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iv CONTENTS

Fourier Analysis can indicate the study of Fourier transformations, Fourier series, and
their extensions. One studies e.g. the convergence properties of Fourier series of certain
classes of functions. It may also indicate the use of the Fourier mechanism in other subjects,
e.g. in differential equations or in signal analysis. This course contains something of both
these worlds. The course is intended for the master level mathematics at Dutch universities.
Thus we assume some knowledge of elementary Fourier Analysis, Functional Analysis and
Integration theory. At the UvA the courses Integration theory and Linear analysis of the
bachelor program are more than sufficient. For convenience of the reader the essentials of
all this are mentioned in the notes, but we do not dwell on the proofs.

The notes are based on a course that I first gave in 1996 at the UvA. They have been
modified and slightly been edited, but there are bound to be many typo’s and other errors.
I would certainly appreciate it if a reader pointed out some to me.

Everything in these notes can be found in the literature, but one may have to look for
it a while.

Jan Wiegerinck



CHAPTER 1

Classical Fourier series

1.1. Introduction and Reminder

In this section we recall a few facts from the linear analysis course of the third year.
See the notes by Prof. Koornwinder [13] or the books [20, 12]. As usual we identify
functions on the unit circle T with 2π-periodic functions on R; if f is defined on T , then
g(t) = f(eit) is the associated 2π-periodic function on R. We denote either by Lp2π or by
Lp(T ), (1 ≤ p <∞) the set of 2π-periodic measurable functions that satisfy

(1.1.1) ‖f‖p
def
=

(∫ 2π

0
|f(t)|p dt

2π

)1/p

<∞

Notice that we normalized Lp(T ) spaces utilizing the measure dt
2π . The pleasant effect is

that the norm of the function 1 equals 1. We know that ‖ ‖p is a norm, which turns Lp into
a Banach space, while L2(T ) is even a Hilbert space with inner product

〈f, g〉 def
=

∫ 2π

0
f(t)g(t)

dt

2π
.

Other function spaces on T are L∞(T ) the space of 2π periodic, essentially bounded
measurable functions, and C(T ) ⊂ L∞(T ) the space of continuous 2π-periodic functions.
Both spaces are Banach spaces when equipped with the sup-norm.

We will also have use for sequence spaces: lp(Z) (1 ≤ p <∞) is the space of sequences

(1.1.2)

a = {aj}∞j=−∞ : |a|p
def
=

∑
j∈Z
|aj |p

1/p

<∞


Again lp(Z) is a Banach space with norm | |p, and l2(Z) is a Hilbert space, the inner product
being

∑
j∈Z aj b̄j , (a, b ∈ l2(Z)). Other sequence spaces that we will meet are the space of

bounded sequences c(Z), and its subspace c0(Z), which consists of sequences {aj} tending
to 0 if |j| → ∞. Both are Banach spaces when equiped with the sup-norm.

The Fourier series of f ∈ L1(T ) is

(1.1.3)
∞∑
−∞

ane
int,

where an = f̂(n) =
∫ 2π

0 f(s)e−ins ds2π are the Fourier coefficients of f . We know by the

Riemann-Lebesgue Lemma that f̂(n) → 0 if |n| → ∞, that is, f̂ ∈ c0(Z). A formal sum of
the form (1.1.3) with arbitrary an is called a trigonometric series. If we start with a Borel
measure supported on [−π, π) we can also form the Fourier coefficients of µ

an = µ̂(n) =

∫ π

−π
e−intdµ(t).

The series (1.1.3) is then called a Fourier-Stieltjes series. Of course |µ̂(n)| ≤ ‖µ‖, but it
is in general not true that µ̂(n) → 0, if |n| → ∞. Taking µ = δ, point mass at 0, we find

δ̂(j) = 1/2π for all j and the series (1.1.3) does not converge in the usual sense

1



2 1. CLASSICAL FOURIER SERIES

We see that taking a Fourier series can be seen as a map ˆ from a space of functions, or
measures, or more general, to a space of sequences. Natural questions are: For what kind
of things can one define a Fourier series? Can you say something about the target space if
you start in Lp(T )? Is ˆ surjective to some lp(Z)? Is it maybe even an isometry? Is (1.1.3)
convergent in Lp if f ∈ Lp? Is it perhaps convergent in any other sense?

Some of these questions will be answered in the course.

Partial sums of the series (1.1.3) are expressed by means of the Dirichlet kernels DN .
These are defined as follows

(1.1.4) DN (t) =

N∑
−N

eint =

{
sin((N+1/2)t)

sin(t/2) if t /∈ 2πZ
2N + 1 if t ∈ 2πZ.

For the N -th partial sum SN [f ](t) =
∑N

n=−N f̂(n)eint of the Fourier series of f we find

(1.1.5) SN [f ](t) =

N∑
n=−N

(∫ π

−π
f(s)e−insds

)
eint =

∫ 2π

0
f(s)DN (t− s) ds

2π
=: f ∗DN (t).

Similarly, for the N -th Césaro sum σN , i.e. the average of the partial sums S0 upto SN ,
there is an expression by means of the N -th Fejér kernel KN . The latter is defined by

KN (t) =
1

N + 1

N∑
n=0

Dn(t) =
N∑

n=−N

N + 1− |n|
N + 1

eint

=

 1
N+1

(
sin((N+1)t/2)

sin(t/2)

)2
if t /∈ 2πZ

N + 1 if t ∈ 2πZ.

(1.1.6)

The Césaro sum of f is given by

σN [f ](t) =
1

N + 1

N∑
n=0

Sn[f ](t) = f ∗KN (t).

The Fejér kernels KN are good kernels, they have the three characteristic properties of
an approximate identity:

• KN ≥ 0.
•
∫ 2π

0 KN (t) dt
2π = 1.

• For every 0 < δ < π, KN (t)→ 0 as N →∞ uniformly on [δ, 2π − δ].
Let f ∈ L1(T ). If a family of integral kernels LN on [0, 2π] has these three properties, then
at a point of continuity a of f one has that LN ∗ f(a)→ f(a) and, moreover, for f ∈ C(T )
the convergence of LN ∗ f to f is uniform on T . We indicate the proof.
(1.1.7)

|f(a)− LN ∗ f(a)| =
∣∣∣∣∫ 2π

0

(
f(a)− f(a− t) )LN (t) dt| ≤

∣∣∣∣∣
∫

[δ,2π−δ]
· · ·

∣∣∣∣∣+

∣∣∣∣∣
∫

[0,δ]∪[2π−δ,2π]
· · ·

∣∣∣∣∣
The first term is small for small δ by continuity of f at a and property i and ii. Fixing such

a small δ, the second term is bounded by maxδ≤t≤2π−δ LN (t)‖f‖1 + |f(a)|
∫ 2π−δ
δ Ln(t)dt.

This tends to 0 when N →∞. Now if f is continuous on T , then it is uniformly continuous
on T and δ can be chosen independently of a. Moreover the second term can be estimated
uniformly, leading to uniform convergence of LN ∗ f on T . With a bit more effort, if
f ∈ Lp(T ) (1 ≤ p < ∞), then LN ∗ f tends to f in Lp sense as N → ∞. See [10] for a
clever proof with a slightly weaker condition iii.

In particular these things hold for the Fejér kernel, giving the well-known fact that the
Césaro sums of f ∈ C(T ) converge to f uniformly on T . In particular every f ∈ C(T ) can
be approximated uniformly by goniometric polynomials, namely by its Césaro sums.
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(1.1.8) f(t) = lim
N→∞

σN [f ](t).

The exponentials eint, n ∈ Z, form clearly an orthonormal system in L2(T ). Because C(T )
is dense in L2(T ) and the goniometric polynomials are dense in C(T ), this orthonormal
system is complete, hence an orthonormal basis for L2(T ). Observe that for an f ∈ L2(T )
its Fourier series is the expansion of f on the basis {eint}. As a consequence for f, g ∈ L2(T )
Parseval’s formula holds:

(1.1.9)

∫ π

−π
fḡ

dt

2π
=
∑
Z
f̂(n)¯̂g(n),

Observe that the lefthand side of 1.1.9 is the inner product in L2(T ), while the righthand side
is the inner product in l2(Z). So 1.1.9 expresses that ˆ is an isometry from L2(T )→ l2(Z).

