary (c < 1) matter coupled to ordinary gravity. Most of
the proofs of the equivalences of these theories consist of a computation of the spectrum
and the correlation functions. This is a very elaborate method, and it would be nice to
understand the equivalence of all these theories on some higher level. Let us now turn
to a discussion of some of these models. (see also [217])

6.2.1. Topological W Conformal Field Theory

A topological quantum field theory is a quantum field theory in which all the correla-
tion functions are independent of the metric [317, 318]. In the topological field theories
of cohomological type [44], this is guaranteed by the presence of a nilpotent BRST-like
operator, such that the physical states are in one-to-one correspondence with states in
the BRST cohomology, and such that the stress-energy tensor is BRST-exact,

Tαβ = [Q,Gα,β]. (6.2.1)

The latter condition guarantees that all correlation functions are metric independent.

A subset of the set of topological field theories are the topological conformal field
theories [93, 91]. These are characterized, in addition to being a topological field theory,
by the fact that the stress-energy tensor is traceless. This means in particular (section
2.1.2) that the theory can be decomposed in a holomorphic and an anti-holomorphic
sector. Usually, we will only focus on the holomorphic part of the theory, and denote the
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holomorphic part of the BRST operator, the stress-energy tensor and the fermionic spin
2 supercurrent Gαβ by Q, T (z) and G−(z) respectively. Furthermore, the BRST current
will be denoted by G+(z), so that Q =

∮ dz
2πi

G+(z), and since Q is BRST exact, we can
express it in terms of a U(1) current, G+(z) = [Q, J(z)]. The four fields T,G± and J
form a twisted N = 2 superconformal algebra, also known as the topological conformal
algebra [321, 317, 318, 108]. The OPE’s of this algebra are given by

T (z)T (w) =
2T (w)

(z − w)2
+
∂T (w)

z − w
,

T (z)G±(w) =
(3

2
∓ 1

2
)G±(w)

(z − w)2
+
∂G±(w)

z − w
,

T (z) J(w) =
−ĉ/3

(z − w)3
+

J(w)

(z − w)2
+
∂J(w)

z − w
,

J(z) J(w) =
ĉ/3

(z − w)2
,

J(z)G±(w) = ±G
±(w)

z − w
,

G+(z)G−(w) =
ĉ/3

(z − w)3
+

J(w)

(z − w)2
+
T (w)

z − w
,

G±(z)G±(w) = 0. (6.2.2)

The parameter ĉ is the central charge of the untwisted N = 2 superconformal algebra
that follows from (6.2.2) by taking T̂ = T − 1

2
∂J .

The natural requirement for W gravity is that the correlators are invariant not only
under a variation of the metric, but under an arbitrary variation of the ‘W ’ metric. In
other words, the holomorphic W fields must be BRST exact. For those W algebras
obtained from an sl2 embedding in sln, a natural N = 2 extension was given in section
2.2.15, and inspired by the definition of a topological conformal field theory, we define
a topological W conformal field theory by the presence of a twisted version of these
N = 2 W algebras. For other W algebras, a similar definition should exists, but we do
not have an explicit description of the relevant N = 2 extensions.

A natural question arises, whether the theories of W matter coupled to W gravity are
W topological. Naively, one would expect this to be the case, since the theory includes
an integral over the W ‘metrics’. In [91] it was observed that for ordinary gravity (see
previous section) there is almost an N = 2 algebra, upon identifying the anti-ghost b
with G−. Later, it was realized that one can always add a total derivative to the BRST
current and that this can be done in such a way that one recovers exactly the N = 2
algebra [143]. This observation was generalized to WN gravity in [39, 40].

For gravity, it is easy to give the explicit form of the realization of the twisted N = 2
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algebra. We introduce two parameters yL, yM , that satisfy (everything is in the notation
of section 6.1.1)

(yL − αL)2 + (yM − iαM)2 = 0. (6.2.3)

The four generators of the topological conformal algebra are

J = (cb)− yl∂φL − yM∂φM ,

G+ = c(TL + TM + Tgh) +
1

2
(1− y2

L − y2
M)∂2c+ yL∂(c∂φL) + yM∂(c∂φM),

G− = b,

T = TL + TM + Tgh, (6.2.4)

and

ĉ = 3(1− y2
L − y2

M). (6.2.5)

Similar explicit but extremely cumbersome expressions exist for the generators of the
N = 2 super W3 algebra in the case of W3 gravity. In the next section we investigate
whether the presence of the N = 2 structure can be understood more directly.

6.2.2. N = 2 Structure in W Gravity

We start with the classical action (6.1.18) that describes the holomorphic part of
the (ungauged) classical covariant action for W matter coupled to W gravity. The
action has three gauge invariances; two are generated by the gauge groups G− ≡ exp g−
for respectively g1 and g2, and the third one consists of the transformations generated
by W1 + W2 that we will loosely speaking simply call W transformations, although
they do not form a W algebra. Using a gauge fixing procedure as in section 3.3.2,
one sees that the gauge invariant polynomials W1,2 can replaced by the currents in
ker ad(Λ−), if one modifies the g1,2 and Ā1,2 transformation rules accordingly. This
brings the

∫
F (µα)(W1 +W2) term on the same footing as the two terms containing Ā1,2,

in that the µα are now just some Lagrange multipliers that set the currents W1 + W2

equal to zero. The next step is to perform a BRST gauge-fixing of the action as in
section 3.3.1, but only for the symmetries generated by W1 + W2. This dresses some
of the currents with ghost contributions, and kills, if we denote the total current by
J+ = J1 + J2, the highest and lowest weight components of all the sl2 representations
in which J+ branches under the sl2 embedding. For sl2 embeddings in sln under which
the fundamental representation branches as n→ ⊕ni, the surviving components of J+

are almost equal to the the tensor product of ⊕ni − 1. Finally, we have to consider the
ghosts that arise from the BRST gauge fixing of the W symmetry, and the surviving
currents altogether and map them into some superalgebra. For embeddings in sln, the
above reasoning suggest that the proper superalgebra is sl(n|n′), the one we considered
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in section 2.2.15. The ghosts should be identified with some of the supercurrents. The
remaining constrains imposed by Ā1,2 are to be imposed on the superalgebra. For these
constraints, standard Hamiltonian reduction can be applied. If the constraints take the
form as in section 2.2.15, we know that the resulting algebra will be an N = 2 extended
W algebra. For WN , this construction works and the resulting Hamiltonian reduction
was given in [39]. It provides the explicit realization of the N = 2 algebra in terms of
the Toda fields and the ghosts.

One word of caution, however. Since neither ∂φL nor ∂φM survives to the chiral
algebra of the matter coupled to gravity system, the U(1) current in (6.2.4) is strictly
speaking not part of the symmetry algebra of the covariant action. An exception is when
the cosmological constant vanishes, in that case both ∂φL and ∂φM are present in the
chiral algebra. In the reasoning of the previous paragraph this problem occurs at the
end, when the constraints that arise from the integration over Ā1,2 have to be imposed.
These will not be exactly identical to those that give the N = 2 algebra. This implies
that the action for W gravity coupled to W matter for generic value of the cosmological
constant is a conformal perturbation of the underlying N = 2 theory, but not equivalent
to it.

