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iv CONTENTS

Fourier Analysis can indicate the study of Fourier transformations, Fourier series, and
their extensions. One studies e.g. the convergence properties of Fourier series of certain
classes of functions. It may also indicate the use of the Fourier mechanism in other subjects,
e.g. in differential equations or in signal analysis. This course contains something of both
these worlds. The course is intended for the master level mathematics at Dutch universities.
Thus we assume some knowledge of elementary Fourier Analysis, Functional Analysis and
Integration theory. At the UvA the courses Integration theory and Linear analysis of the
bachelor program are more than sufficient. For convenience of the reader the essentials of
all this are mentioned in the notes, but we do not dwell on the proofs.

The notes are based on a course that I first gave in 1996 at the UvA. They have been
modified and slightly been edited, but there are bound to be many typo’s and other errors.
I would certainly appreciate it if a reader pointed out some to me.

Everything in these notes can be found in the literature, but one may have to look for
it a while.

Jan Wiegerinck



CHAPTER 1

Classical Fourier series

1.1. Introduction and Reminder

In this section we recall a few facts from the linear analysis course of the third year.
See the notes by Prof. Koornwinder [13] or the books [20, 12]. As usual we identify
functions on the unit circle T with 2π-periodic functions on R; if f is defined on T , then
g(t) = f(eit) is the associated 2π-periodic function on R. We denote either by Lp2π or by
Lp(T ), (1 ≤ p <∞) the set of 2π-periodic measurable functions that satisfy

(1.1.1) ‖f‖p
def
=

(∫ 2π

0
|f(t)|p dt

2π

)1/p

<∞

Notice that we normalized Lp(T ) spaces utilizing the measure dt
2π . The pleasant effect is

that the norm of the function 1 equals 1. We know that ‖ ‖p is a norm, which turns Lp into
a Banach space, while L2(T ) is even a Hilbert space with inner product

〈f, g〉 def
=

∫ 2π

0
f(t)g(t)

dt

2π
.

Other function spaces on T are L∞(T ) the space of 2π periodic, essentially bounded
measurable functions, and C(T ) ⊂ L∞(T ) the space of continuous 2π-periodic functions.
Both spaces are Banach spaces when equipped with the sup-norm.

We will also have use for sequence spaces: lp(Z) (1 ≤ p <∞) is the space of sequences

(1.1.2)

a = {aj}∞j=−∞ : |a|p
def
=

∑
j∈Z
|aj |p

1/p

<∞


Again lp(Z) is a Banach space with norm | |p, and l2(Z) is a Hilbert space, the inner product
being

∑
j∈Z aj b̄j , (a, b ∈ l2(Z)). Other sequence spaces that we will meet are the space of

bounded sequences c(Z), and its subspace c0(Z), which consists of sequences {aj} tending
to 0 if |j| → ∞. Both are Banach spaces when equiped with the sup-norm.

The Fourier series of f ∈ L1(T ) is

(1.1.3)
∞∑
−∞

ane
int,

where an = f̂(n) =
∫ 2π

0 f(s)e−ins ds2π are the Fourier coefficients of f . We know by the

Riemann-Lebesgue Lemma that f̂(n) → 0 if |n| → ∞, that is, f̂ ∈ c0(Z). A formal sum of
the form (1.1.3) with arbitrary an is called a trigonometric series. If we start with a Borel
measure supported on [−π, π) we can also form the Fourier coefficients of µ

an = µ̂(n) =

∫ π

−π
e−intdµ(t).

The series (1.1.3) is then called a Fourier-Stieltjes series. Of course |µ̂(n)| ≤ ‖µ‖, but it
is in general not true that µ̂(n) → 0, if |n| → ∞. Taking µ = δ, point mass at 0, we find

δ̂(j) = 1/2π for all j and the series (1.1.3) does not converge in the usual sense

1



2 1. CLASSICAL FOURIER SERIES

We see that taking a Fourier series can be seen as a map ˆ from a space of functions, or
measures, or more general, to a space of sequences. Natural questions are: For what kind
of things can one define a Fourier series? Can you say something about the target space if
you start in Lp(T )? Is ˆ surjective to some lp(Z)? Is it maybe even an isometry? Is (1.1.3)
convergent in Lp if f ∈ Lp? Is it perhaps convergent in any other sense?

Some of these questions will be answered in the course.

Partial sums of the series (1.1.3) are expressed by means of the Dirichlet kernels DN .
These are defined as follows

(1.1.4) DN (t) =

N∑
−N

eint =

{
sin((N+1/2)t)

sin(t/2) if t /∈ 2πZ
2N + 1 if t ∈ 2πZ.

For the N -th partial sum SN [f ](t) =
∑N

n=−N f̂(n)eint of the Fourier series of f we find

(1.1.5) SN [f ](t) =

N∑
n=−N

(∫ π

−π
f(s)e−insds

)
eint =

∫ 2π

0
f(s)DN (t− s) ds

2π
=: f ∗DN (t).

Similarly, for the N -th Césaro sum σN , i.e. the average of the partial sums S0 upto SN ,
there is an expression by means of the N -th Fejér kernel KN . The latter is defined by

KN (t) =
1

N + 1

N∑
n=0

Dn(t) =
N∑

n=−N

N + 1− |n|
N + 1

eint

=

 1
N+1

(
sin((N+1)t/2)

sin(t/2)

)2
if t /∈ 2πZ

N + 1 if t ∈ 2πZ.

(1.1.6)

The Césaro sum of f is given by

σN [f ](t) =
1

N + 1

N∑
n=0

Sn[f ](t) = f ∗KN (t).

The Fejér kernels KN are good kernels, they have the three characteristic properties of
an approximate identity:

• KN ≥ 0.
•
∫ 2π

0 KN (t) dt
2π = 1.

• For every 0 < δ < π, KN (t)→ 0 as N →∞ uniformly on [δ, 2π − δ].
Let f ∈ L1(T ). If a family of integral kernels LN on [0, 2π] has these three properties, then
at a point of continuity a of f one has that LN ∗ f(a)→ f(a) and, moreover, for f ∈ C(T )
the convergence of LN ∗ f to f is uniform on T . We indicate the proof.
(1.1.7)

|f(a)− LN ∗ f(a)| =
∣∣∣∣∫ 2π

0

(
f(a)− f(a− t) )LN (t) dt| ≤

∣∣∣∣∣
∫

[δ,2π−δ]
· · ·

∣∣∣∣∣+

∣∣∣∣∣
∫

[0,δ]∪[2π−δ,2π]
· · ·

∣∣∣∣∣
The first term is small for small δ by continuity of f at a and property i and ii. Fixing such

a small δ, the second term is bounded by maxδ≤t≤2π−δ LN (t)‖f‖1 + |f(a)|
∫ 2π−δ
δ Ln(t)dt.

This tends to 0 when N →∞. Now if f is continuous on T , then it is uniformly continuous
on T and δ can be chosen independently of a. Moreover the second term can be estimated
uniformly, leading to uniform convergence of LN ∗ f on T . With a bit more effort, if
f ∈ Lp(T ) (1 ≤ p < ∞), then LN ∗ f tends to f in Lp sense as N → ∞. See [10] for a
clever proof with a slightly weaker condition iii.

In particular these things hold for the Fejér kernel, giving the well-known fact that the
Césaro sums of f ∈ C(T ) converge to f uniformly on T . In particular every f ∈ C(T ) can
be approximated uniformly by goniometric polynomials, namely by its Césaro sums.
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(1.1.8) f(t) = lim
N→∞

σN [f ](t).

The exponentials eint, n ∈ Z, form clearly an orthonormal system in L2(T ). Because C(T )
is dense in L2(T ) and the goniometric polynomials are dense in C(T ), this orthonormal
system is complete, hence an orthonormal basis for L2(T ). Observe that for an f ∈ L2(T )
its Fourier series is the expansion of f on the basis {eint}. As a consequence for f, g ∈ L2(T )
Parseval’s formula holds:

(1.1.9)

∫ π

−π
fḡ

dt

2π
=
∑
Z
f̂(n)¯̂g(n),

Observe that the lefthand side of 1.1.9 is the inner product in L2(T ), while the righthand side
is the inner product in l2(Z). So 1.1.9 expresses that ˆ is an isometry from L2(T )→ l2(Z).

In fact it is also surjective. If {aj}j ∈ l2(Z) then the partial sums
∑N

j=−N aje
ijt form a

Cauchy sequence in L2(T ) that converges to some f ∈ L2(T ) with f̂(j) = aj .

We will need a few additional estimates on KN :

(1.1.10) KN (t) ≤ min{N + 1,
π2

(N + 1)t2
}, t ∈ [−π, π]

and, using Parseval’s formula,

(1.1.11) ‖KN‖22 =
N∑

n=−N

(
N + 1− |n|
N + 1

)2

≥ N/2.

The sum in the middle can of course be computed, but the last estimate follows easily by

comparison with
∫ N+1

0 (1− x/(N + 1))2 dx.

Pointwise Convergence of the Fourier series is not nearly as good as L2-convergence.
The classical result is as follows.

Theorem 1.1.1. Suppose that f ∈ C(T ) is Hölder continuous, i.e. there exist α,C > 0
such that

|f(s)− f(t)| < C|s− t|α.

Then

SN [f ](t)→ f(t), uniformly, as N →∞.

However, there exist continuous functions on T , the Fourier series of which does not
converge uniformly on T . Indeed, for every x ∈ T the map Λxn : f 7→ Sn[f ](x) is a bounded
linear functional on C(T ). One can show that ‖Λxn‖ ≥ C log n and in particular tends to
∞. The Banach Steinhaus Theorem then gives that for a dense set of functions f ∈ C(T )
one has

sup
n
|Λxnf | = |Sn[f ](x)| =∞.

See [16] for details. A more or less constructive proof can be found in [20].
Concerning point wise convergence of the Fourier series of Lp functions we state two

classical results. Andrey Kolmogorov constructed L1(T )-functions whose Fourier series does
not converge in any point of T , [11]. Lennart Carleson, on the other hand, showed that
the Fourier series of an f in L2(T ) converges almost everywhere on T , [1]. His result was
extended by Richard Hunt to Lp for p > 1, cf. [8].
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1.2. Sine versus Cosine Series

If we start with an even function f , (f(t) = f(−t)), in (1.1.3), we will find that an = a−n
(the sequence is even). Then taking together the n-th and −n-th term, we obtain

a0 +
∞∑
n=1

an(eint + e−int) = a0 +
∞∑
n=1

2an cos(nt),

a cosine series. Similarly if f is an odd function (f(t) = −f(−t)), we find an = −a−n, (the
sequence is odd), and we obtain the sine series

∞∑
n=1

an(eint − e−int) =

∞∑
n=1

2ian sin(nt).

Notice that every function on (0, π) can be extended as an even, but also to an odd 2π-
periodic function. In that light it is remarkable that sine and cosine series have different
convergence behavior even if the coefficients are the same. (Of course the series belonging
to even and odd continuation do not have the same coefficients) In the present section we
prove two theorems which enlighten this behavior of sine and cosine series.

Theorem 1.2.1. Suppose that (an)∞n=−∞ is an even sequence of positive numbers which
tend to 0 if |n| → ∞. If (an) satisfies the convexity condition

an−1 + an+1 − 2an ≥ 0, (n ≥ 1),

then there exists f ∈ L1
2π such that f̂(n) = an.

Proof. The convexity condition implies that an− an+1 is monotonically decreasing to
0. From this we have

n(an − an+1) ≤ (ak − ak+1) + (ak+1 − ak+2) . . . (an − an+1) + (k − 1)(an − an+1)

= ak − an+1 + (k − 1)(an − an+1)→ 0,
(1.2.1)

by choosing k fixed and large, so that ak is small, and then letting n → ∞. By cleverly
rearranging of the series, so-called summation by parts, we also find

N∑
n=1

n(an−1 + an+1 − 2an) =

N∑
n=1

n((an+1 − an)− (an − an−1))

=

N∑
n=1

n(an+1 − an)−
N−1∑
n=0

(n+ 1)(an+1 − an) = a0 − aN −N(aN − aN+1) −→ a0,

(1.2.2)

for N →∞. Put

fN (t) =
N∑
n=1

n(an−1 + an+1 − 2an)Kn−1(t).

This series has non-negative terms and is Cauchy in L1 sense. In view of (1.2.2), for N > M∫ 2π

0
|fN − fM | dt =

N∑
n=M+1

n(an−1 + an+1 − 2an)

∫ 2π

0
Kn−1(t)dt

=

N∑
n=M+1

n(an−1 + an+1 − 2an) < ε if M is sufficiently large.

(1.2.3)

Therefore limN→∞fN = f exists in L1(T ). Using that by (1.1.6) K̂n−1(p) = n−|p|
n if

n > |p| and a dilated version of (1.2.2), we compute f̂ .

f̂(p) =
∑
n>|p|

(an−1 + an+1 − 2an)(n− |p|) =

∞∑
j=1

j(a|p|+j−1 + a|p|+j+1 − 2a|p|+j) = a|p|.
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Theorem 1.2.2. Suppose that f is in L1(T ) and that f̂(n) = −f̂(−n) ≥ 0 for n ≥ 0.

Then
∑

n6=0
f̂(n)
n converges.

Proof. Let F (t) =
∫ t

0 f(s) ds, t ∈ [−π, π]. Then F is continuous and F (−π) = F (π),

because f̂(0) = 0, i.e. F ∈ C(T ). The Fourier coefficients of F are

F̂ (n) =
f̂(n)

in
, (n 6= 0).

The Césaro sums of F will converge uniformly to F , therefore, subtracting F̂ (0) from F
and evaluating at 0,

lim
N→∞

∑
1≤|n|≤N

N + 1− |n|
N + 1

f̂(n)

n
= i(F (0)− F̂ (0)) = −iF̂ (0).

All terms in the sum are positive, so this sum converges absolutely. Next∑
1≤|n|≤N

f̂(n)

n
≤ 2

∑
1≤|n|≤N

(1− |n|
2N + 1

)
f̂(n)

n
< iF̂ (0),

which proves the theorem. �

Corollary 1.2.3. Let bn = 1
log(n+2) , then

∑
bn cos(nt) is the Fourier series of an L1

function, but
∑
bn sin(nt) is not.

1.3. Weak Topologies

Occasionally we will use weak-* convergence of measures. In this section we recall this
notion for readers who are not familiar with it.

1.3.1. Weak-* convergence. A sequence of Borel measures (µj)j on a compact Haus-
dorff space X converges weak-* to µ if for every f ∈ C(X)

(1.3.1) lim
j→∞

∫
f dµj =

∫
f dµ.

Similarly, in a Hilbert space H with inner product 〈·, ·〉, a sequence fj converges weakly to
f if for every g ∈ H

(1.3.2) lim
j→∞
〈fj , g〉 = 〈f, g〉.

This and the Banach-Alaoglu Theorem below is basically all we need to know. Nevertheless
some background may be useful.

1.3.2. The weak topology. Recall that a topology τ1 on a set X is called weaker
than τ2 on X if every τ1 open set in X is also τ2 open; then τ2 is called stronger than τ1.
Also recall that the product topology is defined by requiring that it is the weakest topology
on the set theoretical product such that all projections are continuous mappings.

We can do something similar in topological vector spaces. Thus let X be a topological
vector space such that its dual X∗ separates points of X, i.e. for every x ∈ X there exists
a continuous linear functional L ∈ X∗ with Lx 6= 0. This is certainly the case if X is a
Banach or a Hilbert space. The weak topology on X is the weakest topology that makes all
L ∈ X∗ continuous. Since they are already continuous in the original topology of X, the
weak topology is weaker than the original one.

A local subbasis for the weak topology on X consists of the sets

V ε
L = {x ∈ X : |Lx| < ε},
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where ε > 0 and L ∈ X∗. This means that U ⊂ X is a neighborhood of 0 if there exist
εi > 0, Li ∈ X∗ such that (∩pi=1V

εi
Li

) ⊂ U . How does this relate to convergence? Well,
xj → x if and only if xj − x → 0, that is, every neighborhood U of 0 must, for sufficiently
large j, contain xj − x. Therefore, for every choice of finitely many V εi

Li
, it holds that

xj − x ∈ (∩pi=1V
εi
Li

) if j is sufficiently large. This happens if and only if Lxj → Lx for every

L. Compare this to (1.3.2).

1.3.3. The weak-* topology. Recall that X can be seen as a subset of X∗∗ via
xL := Lx, (x ∈ X, L ∈ X∗) and that the subset X ⊂ X∗∗ already separates points on
X∗. The weak-* topology on X∗ is defined as the weakest topology that makes all x ∈ X
continuous functionals on X∗. We do not require continuity of functionals in X∗∗ \ X
(In many important cases, however, this set is empty, compare [22]). Similarly to weak
convergence, a sequence Lj ∈ X∗ converges weak-* to L ∈ X∗ if and only if for every x ∈ X
we have for every x ∈ X that Ljx→ Lx.

