Stochastic Simulation

Jan-Pieter Dorsman¹ & Michel Mandjes^{1,2,3}

¹Korteweg-de Vries Institute for Mathematics, University of Amsterdam ²CWI, Amsterdam ³Eurandom, Eindhoven

> University of Amsterdam, Fall, 2017

Chapter VII Derivative Estimation

The idea behind derivative estimation

We have seen right now how to go about simulating a value $z = \mathbb{E}[Z(\theta)]$, where Z is a random variable which depends on the parameters $\theta_1, \theta_2, \ldots$

For purposes of sensitivity analysis, we are interested in the gradient

$$abla z = \left(rac{\partial}{\partial heta_1} z \;\; rac{\partial}{\partial heta_2} z \;\; \cdots
ight).$$

We now adress the problem of how to estimate this gradient by simulation, i.e. derivative estimation.

Why?

There are numerous reasons why we'd be interested in estimating the gradient:

- To identify the most important system parameter.
- To assess the effect of a small parameter change.
- In optimization, to find the best system parameter θ requires evaluation of the gradient (think of Newton-Raphson).
- To find gradients that are of intrinsic interest, such as the Greeks in option pricing.

Why?

There are numerous reasons why we'd be interested in estimating the gradient:

- To identify the most important system parameter.
- To assess the effect of a small parameter change.
- In optimization, to find the best system parameter θ requires evaluation of the gradient (think of Newton-Raphson).
- To find gradients that are of intrinsic interest, such as the Greeks in option pricing.

From a theoretical point of view, there is hardly any difference between the one-dimensional and the multi-dimensional case, as gradients and Hessians are computed componentwise. Therefore, we focus on the one-dimensional setting.

Derivative estimation

We discuss three methods.

- 1. Finite differences (FD)
- 2. Infinitesimal perturbation analysis (IPA)
- 3. Likelihood ratio method (LR)

Let's say that Z = h(X). Important differences:

- For FD and IPA, we only assume the function h to depend on θ (structural dependence).
- For LR, we only assume the distribution of X to depend on θ (distributional dependence).

Derivative estimation

Our goal: find a random variable $D(\theta)$ such that

in case dependence is structural,

$$\mathbb{E}[D(\theta)] = z'(\theta) = \frac{d}{d\theta} \mathbb{E}[h_{\theta}(X)].$$

in case dependence is distributional,

$$\mathbb{E}\left[D(\theta)\right] = z'(\theta) = \frac{d}{d\theta} \mathbb{E}_{\theta}\left[h(X)\right].$$

Then, if we have found an unbiased estimator, we could e.g. use crude Monte Carlo (or other methods) to estimate $z'(\theta)$:

- **1.** Generate *R* copies $D_1(\theta), \ldots, D_R(\theta)$.
- **2.** Compute $\frac{1}{R} \sum_{i=1}^{R} D_i(\theta)$.

Chapter VII.1 The finite differences method

Suppose that for each θ , we can generate an r.v. $Z(\theta)$ with expectation $z(\theta)$.

Starting point is the definition of a derivative:

$$f'(\theta) = \lim_{h \to 0} \frac{f(\theta + h) - f(\theta)}{h} = \lim_{h \to 0} \frac{f(\theta + \frac{h}{2}) - f(\theta - \frac{h}{2})}{h}$$

Suppose that for each θ , we can generate an r.v. $Z(\theta)$ with expectation $z(\theta)$.

Starting point is the definition of a derivative:

$$f'(\theta) = \lim_{h \to 0} \frac{f(\theta + h) - f(\theta)}{h} = \lim_{h \to 0} \frac{f(\theta + \frac{h}{2}) - f(\theta - \frac{h}{2})}{h}$$

This suggests two possible derivative estimators:

$$\tilde{D}(\theta) = \frac{Z(\theta+h) - Z(\theta)}{h}$$

or

$$D(\theta) = \frac{Z(\theta + \frac{h}{2}) - Z(\theta - \frac{h}{2})}{h}.$$

Suppose that for each θ , we can generate an r.v. $Z(\theta)$ with expectation $z(\theta)$.

