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Chapter V
VARIANCE REDUCTION METHODS



The simulation paradigm so far

Recall the way we went about simulating a performance measure
z := E [Z ]:

◦ Perform independent samples Z1, . . . ,ZR .

◦ Compute the crude Monte Carlo estimator (CMC):

ẑR :=
1

R

R∑
r=1

Zr

for large R.

We found that this estimator is unbiased (i.e. E [ẑR ] = z), which is
a good thing.

Moreover, the use of confidence intervals gave us an idea of how
reliable our estimate is. With probability α, the true value of z will
be in the interval (

ẑR − qα
σ√
R
, ẑR + qα

σ√
R

)
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ẑR :=
1

R

R∑
r=1

Zr

for large R.

We found that this estimator is unbiased (i.e. E [ẑR ] = z), which is
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a good thing.

Moreover, the use of confidence intervals gave us an idea of how
reliable our estimate is. With probability α, the true value of z will
be in the interval (

ẑR − qα
σ√
R
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Possible issues with Crude Monte Carlo sampling

I Q: Is the use of a CMC estimator always a guarantee for
success?

I A: Well, let’s think about it.

There are some caveats.

I In some applications it may take an enormous computation
time, amount of memory or other resource to generate a single
replication, say in the order of hours, let alone R of them.

I The value of z might be extremely small leading to long
computation times or precision errors (e.g. the estimation of
P (N (0, 1) > 1000)...).

In these cases, the CMC estimator can simply require a too large R
in order for the confidence interval to be of an acceptable width.

We could therefore think of so-called variance reduction methods
to decrease the variance of the CMC estimator.
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Possible issues with VRMs

In the decision of whether to use VRMs, it is wise to take a few
things in account:

I For VRMs to be worthwhile, the reduction of variance should
be substantial. If the variance is only cut by 25%, the
reduction of the width of the confidence interval is only
1−
√

0.75 = 13.4% with the same number of replications. It
may not be worth to go through the hassle.

I Also, computing alternative estimators may take more
computation time, possibly actually negating the positive
effects of variance reduction.

I And then we didn’t think of implementation time, the
implementation of alternative estimators usually takes more
time as well.

However, we’re still going to talk about variance reduction
methods, because sometimes they really are a life saver, as we
will see.
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Chapter V.2
Control Variates



Control variates

Definition: W is called a control variate for Z if Z and W are
strongly correlated (either positively or negatively), and E [W ] is
known.

If such a control variate exists, they can be used for variance
reduction.



Control variates

Simulation algorithm:

1. Generate replications of (Z ,W ) and compute the empirical
means ẑ and ŵ .

2. Compute the control variate estimator ẑ + α(ŵ − E [W ]) for
an appropriate value of α.

The control variate estimator is the alternative proposed estimator
for z = E [Z ]. Is this is a good estimator?



Naive control variate algorithm

Q: Is the estimator ẑ + α(ŵ − E [W ]) unbiased?

A: E [ẑ + α(ŵ − E [W ])] = z , so yes. In that sense, we’re good.

Q: What is the variance of this estimator?

A: Var [ẑ + α(ŵ − E [W ])] = Var [ẑ ] + α2Var [ŵ ] + 2αCov [ẑ , ŵ ].

Q: So, is this variance better than the crude Monte Carlo
estimator?

A: It all depends on α! No general answer possible. For α = 0,
there is no difference at all.

The million dollar question now is: how should we choose α?
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Q: So, is this variance better than the crude Monte Carlo
estimator?

A: It all depends on α! No general answer possible. For α = 0,
there is no difference at all.

The million dollar question now is: how should we choose α?



Control variates

We want to minimise the estimator variance

Var [ẑ ] + α2Var [ŵ ] + 2αCov [ẑ , ŵ ] .

This is a quadratic polynomial, hence optimised for

α = −Cov [ẑ , ŵ ]

Var [ŵ ]
= −Cov [Z ,W ]

Var [W ]
.

Check that the latter equation holds!

Using this α, the variance reduces to

Var [Z ]

R
+

(
Cov [Z ,W ]

Var [W ]

)2 Var [W ]

R
− 2

(
Cov [Z ,W ]

Var [W ]

)
Cov [Z ,W ]

R

=
Var [Z ]

R

(
1− Cov [Z ,W ]2

Var [Z ] Var [W ]

)
.
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Control variates

If ρ = Corr [Z ,W ] = Cov[Z ,W ]√
Var[Z ]Var[W ]

is the Pearson correlation

coefficient between Z and W , then this equals Var[Z ]
R (1− ρ2).

This is always smaller than Var [ẑ ] = Var[Z ]
R !

Great! Are we done now?

No! We don’t know Cov [Z ,W ] and
Var [W ], so we can’t compute α. As before, use unbiased sample
estimates for (co-)variances:

s2
Z =

1

R − 1

R∑
r=1

(Zr − ẑ)2, s2
W =

1

R − 1

R∑
r=1

(Wr − ŵ)2,

s2
ZW =

1

R − 1

R∑
r=1

(Zr − ẑ)(Wr − ŵ).

Using α = − s2
ZW

s2
W

, the variance of the estimator will asymptotically

behave as Var[Z ]
R (1− ρ2).
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R !

Great! Are we done now? No!

We don’t know Cov [Z ,W ] and
Var [W ], so we can’t compute α. As before, use unbiased sample
estimates for (co-)variances:

s2
Z =

1

R − 1

R∑
r=1

(Zr − ẑ)2, s2
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Using α = − s2
ZW

s2
W

, the variance of the estimator will asymptotically

behave as Var[Z ]
R (1− ρ2).



Control variates

If ρ = Corr [Z ,W ] = Cov[Z ,W ]√
Var[Z ]Var[W ]

is the Pearson correlation

coefficient between Z and W , then this equals Var[Z ]
R (1− ρ2).

This is always smaller than Var [ẑ ] = Var[Z ]
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Variance reduction by control variates

Some remarks:

I This method is only useful when we can find a control variate
W , which has a substantial correlation with Z .

I This method has similarities with classic linear regression.
Suppose we have data (Z1,W1), (Z2,W2), . . . , (ZR ,WR) and
we assume that Z = m + βW = m′ + β(W − E [W ]).

We would then fit the parameters

m′ = ẑ , β =

∑R
r=1(Zr − ẑ)(Wr − ŵ)∑R

r=1(Wr − ŵ)2
= −α.

ρ2 would be the squared coefficient of determination.

I This similarity is not entirely one-to-one: in linear regression,
we require residuals to be normal and Z and W to be linearly
correlated. We make no such assumptions here.
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r=1(Wr − ŵ)2
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Control variates: Example of application

In the homework, you have found a way to simulate π. Suppose
that Z = 41{U2

1 +U2
2≤1}. Then,

E [Z ] = 4P
(
U2

1 + U2
2 ≤ 1

)
= π.

Suppose we wish to simulate π. Possible control variates:

I W1 = 1{U1+U2≤1}. Essential: E [W1] = 1
2 known.

I W2 = 1{U1+U2≥
√

2}. Essential: E [W2] = (2−
√

2)2/2 known.

Which one to use? Clearly W2, since
|Corr [Z ,W2] | > |Corr [Z ,W1] |.



Control variates: Example of application

In the homework, you have found a way to simulate π. Suppose
that Z = 41{U2

1 +U2
2≤1}. Then,

E [Z ] = 4P
(
U2

1 + U2
2 ≤ 1

)
= π.

Suppose we wish to simulate π. Possible control variates:

I W1 = 1{U1+U2≤1}. Essential: E [W1] = 1
2 known.

I W2 = 1{U1+U2≥
√

2}. Essential: E [W2] = (2−
√

2)2/2 known.

Which one to use?

Clearly W2, since
|Corr [Z ,W2] | > |Corr [Z ,W1] |.