In fact it is also surjective. If {aj}j ∈ l2(Z) then the partial sums
∑N

j=−N aje
ijt form a

Cauchy sequence in L2(T ) that converges to some f ∈ L2(T ) with f̂(j) = aj .

We will need a few additional estimates on KN :

(1.1.10) KN (t) ≤ min{N + 1,
π2

(N + 1)t2
}, t ∈ [−π, π]

and, using Parseval’s formula,

(1.1.11) ‖KN‖22 =
N∑

n=−N

(
N + 1− |n|
N + 1

)2

≥ N/2.

The sum in the middle can of course be computed, but the last estimate follows easily by

comparison with
∫ N+1

0 (1− x/(N + 1))2 dx.

Pointwise Convergence of the Fourier series is not nearly as good as L2-convergence.
The classical result is as follows.

Theorem 1.1.1. Suppose that f ∈ C(T ) is Hölder continuous, i.e. there exist α,C > 0
such that

|f(s)− f(t)| < C|s− t|α.

Then

SN [f ](t)→ f(t), uniformly, as N →∞.

However, there exist continuous functions on T , the Fourier series of which does not
converge uniformly on T . Indeed, for every x ∈ T the map Λxn : f 7→ Sn[f ](x) is a bounded
linear functional on C(T ). One can show that ‖Λxn‖ ≥ C log n and in particular tends to
∞. The Banach Steinhaus Theorem then gives that for a dense set of functions f ∈ C(T )
one has

sup
n
|Λxnf | = |Sn[f ](x)| =∞.

See [16] for details. A more or less constructive proof can be found in [20].
Concerning point wise convergence of the Fourier series of Lp functions we state two

classical results. Andrey Kolmogorov constructed L1(T )-functions whose Fourier series does
not converge in any point of T , [11]. Lennart Carleson, on the other hand, showed that
the Fourier series of an f in L2(T ) converges almost everywhere on T , [1]. His result was
extended by Richard Hunt to Lp for p > 1, cf. [8].
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1.2. Sine versus Cosine Series

If we start with an even function f , (f(t) = f(−t)), in (1.1.3), we will find that an = a−n
(the sequence is even). Then taking together the n-th and −n-th term, we obtain

a0 +
∞∑
n=1

an(eint + e−int) = a0 +
∞∑
n=1

2an cos(nt),

a cosine series. Similarly if f is an odd function (f(t) = −f(−t)), we find an = −a−n, (the
sequence is odd), and we obtain the sine series

∞∑
n=1

an(eint − e−int) =

∞∑
n=1

2ian sin(nt).

Notice that every function on (0, π) can be extended as an even, but also to an odd 2π-
periodic function. In that light it is remarkable that sine and cosine series have different
convergence behavior even if the coefficients are the same. (Of course the series belonging
to even and odd continuation do not have the same coefficients) In the present section we
prove two theorems which enlighten this behavior of sine and cosine series.

Theorem 1.2.1. Suppose that (an)∞n=−∞ is an even sequence of positive numbers which
tend to 0 if |n| → ∞. If (an) satisfies the convexity condition

an−1 + an+1 − 2an ≥ 0, (n ≥ 1),

then there exists f ∈ L1
2π such that f̂(n) = an.

Proof. The convexity condition implies that an− an+1 is monotonically decreasing to
0. From this we have

n(an − an+1) ≤ (ak − ak+1) + (ak+1 − ak+2) . . . (an − an+1) + (k − 1)(an − an+1)

= ak − an+1 + (k − 1)(an − an+1)→ 0,
(1.2.1)

by choosing k fixed and large, so that ak is small, and then letting n → ∞. By cleverly
rearranging of the series, so-called summation by parts, we also find

N∑
n=1

n(an−1 + an+1 − 2an) =

N∑
n=1

n((an+1 − an)− (an − an−1))

=

N∑
n=1

n(an+1 − an)−
N−1∑
n=0

(n+ 1)(an+1 − an) = a0 − aN −N(aN − aN+1) −→ a0,

(1.2.2)

for N →∞. Put

fN (t) =
N∑
n=1

n(an−1 + an+1 − 2an)Kn−1(t).

This series has non-negative terms and is Cauchy in L1 sense. In view of (1.2.2), for N > M∫ 2π

0
|fN − fM | dt =

N∑
n=M+1

n(an−1 + an+1 − 2an)

∫ 2π

0
Kn−1(t)dt

=

N∑
n=M+1

n(an−1 + an+1 − 2an) < ε if M is sufficiently large.

(1.2.3)

Therefore limN→∞fN = f exists in L1(T ). Using that by (1.1.6) K̂n−1(p) = n−|p|
n if

n > |p| and a dilated version of (1.2.2), we compute f̂ .

f̂(p) =
∑
n>|p|

(an−1 + an+1 − 2an)(n− |p|) =

∞∑
j=1

j(a|p|+j−1 + a|p|+j+1 − 2a|p|+j) = a|p|.
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Theorem 1.2.2. Suppose that f is in L1(T ) and that f̂(n) = −f̂(−n) ≥ 0 for n ≥ 0.

Then
∑

n6=0
f̂(n)
n converges.

Proof. Let F (t) =
∫ t

0 f(s) ds, t ∈ [−π, π]. Then F is continuous and F (−π) = F (π),

because f̂(0) = 0, i.e. F ∈ C(T ). The Fourier coefficients of F are

F̂ (n) =
f̂(n)

in
, (n 6= 0).

The Césaro sums of F will converge uniformly to F , therefore, subtracting F̂ (0) from F
and evaluating at 0,

lim
N→∞

∑
1≤|n|≤N

N + 1− |n|
N + 1

f̂(n)

n
= i(F (0)− F̂ (0)) = −iF̂ (0).

All terms in the sum are positive, so this sum converges absolutely. Next∑
1≤|n|≤N

f̂(n)

n
≤ 2

∑
1≤|n|≤N

(1− |n|
2N + 1

)
f̂(n)

n
< iF̂ (0),

which proves the theorem. �

Corollary 1.2.3. Let bn = 1
log(n+2) , then

∑
bn cos(nt) is the Fourier series of an L1

function, but
∑
bn sin(nt) is not.

1.3. Weak Topologies

Occasionally we will use weak-* convergence of measures. In this section we recall this
notion for readers who are not familiar with it.

1.3.1. Weak-* convergence. A sequence of Borel measures (µj)j on a compact Haus-
dorff space X converges weak-* to µ if for every f ∈ C(X)

(1.3.1) lim
j→∞

∫
f dµj =

∫
f dµ.

Similarly, in a Hilbert space H with inner product 〈·, ·〉, a sequence fj converges weakly to
f if for every g ∈ H

(1.3.2) lim
j→∞
〈fj , g〉 = 〈f, g〉.

This and the Banach-Alaoglu Theorem below is basically all we need to know. Nevertheless
some background may be useful.

1.3.2. The weak topology. Recall that a topology τ1 on a set X is called weaker
than τ2 on X if every τ1 open set in X is also τ2 open; then τ2 is called stronger than τ1.
Also recall that the product topology is defined by requiring that it is the weakest topology
on the set theoretical product such that all projections are continuous mappings.

We can do something similar in topological vector spaces. Thus let X be a topological
vector space such that its dual X∗ separates points of X, i.e. for every x ∈ X there exists
a continuous linear functional L ∈ X∗ with Lx 6= 0. This is certainly the case if X is a
Banach or a Hilbert space. The weak topology on X is the weakest topology that makes all
L ∈ X∗ continuous. Since they are already continuous in the original topology of X, the
weak topology is weaker than the original one.

