Stochastic Simulation

Jan-Pieter Dorsman ${ }^{1}$ \& Michel Mandjes ${ }^{1,2,3}$

${ }^{1}$ Korteweg-de Vries Institute for Mathematics, University of Amsterdam
${ }^{2}$ CWI, Amsterdam
${ }^{3}$ Eurandom, Eindhoven

University of Amsterdam,
Fall, 2017

Chapter VI
Rare-Event Simulation

Rare-Event Simulation

In rare-event simulation, we consider the problem of estimating a rare event A. I.e., think of $z:=\mathbb{P}(A)$ as being in the order of 10^{-3} or less.

Rare-Event Simulation

In rare-event simulation, we consider the problem of estimating a rare event A. I.e., think of $z:=\mathbb{P}(A)$ as being in the order of 10^{-3} or less.

Q: How to estimate these probabilities efficiently?

Rare-Event Simulation

In rare-event simulation, we consider the problem of estimating a rare event A. I.e., think of $z:=\mathbb{P}(A)$ as being in the order of 10^{-3} or less.

Q: How to estimate these probabilities efficiently?
A: Naive thought: just do a crude Monte Carlo simulation using $Z=\mathbb{1}_{\{A\}}$, and let it last very long?

Rare-Event Simulation

In rare-event simulation, we consider the problem of estimating a rare event A. I.e., think of $z:=\mathbb{P}(A)$ as being in the order of 10^{-3} or less.

Q: How to estimate these probabilities efficiently?
A: Naive thought: just do a crude Monte Carlo simulation using $Z=\mathbb{1}_{\{A\}}$, and let it last very long?
A: But we have seen this may take prohibitively long.

Rare-Event Simulation
As we have seen, number of runs required is roughly

$$
R=\frac{100 \cdot 1.96^{2} z(1-z)}{z^{2}}
$$

Rare-Event Simulation
As we have seen, number of runs required is roughly

$$
R=\frac{100 \cdot 1.96^{2} z(1-z)}{z^{2}}
$$

This number increases like z^{-1} towards ∞ as $z \downarrow 0$.

Rare-Event Simulation
As we have seen, number of runs required is roughly

$$
R=\frac{100 \cdot 1.96^{2} z(1-z)}{z^{2}}
$$

This number increases like z^{-1} towards ∞ as $z \downarrow 0$.
This is why we look at importance sampling.

Rare-Event Simulation

Formal setup (short recap):

- Let $A(x)$ be a family of rare events.

Rare-Event Simulation

Formal setup (short recap):

- Let $A(x)$ be a family of rare events.
- $z(x):=\mathbb{P}(A(x)) \rightarrow 0$ as $x \rightarrow \infty$

Rare-Event Simulation

Formal setup (short recap):

- Let $A(x)$ be a family of rare events.
- $z(x):=\mathbb{P}(A(x)) \rightarrow 0$ as $x \rightarrow \infty$
- Let $Z(x)$ be an unbiased estimator for $z(x): \mathbb{E}[Z(x)]=z(x)$.

Rare-Event Simulation

Formal setup (short recap):

- Let $A(x)$ be a family of rare events.
- $z(x):=\mathbb{P}(A(x)) \rightarrow 0$ as $x \rightarrow \infty$
- Let $Z(x)$ be an unbiased estimator for $z(x): \mathbb{E}[Z(x)]=z(x)$.
- An algorithm is defined as a family $Z(x)$ of such estimators.

Rare-Event Simulation

Formal setup (short recap):

- Let $A(x)$ be a family of rare events.
- $z(x):=\mathbb{P}(A(x)) \rightarrow 0$ as $x \rightarrow \infty$
- Let $Z(x)$ be an unbiased estimator for $z(x): \mathbb{E}[Z(x)]=z(x)$.
- An algorithm is defined as a family $Z(x)$ of such estimators.

Q: find algorithm s such that the required R does not explode. Different flavors: bounded relative error, logarithmic efficiency, ...

Two generic examples
Let S_{n} be defined as $\sum_{i=1}^{n} X_{i}$ for i.i.d. X_{i}.

Two generic examples
Let S_{n} be defined as $\sum_{i=1}^{n} X_{i}$ for i.i.d. X_{i}.
Example 1: partial sums. We wish to estimate

$$
\pi_{n}:=\mathbb{P}\left(\frac{S_{n}}{n}>a\right)
$$

for n large and $a>\mathbb{E} X_{1}$.

Two generic examples
Let S_{n} be defined as $\sum_{i=1}^{n} X_{i}$ for i.i.d. X_{i}.
Example 1: partial sums. We wish to estimate

$$
\pi_{n}:=\mathbb{P}\left(\frac{S_{n}}{n}>a\right)
$$

for n large and $a>\mathbb{E} X_{1}$.
Example 2: hitting probabilities. We wish to estimate

$$
\alpha(B):=\mathbb{P}\left(\exists n \in \mathbb{N}: S_{n} \geq B\right)
$$

for B large and $\mathbb{E} X_{1}<0$.