Whether or not this correspondence with N = 2 theories is useful for computations
in general W matter systems coupled to W gravity is not clear. For special matter
systems, namely those for which the Kac-Moody level of the matter sector kc = 2h+ k
with k an integer, it certainly is. From the gravitational point of view, those values
correspond to the minimal models (1, k+2); from the N = 2 viewpoint they correspond
to the unitary N = 2 minimal models. While the structure of unitary N = 2 theories
is relatively well-understood [248, 218], the situation for non-unitary representations
is more difficult [275, 277]. The cohomology of the BRST operator (in that context,
usually identified with G+

− 1
2

) for unitary N = 2 theories gives the so-called chiral ring

of these theories. This ring is isomorphic to C[x]/(xk+1). It does not contain all the
states of the matter plus gravity theory, the gravitational descendants are missing. This
is due the subtleties mentioned in the previous paragraph. The correspondence can be
restored by a modification of the BRST operator of the N = 2 theory, which corrects
for the change in sl2 constraints that had to be made when passing from the standard
formulation to the N = 2 formulation.

In summary, matter plus gravity is equivalent to N = 2 theories with a modified
BRST operator, at least for some special matter systems. Next, we consider the relation
between matter plus gravity and topological G/G models.
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6.2.3. Relation with G/G models

The action of the G/H model is given by (cf. section 4.1.3)

S = kS−wznw(g) +
k

π

∫
d2z (−Tr(Az∂̄gg

−1) + Tr(g−1∂gAbz) + Tr(AzgAz̄g
−1)−Tr(AzAz̄)),

(6.2.6)
where A is a H valued gauge field. The action of the supersymmetric G/H model is
obtained by adding to (6.2.6) the term

1

2π

∫
d2zTr(ψ(∂̄ + ad(Az̄))ψ + ψ̄(∂ + ad(Az))ψ̄) (6.2.7)

where ψ, ψ̄ are Weyl fermions with values in g/h, where h is the Lie algebra of H and
we made an orthogonal decomposition g = h⊕ (g/h). If G/H is Kähler, the theory has
an N = 2 supersymmetry, and describes the Kazama-Suzuki models [200]. In this case
the Lie algebra g/h can be decomposed in two closed subalgebras g/h+ and g/h− such
that Tr is zero when restricted to g/h±. Denote by ρ, ρ̄ the projections of ψ on g/h−

and g/h+ respectively, and by χ, χ̄ the projections of ψ̄ on g/h+ and g/h−. The extra
term (6.2.7) can be rewritten as

S =
1

π

∫
d2zTr(ρ(∂̄ + ad(Az̄))χ+ ρ̄(∂ + ad(Az))χ̄). (6.2.8)

Since ψ, χ transforms as a section of K1/2, so does ρ. The twisted G/H model is defined
by a change of the spins of ρ, χ to one and zero respectively. This turns the theory into a
topological field theory. From the algebraic point of view these topological field theories
have been studied in [111]. The twist of the G/H model is the same twist that turns
the N = 2 superconformal algebra in the topological conformal algebra (section 6.1.1).

Now consider the same model, but for the non-trivial principal G bundle defined in
chapter 5. This involves a replacement of the WZNW actions by generalized WZNW
actions. Furthermore, ρ transforms as a section of the restriction to g/h− of ad(P )⊗K,
and χ as the appropriate restriction of ad(P ). Following the arguments of [3], one can
derive a quantum action for the twisted G/H model, if one ignores the possible moduli in
the H valued gauge field (these can easily be included in the action, see [249]). Introduce
group valued fields hi for every simple component H i of H, a vector valued scalar field
ϕ for the abelian part of H, and h valued ghosts bH , cH . The quantum action is

S = kS−wznw(g) +
∑
i

(−k − hG − hHi)S−wznw(hi)

+
1

2π

∫
d2zTr(∂ϕ∂̄ϕ+

1

2
Rĝ(

ρG√
k + hG

+ t0
√
k + hG)ϕ)
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+
1

π

∫
d2zTr(bH ∂̄cH + b̄H∂c̄H) +

1

π

∫
d2zTr(ρ∂̄χ+ ρ̄∂χ̄). (6.2.9)

In section 4.3.1 we showed that the full covariant action for W matter plus W gravity
in the conformal gauge is given by a constrained WZNW model at level kc − 2h, one at
level −kc and a free ghost system corresponding to the generators of the W algebra. A
BRST gauge fixing of the two constrained WZNW models as in section 3.3.1 leads to a
sum of a WZNW action at level kc − 2h, one at level −kc, and the sum of three ghost
actions. The three ghost actions can be combined into one ghost action with a G valued
ghost field, with spin determined by the bundle ad(P ). The resulting action is exactly
identical to (6.2.9) with H = G, if we put k = kc − 2h. Thus, on the level of actions,
the gauge fixed action for W matter coupled to W gravity is identical to a twisted G/G
model based upon the bundle P .

To establish the equivalence of the two theories, we need to compare the spectra
of the two theories. Although the action is the same, the two BRST operators are
completely different. Nevertheless, computations of the BRST cohomology in G/G
models [177, 4, 298, 276] and in G/H models [3, 296, 250, 251, 249, 186, 322] show that
starting with the proper modules for the G and H affine Lie algebras, the spectra of
both theories coincide for the case G = SL(2), and irrespective of whether H = SL(2)
or H = U(1). Thus, gravity plus matter is equivalent to topological G/H models.

There is also a direct relation between G/G theories and N = 2 theories, they are
related by a perturbation [127] by what in the gravity language is the cosmological
constant operator. The same operator reduces the chiral algebra of the covariant action
for gravity. In the presence of a cosmological constant, ∂φL is no longer part of the
chiral algebra.

The ground ring of gravity plus the (1, k + 2) minimal model is, upon omitting the
gravitational descendants, equal to the chiral ring of the N = 2 theory. In the presence
of a cosmological constant, the chiral ring is deformed, and for the right value of the
cosmological constant it is identical to the fusion ring of SU(2) at level k [149], which is
at the same time identical to the fusion ring of the topological SU(2)k/SU(2)k models
[298, 319]. Thus, the equivalences between all these models allow us to obtain quite
easily part of the ground ring of the matter plus gravity system.

The generalization of this structure to WN gravity has not yet been accomplished.
The cohomology for the G/H models has been computed [3, 296, 276], but the cohomol-
ogy of the BRST operator for W gravity coupled to W matter has only been conjectured
[63]. It is easy to guess what the generalizations of the statements to the case of WN

gravity should be. We expect that the ground ring is an extension by ordinary and W
gravitational descendants of the fusion ring of G at level k, if the W matter is a minimal
W model with kc = 2h + k, etc. Rather than comparing the spectra, we will now give
some additional evidence for the equivalence of G/G theories with W matter plus W
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gravity, by demonstrating that (classically) both can be obtained by gauge fixing one
action. This action is (6.1.18),

S = kS−wznw(g1)− 1

π

∫
d2z Ā1(J1 − ξΛ+)− kS−wznw(g2)− 1

π

∫
d2z Ā2(J2 + ξΛ+)

+
1

π

∫
d2zTr(F (µα)(W1 +W2)). (6.2.10)

The standard formulation of W matter plus W gravity in the conformal gauge follows
from (6.1.18) by first gauge-fixing Ā1,2 = 0, followed by gauge-fixing µα = 0. The
resulting BRST operator is the sum of two quantum Drinfeld-Sokolov operators QDS

1,2

and the non-critical W BRST operator QW . The role of QDS
1,2 is to reduce modules of the

affine Lie algebras based on g to representations of the matter and gravity W algebra
respectively; they commute with QW .