A local subbasis for the weak topology on X consists of the sets

V ε
L = {x ∈ X : |Lx| < ε},
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where ε > 0 and L ∈ X∗. This means that U ⊂ X is a neighborhood of 0 if there exist
εi > 0, Li ∈ X∗ such that (∩pi=1V

εi
Li

) ⊂ U . How does this relate to convergence? Well,
xj → x if and only if xj − x → 0, that is, every neighborhood U of 0 must, for sufficiently
large j, contain xj − x. Therefore, for every choice of finitely many V εi

Li
, it holds that

xj − x ∈ (∩pi=1V
εi
Li

) if j is sufficiently large. This happens if and only if Lxj → Lx for every

L. Compare this to (1.3.2).

1.3.3. The weak-* topology. Recall that X can be seen as a subset of X∗∗ via
xL := Lx, (x ∈ X, L ∈ X∗) and that the subset X ⊂ X∗∗ already separates points on
X∗. The weak-* topology on X∗ is defined as the weakest topology that makes all x ∈ X
continuous functionals on X∗. We do not require continuity of functionals in X∗∗ \ X
(In many important cases, however, this set is empty, compare [22]). Similarly to weak
convergence, a sequence Lj ∈ X∗ converges weak-* to L ∈ X∗ if and only if for every x ∈ X
we have for every x ∈ X that Ljx→ Lx.

Finally we quote

Theorem 1.3.1 (Banach-Alaoglu). If V is a neighborhood of 0 in a topological vector
space X and

KV = {L ∈ X∗ : |Lx| ≤ 1 for every x ∈ V }.
Then KV is weak-* compact.

A proof can be found in [17].

Example 1.3.2. Let X = C(T ), V = {f ∈ C(T ) : ‖f‖∞ < 1}, then KV = {µ ∈M(T ) :
‖µ‖ ≤ 1} is compact. Theorem 1.3.1 tells us that every sequence of Borel measures (µα)α
on T with uniformly bounded mass has a weak-* convergent subsequence. In other words,
there exists a subsequence (µj)j and a measure µ ∈M(T ) such that (1.3.1) holds.

1.4. Lacunary Series

Definition 1.4.1. A sequence {λj}, j = 1, 2, . . ., of positive integers is called (Hadamard)
lacunary with constant q > 1 if λj+1 > qλj for all j ≥ 1. A power series is called lacunary

if it is of the form
∑
cjz

λj , while a trigonometric series is called lacunary if it is of the form∑
cje

iλjt +
∑
dje
−iλjt with {λj} lacunary.

Lemma 1.4.2. Let n0 ∈ Z. Suppose that f ∈ L1
2π and f(t) = O(t) as t→ 0. If

(1.4.1) f̂(j) = 0, for all 1 ≤ |n0 − j| ≤ 2N,

then

|f̂(n0)| ≤ 2π4(N−1 sup
|t|≤N−1/4

|f(t)/t|+N−2‖f‖1).

Proof. If gN is any trigonometric polynomial of degree 2N with ĝ(0) = 1, then

f̂(n0) =

∫ π

−π
e−in0tf(t)gN (t)

dt

2π
,

because (1.4.1) expresses that SN [e−in0tf(t)] = f̂(n0). We take gN = K2
N/‖KN‖22. Then

in view of (1.1.10) and (1.1.11)
∫ π
−π gN

dt
2π = 1, gN ≥ 0, gN (t) ≤ π42

N(N+1)2t4
. We use this to

estimate

|f̂(n0)| ≤
∫ π

−π
|f(t)|gN (t)

dt

2π
=

∫
|t|≤N−1

+

∫
N−1≤|t|≤N−1/4

+

∫
N−1/4≤|t|≤π

.

Now these three integrals are estimated as follows.∫
|t|≤N−1

|f(t)|gN (t)
dt

2π
≤ 1

N
sup
|t|≤N−1

|f(t)|
|t|

∫ π

−π
gN (t)

dt

2π
=

1

N
sup
|t|≤N−1

|f(t)|
|t|

.
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N
≤|t|≤ 1

N1/4

|f(t)|gN (t)
dt

2π
≤ sup
|t|≤ 1

N1/4

|f(t)|
|t|

∫
1
N
≤|t|≤ 1

N1/4

|t|π42

N(N + 1)2t4
dt

2π

≤ sup
|t|≤ 1

N1/4

|f(t)|
|t|

π42N

2π(N + 1)2
.

(1.4.2)

∫
N−1/4≤|t|≤π

|f(t)|gN (t)
dt

2π
≤ π42

N(N + 1)2(N−1/4)4

∫ π

−π
|f(t)| dt

2π
.

These three estimates prove the lemma. �

Corollary 1.4.3. Suppose that f =
∑∞

n=1 an cos(λnt) ∈ L1
2π, with λn+1 ≥ qλn and

q > 1. If f is differentiable at a point p then an = o(λ−1
n ).

Proof. Considering fp(t) = f(t+ p) which has f̂p(n) = einpf̂(n) we may assume that
p = 0. Replace f by f − f(0) − f ′(0) sin t. This has no effect on the tail of the series and

now f(t) = o(|t|) at 0. We have f̂(j) = 0 for 0 < |j − λn| < (1− 1/q)λn. We apply the
Lemma and obtain

|f̂(λn)| ≤ o(1)

λn
+
C

λ2
n

=
o(1)

λn
).

�

Corollary 1.4.4 (Weierstrass’ nowhere differentiable function).

f(t) =
∞∑
n=0

cos(2nt)

2n

is continuous, but nowhere differentiable.

Proof. The series is lacunary and uniformly convergent, so f is continuous and the
previous corollary gives that f is nowhere differentiable. �

1.5. Riesz products

Let {λn} be lacunary with q ≥ 3. A trigonometric polynomial of the form

PN (t) =
N∏
n=1

(1 + an cos(λnt+ ϕn))

is called a (finite) Riesz product. Observe that, since q ≥ 3, an integer M can at most in
one way be written as

M =
∞∑
1

cnλn, cn ∈ {−1, 0, 1}.

In fact M will be a finite sum and unless q = 3, not all M can be expressed as such a
sum. We use this when expanding PN . A typical factor of PN is 1 + (ane

iϕn/2)eiλnt +
(ane

−iϕn/2)e−iλnt. In the expansion of PN we will thus find exponentials of the form

eikt = ei(
∑
cnλn)t and by the preceding observation such an exponential can be obtained in

at most one way. It follows that

(1.5.1) P̂ (k) =

{∏(aneiϕncn
2

)
if k =

∑
cnλn, with cn 6= 0,

0 elsewhere.

Also, from PN+1 = PN +
aN+1e

iϕN+1

2 PNe
iλN+1t +

aN+1e
iϕN+1

2 PNe
−iλN+1t we see that the

Fourier series of PN+1 is obtained from the Fourier series of PN by adding two copies of PN
multiplied by a constant, one shifted λN+1 to the right, the other shifted λN+1 to the left.

As q ≥ 3 there is no overlap. In particular, whatever the sequence {an}, if N →∞, then P̂N
becomes stationary on every finite subset of Z. We find that limN→∞ P̂N is a well-defined
trigonometric series. If P = limPN in some sense then P̂ = lim P̂N .
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For us there are two cases of interest:

(1) Suppose −1 ≤ an ≤ 1. Then all PN are nonnegative and
∫ π
−π PN = 1. Thus the PN

are (densities of) probability measures on (−π, π). There exists at least one weak-*
limit point. If µ1, µ2 are two weak-* limit points of PN dt, we have µ̂1 = µ̂2, so
µ1 = µ2 and PN converges weak-* to a probability measure with Fourier-Stieltjes
series limPN .

(2) Suppose that an = ibn, bn ∈ R and
∑

n b
2
n <∞. We have 1 ≤ |(1 + ibn cos(λnt)| ≤

(1 + b2n)1/2, therefore, with suitable constant C.

(1.5.2) 1 ≤ |PN | ≤ e(
∑
n log(1+b2n))/2 ≤ e

1
2

∑
n b

2
n < C.