Starting point is the definition of a derivative:

$$f'(\theta) = \lim_{h \to 0} \frac{f(\theta + h) - f(\theta)}{h} = \lim_{h \to 0} \frac{f(\theta + \frac{h}{2}) - f(\theta - \frac{h}{2})}{h}$$

This suggests two possible derivative estimators:

$$\tilde{D}(\theta) = \frac{Z(\theta+h) - Z(\theta)}{h}$$

or

$$D(\theta) = rac{Z(heta+rac{h}{2})-Z(heta-rac{h}{2})}{h}.$$

Q: Should we use the forward difference estimator $D(\theta)$ or the central difference estimator $D(\theta)$?

Suppose that for each θ , we can generate an r.v. $Z(\theta)$ with expectation $z(\theta)$.

Starting point is the definition of a derivative:

$$f'(\theta) = \lim_{h \to 0} \frac{f(\theta + h) - f(\theta)}{h} = \lim_{h \to 0} \frac{f(\theta + \frac{h}{2}) - f(\theta - \frac{h}{2})}{h}$$

This suggests two possible derivative estimators:

$$\tilde{D}(\theta) = \frac{Z(\theta+h) - Z(\theta)}{h}$$

or

$$D(\theta) = \frac{Z(\theta + \frac{h}{2}) - Z(\theta - \frac{h}{2})}{h}.$$

- **Q**: Should we use the forward difference estimator $D(\theta)$ or the central difference estimator $D(\theta)$?
- A: As always, check biasedness first.

To check biasedness, apply Taylor series about θ .

$$\mathbb{E}\left[\tilde{D}(\theta)\right] = \frac{z(\theta+h) - z(\theta)}{h}$$
$$= \frac{1}{h}\left(z'(\theta)h + z''(\theta)\frac{h^2}{2} + z'''(\theta)\frac{h^3}{6} + \dots\right)$$

To check biasedness, apply Taylor series about θ .

$$\mathbb{E}\left[\tilde{D}(\theta)\right] = \frac{z(\theta+h) - z(\theta)}{h}$$
$$= \frac{1}{h}\left(z'(\theta)h + z''(\theta)\frac{h^2}{2} + z'''(\theta)\frac{h^3}{6} + \dots\right)$$

and

$$\mathbb{E}\left[D(heta)
ight] = rac{z(heta+rac{h}{2})-z(heta-rac{h}{2})}{h} \ = rac{1}{h}\left(z'(heta)h+z'''(heta)rac{h^3}{24}+\ldots
ight)$$

Conclusion?

To check biasedness, apply Taylor series about θ .

$$\mathbb{E}\left[\tilde{D}(\theta)\right] = \frac{z(\theta+h) - z(\theta)}{h}$$
$$= \frac{1}{h}\left(z'(\theta)h + z''(\theta)\frac{h^2}{2} + z'''(\theta)\frac{h^3}{6} + \dots\right)$$

and

$$\mathbb{E}\left[D(\theta)\right] = \frac{z(\theta + \frac{h}{2}) - z(\theta - \frac{h}{2})}{h}$$
$$= \frac{1}{h} \left(z'(\theta)h + z'''(\theta)\frac{h^3}{24} + \dots\right)$$

Conclusion? The bias of $D(\theta)$ is an order of magnitude lower, so let's go with that estimator.

Q: How to choose *h*?

To check biasedness, apply Taylor series about θ .

$$\mathbb{E}\left[\tilde{D}(\theta)\right] = \frac{z(\theta+h) - z(\theta)}{h}$$
$$= \frac{1}{h}\left(z'(\theta)h + z''(\theta)\frac{h^2}{2} + z'''(\theta)\frac{h^3}{6} + \dots\right)$$

and

$$\mathbb{E}\left[D(\theta)\right] = \frac{z(\theta + \frac{h}{2}) - z(\theta - \frac{h}{2})}{h}$$
$$= \frac{1}{h} \left(z'(\theta)h + z'''(\theta)\frac{h^3}{24} + \dots\right)$$

Conclusion? The bias of $D(\theta)$ is an order of magnitude lower, so let's go with that estimator.

- **Q**: How to choose *h*?
- A: That's a good question!

How to choose h?