Two generic examples
These examples were dealt with by Jan-Pieter last week.
As they are the most important examples, I'll say a bit more about them, and explain at an intuitive level why exponential twisting works so nicely.

Two generic examples
These examples were dealt with by Jan-Pieter last week.
As they are the most important examples, I'll say a bit more about them, and explain at an intuitive level why exponential twisting works so nicely.
(It can be seen as my personal view on Section VI.6.)

Standard example 1: partial sums
Consider, with $S_{n}:=\sum_{i=1}^{n} X_{i}$, the probability

$$
\pi_{n}:=\mathbb{P}\left(\frac{S_{n}}{n}>a\right)
$$

for n large and $a>\mathbb{E} X_{1}$.

Standard example 1: partial sums
Consider, with $S_{n}:=\sum_{i=1}^{n} X_{i}$, the probability

$$
\pi_{n}:=\mathbb{P}\left(\frac{S_{n}}{n}>a\right)
$$

for n large and $a>\mathbb{E} X_{1}$.
This probability tends to 0 by virtue of the law of large numbers.

Standard example 1: partial sums
Bahadur \& Rao:

Standard example 1: partial sums
Bahadur \& Rao:
Assume moment generating function $\hat{F}(\theta):=\mathbb{E} e^{\theta X}<\infty$ for some $\theta>0(\sim$ light tails! $)$

Standard example 1: partial sums
Bahadur \& Rao:
Assume moment generating function $\hat{F}(\theta):=\mathbb{E} e^{\theta X}<\infty$ for some $\theta>0$ (\sim light tails! $)$

Define Legendre transform

$$
I(a)=\sup _{\theta}(\theta a-\log \hat{F}(\theta))
$$

Then

$$
\pi_{n} /\left(\frac{C_{a}}{\sqrt{n}} e^{-n l(a)}\right)=\mathbb{P}\left(\frac{S_{n}}{n}>a\right) /\left(\frac{C_{a}}{\sqrt{n}} e^{-n l(a)}\right) \rightarrow 1
$$

(if X non-lattice; if X lattice similar formula applies).

Standard example 1: partial sums
This formula only holds for $n \rightarrow \infty$, so there is still a need to estimate π_{n} !

How can that be efficiently done?

Naive simulation: as we have seen, $\#$ runs $\sim 400 / \pi_{n}$, that is, grows exponentially in n... Idea: mimic conditional distribution.

Intermezzo: conditional distribution
Of course, want would like to pick \mathbb{Q} such that variance of new estimator is minimal. Say p is rare-event probability we wish to estimate.

Intermezzo: conditional distribution
Of course, want would like to pick \mathbb{Q} such that variance of new estimator is minimal. Say p is rare-event probability we wish to estimate.

Proposal: let \mathbb{Q} coincide with the distribution conditional on the event A :

$$
\mathbb{Q}(\omega)=\mathbb{P}(\omega \mid \omega \in A)=\frac{\mathbb{P}(\omega)}{p}
$$

if $\omega \in A$ and 0 else.

Intermezzo: conditional distribution
Then,

$$
\operatorname{Var}_{\mathbb{Q}}(L I)=\mathbb{E}_{\mathbb{Q}}\left(L^{2} I\right)-p^{2}=\int_{\omega \in A} L^{2} \mathrm{~d} \mathbb{Q}(\omega)-p^{2}
$$

But

$$
\int_{\omega \in A} L^{2} \mathrm{~d} \mathbb{Q}(\omega)=\int_{\omega \in A} p^{2} \frac{\mathrm{~d} \mathbb{P}(\omega)}{p}=p^{2}
$$

so that $\mathbb{V a r}_{\mathbb{Q}}(L I)=0$.

Intermezzo: conditional distribution
So we have found a zero-variance estimator!!

Intermezzo: conditional distribution
So we have found a zero-variance estimator!!
Drawback: it requires knowledge of p, and p is unknown...

Intermezzo: conditional distribution
So we have found a zero-variance estimator!!
Drawback: it requires knowledge of p, and p is unknown...
But we could try to mimic the conditional distribution!

Standard example 1: partial sums
Consider distribution of some X_{i}, and condition on $S_{n} \geq n a$:

$$
g(x):=\mathbb{P}\left(X_{i} \in[x, x+\mathrm{d} x) \mid S_{n} \geq n a\right)=\frac{f(x) \mathbb{P}\left(S_{n-1} \geq n a-x\right)}{\mathbb{P}\left(S_{n} \geq n a\right)}
$$

with $f(x)$ density of X_{i} under \mathbb{P}.

