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Chapter VII
Derivative Estimation



The idea behind derivative estimation

We have seen right now how to go about simulating a value
z = E [Z (θ)], where Z is a random variable which depends on the
parameters θ1, θ2, . . ..

For purposes of sensitivity analysis, we are interested in the
gradient

∇z =

(
∂

∂θ1
z

∂

∂θ2
z · · ·

)
.

We now adress the problem of how to estimate this gradient by
simulation, i.e. derivative estimation.



Why?

There are numerous reasons why we’d be interested in estimating
the gradient:

I To identify the most important system parameter.

I To assess the effect of a small parameter change.

I In optimization, to find the best system parameter θ requires
evaluation of the gradient (think of Newton-Raphson).

I To find gradients that are of intrinsic interest, such as the
Greeks in option pricing.

From a theoretical point of view, there is hardly any difference
between the one-dimensional and the multi-dimensional case, as
gradients and Hessians are computed componentwise. Therefore,
we focus on the one-dimensional setting.
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Derivative estimation

We discuss three methods.

1. Finite differences (FD)

2. Infinitesimal perturbation analysis (IPA)

3. Likelihood ratio method (LR)

Let’s say that Z = h(X ). Important differences:

I For FD and IPA, we only assume the function h to depend on
θ (structural dependence).

I For LR, we only assume the distribution of X to depend on θ
(distributional dependence).



Derivative estimation

Our goal: find a random variable D(θ) such that

I in case dependence is structural,

E [D(θ)] = z ′(θ) =
d

dθ
E [hθ(X )] .

I in case dependence is distributional,

E [D(θ)] = z ′(θ) =
d

dθ
Eθ [h(X )] .

Then, if we have found an unbiased estimator, we could e.g. use
crude Monte Carlo (or other methods) to estimate z ′(θ):

1. Generate R copies D1(θ), . . . ,DR(θ).

2. Compute 1
R

∑R
i=1Di (θ).



Chapter VII.1
The finite differences method



Finite differences

Suppose that for each θ, we can generate an r.v. Z (θ) with
expectation z(θ).

Starting point is the definition of a derivative:

f ′(θ) = lim
h→0

f (θ + h)− f (θ)

h
= lim

h→0

f (θ + h
2 )− f (θ − h

2 )

h

This suggests two possible derivative estimators:

D̃(θ) =
Z (θ + h)− Z (θ)

h
or

D(θ) =
Z (θ + h

2 )− Z (θ − h
2 )

h
.

Q: Should we use the forward difference estimator D̃(θ) or the
central difference estimator D(θ)?

A: As always, check biasedness first.
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Finite differences

To check biasedness, apply Taylor series about θ.

E
[
D̃(θ)

]
=

z(θ + h)− z(θ)

h

=
1

h

(
z ′(θ)h + z ′′(θ)

h2

2
+ z ′′′(θ)

h3

6
+ . . .

)

and

E [D(θ)] =
z(θ + h

2 )− z(θ − h
2 )

h

=
1

h

(
z ′(θ)h + z ′′′(θ)

h3

24
+ . . .

)

Conclusion? The bias of D(θ) is an order of magnitude lower, so
let’s go with that estimator.

Q: How to choose h?

A: That’s a good question!
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Finite differences

How to choose h?

I On one hand, don’t pick h too large, because it induces bias.
The bias will vanish as h→ 0.

I On other hand, don’t pick h too small, because it increases
variance.

When estimating z(θ + h
2 ) and z(θ − h

2 ), each independently with
R samples, then the mean squared error of the estimator is
optimised when choosing

h =
1

R1/6

(576Var(Z (θ)))1/6

|z ′′′(θ)|1/3
,

in which case the root of the mean squared error is of order R−1/3.
See book for the proof.

Of course, this result is rather academic. When estimating z ′(θ),
one probably doesn’t know z ′′′(θ), but dependence on R is
interesting.
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Finite differences

Tips and tricks:

I One can use common random numbers to reduce variance!

I For instance, suppose that the dependence is distributional:
Z = g(X ), where θ is a parameter of the pdf of X .

I Generate independent uniform samples U1, . . . ,UR .