Control variates: Example of application

In the homework, you have found a way to simulate π. Suppose
that Z = 41{U2

1 +U2
2≤1}. Then,

E [Z ] = 4P
(
U2

1 + U2
2 ≤ 1

)
= π.

Suppose we wish to simulate π. Possible control variates:

I W1 = 1{U1+U2≤1}. Essential: E [W1] = 1
2 known.

I W2 = 1{U1+U2≥
√

2}. Essential: E [W2] = (2−
√

2)2/2 known.

Which one to use? Clearly W2, since
|Corr [Z ,W2] | > |Corr [Z ,W1] |.



Multiple control variates

We could also use both of them! When using multiple controls,
the single control variate W can be replaced by

W = (W1, . . . ,Wp).

The multiple-control estimator is then given by

ẑ +

p∑
i=1

αi (ŵi − E [Wi ]) = ẑ + αT (ŵ − E [W ]).



Multiple control variates

Let the covariance matrix of (Z ,W ) be given by(
σ2 ΣZW

ΣWZ ΣWW

)
.

The variance of the estimator ẑ + αT (ŵ − E [W ]) is given by

1

R

(
Var [Z ] + αTΣWWα + 2ΣZWα

)
.

One can show that this expression is minimised by choosing
α = −Σ−1

WW
ΣWZ . Then, the variance becomes

1

R
(Var [Z ]−ΣZWΣ−1

WW
ΣWZ ) =

Var [Z ]

R
(1− ρ2

ZW ).

The coefficient ρ2
ZW = ΣZWΣ−1

WW
ΣWZ/σ

2
Z is the multiple

squared correlation coefficient. Think of it as the squared
coefficient of determination in linear regression!



Multiple control variates

Let the covariance matrix of (Z ,W ) be given by(
σ2 ΣZW

ΣWZ ΣWW

)
.

The variance of the estimator ẑ + αT (ŵ − E [W ]) is given by
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Multiple control variates

Again, we will have to use the sample estimates

SZW =
1

R − 1

R∑
r=1

(Zr − ẑ)(W r − Ŵ ),

SWW =
1

R − 1

R∑
r=1

(W r − Ŵ )T (W r − Ŵ ),

so that the estimate becomes

ẑ − (S−1
WW

SWZ )T (ŵ − E [W ])

with variance
1

R

(
s2
Z − SZWS

−1
WW

SWZ

)
.

Again, there exist many similarities with linear regression!



Control variates: Back to our example

Candidate control variates:

I W1 = 1{U1+U2≤1}. E [W1] = 1
2 known.

I W2 = 1{U1+U2≥
√

2}. E [W2] = (2−
√

2)2/2 known.

I W3 = (U1 + U2 − 1)1{1<U1+U2<
√

2} with

E [W3] = (
√

2− 1)2/2− (
√

2− 1)3/3.

We get the following values of 1− ρ2 when using various subsets
of the three control variates:

1 2 3 1,2 1,3 2,3 1,2,3
0.727 0.242 0.999 0.222 0.620 0.181 0.175

Note that using W3 alone is useless, but e.g. using W1 and W3

reduces variance much more than just using W1!
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Chapter V.3
Antithetic Sampling



Antithetic sampling

The idea of the method is as follows. Using classic Crude Monte
Carlo, we generate i.i.d. replicates

Z1,Z2, . . . ,ZR

and estimate E [Z ] by ẑR = 1
R

∑R
i=1 Zi . We have

Var [ẑR ] = Var[Z ]
R .

Under antithetic sampling, we generate i.i.d. pairs

(Z1,Z2), (Z3,Z4), . . . , (ZR−1,ZR),

where
I the Zi are all distributed like Z is.
I the pairs are mutually independent, but the Zi within a pair

are dependent.

We then still compute the unbiased estimator

ẑant =
1

R

R∑
i=1

Zi .
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Antithetic sampling

Let’s check the variance of the estimator.

Var [ẑant ] = Var

[
1

R

R∑
i=1

Zi

]

=
1

2R
Var [Z1 + Z2]

=
1

2R
(2Var [Z ] + 2Cov [Z1,Z2])

=
Var [Z ]

R
(1 + Corr [Z1,Z2]).

So, beneficial if Corr [Z1,Z2] negative, and as small as possible!
But how do we achieve this?
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So, beneficial if Corr [Z1,Z2] negative, and as small as possible!
But how do we achieve this?



Example: uniform antithetic sampling

Often, the quantity of interest has the form Z = g(U) for some
monotone function g , where U is a standard-uniform r.v.

U and 1− U are identically distributed and perfectly negatively
correlated:

Corr [U, 1− U] =
E [U(1− U)]− E [U]E [1− U]

Var [U]

=
( 1

2 − 1
3 )− 1

2
1
2

1
12

= −1.



Example: uniform antithetic sampling

Theorem: Corr [g(U), g(1− U)] is negative.
Proof:

I Let U and U ′ be two standard-uniform copies, and let
C = Cov [g(U)− g(U ′), g(1− U)− g(1− U ′)].

I Note that C = E [(g(U)− g(U ′))(g(1− U)− g(1− U ′))],
which due to the monotonicity of g must be negative.

I Note also that
C = Cov [g(U), g(1− U)] + Cov [g(U ′), g(1− U ′)] =
2Cov [g(U), g(1− U)].

I As Cov [g(U), g(1− U)] must now be negative,
Corr [g(U), g(1− U)] is too.

Thus, to estimate E [Z ], 2
R

∑R/2
r=1(g(Ur ) + g(1− Ur )) has less

variance than the crude Monte Carlo estimator 1
R

∑R
r=1 g(Ur ).



Example: uniform antithetic sampling

If g(x) = x2, we have

Corr [g(U), g(1− U)] =
E
[
U2(1− U)2

]
− E

[
U2
]
E
[
(1− U)2

]
Var [U2]

( 1
3 − 1

2 + 1
5 )− 1

9
1
5 − 1

9

= −7

8
.

For g(x) = xn, we have

|Corr [g(U), g(1− U)]| ≤ E [Un(1− U)n] + E [Un]2

Var [Un]

≤
1
4n + 1/(n + 1)2

1/(2n + 1)− 1/(n + 1)2
.

This expression vanishes as n grows large. Antithetic sampling
does not always make a big difference!



Other example: Gaussian antithetic sampling

Often, the quantity of interest is Z = g(X ) for some monotone
function g , where X is a normal r.v. with mean µ and variance σ2.

X and 2µ− X are perfectly negatively correlated:

Corr [X , 2µ− X ] =
E [X (2µ− X )]− E [X ]E [2µ− X ]

Var [X ]

=
(2µ2 − σ2 − µ2)− µ2

σ2
= −1.

Again, we can prove that Corr [g(X ), g(2µ− X )] is negative.

Gaussian antithetic sampling is widely applied in financial
engineering for option pricing.



Some remarks

I When possible, antithetic sampling is not very hard to
implement,

I but often, the obtained variance reduction is not dramatic.

To illustrate the latter, consider the i.i.d. continuous random
variables Z1,Z2 with marginal CDF F (z) and joint CDF F (z1, z2).

We know that

Corr [Z1,Z2] =
E [Z1Z2]− (E [Z1])2

Var [Z1]
,

where we can write

E [Z1Z2] =

∫ ∞
0

∫ ∞
0

[1− F (z1)− F (z2) + F (z1, z2)]dz1dz2.
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Some remarks

E [Z1Z2] =

∫ ∞
0

∫ ∞
0

[1− F (z1)− F (z2) + F (z1, z2)]dz1dz2.

By standard theory on copula’s, we know that

F (z1, z2) ≥ (F (z1) + F (z2)− 1)+

This is the Fréchet-Hoeffding lower bound and can be attained by
choosing

Z1 = F←(U), Z2 = F←(1− U).



