projects
Analyse Projecten
Docent: Prof. dr. J.J.O.O. Wiegerinck
On this page one finds a number of possible subjects for various projects associated to mathematical exams. Descriptions are very short. Students are invited to drop by and get more info if they are interested.
Bachelor
Tweede jaars projecten
- De nergens differentieerbare, continue functie van Weierstrass en verwante vragen
Bachelor scriptie
- Kakeya's Needle and related problems
Hoe groot moet een verzameling in R2 zijn om er een interval op continue manier in te keren?
- Overconvergentie en gap series. Machtreeksen convergeren op schijven. Kan een reeks van partieel sommen op een groter gebied convergeren? Hoe krijg je dat voor elkaar, en wat kun je zeggen over de limiet functies
Master
Master's Thesis
- Proper Embedding of one dimensional manifolds in C2
- Approximation on compact sets in C. This topic is classic. Recent work on analytic capacity may open new ways to solve old problems.
- The Cauchy Transform. The integral transformation ∫ 1/(z-ζ) dμ(ζ)
has intersting holomorphy properties that are worth studying.
- Gleason's problem: Given a ring of holomorphic functions R on a domain D in C^n.
Is the ideal of the functions vanishing at p in D spanned by the functions zi-pi (i=1...n)?
- Fine holomorphic functions. An extension of the notion of holomorphic function, or rather of the sets that are considered open. There exists a good basic theory, but on a slightly more advanced level there are many interesting questions.
to the home page of Faculteit NWI
to the home page the KdV Institute
to
the home page of Jan Wiegerinck