Standard example 1: partial sums
Consider distribution of some X_{i}, and condition on $S_{n} \geq n a$:

$$
g(x):=\mathbb{P}\left(X_{i} \in[x, x+\mathrm{d} x) \mid S_{n} \geq n a\right)=\frac{f(x) \mathbb{P}\left(S_{n-1} \geq n a-x\right)}{\mathbb{P}\left(S_{n} \geq n a\right)}
$$

with $f(x)$ density of X_{i} under \mathbb{P}.
Bahadur-Rao:

$$
\mathbb{P}\left(S_{n} \geq n a\right) \sim \frac{C_{a}}{\sqrt{n}} e^{-n l(a)}
$$

whereas

$$
\mathbb{P}\left(S_{n-1} \geq n a-x\right) \sim \frac{C_{a}}{\sqrt{n}} \exp \left(-(n-1) \cdot I\left(\frac{n a-x}{n-1}\right)\right) .
$$

(Use that $\sqrt{n} \sim \sqrt{n-1}$.)

Standard example 1: partial sums

Let us consider, for $n \rightarrow \infty$,

$$
\exp \left(-(n-1) \cdot I\left(\frac{n a-x}{n-1}\right)\right)
$$

Well, it equals

$$
\exp \left(-(n-1) \cdot I\left(\frac{(n-1) a+a-x}{n-1}\right)\right) \approx-(n-1) I(a)-(a-x) I^{\prime}(a)
$$

Standard example 1: partial sums

Let us consider, for $n \rightarrow \infty$,

$$
\exp \left(-(n-1) \cdot I\left(\frac{n a-x}{n-1}\right)\right) .
$$

Well, it equals

$$
\exp \left(-(n-1) \cdot I\left(\frac{(n-1) a+a-x}{n-1}\right)\right) \approx-(n-1) I(a)-(a-x) I^{\prime}(a) .
$$

As a consequence,

$$
g(x)=\frac{f(x) \mathbb{P}\left(S_{n-1} \geq n a-x\right)}{\mathbb{P}\left(S_{n} \geq n a\right)} \approx f(x) \cdot \exp \left(I(a)+(x-a) I^{\prime}(a)\right) .
$$

Standard example 1: partial sums
Now we verify that

$$
g(x)=\frac{f(x) \mathbb{P}\left(S_{n-1} \geq n a-x\right)}{\mathbb{P}\left(S_{n} \geq n a\right)} \approx f(x) \cdot \exp \left(I(a)+(x-a) I^{\prime}(a)\right)
$$

is a genuine density.
To this end, we need some basic convex analysis.

Standard example 1: partial sums
Now we verify that $f(x) \cdot \exp \left(I(a)+(x-a) I^{\prime}(a)\right)$ is a genuine density.

Define by $\theta(a)$ the optimizer in the definition of $I(a)$:

$$
I(a)=\sup _{\theta}(\theta a-\log \hat{F}(\theta))=\theta(a) a-\log \hat{F}(\theta(a))
$$

Hence $\theta(a)$ satisfies

$$
a=\frac{\hat{F}^{\prime}(\theta(a))}{\hat{F}(\theta(a))} .
$$

This entails that

$$
I^{\prime}(a)=\theta(a)+\theta^{\prime}(a)\left(a-\frac{\hat{F}^{\prime}(\theta(a))}{\hat{F}(\theta(a))}\right)=\theta(a)
$$

Standard example 1: partial sums
We conclude that we have to consider

$$
f(x) \cdot \exp (I(a)+(x-a) \theta(a))
$$

Notice that this expression is non-negative, and in addition

$$
\begin{aligned}
& \int f(x) \cdot \exp (I(a)+(x-a) \theta(a)) \mathrm{d} x \\
& \quad=\exp (I(a)-\theta(a) a) \cdot \int e^{\theta(a) x} f(x) \mathrm{d} x \\
& \quad=\exp (I(a)-\theta(a) a) \hat{F}(\theta(a))=e^{I(a)-I(a)}=
\end{aligned}
$$

Standard example 1: partial sums
We conclude that we have to consider

$$
f(x) \cdot \exp (I(a)+(x-a) \theta(a))
$$

Notice that this expression is non-negative, and in addition

$$
\begin{aligned}
& \int f(x) \cdot \exp (I(a)+(x-a) \theta(a)) \mathrm{d} x \\
& \quad=\exp (I(a)-\theta(a) a) \cdot \int e^{\theta(a) x} f(x) \mathrm{d} x \\
& \quad=\exp (I(a)-\theta(a) a) \hat{F}(\theta(a))=e^{I(a)-I(a)}=1
\end{aligned}
$$

Hence

$$
f(x) \cdot \exp (I(a)+(x-a) \theta(a))=f(x) \frac{e^{\theta(a) x}}{\hat{F}(\theta(a))}
$$

is a density.

Standard example 1: partial sums
What did we do so far?

Standard example 1: partial sums
What did we do so far?
We determined a proxy for the distribution of the increments, conditional on $S_{n} \geq n$.