Thus |PN | is uniformly bounded and PN converges weak-* to (a measure given by) an L∞2π
function. (If O is open in T with Lebesgue measure |O|, and f is continuous 0 ≤ f ≤ 1 with
support in O, then |

∫
fPN dt| ≤ C|O|; the same goes for the weak-* limit, giving that the

weak-* limit is absolutely continuous with respect to Lebesgue measure and the density is
in L∞.)

Lemma 1.5.1. Let {λj} be lacunary with constant q. Put λ−j = −λj, λ0 = 0. There

exist constants Aq, Bq such that if f(t) =
∑N
−N cje

iλjt, then∑
|cj | ≤ Aq‖f‖∞,
‖f‖2 ≤ Bq‖f‖1.

(1.5.3)

Proof. Notice that if we prove the Lemma for real valued f , then it follows for complex
valued f with the constants Aq and Bq doubled. We first deal with the case q ≥ 3 and
assume that f is real, which means that cj = c̄−j . To prove the first inequality, we set

PN (t) =
N∏
j=1

(1 + cos(λjt+ ϕj)).

We choose ϕj = arg cj , j ≥ 1. We have∫ π

−π
PN f̄

dt

2π
=

N∑
j=−N

P̂N (λj)
¯̂
f(λj) =

1

2

N∑
j=−N

eiSign (j)ϕ|j| c̄j =
1

2

N∑
−N
|cj |,

Also

|
∫ π

−π
PN f̄

dt

2π
| ≤ ‖f‖∞

∫ π

−π
PN

dt

2π
= ‖f‖∞.

Thus we have proved the first equality for q ≥ 3 with Aq = 4.
For the second inequality we set

PN (t) =

N∏
j=1

(
1 + i

(
|cj |
‖f‖2

)
cos(λjt+ ϕj)

)
.

We proceed as above and find with the same choice of ϕj

‖f‖2 =

N∑
j=−N

|cj |2

‖f‖2
= −2i

N∑
j=−N

i
|cj |
‖f‖2

eiSign (j)ϕ|j|

2
c̄j

= −2i
N∑

j=−N
P̂N (λj)

¯̂
f(λj) = −2i

∫
PN f̄

dt

2π
≤ 2‖PN‖∞‖f‖1.

(1.5.4)

Since the PN are uniformly bounded by e1/2, compare (1.5.2), we are done. Notice that
it is the seemingly artificial factor i that we introduced in PN , that makes it possible to
estimate ‖PN‖∞.

For q ≥ 3 we may take Bq = 4e1/2.



1.5. RIESZ PRODUCTS 9

The general case is done by carefully splitting the lacunary sequence in such a way that
the Riesz products associated to the subsequences make sense and will only pick up the
terms in the series that we want. Let M be a large integer, depending on q and to be
determined in the process. Write for a fixed 0 ≤ m < M λmj = λm+jM . We want that

{λmj }j is lacunary with constant ≥ 3. Thus we require that M satisfy

(1.5.5) qM ≥ 3,

hence a Riesz product associated to {λmj }j makes sense. Next, we want that each of the
frequencies λk of f occurs in precisely one Riesz product. Suppose that n > 0 is written as∑J

j=0 cjλ
m
j , with cj ∈ {−1, 0, 1} and cJ = 1. Then

|n− λmJ | ≤
J−1∑
j=0

λmj ≤ λmJ
J−1∑
j=0

λmj
λmJ
≤ λmJ

J∑
j=1

1

qjM
≤

λmJ
qM − 1

.

Thus we want |λk − λmJ | >
λmJ
qM−1

for all λk 6= λmJ . If λk ≥ qλmJ this leads to

(1.5.6) q − 1 >
1

1− qM
or q > 1 +

1

qM − 1
,

while, if λmJ ≥ qλk, this leads to

(1.5.7) 1− 1/q >
1

1− qM
or 1/q < 1− 1

qM − 1
.

We take M so large that (1.5.5), (1.5.6), (1.5.7) are satisfied. Now let PmN =
∏N

1 (1 +
am+jM cos(λmj t+ ϕm+jM )) be one of the Riesz products considered in the first part of the
proof. Then

1

2π

∫
PmN (t)f̄(t) dt =

1

2

∑
|am+jM ||cm+jM |.

The first part of the proof gives ∑
|cm+jM | ≤ 4‖f‖∞,

(
∑
|cm+jM |2)

1
2 ≤ 4e1/2‖f‖1,

(1.5.8)

in respectively the first and second case of the lemma. Summing over m = 1, . . . ,M gives
the result. �

Theorem 1.5.2. Suppose that the Fourier series
∑∞
−∞ cje

iλjt of f ∈ L1(T ) is lacunary,

then f ∈ L2(T ). If f is bounded, then
∑
|cj | <∞.

Proof. Let σN [f ] be a Césaro sum. These have L1 norms, uniformly bounded by ‖f‖1.
The lemma gives that

N∑
−N

(
1− |j|

N + 1

)2

|cj |2 ≤ BqM.

This implies, by letting N →∞, that for fixed J the sum
∑J
−J |cj |2 ≤ BqM , thus f ∈ L2(T ).

The proof of the second statement is similar. �

The homogeneity of behavior of lacunary series also appears in the following theorem.
We shall denote the length of a subarc Γ of T by |Γ|.

Theorem 1.5.3. Suppose that (λj) is lacunary with constant q. For every δ > 0 there

exists j0 ∈ N such that for all lacunary f ∈ L2(T ), f(t) =
∑∞
−∞ cje

iλjt with cj = 0 for
|j| < j0, the following inequality holds for every subarc Γ of T :

(
1

2π
|Γ| − δ)‖f‖2 ≤

∫
Γ
|f |2 dt

2π
≤ (

1

2π
|Γ|+ δ)‖f‖2.
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Proof. It suffices to prove the theorem for trigonometric polynomials. We shall give a
proof for q ≥ 3. For the general case, see exercise 1.7.7. We have

(1.5.9)

∫
Γ
|P |2 dt

2π
=

∫
Γ

∑
n,m

cnc̄me
i(λn−λm)t dt

2π
=

1

2π
|Γ|‖P‖2 +

∑
n6=m

cnc̄m

∫
Γ
ei(λn−λm)t dt

2π
.

Let h be the characteristic function of Γ. Then ĥ(n) =
∫

Γ e
−intdt/2π, therefore (1.5.9)

can be rewritten as

(1.5.10)
1

2π
|Γ|‖P‖2 +

∑
n6=m

cnc̄mĥ(λm − λn).

Now because q ≥ 3, λn − λm assumes any integer value j at most twice (solutions occur
in pairs: (n,m) and (−m,−n), and compare the beginning of this section). For general
q > 1 there exists K = K(q) such that there are at most K solution, Ex. 1.7.7. Moreover,

minm,n≥j0 |λm − λn|} tends to ∞ with j0. Thus frequencies j of ĥ occur at most twice in
the sum in (1.5.10). We apply Cauchy-Schwarz to the sum and obtain that the norm of the
sum is less than ∑

n6=m
|cncm|22

∑
|j|≥ inf

n 6=m
{|(λn−λm)|}

|ĥ(j)|2


1
2

≤ ‖P‖2δ,

if we choose j0 so large that the 2-norm of the tail of the series of h is less then δ/2. It

follows from the explicit form of ĥ(j) that this can be done independent of Γ. Combining
this with (1.5.9) and (1.5.10) we obtain

(
1

2π
|Γ| − δ)‖P‖2 ≤

∫
Γ
|f |2dt ≤ (

1

2π
|Γ|+ δ)‖P‖2.

�

1.6. Sidon sets

Definition 1.6.1. Let E ⊂ Z. A function f (or measure, or distribution) on T is called

E-spectral if f̂(n) = 0 if n /∈ E. Denote by CE , LpE , ME the respective subspaces of C(T ),
Lp(T ), M(T ) consisting of E-spectral elements. These are closed subspaces. A subset E of

Z is called a Sidon set if f ∈ CE implies f̂ ∈ l1(E).

Example 1.6.2. Of course every finite set is a Sidon set. By Theorem 1.5.2 every
lacunary set is a Sidon set.