Some remarks

Thus, for example, when Z1 and Z2 are exponentially (λ)
distributed (recall: F←(z) = − log(1− z)/λ), we have

Cov [Z1,Z2] = E [Z1Z2]− (E [Z1])2

=
E [log(1− U) logU]− 1

λ2
≈ −0.645

λ2
,

so that Corr [Z1,Z2] = Corr [F←(U),F←(1− U)] ≈ −0.645.

Q: What does this mean?

A: It means that when one wants to simulate the expectation of
an exponential random variable, the method of antithetic
sampling only nets you a variance reduction of at most 64.5%.

A: Meaning that the width reduction of the confidence interval is
about 40%(

√
0.355 ≈ 0.6).

A: This is not dramatic... but why not implement it anyway?!
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Chapter V.4
Conditional Monte Carlo



Conditional Monte Carlo

The idea of the method is as follows. Using classic Crude Monte
Carlo, we generate i.i.d. replicates

Z1,Z2, . . . ,ZR

and estimate E [Z ] by ẑR = 1
R

∑R
i=1 Zi . We have

Var [ẑR ] = Var[Z ]
R .

Suppose now, however, that we would take E
[

1
R

∑R
i=1 Zi |W

]
for

some random variable W as an estimator:

I E
[
E
[

1
R

∑R
i=1 Zi |W

]]
= E

[
1
R

∑R
i=1 Zi

]
= E [Z ] by the law

of total expectation. Unbiased estimator!

I But what happens with Var
[
E
[

1
R

∑R
i=1 Zi |W

]]
?
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R

∑R
i=1 Zi . We have
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Var [ẑR ] = Var[Z ]
R .

Suppose now, however, that we would take E
[

1
R

∑R
i=1 Zi |W

]
for

some random variable W as an estimator:

I E
[
E
[

1
R

∑R
i=1 Zi |W

]]
= E

[
1
R

∑R
i=1 Zi

]
= E [Z ] by the law

of total expectation. Unbiased estimator!

I But what happens with Var
[
E
[

1
R

∑R
i=1 Zi |W

]]
?



Conditional Monte Carlo

Theorem: (Law of total variance) For any two random variables
U,W , Var [U] = E [Var [U |W ]] + Var [E [U |W ]].

Proof

I Var [U |W ] = E
[
U2 |W

]
− (E [U |W ])2. Taking

expectations leads to

E [Var [U |W ]] = E
[
E
[
U2 |W

]]
− E

[
(E [U |W ])2

]
= E

[
U2
]
− E

[
(E [U |W ])2

]
I For the other term,

Var [E [U |W ]] = E
[
(E [U |W ])2

]
− (E [E [U |W ]])2

= E
[
(E [U |W ])2

]
− (E [U])2

I Adding leads to E
[
U2
]
− (E [U])2 = Var [U].



Conditional Monte Carlo

Theorem: (Law of total variance) For any two random variables
U,W , Var [U] = E [Var [U |W ]] + Var [E [U |W ]].

Corollary: Since variances (and expectations of them) are
non-negative, we must have that

Var

[
1

R

R∑
i=1

Zi

]
≥ Var

[
E

[
1

R

R∑
i=1

Zi |W
]]

.

We just found an unbiased estimator, E
[

1
R

∑R
i=1 Zi |W

]
, which is

guaranteed to be a variance reductor!

Are we done now? NO! How to choose W ?
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Examples

Choosing W is very much situation-dependent. Consider the
following example.

Recall that one can estimate π by computing 1
R

∑R
i=1 Zi , where

Zi = 41{(U(i)
1 )2+(U

(i)
2 )2≤1} and U

(i)
1 ,U

(i)
2 are i.i.d. uniform on [0, 1].

We could, however, condition on (the samples of) U1!

E

[
1

R

R∑
i=1

Zi | U(1)
1 ,U

(2)
1 , . . . ,U

(R)
1

]
=

1

R

R∑
i=1

E
[
Zi | U(i)

1

]
=

4

R

R∑
i=1

P
(

(U
(i)
1 )2 + (U

(i)
2 )2 ≤ 1 | U(i)

1

)
=

4

R

R∑
i=1

P
(
U

(i)
2 ≤

√
1− (U

(i)
1 )2 | U(i)

1

)
=

4

R

R∑
i=1

√
1− (U

(i)
1 )2
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Examples

So in this case, using conditional Monte Carlo, we would simply
generate R uniform samples on [−1, 1] and compute

4

R

R∑
i=1

√
1− (U

(i)
1 )2.

Two advantages:

I We only need half the uniform samples.

I Less sampling in this case means less variance: more than
three times as small!

This is quite worth it!
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Examples

Another example: suppose X1 and X2 are i.i.d. with known
distribution F .

Problem: Convolution of F is unknown, so we wish to simulate
P (X1 + X2 ≤ x).

Crude Monte Carlo: Sample 1{X1+X2≤x} and take averages.

Conditional Monte Carlo: Sample E
[
1{X1+X2≤x}|X1

]
= F (x − X1)

and take averages.

Again, considerable variance reduction.



Examples

Another example: suppose X1 and X2 are i.i.d. with known
distribution F .

Problem: Convolution of F is unknown, so we wish to simulate
P (X1 + X2 ≤ x).

Crude Monte Carlo:

Sample 1{X1+X2≤x} and take averages.

Conditional Monte Carlo: Sample E
[
1{X1+X2≤x}|X1

]
= F (x − X1)

and take averages.

Again, considerable variance reduction.



Examples

Another example: suppose X1 and X2 are i.i.d. with known
distribution F .

Problem: Convolution of F is unknown, so we wish to simulate
P (X1 + X2 ≤ x).

Crude Monte Carlo: Sample 1{X1+X2≤x} and take averages.

Conditional Monte Carlo:

Sample E
[
1{X1+X2≤x}|X1

]
= F (x − X1)

and take averages.

Again, considerable variance reduction.



Examples

Another example: suppose X1 and X2 are i.i.d. with known
distribution F .

Problem: Convolution of F is unknown, so we wish to simulate
P (X1 + X2 ≤ x).

Crude Monte Carlo: Sample 1{X1+X2≤x} and take averages.

Conditional Monte Carlo: Sample E
[
1{X1+X2≤x}|X1

]
= F (x − X1)

and take averages.

Again, considerable variance reduction.



Examples

We can also extend this to higher-fold convolutions and densities.

For example, the density f ∗n(·) of Sn :=
∑n

i=1 Xi can be
(conditionally) estimated by

f (x − Sn−1)

given Sn−1. So, for simulation of the n-fold convolution of X ,
which is say Pareto distributed:

f (x) =
α

(1 + x)α+1
1{x≥0}

with parameter α = 3
2 , we

I generate R = 10.000 replicates of Sn−1

I Calculate the corresponding values for f (x − Sn−1) for any
desired x .
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Yet another example

For n = 2, 4, 6, 8 and 0 < x < 15, this leads to:

146 Chapter V. Variance-Reduction Methods

Related algorithms are presented in VI.3a and in fact sometimes provide
a dramatic variance reduction. �

Example 4.3 Conditional Monte Carlo ideas can be applicable to density
estimation as well. As a simple example, let X1, X2, . . . be i.i.d. with density
f(x), so that Sn

def
= X1 + · · ·+Xn has density f∗n(x) = P(Sn ∈ dx). The

conditional Monte Carlo estimator of f∗n(x) given Sn−1 is then f(x −
Sn−1). The advantages to the standard kernel-smoothing estimate using
simulated values of Sn (cf. III.6) rather than Sn−1 are, for example, that
the arbitrariness in the choice of the bandwidth h is avoided and that one
avoids such problems that the estimate of f∗n(x) comes out positive for
negative x even if the Xi are nonnegative.
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FIGURE 4.1

As an example, we took f(x) as the Pareto density α/(1 + x)α+1 with
α = 3/2. Here f∗n(x) is not explicitly available for n > 1. Figure 4.1 gives
the conditional Monte Carlo estimates given by the average of R = 10,000
replications of f(x− Sn−1) in the interval 0 < x < 15 for n = 2, 4, 6, 8 [the
small amount of nonsmoothness can be explained by the discontinuity of
F (x) at x = 0, and that the effect increases with n is a scaling phenomenon
because less and less of the mass is in 0 < x < 15]. �

Exercises

4.1 (A) A bank has a portfolio of N = 100 loans to N companies and wants to
evaluate its credit risk. Given that company n defaults, the loss for the bank is a

I In this particular case, conditional MC works better than
empirical PDFs or even kernel estimations!