- On one hand, don't pick h too large, because it induces bias. The bias will vanish as h → 0.
- On other hand, don't pick h too small, because it increases variance.

How to choose h?

- On one hand, don't pick h too large, because it induces bias. The bias will vanish as h → 0.
- On other hand, don't pick h too small, because it increases variance.

When estimating $z(\theta + \frac{h}{2})$ and $z(\theta - \frac{h}{2})$, each independently with R samples, then the mean squared error of the estimator is optimised when choosing

$$h = \frac{1}{R^{1/6}} \frac{(576 \operatorname{Var}(Z(\theta)))^{1/6}}{|z'''(\theta)|^{1/3}},$$

in which case the root of the mean squared error is of order $R^{-1/3}$. See book for the proof.

Of course, this result is rather academic. When estimating $z'(\theta)$, one probably doesn't know $z'''(\theta)$, but dependence on R is interesting.

Tips and tricks:

- One can use common random numbers to reduce variance!
- For instance, suppose that the dependence is distributional: Z = g(X), where θ is a parameter of the pdf of X.
- Generate independent uniform samples U_1, \ldots, U_R .
- Compute

$$Z_i^{(+)} = g\left(F_{\theta+\frac{h}{2}}^{\leftarrow}(U_i)\right); \qquad Z_i^{(-)} = g\left(F_{\theta-\frac{h}{2}}^{\leftarrow}(U_i)\right);$$

for all $i = 1, \ldots, R$.

Tips and tricks:

- One can use common random numbers to reduce variance!
- For instance, suppose that the dependence is distributional: Z = g(X), where θ is a parameter of the pdf of X.
- Generate independent uniform samples U_1, \ldots, U_R .
- Compute

$$Z_i^{(+)} = g\left(F_{\theta+\frac{h}{2}}^{\leftarrow}(U_i)\right); \qquad Z_i^{(-)} = g\left(F_{\theta-\frac{h}{2}}^{\leftarrow}(U_i)\right);$$

for all $i = 1, \ldots, R$.

• Finite difference estimator for $z'(\theta)$ now is

$$\frac{1}{hR}\sum_{i=1}^{R}(Z_{i}^{(+)}-Z_{i}^{(-)}).$$

Example.

- Suppose that Z = h(X), where X is $exp(\theta)$ distributed and $g(x) = x^p$ with $p \in \mathbb{N}$.
- Note that z(θ) = E [X^p] is the p-th moment of the exp(θ) distribution, i.e. z(θ) = p! (¹/_θ)^p, but let's suppose we unknowingly wish to estimate z'(θ).

Example.

- Suppose that Z = h(X), where X is $exp(\theta)$ distributed and $g(x) = x^p$ with $p \in \mathbb{N}$.
- Note that z(θ) = E [X^p] is the p-th moment of the exp(θ) distribution, i.e. z(θ) = p! (¹/_θ)^p, but let's suppose we unknowingly wish to estimate z'(θ).
- Recall that the quantile function of X is given by $F^{\leftarrow}(x) = \frac{-\log(1-x)}{\theta}$.
- This leads to

$$D(\theta) = \frac{1}{h} \left(\left(\frac{1}{\theta + \frac{h}{2}} \right)^p - \left(\frac{1}{\theta - \frac{h}{2}} \right)^p \right) (-\log(U))^p,$$

where U is standard uniformly distributed.

Common random variables versus independent sampling.

It can be seen that using this estimator,

$$\operatorname{Var}\left[D(\theta)\right] = \frac{1}{h^2} \left(\left(\frac{1}{\theta + \frac{h}{2}}\right)^p - \left(\frac{1}{\theta - \frac{h}{2}}\right)^p \right)^2 \left((2p)! - (p!)^2\right).$$

However, in case we wouldn't have used common random numbers but sampled independently, we would have faced

$$\operatorname{Var}\left[D(\theta)\right] = \frac{1}{h^2} \left(\left(\frac{1}{\theta + \frac{h}{2}}\right)^{2p} + \left(\frac{1}{\theta - \frac{h}{2}}\right)^{2p} \right) \left((2p)! - (p!)^2\right),$$

which is larger!