Theorem 1.6.3. The following are equivalent:
1. E is a Sidon set.
2. There exists K > 0 such that ‖f̂‖1 ≤ K‖f‖∞ for all E-spectral trigonometric polynomials
f .

3. ‖f̂‖1 is bounded for every f ∈ L∞E .

3.a There exists a K such that ‖f̂‖1 ≤ K‖f‖∞ for every f ∈ L∞E .

4. M̂E = l∞(E).

5. L̂1
E = c0(E).

Proof. (1 =⇒ 2) If E is Sidon, then the map f 7→ f̂ is linear bijective from CE to
l1(E). Also its inverse (as a linear map) is continuous. Indeed

‖f‖∞ = sup
t

∣∣∣∑ f̂(n)eint
∣∣∣ ≤∑ |f̂(n)|.
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Hence, by the Open Mapping Theorem, f̂ 7→ f is open and thus f 7→ f̂ is continuous,
which means that for some K > 0 one has ‖f̂‖1 ≤ K‖f‖∞. In particular, this is true for
E-spectral trigonometric polynomials.

(2 =⇒ 3(a)) If f ∈ L∞E , then σN (f) is an E-spectral trigonometric polynomial with
|σN (f)|∞ ≤ ‖f‖∞, independent of N . Thus there is a constant K such that ‖σ̂N (f)‖1 ≤
K‖f‖∞. As in the proof of Theorem 1.5.2 we conclude that ‖f̂‖1 ≤ K‖f‖∞.

(3 =⇒ 1) is trivial.
Item 4 and 5 both say that a certain bounded linear transformation is surjective. Now

recall that the Open Mapping Theorem implies that a surjective bounded linear transfor-
mation F between Banach spaces X and Y is open. Thus F ({‖x‖ < 1}) contains an open
neighborhood of 0 ∈ Y . By linearity we obtain that there is a constant C > 0 such that for
every y ∈ Y there exist x ∈ X with Fx = y and ‖x‖ < C‖y‖. This will be used in the last
two steps of the proof.

(3(a) =⇒ 4) Let (dj)j ∈ l∞(E). Then f 7→
∑

j f̂(j)dj is a continuous linear functional

on CE which by Hahn-Banach can be extended to C(T ). By the Riesz Representation
Theorem there exists a complex regular Borel measure µ which represents this functional.
Thus for f ∈ CE we have

∫
f dµ =

∑
j f̂(j)dj . We choose f(t) = e−iλjt, λ ∈ E and find

µ̂(λj) = dj . Thus ˆ̄µ(λj) = d̄j . Replacing dj by d̄j we obtain our result.
(4 =⇒ 5) First observe that modification of the Fejér kernels yields that if Λ is a finite

set of integers and ε > 0, then there exists a trigonometric polynomial P = PΛ,ε such that

P̂ (j) = 1 and ‖P‖1 ≤ 1 + ε. We will use this with ε = 1. Now let (dj)j ∈ c0(E). We may
assume that |dj | ≤ 1. Put

Ek = {n : 2−k < |dn| ≤ 2−k+1}.

By 4. there exist measures µk such that µ̂k(j) = dj if j ∈ Ek, while µ̂k(j) = 0 if j ∈ E \Ek;
moreover ‖µk‖ ≤ C2−k. Let Tk be trigonometric polynomials with T̂ (j) = 1 on Ek and
‖Tk‖1 ≤ 2. Then Tk ∗ µk is a trigonometric polynomial of L1 norm less than 2C2−k and

with Fourier coefficients T̂k(j)µ̂k(j) = µ̂k(j) on E. The conclusion is that

f(t) =
∞∑
k=1

Tk ∗ µk

is in L1(T ) because the series converges in L1(T ) and has f(j) = dj on E.
(5 =⇒ 2) Let g be an E-spectral trigonometric polynomial. Define dn = |ĝ(n)|/¯̂g(n)

if ĝ(n) 6= 0 and dn = 0 elsewhere. (dn)n ∈ c0(E) of norm 1, hence there exists f ∈ L1(T )

with f̂ |E= dn and ‖f‖1 ≤ C, where C is a constant only depending on E. Then∑
|ĝ(n)| =

∫ π

−π
f(t)ḡ(t) dt ≤ ‖g‖∞‖f‖1 ≤ C‖g‖∞.

�

Remarks 1.6.4. The smallest constant K in Theorem 1.6.3, such that 3a holds, is called
the Sidon constant of E.

In retrospect, we can understand the (limits of the) Riesz products in Lemma (1.5.1)
as explicitly constructed measures of Theorem (1.6.3), statement 4 and 5.

Corollary 1.6.5 (to Theorem 1.5.2). Suppose that E = {λj} is lacunary and that

L = (dj) ∈ l2(E). Then there exists a bounded function f on T such that f̂(λj) = dj.

Proof. In view of Riesz Representation Theorem, L is in l2(E)∗ = (L2
E)∗. In fact,

Lϕ =
∑
ϕ̂(λj)d̄j . By Theorem 1.5.2 L is also a continuous linear functional on L1

E . Now
L1
E is a closed subspace of L1(T ). By Hahn Banach we can extend L to all of L1(T ). We

denote the extension again by L. Recalling, c.f. [22][Ch 7], that the dual space of L1(T )
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is L∞(T ), we find that there exists a function f ∈ L∞ such that Lϕ =
∫ 2π

0 ϕf̄ dt2π , for all

ϕ ∈ L1(T ). We now apply this with ϕ(t) = eiλjt and obtain f̂(λj) = dj . �

Remark 1.6.6. One can do the same for general Sidon sets by proving the analogue of
Theorem 1.5.2. This requires considerably more effort, cf. [4].

1.7. Exercises

1.7.1. Let (bn)n∈Z be a sequence of positive numbers such that bn → 0 as |n| → ∞.
Show that there exists a sequence (an) with an ≥ bn which satisfies the convexity condition
of Theorem 3.1.

1.7.2. Suppose that f ∈ C2π is Hölder continuous of order α, 0 < α ≤ 1, i.e. there
exists B > 0 such that for all x, |f(x+ t)− f(x)| ≤ B|t|α. Show that |f̂(n)| ≤ Cn−α. Hint:
Write the Fourier coefficients as

f̂ =
1

2

(∫ 2π

0
f(s)e−ins

ds

2π
−
∫ 2π

0
f(s− π/n)e−ins

ds

2π

)
.

1.7.3. Let (λn) be lacunary. Suppose that f ∈ L1(T ) has Fourier series
∑
an cos(λnt).

Suppose that f is Hölder continuous at one point t0 ∈ T . Show that an = O(λ−αn ). Next
show that f is Hölder continuous on T .

1.7.4. With the assumptions as in exercise 1.7.3, show that if f equals 0 on a small
interval in T , then f ∈ C∞(T ). Can you relax the condition that f be 0 on an interval and
still reach the same conclusion?

1.7.5. With the same assumptions as in exercise 1.7.3, f(t) =
∑
cne

iλnt, show that
if f is (real) analytic on a subarc Γ of T , then f is real analytic on T by completing the
following outline.

(1) Observe that f is C∞ because of exercise 1.7.4 extended.

(2) Choose a suitable interval Γ, a suitable modification f̃ of f and show that there is
a C > 0 such that for every k, l

|ck|2|λk|2l ≤ C
∫

Γ
|f̃ (l)(t)|2dt.

(3) Use the Cauchy estimates to make the integrals in (2) bounded by a constant times
(l!δ−l)2.

(4) Make a favourable choice of l to have lim supk→∞ |ck|
1
λk < 1.

(5) Finish it off!

1.7.6. Prove Hadamard’s Theorem: If f(z) =
∑∞

n=0 cnz
λn is a lacunary power series

with radius of convergence R then f(z) has no analytic continuation to a domain larger
than the disc with radius R. (C(0, R) is a natural boundary.)

1.7.7. Prove Theorem 1.5.3 for general q by showing that now there exists K > 0 such
that every j ∈ Z \ {0} is assumed at most K times as a value of λn − λm.

1.7.8. Under the assumptions of Corollary 1.6.5, show that f can in fact be chosen
continuous, by completing the following steps.