I Jaggedness since x − Sn−1 can be negative, in which case the
actual value of x − Sn−1 isn’t taken into consideration.

I Jaggedness appears to increase in n, but that’s because for
larger n, Sn has less probability mass below 15.
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f(x), so that Sn

def
= X1 + · · ·+Xn has density f∗n(x) = P(Sn ∈ dx). The

conditional Monte Carlo estimator of f∗n(x) given Sn−1 is then f(x −
Sn−1). The advantages to the standard kernel-smoothing estimate using
simulated values of Sn (cf. III.6) rather than Sn−1 are, for example, that
the arbitrariness in the choice of the bandwidth h is avoided and that one
avoids such problems that the estimate of f∗n(x) comes out positive for
negative x even if the Xi are nonnegative.
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As an example, we took f(x) as the Pareto density α/(1 + x)α+1 with
α = 3/2. Here f∗n(x) is not explicitly available for n > 1. Figure 4.1 gives
the conditional Monte Carlo estimates given by the average of R = 10,000
replications of f(x− Sn−1) in the interval 0 < x < 15 for n = 2, 4, 6, 8 [the
small amount of nonsmoothness can be explained by the discontinuity of
F (x) at x = 0, and that the effect increases with n is a scaling phenomenon
because less and less of the mass is in 0 < x < 15]. �

Exercises

4.1 (A) A bank has a portfolio of N = 100 loans to N companies and wants to
evaluate its credit risk. Given that company n defaults, the loss for the bank is a

I In this particular case, conditional MC works better than
empirical PDFs or even kernel estimations!

I Jaggedness since x − Sn−1 can be negative, in which case the
actual value of x − Sn−1 isn’t taken into consideration.

I Jaggedness appears to increase in n, but that’s because for
larger n, Sn has less probability mass below 15.
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Chapter V.5
Splitting



Splitting

Let’s say we want to estimate E [Z ] = φ(X ,Y ).

Naively, we would want to generate samples of Zi = φ(Xi ,Yi ) and
use the crude Monte Carlo estimator

1

R

R∑
i=1

φ(Xi ,Yi ).
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Splitting

However, suppose now that
I samples from X are computationally much harder to generate

than from Y , and
I the value of φ(X ,Y ) is much more influenced by Y than by Z .

Q: Can we do something smarter in this case?
A: Yes, we’ll borrow a variance reduction technique from physics.

The idea is to simply reuse samples of X a number of S
times. I.e., we use the estimator

1

RS

R∑
r=1

S∑
s=1

φ(Xr ,Yrs).

This estimator is closely related to conditional Monte Carlo, as we
can rewrite this as

E

[
1

S

S∑
s=1

φ(X ,Yrs) | X
]
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Splitting

So, we regard the splitting estimator

1

RS

R∑
r=1

S∑
s=1

φ(Xr ,Yrs)

I Needs less replicates of X , so far less computation time.

I About the same variance if Corr [φ(Xr ,Yr1), φ(Xr ,Yr2)] is
close to zero.

I When Z = φ(X ,Y ) is more influenced by Y than by X , this
correlation coefficient will indeed be small!
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Splitting

Are we done now?

NO! How to choose S?

In deciding how to choose S , we cannot just compare variances
anymore, since computation time now plays a role.

Let’s say that

I a is the time to generate a sample of X , b a sample of Y ,
a >> b.

I Z = φ(X ,Y ) and Z̃ = 1
S

∑S
s=1 φ(X ,Ys).

I The time to get one estimate of Z = a + b. The time to get
one estimate of Z̃ = a + Sb.

I In a given time t, one gets t
a+b estimates of Z , and t

a+Sb

estimates of Ẑ .
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Splitting

Recall that the width of a confidence interval of an estimate for z
is generally given by:(

ẑ − qα
σ√
R
, ẑ + qα

σ√
R

)
,

where R is the number of estimates.

Both Z and Z̃ are unbiased estimators, so we wish to minimise σ√
n

.

Concluding: we need to compare

e := (a + b)Var [Z ]

(corresponding to one iterate of crude Monte Carlo) with

ẽ := (a + Sb)Var
[
Z̃
]

(one ‘splitting’ iterate).
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Splitting

Comparing e := (a + b)Var [Z ] with ẽ = (a + Sb)Var
[
Z̃
]
.

Note that [AG] has got errors in this analysis!
Suppose that Var [Z ] = 1 and ρ = Corr [φ(Xr ,Yrs1), φ(Xr ,Yrs2)].

Then, since Z̃ = 1
S

∑S
s=1 φ(X ,Ys):

Var
[
Z̃
]

=
1

S2

(
Cov

[
S∑

s=1

φ(X ,Ys),
S∑

s=1

φ(X ,Ys)

])

=
1

S2

(
S∑

r=1

S∑
s=1

Cov [φ(X ,Yr ), φ(X ,Ys)]

)

=
1

S2

(
S + (S2 − S)ρ

)
.

Therefore,

e = a + b versus ẽ = (a + Sb)

(
1

S
+ (1− 1

S
)ρ

)
.



Splitting

To choose S , we compare

e = a + b versus ẽ = (a + Sb)

(
1

S
+ (1− 1

S
)ρ

)
.

The ẽ-approximation (a+Sb)
(

1
S + ρ

)
(for large S) is minimised by

S =

√
a

ρb
,

so that the optimal efficiency is approximated by(
a +

√
ab

ρ

)(√
ρb

a
+ ρ

)
= a

(√
b

a
+
√
ρ

)
.

This leads to
ẽ

e
=

a

a + b

(√
b

a
+
√
ρ

)
.

Conclusion: with the right choice of S , and small values of b
a

and ρ, splitting nets you the desired precision faster!
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Example

Splitting in the context of discrete event simulation.

I A restaurant opens at 10.00.

I Not many arrivals until noon, but especially between 12.30
and 13.30 there are many, many arrivals.

I We want to estimate the expected number of lost customers
between noon and 14.00.

How to take X and Y ?

I Number of lost customers more influenced by arrivals than by
number of occupied tables at noon.

I Arrivals after noon not correlated with occupancy at noon.

I Simulating number of arrivals computationally easier than
number of occupied tables at noon.

◦ Choose X to be number of occupied tables at noon.

◦ Choose Y to be the number of arrivals between noon and
14:00.
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Another example

Suppose you want to estimate the expectation of a functional
Z = Z (B), where B is a standard Brownian motion in [0,1].

The crude way of simulating B:

I Divide [0, 1] up in 1024 grid regions.

I Generate B( 1
1024 ),B( 2

1024 ), . . . by summing 1024 i.i.d. normal
samples.

I Interpolate linearly.
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Another example

Splitting approach:

I Use e.g. 16 grid regions.

I Generate B( 1
16 ),B( 2

16 ), . . . ,B(1) by summing 16 i.i.d. normal
samples.

I Replace linear interpolations by Brownian bridges Wi ,c(t).
These are Brownian motions constrained not only by
W (0) = 0, but also by a value W ( 1

16 ) = c, where c is the
difference between the sampled B-points:

Wi (t) = Bi (t) + 16t(c − Bi (
1

16
)),

where the Bi are independent Brownian motions. These can
be sampled, each using 1024

16 = 64 grid regions.