The book also discusses higher-order finite-difference approximations, such as the second-order approximation

$$\frac{-Z(\theta+2h)+4Z(\theta+h)-3Z(\theta)}{2h}$$

and much higher order. These k-order estimators typically have a smaller bias (roughly of order h^k), but

- ► these estimators require approximations at k + 1 points of z(·),
- the weights involved grow larger in absolute value as k gets high, doing the variance of the estimator no good.

The book also discusses higher-order finite-difference approximations, such as the second-order approximation

$$\frac{-Z(\theta+2h)+4Z(\theta+h)-3Z(\theta)}{2h}$$

and much higher order. These k-order estimators typically have a smaller bias (roughly of order h^k), but

- ► these estimators require approximations at k + 1 points of z(·),
- the weights involved grow larger in absolute value as k gets high, doing the variance of the estimator no good.

Therefore, higher-order approximations are hardly used in practice.

Chapter VII.2 Infinitesimal Perturbation Analysis

Suppose that $Z = h_{\theta}(X)$ (structural dependence), and that we want to know $\frac{d}{d\theta} \mathbb{E}[Z]$.

Let $D(\theta) := \frac{d}{d\theta}h_{\theta}(X)$. Then, IPA is based on the following assumption:

$$rac{d}{d heta}\mathbb{E}\left[h_{ heta}(X)
ight]=\mathbb{E}\left[rac{d}{d heta}h_{ heta}(X)
ight]=\mathbb{E}\left[D(heta)
ight].$$

Suppose that $Z = h_{\theta}(X)$ (structural dependence), and that we want to know $\frac{d}{d\theta}\mathbb{E}[Z]$.

Let $D(\theta) := \frac{d}{d\theta}h_{\theta}(X)$. Then, IPA is based on the following assumption:

$$rac{d}{d heta}\mathbb{E}\left[h_{ heta}(X)
ight]=\mathbb{E}\left[rac{d}{d heta}h_{ heta}(X)
ight]=\mathbb{E}\left[D(heta)
ight].$$

The IPA-method simply implies the crude Monte Carlo simulation of $D(\theta)$:

- **1.** Sample *R* copies of $D(\theta)$.
- 2. Create confidence intervals based on these copies using regular methods and techniques.

Same example as before:

- Suppose that Z = g(X), where X is $exp(\theta)$ distributed and $g(x) = x^{p}$ with $p \in \mathbb{N}$.
- Z has same distribution as h_θ(U), where h_θ(x) = (− log(x)/θ)^p, and U is standard uniform.

Same example as before:

- Suppose that Z = g(X), where X is $exp(\theta)$ distributed and $g(x) = x^{p}$ with $p \in \mathbb{N}$.
- ► Z has same distribution as h_θ(U), where h_θ(x) = (- log(x)/θ), and U is standard uniform.
- We have

$$rac{d}{d heta}h_{ heta}(x)=-(-\log(x))^p p\left(rac{1}{ heta}
ight)^{p-1}rac{1}{ heta^2}=rac{-ph_{ heta}(x)}{ heta},$$

This results in

$$D(heta) = rac{-ph_{ heta}(U)}{ heta}$$

▶ Thus: create replicates of $h_{\theta}(U)$ using known methods, and then multiply each with $\frac{-p}{\theta}$. These are the resulting replicates for $D(\theta)$.

Same example as before:

- Suppose that Z = g(X), where X is $exp(\theta)$ distributed and $g(x) = x^{p}$ with $p \in \mathbb{N}$.
- ► Z has same distribution as h_θ(U), where h_θ(x) = (- log(x)/θ), and U is standard uniform.
- We have

$$rac{d}{d heta}h_{ heta}(x)=-(-\log(x))^p p\left(rac{1}{ heta}
ight)^{p-1}rac{1}{ heta^2}=rac{-ph_{ heta}(x)}{ heta},$$

This results in

$$D(\theta) = \frac{-ph_{\theta}(U)}{\theta}$$

Thus: create replicates of h_θ(U) using known methods, and then multiply each with ^{-p}/_θ. These are the resulting replicates for D(θ).

We can get estimates for different values of $\boldsymbol{\theta}$ with negligible additional effort.