I Compute

Z
(+)
i = g

(
F←
θ+ h

2

(Ui )
)

; Z
(−)
i = g

(
F←
θ− h

2

(Ui )
)

;

for all i = 1, . . . ,R.

I Finite difference estimator for z ′(θ) now is

1

hR

R∑
i=1

(Z
(+)
i − Z

(−)
i ).



Finite differences

Tips and tricks:

I One can use common random numbers to reduce variance!

I For instance, suppose that the dependence is distributional:
Z = g(X ), where θ is a parameter of the pdf of X .

I Generate independent uniform samples U1, . . . ,UR .

I Compute

Z
(+)
i = g

(
F←
θ+ h

2

(Ui )
)

; Z
(−)
i = g

(
F←
θ− h

2

(Ui )
)

;

for all i = 1, . . . ,R.

I Finite difference estimator for z ′(θ) now is

1

hR

R∑
i=1

(Z
(+)
i − Z

(−)
i ).



Finite differences

Example.

I Suppose that Z = h(X ), where X is exp(θ) distributed and
g(x) = xp with p ∈ N.

I Note that z(θ) = E [X p] is the p-th moment of the exp(θ)
distribution, i.e. z(θ) = p!

(
1
θ

)p
, but let’s suppose we

unknowingly wish to estimate z ′(θ).

I Recall that the quantile function of X is given by
F←(x) = − log(1−x)

θ .

I This leads to

D(θ) =
1

h

((
1

θ + h
2

)p

−

(
1

θ − h
2

)p)
(−log(U))p,

where U is standard uniformly distributed.



Finite differences

Example.

I Suppose that Z = h(X ), where X is exp(θ) distributed and
g(x) = xp with p ∈ N.

I Note that z(θ) = E [X p] is the p-th moment of the exp(θ)
distribution, i.e. z(θ) = p!

(
1
θ

)p
, but let’s suppose we

unknowingly wish to estimate z ′(θ).

I Recall that the quantile function of X is given by
F←(x) = − log(1−x)

θ .

I This leads to

D(θ) =
1

h

((
1

θ + h
2

)p

−

(
1

θ − h
2

)p)
(−log(U))p,

where U is standard uniformly distributed.



Finite differences

Common random variables versus independent sampling.

It can be seen that using this estimator,

Var [D(θ)] =
1

h2

((
1

θ + h
2

)p

−

(
1

θ − h
2

)p)2 (
(2p)!− (p!)2

)
.

However, in case we wouldn’t have used common random numbers
but sampled independently, we would have faced

Var [D(θ)] =
1

h2

( 1

θ + h
2

)2p

+

(
1

θ − h
2

)2p
((2p)!− (p!)2

)
,

which is larger!



Finite differences

The book also discusses higher-order finite-difference
approximations, such as the second-order approximation

−Z (θ + 2h) + 4Z (θ + h)− 3Z (θ)

2h

and much higher order. These k-order estimators typically have a
smaller bias (roughly of order hk), but

I these estimators require approximations at k + 1 points of
z(·),

I the weights involved grow larger in absolute value as k gets
high, doing the variance of the estimator no good.

Therefore, higher-order approximations are hardly used in practice.
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Chapter VII.2
Infinitesimal Perturbation Analysis



Infinitesimal Perturbation Analysis

Suppose that Z = hθ(X ) (structural dependence), and that we
want to know d

dθE [Z ].

Let D(θ) := d
dθhθ(X ). Then, IPA is based on the following

assumption:

d

dθ
E [hθ(X )] = E

[
d

dθ
hθ(X )

]
= E [D(θ)] .

The IPA-method simply implies the crude Monte Carlo simulation
of D(θ):

1. Sample R copies of D(θ).

2. Create confidence intervals based on these copies using
regular methods and techniques.
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Infinitesimal Perturbation Analysis

Same example as before:

I Suppose that Z = g(X ), where X is exp(θ) distributed and
g(x) = xp with p ∈ N.

I Z has same distribution as hθ(U), where hθ(x) = (− log(x)
θ )p,

and U is standard uniform.

I We have

d

dθ
hθ(x) = −(− log(x))pp

(
1

θ

)p−1 1

θ2
=
−phθ(x)

θ
.