Finally we quote

Theorem 1.3.1 (Banach-Alaoglu). If V is a neighborhood of 0 in a topological vector
space X and

KV = {L ∈ X∗ : |Lx| ≤ 1 for every x ∈ V }.
Then KV is weak-* compact.

A proof can be found in [17].

Example 1.3.2. Let X = C(T ), V = {f ∈ C(T ) : ‖f‖∞ < 1}, then KV = {µ ∈M(T ) :
‖µ‖ ≤ 1} is compact. Theorem 1.3.1 tells us that every sequence of Borel measures (µα)α
on T with uniformly bounded mass has a weak-* convergent subsequence. In other words,
there exists a subsequence (µj)j and a measure µ ∈M(T ) such that (1.3.1) holds.

1.4. Lacunary Series

Definition 1.4.1. A sequence {λj}, j = 1, 2, . . ., of positive integers is called (Hadamard)
lacunary with constant q > 1 if λj+1 > qλj for all j ≥ 1. A power series is called lacunary

if it is of the form
∑
cjz

λj , while a trigonometric series is called lacunary if it is of the form∑
cje

iλjt +
∑
dje
−iλjt with {λj} lacunary.

Lemma 1.4.2. Let n0 ∈ Z. Suppose that f ∈ L1
2π and f(t) = O(t) as t→ 0. If

(1.4.1) f̂(j) = 0, for all 1 ≤ |n0 − j| ≤ 2N,

then

|f̂(n0)| ≤ 2π4(N−1 sup
|t|≤N−1/4

|f(t)/t|+N−2‖f‖1).

Proof. If gN is any trigonometric polynomial of degree 2N with ĝ(0) = 1, then

f̂(n0) =

∫ π

−π
e−in0tf(t)gN (t)

dt

2π
,

because (1.4.1) expresses that SN [e−in0tf(t)] = f̂(n0). We take gN = K2
N/‖KN‖22. Then

in view of (1.1.10) and (1.1.11)
∫ π
−π gN

dt
2π = 1, gN ≥ 0, gN (t) ≤ π42

N(N+1)2t4
. We use this to

estimate

|f̂(n0)| ≤
∫ π

−π
|f(t)|gN (t)

dt

2π
=

∫
|t|≤N−1

+

∫
N−1≤|t|≤N−1/4

+

∫
N−1/4≤|t|≤π

.

Now these three integrals are estimated as follows.∫
|t|≤N−1

|f(t)|gN (t)
dt

2π
≤ 1

N
sup
|t|≤N−1

|f(t)|
|t|

∫ π

−π
gN (t)

dt

2π
=

1

N
sup
|t|≤N−1

|f(t)|
|t|

.
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1
N
≤|t|≤ 1

N1/4

|f(t)|gN (t)
dt

2π
≤ sup
|t|≤ 1

N1/4

|f(t)|
|t|

∫
1
N
≤|t|≤ 1

N1/4

|t|π42

N(N + 1)2t4
dt

2π

≤ sup
|t|≤ 1

N1/4

|f(t)|
|t|

π42N

2π(N + 1)2
.

(1.4.2)

∫
N−1/4≤|t|≤π

|f(t)|gN (t)
dt

2π
≤ π42

N(N + 1)2(N−1/4)4

∫ π

−π
|f(t)| dt

2π
.

These three estimates prove the lemma. �

Corollary 1.4.3. Suppose that f =
∑∞

n=1 an cos(λnt) ∈ L1
2π, with λn+1 ≥ qλn and

q > 1. If f is differentiable at a point p then an = o(λ−1
n ).

Proof. Considering fp(t) = f(t+ p) which has f̂p(n) = einpf̂(n) we may assume that
p = 0. Replace f by f − f(0) − f ′(0) sin t. This has no effect on the tail of the series and

now f(t) = o(|t|) at 0. We have f̂(j) = 0 for 0 < |j − λn| < (1− 1/q)λn. We apply the
Lemma and obtain

|f̂(λn)| ≤ o(1)

λn
+
C

λ2
n

=
o(1)

λn
).

�

Corollary 1.4.4 (Weierstrass’ nowhere differentiable function).

f(t) =
∞∑
n=0

cos(2nt)

2n

is continuous, but nowhere differentiable.

Proof. The series is lacunary and uniformly convergent, so f is continuous and the
previous corollary gives that f is nowhere differentiable. �

1.5. Riesz products

Let {λn} be lacunary with q ≥ 3. A trigonometric polynomial of the form

PN (t) =
N∏
n=1

(1 + an cos(λnt+ ϕn))

is called a (finite) Riesz product. Observe that, since q ≥ 3, an integer M can at most in
one way be written as

M =
∞∑
1

cnλn, cn ∈ {−1, 0, 1}.

In fact M will be a finite sum and unless q = 3, not all M can be expressed as such a
sum. We use this when expanding PN . A typical factor of PN is 1 + (ane

iϕn/2)eiλnt +
(ane

−iϕn/2)e−iλnt. In the expansion of PN we will thus find exponentials of the form

eikt = ei(
∑
cnλn)t and by the preceding observation such an exponential can be obtained in

at most one way. It follows that

(1.5.1) P̂ (k) =

{∏(aneiϕncn
2

)
if k =

∑
cnλn, with cn 6= 0,

0 elsewhere.

Also, from PN+1 = PN +
aN+1e

iϕN+1

2 PNe
iλN+1t +

aN+1e
iϕN+1

2 PNe
−iλN+1t we see that the

Fourier series of PN+1 is obtained from the Fourier series of PN by adding two copies of PN
multiplied by a constant, one shifted λN+1 to the right, the other shifted λN+1 to the left.

As q ≥ 3 there is no overlap. In particular, whatever the sequence {an}, if N →∞, then P̂N
becomes stationary on every finite subset of Z. We find that limN→∞ P̂N is a well-defined
trigonometric series. If P = limPN in some sense then P̂ = lim P̂N .
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For us there are two cases of interest:

(1) Suppose −1 ≤ an ≤ 1. Then all PN are nonnegative and
∫ π
−π PN = 1. Thus the PN

are (densities of) probability measures on (−π, π). There exists at least one weak-*
limit point. If µ1, µ2 are two weak-* limit points of PN dt, we have µ̂1 = µ̂2, so
µ1 = µ2 and PN converges weak-* to a probability measure with Fourier-Stieltjes
series limPN .

(2) Suppose that an = ibn, bn ∈ R and
∑

n b
2
n <∞. We have 1 ≤ |(1 + ibn cos(λnt)| ≤

(1 + b2n)1/2, therefore, with suitable constant C.

(1.5.2) 1 ≤ |PN | ≤ e(
∑
n log(1+b2n))/2 ≤ e

1
2

∑
n b

2
n < C.

Thus |PN | is uniformly bounded and PN converges weak-* to (a measure given by) an L∞2π
function. (If O is open in T with Lebesgue measure |O|, and f is continuous 0 ≤ f ≤ 1 with
support in O, then |

∫
fPN dt| ≤ C|O|; the same goes for the weak-* limit, giving that the

weak-* limit is absolutely continuous with respect to Lebesgue measure and the density is
in L∞.)

Lemma 1.5.1. Let {λj} be lacunary with constant q. Put λ−j = −λj, λ0 = 0. There

exist constants Aq, Bq such that if f(t) =
∑N
−N cje

iλjt, then∑
|cj | ≤ Aq‖f‖∞,
‖f‖2 ≤ Bq‖f‖1.

(1.5.3)

Proof. Notice that if we prove the Lemma for real valued f , then it follows for complex
valued f with the constants Aq and Bq doubled. We first deal with the case q ≥ 3 and
assume that f is real, which means that cj = c̄−j . To prove the first inequality, we set

PN (t) =
N∏
j=1

(1 + cos(λjt+ ϕj)).

We choose ϕj = arg cj , j ≥ 1. We have∫ π

−π
PN f̄

dt

2π
=

N∑
j=−N

P̂N (λj)
¯̂
f(λj) =

1

2

N∑
j=−N

eiSign (j)ϕ|j| c̄j =
1

2

N∑
−N
|cj |,

Also

|
∫ π

−π
PN f̄

dt

2π
| ≤ ‖f‖∞

∫ π

−π
PN

dt

2π
= ‖f‖∞.

Thus we have proved the first equality for q ≥ 3 with Aq = 4.
For the second inequality we set

PN (t) =

N∏
j=1

(
1 + i

(
|cj |
‖f‖2

)
cos(λjt+ ϕj)

)
.

We proceed as above and find with the same choice of ϕj

‖f‖2 =

N∑
j=−N

|cj |2

‖f‖2
= −2i

N∑
j=−N

i
|cj |
‖f‖2

eiSign (j)ϕ|j|

2
c̄j

= −2i
N∑

j=−N
P̂N (λj)

¯̂
f(λj) = −2i

∫
PN f̄

dt

2π
≤ 2‖PN‖∞‖f‖1.

(1.5.4)

Since the PN are uniformly bounded by e1/2, compare (1.5.2), we are done. Notice that
it is the seemingly artificial factor i that we introduced in PN , that makes it possible to
estimate ‖PN‖∞.

For q ≥ 3 we may take Bq = 4e1/2.
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The general case is done by carefully splitting the lacunary sequence in such a way that
the Riesz products associated to the subsequences make sense and will only pick up the
terms in the series that we want. Let M be a large integer, depending on q and to be
determined in the process. Write for a fixed 0 ≤ m < M λmj = λm+jM . We want that

{λmj }j is lacunary with constant ≥ 3. Thus we require that M satisfy

(1.5.5) qM ≥ 3,

hence a Riesz product associated to {λmj }j makes sense. Next, we want that each of the
frequencies λk of f occurs in precisely one Riesz product. Suppose that n > 0 is written as∑J

j=0 cjλ
m
j , with cj ∈ {−1, 0, 1} and cJ = 1. Then

|n− λmJ | ≤
J−1∑
j=0

λmj ≤ λmJ
J−1∑
j=0

λmj
λmJ
≤ λmJ

J∑
j=1

1

qjM
≤

λmJ
qM − 1

.

Thus we want |λk − λmJ | >
λmJ
qM−1

for all λk 6= λmJ . If λk ≥ qλmJ this leads to

(1.5.6) q − 1 >
1

1− qM
or q > 1 +

1

qM − 1
,

while, if λmJ ≥ qλk, this leads to

(1.5.7) 1− 1/q >
1

1− qM
or 1/q < 1− 1

qM − 1
.

We take M so large that (1.5.5), (1.5.6), (1.5.7) are satisfied. Now let PmN =
∏N

1 (1 +
am+jM cos(λmj t+ ϕm+jM )) be one of the Riesz products considered in the first part of the
proof. Then

1

2π

∫
PmN (t)f̄(t) dt =

1

2

∑
|am+jM ||cm+jM |.

The first part of the proof gives ∑
|cm+jM | ≤ 4‖f‖∞,

(
∑
|cm+jM |2)

1
2 ≤ 4e1/2‖f‖1,

(1.5.8)

in respectively the first and second case of the lemma. Summing over m = 1, . . . ,M gives
the result. �

Theorem 1.5.2. Suppose that the Fourier series
∑∞
−∞ cje

iλjt of f ∈ L1(T ) is lacunary,

then f ∈ L2(T ). If f is bounded, then
∑
|cj | <∞.

Proof. Let σN [f ] be a Césaro sum. These have L1 norms, uniformly bounded by ‖f‖1.
The lemma gives that

N∑
−N

(
1− |j|

N + 1

)2

|cj |2 ≤ BqM.

This implies, by letting N →∞, that for fixed J the sum
∑J
−J |cj |2 ≤ BqM , thus f ∈ L2(T ).

The proof of the second statement is similar. �

The homogeneity of behavior of lacunary series also appears in the following theorem.
We shall denote the length of a subarc Γ of T by |Γ|.

Theorem 1.5.3. Suppose that (λj) is lacunary with constant q. For every δ > 0 there

exists j0 ∈ N such that for all lacunary f ∈ L2(T ), f(t) =
∑∞
−∞ cje

iλjt with cj = 0 for
|j| < j0, the following inequality holds for every subarc Γ of T :

(
1

2π
|Γ| − δ)‖f‖2 ≤

∫
Γ
|f |2 dt

2π
≤ (

1

2π
|Γ|+ δ)‖f‖2.
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Proof. It suffices to prove the theorem for trigonometric polynomials. We shall give a
proof for q ≥ 3. For the general case, see exercise 1.7.7. We have

(1.5.9)

∫
Γ
|P |2 dt

2π
=

∫
Γ

∑
n,m

cnc̄me
i(λn−λm)t dt

2π
=

1

2π
|Γ|‖P‖2 +

∑
n6=m

cnc̄m

∫
Γ
ei(λn−λm)t dt

2π
.

Let h be the characteristic function of Γ. Then ĥ(n) =
∫

Γ e
−intdt/2π, therefore (1.5.9)

can be rewritten as

(1.5.10)
1

2π
|Γ|‖P‖2 +

∑
n6=m

cnc̄mĥ(λm − λn).

Now because q ≥ 3, λn − λm assumes any integer value j at most twice (solutions occur
in pairs: (n,m) and (−m,−n), and compare the beginning of this section). For general
q > 1 there exists K = K(q) such that there are at most K solution, Ex. 1.7.7. Moreover,

minm,n≥j0 |λm − λn|} tends to ∞ with j0. Thus frequencies j of ĥ occur at most twice in
the sum in (1.5.10). We apply Cauchy-Schwarz to the sum and obtain that the norm of the
sum is less than ∑

n6=m
|cncm|22

∑
|j|≥ inf

n 6=m
{|(λn−λm)|}

|ĥ(j)|2


1
2

≤ ‖P‖2δ,

if we choose j0 so large that the 2-norm of the tail of the series of h is less then δ/2. It

follows from the explicit form of ĥ(j) that this can be done independent of Γ. Combining
this with (1.5.9) and (1.5.10) we obtain

(
1

2π
|Γ| − δ)‖P‖2 ≤

∫
Γ
|f |2dt ≤ (

1

2π
|Γ|+ δ)‖P‖2.

�

1.6. Sidon sets

Definition 1.6.1. Let E ⊂ Z. A function f (or measure, or distribution) on T is called

E-spectral if f̂(n) = 0 if n /∈ E. Denote by CE , LpE , ME the respective subspaces of C(T ),
Lp(T ), M(T ) consisting of E-spectral elements. These are closed subspaces. A subset E of

Z is called a Sidon set if f ∈ CE implies f̂ ∈ l1(E).

Example 1.6.2. Of course every finite set is a Sidon set. By Theorem 1.5.2 every
lacunary set is a Sidon set.

Theorem 1.6.3. The following are equivalent:
1. E is a Sidon set.
2. There exists K > 0 such that ‖f̂‖1 ≤ K‖f‖∞ for all E-spectral trigonometric polynomials
f .

3. ‖f̂‖1 is bounded for every f ∈ L∞E .

3.a There exists a K such that ‖f̂‖1 ≤ K‖f‖∞ for every f ∈ L∞E .

4. M̂E = l∞(E).

5. L̂1
E = c0(E).

Proof. (1 =⇒ 2) If E is Sidon, then the map f 7→ f̂ is linear bijective from CE to
l1(E). Also its inverse (as a linear map) is continuous. Indeed

‖f‖∞ = sup
t

∣∣∣∑ f̂(n)eint
∣∣∣ ≤∑ |f̂(n)|.
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Hence, by the Open Mapping Theorem, f̂ 7→ f is open and thus f 7→ f̂ is continuous,
which means that for some K > 0 one has ‖f̂‖1 ≤ K‖f‖∞. In particular, this is true for
E-spectral trigonometric polynomials.

(2 =⇒ 3(a)) If f ∈ L∞E , then σN (f) is an E-spectral trigonometric polynomial with
|σN (f)|∞ ≤ ‖f‖∞, independent of N . Thus there is a constant K such that ‖σ̂N (f)‖1 ≤
K‖f‖∞. As in the proof of Theorem 1.5.2 we conclude that ‖f̂‖1 ≤ K‖f‖∞.

(3 =⇒ 1) is trivial.
Item 4 and 5 both say that a certain bounded linear transformation is surjective. Now

recall that the Open Mapping Theorem implies that a surjective bounded linear transfor-
mation F between Banach spaces X and Y is open. Thus F ({‖x‖ < 1}) contains an open
neighborhood of 0 ∈ Y . By linearity we obtain that there is a constant C > 0 such that for
every y ∈ Y there exist x ∈ X with Fx = y and ‖x‖ < C‖y‖. This will be used in the last
two steps of the proof.