(1) Find sequences (an), (bn) such that dn = anbn, with an ∈ l2(E) and bn ∈ c0(E).
(2) Show that the convolution of a bounded and an integrable function is continuous.
(3) Prove the assertion.

1.7.9. Suppose that f ∈ C(T ) has positive Fourier coefficients. Prove that f̂ ∈ l1.



1.8. FINAL REMARKS, NOTES, AND REFERENCES 13

1.7.10. Suppose that for every d = (dn)n ∈ l∞(E) with |dn| ≤ 1, there exists a measure
µ ∈M(T ) with

|dn − µ̂(n)| ≤ 1− δ.

Prove that E is Sidon. (Think of the previous exercise and let dn = |f̂(n)|
f̂(n)

.)

1.8. Final remarks, notes, and references

The classical book on trigonometric series is [23]. Section 1. is in [13], but also can
be found e.g. in [10]. A well written elaborate introduction to Fourier analysis with many
applications in other subjects is [12].

Material concerning section 3 can be found in any reasonable book on Functional Anal-
ysis, e.g. [17], see [22] for a more extensive list of references.

Section 2. has been taken from [10], but is similarly treated in [23].
Section 4,5 and 6 are also mostly taken from [10]; [4] has a more comprehensive treat-

ment and was also used. Many things can be found in [23] too.





CHAPTER 2

Distributions and their Fourier Series

2.1. Introduction

Consider the wave equation on R2

(2.1.1)
∂2u

∂x2
− ∂2u

∂t2
= 0.

Introducing new coordinates x′ = x+ t, y′ = x− t, we obtain the equation

(2.1.2)
∂2u

∂x′∂y′
= 0,

which has the classical solution

u(x′, y′) = f(x′) + g(y′), f, g ∈ C2(R).

Thus (2.1.1) has as classical solutions f(x+ t)+g(x− t). Classically, C2 is required because
2 differentiations are performed on u. Physically, however, there is no reason to ask much
more than continuity. Also, from (2.1.2) we see that ∂u

∂y′ = g̃(y′), where the only thing

that matters is that this function doesn’t depend on x′. If g̃ ∈ L1(R) we get a solution
u(x′, y′) = f(x′) + g(y′) with no stronger conditions on f and g than continuity. There
are of course problems with changing the variables and we have a solution which is not
symmetric in x and y. The point is that it is at least inconvenient not to be able to
differentiate continuous functions.

As far as Fourier analysis is concerned, we know that f ∈ C1
2π has the property that

f̂ ′(n) = inf̂(n). We can formally write down this sequence of Fourier coefficients also if f
is no longer differentiable. Can we give meaning to it as the Fourier series of something
interesting? Moreover, consider the Fourier transform Ff of f ∈ L1(R). If f is C1 we know
that

(2.1.3) Ff ′(ξ) = iξFf(ξ).

Multiplication with ξ is a well defined operation on functions, the righthand side of (2.1.3)
is always well defined. A meaningful lefthand side, that is, unlimited differentiability of L1

functions, is desirable.
One way out is the concept of weak solution. Notice that if u ∈ C2 solves (2.1.1), then

for every compactly supported ϕ ∈ C∞(R2) we have

(2.1.4)

∫∫ (
∂2u

∂x2
− ∂2u

∂t2

)
ϕ(x, t) dxdt =

∫∫
u(x, t)

(
∂2ϕ

∂x2
− ∂2ϕ

∂t2

)
dxdt = 0.

If the last equality in (2.1.4) holds for all compactly supported ϕ ∈ C∞(R2) and u ∈ C2,
then u satisfies (2.1.1). However the last integral in (2.1.4) makes sense for locally integrable
u. Thus one calls a locally integrable (sometimes only a continuous) u a weak solution of
(2.1.1) if u satisfies ∫∫ (

∂2ϕ

∂x2
− ∂2ϕ

∂t2

)
u(x, t) dxdt = 0.

15
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We will use this idea to differentiate locally integrable functions arbitrarely often. In fact
we will go one step further. Observing that

u 7→
∫∫

uϕdxdt

is a linear functional on compactly supported C∞ functions, we will explain how to “differen-
tiate” a large class of such linear functionals, which is determined by a continuity condition,
and identify the ones originating from locally integrable functions with a subclass.

2.2. Smooth functions on T

Recall, see [17][Section 1.33], that a seminorm on a (complex) vector space X is a real
valued function p such that

p(x) ≥ 0,

p(x1 + x2) ≤ p(x1) + p(x2),

p(λx) = |λ|p(x).

(2.2.1)

Here x, xi ∈ X, λ ∈ C.
A family P of seminorms is called separating if for every x ∈ X there is a p ∈ P such

that p(x) 6= 0. On C∞(T ) = C∞2π we a separting family of seminorms is given by

(2.2.2) Pj(ϕ) = ‖ϕ(j)‖∞,
the maximum of the j-th derivative. These seminorms can be used to define a topology on
C∞(T ) by requiring that they are continuous, just as weak topologies were introduced in
Chapter 1. Section 1.3 Thus, a local subbasis at 0 consists of sets

Vj,ε = {ϕ : Pj(ϕ) < ε}, j ∈ N, ε > 0.

The space C∞(T ) endowed with this topology is called D(T ). From Chapter 1, Section 1.3
we see that

(2.2.3) fj ∈ D(T )→ f ∈ D(T ) ⇐⇒ ∀k ∈ N f
(k)
j → f (k) uniformly.

So it is pretty hard for functions to converge in D(T ), cf. Exercise 2.7.1. However,
Fourier series behave nice in D(T ).

Lemma 2.2.1. Let ϕ ∈ D(T ). Then SN [ϕ]→ ϕ in D(T ) as N →∞.

Proof. Because ϕ is smooth, SN [ϕ] → ϕ uniformly, but also SN [ϕ]′ = SN [ϕ′] → ϕ′

uniformly. The same is true for higher derivatives. By (2.2.3) we are done. �

Lemma 2.2.2. The space D(T ) is metrizable and complete in the metric

(2.2.4) d(ϕ,ψ) =
∞∑
j=0

2−j
Pj(ϕ− ψ)

1 + Pj(ϕ− ψ)
.

Proof. See Exercise 2.7.2. �

Just as in (2.2.4) any countable separating family of seminorms on a vector space X gives
rise to a metric d. Observe that it is translation invariant, that is d(x, y) = d(x− z, y − z)
for all x, y, z ∈ X. Moreover, one can show that with the induced topology X becomes a
topological vector space, i.e addition and scalar multiplication are continuous operations,
and it is locally convex, meaning that it has a local basis of convex sets. In particular this
holds for T .

However, D(T ) with the present topology cannot be turned into a Banach space because
of the following Lemma, which says that D(T ) has the Heine-Borel property. A Banach
space can only possess this property if it is finite dimensional. Recall that a set X in a
topological vector space is bounded if it has the property that for every open neighborhood
U of 0, there exists N > 0 such that X ⊂ NU . If the topology is determined by seminorms,
this just means that every seminorm is bounded on X.
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Lemma 2.2.3. Every bounded sequence in D(T ) has a convergent subsequence; A closed
bounded set in D(T ) is compact.

Proof. This is a simple consequence of the Arzela-Ascoli Theorem, cf. Exercise 2.7.3.
�

It will be convenient to replace Pn by an equivalent set of seminorms

P̃n =
n∑
j=0

Pj .

This doesn’t change the topology, but it has the advantage that a local basis at 0 of D(T )

is now given by {P̃n(ϕ) < 1/n}, n ∈ N.

Remark 2.2.4. A vector space with topology induced by a complete invariant metric,
like we have met here, is called a Fréchet space. (Sometimes local convexity is required, but
that can be shown to hold here too.)

2.3. Distributions on T

Let D′ = D′(T ) denote the dual space of D(T ), that is the space of continuous linear
functionals on D(T ). The notation is classical. Elements of D′ are called (periodic) distri-
butions or generalized functions. The space D′ will naturally be equiped with the weak-*
topology. We denote the action of L ∈ D′(T ) on ϕ ∈ D(T ) usually by

〈L,ϕ〉 (= Lϕ).