Standard example 1: partial sums
What did we do so far?
We determined a proxy for the distribution of the increments, conditional on $S_{n} \geq$ na.

Now we analyze the performance of the resulting estimator. Recall that under the original measure

$$
\operatorname{Var}(I)=\pi_{n}\left(1-\pi_{n}\right) \approx \pi_{n} \approx\left(C_{a} / \sqrt{n}\right) \cdot e^{-n I(a)}
$$

Standard example 1: partial sums
Under the original measure

$$
\operatorname{Var}(I)=\pi_{n}\left(1-\pi_{n}\right) \approx \pi_{n} \approx\left(C_{a} / \sqrt{n}\right) \cdot e^{-n I(a)}
$$

Under the new measure,

$$
\operatorname{Var}_{\mathbb{Q}}(L I)=\mathbb{E}_{\mathbb{Q}}\left(L^{2} I\right)-\pi_{n}^{2}
$$

So we have to analyze $\mathbb{E}_{\mathbb{Q}}\left(L^{2} I\right)$ for large n.

Standard example 1: partial sums
Under the original measure

$$
\operatorname{Var}(I)=\pi_{n}\left(1-\pi_{n}\right) \approx \pi_{n} \approx\left(C_{a} / \sqrt{n}\right) \cdot e^{-n I(a)}
$$

Under the new measure,

$$
\operatorname{Var}_{\mathbb{Q}}(L I)=\mathbb{E}_{\mathbb{Q}}\left(L^{2} I\right)-\pi_{n}^{2}
$$

So we have to analyze $\mathbb{E}_{\mathbb{Q}}\left(L^{2} I\right)$ for large n.
Observe:

$$
L=\prod_{i=1}^{n} \frac{f\left(X_{i}\right)}{g\left(X_{i}\right)}=\prod_{i=1}^{n} \frac{\hat{F}(\theta(a))}{e^{\theta(a) X_{i}}}=(\hat{F}(\theta(a)))^{n} \cdot e^{-\theta(a) S_{n}}
$$

Standard example 1: partial sums
If $I=1$ (that is, $S_{n} \geq n a$),

$$
L=(\hat{F}(\theta(a)))^{n} \cdot e^{-\theta(a) S_{n}} \leq(\hat{F}(\theta(a)))^{n} \cdot e^{-\theta(a) a}=e^{-2 n l(a)}
$$

Standard example 1: partial sums
If $I=1$ (that is, $S_{n} \geq n a$),

$$
L=(\hat{F}(\theta(a)))^{n} \cdot e^{-\theta(a) S_{n}} \leq(\hat{F}(\theta(a)))^{n} \cdot e^{-\theta(a) a}=e^{-2 n l(a)} .
$$

In other words,

$$
\operatorname{Var}_{\mathbb{Q}}(L I)=\mathbb{E}_{\mathbb{Q}}\left(L^{2} I\right)-\pi_{n}^{2} \leq \mathbb{E}_{\mathbb{Q}}\left(L^{2} I\right) \leq e^{-2 n I(a)}
$$

Recall that under \mathbb{P} we had

$$
\operatorname{Var}(I)=\pi_{n}\left(1-\pi_{n}\right) \approx \pi_{n} \approx\left(C_{a} / \sqrt{n}\right) \cdot e^{-n I(a)}
$$

Standard example 1: partial sums
If $I=1$ (that is, $S_{n} \geq n a$),

$$
L=(\hat{F}(\theta(a)))^{n} \cdot e^{-\theta(a) S_{n}} \leq(\hat{F}(\theta(a)))^{n} \cdot e^{-\theta(a) a}=e^{-2 n l(a)} .
$$

In other words,

$$
\operatorname{Var}_{\mathbb{Q}}(L I)=\mathbb{E}_{\mathbb{Q}}\left(L^{2} I\right)-\pi_{n}^{2} \leq \mathbb{E}_{\mathbb{Q}}\left(L^{2} I\right) \leq e^{-2 n I(a)}
$$

Recall that under \mathbb{P} we had

$$
\operatorname{Var}(I)=\pi_{n}\left(1-\pi_{n}\right) \approx \pi_{n} \approx\left(C_{a} / \sqrt{n}\right) \cdot e^{-n I(a)}
$$

\Longrightarrow Substantial variance reduction!

Standard example 1: partial sums
As an aside: more refined analysis is possible:

$$
\operatorname{Var}_{\mathbb{Q}}(L I) \sim \frac{\tilde{C}_{a}}{\sqrt{n}} e^{-2 n l(a)}
$$

Straightforward computation: number of runs R required grows roughly proportional to \sqrt{n} (rather than $1 / \pi_{n}$, that is proportional to $\left.\sqrt{n} e^{n /(a)}\right)$.