Q: Are we done now?

- **Q:** Are we done now?
- A: No, who says we can interchange expectation and derivative like that?

- **Q:** Are we done now?
- A: No, who says we can interchange expectation and derivative like that?

Proposition: Assume that $Z(\theta)$ is a.s. differentiable at θ_0 and that a.s. $Z(\theta)$ satisfies the Lipschitz condition

$$|Z(\theta_1) - Z(\theta_2)| \le |\theta_1 - \theta_2|M$$

for θ_1, θ_2 in a nonrandom neighborhood of θ_0 , where $\mathbb{E}[M] < \infty$. Then,

$$\frac{d}{d\theta} \mathbb{E}\left[Z(\theta)\right]\Big|_{\theta=\theta_0} = \mathbb{E}\left[\frac{d}{d\theta}Z(\theta)\right]\Big|_{\theta=\theta_0}$$

- **Q:** Are we done now?
- A: No, who says we can interchange expectation and derivative like that?

Proposition: Assume that $Z(\theta)$ is a.s. differentiable at θ_0 and that a.s. $Z(\theta)$ satisfies the Lipschitz condition

$$|Z(\theta_1) - Z(\theta_2)| \le |\theta_1 - \theta_2|M$$

for θ_1, θ_2 in a nonrandom neighborhood of θ_0 , where $\mathbb{E}[M] < \infty$. Then,

$$\frac{d}{d\theta} \mathbb{E}\left[Z(\theta)\right]\Big|_{\theta=\theta_0} = \mathbb{E}\left[\frac{d}{d\theta}Z(\theta)\right]\Big|_{\theta=\theta_0}$$

Proof: Use of dominated convergence theorem.

Example of when the interchangeability assumption fails.

• Let
$$X_1, X_2$$
 be two independent r.v.s, and let
 $z = \mathbb{P}(X_1 < \theta X_2)$ be the expectation of $Z = \mathbb{1}_{\{X_1 < \theta X_2\}}$.

▶ Now, $D(\theta) = \frac{d}{d\theta}Z = 0$ a.s. for any value of θ . But $\frac{d}{d\theta}z$ surely is not zero in general for any value of θ .

The proposition indeed does not apply. Let's say that we want to know $\frac{d}{d\theta}z$ in the point $\theta_0 = 1$.

Then, we have for $\theta \in [1, 1 + \epsilon)$ that

$$Z(\theta) - Z(\theta_0) = \mathbb{1}_{\{\theta > X_1/X_2\}} - \mathbb{1}_{\{1 > X_1/X_2\}} = \mathbb{1}_{\{1 \le X_1/X_2 < \theta\}}.$$

$$Z(\theta) - Z(\theta_0) = \mathbb{1}_{\{\theta > X_1/X_2\}} - \mathbb{1}_{\{1 > X_1/X_2\}} = \mathbb{1}_{\{1 \le X_1/X_2 < \theta\}}.$$

Let's say that the density of X_1/X_2 is at least A > 0 in the interval $[1, 1 + \epsilon)$. Then, this equals one with probability at least $A(\theta - 1)$. Now, in order for

$$|Z(\theta) - Z(1)| \le (\theta - 1)M$$

to hold, it must thus hold that $\mathbb{P}\left((\theta-1)M \geq 1\right) \geq A(\theta-1)$ for $\theta \in [1, 1+\epsilon)$.

$$Z(\theta) - Z(\theta_0) = \mathbb{1}_{\{\theta > X_1/X_2\}} - \mathbb{1}_{\{1 > X_1/X_2\}} = \mathbb{1}_{\{1 \le X_1/X_2 < \theta\}}.$$

Let's say that the density of X_1/X_2 is at least A > 0 in the interval $[1, 1 + \epsilon)$. Then, this equals one with probability at least $A(\theta - 1)$. Now, in order for

$$|Z(\theta) - Z(1)| \le (\theta - 1)M$$

to hold, it must thus hold that $\mathbb{P}((\theta - 1)M \ge 1) \ge A(\theta - 1)$ for $\theta \in [1, 1 + \epsilon)$. Or, $\mathbb{P}(M \ge x) \ge \frac{A}{x}$ for all $x \in (\epsilon^{-1}, \infty)$, so that

$$\mathbb{E}[M] = \int_{x=0}^{\infty} \mathbb{P}(M > x) \, dx \ge \int_{x=e^{-1}}^{\infty} \mathbb{P}(M > x) \, dx$$
$$\ge A \int_{x=e^{-1}}^{\infty} \frac{1}{x} \, dx = \infty.$$

Violation of assumption!