The following lemma is an extension of a familiar result for Banach spaces, cf. [22][thm.
3.2].

Lemma 2.3.1. Let X be a vector space with a topology induced by a countable set of
seminorms {p1, p2, . . .} and let L be a linear functional on X. The following are equivalent.

i. L is continuous on X,
ii. L is continuous at x0 ∈ X,
iii. There exist C > 0, K ∈ N such that

|Lx| ≤ C max
i=1,...,K

pi(x).

Proof. (i =⇒ ii) is trivial.
(ii =⇒ iii). If L is continuous at x0, then for every ε > 0 there exist K ∈ N and δj > 0,

(j = 1, . . . ,K), such that pj(x − x0) < δj , (j = 1, . . . ,K) implies |L(x − x0)| < ε. Let
δ = minj{δj} and denote for y ∈ X, My = maxi=1,...,K pi(y). Then

|Ly| = |My

δ
L(

δy

My
)| < My

δ
ε,

which proves iii, with C = ε/δ.
(iii =⇒ i). Let x, y ∈ X.

|Lx− Ly| = |L(x− y)| < C max
i=1,...,K

pi(x− y).

This is less than ε if pi(x−y) < ε/KC. Thus we described a small neighborhood of x which
is mapped in an ε-neighborhood of Lx. �

Apparently a linear functional L on D(T ) is continuous, i.e. a distribution, if and only
if there exist n ∈ N and C > 0 such that

(2.3.1) |〈L,ϕ〉| ≤ CP̃n(ϕ), ∀ϕ ∈ D(T ).

The smallest n that is possible in (2.3.1) is called the order of the distribution. Of course
the zero distribution has order −∞ assigned to it.
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As we have seen in Section 1.3.3 the natural notion of convergence for a sequence of
distributions is weak-* convergence. To be specific, for Lj , L ∈ D′(T ) we have

lim
j→∞

Lj = L if and only if ∀ϕ ∈ D(T ) lim
j→∞

Ljϕ = Lϕ.

Remark 2.3.2. If the underlying space is not compact, e.g. R instead of T , distributions
may have infinite order.

2.3.1. Examples of distributions.

(1) Every u ∈ L1
2π defines a distribution Lu via

〈Lu, ϕ〉 =

∫ π

−π
uϕ

dt

2π
.

This functional is indeed continuous: |〈Lu, ϕ〉| ≤ ‖u‖1‖ϕ‖∞.
(2) We denote the set of Borel measures on T by M(T ). Every measure µ ∈ M(T )

defines in the same way a distribution Lµ via

〈Lµ, ϕ〉 =

∫ π

−π
ϕdµ(t).

Both examples are distributions of order 0.
Abusing the language we will drop the L and identify a function or measure

with the associated distribution, writing e.g. 〈u, ϕ〉.
(3) The delta-distribution δ = δ0 is defined by

〈δ, ϕ〉 = ϕ(0).

The delta distribution originates from point mass at 0.

Remark 2.3.3. The name test functions for the elements of D is now understandable,
these functions are used to test the action of an L1 function or distribution.

2.4. Operations on Distributions

2.4.1. Differentiation. Let L ∈ D′(T ). Define its derivative L′ ∈ D′(T ) by

〈L′, ϕ〉 = −〈L,ϕ′〉.
Observe that L′ is well-defined because ϕ′ ∈ D(T ); L′ is also continuous. Indeed, there exist

C > 0, n ∈ N such that |〈L,ϕ〉| ≤ CP̃n(ϕ). Then

|〈L′, ϕ〉| = |〈L,ϕ′〉| ≤ CP̃n(ϕ′) ≤ CP̃n+1(ϕ).

We conclude that every distribution is infinitely often differentiable. In general, differenti-
ation increases the order of a distribution by 1.

Examples 2.4.1. Let f(x) be the characteristic function of (0, π) viewed as element of
L1

2π. We compute its distributional derivative f ′. Let ϕ ∈ D(T ), then

〈f ′, ϕ〉 = −〈f, ϕ′〉 = −
∫ π

−π
f(t)ϕ′(t)

dt

2π
= −

∫ π

0
ϕ′(t)

dt

2π
=
ϕ(0)− ϕ(π)

2π
.

We conclude that f ′ = δ0−δπ
2π .

The function f(x) = log |x| is in L1
2π. Its distributional derivative is determined by

〈f ′, ϕ〉 = −〈f, ϕ′〉 = −
∫ π

−π
log |t|ϕ′(t) dt

2π
= − lim

ε→0

∫ −ε
−π

+

∫ π

ε
log |t|ϕ′(t) dt

2π

=
−1

2π
lim
ε→0

(
log εϕ(−ε)− log πϕ(−π)− log εϕ(ε) + log πϕ(π)−(∫ −ε
−π

+

∫ π

ε

ϕ(t)

t
dt

))
= p(rincipal) v(alue)

∫
ϕ(t)

t

dt

2π
.

(2.4.1)
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Here we have used that ϕ is periodic, making the stock terms cancel in the limit. The last
equality is the definition of the principal value integral. We have shown that f ′ = p.v. 1

x .

Proposition 2.4.2. Differentiation is a continuous operation: If Lj → L in D′(T ) then
L′j → L′ in D′(T ).

Proof. For any ϕ ∈ D(T ), we have 〈Lj , ϕ〉 → 〈L,ϕ〉 by definition of weak-* con-
vergence. Hence 〈Lj , ϕ′〉 → 〈L,ϕ′〉, which by definition of differentiation gives 〈L′j , ϕ〉 →
〈L′, ϕ〉. �

2.4.2. Restricted Multiplication. The price one pays for infinite differentiability is
that multiplication of distributions is in general not possible. However, if f ∈ C∞(T ),
L ∈ D′ then fL can defined by

〈fL, ϕ〉 = 〈L, fϕ〉.
This is indeed continuous: if ϕn → ϕ in D(T ) then fϕn → fϕ in D(T ), therefore

〈fL, ϕn〉 = 〈L, fϕn〉 → 〈L, fϕ〉 = 〈fL, ϕ〉.
If µ ∈ M(T ) and f ∈ C(T ), then fµ ∈ M(T ). Hence multiplication of a continuous

function with a distribution associated with a measure or an L1 function is also possible.
More generally one can prove that a distribution of order k can be multiplied with a function
in Ck, cf. ex. 2.7.5.

Lemma 2.4.3 (Product rule). If f ∈ C∞(T ) and L ∈ D′, then

(fL)′ = f ′L+ fL′.

Proof. Let ϕ ∈ D. Then

〈(fL)′, ϕ〉 = −〈fL, ϕ′〉 = −〈L, fϕ′〉
= −〈L, (fϕ)′ − f ′ϕ)〉 = 〈L′, fϕ〉+ 〈f ′L,ϕ〉.

(2.4.2)

�

2.4.3. Local Equality. The fact that L1
2π is identified with a subset of D′ makes it

clear that the “value of a distribution in a point” makes no sense. However, on open sets
equality makes sense! Recall that the support of a continuous function ϕ is the closed set
Suppϕ = cl{t : ϕ(t) 6= 0}.

Definition 2.4.4. Two distributions L1, L2 on T are called equal on an open subset
Γ ⊂ T if for every ϕ ∈ D(T ) with support in Γ, one has 〈L1, ϕ〉 = 〈L2, ϕ〉.

The support of a distribution L ∈ D′ is the complement of the union of the open sets Γ
with L = 0 on Γ.

Examples 2.4.5. The support of δ is {0}. If L originates from a continuous function
then the two notions of support coincide.

Remark 2.4.6. Multiplication can be localized: If L ∈ D′ has order k, and on an open
Γ ⊂ T is equal to a distribution of order j < k then L can be multiplied with Cj functions,
that are Ck in a neighborhood of the complement of Γ. See Exercise 2.7.11. Moreover it
turns out that (especially in higher dimensions) a further refinement is possible. This is
based on local Fourier analysis of the distribution and takes into account the directions in
which the singularities occur. We deal with this topic in a later chapter, but to get a flavour
of the problem, consider the distribution L on R2 given by

〈L,ϕ〉 =
∂ϕ

∂x1
(0, 0).