Standard example 1: partial sums
As an aside: more refined analysis is possible:

$$
\operatorname{Var}_{\mathbb{Q}}(L l) \sim \frac{\tilde{C}_{a}}{\sqrt{n}} e^{-2 n l(a)}
$$

Straightforward computation: number of runs R required grows roughly proportional to \sqrt{n} (rather than $1 / \pi_{n}$, that is proportional to $\left.\sqrt{n} e^{n /(a)}\right)$.
\Longrightarrow Procedure is logarithmically efficient

Standard example II: hitting probabilities
Focus now on

$$
\alpha(B):=\mathbb{P}\left(\exists n \in \mathbb{N}: S_{n} \geq B\right)
$$

where it is assumed that $\mathbb{E} X_{1}<0$.
Again light-tailed regime, that is, $\hat{F}(\theta)=\mathbb{E} e^{\theta X}=1$ has a positive solution, say θ^{\star}.

Standard example II: hitting probabilities
Again the recipe is: mimic distribution random walk, conditional on the rare event.

Standard example II: hitting probabilities
Again the recipe is: mimic distribution random walk, conditional on the rare event.

Cramér-Lundberg: $\alpha(B) \sim C e^{-\theta^{\star} B}$.
Consider distribution of some X_{i}, and condition on $\left\{\exists n \in \mathbb{N}: S_{n} \geq B\right\}$: informally,

$$
g(x):=\mathbb{P}\left(X_{i} \in[x, x+\mathrm{d} x) \mid \exists n \in \mathbb{N}: S_{n} \geq B\right)=\frac{f(x) \alpha(B-x)}{\alpha(B)}
$$

with $f(x)$ density of X_{i} under \mathbb{P}.

Standard example II: hitting probabilities
Again the recipe is: mimic distribution random walk, conditional on the rare event.

Cramér-Lundberg: $\alpha(B) \sim C e^{-\theta^{\star} B}$.
Consider distribution of some X_{i}, and condition on $\left\{\exists n \in \mathbb{N}: S_{n} \geq B\right\}$: informally,

$$
g(x):=\mathbb{P}\left(X_{i} \in[x, x+\mathrm{d} x) \mid \exists n \in \mathbb{N}: S_{n} \geq B\right)=\frac{f(x) \alpha(B-x)}{\alpha(B)}
$$

with $f(x)$ density of X_{i} under \mathbb{P}.
With Cramér-Lundberg:

$$
g(x) \approx f(x) \cdot e^{\theta^{\star} x}
$$

This is a density as θ^{\star} solves $\hat{F}\left(\theta^{\star}\right)=1$.

Standard example II: hitting probabilities
It can be proven that $\mathbb{E}_{\mathbb{Q}} X_{1}>0$, so event is not rare anymore. Hence, the hitting time T is finite a.s., so $I=1$ a.s.

Standard example II: hitting probabilities
It can be proven that $\mathbb{E}_{\mathbb{Q}} X_{1}>0$, so event is not rare anymore. Hence, the hitting time T is finite a.s., so $I=1$ a.s.

Also,

$$
L=e^{-\theta^{\star} S_{T}}
$$

Thus

$$
\alpha(B)=\mathbb{E}_{\mathbb{Q}}(L)=e^{-\theta^{\star} B} \mathbb{E}_{\mathbb{Q}} e^{\theta^{\star}\left(B-S_{T}\right)} \approx C e^{-\theta^{\star} B}
$$

Standard example II: hitting probabilities
This entails

$$
\alpha(B)=\mathbb{E}_{\mathbb{Q}}(L)=e^{-\theta^{\star} B_{\mathbb{E}_{\mathbb{Q}}} e^{\theta^{\star}\left(B-S_{T}\right)} \approx C e^{-\theta^{\star} B} . . . ~}
$$

In addition

$$
\operatorname{Var}_{\mathbb{Q}}(L) \sim \tilde{C} e^{-2 \theta^{\star} B}
$$

so that number of runs needed remains bounded when B grows!

Standard example II: hitting probabilities

$$
\alpha(B)=\mathbb{E}_{\mathbb{Q}}(L)=e^{-\theta^{\star} B_{\mathbb{E}_{\mathbb{Q}}} e^{\theta^{\star}\left(B-S_{T}\right)} \approx C e^{-\theta^{\star} B} ~}
$$

In addition

$$
\operatorname{Var}_{\mathbb{Q}}(L) \sim \tilde{C} e^{-2 \theta^{\star} B}
$$

so that number of runs needed remains bounded when B grows!

Standard example II: hitting probabilities

$$
\alpha(B)=\mathbb{E}_{\mathbb{Q}}(L)=e^{-\theta^{\star} B_{\mathbb{Q}}} \mathbb{E}_{\mathbb{Q}} e^{\theta^{\star}\left(B-S_{T}\right)} \approx C e^{-\theta^{\star} B}
$$

In addition

$$
\operatorname{Var}_{\mathbb{Q}}(L) \sim \tilde{C} e^{-2 \theta^{\star} B}
$$

so that number of runs needed remains bounded when B grows!
\Longrightarrow Procedure has bounded relative error

Markov modulation
(Cf. Section VI.7.)