(3(a) =⇒ 4) Let (dj)j ∈ l∞(E). Then f 7→
∑

j f̂(j)dj is a continuous linear functional

on CE which by Hahn-Banach can be extended to C(T ). By the Riesz Representation
Theorem there exists a complex regular Borel measure µ which represents this functional.
Thus for f ∈ CE we have

∫
f dµ =

∑
j f̂(j)dj . We choose f(t) = e−iλjt, λ ∈ E and find

µ̂(λj) = dj . Thus ˆ̄µ(λj) = d̄j . Replacing dj by d̄j we obtain our result.
(4 =⇒ 5) First observe that modification of the Fejér kernels yields that if Λ is a finite

set of integers and ε > 0, then there exists a trigonometric polynomial P = PΛ,ε such that

P̂ (j) = 1 and ‖P‖1 ≤ 1 + ε. We will use this with ε = 1. Now let (dj)j ∈ c0(E). We may
assume that |dj | ≤ 1. Put

Ek = {n : 2−k < |dn| ≤ 2−k+1}.

By 4. there exist measures µk such that µ̂k(j) = dj if j ∈ Ek, while µ̂k(j) = 0 if j ∈ E \Ek;
moreover ‖µk‖ ≤ C2−k. Let Tk be trigonometric polynomials with T̂ (j) = 1 on Ek and
‖Tk‖1 ≤ 2. Then Tk ∗ µk is a trigonometric polynomial of L1 norm less than 2C2−k and

with Fourier coefficients T̂k(j)µ̂k(j) = µ̂k(j) on E. The conclusion is that

f(t) =
∞∑
k=1

Tk ∗ µk

is in L1(T ) because the series converges in L1(T ) and has f(j) = dj on E.
(5 =⇒ 2) Let g be an E-spectral trigonometric polynomial. Define dn = |ĝ(n)|/¯̂g(n)

if ĝ(n) 6= 0 and dn = 0 elsewhere. (dn)n ∈ c0(E) of norm 1, hence there exists f ∈ L1(T )

with f̂ |E= dn and ‖f‖1 ≤ C, where C is a constant only depending on E. Then∑
|ĝ(n)| =

∫ π

−π
f(t)ḡ(t) dt ≤ ‖g‖∞‖f‖1 ≤ C‖g‖∞.

�

Remarks 1.6.4. The smallest constant K in Theorem 1.6.3, such that 3a holds, is called
the Sidon constant of E.

In retrospect, we can understand the (limits of the) Riesz products in Lemma (1.5.1)
as explicitly constructed measures of Theorem (1.6.3), statement 4 and 5.

Corollary 1.6.5 (to Theorem 1.5.2). Suppose that E = {λj} is lacunary and that

L = (dj) ∈ l2(E). Then there exists a bounded function f on T such that f̂(λj) = dj.

Proof. In view of Riesz Representation Theorem, L is in l2(E)∗ = (L2
E)∗. In fact,

Lϕ =
∑
ϕ̂(λj)d̄j . By Theorem 1.5.2 L is also a continuous linear functional on L1

E . Now
L1
E is a closed subspace of L1(T ). By Hahn Banach we can extend L to all of L1(T ). We

denote the extension again by L. Recalling, c.f. [22][Ch 7], that the dual space of L1(T )
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is L∞(T ), we find that there exists a function f ∈ L∞ such that Lϕ =
∫ 2π

0 ϕf̄ dt2π , for all

ϕ ∈ L1(T ). We now apply this with ϕ(t) = eiλjt and obtain f̂(λj) = dj . �

Remark 1.6.6. One can do the same for general Sidon sets by proving the analogue of
Theorem 1.5.2. This requires considerably more effort, cf. [4].

1.7. Exercises

1.7.1. Let (bn)n∈Z be a sequence of positive numbers such that bn → 0 as |n| → ∞.
Show that there exists a sequence (an) with an ≥ bn which satisfies the convexity condition
of Theorem 3.1.

1.7.2. Suppose that f ∈ C2π is Hölder continuous of order α, 0 < α ≤ 1, i.e. there
exists B > 0 such that for all x, |f(x+ t)− f(x)| ≤ B|t|α. Show that |f̂(n)| ≤ Cn−α. Hint:
Write the Fourier coefficients as

f̂ =
1

2

(∫ 2π

0
f(s)e−ins

ds

2π
−
∫ 2π

0
f(s− π/n)e−ins

ds

2π

)
.

1.7.3. Let (λn) be lacunary. Suppose that f ∈ L1(T ) has Fourier series
∑
an cos(λnt).

Suppose that f is Hölder continuous at one point t0 ∈ T . Show that an = O(λ−αn ). Next
show that f is Hölder continuous on T .

1.7.4. With the assumptions as in exercise 1.7.3, show that if f equals 0 on a small
interval in T , then f ∈ C∞(T ). Can you relax the condition that f be 0 on an interval and
still reach the same conclusion?

1.7.5. With the same assumptions as in exercise 1.7.3, f(t) =
∑
cne

iλnt, show that
if f is (real) analytic on a subarc Γ of T , then f is real analytic on T by completing the
following outline.

(1) Observe that f is C∞ because of exercise 1.7.4 extended.

(2) Choose a suitable interval Γ, a suitable modification f̃ of f and show that there is
a C > 0 such that for every k, l

|ck|2|λk|2l ≤ C
∫

Γ
|f̃ (l)(t)|2dt.

(3) Use the Cauchy estimates to make the integrals in (2) bounded by a constant times
(l!δ−l)2.

(4) Make a favourable choice of l to have lim supk→∞ |ck|
1
λk < 1.

(5) Finish it off!

1.7.6. Prove Hadamard’s Theorem: If f(z) =
∑∞

n=0 cnz
λn is a lacunary power series

with radius of convergence R then f(z) has no analytic continuation to a domain larger
than the disc with radius R. (C(0, R) is a natural boundary.)

1.7.7. Prove Theorem 1.5.3 for general q by showing that now there exists K > 0 such
that every j ∈ Z \ {0} is assumed at most K times as a value of λn − λm.

1.7.8. Under the assumptions of Corollary 1.6.5, show that f can in fact be chosen
continuous, by completing the following steps.

(1) Find sequences (an), (bn) such that dn = anbn, with an ∈ l2(E) and bn ∈ c0(E).
(2) Show that the convolution of a bounded and an integrable function is continuous.
(3) Prove the assertion.

1.7.9. Suppose that f ∈ C(T ) has positive Fourier coefficients. Prove that f̂ ∈ l1.
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1.7.10. Suppose that for every d = (dn)n ∈ l∞(E) with |dn| ≤ 1, there exists a measure
µ ∈M(T ) with

|dn − µ̂(n)| ≤ 1− δ.

Prove that E is Sidon. (Think of the previous exercise and let dn = |f̂(n)|
f̂(n)

.)

1.8. Final remarks, notes, and references

The classical book on trigonometric series is [23]. Section 1. is in [13], but also can
be found e.g. in [10]. A well written elaborate introduction to Fourier analysis with many
applications in other subjects is [12].

Material concerning section 3 can be found in any reasonable book on Functional Anal-
ysis, e.g. [17], see [22] for a more extensive list of references.

Section 2. has been taken from [10], but is similarly treated in [23].
Section 4,5 and 6 are also mostly taken from [10]; [4] has a more comprehensive treat-

ment and was also used. Many things can be found in [23] too.





CHAPTER 2

Distributions and their Fourier Series

2.1. Introduction

Consider the wave equation on R2

(2.1.1)
∂2u

∂x2
− ∂2u

∂t2
= 0.

Introducing new coordinates x′ = x+ t, y′ = x− t, we obtain the equation

(2.1.2)
∂2u

∂x′∂y′
= 0,

which has the classical solution

u(x′, y′) = f(x′) + g(y′), f, g ∈ C2(R).

Thus (2.1.1) has as classical solutions f(x+ t)+g(x− t). Classically, C2 is required because
2 differentiations are performed on u. Physically, however, there is no reason to ask much
more than continuity. Also, from (2.1.2) we see that ∂u

∂y′ = g̃(y′), where the only thing

that matters is that this function doesn’t depend on x′. If g̃ ∈ L1(R) we get a solution
u(x′, y′) = f(x′) + g(y′) with no stronger conditions on f and g than continuity. There
are of course problems with changing the variables and we have a solution which is not
symmetric in x and y. The point is that it is at least inconvenient not to be able to
differentiate continuous functions.

As far as Fourier analysis is concerned, we know that f ∈ C1
2π has the property that

f̂ ′(n) = inf̂(n). We can formally write down this sequence of Fourier coefficients also if f
is no longer differentiable. Can we give meaning to it as the Fourier series of something
interesting? Moreover, consider the Fourier transform Ff of f ∈ L1(R). If f is C1 we know
that

(2.1.3) Ff ′(ξ) = iξFf(ξ).

Multiplication with ξ is a well defined operation on functions, the righthand side of (2.1.3)
is always well defined. A meaningful lefthand side, that is, unlimited differentiability of L1

functions, is desirable.
One way out is the concept of weak solution. Notice that if u ∈ C2 solves (2.1.1), then

for every compactly supported ϕ ∈ C∞(R2) we have

(2.1.4)

∫∫ (
∂2u

∂x2
− ∂2u

∂t2

)
ϕ(x, t) dxdt =

∫∫
u(x, t)

(
∂2ϕ

∂x2
− ∂2ϕ

∂t2

)
dxdt = 0.

If the last equality in (2.1.4) holds for all compactly supported ϕ ∈ C∞(R2) and u ∈ C2,
then u satisfies (2.1.1). However the last integral in (2.1.4) makes sense for locally integrable
u. Thus one calls a locally integrable (sometimes only a continuous) u a weak solution of
(2.1.1) if u satisfies ∫∫ (

∂2ϕ

∂x2
− ∂2ϕ

∂t2

)
u(x, t) dxdt = 0.

15



16 2. DISTRIBUTIONS AND THEIR FOURIER SERIES

We will use this idea to differentiate locally integrable functions arbitrarely often. In fact
we will go one step further. Observing that

u 7→
∫∫

uϕdxdt

is a linear functional on compactly supported C∞ functions, we will explain how to “differen-
tiate” a large class of such linear functionals, which is determined by a continuity condition,
and identify the ones originating from locally integrable functions with a subclass.

2.2. Smooth functions on T

Recall, see [17][Section 1.33], that a seminorm on a (complex) vector space X is a real
valued function p such that

p(x) ≥ 0,

p(x1 + x2) ≤ p(x1) + p(x2),

p(λx) = |λ|p(x).

(2.2.1)

Here x, xi ∈ X, λ ∈ C.
A family P of seminorms is called separating if for every x ∈ X there is a p ∈ P such

that p(x) 6= 0. On C∞(T ) = C∞2π we a separting family of seminorms is given by

(2.2.2) Pj(ϕ) = ‖ϕ(j)‖∞,
the maximum of the j-th derivative. These seminorms can be used to define a topology on
C∞(T ) by requiring that they are continuous, just as weak topologies were introduced in
Chapter 1. Section 1.3 Thus, a local subbasis at 0 consists of sets

Vj,ε = {ϕ : Pj(ϕ) < ε}, j ∈ N, ε > 0.

The space C∞(T ) endowed with this topology is called D(T ). From Chapter 1, Section 1.3
we see that

(2.2.3) fj ∈ D(T )→ f ∈ D(T ) ⇐⇒ ∀k ∈ N f
(k)
j → f (k) uniformly.

So it is pretty hard for functions to converge in D(T ), cf. Exercise 2.7.1. However,
Fourier series behave nice in D(T ).

Lemma 2.2.1. Let ϕ ∈ D(T ). Then SN [ϕ]→ ϕ in D(T ) as N →∞.

Proof. Because ϕ is smooth, SN [ϕ] → ϕ uniformly, but also SN [ϕ]′ = SN [ϕ′] → ϕ′

uniformly. The same is true for higher derivatives. By (2.2.3) we are done. �

Lemma 2.2.2. The space D(T ) is metrizable and complete in the metric

(2.2.4) d(ϕ,ψ) =
∞∑
j=0

2−j
Pj(ϕ− ψ)

1 + Pj(ϕ− ψ)
.

Proof. See Exercise 2.7.2. �

Just as in (2.2.4) any countable separating family of seminorms on a vector space X gives
rise to a metric d. Observe that it is translation invariant, that is d(x, y) = d(x− z, y − z)
for all x, y, z ∈ X. Moreover, one can show that with the induced topology X becomes a
topological vector space, i.e addition and scalar multiplication are continuous operations,
and it is locally convex, meaning that it has a local basis of convex sets. In particular this
holds for T .

However, D(T ) with the present topology cannot be turned into a Banach space because
of the following Lemma, which says that D(T ) has the Heine-Borel property. A Banach
space can only possess this property if it is finite dimensional. Recall that a set X in a
topological vector space is bounded if it has the property that for every open neighborhood
U of 0, there exists N > 0 such that X ⊂ NU . If the topology is determined by seminorms,
this just means that every seminorm is bounded on X.
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Lemma 2.2.3. Every bounded sequence in D(T ) has a convergent subsequence; A closed
bounded set in D(T ) is compact.

Proof. This is a simple consequence of the Arzela-Ascoli Theorem, cf. Exercise 2.7.3.
�

It will be convenient to replace Pn by an equivalent set of seminorms

P̃n =
n∑
j=0

Pj .

This doesn’t change the topology, but it has the advantage that a local basis at 0 of D(T )

is now given by {P̃n(ϕ) < 1/n}, n ∈ N.

Remark 2.2.4. A vector space with topology induced by a complete invariant metric,
like we have met here, is called a Fréchet space. (Sometimes local convexity is required, but
that can be shown to hold here too.)

2.3. Distributions on T

Let D′ = D′(T ) denote the dual space of D(T ), that is the space of continuous linear
functionals on D(T ). The notation is classical. Elements of D′ are called (periodic) distri-
butions or generalized functions. The space D′ will naturally be equiped with the weak-*
topology. We denote the action of L ∈ D′(T ) on ϕ ∈ D(T ) usually by

〈L,ϕ〉 (= Lϕ).

The following lemma is an extension of a familiar result for Banach spaces, cf. [22][thm.
3.2].

Lemma 2.3.1. Let X be a vector space with a topology induced by a countable set of
seminorms {p1, p2, . . .} and let L be a linear functional on X. The following are equivalent.

i. L is continuous on X,
ii. L is continuous at x0 ∈ X,
iii. There exist C > 0, K ∈ N such that

|Lx| ≤ C max
i=1,...,K

pi(x).

Proof. (i =⇒ ii) is trivial.
(ii =⇒ iii). If L is continuous at x0, then for every ε > 0 there exist K ∈ N and δj > 0,

(j = 1, . . . ,K), such that pj(x − x0) < δj , (j = 1, . . . ,K) implies |L(x − x0)| < ε. Let
δ = minj{δj} and denote for y ∈ X, My = maxi=1,...,K pi(y). Then

|Ly| = |My

δ
L(

δy

My
)| < My

δ
ε,

which proves iii, with C = ε/δ.
(iii =⇒ i). Let x, y ∈ X.

|Lx− Ly| = |L(x− y)| < C max
i=1,...,K

pi(x− y).

This is less than ε if pi(x−y) < ε/KC. Thus we described a small neighborhood of x which
is mapped in an ε-neighborhood of Lx. �

Apparently a linear functional L on D(T ) is continuous, i.e. a distribution, if and only
if there exist n ∈ N and C > 0 such that

(2.3.1) |〈L,ϕ〉| ≤ CP̃n(ϕ), ∀ϕ ∈ D(T ).

The smallest n that is possible in (2.3.1) is called the order of the distribution. Of course
the zero distribution has order −∞ assigned to it.



18 2. DISTRIBUTIONS AND THEIR FOURIER SERIES

As we have seen in Section 1.3.3 the natural notion of convergence for a sequence of
distributions is weak-* convergence. To be specific, for Lj , L ∈ D′(T ) we have

lim
j→∞

Lj = L if and only if ∀ϕ ∈ D(T ) lim
j→∞

Ljϕ = Lϕ.

Remark 2.3.2. If the underlying space is not compact, e.g. R instead of T , distributions
may have infinite order.

2.3.1. Examples of distributions.

(1) Every u ∈ L1
2π defines a distribution Lu via

〈Lu, ϕ〉 =

∫ π

−π
uϕ

dt

2π
.