◦ Choose X to be 16 Brownian bridges. These do not have to
be sampled often.

◦ Choose Y to be the numbers B( 1
16 ),B( 2

16 ), . . . ,B(1).
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Chapter V.6
Common Random Numbers



Common Random Numbers

Let’s say we want to compute the difference between the means
z ′, z ′′ of two random variables Z ′ and Z ′′ with
Var [Z ′] = Var [Z ′′] = σ2 that behave in some sense similar to the
random input U1, . . . ,Un.

Naively, we would just

I sample Z ′ using input U1, . . .Un (e.g. uniform samples used
by the inversion method, discrete-event simulation, etc).

I likewise sample Z ′′ using input Un+1, . . . ,U2n,

I compute Z ′ − Z ′′.

say R times (every time using new U’s), and then take sample
means.

This estimator would yield a variance of 2σ2

R .

Can we do better? Maybe! We could just use U1, . . .Un for the
estimate of Z ′′ as well!
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Common Random Numbers

Thus, common random numbers advocates replicating

Z ′(U1, . . . ,Un)− Z ′′(U1, . . . ,Un)

R times and computing the sample mean.

This estimator has variance

2σ2 − 2Cov [Z ′(U1, . . . ,Un),Z ′′(U1, . . . ,Un)]

R
,

I Z ′ and Z ′′ behave similar to the random input, which yields
positive, significant covariance: high variance reduction!

I This method needs less input samples (the Ui ), improving
computation time.

I Method also works when Var [Z ′] 6= Var [Z ′′], but variance
reduction may be less considerable.

I This is in some sense the opposite of antithetic sampling.

Caution: do NOT apply this technique when Z ′(U1, . . . ,Un) and
Z ′′(U1, . . . ,Un) might be negatively correlated!



Common Random Numbers

Thus, common random numbers advocates replicating

Z ′(U1, . . . ,Un)− Z ′′(U1, . . . ,Un)

R times and computing the sample mean.

This estimator has variance

2σ2 − 2Cov [Z ′(U1, . . . ,Un),Z ′′(U1, . . . ,Un)]

R
,

I Z ′ and Z ′′ behave similar to the random input, which yields
positive, significant covariance: high variance reduction!

I This method needs less input samples (the Ui ), improving
computation time.

I Method also works when Var [Z ′] 6= Var [Z ′′], but variance
reduction may be less considerable.

I This is in some sense the opposite of antithetic sampling.

Caution: do NOT apply this technique when Z ′(U1, . . . ,Un) and
Z ′′(U1, . . . ,Un) might be negatively correlated!



Common Random Numbers

Thus, common random numbers advocates replicating

Z ′(U1, . . . ,Un)− Z ′′(U1, . . . ,Un)

R times and computing the sample mean.

This estimator has variance

2σ2 − 2Cov [Z ′(U1, . . . ,Un),Z ′′(U1, . . . ,Un)]

R
,

I Z ′ and Z ′′ behave similar to the random input, which yields
positive, significant covariance: high variance reduction!

I This method needs less input samples (the Ui ), improving
computation time.

I Method also works when Var [Z ′] 6= Var [Z ′′], but variance
reduction may be less considerable.

I This is in some sense the opposite of antithetic sampling.

Caution: do NOT apply this technique when Z ′(U1, . . . ,Un) and
Z ′′(U1, . . . ,Un) might be negatively correlated!



Common Random Numbers

Thus, common random numbers advocates replicating

Z ′(U1, . . . ,Un)− Z ′′(U1, . . . ,Un)

R times and computing the sample mean.

This estimator has variance

2σ2 − 2Cov [Z ′(U1, . . . ,Un),Z ′′(U1, . . . ,Un)]

R
,

I Z ′ and Z ′′ behave similar to the random input, which yields
positive, significant covariance: high variance reduction!

I This method needs less input samples (the Ui ), improving
computation time.

I Method also works when Var [Z ′] 6= Var [Z ′′], but variance
reduction may be less considerable.

I This is in some sense the opposite of antithetic sampling.

Caution: do NOT apply this technique when Z ′(U1, . . . ,Un) and
Z ′′(U1, . . . ,Un) might be negatively correlated!



Example

◦ A factory has two identical machines. At some point in time n
jobs are ready to be processed. Their processing times are
i.i.d. random variables U1, . . . ,Un.

◦ The process manager investigates two processing policies:
I SJF: shortest job first (when a machine becomes free, it is

allocated the job with the shortest processing time);
I LJF: longest job first (as above for the longest processing

time).

◦ The makespan is the total processing time to complete all n
jobs on the two machines.

◦ Question: what is the average difference in makespan for e.g.
Weibull distributed processing times?
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Example

It is intuitive that SJF and LJF are best tested using the same
processing time samples. Think of unpaired versus paired testing in
statistics.

Therefore, we use common random numbers. Let Z ′(U1, . . . ,Un)
be the makespan under SJF, and let Z ′′(U1, . . . ,Un) be the
makespan under LJF.

Then, for example:

I When U1 = 1,U2 = 2,U3 = 5,
Z ′(U1,U2,U3) = 6 and Z ′′(U1,U2,U3) = 5

I When U1 = 2,U2 = 9,U3 = 12,U4 = 14,
Z ′(U1,U2,U3,U4) = 23 and Z ′′(U1,U2,U3,U4) = 21.
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Example

Proposed strategy:

1. Sample R times n Weibull processing times.

2. Using these numbers, compute the R replicates of
Z ′(U1, . . . ,Un)− Z ′′(U1, . . . ,Un).

3. Averaging the R replicates nets you an estimate of the
average distance in makespan for n jobs.

I Of course, Corr [Z ′(U1, . . . ,Un),Z ′′(U1, . . . ,Un)] is very large,
thus so is Cov [Z ′(U1, . . . ,Un),Z ′′(U1, . . . ,Un)].

I In this case, variance reductions of about 99% can be
achieved by using common random numbers, while saving the
need to sample n more Weibull samples per replication.

I Needless to say, common random numbers is a must-use
technique in this case!
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Chapter V.7
Stratification



Stratification

Suppose we want to estimate E [Z ], where Z = g(X ). We know
by now that we can use the naive estimator

1

R

R∑
i=1

Zi =
1

R

R∑
i=1

g(Xi ).

Variance of this estimator can be reduced by stratification.

The idea behind the method of stratification is to partition the
sample space Ω into regions Ω1, . . . ,ΩS called strata.

Aim: eliminate as much of the variation between strata as
possible. (And not within strata as [AG] claims!).

The strata are often obtained by dividing the range of one or more
important random variables driving the simulation (e.g. X ).
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Stratification

For example, when Z = g(X ), where X is standard uniformly
distributed, we could divide the range [0, 1] of X in the strata

Ωs = {(s − 1)/S ≤ X < s/S}.

Moreover, when Zs is a random variable having the distribution of
Z conditioned on Ωs , we have

P (Zs ∈ A) = P (Z ∈ A | Ωs) =
P (Z ∈ A,Ωs)

P (Ωs)
.



Stratification

This suggests the following estimation strategy:

1. Divide the total number of R replicates into R1, . . . ,RS .

2. For each s ∈ {1, . . . ,S}, simulate Rs replicates of Zs .

3. Estimate zs by the empirical average ẑs .

4. Compute the following estimate for E [Z ]:

ẑstr =
S∑

s=1

ps ẑs ,

where ps = P (Ωs).

Q: Is this a better estimator for E [Z ] than the crude Monte
Carlo estimator?

A: As usual, we need to check biasedness and variance.
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Stratification

Note that

E [ẑstr ] = E

[
S∑

s=1

ps ẑs

]

=
S∑

s=1

ps
1

Rs

Rs∑
j=1

E [Z | Ωs ]

=
S∑

s=1

psE [Z | Ωs ] = E [Z ] .