I This results in

D(θ) =
−phθ(U)

θ
I Thus: create replicates of hθ(U) using known methods, and

then multiply each with −pθ . These are the resulting replicates
for D(θ).

We can get estimates for different values of θ with negligible
additional effort.
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Infinitesimal Perturbation Analysis

Q: Are we done now?

A: No, who says we can interchange expectation and derivative
like that?

Proposition: Assume that Z (θ) is a.s. differentiable at θ0 and that
a.s. Z (θ) satisfies the Lipschitz condition

|Z (θ1)− Z (θ2)| ≤ |θ1 − θ2|M

for θ1, θ2 in a nonrandom neighborhood of θ0, where E [M] <∞.
Then,

d

dθ
E [Z (θ)]

∣∣∣∣
θ=θ0

= E
[
d

dθ
Z (θ)

]∣∣∣∣
θ=θ0

.

Proof: Use of dominated convergence theorem.
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Infinitesimal Perturbation Analysis

Example of when the interchangeability assumption fails.

I Let X1,X2 be two independent r.v.s, and let
z = P (X1 < θX2) be the expectation of Z = 1{X1<θX2}.

I Now, D(θ) = d
dθZ = 0 a.s. for any value of θ. But d

dθ z surely
is not zero in general for any value of θ.

The proposition indeed does not apply. Let’s say that we want to
know d

dθ z in the point θ0 = 1.

Then, we have for θ ∈ [1, 1 + ε) that

Z (θ)− Z (θ0) = 1{θ>X1/X2} − 1{1>X1/X2} = 1{1≤X1/X2<θ}.



Infinitesimal Perturbation Analysis

Z (θ)− Z (θ0) = 1{θ>X1/X2} − 1{1>X1/X2} = 1{1≤X1/X2<θ}.

Let’s say that the density of X1/X2 is at least A > 0 in the interval
[1, 1 + ε). Then, this equals one with probability at least A(θ − 1).
Now, in order for

|Z (θ)− Z (1)| ≤ (θ − 1)M

to hold, it must thus hold that P ((θ − 1)M ≥ 1) ≥ A(θ − 1) for
θ ∈ [1, 1 + ε).

Or, P (M ≥ x) ≥ A
x for all x ∈ (ε−1,∞), so that

E [M] =

∫ ∞
x=0

P (M > x) dx ≥
∫ ∞
x=ε−1

P (M > x) dx

≥ A

∫ ∞
x=ε−1

1

x
dx =∞.

Violation of assumption!
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Infinitesimal Perturbation Analysis

This effect also occurs often when step functions are involved.
Example of when it does work:

I Let Z = max(X1, θX2), where Z1 and Z2 are two independent
r.v.s.

I Then, D(θ) = X21{X1<θX2} is a valid estimator for d
dθE [Z (θ)].

Justification:

|Z (θ1)− Z (θ2)| ≤ |θ1 − θ2||X2|.

Hence, take |X2| = M. The interchange of derivative and
expectation is now justified, unless E [|X2|] =∞.



Chapter VII.3
The likelihood ratio method



The likelihood ratio method

For this method to work, we assume the dependence on θ to be
distributional, i.e.

Z (θ) = h(X ), z(θ) = Eθ [h(X )]

where X has a density fθ(x), and we wish to estimate z ′(θ) in the
point θ0. The likelihood ratio method is reminiscent of importance

sampling. Let L(θ, x) = fθ(x)
fθ0 (x)

.

Then,

z(θ) =

∫
h(x)fθ(x)dx =

∫
h(x)L(θ, x)fθ0(x)dx

= Eθ0 [h(X )L(θ,X )] ,

where Eθ0 [·] indicates expectation with respect to the density fθ0 .
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The likelihood ratio method

We have
z(θ) = Eθ0 [h(X )L(θ,X )] .

This suggests that

z ′(θ) = Eθ0
[
h(X )L′(θ,X )

]
,

where L′(θ, x) = d
dθL(θ,X ). We can write

z ′(θ0) = Eθ0 [h(X )Sθ0(X )] ,

where

Sθ0(x) =
f ′θ(x)

fθ(x)

∣∣∣∣
θ=θ0

.