The second gauge fixing of constrained WZNW models given in section 3.3.2 is also
convenient here. This gauge fixing can be accomplished by adding to the action (6.1.18)
the gauge fixing term

−1

π

∫
d2zTr(B1J1 +B2J2) (6.2.11)

where, in the notation of (4.3.5), the gauge fields are V 0−
1 valued. The path integral over

these extra gauge fields generates the insertion of the gauge-fixing delta functions. In the
presence of these delta functions it is allowed to replace the gauge invariant polynomials
that form W1 and W2 by the corresponding ker ad(Λ−) valued currents J1 and J2. The
reasoning is similar as in section 6.2.2. Introduce new gauge fields A± = 1

2
(Ā1 ± Ā2),

and B± = 1
2
(B1 ± B2). The gauge fields A+, B+ and µα span the entire Lie algebra g,

and can be combined in one g valued gauge field B. The action reads, in terms of these
new variables,

S = kS−wznw(g1)− kS−wznw(g2)− 1

π

∫
d2zTr(B(J1 + J2))

− 1

π

∫
d2zTr(A−(J1 − J2 − 2ξΛ+) +B−(J1 − J2)). (6.2.12)

The last two terms in this action are gauge fixing terms for the G symmetry of the
action

S = kS−wznw(g1)− kS−wznw(g2)− 1

π

∫
d2zTr(B(J1 + J2)) (6.2.13)

and by reversing the procedure in section 3.3.2 we discard them and restore the G
symmetry. It is maybe not clear right away that (6.2.13) is a G invariant action. It is
crucial that the two WZNW actions have opposite values for k, so that the sum of the
currents generates a centerless affine Lie algebra. In the terminology of chapter 3, this
implies that there is no need to introduce a gauge field for the identity operator. Gauge
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fixing (6.2.13) along the lines of section 3.3.1 gives the same action as for W matter plus
W gravity in the conformal gauge, but the BRST operator is now equal to the BRST
operator of the G/G model. This demonstrates, at least at the classical level, that the
two theories are equivalent. The equivalence of G/G and other G/H models can also
be understood by comparing different gauge fixings of one action. The G/H action is a
partially gauge fixed version of the G/G action [251].

Three remarks are in order. The first one is that there is a curious one-to-one
correspondence between the choices of H such that G/H is Kähler, and the choices
g0 ⊂ g related to different sl2 embeddings as in section 2.2.7. Furthermore, the shift
of the level in equation (2.2.45) agrees with the shifts in the level of the h sector in
the quantum action for the G/H model (6.2.9). Although the details are unclear, this
suggests that there is a close relation between the G/H model and the W gravity based
upon the sl2 embedding with H = g0. They may well both correspond to the same
perturbation of the G/G theory.

A second remark concerns the fact that we neglected moduli throughout. In the G/H
model we ignored the fact that the H gauge field A can not be gauged away completely,
but only up to some moduli. In [145] these moduli are given by the moduli space of flat
connections, but for our twisted bundle this correspondence is not valid, since it is not
a stable bundle. It is more natural to parametrize them with the help of Higgs bundles,
so as to establish a direct link with the W moduli. These moduli are not a problem for
the genus-zero correlation functions, as long as we restrict attention to the states that
are in the ground ring, i.e. that have conformal weight zero and ghost number zero. The
ghost number of a state counts the number of extra moduli it introduces, so ground ring
generators simply do not give any moduli, and since the sphere has no moduli itself,
there are no moduli to integrate over. Once we go to higher genus, we have to take the
moduli of the surface into account, and the situation gets more difficult.

Finally, a third remark is that a different relation between gravity coupled to matter,
the twisted N = 2 superconformal algebra and the SL(2)/SL(2) theory has recently
been found purely on the algebraic level [277]. In this paper a kind of algebraic ver-
sion of the path integral manipulations in this section is proposed. More precisely, a
decomposition of the BRST operator of the SL(2)/SL(2) model is given in terms of
two commuting parts. The second term in the spectral sequence associated with this
decomposition contains the twisted N = 2 superconformal algebra, and using a resolu-
tion of representations of the superconformal algebra in terms of ‘2−d gravity modules’
one can then show that the second term in the spectral sequence has the same cohomol-
ogy as the BRST complex for the gravity plus matter theory. It would be interesting
to understand this kind of Hamiltonian reduction of the SL(2)/SL(2) theory from the
path integral point of view, in order to be able to generalize it to arbitrary W algebras
coupled to W matter.
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6.2.4. Topological Gravity

A different connection between gravity and matter on the one hand and certain
topological field theories on the other hand was known before one discussed in the pre-
vious sections was found. Namely, it was known that the theory of topological gravity
[215, 307, 98] is equivalent to ordinary gravity [321, 307, 209], and that topological grav-
ity coupled to topological conformal field theories [92, 224, 108, 89] describes ordinary
gravity coupled to some matter theory. It is quite puzzling that topological matter,
either without or with topological gravity, can describe ordinary gravity plus matter.
Recently, this strange fact was clarified in [109, 227]; these authors showed that all the
states in the topological gravity plus matter theory have BRST representatives that
live purely in the matter sector. A particular nice argument was given in [109]: the
total BRST operator of topological matter plus gravity is equivalent, via a similarity
transformation, to the BRST operator of the topological matter theory. The realiza-
tion of gravitational descendants purely in terms of matter fields enables one to compute
their correlation functions using the topological Landau-Ginzburg methods of [92]. This
forms the link with the discrete approach to gravity, and we continue with the discussion
of this method in the section 6.3.

6.2.5. Topological W Gravity

The extension of topological gravity to topological WN gravity has been considered
in [225, 326, 229, 212, 176]. The extension to arbitrary W algebras is straightforward.
Since we know the moduli space for W algebras, we can use the general method [317, 28]
for obtaining the topological field theory associated with some moduli space. The action
is given by

S =
∫
δSTr(χF ) =

∫
Tr(πF − χDΨ) (6.2.14)

where F is the curvature two-form for a g valued connection A, δS is the ‘shift’ symmetry,
ψ is a fermionic one-form and π and χ are Lagrange multipliers. The action is invariant
under the BRST symmetry

δBAµ = Ψµ −Dµc δBχ = π + [c, χ] δBc = 1
2
[c, c]− γ

δBΨµ = [c,Ψµ]−Dµγ δBπ = [c, π] + [γ, χ] δBγ = [c, γ]
(6.2.15)

The BRST symmetry can be used to put Aµ equal to a flat connection parametrized by
the moduli space of flat connections. The idea of [307] was to perform a different (partial)
gauge fixing, ignoring the moduli but allowing instead for delta-function singularities in
the curvature. Performing the gauge fixing procedure as in [307, 212, 176] results in the
action

S =
∫

Tr(π0F − χ0DΨ) + ghosts (6.2.16)
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where π0 and χ0 are g0 valued. The connection A and fermionic one-form ψ are expressed
in terms of a G0 ≡ exp g0 valued field Ω and a g0 valued fermionic field ΩΨ according
to

Az = Ω−1∂Ω + Λ+,

Az̄ = Ω−1(Λ+)†Ω,

Ψz = Ω−1(∂Ωψ)Ω + [Λ+,Ωψ],

Ψz̄ = ∂̄ΩΨ + Ω−1[(Λ+)†,ΩΨ]Ω (6.2.17)

These parametrizations are such that both F and DΨ are g0 valued. The equation
F = 0 is precisely the same as (5.2.27) with θ = Λ, and there is no explicit moduli
dependence. Thus, the equation for the Hermitian-Yang-Mills metric is imposed by the
Lagrange multiplier π0.