This has order 1, so we can multiply with f ∈ C1 but a closer analysis gives that we only
need to require something like f continuous and differentiable with respect to x1.
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2.5. Fourier Series of Periodic Distributions

In analogy with L1
2π we can define for L ∈ D(T ) the Fourier coefficients

L̂(n) =
1

2π
〈L, e−int〉.

For example, as we know already δ̂(n) = 1/2π.
As one expects, we put

SN [L](t) =
N∑
−N

L̂(n)eint.

For example, SN [δ] = DN , the Dirichlet kernel. Let ϕ ∈ D(T )

〈SN [δ], ϕ〉 =
1

2π

∫ π

−π

N∑
n=−N

eintϕ(t) dt = DN ∗ ϕ(0)→ ϕ(0), as N →∞.

We see that the Dirichlet kernels tend weakly to δ.

Lemma 2.5.1. If L ∈ D′ and ϕ ∈ D(T ) then

〈L,ϕ〉 = 2π
∞∑
−∞

L̂(−n)ϕ̂(n).

Proof. Using Lemma 2.2.1 we see that

〈L,ϕ〉 = lim
N→∞

〈L, SN [ϕ]〉 = lim
N→∞

2π
N∑
−N

ϕ̂(n)L̂(−n).

This proves the Lemma. �

Theorem 2.5.2. If L ∈ D′, then the Fourier series of L tends weak-* to L.

Proof. For every ϕ ∈ D(T ) we find by Lemma 2.5.1, if N →∞,

〈SN [L], ϕ〉 = 2π
N∑
−N

L̂(n)ϕ̂(−n)→ 〈L,ϕ〉.

�

Corollary 2.5.3. The map L→ L̂ is injective on D′.

Proof. If L̂(n) = 0 for all n ∈ Z, then L = 0 by Theorem 2.5.2. �

Corollary 2.5.4. Let L ∈ D′. If L′ = 0 on T , then L is a constant.

Proof. The Fourier coefficients of L′ are 0 = L̂′(n) = inL̂(n). It follows that the
Fourier series of L consists only of the constant term. Theorem 2.5.2 gives that L is a
constant. �

Theorem 2.5.5. The following are equivalent.
i.
∑∞

n=−∞ cne
int is the Fourier series of a periodic distribution.

ii. There exist constants N,C such that |cn| ≤ CnN .

Proof. If
∑∞

n=−∞ cne
int is the Fourier series of a periodic distribution L then

∑N
n=−N cne

int

tends weakly to L by Theorem 2.5.2. It follows that for every k, if N > k

〈
N∑
−N

cne
int − L, e−ikt〉 = ck − L̂(k)

tends to 0 if N → ∞. Hence ck = L̂(k). Now L has finite order, say N . Then |cn| =

|〈L, e−int〉| ≤ CP̃N (e−int) ≤ CNnN .
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In the other direction, if |cn| ≤ CnN , then (cn/n
N+1)n ∈ l2(Z). Parseval gives

f(t) =

∞∑
−∞

cn
nN+1

eint ∈ L2(T ).

It follows that f (N+1) is a distribution of at most order N + 1. It has Fourier coefficients
iN+1cn for n 6= 0. Dividing by iN+1 and adding c0 we have found a distribution with the
prescribed Fourier series. �

Corollary 2.5.6. Every periodic distribution is of the form F (N)+c with F continuous
(or in L2).

Proof. This is in the proof of the second part of Theorem 2.5.2 for F in L2. If F is
not continuous we consider

F (t) =
∞∑
−∞

cn
nN+1

eint ∈ C(T ),

because the series is uniformly convergent and proceed as in the last part of the proof of
the Theorem. �

2.6. Convolution and Multiplication

From [13] we know that if f, g ∈ C2π, then f ∗ g :=
∫ π
−π f(x− y)g(y) dy2π and fg are also

in C2π and have Fourier series given by

(2.6.1) (f ∗ g)̂ (n) =

∫∫
f(x− y)g(y)e−in(x−y)e−iny

dy

2π

dx

2π
= f̂(n)ĝ(n)

and

(2.6.2) (fg)̂ (n) =

∞∑
−∞

f̂(n− j)ĝ(j) =: f̂ ∗ ĝ(n).

2.6.1. We can use (2.6.1) to define the convolution L1 ∗ L2 for periodic distributions
Li ∈ D:

(2.6.3) L1 ∗ L2
def
=
∞∑
−∞

L̂1(n)L̂2(n)einx.

Application of Theorem 2.5.5 gives that there exist C, k > 0 such that |L̂1(n)L̂2(n)| < C|n|k,
(n 6= 0), and another application of Theorem 2.5.5 shows that the series represents a
distribution.

Formula (2.6.2) shows once more why it is difficult to multiply distributions: The Fourier

coefficients (fg)̂ (n) have to be finite. Suppose f is a distribution of order k. Then f̂(n)
behaves like nk. For (2.6.2) to converge, the ĝ(n) have to be something like n−k, i.e. g is
fairly smooth.

2.7. Exercises

2.7.1. Prove that, as n→∞, the sequence sin(nt)/n3 converges to 0 uniformly, but it
does not converge in D(T ).

2.7.2. Prove that (2.2.4) defines a metric and complete the proof of Lemma 2.2.2.

2.7.3. Recall the Arzela-Ascoli theorem: If {fα}α is an equicontinuous family of
pointwise bounded continuous functions on a separable compact metric space, then {fα}α
has a uniformly convergent subsequence. Equicontinuous means

∀ε ∃δ such that |x− y| < δ =⇒ |fα(x)− fα(y)| < ε,

independent of α.
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Prove the following. If {fα}α is bounded in the C1-norm on T , that is, the norm
‖ · ‖∞ + ‖ · ′‖∞ on T , then {fα}α is equicontinuous and pointwise bounded. (Apply the
mean value theorem.)

2.7.4. Prove the continuity in example 2.3.1 by showing that ϕn → ϕ in D(T ) implies
〈Lu, ϕn〉 → 〈Lu, ϕ〉.

2.7.5. Let L ∈ D′(T ) be of order k and let f ∈ C l(T ). For which k and l can you give
a definition of fL by using (2.6.1) ?

2.7.6. Compute the distribution sum of
∞∑
−∞

neinx,

∞∑
n=1

sinnx.

(2.7.1)

2.7.7. Compute the distributional derivative of

(2.7.2) f(x) =

{
x+ π if −π < x < 0,

x− π if 0 < x < π.

2.7.8. Let ϕ ∈ D(T ), L ∈ D′(T ). Put ϕx(y) = ϕ(x− y). Show that

L ∗ ϕ(x)
def
= 〈L,ϕx〉

is well-defined and coincides with definition (2.6.3). Prove that L ∗ ϕ is a smooth function.

2.7.9. Let L ∈ D(T )′ have support {0}.
(1) Use Corollary 2.5.6 to express L as the j’th derivative of a continuous function f

on (−π, π).
(2) Show that there are polynomials P1, P2 of degree at most j − 1 such that f = P1

if x > 0 and f(x) = P2(x) if x < 0.
(3) Conclude that we may take f = PU with P a polynomial of degree j − 1 and U

the characteristic function of (0, π).
(4) Prove that L is a finite linear combination of derivatives of δ.

2.7.10. For L ∈ D′(T ), let Lh be defined by Lhϕ := Lϕ(.− h). Compute the distribu-
tional limit

lim
h→0

Lh − L
h

.

2.7.11. Suppose that L ∈ D′ has order k, and on an open Γ ⊂ T is equal to a
distribution L̃ of order j < k. Prove that L can be multiplied with any Cj function F , that
is Ck in a neighborhood of the complement of Γ. [ First prove the result for L = 0 on Γ.

Then write L = (L− L̃) + L̃.]
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