This functional is indeed continuous: |〈Lu, ϕ〉| ≤ ‖u‖1‖ϕ‖∞.
(2) We denote the set of Borel measures on T by M(T ). Every measure µ ∈ M(T )

defines in the same way a distribution Lµ via

〈Lµ, ϕ〉 =

∫ π

−π
ϕdµ(t).

Both examples are distributions of order 0.
Abusing the language we will drop the L and identify a function or measure

with the associated distribution, writing e.g. 〈u, ϕ〉.
(3) The delta-distribution δ = δ0 is defined by

〈δ, ϕ〉 = ϕ(0).

The delta distribution originates from point mass at 0.

Remark 2.3.3. The name test functions for the elements of D is now understandable,
these functions are used to test the action of an L1 function or distribution.

2.4. Operations on Distributions

2.4.1. Differentiation. Let L ∈ D′(T ). Define its derivative L′ ∈ D′(T ) by

〈L′, ϕ〉 = −〈L,ϕ′〉.
Observe that L′ is well-defined because ϕ′ ∈ D(T ); L′ is also continuous. Indeed, there exist

C > 0, n ∈ N such that |〈L,ϕ〉| ≤ CP̃n(ϕ). Then

|〈L′, ϕ〉| = |〈L,ϕ′〉| ≤ CP̃n(ϕ′) ≤ CP̃n+1(ϕ).

We conclude that every distribution is infinitely often differentiable. In general, differenti-
ation increases the order of a distribution by 1.

Examples 2.4.1. Let f(x) be the characteristic function of (0, π) viewed as element of
L1

2π. We compute its distributional derivative f ′. Let ϕ ∈ D(T ), then

〈f ′, ϕ〉 = −〈f, ϕ′〉 = −
∫ π

−π
f(t)ϕ′(t)

dt

2π
= −

∫ π

0
ϕ′(t)

dt

2π
=
ϕ(0)− ϕ(π)

2π
.

We conclude that f ′ = δ0−δπ
2π .

The function f(x) = log |x| is in L1
2π. Its distributional derivative is determined by

〈f ′, ϕ〉 = −〈f, ϕ′〉 = −
∫ π

−π
log |t|ϕ′(t) dt

2π
= − lim

ε→0

∫ −ε
−π

+

∫ π

ε
log |t|ϕ′(t) dt

2π

=
−1

2π
lim
ε→0

(
log εϕ(−ε)− log πϕ(−π)− log εϕ(ε) + log πϕ(π)−(∫ −ε
−π

+

∫ π

ε

ϕ(t)

t
dt

))
= p(rincipal) v(alue)

∫
ϕ(t)

t

dt

2π
.

(2.4.1)
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Here we have used that ϕ is periodic, making the stock terms cancel in the limit. The last
equality is the definition of the principal value integral. We have shown that f ′ = p.v. 1

x .

Proposition 2.4.2. Differentiation is a continuous operation: If Lj → L in D′(T ) then
L′j → L′ in D′(T ).

Proof. For any ϕ ∈ D(T ), we have 〈Lj , ϕ〉 → 〈L,ϕ〉 by definition of weak-* con-
vergence. Hence 〈Lj , ϕ′〉 → 〈L,ϕ′〉, which by definition of differentiation gives 〈L′j , ϕ〉 →
〈L′, ϕ〉. �

2.4.2. Restricted Multiplication. The price one pays for infinite differentiability is
that multiplication of distributions is in general not possible. However, if f ∈ C∞(T ),
L ∈ D′ then fL can defined by

〈fL, ϕ〉 = 〈L, fϕ〉.
This is indeed continuous: if ϕn → ϕ in D(T ) then fϕn → fϕ in D(T ), therefore

〈fL, ϕn〉 = 〈L, fϕn〉 → 〈L, fϕ〉 = 〈fL, ϕ〉.
If µ ∈ M(T ) and f ∈ C(T ), then fµ ∈ M(T ). Hence multiplication of a continuous

function with a distribution associated with a measure or an L1 function is also possible.
More generally one can prove that a distribution of order k can be multiplied with a function
in Ck, cf. ex. 2.7.5.

Lemma 2.4.3 (Product rule). If f ∈ C∞(T ) and L ∈ D′, then

(fL)′ = f ′L+ fL′.

Proof. Let ϕ ∈ D. Then

〈(fL)′, ϕ〉 = −〈fL, ϕ′〉 = −〈L, fϕ′〉
= −〈L, (fϕ)′ − f ′ϕ)〉 = 〈L′, fϕ〉+ 〈f ′L,ϕ〉.

(2.4.2)

�

2.4.3. Local Equality. The fact that L1
2π is identified with a subset of D′ makes it

clear that the “value of a distribution in a point” makes no sense. However, on open sets
equality makes sense! Recall that the support of a continuous function ϕ is the closed set
Suppϕ = cl{t : ϕ(t) 6= 0}.

Definition 2.4.4. Two distributions L1, L2 on T are called equal on an open subset
Γ ⊂ T if for every ϕ ∈ D(T ) with support in Γ, one has 〈L1, ϕ〉 = 〈L2, ϕ〉.

The support of a distribution L ∈ D′ is the complement of the union of the open sets Γ
with L = 0 on Γ.

Examples 2.4.5. The support of δ is {0}. If L originates from a continuous function
then the two notions of support coincide.

Remark 2.4.6. Multiplication can be localized: If L ∈ D′ has order k, and on an open
Γ ⊂ T is equal to a distribution of order j < k then L can be multiplied with Cj functions,
that are Ck in a neighborhood of the complement of Γ. See Exercise 2.7.11. Moreover it
turns out that (especially in higher dimensions) a further refinement is possible. This is
based on local Fourier analysis of the distribution and takes into account the directions in
which the singularities occur. We deal with this topic in a later chapter, but to get a flavour
of the problem, consider the distribution L on R2 given by

〈L,ϕ〉 =
∂ϕ

∂x1
(0, 0).

This has order 1, so we can multiply with f ∈ C1 but a closer analysis gives that we only
need to require something like f continuous and differentiable with respect to x1.
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2.5. Fourier Series of Periodic Distributions

In analogy with L1
2π we can define for L ∈ D(T ) the Fourier coefficients

L̂(n) =
1

2π
〈L, e−int〉.

For example, as we know already δ̂(n) = 1/2π.
As one expects, we put

SN [L](t) =
N∑
−N

L̂(n)eint.

For example, SN [δ] = DN , the Dirichlet kernel. Let ϕ ∈ D(T )

〈SN [δ], ϕ〉 =
1

2π

∫ π

−π

N∑
n=−N

eintϕ(t) dt = DN ∗ ϕ(0)→ ϕ(0), as N →∞.

We see that the Dirichlet kernels tend weakly to δ.

Lemma 2.5.1. If L ∈ D′ and ϕ ∈ D(T ) then

〈L,ϕ〉 = 2π
∞∑
−∞

L̂(−n)ϕ̂(n).

Proof. Using Lemma 2.2.1 we see that

〈L,ϕ〉 = lim
N→∞

〈L, SN [ϕ]〉 = lim
N→∞

2π
N∑
−N

ϕ̂(n)L̂(−n).

This proves the Lemma. �

Theorem 2.5.2. If L ∈ D′, then the Fourier series of L tends weak-* to L.

Proof. For every ϕ ∈ D(T ) we find by Lemma 2.5.1, if N →∞,

〈SN [L], ϕ〉 = 2π
N∑
−N

L̂(n)ϕ̂(−n)→ 〈L,ϕ〉.

�

Corollary 2.5.3. The map L→ L̂ is injective on D′.

Proof. If L̂(n) = 0 for all n ∈ Z, then L = 0 by Theorem 2.5.2. �

Corollary 2.5.4. Let L ∈ D′. If L′ = 0 on T , then L is a constant.

Proof. The Fourier coefficients of L′ are 0 = L̂′(n) = inL̂(n). It follows that the
Fourier series of L consists only of the constant term. Theorem 2.5.2 gives that L is a
constant. �

Theorem 2.5.5. The following are equivalent.
i.
∑∞

n=−∞ cne
int is the Fourier series of a periodic distribution.

ii. There exist constants N,C such that |cn| ≤ CnN .

Proof. If
∑∞

n=−∞ cne
int is the Fourier series of a periodic distribution L then

∑N
n=−N cne

int

tends weakly to L by Theorem 2.5.2. It follows that for every k, if N > k

〈
N∑
−N

cne
int − L, e−ikt〉 = ck − L̂(k)

tends to 0 if N → ∞. Hence ck = L̂(k). Now L has finite order, say N . Then |cn| =

|〈L, e−int〉| ≤ CP̃N (e−int) ≤ CNnN .
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In the other direction, if |cn| ≤ CnN , then (cn/n
N+1)n ∈ l2(Z). Parseval gives

f(t) =

∞∑
−∞

cn
nN+1

eint ∈ L2(T ).

It follows that f (N+1) is a distribution of at most order N + 1. It has Fourier coefficients
iN+1cn for n 6= 0. Dividing by iN+1 and adding c0 we have found a distribution with the
prescribed Fourier series. �

Corollary 2.5.6. Every periodic distribution is of the form F (N)+c with F continuous
(or in L2).

Proof. This is in the proof of the second part of Theorem 2.5.2 for F in L2. If F is
not continuous we consider

F (t) =
∞∑
−∞

cn
nN+1

eint ∈ C(T ),

because the series is uniformly convergent and proceed as in the last part of the proof of
the Theorem. �

2.6. Convolution and Multiplication

From [13] we know that if f, g ∈ C2π, then f ∗ g :=
∫ π
−π f(x− y)g(y) dy2π and fg are also

in C2π and have Fourier series given by

(2.6.1) (f ∗ g)̂ (n) =

∫∫
f(x− y)g(y)e−in(x−y)e−iny

dy

2π

dx

2π
= f̂(n)ĝ(n)

and

(2.6.2) (fg)̂ (n) =

∞∑
−∞

f̂(n− j)ĝ(j) =: f̂ ∗ ĝ(n).

2.6.1. We can use (2.6.1) to define the convolution L1 ∗ L2 for periodic distributions
Li ∈ D:

(2.6.3) L1 ∗ L2
def
=
∞∑
−∞

L̂1(n)L̂2(n)einx.

Application of Theorem 2.5.5 gives that there exist C, k > 0 such that |L̂1(n)L̂2(n)| < C|n|k,
(n 6= 0), and another application of Theorem 2.5.5 shows that the series represents a
distribution.

Formula (2.6.2) shows once more why it is difficult to multiply distributions: The Fourier

coefficients (fg)̂ (n) have to be finite. Suppose f is a distribution of order k. Then f̂(n)
behaves like nk. For (2.6.2) to converge, the ĝ(n) have to be something like n−k, i.e. g is
fairly smooth.

2.7. Exercises

2.7.1. Prove that, as n→∞, the sequence sin(nt)/n3 converges to 0 uniformly, but it
does not converge in D(T ).

2.7.2. Prove that (2.2.4) defines a metric and complete the proof of Lemma 2.2.2.

2.7.3. Recall the Arzela-Ascoli theorem: If {fα}α is an equicontinuous family of
pointwise bounded continuous functions on a separable compact metric space, then {fα}α
has a uniformly convergent subsequence. Equicontinuous means

∀ε ∃δ such that |x− y| < δ =⇒ |fα(x)− fα(y)| < ε,

independent of α.
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Prove the following. If {fα}α is bounded in the C1-norm on T , that is, the norm
‖ · ‖∞ + ‖ · ′‖∞ on T , then {fα}α is equicontinuous and pointwise bounded. (Apply the
mean value theorem.)

2.7.4. Prove the continuity in example 2.3.1 by showing that ϕn → ϕ in D(T ) implies
〈Lu, ϕn〉 → 〈Lu, ϕ〉.

2.7.5. Let L ∈ D′(T ) be of order k and let f ∈ C l(T ). For which k and l can you give
a definition of fL by using (2.6.1) ?

2.7.6. Compute the distribution sum of
∞∑
−∞

neinx,

∞∑
n=1

sinnx.

(2.7.1)

2.7.7. Compute the distributional derivative of

(2.7.2) f(x) =

{
x+ π if −π < x < 0,

x− π if 0 < x < π.

2.7.8. Let ϕ ∈ D(T ), L ∈ D′(T ). Put ϕx(y) = ϕ(x− y). Show that

L ∗ ϕ(x)
def
= 〈L,ϕx〉

is well-defined and coincides with definition (2.6.3). Prove that L ∗ ϕ is a smooth function.

2.7.9. Let L ∈ D(T )′ have support {0}.
(1) Use Corollary 2.5.6 to express L as the j’th derivative of a continuous function f

on (−π, π).
(2) Show that there are polynomials P1, P2 of degree at most j − 1 such that f = P1

if x > 0 and f(x) = P2(x) if x < 0.
(3) Conclude that we may take f = PU with P a polynomial of degree j − 1 and U

the characteristic function of (0, π).
(4) Prove that L is a finite linear combination of derivatives of δ.

2.7.10. For L ∈ D′(T ), let Lh be defined by Lhϕ := Lϕ(.− h). Compute the distribu-
tional limit

lim
h→0

Lh − L
h

.

2.7.11. Suppose that L ∈ D′ has order k, and on an open Γ ⊂ T is equal to a
distribution L̃ of order j < k. Prove that L can be multiplied with any Cj function F , that
is Ck in a neighborhood of the complement of Γ. [ First prove the result for L = 0 on Γ.

Then write L = (L− L̃) + L̃.]



CHAPTER 3

Distributions on Rn

As before, distributions on Rn will be continuous linear functionals on test spaces of
smooth functions. However, because Rn is not compact, there is some freedom in the choice
of the test space, which leads to different classes of distributions. Also the topology on the
test space is more complicated. Therefore we will base our treatment on the semi-norm
approach, (2.3.1) of the previous chapter. In particular this makes it clear that advanced
knowledge of topological vector spaces is not necessary to work fruitfully with distributions.

We will mention some useful facts about smooth functions in Section 3.1. The proofs
will be rather sketchy. Details may be found in [7]. In what follows U will be open in Rn and
K will be compact in Rn. Variables in Rn will generally be written as x = (x1, . . . , xn), and
dx = dx1 dx2 . . . dxn will denote the corresponding Lebesgue measure on Rn. Also B(x, r)
will be the open ball with radius r centered at x. We write Ck0 (X) ⊂ Ck(X) for the class of
k-times differentiable functions that are supported on compact subsets of X; k may of course
be∞. The space C∞0 (U) will be our test space and following Schwartz we denote it by D(U)
or D if no confusion is possible. As usual the elements of D(U) are called test functions. The
reader is warned that this notation is not the same as in [13]. Differential operators will be
denoted using multi-index notation: with α = (α1, . . . , αn) ∈ Nn, we put Dα = Dα1

1 . . . Dαn
n ,

it is a partial derivative of order |α| = α1 + · · ·+ αn; also α! := α1!α2! . . . αn!.

3.1. Smooth Functions

Lemma 3.1.1. Let p ∈ U . There exists a non-negative test function ϕ on Rn with
ϕ(p) > 0 and Suppϕ is a compact subset of U .

Proof. Without loss of generality, p = 0 ∈ clB(0, 1) ⊂ U . Let

(3.1.1) f(t) =

{
e−1/t if t > 0,

0 elsewhere.

The function f is smooth on R. Now take ϕ(x) = f(1−‖x‖2) on Rn, this function is smooth
and its support is clB(0, 1) �

Lemma 3.1.2. There exists a smooth, compactly supported approximate identity on Rn.

Proof. Let ϕ be as in Lemma 3.1.1 with p = 0. Multiplying with a positive constant
if necessary, we can assume that

∫
U ϕ(x) dx = 1. Let

ϕε(x)
def
=

1

εn
ϕ(
x

ε
).

Then ϕε ≥ 0,
∫
ϕε = 1 and ϕε → 0 uniformly on ‖x‖ ≥ δ > 0, hence {ϕε} is an approximate

identity consisting of compactly supported functions. �

Theorem 3.1.3. Let f ∈ Ck0 (U) and let {ϕε} be an approximate identity consisting
of compactly supported smooth functions. Then f ∗ ϕε is C∞ and for 0 ≤ |α| ≤ k the
convolutions Dαf ∗ ϕε will tend to Dαf uniformly on U if ε→ 0.