There are several interesting open problems for topological W gravity:

• Can on show as in [109] that the BRST-cohomology of topological W matter
coupled to topological W gravity can be represented entirely within the matter
sector?

• Can the action for topological W gravity be obtained as the induced action for
a theory with an N = 2 extended W algebra as its chiral algebra? This would
mean that (6.2.16) is somehow equivalent to an N = 2 Toda action. For gravity,
(6.2.16) indeed closely resembles the action for N = 2 Liouville theory [131].

• The holomorphic formulation of Higgs bundles in terms of a holomorphic vector
bundle and an holomorphic section of End(V )⊗K is closely related to constrained
WZNW models. On the other hand, the covariant formulation of Higgs bundles
in terms of the Hermitian-Yang-Mills metric is closely related to actions of the
type (6.2.14). Is it possible to relate these two approaches directly on the level of
actions? In other words, is there an analogue of the Narasimhan-Seshadri theorem
for Higgs bundles [252, 294] on the level of actions?

6.2.6. Intersection Theory

One of the nice features of topological gravity is that the correlation functions can
be expressed purely in geometric terms, which reduces the solution of the theory to a
problem in algebraic geometry [321]. Briefly, the relation is as follows. Let M̄g,s be the
stable or Deligne-Mumford compactification of the moduli space of genus g Riemann
surfaces with s punctures. The cotangent space at the ith puncture of the Riemann
surface gives a line bundle Li over M̄g,s. The physical observables of topological gravity
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are labeled by a positive integer n, corresponding to the nth gravitational descendant of
the identity operator. Since there is no matter in pure topological gravity, this is the
complete Hilbert space. The nth observable is usually denoted by σn. Geometrically, σn
corresponds to the nth power of the first Chern-class of the line bundle Li. With this
correspondence, the correlation functions of topological gravity are defined by

〈σn1 . . . σns〉 =
∫
M̄g,s

c1(L1)n1 ∧ . . . ∧ c1(L)ns . (6.2.18)

For a more detailed discussion, see [321, 226, 96, 327]. Using a topological G/H model
with G = SU(2) and H = U(1), Witten [322, 315] has generalized this geometrical
description to the minimal models of type (1, k + 2) coupled to gravity. Take integers
p1, . . . , ps ∈ {0, . . . , k} and an integer g such that 2g− 2−∑ pi is divisible by k+ 2. Let
Σ ∈ M̄g,s, and S be the line bundle K ⊗i O(zi)

−pi . It has (k + 2)2g different (k + 2)th
roots, and let T denote one of them. Generically, T ≡ H0(Σ; T ∗ ⊗K) will be a vector
space of dimension

d =
k

k + 2
(g − 1) +

∑ pi
k + 2

. (6.2.19)

To give an expression for the correlation functions of operators σni,pi , which is the nth
i

gravitational descendant of the pth
i primary field of the (1, k + 2) minimal model, we

need an extended moduli space M̄(g, s, T ) of Riemann surfaces with s punctures and
a choice of (k + 2)th root T . It is a branched cover of degree (k + 2)2g of M̄g,s The
vector spaces T form a vector bundle of rank d over M̄(g, s, T ). Let e(T ) denote its
Euler class. Then

〈σn1,p1 . . . σns,ps〉 = (k + 2)−g
∫
M̄(g,s,T )

c1(L1)n1 ∧ . . . ∧ c1(L)ns ∧ e(T ). (6.2.20)

What about the extension to W gravity? For simplicity we restrict ourselves to WN

gravity. It is natural to expect that the moduli space of punctured Riemann surfaces
should be replaced by the moduli space of punctured W surfaces. So let us first think
about the appropriate generalization of the vector bundle S. In the terminology of
section 6.1.3., the states in the matter sector are labeled by a weight ΛM . Purely from
the WZNW model, a product of operators with matter weights Λ

(i)
M is only non-vanishing

if ∑
i

Λ
(i)
M = − [ρ− (kc − h)t0] (2− 2g) (6.2.21)

For WN gravity, t0 = ρ; recall that t0 prescribes the geometry of the vector bundle V
(5.1.4) that played such a prominent role in chapter 5. Now the upshot of [322] seems
to be that to get the proper geometrical prescription, one should allow t0 to be varied,
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and change the geometry of (5.1.4) correspondingly. To be more precise, t0(2 − 2g)
represents the direct sum of the first Chern classes of the line bundles that the Cartan
subbundle of the principle fiber bundle P constitutes. Thus, the geometry of P gets
‘renormalized’ on the quantum level. We expect that all of this can be made more
rigorous be a detailed investigation of the topological twisted SU(N)/U(N − 1) model.
This leads for the following proposal for the bundle S, in symbolic notation

S ' Kρ ⊗i O(zi)
Λ

(i)
M (6.2.22)

which should be read as an equation in the weight space of g, and the tensor product
should be seen as addition in the weight space. The bundle T is a (kc − h)th root of
this one. Both S and T have rank N − 1. It is now straightforward to write down the
expression for a correlation function involving only gravitational descendants. Our lack
of understanding the nature of W descendants prevents us from giving the correlation
functions for these operators as well. It seems quite remarkable that we have to modify
the geometry of the bundle V , specified by the solution t0 of (6.2.21), depending on the
choice of operators for which we compute the correlation functions. Recent work on
G/H models with k integral [249] shows that the correlation functions with different
values for t0 are related by spectral flow isomorphisms, and that the proper definition
of the correlation functions involves a sum over the possible vector of first Chern classes
of V . A generalization of this work to fractional level G/H models could explain why
the theory automatically selects the proper geometry for the vector bundle V .

6.3. The Discrete Approach

By far the most powerful approach to the calculation of correlation functions in
gravity is the discrete approach or matrix model approach. The basic idea is to replace
the path integral over the metrics that enters in the path-integral description of gravity
by a sum over discretized surfaces. This sum can be represented in terms of a matrix
integral that can be computed exactly. The limit where the discretized surface becomes
smooth corresponds in the matrix model to the so-called double scaling limit. It was
shown in [66] that in this limit the model is described by an integrable hierarchy of
differential equations, the Korteweg-deVries hierarchy. This can be used to compute
all the correlation functions explicitly. The equivalence of this approach to (6.2.18) has
been proven by Kontsevich [209]. The equivalence matrix models to topological matter
coupled to topological gravity has been shown [109]. A different way to see this relation
is given in [143, 144].
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The reader who is interested in more background material for matrix models can
consult any of the review papers [96, 327, 82, 234, 156, 84, 198, 158, 43, 67, 231, 87,
199, 205, 244] and references therein.