Hence, the estimator is unbiased, which is a good thing.

How about the variance?
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Stratification

We know from Chapter 3 that

(ẑs − zs)→ N
(

0,
σ2
s

Rs

)
as Rs →∞, where σ2

s = Var [Zs ] = 1
Rs

Var [Z | Ωs ].

Hence,

ps(ẑs − zs)→ N
(

0,
p2
s σ

2
s

Rs

)
and

(ẑstr − z)→ N
(

0,
S∑

s=1

p2
s σ

2
s

Rs

)
or

√
R(ẑstr − z)→ N

(
0,

S∑
s=1

p2
s σ

2
s

Rs/R

)
as R →∞ in such a way that the Rs/R have non-zero limits.
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Stratification

√
R(ẑstr − z)→ N

(
0,

S∑
s=1

p2
s σ

2
s

Rs/R

)
As usual, replacing σ2

s by the sample variance gives us a way to
evaluate the confidence interval.

The variance itself is given by

Var [ẑstr ] = Var

[
S∑

s=1

ps ẑs

]
=

S∑
s=1

p2
s Var [ẑs ] =

S∑
s=1

p2
s σ

2
s

Rs
.

Q: Is Var [ẑstr ] < Var [ẑ ]?

A: That depends on the actual choice of Rs .
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R(ẑstr − z)→ N

(
0,

S∑
s=1

p2
s σ

2
s

Rs/R

)
As usual, replacing σ2

s by the sample variance gives us a way to
evaluate the confidence interval.

The variance itself is given by
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Stratification

First thought: we could adopt proportional allocation, i.e. take the
Rs such that ps = Rs

R .

Then,

Var [ẑstr ] =
S∑

s=1

p2
s σ

2
s

Rs
=

S∑
s=1

psσ
2
s

R
.

Note that
∑S

s=1 psσ
2
s can be interpreted as E [Var [ZJ | J]], where

J satisfies P (J = s) = ps for s = 1, . . . ,S , so that

Var [ẑstr ] =
1

R
E [Var [ZJ | J]] ≤ 1

R
(E [Var [ZJ | J]] + Var [E [ZJ | J]])

=
1

R
Var [ZJ ] = Var [ẑ ] .

Thus, when choosing proportional allocation, there is always
variance reduction!
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Example with proportional allocation

Suppose again that Z = g(X ), where X is a standard uniform
random variable, and we choose the strata

Ωs = {s − 1

S
≤ X <

s

S
}.

Then,

Var [Zs ] = Var

[
g(X ) | s − 1

S
≤ X <

s

S

]
= Var

[
g

(
s − 1

S
+

X

S

)]
:= Var

[
g

(
s − 1

S

)
+

h(s, S ,X )

S

]
= Var

[
h(s, S ,X )

S

]
≤ 1

S2
E
[
h(s,S ,X )2

]



Example with proportional allocation

Var [Zs ] ≤ 1

S2
E
[
h(s, S ,X )2

]

If g ′ is smooth, then we must have that
|h(s,S ,X )| ≤ maxu{|g ′(u)|} =: c. Thus,

Var [Zs ] ≤ c2

S2
,

so that

Var [ẑstr ] =
S∑

s=1

psσ
2
s

R
≤

S∑
s=1

c2

RS3
=

c2

RS2
.

We can obtain variance reduction at rate S−2! Is this always the
case?



Example with proportional allocation

Var [Zs ] ≤ 1

S2
E
[
h(s, S ,X )2

]
If g ′ is smooth, then we must have that
|h(s,S ,X )| ≤ maxu{|g ′(u)|} =: c.

Thus,

Var [Zs ] ≤ c2

S2
,

so that
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Another example with proportional allocation

Smoothness turns out to be essential. Consider Z = 1{U2
1 +U2

2≤1}
to estimate π

4 .

Consider the strata

Ωij =

{
i − 1

16
< U1 <

i

16
,
j − 1

16
< U2 <

j

16

}
,

i.e. S = 256.



Another example with proportional allocation

In this figure, Var [Zs ] is zero in many cases because either
P (Zs = 0) = 1 or P (Zs = 1) = 1.

For the grey cases (number in the order of
√
S), we have ps = 1

S .
Why?

Moreover, in these cases, 0 < Var [Zs ] ≤ 1. Why?

Hence, Var [ẑstr ] =
∑S

s=1
psσ2

s
R = O(

√
S
S ). Thus, we only have

variance reduction at rate S−
1
2 .
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Stratification

Q: Proportional allocation brings variance reduction, but is it the
best variance reductor?

A: Let’s find out!

Problem:

Min Var [ẑstr ] =
S∑

s=1

p2
s σ

2
s

Rs

s.t. R1 + . . .+ RS = R.

Using Lagrange multipliers

f (R1, . . . ,RS ;λ) =
S∑

s=1

p2
s σ

2
s

Rs
+ λ

(
S∑

s=1

Rs − R

)
leads for s = 1, . . . ,S to

−p2
s σ

2
s

(Ropt
s )2

= λ and
S∑

s=1

Ropt
s = R.
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Stratification

Solution:
Ropt
s = R

psσs∑S
t=1 ptσt

.

Q: Nice, so should we always implement this, or is there a catch?

A: We don’t know the σs ! One way to go about this is to
estimate them using a pilot run or to use an adaptive scheme.
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Stratification

A variant of proportional allocation Rs : poststratification.

Main idea: allocate the Rs on-the-fly during the simulation, so that
Rs ≈ Rps .

Let the simulation generate i.i.d. samples (Σr ,Zr ), r = 1, . . . ,R,
from a multi-variate r.v. (Σ,Z ) such that

I P (Σ = s) = ps (and not, as [AG] claims, pr !).

I Z conditioned on Σ = s has the same distribution as Zs .

Then, we estimate E [Zs ] by the empirical average

ẑs =

∑
r :Σr=s Zr

Rs
,
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Stratification

Then, we can use

ẑpoststr =
S∑

s=1

ps ẑs .

Pro’s:

◦ In the limit, the same CLT as for proportional allocation holds!

◦ Usable when hard to sample directly from Zs , but knowledge
on the ps can be used.

Con’s:

◦ Still quite larger variance for small R, as the Rs are random
variables themselves.
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Stratification

The idea of stratification is omnipresent. Think of Latin hypercube
sampling, which may be done using stratification.

Goal: sample R d-dimensional random variables
V 1, . . . ,V R ∈ [0, 1]d .

(V 1, . . . ,V R) =

 V11 · · · V1R
...

...
Vd1 · · · VdR



Stratification is usual, to make sure small numbers of sample cover
most regions of [0, 1]d .
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 V11 · · · V1R
...

...
Vd1 · · · VdR


Stratification is usual, to make sure small numbers of sample cover
most regions of [0, 1]d .



Stratification

V = (V 1, . . . ,V R) =

 V11 · · · V1R
...

...
Vd1 · · · VdR



I Each row is stratified according to the strata

[0,
1

R
), [

1

R
,

2

R
), . . . , [(R − 1)/R, 1],

so that each stratum is represented exactly once in each row.
I The representations in different rows are random according to

a random permutation: in row j use permutation
πj = (πj(1), . . . , πj(R)) of (1, . . . ,R).

Then,

Vjr =
1

R
(πj(r)− 1 + Ujr ),

where the Ujr are standard-uniformly distributed. There now is
dependence between the V r ! Often used when estimating f (V ),
as it yields variance reduction.
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Chapter V.8
Indirect Sampling



Indirect sampling

In some cases, some parts of the expectation E [Z ] can be
evaluated analytically.

Sometimes, E [Z ] may be related to the expectations of some
other random variables.

When such phenomena may be exploited for variance reduction,
this is called ’indirect estimation’. Let us see one example.



Indirect sampling

Let T1,T2, . . . be non-negative i.i.d. random variables, and let

Z := sup{n : Sn ≤ t}

be the number of renewals up to time t, where
Sn := T1 + . . .+ Tn.