Proof. Writing f ∗ϕε(x) =
∫
f(y)ϕε(x−y)dy, an application of Lebesgue’s dominated

convergence theorem allows us to differentiate under the integral sign infinitely often. On

23
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the other hand we may write f ∗ ϕε(x) =
∫
f(x− y)ϕε(y)dy which yields that for |α| ≤ k,

Dα(f ∗ϕε) = (Dαf)∗ϕε. Hence it suffices to prove that f ∗ϕε → f uniformly if f ∈ C0(U).
Indeed,

|f ∗ ϕε − f(x)| = |
∫

(f(x− y)− f(x))ϕε(y) dy| ≤ δ
∫
ϕε ≤ δ,

if ε is so small that |f(x)− f(x− y)| < δ for y ∈ Suppϕε. �

Lemma 3.1.4. Let K be compact in Rn, ε > 0 and let Kε = {y : d(y,K) < ε}. There
exists ψε ∈ C∞0 (Kε) such that ψε = 1 on K. Moreover the derivatives satisfy

(3.1.2) |Dαψε(x)| ≤ Cαε−|α|,
for certain constants Cα depending on α but not on ε.

Proof. Let {ϕε} be the compactly supported approximate identity constructed in
Lemma 3.1.2. Then ϕε is supported in B(0, ε) and its derivatives satisfy Dα(ϕε)(x) =

1
ε|α|

(Dαϕ)(xε ). Let χ be the characteristic function of Kε/2 and set

ψε = χ ∗ ϕε/2.
As in the proof of Theorem 3.1.3 we obtain that ψε is smooth. It is obviously supported
in Kε and its derivatives are ψ ∗Dα(ϕε/2) which is bounded by a ε−|α|Cα by our previous
estimate. �

We have used the straightforward but noteworthy fact that for L1 functions f and g,
Supp(f∗g) ⊂ Supp f+Supp g, where for A,B ⊂ Rn we write A+B = {a+b : a ∈ A, b ∈ B}.

Lemma 3.1.5. Every open U can be written as U = ∪∞1 Kj with Kj compact and Kj a
subset of the interior of Kj+1. In fact we can make the convenient choice

(3.1.3) Kj = {x ∈ U : ‖x‖ ≤ j and d(x, ∂U) ≥ 2−j}.

Proof. Immediate. �

Definition 3.1.6. A partition of unity of an open set U subordinate to an open cover
U = {Uτ}τ of U , (i.e., U = ∪τUτ ), is a countable set of nonnegative smooth functions
{ϕj , j = 1, . . .} on Rn with the following properties:

1. ∀j∃τj such that Suppϕj ⊂ Uτj .
2. If K is a compact subset of U , then only finitely many of the ϕj are non-zero on K.
3. On U we have

∑
j ϕj ≡ 1.

Notice that the sum in 3. is well-defined because on every compact K we only have to
take into account the finitely many ϕj that are positive on K. We keep the notation of the
definition.

Theorem 3.1.7. For every open cover U of U , there exists a partition of unity subordi-
nate to U .

Proof. First remark that every compact K ⊂ U is contained in one of the Kj of
Lemma 3.1.5. Thus we only have to check 2. of Definition 3.1.6 for these Kj .

The important observation is as follows. If x /∈ Kj , then d(x, ∂U) < 2−j or ‖x‖ > j. In
the first case, d(x,Kj−1) > 2−j , in the latter case d(x,Kj−1) > 1. The ball B(x, r) with
r = 1

2 min{1, d(x, ∂U)} will have empty intersection with Kj−1.

We now define for x ∈ Uτ the ball Bτ (x) = B(x, t) with t = 1
2 min{1, d(x, ∂Uτ )}. By

Lemma 3.1.1 we can find non-negative ϕτ,x ∈ D(Bτ (x)) with ϕτ,x(x) = 1. Keeping in
mind that U covers U we introduce for every x ∈ U (at least one) open neighborhood
Dτ (x) = {y ∈ Bτ (x) : ϕτ,x(y) > 1/2}.

We will select a good covering of U . First K1 ⊂ ∪x∈K1Dτ (x). We can find a finite

subcover labeled D1,1, . . . D1,j1 . Next, K ′2 = K2 \ (∪j1j=1D1,j) is compact; again K ′2 ⊂
∪x∈K′2Dτ (x). We can find a finite subcover labeled D2,1, . . . D2,j2 . The D1,j and D2,j cover
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K2. Continuing in this way, covering each time K ′i = Ki \ ∪l<iDl,j with finitely many Di,j ,
and relabeling, we obtain a countable covering D1, D2, . . . of U . Call the corresponding
Bτ (x)’s: B1, B2, . . . and the corresponding ϕτ,x’s: ϕ1, ϕ2, . . ..

Now every ϕi has support in some Bi = Bτ (x) ⊂ Uτ , therefore it satisfies 1. For
condition 2 notice that there are only finitely many Bi of the form B(x) with x in Kj . By
our first observation, if x /∈ Kj then B(x) ∩Kj−1 = ∅. Thus for every j, Kj−1 is covered
by finitely many Bi and condition 2 is satisfied.

To finish the proof we have to modify ϕi a little. Observe that

ϕ =

∞∑
1

ϕi

is a well-defined smooth function on U , because on compact sets only finitely many terms
are non-zero, and since every y ∈ U is in some Di, the sum is at least 1/2. Now introduce

ψi =
ϕi
ϕ
.

Clearly ψi ∈ D(Uτ ) and the ψi satisfy 1, 2, and 3 and form a partition of unity. �

Corollary 3.1.8. For every ψ ∈ C∞0 (U) and every cover U of U there exists a finite

subcollection Ui of U such that we can write ψ =
∑N

i=1 ψi with ψi ∈ D(Ui).

Proof. Let K be the support of ψ. Let ϕj , j = 1, . . . N be the finitely many ϕ’s that
are non zero on K. Then ψϕj ∈ D(Rn) has compact support in Uτj ∩K. The Uτj constitute
a finite set {U ′i i = 1, . . . N}. We have

ψ = ψ1 =
∑
j

ψϕj , on K.

Assembling the ϕj which have support in the same Ui, i.e., setting ψi =
∑

τj=i
ϕτj , we are

done. �

Remark 3.1.9. It is possible to put a topology on the test space D(U) that makes it a
complete locally convex topological vector space. This is not so easy, because we have tried
to keep D(U) as small as possible in order to have as many continuous linear functionals
as possible on it. However, occasionally we don’t need so many distributions and deal with
two “easier” spaces of test functions.

We introduce seminorms QK,α on C∞(U) as follows

(3.1.4) QK,α(ϕ) = sup
x∈K
|Dαϕ|,

where K runs over the compacts in U and α over all multiindices. C∞(U) equipped with
the topology induced by QK,α is denoted by E(U) or simply E .

3.1.1. The Schwartz Class. In [13] the class S of Laurent Schwartz was introduced
on R. For Rn the definition is similar
(3.1.5)

S = S(Rn) = {f ∈ C∞(Rn) : for every α ∈ Nn and k ∈ N, ‖x‖k|Dα(f)| is bounded}.
S is topologized by the seminorms Pk,α defined by

(3.1.6) Pk,α(f) = sup
Rn
‖x‖k|Dα(f)|, a ∈ Nn, k ∈ N.

We say that f ∈ C∞ is rapidly decreasing if for every k and every α, |Dα(f(x))|‖x‖k tends
to 0 if ‖x‖ → ∞. Replacing k by k+k′ in the definition we see that in fact S is the collection
of rapidly decreasing functions.

Proposition 3.1.10. D(Rn) is a dense subspace of S.
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Proof. Let f ∈ S. We have to show that given k, l ∈ N, ε > 0, there exists ϕ ∈ D
with Pk,α(f − ϕ) < ε for |α| ≤ l. Let ψ ∈ D, 0 ≤ ψ ≤ 1, with ψ = 1 on B(0, 1). Put
ψr(x) = ψ(x/r), then ψr = 1 on B(0, r) and |Dα(ψr))| → 0 for 1 ≤ |α| ≤ k if r →∞. Put
ϕr = fψr. Also (1− ψr)f → 0 if r →∞. We have

Dα(f − ϕr) =
∑

p+q=α

cp,qD
p(f)Dq(1− ψr),

for suitable (fixed) constant cp,q and multiindices p and q. Using that Dp(f) = O(1/‖x‖k)
and that for |q| > 1 all Dq(1−ψr) can be made arbitrary small by choosing r large enough,
while in case |q| = 0 this can be done on compact sets, we can bound Dα(f−vf) by ε‖x‖−k.
The proposition follows. �

Proposition 3.1.11. D is dense in E.

We leave the proof as an exercise.

3.2. Distributions

Definition 3.2.1. A distribution L on U is a linear functional on D(U) such that for
every K compact in U there exist C, N such that

(3.2.1) |Lϕ| = |〈L,ϕ〉| ≤ C max
|α|<N

‖Dα(ϕ)‖, for ϕ ∈ D(U) supported in K.

The set of distributions on U is denoted by D′(U). If N can be chosen independent of K,
the smallest N such that (3.2.1) holds for all K is called the order of L.

We give D′(U) the weak-* topology, that is,

L 7→ Lϕ

is a continuous map for every ϕ ∈ D(U). Equivalently Lj → L in D′(U) if and only if for
every test function ϕ we have

(3.2.2) Ljϕ→ Lϕ.

Lemma 3.2.2. Let ϕ and (ϕj)j be in D(U) and have support in a compact set K ⊂ U .
Suppose that for every α, Dαϕj → Dαϕ uniformly on K. Then for every L ∈ D(U) we
have Lϕj → Lϕ.

Proof. L(ϕ− ϕj)→ 0 in view of (3.2.1). �

Differentiation, local equality and support of distributions are defined just like in Chap-
ter 2. E.g.,

〈DαL,ϕ〉 def
= (−1)|α|〈L,Dαϕ〉, L ∈ D′, ϕ ∈ D.

Examples 3.2.3. Let δj denote point mass at j ∈ R. The following distributional limit

exists L =
∑∞

j=1 δ
(j)
j . It has infinite order.

Let ut(x) = tNeixt, x ∈ R, N ∈ N, then as distributions the limit for t → ∞ exists:
using integration by parts,

〈ut, ϕ〉 =

∫
R
tNeitxϕ(x) dx = iN+1t−1

∫
R
eitxϕ(N+1)(x) dx→ 0, as t→∞, ϕ ∈ D.

In addition we define

Definition 3.2.4. The singular support of L ∈ D′ is the complement (in U) of the
union of the open sets where L is equal to a C∞-function.

Theorem 3.2.5. Let V ⊂ Rm be open. Let L ∈ D′(U). If ϕ ∈ C∞(U × V ) is such
that ϕ(·, v) has support inside a compact K ⊂ U for all v ∈ V , then Lϕ(·, v) ∈ C∞(V ). If
ϕ ∈ D(U × V ), then Lϕ(·, v) ∈ D(V ).
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Proof. We write down the second order Taylor development of ϕ with respect to the
second variable at v ∈ V :

ϕ(u, v + h) = ϕ(u, v) +∇vϕ(u, v)h+ ψ(u, v, h),

where, by compactness of K for every α

(3.2.3) max
u∈K
|Dα

uψ(u, v, h)| < Cα‖h‖2.

We conclude

(3.2.4)
Lϕ(·, v + h)− Lϕ(·, v)− L(∇vϕ(·, v))h

‖h‖
=

1

‖h‖
|Lψ(·, v, h)|.

Using that |Lψ(·, v, h)| is bounded by a constant times the maximum over finitely many
α’s of left hand sides of (3.2.3), we see that (3.2.4) tends to 0 with ‖h‖. We conclude that
Lϕ is C1, its partial derivatives (in V ) are given by LDjϕ(·, v). By what we have proved,
they are C1! Continuing in this way we obtain the first statement of the theorem. For
the second statement, if ϕ ∈ D(U × V ) then ϕ(·, v) will vanish identically for v outside a
suitable compact set in V , hence so will Lϕ(·, v). �

Theorem 3.2.6. Let V ⊂ Rm and let ϕ = ϕ(u, v) ∈ D(U × V ). If L ∈ D′(U) then
L
∫
ϕ(·, v) dv =

∫
Lϕ(·, v) dv.

Proof. We use Riemann sums. For every α we have∫
Dα
uϕ(u, v) dv = lim

h→0

∑
t∈Zm

Dα
uϕ(u, ht)hm,

uniformly on a compact set in U , because of compactness. Thus Lemma 3.2.2 implies that

L

∫
ϕ(·, v) dv = L

(
lim
h→0

∑
t∈Zm

ϕ(·, ht)hm
)

= lim
h→0

∑
t∈Zm

L(ϕ(·, ht))hm =

∫
Lϕ(·, v) dv.

�

Theorem 3.2.7. Every distribution L ∈ D′(U) of order k can be extended to a linear
form on Ck0 (U), in such a way that (3.2.1) holds for all ϕ ∈ Ck0 .

Proof. Let f ∈ Ck0 (U). By Theorem 3.1.3 there exists a sequence of functions ϕj ∈
D(U) that approximate f in the sense that the partial derivatives of f − ϕj of order ≤ k
tend to 0 uniformly. It follows that for |α| ≤ k, Dα(ϕj) form a Cauchy sequence in the
uniform norm on U . The same is then true for Lϕj , because of the estimate (3.2.1). By
usual arguments this implies that

Lf = lim
j→∞

Lϕj .

is well-defined, independent of the choice of ϕj , and that the estimate (3.2.1) also holds for
f . �

Corollary 3.2.8. A distribution of order 0 is a complex Borel measure.

Proof. Recalling that complex Borel measures on U are precisely the linear forms that
satisfy (3.2.1) for all ϕ ∈ C0(U), this is immediate from the theorem. �

A distribution L ∈ D′(U) is called positive if Lϕ > 0 for every non-negative test function
ϕ.

Theorem 3.2.9. Positive distributions are measures.
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Proof. Let K be compact in U and let 0 ≤ ψ ≤ 1 be a test function that equals 1 on
K. If ϕ ∈ C∞0 (K) is real valued, then

‖ϕ‖∞ψ ± ϕ ≥ 0.

Applying L to these relations, it follows that for real valued test functions supported in K

(3.2.5) |Lϕ| ≤ ‖ϕ‖∞Lψ.

For complex valued testfunctions we write ϕ = ϕ1 + iϕ2. Applying (3.2.5) we obtain in this
case

|Lϕ| ≤ 2‖ϕ‖∞Lψ, ϕ ∈ D(K).

This means that L has order 0 and thus it is a measure. �

3.3. Distributions with Compact Support

Recall that we introduced E as the space of smooth functions on U equipped with the
topology determined by (3.1.4). Its dual space is denoted by E ′(U). As in Chapters 1 and
2 we see that L ∈ E ′ if and only if there exist a compact set K in U , and constants C, N
with

(3.3.1) |Lϕ| ≤ C max
x∈K, |α|≤N

|Dα(ϕ)|, (ϕ ∈ E).

Theorem 3.3.1. Let L ∈ D′(U) be compactly supported with SuppL = K. There exists

precisely one linear functional L̃ on C∞(U) with the following properties:

i. L̃ = L on D(U);

ii. L̃ϕ = 0 for all ϕ in C∞ with support in the complement of K.

Moreover, L̃ ∈ E ′(U).

Proof. Let 0 ≤ u ≤ 1 ∈ D be identically 1 on a neighborhood of K and let S = Suppu.
We define

L̃ϕ = L(uϕ), ϕ ∈ E .
Observe that for ϕ ∈ D we have

Lϕ = L(uϕ) + L((1− u)ϕ) = L̃(ϕ),

because (1 − u)ϕ ∈ D has its support in the complement of K, thus is annihilated by L.
Next if ϕ ∈ E and Suppϕ is in the complement of K, then uϕ has compact support in the
complement of K, so L(uϕ) = 0.

Suppose L1 is another linear functional satisfying i. and ii. Let ϕ ∈ E . We write
ϕ = uϕ + (1 − u)ϕ. The first term in the sum is in D, the second has support in the
complement of K, hence is annihilates by L1. Then

L1ϕ = L1(uϕ+ (1− u)ϕ) = L1(uϕ) + L1((1− u)ϕ) = L(uϕ) + 0 = L̃ϕ.

Finally observe that by (3.2.1)

(3.3.2) |L̃ϕ| = |L(uϕ)| ≤ C max
x∈S, |α|≤N

|Dα(uϕ)|.

This implies by Leibnitz rule that

|L̃ϕ| ≤ C ′ max
x∈S, |α|≤N

|Dα(ϕ)|,

where the norms of the derivatives of the (fixed) function u are absorbed in C ′. In other

words, L̃ ∈ E ′. �
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The proof of Theorem 3.3.1 shows that for a distribution supported on a compact set
K, we can take the maximum in (3.3.1) over an arbitrarily small compact neighborhood
of K. Can’t we just take K? The following example shows that the answer is in general
No. It is known that the supports for which the answer is Yes, are finite unions of compact
connected sets such that any two points x, y in the same component can be joined by a
rectifiable arc of length C|x− y|, cf. [7], Th. 2.3.10.