This effect also occurs often when step functions are involved. Example of when it does work:

- Let $Z = \max(X_1, \theta X_2)$, where Z_1 and Z_2 are two independent r.v.s.
- ► Then, $D(\theta) = X_2 \mathbb{1}_{\{X_1 < \theta X_2\}}$ is a valid estimator for $\frac{d}{d\theta} \mathbb{E}[Z(\theta)]$. Justification:

$$|Z(heta_1)-Z(heta_2)|\leq | heta_1- heta_2||X_2|.$$

Hence, take $|X_2| = M$. The interchange of derivative and expectation is now justified, unless $\mathbb{E}[|X_2|] = \infty$.

Chapter VII.3 The likelihood ratio method

For this method to work, we assume the dependence on $\boldsymbol{\theta}$ to be distributional, i.e.

$$Z(\theta) = h(X), \qquad z(\theta) = \mathbb{E}_{\theta} [h(X)]$$

where X has a density $f_{\theta}(x)$, and we wish to estimate $z'(\theta)$ in the point θ_0 . The likelihood ratio method is reminiscent of importance

sampling. Let $L(\theta, x) = \frac{f_{\theta}(x)}{f_{\theta_0}(x)}$.

For this method to work, we assume the dependence on $\boldsymbol{\theta}$ to be distributional, i.e.

$$Z(\theta) = h(X), \qquad z(\theta) = \mathbb{E}_{\theta} [h(X)]$$

where X has a density $f_{\theta}(x)$, and we wish to estimate $z'(\theta)$ in the point θ_0 . The likelihood ratio method is reminiscent of importance

sampling. Let $L(\theta, x) = \frac{f_{\theta}(x)}{f_{\theta_0}(x)}$. Then,

$$\begin{aligned} z(\theta) &= \int h(x) f_{\theta}(x) dx = \int h(x) L(\theta, x) f_{\theta_0}(x) dx \\ &= \mathbb{E}_{\theta_0} \left[h(X) L(\theta, X) \right], \end{aligned}$$

where $\mathbb{E}_{\theta_0}[\cdot]$ indicates expectation with respect to the density f_{θ_0} .

We have

$$z(\theta) = \mathbb{E}_{\theta_0} \left[h(X) L(\theta, X) \right].$$

We have

$$z(\theta) = \mathbb{E}_{\theta_0} \left[h(X) L(\theta, X) \right].$$

This suggests that

$$z'(\theta) = \mathbb{E}_{\theta_0}\left[h(X)L'(\theta,X)\right],$$

where $L'(\theta, x) = \frac{d}{d\theta}L(\theta, X)$. We can write $z'(\theta_0) = \mathbb{E}_{\theta_0}[h(X)S_{\theta_0}(X)],$

where

$$S_{ heta_0}(x) = \left. rac{f_{ heta}'(x)}{f_{ heta}(x)}
ight|_{ heta = heta_0}.$$

We will refer to $S_{\theta_0}(x)$ as the score function evaluated at $\theta = \theta_0$.

All this suggests the unbiased estimator for $z'(\theta_0)$:

$$D(\theta_0) = h(X)S_{\theta_0}(X)$$

Hence, we have the following estimation method:

- **1.** Generate *R* i.i.d samples of X, where X has density f_{θ_0} .
- **2.** Compute $\frac{1}{R} \sum_{i=1}^{R} h(X_i) S_{\theta_0}(X_i)$.

Confidence intervals can be computed by the known techniques.