Goal: to simulate E [Z ].



Indirect sampling

Note that
τ := Z + 1 = inf{n : Sn > t},

is a stopping time for T1,T2, . . ., so that we have by Wald’s
identity:

E [Sτ ] = E [T1]E [τ ] = E [T1] (E [Z ] + 1).

Thus, we can estimate E [Z ] by drawing replicates of Sτ , created
by generating sample paths of the renewal process.

Q: Can we do better?

A: Oh yes..., definitely!
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Indirect sampling

We have

E [Sτ ] = E [T1]E [τ ] = E [T1] (E [Z ] + 1).

Note that ξ := Sτ − t is the overshoot of an inter-event time after
t.

Thus, we can use

E [Z ] =
t + E [ξ]

E [T1]
− 1.

I Better to estimate the RHS, as estimating E [ξ] may
computationally be easier than creating replicates of Sτ .

I Furthermore, great variance reduction. Suppose the
Ti ∼ Exp(1) and t = 50. Then,

Var [Z ] = 50, but Var

[
t + ξ

E [T1]
− 1

]
= 1.

In other words, indirect estimation leads to variance reduction by
using our brains!



Chapter V.1
Importance Sampling



Importance sampling

I Suppose we want to estimate some performance measure
z = E [Z ] = E [h(X )].

I We allow the output variable h(X ) to be a function of a
random input vector X = (X1, . . . ,Xn).

I For ease of discussion, let’s say that X has pdf f (x) and/or
cdf F (x).

I Thus, z = E [h(X )] =
∫
h(x)f (x)dx .

Suppose now that a crude Monte Carlo simulation of z is
inefficient, because

a) it is difficult so simulate a random vector having density
function f (x), and/or

b) the variance of h(X ) is just very large, requiring too many
replicates.

In either of these cases, importance sampling might be a lifesaver.
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Importance sampling

What the book says:

Importance sampling obtains its variance reduction by modifying
the sampling distribution P so that most of the sampling is done in
that part of the state space that contributes the most to
z = E [Z ].

Specifically, if we choose a sampling (or importance) distribution P̃
for which there exists a density (or Radon-Nikodym derivative) L
such that

1{Z(ω)6=0}P (dω) = 1{Z(ω)6=0}L(ω)P̃(dω),

in the sense of equality of measures, then

z = E [Z ] = Ẽ[ZL],

where Ẽ is the expectation associated with Ẽ.

Output analysis is then performed precisely as for the crude MC
method by generating R i.i.d. replicates of Z1L1, . . . ,ZRLR from P̃.
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Importance sampling

The book is quite right, but I’ll be explaining things a little
differently, under the assumption that X = (X1, . . . ,Xn) has a
joint density (or mass) function f (x) = f (x1, . . . , xn).

Supose that we want to estimate

z = E [h(X )] =

∫
h(x)f (x)dx .

Instead of generating replicates of h(X ) and averaging, we note
that

z =

∫
h(x)

f (x)

g(x)
g(x)dx = Eg

[
h(X )

f (X )

g(X )

]
= Eg [h(X )L(X )] ,

where L(x) = f (x)/g(x) is called is a likelihood ratio function.
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Importance sampling

z =

∫
h(x)

f (x)

g(x)
g(x)dx = Eg

[
h(X )

f (X )

g(X )

]
= Eg [h(X )L(X )] ,

where L(x) = f (x)/g(x) is called a likelihood ratio function.

This suggests the following estimation scheme:

1. Create R replicates of X , X 1, . . . ,XR , as if they have density
g(x).

2. Compute the values h(X i )L(X i ), i = 1, . . . ,R.

3. Average these values to get an importance sampling estimate
based on importance sampling density g .

Note: works only if g(x) = 0 implies h(x)f (x) = 0.

Q: How to choose g?

A: Good question. The choice of g is critical in order to get
substantial variance reduction. Taking the wrong g may lead
to substantial variance increases.
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z =
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substantial variance reduction. Taking the wrong g may lead
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Importance sampling

A simple example of importance sampling:

If X is Bin(n, p) distributed,

E [h(X )] =
n∑

x=0

h(x)

(
n

x

)
px(1− p)n−x

=
n∑

x=0

h(x)
px(1− p)n−x

qx(1− q)n−x

(
n

x

)
qx(1− q)n−x

= Eg

[
h(X )

pX (1− p)n−X

qX (1− q)n−X

]
,

where X is Bin(n, q) distributed under density g .

Suppose we want to know P (X ≤ 1) where X is
Bin(100, 1− 10−8) distributed.

Use this with e.g. q = 2
100 , since then we’ve made the region

{X ≤ 1} ‘more important’ (more probability mass, but caution:
not too much!).
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Importance sampling

Another example.

If X is exp(λ) distributed,

E [h(X )] =

∫ ∞
x=0

h(x)λe−λxdx

=

∫ ∞
x=0

h(x)
λe−λx

µe−µx
µe−µxdx

= Eg

[
h(X )

λe−λX

µe−µX

]
,

where X is exp(µ) distributed under density g .



Importance sampling

Our importance sampling estimator now is

ẑIS =
1

R

R∑
i=1

h(X i )L(X i ).

with X i sampled from density g . How to choose g?

We don’t have to worry about biasedness. We already saw that

E [ẑIS ] = Eg [h(X )L(X )] = E [h(X )] = z .

Unbiased estimator, regardless of the choice of g .



Importance sampling

Our importance sampling estimator now is
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Importance sampling

Let’s check the variance.

σ2
IS = Varg

[
1

R

R∑
i=1

h(X i )L(X i )

]
=

1

R
Varg [h(X )L(X )]

=
1

R

(
Eg

[
h2(X )L2(X )

]
− E [h(X )]2

)
=

1

R

(
E
[
h2(X )L(X )

]
− E [h(X )]2

)
This number can be estimated by the sample variance as usual,
and confidence intervals can be built.

Problem:

min
g

{
Eg

[
H2(X )L2(X )

]
: L(X ) =

f (X )

g(X )

}
.



Importance sampling

Theorem: Let g∗ be given by

g∗(x) =
|h(x)|

E [|h(X )|] f (x).

Then, for any importance sampling density g :

Eg∗
[
h2(X )L2(X )

]
≤ Eg

[
h2(X )L2(X )

]
.

Proof:

Eg∗
[
h2(X )L2(X )

]
= Eg∗

[
h2(X )

f 2(X ) (E [|h(X )|])2

|h(X )|2f 2(X )

]
= Eg∗

[
(E [|h(X )|])2

]
= (E [|h(X )|])2

= (Eg [L(X )|h(X )|])2 ≤ Eg

[
(L(X )|h(X )|)2

]
.

Last line follows from Jensen’s equality.
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Importance sampling

Something peculiar is going on.

g∗(x) =
|h(x)|

E [|h(X )|] f (x).

Suppose that h(x) ≥ 0 for any x .

Then,

Eg∗
[
h2(X )L2(X )

]
= E

[
h2(X )L(X )

]
= E

[
h2(X )

f (X )

g∗(X )

]
= E [h(X )E [h(X )]] = E [h(X )]2

= Eg∗ [h(X )L(X )]2

This means that sampling from density g∗ yields a zero-variance
estimator! Awesome!

I Q: Where is the catch?

I A: We don’t know E [|h(X )|] or E [h(X )], that’s actually the
thing we want to estimate. Bummer...
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Importance sampling

Fret not. An often used successful ‘change of measure’ is given by
the technique of exponential tilting, where we choose

gθ(x) = eθ
T
x−κ(θ)f (x),

where κ(θ) = logE
[
eθ

T
X

]
.

For one-dimensional densities, this implies

gθ(x) =
eθx

E [eθX ]
f (x).
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Importance sampling

For one-dimensional densities,

gθ(x) =
eθx

E [eθX ]
f (x).