Example 3.3.2. Consider the sequence X with elements xn = 1/n3 in R. Let K =
X ∪ {0} be the closure of X. Define L ∈ D′(R) by

(3.3.3) 〈L,ϕ〉 =
∞∑
n=1

n(ϕ(xn)− ϕ(0)).

Observe that L is compactly supported (on K). Let us show that it has order 1. By the
mean value theorem ϕ(xn)− ϕ(0) = 1/n3ϕ′(ξn) for certain ξn ∈ (0, xn). We substitute this
in (3.3.3) and find

(3.3.4) |〈L,ϕ〉| ≤ C max
0≤x≤1

|ϕ′(x)|.

However, we can not replace this maximum by a maximum over K, even if we were willing
to increase the order of L. To see this, let ϕm ∈ D(R) satisfy

(3.3.5) ϕm(x) =

{
0 for x ≤ xm+1,

1 for xm ≤ x ≤ 2.

We have |ϕm| ≤ 1 on K and all derivatives of ϕ vanish on K. If (3.3.4) would hold with the
max taken over K, then it would follow that 〈L,ϕm〉 were uniformly bounded. However,
〈L,ϕm〉 = m, a contradiction!

Remark 3.3.3. This example easily generalizes to more general compacts having infin-
itely many connected components.

Theorem 3.3.4. Let L ∈ E ′ be of order k and supported on a compact K. Suppose
ϕ ∈ E has the property that Dαϕ ≡ 0 on K for all |α| ≤ k. Then Lϕ = 0.

Proof. Let uε ∈ D equal 1 on K and 0 outside Kε as constructed in Lemma 3.1.4.
Then in view of Theorem 3.3.1 we have Lϕ = Luεϕ for all ε. There exist C and k such that

|Luεϕ| ≤ C max
x∈Kε, |α|≤k

|Dα(uεϕ)|.

Using (3.1.2) we see that

|Dα(Uεϕ)| ≤ C ′α
∑
|β|≤|α|

ε|β|−|α||Dβϕ|.

Therefore, it suffices to show that for all |β| ≤ k

(3.3.6) ε|β|−kDβϕ→ 0 as ε→ 0.

If |β| = k, then this follows from continuity of Dβϕ and Dβϕ ≡ 0 on K. For the general
case we apply Taylor’s formula to Dβϕ on an interval [x, y], x ∈ K, y ∈ Kε:

(3.3.7) |Dβ(ϕ(t(y − x) + x)| ≤ C|t|j‖y − x‖j
∑
|β′|=j

|Dβ′+βϕ(ξ)|.

where j = k − |β|, ξ ∈ [x, y]. We take t = 1 and use again that for |α| = k, we have
Dαϕ(x) = o(1) on Kε for ε→ 0. Hence (3.3.7) becomes

|Dβ(ϕ(y)| = εjo(1) on Kε for ε→ 0.

Inserting this in (3.3.6) we are done. �
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Corollary 3.3.5. If L ∈ D′ has order N and SuppL = {0}, then

Lϕ =
∑
|α|≤N

cαD
αϕ(0).

That is, L is a linear combination of derivatives of δ.

Proof. Let ϕ ∈ E . Write ϕ(x) =
∑
|α|≤N

Dαϕ(0)
α! xα + ψ(x), where the derivatives of ψ

up to order N at 0 vanish. By Theorem 3.3.4 Lψ = 0, hence

Lϕ =
∑
|α|≤N

L(xα)
Dαϕ(0)

α!
.

�

3.4. Convolutions and Product Spaces

It is convenient to have some notation for translated and reflected functions. Let ϕ be
a function on Rn.

• Translation: (τxϕ)(y) = ϕx(y) = ϕ(y − x);
• Reflection: ϕ̌(y) = ϕ(−y).

Recalling the definition of convolution we see that

(3.4.1) f ∗ g(x) =

∫
Rn
f(y)g(x− y) dy =

∫
f(y)τxǧ(y) dy, f, g ∈ L1(Rn)

It is now natural to make the following

Definition 3.4.1. For L ∈ D′, ϕ ∈ D the convolution

L ∗ ϕ(x)
def
= 〈L, τxϕ̌.〉(= 〈L,ϕ(x− .)〉).

By Theorem 3.2.5, L ∗ ϕ is a smooth function. In view of Theorem 3.3.1, if L has
compact support, then L ∗ ϕ is defined for ϕ ∈ E . Note that L ∗ ϕ(0) = Lϕ̌.

Theorem 3.4.2. If L ∈ D′, and ϕ,ψ ∈ D then

(L ∗ ϕ) ∗ ψ = L ∗ (ϕ ∗ ψ).

Proof. We use Theorem 3.2.6.

(L ∗ ϕ) ∗ ψ(t) =

∫
(Lτxϕ̌)ψ(t− x) dx = L

∫
ϕ(x− .)ψ(t− x) dx

= L

∫
ϕ(x)ψ(t− .− x) dx = L(ϕ ∗ ψ(t− .)) = L ∗ (ϕ ∗ ψ)(t).

(3.4.2)

�

Convolution with a distribution is a translation invariant operator from D to E . Indeed,

τx(L ∗ ϕ)(t) = τx(L(τtϕ̌)) = L(τt−xϕ̌) = L(τt(τxϕ)̌ ) = L ∗ (τxϕ)(t).

It also has some continuity properties, in the sense that, of course, ϕ 7→ L∗ϕ(t) is for every
t a distribution. The converse is also true:

Theorem 3.4.3. Suppose that T : C∞0 → C(Rn) is a translation invariant operator with
the property that ϕ 7→ Tϕ(0) is an element of D′. Then there exists a unique L ∈ D′ such
that Tϕ = L ∗ ϕ. In particular, T maps C∞0 into C∞.

Proof. Let Lϕ
def
= T ϕ̌(0). Then L is a distribution. We compute

L ∗ ϕ(x) = L ∗ (τ−xϕ)(0) = L(τ−xϕ)̌ = T (τ−xϕ)(0) = τ−xTϕ(0) = Tϕ(x).

Thus we have found L. If L̃ ∗ ϕ = L ∗ ϕ for all ϕ ∈ D then for test functions ϕ

〈L̃, ϕ〉 = L̃ ∗ ϕ(0) = L ∗ ϕ(0) = 〈L,ϕ〉,
and L̃ = L by the very definition of distribution. �



3.4. CONVOLUTIONS AND PRODUCT SPACES 31

Now let L1 ∈ D′, L2 ∈ E ′. Then for ϕ ∈ D we find that

L2 ∗ (L1 ∗ ϕ) and L1 ∗ (L2 ∗ ϕ)

are wel defined – for the second expression observe that L2 ∗ ϕ has compact support.
Moreover, both operators are translation invariant. Therefore by Theorem 3.4.3 we can
make the following

Definition 3.4.4. L1 ∗ L2 is the unique distribution L with the property that L ∗ ϕ =
L1 ∗ (L2 ∗ ϕ). One similarly defines L2 ∗ L1.

One can show that L1 ∗ L2 = L2 ∗ L1, cf. exercise 3.6.7.

There is another way of looking at convolutions. We start with (3.4.1) and wish to view
that as a distribution, thus let it act on ϕ ∈ D.

〈f ∗ g, ϕ〉 =

∫
Rn

∫
Rn
f(y)g(x− y) dyϕ(x) dx =

∫∫
Rn×Rn

f(y)g(t)ϕ(y + t) dydt.

This explains commutativity of convolution as a direct consequence of commutativity in
Rn. To make it work we have to make sense of u(x)v(y) for distributions u ∈ D′(Rn),
v ∈ D′(Rm).

Let Xj ⊂ Rnj , j = 1, 2. For fj ∈ C(Xj) we define the tensor product as follows

f1 ⊗ f2(x1, x2) = f1(x1)f2(x2).

What we need is an analogous tensor product of distributions. It should be defined on
X1 × X2 and it is clear how it must act on tensor products of test functions of the form
ϕ1 ⊗ ϕ2.

Theorem 3.4.5. Suppose that Xj are open sets in Rnj (j = 1, 2) and that uj ∈ D′(Xj).
There exists a unique distribution u ∈ D′(X1 ×X2) which has the property that

u(ϕ1 ⊗ ϕ2) = u1(ϕ1)u2(ϕ2) ϕj ∈ D(Xj).

Moreover,

(3.4.3) u(ϕ) = u1x[u2yϕ(x, y)] = u2y[u1xϕ(x, y)], ϕ ∈ D(X1 ×X2).

We write u = u1 ⊗ u2, the tensor product of u1 and u2.

Notice that the expressions in (3.4.3) are well-defined in view of Theorem 3.2.5 Lx is a
sloppy notation, indicating that the distribution L acts on the test functions viewed as a
function of x, while the other variables are viewed as parameters.

Proof. Uniqueness follows once we can show that for L ∈ D′(X1×X2) the assumption
L(ϕ1 ⊗ ϕ2) = 0 for all ϕj ∈ D(Xj), implies that L = 0. Thus let ϕ ∈ D(X1 ⊗X2). Choose
ψi ∈ D(Xi) positive with integral equal to 1. Then ψε(x, y) = ε−n1−n2ψ1(ε−n1x)ψ2(ε−n2y)
is a tensor product, as well as an approximate identity on Rn1 × Rn2 . Therefore

L(ϕ ∗ ψε) = L ∗ (ϕ ∗ ψε)̌ (0) = ((L ∗ ψε) ∗ ϕ)(̌0) = 0,

by the assumption. Letting ε→ 0 uniqueness follows.
Next we show that

(3.4.4) ϕ 7→ u1x[u2y(ϕ(x, y))], ϕ ∈ D(X1 ×X2)

is in D′(X1 ×X2). We estimate, using Theorem 3.2.5,

|u1x[u2y(ϕ(x, y))]| ≤ C1 sup
|α|≤m1
x∈K1

|Dα
x (u2y(ϕ(x, y)))| = C1 sup

|α|≤m1
x∈K1

|(u2y(D
α
xϕ(x, y)))|

≤ C1C2 sup
|α|≤m1
x∈K1

sup
|β|≤m2
y∈K2

|Dβ
yD

α
xϕ(x, y)))|.

(3.4.5)

Hence u is in D′(X1×X2). Since u has the required behavior on tensor products of smooth
functions, the unicity part completes the proof. �
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Remark 3.4.6. We mention without proof the important kernel theorem:

Theorem 3.4.7 (Laurent Schwartz). There is a one one correspondence between distri-
butions K on X1 ×X2 and continuous linear maps T from D(X1) to D′(X2) given by

K ∈ D′(X1 ×X2) ↔ TK , 〈TK(ϕ1), ϕ2〉 = 〈K,ϕ1 ⊗ ϕ2〉.

Here continuity means Tϕj → 0 in D′ if ϕj → 0 in D. A proof can be found in [7].

3.5. Tempered distributions

The dual space S ′ of S is called the space of tempered distributions (or temperate). It
turns out that this is the “best” space to do Fourier analysis on. In this section we only
give a few properties of S ′. In view of (3.1.6) a linear functional L on S is in S ′ if and only
if there exist C > 0, k,N ∈ N, such that

|Lϕ| ≤ C sup
x∈Rn

‖x‖k|Dαϕ(x)|, for all |α| ≤ N.

Examples 3.5.1. The distribution associated to a locally integrable function f with the
property that ∫

(1 + ‖x‖2)−N |f(x)| dx is bounded,

for N sufficiently large, is tempered. This explains the word tempered: moderate growth
at infinity is allowed. If P is a polynomial and L ∈ S ′ then PL ∈ S ′; also DαL ∈ S ′;
compactly supported distributions are in S ′.

3.6. Exercises

3.6.1. Determine the distributional limit of any approximate identity ϕε.

3.6.2. Suppose that ϕ ∈ D(Rn) and ϕ(0) = 0. Prove that there exist ϕj ∈ D such that
ϕ(x) =

∑n
j=1 xjϕj(x). Hint: At 0 write

ϕ(x) =

∫ x1

0
D1ϕ(t, x2, . . . , xn) dt+ ϕ(0, x2, . . . , xn).

Continue with respect to the other variables and chanche the interval of integration to [0, 1].
get everything in D by writing far away from 0

ϕ =
∑ x2

iϕ(x)

‖x‖2
,

and patch things together with a partition of unity.

3.6.3. Let ut(x) = tNeitx, for x ≥ 0 and ut(x) = 0 elsewhere. Determine the distribu-
tional limit limt→∞ ut.

3.6.4. Let ut(x) = t1/keitx
k
, x ∈ R and k an integer > 1. Determine the distributional

limit limt→∞ ut. Hint: Using integration by parts, write

〈ut, ϕ〉 = −
∫
F (x)t1/kϕ′(x) dx = (F (∞)− F (−∞))ϕ(0),

with F (x) =
∫ x

0 e
itkdt. Next apply Cauchy’s theorem to compute

lim
x→∞

F (x) = eπi/2k
∫ ∞

0
e−t

k
dt,

lim
x→−∞

F (x) = −e(−1)kπi/2k

∫ ∞
0

e−t
k
dt.

Compare with the case k = 1 which is in Example 3.3.2.

3.6.5. Show that distributions are locally determined, i.e., if L ∈ D′ has the property
that for every x there is a neighborhood Bx such that L = 0 on Bx, then L ≡ 0.
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3.6.6. (continued) Suppose that Uτ is an open cover of U and that on every Uτ there
is given Lτ ∈ D(Uτ ). Show that there exists L ∈ D(U) with L = Lτ on Uτ if and only if
Lτ = Lσ on Uτ ∩ Uσ whenever this intersection is non empty. Show also that L is unique.

3.6.7. If u1, u2 are distributions one of them with compact support, then u1 ∗ u2 =
u2 ∗ u1. Prove this by showing first that for any ϕ1, ϕ2 ∈ D the equality

u1 ∗ u2 ∗ ϕ1 ∗ ϕ2 = u2 ∗ u1 ∗ ϕ1 ∗ ϕ2

holds and that this implies the equality that you are looking for.

3.6.8. (continued) Show that Suppu1 + Suppu2 contains Suppu1 ∗ u2.

3.6.9. (continued) Prove that (u1 ∗ u2)(ϕ) = (u1 ⊗ u2)(ϕ(x+ y).

3.6.10. Suppose L ∈ D′ has the property that DjL = 0 for j = 1, . . . , n. Prove that L
is a constant.

3.6.11. Let u, v ∈ D′. Show that u ∗ δ = u. Show that u ∗Dαδ=Dαu. Finally show
that Dα(u ∗ v) = (Dαu) ∗ v = u ∗ (Dαv).

3.6.12. Show that for every compactly supported distribution u there exists a sequence
(ϕj)j in D such that ϕj → u in distribution sense. (Use smart convolutions).

3.6.13. (continued) Show that every u ∈ D′ is a distributional limit of distributions
with compact support. Conclusion?

3.6.14. (Riesz) Let a ∈ C and let

(3.6.1) χa(x) =

{
xa, if x ≥ 0;

0, if x ≤ 0

i. Show that for Re a > −1 the function χa is in L1
loc(R), i.e. integrable over compact

sets in R, and satisfies (a+ 1)χa = d
dxχa+1.

ii. Let Ia denote the distribution associated to χa. Show that it satisfies

(3.6.2) Iaϕ
′ = −aIa−1(ϕ), if Re a > 0, ϕ ∈ D(R).

iii. Observe that for fixed ϕ the function Ia(ϕ) is analytic in a for Re a > −1 and use
(3.6.2) to extend Ia analytically to C \ {−1,−2, . . .}. Show that

(3.6.3) 〈Ia, xϕ〉 = 〈Ia+1, ϕ〉 if a ∈ C \ {−1,−2, . . .}.
iv. Try to compute the residues of Ia in the negative integers. (These must be distri-

butions, of course).
v. Try to compute the distribution Ia minus its principal part in a, where a is a

negative integer. Show that (6.2) holds for this distribution too.

3.6.15. Show that the distribution on Rn induced by f(x) = e|x|
2

is not tempered.
Construct a function g on R such that g induces a tempered distribution and

lim sup
t→∞

g(t)e−t
2

= 1.

3.6.16. Show that the compactly supported distributions are dense in S ′.

3.7. Final remarks

Distributions were introduced in the 1940’s by Laurent Schwartz. His book [18] is a
classic. Already around 1930 Sobolev came very close to the concept while the physicist
Dirac worked with distribution ideas informally. An interesting book about the history of
distribution theory is Lutzens [14]; Dutch readers may be happily surprized by the relatively
large Dutch role in it. Another classical reference is [5].
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We have followed Hörmander [7] quite closely. Because this book is aimed at partial
differential operators, it selects the parts of the theory that are really important for other
subjects in a way that can be appreciated beyond abstract functional analysis. It is an
excellent book anyway and highly recommended.