Markov modulation
(Cf. Section VI.7.)
Idea: often X_{i} are affected by external (background) process. Let background process be a discrete-time Markov chain on $\{1, \ldots, d\}$.

For instance, X_{i} is distributed as a sample from the random variable Y_{j} (with density $\left.f_{j}(\cdot)\right)$ when $J_{i}=j$.

Transition probabilities of Markov chain J are given by $p_{i j}$; equilibrium probabilities are π_{i}.

Markov modulation
We again focus on

$$
\alpha(B):=\mathbb{P}\left(\exists n \in \mathbb{N}: S_{n} \geq B\right)
$$

where it is assumed that

$$
\sum_{j=1}^{d} \pi_{j} \mathbb{E} Y_{j}<0
$$

Markov modulation
Idea: solve eigensystem

$$
x_{j}=\mathbb{E} e^{\theta Y_{j}} \sum_{k=1}^{d} p_{j k} x_{k} .
$$

Markov modulation
Idea: solve eigensystem

$$
x_{j}=\mathbb{E} e^{\theta Y_{j}} \sum_{k=1}^{d} p_{j k} x_{k} .
$$

Perron-Frobenius: there is a positive eigenvalue such that x is positive componentwise and $\theta>0$.

Markov modulation
With (x, θ) solving the eigensystem

$$
x_{j}=\mathbb{E} e^{\theta Y_{j}} \sum_{k=1}^{d} p_{j k} x_{k}
$$

clearly

$$
q_{j k}=p_{j k} \frac{x_{k}}{x_{j}} \mathbb{E} e^{\theta Y_{j}}
$$

form a transition probability matrix.

Markov modulation
With (x, θ) solving the eigensystem

$$
x_{j}=\mathbb{E} e^{\theta Y_{j}} \sum_{k=1}^{d} p_{j k} x_{k}
$$

clearly

$$
q_{j k}=p_{j k} \frac{x_{k}}{x_{j}} \mathbb{E} e^{\theta Y_{j}}
$$

form a transition probability matrix.
In addition, define the twisted increments by

$$
g_{j}(y)=f_{j}(y) \frac{e^{\theta y}}{\mathbb{E} e^{\theta Y_{j}}}
$$

Markov modulation
Observe

$$
\alpha(B):=\mathbb{P}\left(\exists n \in \mathbb{N}: S_{n} \geq B\right)=\mathbb{P}\left(T_{B}<\infty\right)
$$

with T_{B} the first hitting time of $[B, \infty)$.

Markov modulation
Observe

$$
\alpha(B):=\mathbb{P}\left(\exists n \in \mathbb{N}: S_{n} \geq B\right)=\mathbb{P}\left(T_{B}<\infty\right)
$$

with T_{B} the first hitting time of $[B, \infty)$.
Can we evaluate likelihood ratio?

Markov modulation
Observe

$$
\alpha(B):=\mathbb{P}\left(\exists n \in \mathbb{N}: S_{n} \geq B\right)=\mathbb{P}\left(T_{B}<\infty\right)
$$

with T_{B} the first hitting time of $[B, \infty)$.
Can we evaluate likelihood ratio?
Observe that $T_{B}<\infty$ with probability 1 under \mathbb{Q}.

Markov modulation

By definition,

$$
L=\prod_{i=1}^{T_{B}}\left(\frac{p_{J_{i} J_{i+1}}}{q_{J_{i} J_{i+1}}}\right)\left(\frac{f_{J_{i}}\left(X_{i}\right)}{g_{J_{i}}\left(X_{i}\right)}\right) .
$$

Markov modulation
By definition,

$$
L=\prod_{i=1}^{T_{B}}\left(\frac{p_{J_{i} J_{i+1}}}{q_{J_{i} J_{i+1}}}\right)\left(\frac{f_{J_{i}}\left(X_{i}\right)}{g_{J_{i}}\left(X_{i}\right)}\right) .
$$

This can be simplified to

$$
L=\prod_{i=1}^{T_{B}}\left(\frac{x J_{J_{i}}}{x_{J_{i+1}}} \frac{1}{\mathbb{E} e^{\theta Y_{J_{i}}}}\right)\left(\frac{\mathbb{E} e^{\theta Y_{J_{i}}}}{e^{\theta Y J_{J_{i}}}}\right),
$$

which equals

$$
\frac{x_{J_{0}}}{x_{J_{T_{B}+1}}} e^{-\theta S_{T_{B}}} .
$$

Markov modulation
From

$$
L=\frac{x_{J_{0}}}{x_{J_{T_{B}+1}}} e^{-\theta S_{T_{B}}}
$$

we conclude that, for a finite contant C,

$$
\alpha(B)=\mathbb{E}_{\mathbb{Q}}(L I)=\mathbb{E}_{\mathbb{Q}}(L) \leq C e^{-\theta S_{T_{B}}} .
$$

Actually in can be proven that, as $B \rightarrow \infty$,

$$
\alpha(B) \sim \tilde{C} e^{-\theta S_{T_{B}}}
$$

and that the procedure has bounded relative error.