Examples:

I When X has a Gamma density with parameters α and λ, i.e.
f (x) = λαxα−1e−λx/Γ(α), then

E
[
eθX
]

=

∫ ∞
0

eθxλαxα−1 e
−λx

Γ(α)
dx =

(
λ

λ− θ

)α
,

and gθ(x) = (λ− θ)αxα−1e−(λ−θ)x/Γ(α): Gamma
distribution with shifted scale parameter λ− θ.



Importance sampling

For one-dimensional densities,

gθ(x) =
eθx

E [eθX ]
f (x).

Examples:

I The N(µ, σ2) distribution gets tilted into the N(µ+ θσ2, σ2)
distribution.

I The bin(n, α) distribution gets tilted into the bin(n, αeθ

1−α+αeθ
)

distribution.

I The Poisson(µ) distribution gets tilted into the Poisson(µeθ)
distribution.

I Multidimensional: the N(µ, C ) distribution gets tilted into
the N(µ+Cθ, C ) distribution.



Importance sampling

Why exponential tilting? Let’s see an example.

Suppose X1, . . . ,Xn are i.i.d with common density f (x) and
suppose that the importance distribution preserves the i.i.d.
property but changes f (x) to gθ(x) = eθx

E[eθX ]
f (x). Then, note that

L(X ) =
f n(X )

gn
θ (X )

=
n∏

i=1

f (Xi )

gθ(Xi )
= e−θSn(E

[
eθX1

]
)n,

where Sn =
∑n

i=1 Xi . This is a very simple form!

I Exponential tilting is often used in problems involving
light-tailed r.v.’s.

I In this case, for instance, it can be used to make large values
of Sn = X1 + . . .+ Xn more likely.

I If we aim for values of t or larger, a common choice is to
choose θ such that Egθ [Sn] = t. Why?
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Importance sampling: stopped processes

I Suppose X1,X2, . . . are i.i.d. with common density f (x).

I Assume Z = h(X1, . . . ,Xτ )1{τ<∞}.

I τ is a stopping time adapted to the Xi , e.g.
τ = inf{n :

∑n
i=1 |Xi | > t}.

I Let g be an importance sampling density and
Ln(X ) :=

∏n
i=1 f (Xi )/g(Xi ).

Then

E [Z ] =
∞∑
n=1

E
[
Z1{τ=n}

]
=
∞∑
n=1

Eg

[
ZLn1{τ=n}

]
= Eg [ZLτ ] .

Thus, IS-estimate of E [Z ] can be obtained as follows:

I Generate X1,X2, . . . under density g until τ .

I Compute h(X1, . . . ,Xτ )Lτ (X ).

I Repeat these steps R times and average.



Importance sampling: stopped processes
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Importance sampling: discrete-time Markov Chains

I Let {Xs : s ∈ N} be a time-inhomogeneous DTMC on a
countable state space.

I Define

p0(x) := P (X0 = x) and pn(x , y) = P (Xn = y | Xn−1 = x) .

I One can use importance sampling, so that {Xs : s ∈ N}
remains a Markov chain after the ’change of measure’. E.g.,

q0(x) := Pg (X0 = x) and qn(x , y) = Pg (Xn = y | Xn−1 = x) .

I When τ is a stopping time, X1, . . . ,Xτ has associated
likelihood ratio

L(X1, . . . ,Xτ ) =
p0(X0)

q0(X0)

τ∏
n=1

pn(Xn−1,Xn)

qn(Xn−1,Xn)
.

I Importance sampling now possible for replication of
h(X1, . . . ,Xτ ).
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Importance sampling: continuous-time Markov Chains

I Let {X (t), t ≥ 0} be a time-homogeneous CTMC on a
countable state space.

I Define

p0(x) := P (X (0) = x) , a(x , y)dt := P (X (t + dt) = y |X (t) = x) .

I Let J(t) be the number of state transitions in [0, t], and let
T1,T2, . . . be the transition epochs.

I Note that Tj+1 − Tj is exponentially distributed with rate
a(x) =

∑
y a(x , y).

I One can use importance sampling, so that {Xs : s ∈ N}
remains a Markov chain after the ’change of measure’. E.g.,

q0(x) := Pg (X (0) = x) , b(x , y)dt = Pg (X (t + dt) = y |X (t) = x) .



Importance sampling: continuous-time Markov Chains

I Let {X (t), t ≥ 0} be a time-homogeneous CTMC on a
countable state space.

I Define

p0(x) := P (X (0) = x) , a(x , y)dt := P (X (t + dt) = y |X (t) = x) .

I Let J(t) be the number of state transitions in [0, t], and let
T1,T2, . . . be the transition epochs.

I Note that Tj+1 − Tj is exponentially distributed with rate
a(x) =

∑
y a(x , y).

I One can use importance sampling, so that {Xs : s ∈ N}
remains a Markov chain after the ’change of measure’.

E.g.,

q0(x) := Pg (X (0) = x) , b(x , y)dt = Pg (X (t + dt) = y |X (t) = x) .



Importance sampling: continuous-time Markov Chains

I Let {X (t), t ≥ 0} be a time-homogeneous CTMC on a
countable state space.

I Define

p0(x) := P (X (0) = x) , a(x , y)dt := P (X (t + dt) = y |X (t) = x) .

I Let J(t) be the number of state transitions in [0, t], and let
T1,T2, . . . be the transition epochs.

I Note that Tj+1 − Tj is exponentially distributed with rate
a(x) =

∑
y a(x , y).

I One can use importance sampling, so that {Xs : s ∈ N}
remains a Markov chain after the ’change of measure’. E.g.,

q0(x) := Pg (X (0) = x) , b(x , y)dt = Pg (X (t + dt) = y |X (t) = x) .



Importance sampling: continuous-time Markov Chains

I When τ is a stopping time,
X (0),T1,X (T1), . . . ,TJ(τ),X (TJ(τ)) has associated likelihood
ratio

L =
p0(X (0))

q0(X (0))

J(τ)∏
j=1

a (X (Tj−1),X (Tj)) b (X (Tj−1))

b (X (Tj−1),X (Tj)))a (X (Tj−1))

×
J(τ)∏
j=1

a (X (Tj−1)))e−a(X (Tj−1))(Tj−Tj−1)

b (X (Tj−1)))e−b(X (Tj−1))(Tj−Tj−1)

or, in short,

L =
p0(X (0))

q0(X (0))

J(τ)∏
j=1

a (X (Tj−1),X (Tj)))e−a(X (Tj−1))(Tj−Tj−1)

b (X (Tj−1),X (Tj)))e−b(X (Tj−1))(Tj−Tj−1)
.

I Importance sampling now possible for replication of
h(X (0),T1,X (T1), . . . ,TJ(τ),X (TJ(τ))).



Importance sampling: compound Poisson processes

I Let X (t) =
∑N(t)

i=1 Yi , where the Yi are i.i.d. with density f ,
and {N(t), t ≥ 0} is a Poisson(λ) process.

I Let Ti be the time between the i − 1-st and the i-th jump of
the Poisson process.

I Let R(t) = t −∑N(t)
i=1 Ti be the time between t and the last

event prior to that.

I Using importance sampling, one can make X (t) a compound
Poisson process with parameters f̃ and λ̃.

I The likelihood ratio for Y1,T1, . . . ,YN(t),TN(t),R(t) is

L =
e−λR(t)

e−λ̃R(t)

N(t)∏
i=1

f (Yi )

f̃ (Yi )

λe−λTi

λ̃e−λ̃Ti

=

(
λ

λ̃

)N(t)

e−(λ−λ̃)t

N(t)∏
i=1

f (Yi )

f̃ (Yi )
.

I And again, importance sampling now possible for replication
of h(Y1,T1, . . . ,YN(t),TN(t),R(t))!
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