CHAPTER 4

The Fourier Transform

We collect some results in Fourier analysis in addition to the results in Grubb. This
material is taken from a chapter in another course in Fourier Analysis. We have kept
Theorem 4.1.3 although convolutions of distributions where not treated in enough depth
to appreciate it fully. Notation in this chapter E = C∞(Rn), so that E ′ is the space of
compactly supported distributions.

4.1. Fourier Transform on S ′

In this section distributions u will act on functions of two variables, where one of the
variables is viewed as a parameter. We will write < ux, ϕ(x, ξ) > to indicate that u “acts
on the variable x” and ξ is viewed as a parameter. The result will thus be a function of ξ.

Theorem 4.1.1. Let u ∈ E ′. Then û can be represented by a smooth function (also
denoted by û) and

(4.1.1) û(ξ) =< ux, e
−ix·ξ >, ξ ∈ Rn.

Moreover, the righthand side of (4.1.1) defines a holomorphic function on Cn.

Sketch of Proof. It has been shown in Grubb that the righthand side of (4.1.1) is
a smooth function of ξ on Cn and that differentiation towards the parameter is allowed. It
satisfies the Cauchy-Riemann equations, i.e.

∂û

∂ξj
= 0, j = 1, . . . , n

because e−ix·ξ satisfies these.
This settles holomorphy. Now let ϕ ∈ S. We find

(4.1.2) < û, ϕ >=< u, ϕ̂ >=< ux,

∫
e−ix·ξϕ(ξ) dξ >=

∫
< ux, e

−ix·ξ) > ϕ(ξ) dξ.

The latter equality may be justified by approximating the integrals with Riemann sums. �

Examples 4.1.2. The Fourier transform of δ equals

δ̂ =< δx, e
−ixξ >= 1.

Its derivatives have Fourier transform

(4.1.3) D̂jδ =< Djδ, e
−ixξ >=< δx, ξje

−ix·ξ >= ξj .

Theorem 4.1.3 (Convolutions). If u1 ∈ S ′, u2 ∈ E ′ then u1 ∗ u2 ∈ S ′ and (u1 ∗ u2)̂ =
û1û2.

Proof. Recall that by the definition of convolution

(u1 ∗ u2)(ϕ) = u1 ∗ u2 ∗ ϕ̌(0) = u1(ǔ2 ∗ ϕ), ϕ ∈ D.

35
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The righthand side extends to a continuous form on S: if u2 has order k and ϕ ∈ S, then
using ǔs ∗ ϕ = u2(ϕ(x+ .)), we check that∑

|α+β|≤j

sup |xβDα(ǔ2 ∗ ϕ)| ≤
∑

|α+β|≤j+k

sup |xβDα(ϕ)|.

Now we compute the Fourier transform. For ϕ ∈ S

(u1 ∗ u2)(ϕ̂) = u1(ǔ2 ∗ ϕ̂) = u1x(ǔ2y(ϕ̂(x− y)) = u1x

(∫
u2ye

−i(x+y)·tϕ(t) dt

)
= u1x

(∫
û2(t)e−ix·tϕ(t) dt

)
= u1x ((û2ϕ)̂ ) = û1(û2ϕ) = (û1û2)(ϕ).

(4.1.4)

�

Corollary 4.1.4. For u ∈ S ′ we have

D̂ju = ξj û, x̂ju = −Dj û.

Proof. This follows directly from (4.1.3) and the previous theorem, e.g.,

D̂ju = D̂jδ ∗ u = ξj û(ξ).

One can also use that the corollary is known for S a dense subset of S ′ in combination with
continuity of F on S ′. �

Remark 4.1.5 (Computational tricks). If f ∈ S ′ is associated to a locally integrable
function, also denoted by f , its Fourier transform can be computed by approximation:

(4.1.5) f = lim
A→∞

fA in S ′ with fA(x) =

{
f(x) if |x| ≤ A;

0 if |x| > A.

This follows from Lebesgue’s dominated convergence theorem. By continuity of F we find

(4.1.6) f̂ = lim
A→∞

f̂A = lim
A→∞

∫
|x|≤A

f(x)e−ix·ξdx.

Similarly, again by Lebesgue’s theorem

f = lim
ε↓0

fe−ε|x| in S ′

and therefore

(4.1.7) f̂ = lim
ε↓0

∫
Rn
f(x)e−ε|x|−ix·ξdξ.

Of course, all limits are in S ′ and will in general not exist pointwise or in L1 sense.

Examples 4.1.6. Applying 4.1.6 and 4.1.7 to the tempered distribution 1 on R yields

F(1) = lim
A→∞

∫ A

−A
e−ixξdx = lim

A→∞
2

sinAξ

ξ
(= 2πδ).

F(1) = lim
ε↓0

∫ ∞
0

e−iξx−εxdx+

∫ 0

−∞
e−iξx+εxdx = lim

ε↓0
i

(
1

ξ − iε
− 1

ξ + iε

)
(= 2πδ).

The limits as ε→ 0 of the fractions between the big brackets are usually denoted by

1

ξ − i0
respectively

1

ξ + i0
.

These two are not the same! Indeed, with χ denoting characteristic function, we have by
the above

F(χ(0,∞)) =
i

ξ − i0
, F(χ(−∞,0)) =

−i
ξ + i0

.
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In the same vein we find for the signum function Sign

F(Sign ) =
i

ξ − i0
− −i
ξ + i0

= lim
ε↓0

i

(
1

ξ − iε
+

1

ξ + iε

)
= lim

ε↓0

2iξ

ξ2 + ε2
= 2iP.V.

1

ξ
.

The Airy function Ai(x) is classically defined as the inverse Fourier transform of eiξ
3/3.

Thus Ai(x) is a tempered distribution. In fact, it is in C∞. We have in analogy with 4.1.7

(4.1.8) Ai(x) =
1

2π
lim
ε↓0

∫
ei(ξ+iε)

3/3+i(ξ+iε)xdξ in S ′.

The integrals on the righthand side are (for a fixed positive ε) convergent and yield smooth
functions of x. They can even be extended analytically to x ∈ C, because the leading term
in the exponent is −ξ2ε, independent of x ∈ C. On the other hand they are independent of
ε in view of Cauchy’s theorem.

In Rn we will consider Gaussians. Let A be a positive definite symmetric matrix. Then

clearly e−
1
2
Ax·x is in S. It is called a Gaussian. We compute its Fourier transform. We can

write A = R2 with R again positive symmetric.

(4.1.9)

∫
Rn
e−Ax·x−iξ·xdx =

∫
e−Rx·Rx−iR

−1ξ·Rxdx.

Now we change coordinates, Rx = y and (4.1.9) equals∫
e−y·y−iR

−1ξ·ydR−1y = (detA)−1/2e
−1
4
A−1ξ·ξ

∫
e−(y+ i

2
R−1ξ)·(y+ i

2
R−1ξ)dy.

The last integral is, by an application of Cauchy’s theorem (compare the proof of the Paley-
Wiener-Schwartz theorem), equal to∫

e−‖y‖
2
dy =

n∏
j=1

∫
e−y

2
j dyj = πn/2.

The conclusion is that

F(e−Ax·x) = πn/2(detA)−1/2e
−1
4
A−1ξ·ξ.

Homogeneous functions can be treated as follows. Let u(x) = ‖x‖α be the homogeneous,
radial function on Rn of degree α. We assume α > −n in order that u be a locally integrable
function. Then u may be viewed as a temperate distribution. We set out from the Gamma
function and change variables s→ s‖x‖2.

Γ(z)
def
=

∫ ∞
0

sz−1e−sds = ‖x‖2z
∫ ∞

0
sz−1e−s‖x‖

2
ds.

Hence

‖x‖α =
1

Γ(−α/2)

∫ ∞
0

s−α/2−1e−s‖x‖
2
ds.

For û we find, if α < 0, so that the Fubini and Lebesgue theorem can be applied, that

Γ(
−α
2

)û(ξ) = lim
N→∞

∫
‖x‖<N

(∫ ∞
0

s−α/2−1e−s‖x‖
2
ds

)
e−iξ·xdx

= lim
N→∞

∫ ∞
0

s−α/2−1

(∫
‖x‖<N

e−s‖x‖
2
e−iξ·xdx

)
ds =

∫ ∞
0

s−α/2−1
(π
s

)n/2
e
−1
4s
‖ξ‖2ds

= ‖ξ‖−α−nπn/22n+α

∫ ∞
0

t(α+n)/2−1e−tdt = ‖ξ‖−α−nπn/22n+αΓ(
α+ n

2
).

where in passing to the last line we made the change of variables t = 1
4s‖ξ‖

2.
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4.2. Poisson Summation

Let f ∈ S. We construct from f a periodic function with period 2π:

Pf(x) =
∑
n∈Z

f(x+ 2πn).

The sum is a smooth function because f and its derivatives are rapidly decreasing. We
compute the Fourier coefficients cn[Pf ] of Pf .

cn[Pf ] =
1

2π

∫ 2π

0
Pf(x)e−imxdx =

∫ ∞
−∞

f(x)eimxdx =
1

2π
f̂(m).

As a smooth periodic function Pf equals its Fourier series, hence

Pf(x) =
1

2π

∑
m∈Z

f̂(m)eimx.

We plug in the definition of Pf and take x = 0 to obtain Poisson’s Summation Formula
for functions f in S ∑

n∈Z
f(2πn) =

1

2π

∑
m∈Z

f̂(m).

A similar formula with a similar proof holds in Rn:∑
k∈Zn

f(2πk) =
1

(2π)n

∑
m∈Zn

f̂(m).

4.3. The Paley-Wiener-Schwartz Theorem

Let K be a compact subset of Rn. The supporting function of K is

H(x) = sup
y∈K
{x · y}.

Proposition 4.3.1. Let Hx = {y : y · x ≤ H(x)}. Then the convex hull of K is given
by

chK = ∩x∈RnHx.

Proof. Recall that the convex hull of K ⊂ Rn is the intersection of all convex sets that
contain K. Observe that y ∈ K implies that for every x, x · y ≤ H(x), therefore K ⊂ Hx
for every x. Using the well-known corollary of the Hahn-Banach theorem, cf. [W], that for
every closed convex G and y /∈ G there exists a hyperplane separating y from G, we find
that chK equals the intersection of all half-spaces containing K. In particular, if x0 /∈ chK
then we can find x such that x · x0 > H(x), thus x0 /∈ Hx. �

Theorem 4.3.2 (Paley-Wiener-Schwartz). Let H be the supporting function of a com-
pact set K in Rn.
1. The following are equivalent:
i. The distribution u ∈ E ′ has order N and support with convex hull K ⊂ Rn
ii. There exists a constant C such that the Fourier transform û is an entire function on Cn
that satisfies the inequality

(4.3.1) |û(z)| ≤ C(1 + |z|)NeH(Im z), (z ∈ Cn).

2. The following are equivalent:
i. The function u ∈ D has compact support with convex hull K ⊂ Rn.
ii. For every N there exists a constant CN such that the Fourier transform û is an entire
function on Cn that satisfies the inequality

(4.3.2) |û(z)| ≤ CN (1 + |z|)−NeH(Im z), (z ∈ Cn).
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Proof. We begin with 2. If u ∈ D then for every α, Dαu ∈ D and

|zαû(z)| = |D̂αu(z)| ≤ ‖Dαu(z)‖1 max
ξ∈Suppu

|e−iz·ξ| ≤ CαeH(Im z).

This shows that (4.3.2) is necessary. Next, suppose that (4.3.2) holds for some entire
function U . Then U restricted to Rn is the Fourier transform of some function u which is
in C∞ because of (4.3.2). We have

(4.3.3) u(ξ) = (2π)−n
∫
eiξ·xU(x) dx.

Consider the integral in (4.3.3) as a repeated integral, say first integrating with respect to
x1, the other variables being fixed. The integrand is a holomorphic function in x1 + iy1,
and on the strip {z1 : |y1| ≤ A1} it is bounded by a constant times (1 + |z1|)−N . Thus we
may apply Cauchy’s theorem and replace integration over R by integration over R + iA1,
for any A1 in R. We can also do this for the other variables, and obtain that for every
A = (A1, . . . , An)

(4.3.4) u(ξ) = (2π)−n
∫
eiξ·(x+iA)U(x+ iA) dx.

Using (4.3.2) with N sufficiently large, we infer from (4.3.4) that for every A

|u(ξ)| ≤ (2π)−ne−ξ·A+H(A).

By considering tA, t > 0, instead of A, we infer that u(ξ) 6= 0 implies that ξ · A ≤ H(A),
that is, ξ ∈ HA for all A. However, by Proposition 4.3.1, this implies that ξ ∈ K.

Next we turn to 1. and show that (4.3.1) is necessary. Suppose that u has order N and
compact support in the convex set K ⊂ Rn. Let Kδ = {x + y : x ∈ K, |y| < δ} be the δ-

neighborhood of K. Let χ = χδ ∈ D(Kδ) equal 1 on Kδ/2. Observe that |Dαχδ| = O(δ−|α|).
We estimate

|û(z)| = |〈u, e−iz·.〉| = |〈u, χδe−iz·.〉| ≤
∑
|α|≤N

max
x∈Kδ

Cα|Dα
ξ (χδ(ξ)e

ξ·z|

≤ CeH(y)+δ|y|
∑
|α|≤N

δ−|α|(1 + |z|)N−|α|.
(4.3.5)

For a fixed |z|, choose δ = (1 + |z|)−1 and necessity of (4.3.1) follows.
Finally we show that (4.3.1) is sufficient. If U satisfies (4.3.1) then U restricted to Rn

is the Fourier transform of a distribution u, Let (ϕε) be an approximate identity, which has
Suppϕε ⊂ B(0, ε), so that the corresponding H(y) ≤ ε|y|. Then (u ∗ ϕε)̂ = ûϕ̂ε, and in
view of (4.3.2) and (4.3.1) for all M there is a CM with

|(u ∗ ϕε)̂ (z)| ≤ CM (1 + |z|)N−MeH(y)+ε|y|.

By 2. of the Theorem we conclude that u ∗ ϕε has support in Kε. Letting ε→ 0 we obtain
that Suppu ⊂ K. �

4.4. Fourier Transform and Lp Spaces

Because

F : L2(Rn)→ L2(Rn),

F : L1(Rn)→ L∞(Rn),
(4.4.1)

it is reasonable to expect that for 1 < q < 2 Fourier transform maps Lq to some space
between L2 and L∞. That this is indeed the case follows from the Riesz-Thorin Convexity
Theorem.
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Theorem 4.4.1 (Riesz-Thorin). Let 1 ≤ pj , qj ≤ ∞ and let T be a continuous linear
mapping from Lp1 ∩ Lp2 to Lq1 ∩ Lq2, such that

(4.4.2) ‖Tf‖qj ≤Mj‖f‖pj .

Put 1
p = t 1

p1
+ (1− t) 1

p2
and 1

q = t 1
q1

+ (1− t) 1
q2

, where 0 < t < 1. Then

(4.4.3) ‖Tf‖q ≤M t
1M

1−t
2 ‖f‖p.

Corollary 4.4.2 (Hausdorff-Young). If f ∈ Lp, 1 ≤ p ≤ 2, then f̂ ∈ Lp′, 1/p+1/p′ = 1
and

‖f̂‖p′ ≤ (2π)n/p
′‖f‖p.

Proof of the corollary. F satisfies the conditions of Riesz-Thorin, with p1 = 1,
q1 =∞, M1 = 1 and p2 = q2 = 2, M2 = (2π)n/2. Then 1

p = t+ 1−t
2 and 1

q = 1−t
2 So q = p′

and the estimates follow from (4.4.3). �

Proof of the Riesz-Thorin Theorem. Recall from functional analysis that (Lq)∗ =

Lq
′

with 1/q + 1/q′ = 1. Moreover, for any h that is locally integrable we can estimate by
duality

‖h‖q = sup
‖g‖q′=1

|〈h, g〉| = sup
‖g‖q′=1

|
∫
h(t)g(t) dt|.

The sup is finite if and only if h ∈ Lq. We can now rewrite (4.4.2) as

(4.4.4) |〈Tf, g〉| ≤Mj‖f‖pj‖g‖q′j ∀g ∈ Lq
′
j .