The N = 2 twisted minimal models that describe gravity coupled to a minimal model
of type (1, k+2) can be described in terms of a topological Landau-Ginzburg model [305].
This fact has been used in [92, 227, 109, 110] to compute the correlation functions in
these theories. It is also the most direct way to make contact between matrix models and
topological N = 2 models. The relation between topological Landau-Ginzburg models
and more general topological conformal field theories on the one hand and integrable
hierarchies on the other hand has been further analyzed in [211, 103, 104]. In [104]
it is shown that if the primary chiral algebra of the topological conformal field theory
is decomposable, the ‘Witten-Dijkgraaf-Verlinde-Verlinde’ equations ([89, 321, 93]) of
topological field theory are gauge equivalent to the integrable system

∂kγij(u) = γik(u)γkj(u), i, j, k distinct,

N∑
k=1

∂kγij(u) = 0,

γji(u) = γij(u). (6.3.1)

Here, N is the number of primary field in the operator algebra, u refers to new co-
ordinates on the coupling constant space and ∂i = ∂/∂ui. The system describes a
so-called N wave interaction system. The decomposability assumption on the primary
chiral algebra is certainly satisfied for the Landau Ginzburg topological models that
describe the G/G fusion rules, since the fusion rules can be diagonalized by a modular
transformation. Thus the equations (6.3.1) include the equations that describe topolog-
ical W matter theories in genus zero. Now it was shown in [191] that the same equations
can be obtained from the n-component KP hierarchy. This hierarchy can be expressed
in the same form as the usual KP hierarchy, but the differential operators have to be
replaced by n× n matrix differential operators. If In denotes the n× n identity matrix,
and Eij the n × n matrix with a one in its i, j entry and zeroes everywhere else, the
n-component KP hierarchy is described by the following set of equations: L and C(i),
i = 1 . . . n are formal pseudo-differential operators of the form

L = In∂ +
∞∑
j=1

U (j)(x)∂−j,

C(i) = Eii +
∞∑
j=1

C(i,j)(x)∂−j, (6.3.2)

subject to the conditions

n∑
i=1

C(i) = In, C(i)L = LC(i), C(i)C(j) = δijC
(i). (6.3.3)
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They satisfy the following set of equations for some pseudo-differential operator P =
In + P (1)∂−1 + . . .

LP = P∂,

C(i)P = PEii,

∂P

∂x
(i)
k

= −(L(i)k)−P, where L(i) = C(i)L. (6.3.4)

The last equation describes the generalized KP flows; as usual, the subscript − means
restricting to negative powers of ∂ only. The differential ∂ is the formal object

∂ =
∂

∂x
(1)
1

+ . . .+
∂

∂x
(n)
1

. (6.3.5)

The rest of this section is devoted to showing how the genus-zero version of the n-
component KP hierarchy can be obtained from the standard matrix model by taking a
different continuum limit, as proposed in [55]. We propose that this is the matrix model
that describes W gravity.

6.3.1. Review of the p-Matrix Model

The partition function of a general multimatrix model is given by [101]

Z =
∫ p∏

i=1

dMi exp β tr

− p∑
i=1

Vi(Mi) +
p−1∑
i=1

ciMiMi+1

 (6.3.6)

where the Mi are Hermitian N ×N matrices. The integral over the angular parts of the
Mi can be done and we are left with the following integral over the eigenvalues λi,n of
the Mi

Z = const
∫ p∏

i=1

N∏
n=1

dλi,n4(λα,1)4(λα,p) exp β

− p∑
i=1

N∑
n=1

Vi(λi,n) +
p−1∑
i=1

N∑
n=1

ciλi,nλi+1,n


(6.3.7)

where 4(λα,r) =
∏
a<b(λa,r − λb,r) is a Vandermonde determinant.

Next introduce (following [240]) orthogonal polynomials of order n An(x) = xn + . . .
and Bn(x) = xn + . . . satisfying

hnδn,m =
∫ p∏

i=1

dλiAn(λ1) exp β

− p∑
i=1

Vi(λi) +
p−1∑
i=1

ciλiλi+1

Bm(λp) (6.3.8)
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We can write 4(λα,1) as detαβ(Aα(λβ,1)) and 4(λα,p) as detαβ(Bα(λβ,p)). Substitut-
ing this into the partition function (6.3.7) and expanding the determinant yields the
following well-known expression for the partition function

Z = const×N !
N−1∏
i=0

hi (6.3.9)

From now on we will use orthonormal polynomials, i.e. we make redefinitions An →
An
√
hn and Bn → Bn

√
hn. For the sake of brevity, write exp(−βµ) for the exponen-

tial occurring in (6.3.8). As usual, we define certain infinite matrices by their matrix
elements with respect to the orthonormal polynomials An and Bm

Q(j)mn =
∫ p∏

i=1

dλi λjAn(λ1)e−βµBm(λp) 1 ≤ j ≤ p

P (1)mn =
∫ p∏

i=1

dλiA
′
n(λ1)e−βµBm(λp)

P (p)mn =
∫ p∏

i=1

dλiAn(λ1)e−βµB′m(λp) (6.3.10)

In these equations, the prime denotes differentiation with respect to λ1 and λp respec-
tively. The use of indices may look a bit strange, but guarantees e.g. that the matrix
corresponding to an insertion of λ2

1 is just Q(1)2
nm ≡

∑
rQ(1)nrQ(1)rm. It is straightfor-

ward to verify the following properties of the matrices P (i) and Q(i)

P (1)nm = 0 m ≤ n, P (1)m,m+1 = (m+ 1)
√
hm/hm+1

P (p)nm = 0 m ≥ n, P (p)m+1,m = (m+ 1)
√
hm/hm+1

Q(1)nm = 0 m < n− 1, Q(1)m+1,m =
√
hm+1/hm

Q(p)nm = 0 n < m− 1, Q(p)m,m+1 =
√
hm+1/hm (6.3.11)

Another set of important identities can be obtained by considering

∫ p∏
i=1

dλi
d

dλr

(
An(λ1)e−βµBm(λp)

)
= 0 (6.3.12)

for r = 1, . . . , p. This gives a set of relations expressing all matrices in terms of P (1)
and Q(1):

β−1P (1)− V ′1(Q(1)) + c1Q(2) = 0

cr−1Q(r − 1)− V ′r (Q(r)) + crQ(r + 1) = 0 2 ≤ r ≤ p− 1

β−1P (p)− V ′p(Q(p)) + cp−1Q(p− 1) = 0 (6.3.13)
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Finally, the multimatrix model has a set of discrete ’string equations’. Two of them,
[P (1), Q(1)] = [Q(p), P (p)] = 1, can be directly obtained from the definitions of P and
Q (6.3.10), the others then follow from (6.3.13) and simply read

βcr[Q(r), Q(r + 1)] = 1 (6.3.14)

These equations together are sufficient to determine the hi and therefore to evaluate the
partition function (6.3.9).

If all potentials are of finite degree, one can check that P (1), P (p) andQ(r) are Jacobi
matrices. This means that the (a, b)-matrix element is only nonvanishing if |a− b| ≤ K
for some integer K. For instance, using (6.3.11) and (6.3.13) one finds that for Q(1) we
can take K =

∏p
r=2(deg(Vr)− 1). In the continuum limit, Jacobi matrices are expected

to become finite-order differential operators.

To proceed, we define

fi =
hi
hi−1

(6.3.15)

and

Q(1)n−l,n =

√
hn−l
hn

R(l)
n (6.3.16)

for l ≥ 0. Similar expansions can be defined for the other matrices Q(j). Inserting
these into (6.3.13) and restricting the first and third equation to the matrix elements
where P (1) and P (p) vanish, yield the usual recursion relations, which in general are
very complicated.