Caveats

Slight variations to the 'leading examples' model may already cause serious problems... For $a_{-}<\mu:=\mathbb{E} X_{1}<a_{+}$,

$$
\pi_{n}:=\mathbb{P}\left(\frac{S_{n}}{n} \notin\left(a_{-}, a_{+}\right)\right) .
$$

Assume w.l.o.g. $I\left(a_{+}\right)<I\left(a_{-}\right)$.

Caveats

Slight variations to the 'leading examples' model may already cause serious problems... For $a_{-}<\mu:=\mathbb{E} X_{1}<a_{+}$,

$$
\pi_{n}:=\mathbb{P}\left(\frac{S_{n}}{n} \notin\left(a_{-}, a_{+}\right)\right) .
$$

Assume w.l.o.g. $I\left(a_{+}\right)<I\left(a_{-}\right)$. This intuitively means that most likely point in set is a_{+}.

Define, as before,

$$
\theta(a):=\arg \sup _{\theta}(\theta a-\log \hat{F}(\theta))
$$

Caveats

Naïvely, one would use

$$
g(x)=f(x) \frac{e^{\theta\left(a_{+}\right) x}}{\hat{F}\left(\theta\left(a_{+}\right)\right)}
$$

To check how this change of measure performs, we analyze

$$
\begin{aligned}
\mathbb{E}_{\mathbb{Q}}\left(L^{2} I\right)= & \left(\mathbb{E}_{\mathbb{Q}}\left(e^{-2 \theta\left(a_{+}\right) S_{n}} 1\left\{S_{n} \geqslant n a_{+}\right\}\right)\right. \\
& \left.+\mathbb{E}_{\mathbb{Q}}\left(e^{-2 \theta\left(a_{+}\right) S_{n}} 1\left\{S_{n} \leqslant n a_{-}\right\}\right)\right) \times\left(\hat{F}\left(\theta\left(a_{+}\right)\right)\right)^{2 n} .
\end{aligned}
$$

Caveats

Consider only exponential terms (in n).

Caveats

Consider only exponential terms (in n).
First term:
$\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(\mathbb{E}_{\mathbb{Q}}\left(e^{-2 \theta\left(a_{+}\right) S_{n}} 1\left\{S_{n} \geqslant n a_{+}\right\}\right)\left(\hat{F}\left(\theta\left(a_{+}\right)\right)\right)^{2 n}\right)=-2 I\left(a_{+}\right)$.

Caveats

Consider only exponential terms (in n).
First term:
$\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(\mathbb{E}_{\mathbb{Q}}\left(e^{-2 \theta\left(a_{+}\right) S_{n}} 1\left\{S_{n} \geqslant n a_{+}\right\}\right)\left(\hat{F}\left(\theta\left(a_{+}\right)\right)\right)^{2 n}\right)=-2 l\left(a_{+}\right)$.
Second term is more difficult. Observe: undershoot below level na_ will be modest. Hence

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n} \log \left(\mathbb{E}_{\mathbb{Q}}\left(e^{-2 \theta\left(a_{+}\right) S_{n}} 1\left\{S_{n} \leqslant n a_{-}\right\}\right) \times\left(\hat{F}\left(\theta\left(a_{+}\right)\right)\right)^{2 n}\right) \\
& =-2 \theta\left(a_{+}\right) a_{-}+\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{Q}\left(\frac{S_{n}}{n} \leqslant a_{-}\right)+2 \log \hat{F}\left(\theta\left(a_{+}\right)\right) .
\end{aligned}
$$

Caveats

To find decay rate of $\mathbb{Q}\left(S_{n} / n \leqslant a_{-}\right)$, let $J(\cdot)$ be the Legendre-Fenchel transform under \mathbb{Q}, that is

$$
\begin{aligned}
& J\left(a_{-}\right)=\sup _{\theta}\left[\theta a_{-}-\log \mathbb{E}_{\mathbb{Q}} e^{\theta X_{1}}\right] \\
& =\sup _{\theta}\left[\theta a_{-}-\log \phi\left(\theta+\theta\left(a_{+}\right)\right)+\log \hat{F}\left(\theta\left(a_{+}\right)\right)\right] \\
& =-\theta\left(a_{+}\right) a_{-}+\sup _{\theta}\left[\left(\theta+\theta\left(a_{+}\right)\right) a_{-}-\log \hat{F}\left(\theta+\theta\left(a_{+}\right)\right)\right] \\
& \quad+\log \hat{F}\left(\theta\left(a_{+}\right)\right) \\
& =-\theta\left(a_{+}\right) a_{-}+I\left(a_{-}\right)+\log \hat{F}\left(\theta\left(a_{+}\right)\right) .
\end{aligned}
$$