This discussion was for a single random variable X. In this case,

$$S_{ heta}(x) = rac{f_{ heta}'(x)}{f_{ heta}(x)} = rac{d}{d heta}\log f_{ heta}(x).$$

When $Z = h(X_1, ..., X_n)$, where $X_1, ..., X_n$ have a joint density f(x), the same procedure can be used. The only difference is that

$$S_{ heta}(oldsymbol{x}) = rac{d}{d heta} \log f_{ heta}(oldsymbol{x}).$$

When the X_i are independent, this leads to

$$S_{\theta}(\mathbf{x}) = \frac{d}{d\theta} \log f_{\theta}(\mathbf{x}) = \frac{d}{d\theta} \log f_{\theta}^{(1)}(x_1) \cdots f_{\theta}^{(n)}(x_n)$$
$$= \sum_{i=1}^{n} \frac{d}{d\theta} \log f_{\theta}^{(i)}(x_i) = \sum_{i=1}^{n} S_{\theta}^{(i)}(x_i).$$

This is the additive property of the score function.

Example: Z = h(X), where $h(x) = x^p$ and X is exponentially(θ) distributed.

The corresponding score function is

$$S_{ heta}(x) = rac{d}{d heta} \log f_{ heta}(x) = rac{d}{d heta} \log(heta) - heta x = rac{1}{ heta} - x$$

Example: Z = h(X), where $h(x) = x^p$ and X is exponentially(θ) distributed.

The corresponding score function is

$$S_{ heta}(x) = rac{d}{d heta} \log f_{ heta}(x) = rac{d}{d heta} \log(heta) - heta x = rac{1}{ heta} - x$$

$$h(x)S_{\theta}(x)=rac{x^{p}}{\theta}-x^{p+1}.$$

Example: Z = h(X), where $h(x) = x^p$ and X is exponentially(θ) distributed.

The corresponding score function is

$$S_{ heta}(x) = rac{d}{d heta} \log f_{ heta}(x) = rac{d}{d heta} \log(heta) - heta x = rac{1}{ heta} - x$$

$$h(x)S_{\theta}(x) = \frac{x^{p}}{\theta} - x^{p+1}$$

So, to sample the derivative of z at θ = θ₀, we generate X₁,..., X_R from the exp(θ₀) distribution, and compute

$$\frac{1}{R}\sum_{i=1}^{R}\left(\frac{X_{i}^{p}}{\theta_{0}}-X_{i}^{p+1}\right)$$

Example: $C = \sum_{i=1}^{N} V_i$, where N is Poisson(λ) and the V_i are i.i.d. with density $f_{\theta}(x)$. Assume that we are interested in $z = \mathbb{P}(C > x) = \mathbb{E} [\mathbb{1}_{\{C > x\}}].$

• When estimating $\frac{d}{d\lambda}z|_{\lambda=\lambda_0}$, the appropriate score function is

$$S_{\lambda}(n) = rac{d}{d\lambda} \log(e^{-\lambda} rac{\lambda^n}{n!}) = rac{n}{\lambda} - 1.$$

Example: $C = \sum_{i=1}^{N} V_i$, where N is Poisson(λ) and the V_i are i.i.d. with density $f_{\theta}(x)$. Assume that we are interested in $z = \mathbb{P}(C > x) = \mathbb{E} [\mathbb{1}_{\{C > x\}}].$

• When estimating $\frac{d}{d\lambda}z|_{\lambda=\lambda_0}$, the appropriate score function is

$$S_{\lambda}(n) = rac{d}{d\lambda} \log(e^{-\lambda} rac{\lambda^n}{n!}) = rac{n}{\lambda} - 1.$$

Thus, the LR estimator is $\mathbb{1}_{\{\sum_{i=1}^{N} V_i > x\}} \left(\frac{N}{\lambda_0} - 1\right)$, where N is Poisson (λ_0) distributed and the V_i are i.i.d. with density f_{θ} .

Example: $C = \sum_{i=1}^{N} V_i$, where N is Poisson(λ) and the V_i are i.i.d. with density $f_{\theta}(x)$. Assume that we are interested in $z = \mathbb{P}(C > x) = \mathbb{E} [\mathbb{1}_{\{C > x\}}].$

• When estimating $\frac{d}{d\lambda}z|_{\lambda=\lambda_0}$, the appropriate score function is

$$S_{\lambda}(n) = rac{d}{d\lambda} \log(e^{-\lambda} rac{\lambda^n}{n!}) = rac{n}{\lambda} - 1.$$

Thus, the LR estimator is $\mathbb{1}_{\{\sum_{i=1}^{N} V_i > x\}} \left(\frac{N}{\lambda_0} - 1 \right)$, where *N* is Poisson(λ_0) distributed and the V_i are i.i.d. with density f_{θ} .