If we take the (m− 1,m) matrix element of the first equation in (6.3.13) we find an
equation, that later will turn out to be equivalent to the string equation. It reads

m

β
= (V ′1(Q(1))m−1,m − c1Q(2)m−1,m)

√
hm
hm−1

(6.3.17)

Using the recursion relations mentioned above, we can in general eliminate all the vari-
ables like the R(l)

n occurring in (6.3.16), so that the only variables left will be the fi
defined in (6.3.15). Then (6.3.17) takes the form

m

β
= W (fi) (6.3.18)

We now take the scaling limit in the standard way [66]. We let N →∞, β/N → 1, and
replace discrete by continuous variables: x = m/β, ε = 1/N , fi → f(x), R(l)

n → R(l)(x),
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etc. If in the planar limit, which will be described in just a moment, the function W
occurring in (6.3.18) behaves as

W (f) ' Wc − (f − fc)k (6.3.19)

we can take the double scaling limit which essentially amounts to amplifying the region
around f = fc. Let γ = −1/k denote the string susceptibility, and define the lattice
spacing a and the renormalized cosmological constant µR by

λa2−γ = ε (6.3.20)

Wc − a2µR = x (6.3.21)

Here λ is the parameter that controls the genus expansion of the partition function,
Z =

∑
λ2g−2Zg. We will assume λ = 1, which can be accomplished by a redefinition of

a and µR. To obtain the string equation in the usual form, make expansions for f and
the R’s in terms of a−γ,

f(µR) = fc + a−2γf (1)(µR) + a−3γf (2)(µR) + . . . (6.3.22)

and similar for the R’s. Substituting these expansions back into the recursions relations
obtained from (6.3.13) and letting a→ 0 turns equation (6.3.18) into the string equation.

6.3.2. Genus-Zero Formulation

To find the critical points, i.e. the potentials that yield a behavior as in (6.3.19),
we will now restrict ourselves to the planar limit. This means that we will neglect the
dependence of fi and R(l)

n on i and n, because this dependence is only relevant for higher
genus as can be seen from (6.3.20). The matrices can now be represented as power series
in the ‘shift’ operator

z =
∑
r

δr−1,r (6.3.23)

As can be seen from (6.3.11), the expansion for Q(1) reads

Q(1) =

√
f

z
+
∑
l≥0

R(l)

(
z√
f

)l
(6.3.24)

and from (6.3.11) and (6.3.13) we see that

P (1)(z)

β
= V ′1(Q(1)(z))− c1Q

(2)(z) =
x√
f
z +O(z2) (6.3.25)
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Given the Vi, we can in principal determine the P (i)(z) and Q(i)(z) as functions of f .
These equations are however highly nonlinear and difficult to solve. We will, therefore,
follow a reverse route, and will assume that the Q(i) are given. One may then try to
construct the potentials by using (6.3.13). The equations for the coefficients occurring
in the potentials are linear, but do not always admit a solution. For the time being, we
will restrict our attention to (6.3.13). From this equation it is easy to see that, given Q(1)

and Q(2), V1 is completely and uniquely determined by requiring V ′1(Q(1)(z))− c1Q
(2)(z)

to be of order O(z). Clearly, if Q(2)(z) = az−n+higher order, V1 will be of order n+ 1.

The requirement that V ′1(Q(1)(z))− c1Q
(2)(z) is of order O(z) is met for every value

of f . Taking for instance u = f , we see that there exist Q(1)(z, u) and Q(2)(z, u) labeled
by one extra parameter u, such that V ′1(Q(1)(z, u)) − c1Q

(2)(z, u) is still of order O(z).
The reason that we bother to introduce a new variable u here, is that we will assume
that everything depends analytically on u, which need not necessarily be the case for
u = f . To find the exact u dependence would require a knowledge of V1. We can,
however, find an equation which does not explicitly depend upon V1, by differentiating
(6.3.13) with respect to both z and u, which gives two equations from which V ′′1 can be
eliminated. The result of this is the following equation

β−1{P (1), Q(1)}z,u = c1{Q(1), Q(2)}z,u (6.3.26)

where the ‘Poisson’ bracket {}z,u is defined by

{A(z, u), B(z, u)}z,u = z
∂A

∂z

∂B

∂u
− ∂A

∂u
z
∂B

∂z
(6.3.27)

The extra z has been introduced for later convenience. (6.3.26) looks like a ‘classi-
cal’ analog of the equation β−1[P (1), Q(1)] = c1[Q(1), Q(2)] which is valid in the orig-
inal matrix model. As we will now show, the planar approximation is nothing but
the replacement of ‘quantum’ commutators by ‘classical’ Poisson brackets. Consider
A = X(u)zl and B = Y (u)zk. On the level of matrices, this means A =

∑
αXα(u)δα−l,α

and B =
∑
β Yβ(u)δβ−k,β. In the planar approximation the commutator of A and B can

be calculated as follows

[A,B] =
∑
α

(Xα−kYα −XαYα−l)δα−k−l,α

=
∑
α

[
(Xα − k

∂Xα

∂i
)Yα −Xα(Yα − l

∂Yα
∂i

)

]
δα−k−l,α

=
∑
α

(
lXα

∂Yα
∂i
− k∂Xα

∂i
Yα

)
δα−k−l,α

→
(
lX

∂Y

∂i
− k∂X

∂i
Y

)
zk+l
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= z
∂A

∂z

∂B

∂i
− ∂A

∂i
z
∂B

∂z

=
∂u

∂i
{A,B}z,u

= β−1∂u

∂x
{A,B}z,u

In particular, this gives the following version of the planar string equation

{P (1)(z, u), Q(1)(z, u)}z,u = β

(
∂u

∂x

)−1

(6.3.28)

Indeed, taking P (1)(z, u) ≡ P (z, u) = βzW (f)/
√
f +O(z2) and Q(1)(z, u) ≡ Q(z, u) =√

f/z +O(1), a short calculation shows

{P,Q}z,u = β
∂f

∂u
W ′(f) +O(z) (6.3.29)

which combined with (6.3.28) gives ∂W (f)/∂x = 1, in agreement with (6.3.18).

6.3.3. The Continuum Limit in Genus Zero

Let us now consider the differential operators that P and Q will become in the
continuum limit. In that limit we have

z = e−ε∂/∂x = ea
−γ∂/∂µR (6.3.30)

In the planar approximation ∂/∂µR commutes with everything, and can be replaced by
a commuting object which we will denote by ξ. Instead of z and u we can also think of
P and Q as functions depending on ξ and u. Because z∂/∂z = aγ∂/∂ξ we find that

{A(z, u), B(z, u)}z,u = aγ{A(ξ, u), B(ξ, u)}ξ,u (6.3.31)

where {}ξ,u denotes the usual Poisson bracket {A,B}ξ,u = ∂ξA∂uB − ∂uA∂ξB. As
β ∼ aγ−2, and by using (6.3.21), we find the string equation in terms of ξ

− ∂u

∂µR
{P (ξ, u), Q(ξ, u)}ξ,u = 1 (6.3.32)

From now on we will assume that u = a2γ(f−fc); u will be finite if we let a→ 0 at fixed
µR. Obviously, we can write β−1P as P0 +

∑
n≥p Pna

−nγ and Q = Q0 +
∑
n≥qQna

−nγ,
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where Pn and Qn are polynomials in ξ and u of degree n (ξ has degree 1 and u has
degree 2). P0 and Q0 will not contribute to the string equation and we will ignore
these constants. Naively, one would think that p and q are the orders of the differential
operators that P and Q become in the double scaling limit. This is, however, not always
true. If, for instance, p = q = 2 and P2 = Q2, it is clear that {P2, Q2} = 0 and that we
cannot consider P2 and Q2 as the scaling limit of P and Q while preserving the string
equation. What is essential is that (6.3.32) is invariant under P → P +

∑
aiQ

i and also
under Q→ Q+

∑
biP

i, and in some cases such redefinitions are necessary to find then
true orders of P and Q. If e.g. q ≤ p, we try to find the operator P ′ = P+

∑
aiQ

i that is
of highest order, as it is this what survives in the string equation, and not P ‡. Actually,
we only need to determine the true orders of P and Q for u = 0, because (6.3.32) can
be used to find the u-dependence, without lowering the order of either P or Q. (6.3.32)
(More precisely, we need (6.3.28)) together with (6.3.13) for u = 0 imply that (6.3.13)
is also valid for u 6= 0.