To prove the theorem it suffices to prove

(4.4.5) |〈Tf, g〉| ≤M t
1M

1−t
2 ‖f‖p‖g‖q′ ,

which is the dual version of (4.4.3), for f of the form f0F
1/p tested against g of the form

g0G
1/q′ , where f0, g0 are in absolute value ≤ 1 and, because step functions are dense in Lr

if r < ∞, F,G are non negative step functions with integral equal to 1. Now consider, for
fixed such f0, F, g0, G

Φ(z) = 〈T (f0F
z/p1+(1−z)/p2), g0G

z/q1+(1−z)/q2〉Ṁ−z1 Ṁ z−1
2 .

This function is continuous on the strip 0 ≤ Re z ≤ 1 and analytic on its interior (The
reader may want to check this first for F,G being multiples of characteristic functions).
Moreover it is bounded on the strip and has boundary values ≤ 1 on Re z ∈ {0, 1}. The
Phragmén-Lindelöf Theorem states that Φ is in absolute value ≤ 1 and the Theorem is
proven. �

4.5. Exercises

4.5.1. Let Tϕ = FFϕ. Prove that (1): (TDj−DjT )ϕ = 0 and (2): T (xjϕ)−xjT (ϕ) =
0, for ϕ ∈ S. For ϕ ∈ S with ϕ(y) = 0 we saw in an earlier exercise that

ϕ(x) =

n∑
j=1

(xj − yj)ϕj(x),

for appropriate ϕj ∈ S. Show that ϕ(x0) = 0 implies T (ϕ)(x0) = 0. Pick a positive function
ϕ0 ∈ S, and apply this to ϕ(x0)ϕ0 − ϕ0(x0)ϕ0 to show that there exists a function c(x) so

that (Tϕ)(x) = c(x)ϕ(x). Use relation 1 to show that c(x) is a constant c. Take ϕ = e−|x|
2

to determine c and derive the inversion formula for S.
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4.5.2. Suppose that f is an entire function on Cn that satisfies the growth condition
(4.3.1) for some N and that its restriction to Rn is in L2(Rn). Show that f̂ is a compactly
supported L2-function.

4.5.3. Suppose that f is an entire function on Cn that satisfies for every ε > 0 a growth
condition

|f(z)| ≤ Cε(1 + |z|)Nεeε|Im z|.

Show that f is a polynomial. (Hint study f̂ .)

4.5.4. Prove that the Airy function satisfies the differential equation

Ai′′(x)− xAi(x) = 0.

Let ω be a third root of unity (ω3 = 1). Show that Ai(ωx) is another solution of this
equation. How many linearly independent solutions are there? Conclusion?

4.5.5. Prove that Ai(0) = 3−1/6Γ(1/3)/2π and Ai′(0) = −3−1/6Γ(2/3)/2π. (Take
ε = 1 in 4.1.8)

4.5.6. Let A be a symmetric matrix, possibly with complex coefficients. Show that
e−Ax·x is a tempered distribution if and only if ReA is positive semi-definite. Assuming in
addition that A is non-singular, compute the Fourier transform of e−Ax·x.

4.5.7. Show that ∑
k∈Z

e−4π2tk2 =
1√
4πt

∑
k∈Z

e−k
2/4t.

4.5.8. For x ∈ Rn let δx be the distribution ϕ 7→ ϕ(x) (ϕ ∈ S). Show that
∑

k∈Zn δx−k
is a temperate distribution. Next show that

F

(∑
k∈Zn

δx−k

)
= (2π)n

∑
k∈Zn

δx−2πk.





CHAPTER 5

Applications to partial differential equations

5.1. Introduction

We will work on Rn, n ≥ 1. Recall the notation Dα = Dα1
1 · · ·Dαn

n introduced in [9].
We want to solve linear partial differential equations of form

P (D)u = f,

that is we are looking for a function u on Rn, where f is a given function on Rn, and
P (D)u(x) is shorthand for the expression

(5.1.1) P (D)u(x) =
∑
|α|≤m

aα(x)Dαu(x).

Here the aα are functions on Rn. Often, but not necessarily, these functions will be smooth.
We start with the situation where aα are constants. Then it is easy to write down a formal
solution of (5.1.1). We apply Fourier transformation to both sides of (5.1.1) and obtain

P (ξ)û(ξ) = f(ξ).

Dividing by both sides by the polynomial P (ξ) =
∑
|α|≤m aαξ

α and transforming back, we

find

(5.1.2) u(x) =

(
F−1 f̂

P

)
(x).

The problem with (5.1.2) is of course that one can almost never take the inverse Fourier
transform.

We call the function (x, ξ) 7→ P (ξ) =
∑
|α|≤m aα(x)ξα the symbol of the partial differen-

tial operator P (D). It is a polynomial of the variables ξ1, · · · , ξn with variable coefficients.
The principal symbol Pm = Pm(x, ξ) =

∑
|α|=m aα(x)ξα, the highest degree homogeneous

polynomial in the symbol. Of course we have assumed that m is chosen as small as possible,
so that Pm 6≡ 0.

5.2. Elliptic equations

A linear partial differential is called elliptic if its principal symbol satisfies Pm(x, ξ) = 0
if and only if ξ = 0. It follows immediately that there exist constants c,R > 0 such that
|P (ξ)| > c|ξ|m if |ξ| > R. For test functions f and an elliptic operator with constant
coefficients P , we can solve P (D)u = f , and the solution is almost given by (5.1.2)! We
write out the formal solution

(5.2.1) u(x) =
1

2πn

∫
Rn

f̂(ξ)

P (ξ)
dξ.

If the polynomial P (ξ) has zeros on Rn, we have a problem integrating. However, we shall
see that we can always change the domain of integration in such a way that it does not
meet zeros of P . We have the following theorem.

Theorem 5.2.1. Let P (D) be a linear elliptic differential operator with constant coeffi-
cients, and let f ∈ D(Rn). Then the equation

P (D)u = f

43



44 5. APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS

admits a solution u ∈ C∞(Rn).

Proof. There exist constants c,R > 0 such that |P (ξ)| ≥ c|ξ|m if |ξ| ≥ R. We now
take another look at the naive approach (5.1.2). Writing out the inverse Fourier transform
in (5.1.2) we arrive at

1

(2π)n

∫
Rn

f̂(ξ)

P (ξ)
eix·ξdξ =

1

(2π)n

∫
Rn−1

(∫
R

f̂(ξ1, ξ
′)

P (ξ1, ξ′)
eix1ξ1

)
eix
′·ξ′dξ′.

Here ξ = (ξ1, ξ
′) and x = (x1, x

′). By the Paley Wiener theorem, f̂ extends to an analytic
function on Cn. With ξ′ fixed we try to integrate in the inner integral the quotient of the
analytic functions f̂(ξ1, ξ

′) and P (ξ1, ξ
′) over R. This may be impossible, but it is possible

to find a path Γξ′ depending on ξ′, that consists of {ξ1 < −R−m)} ∪ {ξ1 > R+m} ∪ γξ′ ,
where γξ′ is a bounded path from −R−m to R+m that does not meet any of the m zeros
of P (ξ1, ξ

′). We end up with a well defined expression

(5.2.2) u(x) =
1

(2π)n

∫
Rn−1

(∫
Γξ′

f̂(ζ, ξ′)

P (ζ, ξ′)
eix1ζdζ

)
eix
′·ξ′dξ′.

We will see in a moment that the paths γξ′ can be chosen in such a way that differentiation
under the integral is allowed, so that u will be a smooth function. Assuming this we compute

P (D)u(x) =
1

(2π)n

∫
Rn−1

(∫
Γξ′

f̂(ζ, ξ′)

P (ζ, ξ′)
P (D)[ei(x1ζ+x

′·ξ′)]dζ

)
dξ′

=
1

(2π)n

∫
Rn−1

(∫
Γξ′

f̂(ζ, ξ′)ei(x1ζ+x
′·ξ′)dζ

)
dξ′.

(5.2.3)

Now the inner integrand in the final integral is analytic on all of C, so by applying Cauchy’s
theorem we can replace Γξ′ by R. Thus (5.2.3) reduces to F−1f̂ = f .

It remains to be shown that γξ′ can be chosen so that (5.2.2) is smooth and differentiation
under the integral is allowed. If |ξ′| > R we simply choose Γξ′ = R. For |ξ′| ≤ R we proceed
as follows. Consider half circles γj = C(0, R+ j)∩{Im ζ ≥ 0}, j = 0, · · · ,m. Since P (ζ, ξ′)
is a polynomial of degree m in ζ it has at most m different zeros, hence there is at least
one γj such that the distance of γj to the zeros of P (·, ξ′) is ≥ 1. Choose γ(ξ′) to be such
a a half circle. The location of the zeros of P (·, ξ′) depends continuously on ξ′. This can
be shown, e.g., by Rouché’s theorem. Hence for every ξ′ there is an open neighborhood Uξ′
such that for η′ ∈ Uξ′ the distance of the zeros of P (·, η′) to γ(ξ′) is at least 1/2. Now by

compactness of B(0, R) there exists J ∈ N with B(0, R) ⊂ ∪Jj=0Uξ′j . Let V0 = Uξ′0 ∩B(0, R)

and

Vj = (Uξ′j ∩B(0, R)) \ (∪j−1
0 Uξ′j ).

Then the Vj are measurable and every point ξ′ ∈ B(0, R) is element of a unique Vj . For
ξ′ ∈ Vj we choose

Γξ′ = [−R−m,−R− j] ∩ γξ′j ∩ [R+ j, R+m].

With this choice the integral (5.2.2) can be written as a finite sum∫
|ξ′|>R

+

∫
V0

+ · · ·+
∫
VJ

.

Because f̂ is in S and 1/P is uniformly bounded on Γξ′×Vj we can apply the differentiation
Lemma 2.8 in [9] and the proof is finished. �
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5.3. Linear partial differential equations with constant coefficients

In this section we prove the Malgrange–Ehrenpreis theorem, which states that every
linear PDE with constant coefficients admits a fundamental solution. The proof we present
is essentially the original non constructive one, as presented by Rudin, [17]. Recently a
constructive proof was found, cf. [15, 21], see also [3]. We will write Tn for the torus
{z : |zj | = 1, j = 1, . . . , n} in Cn and σn = 1

(2π)n |dz1| · · · |dzn|, the Haar measure on Tn.

Lemma 5.3.1 (Malgrange). Let P = P0 + · · · + PN be a polynomial in Cn of degree N
written as sum of homogeneous polynomials Pj of degree j. Let A =

∫
Tn |PN (z)| dσn. Then

A > 0 and for every z ∈ Cn and every r > 0

(5.3.1) |f(z)| ≤ 1

rNA

∫
Tn
|(fP )(z + rw)| dσn(w).

Proof. Let F be an entire function and let Q(ζ) = c
∏N
j=1(ζ + aj) be a polynomial of

exact degree N on C. Let Q0(ζ) = c
∏N
j=1(1 + ajζ). If |ζ| = 1 then |ζ + aj | = |1 + ajζ|. It

follows from Cauchy’s theorem that

(5.3.2) |cF (0)| = |(Q0F )(0)| ≤ 1

2π

∫
|(FQ0)(eiθ)| dθ =

1

2π

∫
|(FQ)(eiθ)| dθ.

We apply this with F (ζ) = f(z + rζw) and Q(ζ) = P (z + rζw). Note that then
c = Q0(0) = limζ→∞Q(ζ)/ζN = rNPN (w). We plug this in (5.3.2) and integrate with
respect to w over Tn:

(5.3.3) |f(z)|
∫
Tn
rN |PN (w)| dσn(w) ≤

∫
Tn

1

2π

∫ 2π

0
|f(z + reiθw)P (z + reiθw)| dθdσn(w)

Changing the order of integration, and making the substitution w → eiθw we find that the
final integral equals

∫
Tn |f(z + rw)P (z + rw)| dσn(w). Note that an n-fold application of

Cauchy’s theorem gives for z ∈ Cn, |zj | < 1,

PN (z) =
1

(2πi)n

∫
Tn

PN (ζ)

(ζ1 − z1) · · · (ζn − zn)
dζ1 · · · dζn.

Therefore A =
∫
Tn |PN | dσn > 0 and (5.3.1) is proved. �

Theorem 5.3.2. Let P be a polynomial in n variables and P (D) the associated linear
PDO. Let v ∈ E ′(Rn) be a compactly supported distribution. Then the equation

(5.3.4) P (D)u = v

has a compactly supported distribution u as solution if and only if there exists an entire
function g such that

(5.3.5) Pg = v̂

Proof. If (5.3.4) has a compactly supported distribution as solution u, Fourier trans-
formation yields Pû = v̂. By the Paley–Wiener Theorem, û and v̂ are entire functions of
exponential type, hence (5.3.5).

If (5.3.5) holds for some g, we wish to apply the Paley–Wiener Theorem to the effect
that we can take u = F−1g. We have to prove that g satisfies the desired growth conditions.
Let r > 0 be such that supp v ⊂ B(0, r). By Lemma 5.3.1, with A =

∫
Tn |Pn|dσn

(5.3.6) |g(z)| ≤ 1

A

∫
Tn
|v̂(z + w)|dσn(w), z ∈ Cn.

By the Paley–Wiener Theorem there exist C and N such that

(5.3.7) |v̂(z + w)| ≤ C(1 + |z + w|)Ner| Im(z+w)|

For |w| = 1
1 + |z + w| ≤ 2(1 + |z|)
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and
| Im(z + w)| ≤ 1 + | Im z|.

This gives

(5.3.8) |g(z)| ≤ 1

A
C ′(1 + |z|)Ner(1+| Im z|) ≤ C ′′(1 + |z|)Ner| Im z|, z ∈ Cn,

which had to be proved. �

Apparently equations like (5.3.4) seldomly admit solutions with compact support.

Theorem 5.3.3 (Malgrange–Ehrenpreis). Let P be a polynomial in n variables. The
associated partial differential operator P (D) admits a fundamental solution. That is, The
equation

(5.3.9) P (D)u = δ

has a solution u ∈ D′.

Proof. Let ϕ ∈ D(Rn) and suppose

ψ = P (−D)ϕ.

Then ψ̂ = Pϕ̂ and both ψ̂ and ϕ̂ are entire functions. Hence by the uniqueness theorem for
holomorphic functions, ψ determines ϕ. Thus ψ 7→ ϕ(0) is a well defined linear functional on
the range of P (D), which is a subspace of D(Rn). We will show below that this functional is
continuous. Then by the Hahn–Banach Theorem, it extends to a contnious linear functional
on D(Rn) hence it can be represented by a distribution E with the property that

〈E,P (−D)ϕ〉 = ϕ(0), ϕ ∈ D(Rn).

Then we find
〈P (D)E,ϕ〉 = 〈E,P (−D)ϕ〉 = ϕ(0) = 〈δ, ϕ〉,

proving that E is a fundamental solution.
To show that our linear functional is continuous, we introduce explicitly the characters

on Rn, that is the homomorphisms Rn → T given by the exponential functions es : x 7→ eis·x.
We need to show that ϕ(0) tends to zero if ψ = P (−D)ϕ tends to zero. Lemma 5.3.1 relates

ϕ̂ to ψ̂. Hence, fixing r > 0, we are led to

|ϕ(0)| =
∣∣∣∣∫

Rn
ϕ̂(ξ)dξ

∣∣∣∣ ≤ ∫
Rn
dξ

1

A

∫
Tn

∣∣∣ψ̂(ξ + rw)
∣∣∣ dσw

=

∫
Rn
dξ

1

A

∫
Tn

∣∣∣ψ̂e−rw(ξ)
∣∣∣ dσw ≤ ∫

Tn

∥∥∥∥ 1

(1 + |ξ|2)n

∥∥∥∥
2

∥∥∥(1 + |ξ|2)nψ̂e−rw(ξ))
∥∥∥

2
dσw.

(5.3.10)

The final inequality is Cauchy–Schwarz. Recall that ψ tends to 0 implies that there is a
fixed ball B(0, R) that contains the supports of all ψ. The characters e−rw are uniformly
bounded by a constant C > 0, independently of w ∈ T on B(0, R). Leibnitz’ formula then
gives

|Dα(e−rwψ)| ≤ C ′ max
β≤α,ξ∈B(0,R)

∣∣∣Dβψ(ξ)
∣∣∣ ,

where C ′ is a positive constant depending only on R and α. It follows that for suitable
constant C ′′ we also have for the 2-norm

‖(I −∆)n(e−rwψ)‖2 ≤ C ′′ max
|β|≤n,ξ∈B(0,R)

∣∣∣Dβψ(ξ)
∣∣∣ .

Application of Plancherel’s formula gives

‖(1 + |ξ|2)nê−rwψ(ξ)‖2 ≤ C ′′ max
|β|≤n,ξ∈B(0,R)

∣∣∣Dβψ(ξ)
∣∣∣ .

Inserting this in the final term of (5.3.10) we have proven continuity. �
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