• When estimating $\frac{d}{d\theta}z|_{\theta=\theta_0}$, the appropriate score function is

$$S_{\theta}(v_1,\ldots,v_n) = \sum_{i=1}^n \frac{d}{d\theta} \log f_{\theta}(v_i).$$

Example: $C = \sum_{i=1}^{N} V_i$, where N is Poisson(λ) and the V_i are i.i.d. with density $f_{\theta}(x)$. Assume that we are interested in $z = \mathbb{P}(C > x) = \mathbb{E} [\mathbb{1}_{\{C > x\}}].$

• When estimating $\frac{d}{d\lambda}z|_{\lambda=\lambda_0}$, the appropriate score function is

$$S_{\lambda}(n) = rac{d}{d\lambda} \log(e^{-\lambda} rac{\lambda^n}{n!}) = rac{n}{\lambda} - 1.$$

Thus, the LR estimator is $\mathbb{1}_{\{\sum_{i=1}^{N} V_i > x\}} \left(\frac{N}{\lambda_0} - 1 \right)$, where *N* is Poisson(λ_0) distributed and the V_i are i.i.d. with density f_{θ} . • When estimating $\frac{d}{d\theta} z|_{\theta=\theta_0}$, the appropriate score function is

$$S_{\theta}(v_1,\ldots,v_n) = \sum_{i=1}^n \frac{d}{d\theta} \log f_{\theta}(v_i).$$

Then, an estimator would be $\mathbb{1}_{\{\sum_{i=1}^{N} V_i > x\}} S_{\theta_0}(V_1, \ldots, V_N)$, where N is Poisson(λ) distributed and the V_i are i.i.d. with density f_{θ_0} .

We forgot a minor detail in this discussion....

We forgot a minor detail in this discussion....

Who says derivative and expectation can be interchanged when moving from

$$z(\theta) = \mathbb{E}_{\theta_0} \left[h(X) L(\theta, X) \right]$$

to

$$z'(\theta) = \mathbb{E}_{\theta_0} \left[h(X) L'(\theta, X) \right]?$$

This again uses a dominated convergence argument (see Proposition VII.3.5), but generally, it often works out when $L(\theta, X)$ has no discontinuities depending on θ .

The LR method is often done in conjunction with importance sampling, so that we can estimate $z'(\theta) = \frac{d}{d\theta} \mathbb{E}[Z] = \frac{d}{d\theta} \mathbb{E}[h(X)]$ in multiple points of θ in one go.

Suppose that X has density f_{θ_0} . We then have that

$$egin{aligned} \mathbb{E}_{ heta_0}\left[h(X)S_{ heta_0}(X)
ight] &= \int h(x)S_{ heta_0}(x)f_{ heta_0}(x)dx \ &= \int h(x)S_{ heta_0}(x)rac{f_{ heta_0}(x)}{f_{ au}(x)}f_{ au}(x)dx \ &= \mathbb{E}_{ au}\left[h(X)S_{ heta_0}(X)rac{f_{ heta_0}(X)}{f_{ au}(X)}
ight]. \end{aligned}$$

Conclusion: we can also sample X_1, \ldots, X_R as if they have density $f_{\tau}(x)$, and then estimate $z'(\theta_0)$ by computing

$$\frac{1}{R}\sum_{i=1}^R h(X_i)S_{\theta_0}(X_i)\frac{f_{\theta_0}(X_i)}{f_{\tau}(X_i)}$$

We only have to sample the X_i -values once!

Discussion on the three different methods

Each of its methods has its drawbacks and advantages.

- ► FD is easiest to grasp, and virtually always works, but yields biased estimators. IPA and LR are unbiased.
- IPA often yields the smallest variance, but cannot always be applied.
- LR has a broader scope than IPA.