If Q = Q0 +
∑
n≥qQna

−nγ and β−1P ′ = P ′0 +
∑
n≥p P

′
na
−nγ, we define

Q̂ = lim
a→0

aqγ(Q−Q0) (6.3.33)

P̂ = lim
a→0

apγ(P ′0 − β−1P ′) (6.3.34)

The string equation turns into (µ = µR)

∂u

∂µ
βa−(p+q)γ{P̂ , Q̂}ξ,u = 1 (6.3.35)

To get something finite, we must have γ − 2− pγ − qγ = 0, so that γ = −2/(p+ q− 1),
coinciding with the KPZ result for a (p, q)-minimal model [207]. Furthermore, {P̂ , Q̂}ξ,u
must be independent of ξ and is therefore proportional to u(p+q−3)/2. Then the string
equation implies u ∼ µ−γ.

Something interesting happens when p + q =even. In this case, the above does not
work, as {P̂ , Q̂} can never be independent of ξ (unless it vanishes). The reason that
it does not work is that γ−1 is not an integer. Looking at (6.3.19) we see that the
parameter upon which everything depends analytically is

√
f − fc rather that (f − fc).

Indeed, we can repeat the above taking u = aγ
√
f − fc, and we find correctly that

γ = −2/(p+ q − 1) and that
√
f − fc ∼ u ∼ µ−γ/2.

One should bear this in mind when comparing the above with the spherical for-
malism of [86]. There, the commutator of f∂a and g∂b is computed in the spherical
approximation by keeping only first derivatives and dropping higher ones. The result
is therefore (afg′ − bgf ′)∂a+b−1. If we replace ∂ by ξ and assume f and g depend on a

‡There is some ambiguity in these redefinitions, but these are irrelevant.
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certain variable u, then this is precisely equal to ∂u/∂µ{fξa, gξb}ξ,u. Thus, our formal-
ism is equivalent to their formalism. However, we should be careful when using their
formalism to expand everything in either u or

√
u depending on whether p+ q is odd or

even.

It is also instructive to compare this formalism with that of the topological Landau
Ginzburg models in [93, 91]. What they call x is our ξ and their t0 is our µ. Therefore any
result in the differential operator formalism of matrix models can be simply translated
into the Landau-Ginzburg formulation, by replacing commutators by a Poisson bracket
with respect to x and t0. For instance (for details see [93, 91])

[Li+1
+ , L] = {Li+1

+ , L}x,t0 =

(
∂Li+1

+

∂x

∂L

∂t0
−
∂Li+1

+

∂t0

∂L

∂x

)
= ∂xL

i+1
+ (6.3.36)

This establishes on the most direct level the equivalence between topological matter in
genus zero and the matrix model in genus zero. Using the observations in [227, 109, 110]
this equivalence can be extended to include the gravitational descendants.

6.3.4. The New Continuum Limit

The new continuum limit is one in which we end up with matrix valued differential
operators rather than scalar ones. The idea is to treat the indices of the infinite matrices
in (6.3.10) in a nonuniform way, depending on the value of the index modulo M , and
to keep this distinction in the continuum limit. This will give rise to M ×M matrix
valued differential operators. In terms of discretized Riemann surfaces, this corresponds
to a certain continuum limit of the set of colored triangulations of the Riemann surface
with M different colors.

Let us now make this idea a bit more explicit. Introduce the following matrices

Q(j)mn =
∫ p∏

i=1

dλi λ
M
j An(λ1)e−βµBm(λp) 1 ≤ j ≤ p

P (1)mn =
∫ p∏

i=1

dλi λ1A
′
n(λ1)e−βµBm(λp)

P (p)mn =
∫ p∏

i=1

dλiAn(λ1)e−βµλpB
′
m(λp)

C(1)(j)
mn =

∫ p∏
i=1

dλi Π
(j)An(λ1)e−βµBm(λp) 1 ≤ j ≤M

C(p)(j)
mn =

∫ p∏
i=1

dλiAn(λ1)e−βµΠ(j)Bm(λp) 1 ≤ j ≤M (6.3.37)
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where Π(j) is a projection operator for polynomials in some variable λ; it satisfies
Π(j)λk = λk if j = kmodM and 0 otherwise. These matrices satisfy (6.3.3) with L re-
placed by either P or Q. Furthermore we have [P (1), Q(1)] = MQ(1) and [Q(p), P (p)] =
MQ(p).

Instead of the shift operator (6.3.23) we now expand all the matrices in terms of

Eij =
∑
r

δMr+i,Mr+j, 1 ≤ i ≤M, 1 ≤ j ≤M, (6.3.38)

and

z =
∑
r

δr,r+M . (6.3.39)

With these definitions it is relatively straightforward to repeat the analysis in the pre-
vious sections for this case, and to see that in the continuum limit we get differential
operators, once we replace

z → exp(a−γ∂) (6.3.40)

with

∂ =
∂

∂µ
(1)
R

+ . . .
∂

∂µ
(M)
R

. (6.3.41)

The different µ
(j)
R here refer to the indices that are equal to jmodM . The matrix z

decreases all these indices by M , which explains why z contains the sum (6.3.41).

To get nontrivial, i.e. non-diagonal differential operators, we presumably have to
allow for potentials that include projection operators such as Π(j). The continuum limit
provides in any case several differential operators, P , Q and C(j), that satisfy (6.3.3)
with L replaced by either P or Q, and in addition the ‘string’ equation [P,Q] = MQ.
Since the C(j) are not represented by Jacobi matrices, the C(j) are expected to become
pseudo-differential operators rather than differential operators.

The genus zero formulation can be worked out, and gives a Poisson bracket version
of the M -component KP hierarchy.

To get the full M component KP hierarchy requires more work, although life might
be not too hard due to the following observation: There seems to be a curious principle,
that if we can obtain genus-zero correlation functions from integrable systems that are
expressed in terms of Poisson brackets, we can obtain higher genus correlation func-
tions by simply replacing the Poisson brackets by commutators, as in ordinary quantum
mechanics. This is certainly true for the ordinary matrix models. If it also applies for
these new scaling limits, it would mean that all correlation functions for W gravity can
really be computed from the M component KP hierarchy, once we know precisely which
critical points correspond to W gravity. We might not have to wait too long anymore
to see the exact solution of W gravity appear.
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Bourbaki, 45éme année, 1992-93, no 768



164

[227] A. Lossev, ‘Descendants Constructed from Matter Field and K. Saito Higher Residue
Pairing in Landau-Ginsburg Theories Coupled to Topological Gravity’, TPI-MINN-xx-
92/6-T; ‘Descendants Constructed from Matter Field in Topological Landau-Ginzburg
Theories Coupled to Topological Gravity’, talk at the Kiev conference on String Theory,
June 1992; talk at ‘International Conference on Mathematical Physics, String Theory
and Quantum Gravity’, Rakhov, November 1992

[228] C. Lovelace, Nucl. Phys. B273 (1986) 413
[229] H. Lu, C. N. Pope and X. Shen, Nucl. Phys. B366 (1991) 95
[230] H. Lu, C. N. Pope, S. Schrans and X. J. Wang, ‘On the Spectrum and Scattering of W3