We will refer to Sθ0(x) as the score function evaluated at θ = θ0.
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The likelihood ratio method

All this suggests the unbiased estimator for z ′(θ0):

D(θ0) = h(X )Sθ0(X )

Hence, we have the following estimation method:

1. Generate R i.i.d samples of X, where X has density fθ0 .

2. Compute 1
R

∑R
i=1 h(Xi )Sθ0(Xi ).

Confidence intervals can be computed by the known techniques.



The likelihood ratio method

This discussion was for a single random variable X . In this case,

Sθ(x) =
f ′θ(x)

fθ(x)
=

d

dθ
log fθ(x).

When Z = h(X1, . . . ,Xn), where X1, . . . ,Xn have a joint density
f (x), the same procedure can be used. The only difference is that

Sθ(x) =
d

dθ
log fθ(x).

When the Xi are independent, this leads to

Sθ(x) =
d

dθ
log fθ(x) =

d

dθ
log f

(1)
θ (x1) · · · f (n)θ (xn)

=
n∑

i=1

d

dθ
log f

(i)
θ (xi ) =

n∑
i=1

S
(i)
θ (xi ).

This is the additive property of the score function.



The likelihood ratio method

Example: Z = h(X ), where h(x) = xp and X is exponentially(θ)
distributed.

I The corresponding score function is

Sθ(x) =
d

dθ
log fθ(x) =

d

dθ
log(θ)− θx =

1

θ
− x

I Hence,

h(x)Sθ(x) =
xp

θ
− xp+1.

I So, to sample the derivative of z at θ = θ0, we generate
X1, . . . ,XR from the exp(θ0) distribution, and compute

1

R

R∑
i=1

(
X p
i

θ0
− X p+1

i

)
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The likelihood ratio method

Example: C =
∑N

i=1 Vi , where N is Poisson(λ) and the Vi are
i.i.d. with density fθ(x). Assume that we are interested in
z = P (C > x) = E

[
1{C>x}

]
.

I When estimating d
dλz |λ=λ0 , the appropriate score function is

Sλ(n) =
d

dλ
log(e−λ

λn

n!
) =

n

λ
− 1.

Thus, the LR estimator is 1{
∑N

i=1 Vi>x}

(
N
λ0
− 1
)

, where N is

Poisson(λ0) distributed and the Vi are i.i.d. with density fθ.
I When estimating d

dθ z |θ=θ0 , the appropriate score function is

Sθ(v1, . . . , vn) =
n∑

i=1

d

dθ
log fθ(vi ).

Then, an estimator would be 1{
∑N

i=1 Vi>x}Sθ0(V1, . . . ,VN),

where N is Poisson(λ) distributed and the Vi are i.i.d. with
density fθ0 .
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The likelihood ratio method

We forgot a minor detail in this discussion....

Who says derivative and expectation can be interchanged when
moving from

z(θ) = Eθ0 [h(X )L(θ,X )]

to
z ′(θ) = Eθ0

[
h(X )L′(θ,X )

]
?

This again uses a dominated convergence argument (see
Proposition VII.3.5), but generally, it often works out when L(θ,X )
has no discontinuities depending on θ.
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The likelihood ratio method

The LR method is often done in conjunction with importance
sampling, so that we can estimate z ′(θ) = d

dθE [Z ] = d
dθE [h(X )]

in multiple points of θ in one go.

Suppose that X has density fθ0 . We then have that

Eθ0 [h(X )Sθ0(X )] =

∫
h(x)Sθ0(x)fθ0(x)dx

=

∫
h(x)Sθ0(x)

fθ0(x)

fτ (x)
fτ (x)dx

= Eτ
[
h(X )Sθ0(X )

fθ0(X )

fτ (X )

]
.

Conclusion: we can also sample X1, . . . ,XR as if they have density
fτ (x), and then estimate z ′(θ0) by computing

1

R

R∑
i=1

h(Xi )Sθ0(Xi )
fθ0(Xi )

fτ (Xi )
.

We only have to sample the Xi -values once!



Discussion on the three different methods

Each of its methods has its drawbacks and advantages.

I FD is easiest to grasp, and virtually always works, but yields
biased estimators. IPA and LR are unbiased.

I IPA often yields the smallest variance, but cannot always be
applied.

I LR has a broader scope than IPA.