Strings’, CTP TAMU-4/93; ‘The Interacting W3 String’, CTP TAMU-86/92
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Samenvatting

De hedendaagse theoretische natuurkunde kent twee zeer succesvolle theorieën, die
beide in goede overeenstemming met experimentele gegevens zijn, maar die (nog) niet
op consistente wijze in een overkoepelende theorie ondergebracht kunnen worden. Aan
de ene kant is dit de algemene relativiteitstheorie van Einstein, die de gravitationele
wisselwerking tussen materie beschrijft, en nauwkeurige voorspellingen doet voor de
omloopbanen van planeten, de rotatiesnelheid van binaire pulsars, enz. Aan de andere
kant is er het standaardmodel van de elektromagnetische krachten en de zwakke en
sterke kernkrachten, dat de niet gravitationele wisselwerkingen tussen de elementaire
deeltjes beschrijft, en met grote precisie de uitkomsten van experimenten voorspelt die
gedaan worden met deeltjesversnellers zoals die in het CERN. Het is tot nu toe niet
mogelijk geweest een experiment uit te voeren, waarvan de uitkomst alleen voorspeld
kan worden door gebruik te maken van zowel de algemene relativiteitstheorie als het
standaard model. Zo’n experiment zou cruciale informatie omtrent de structuur van
een overkoepelende theorie kunnen leveren, maar lijkt helaas ook in de naast toekomst
niet haalbaar. Daarom moeten we ons bij het zoeken naar deze overkoepelende theorie
laten leiden door andere criteria, namelijk is de theorie consistent en is het mogelijk om
zowel de algemene relativiteitstheorie als het standaard model eruit af te leiden?

Een voorstel voor zo’n overkoepelende theorie is de zogenaamde stringtheorie. Het
basisidee van stringtheorie is om elementaire deeltjes niet langer als puntdeeltjes te
beschouwen, maar als verschillende manifestaties van een string (een ‘touwtje’). De
verschillende manieren waarop een string kan trillen corresponderen dan met de ver-
schillende elementaire deeltjes. Er zijn vele verschillende stringtheorieën, en diverse
ervan bevatten in bepaalde limieten zowel de algemene relativiteitstheorie als een uit-
breiding van het standaard model. De eis dat stringtheorieën consistent moeten zijn
geeft echter restricties. Zo is de eenvoudigste stringtheorie alleen consistent als de string
in 26 in plaats van 4 dimensies leeft. Vandaar dat het van belang is om een classificatie
te maken van alle mogelijke consistente stringtheorieën. In dit proefschrift wordt een
grote klasse van consistente stringtheorieën geconstrueerd, en een begin gemaakt met
het exact oplossen van deze modellen.

Een string kan het beste gezien worden als een rond gesloten rubber touwtje. De
trillingen van het touwtje kunnen gezien worden als een superpositie van linksom en
rechtsom bewegende golven. Meestal beperken we ons alleen tot de linksom draaiende
golven, die horen bij de zogenaamde chirale sector van de stringtheorie. De rechtsom
draaiende golven vormen de anti-chirale sector. Als we beide golven tegelijk bekijken,
dan spreken we van een covariante formulering van de stringtheorie. Een stringtheorie



heeft in het algemeen een enorm grote symmetriegroep. Als het rubber touwtje een
bepaalde vorm heeft, kunnen we het touwtje op de ene plaats wat uit elkaar trekken en
op een andere plaats wat in elkaar duwen zonder dat de vorm van het touwtje veranderd.
Al deze operaties samen vormen een oneindige symmetriegroep, die iedere stringtheorie
bezit: de theorie hangt alleen af van de vorm van het rubber touwtje, niet van de manier
waarop we het rubber opgerekt en in elkaar geduwd hebben.

Wat we tot nu toe hebben beschreven is een ‘kale’ string theorie. Er zijn nog veel
meer stringtheorieën, waarbij er van alles en nog wat op het rubber touwtje rondloopt,
bijvoorbeeld (symbolisch) een aantal mannetjes met gekleurde vlaggetjes. Deze theo-
rieën hebben vaak een nog grotere symmetriegroep, behalve van de manier waarop we de
spanning over het rubber touwtje verdelen hangt de theorie er bijvoorbeeld ook niet van
af of een mannetje rechtop staat of op zijn kop loopt. Deze symmetrieën hebben soms
een merkwaardig karakter, wat het moeilijk maakt om er mee te werken. Ze kunnen
namelijk niet lineair zijn. Om te illustreren wat dit betekent kunnen we bijvoorbeeld
eens denken aan een muur met een aantal tennisballen wat ervoor op de grond ligt. We
voeren twee operaties (zeg O1 en O2) uit op de ballen. De eerste (O1) is om ze allemaal
een meter verder van de muur te leggen, de tweede (O2) is om ze allemaal tweemaal
zover van de muur af te leggen als ze lagen. Nu maakt het wat uit in welke volgorde we
de operaties uitvoeren. Als we eerst O1 en dan O2 uitvoeren, dan komen de ballen een
meter verder van de muur te liggen als wanneer we eerst O2 en dan O1 uitvoeren. Met
andere woorden, de commutator van O1 en O2 is gelijk aan O1. Dit is een voorbeeld van
een lineaire algebra. Voor niet-lineaire algebras wordt de commutator van twee operaties
gegeven door het product van een aantal operaties, wat dat dan ook mag betekenen. De
symmetrie groepen die we in dit proefschrift bekijken, de zogenaamde W algebras, zijn
meestal van dit niet-lineaire soort.

In hoofdstuk twee geven we een korte inleiding in de twee-dimensionale veldenthe-
orieën, de zogenaamde conforme veldentheorieën, die stringtheorieën beschrijven. Ver-
volgens bevat het hoofdstuk een analyse van W algebras, zowel van de klassieke als van
de quantummechanische versies van W algebras.

In hoofdstuk drie leggen we uit hoe we een stringtheorie die een bepaalde symmetrie
algebra in de chirale sector heeft, van nog veel meer symmetrieën kunnen voorzien, door
ijkvelden in te voeren (extra mannetjes op het rubber touwtje). We berekenen de ef-
fectieve quantummechanische theorie voor deze ijkvelden, en quantiseren deze effectieve
theorie tot op alle ordes in storingstheorie.

In hoofdstuk vier doen we hetzelfde, maar dan voor de covariante formulering van de
theorie. Het blijkt dat zelfs als we met een niet consistente stringtheorie begonnen waren,
de extra velden die we invoeren precies zodanig zijn dat de stringtheorie consistent wordt.
Dit biedt de mogelijkheid om een consistente stringtheorie te verkrijgen, uitgaande van
een niet-consistente.



De correlatiefuncties in deze stringtheorieën worden niet gegeven door een som over
Feynman diagrammen, maar door een integraal over een eindig-dimensionale ruimte,
de moduli ruimte, die de Feynman diagrammen voor de string parametriseert. Zo’n
diagram is een twee-dimensionaal oppervlak met een aantal in- en uitgaande cylinders
die de in- en uitgaande strings weergeven. In hoofdstuk vijf bepalen we de moduli ruimte
voor stringtheorieën met een W algebra als symmetriegroep.

Tenslotte bekijken we in hoofdstuk zes het spectrum van deze theorieën en geven
een aantal manieren waarlangs (een gedeelte van) de exacte oplossing van deze theorieën
verkregen zouden kunnen worden.
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