We obtain that

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(\mathbb{E}_{\mathbb{Q}}\left(e^{-2 \theta\left(a_{+}\right) S_{n}} 1\left\{S_{n} \leqslant n a_{-}\right\}\right) \times\left(\hat{F}\left(\theta\left(a_{+}\right)\right)\right)^{2 n}\right) \\
=-\theta\left(a_{+}\right) a_{-}-I\left(a_{-}\right)+\log \hat{F}\left(\theta\left(a_{+}\right)\right) .
\end{gathered}
$$

Caveats
Hence logarithmic efficiency if

$$
-2 I\left(a_{+}\right) \geqslant-\theta\left(a_{+}\right) a_{-}-I\left(a_{-}\right)+\log \hat{F}\left(\theta\left(a_{+}\right)\right)
$$

or

$$
I\left(a_{+}\right)+\theta\left(a_{+}\right) a_{+} \leqslant I\left(a_{-}\right)+\theta\left(a_{+}\right) a_{-}
$$

This condition is not always met!

Caveats
Example. Let the X_{i} be i.i.d. samples from an exponential distribution with mean 1 . We take $a_{+}=2$ and $a_{-}<1$. We have that $\theta\left(a_{+}\right)=1-1 / a_{+}$and $I\left(a_{+}\right)=a_{+}-1-\log a_{+}$. The inequality to be verified is therefore

$$
3-\log 2 \leqslant \frac{3}{2} a_{-}-\log a_{-}, \quad \text { or } \quad \log a_{-} \leqslant \frac{3}{2} a_{-}-3+\log 2
$$

Numerical search: condition is met when $0<a_{-}<0.119$.

Caveats \& remedies
This type of problems arises often when 'overflow set' has 'unfavorable' shape.

Remedy 1: Split rare event of interest in disjoint parts:

$$
\alpha(n)=\mathbb{P}\left(\bar{X}_{n} \notin\left(a_{-}, a_{+}\right)\right)=\mathbb{P}\left(\frac{S_{n}}{n} \geqslant a_{+}\right)+\mathbb{P}\left(\frac{S_{n}}{n} \leqslant a_{-}\right),
$$

and estimate each separately.

Caveats \& remedies
Remedy 2: Adaptive change-of-measure. Main problem: rare event can be reached through path that is 'far away' from most-likely path, leading to large likelihood ratio. Can be avoided by updating the change-of-measure during simulation run, depending on current position.

Caveats \& remedies
Remedy 3: Random change-of-measure. In this approach, one flips a coin, and the outcome decides from which twisted distribution one samples. Assume $p \in(0,1)$; measure \mathbb{Q} : tilt with parameter $\theta\left(a_{+}\right)>0\left(\theta\left(a_{-}\right)<0\right)$ with probability $p(1-p$, respectively $)$. Likelihood equals

$$
L=\left(p e^{\theta\left(a_{+}\right) S_{n}} \hat{F}\left(\theta\left(a_{+}\right)\right)^{n}+(1-p) e^{\theta\left(a_{-}\right) S_{n}} \hat{F}\left(\theta\left(a_{-}\right)\right)^{n}\right)^{-1}
$$

Caveats \& remedies

Then $\mathbb{E}_{\mathbb{Q}}\left(L^{2} I\right)$ is smaller than

$$
\begin{aligned}
& \mathbb{E}_{\mathbb{Q}}\left(\left(\frac{1\left\{S_{n} \geqslant n a_{+}\right\}}{p e^{\theta\left(a_{+}\right) S_{n}} \hat{F}\left(\theta\left(a_{+}\right)\right)}\right)^{2}+\right. \\
& \\
& \left.\quad\left(\frac{1\left\{S_{n} \leqslant n a_{-}\right\}}{(1-p) e^{\theta\left(a_{-}\right) S_{n}} \hat{F}\left(\theta\left(a_{-}\right)\right)}\right)^{2}\right) \\
& \leqslant \frac{1}{p^{2}} e^{-2 n l\left(a_{+}\right)}+\frac{1}{(1-p)^{2}} e^{-2 n l\left(a_{-}\right)}
\end{aligned}
$$

which has decay rate $-2 I\left(a_{+}\right)$. Hence procedure is logarithmically efficient.

EPILOGUE

EPILOGUE

- We have treated a series of techniques to be used in discrete-event simulations;

EPILOGUE

- We have treated a series of techniques to be used in discrete-event simulations;
- We have described how to statistically assess simulation output;

EPILOGUE

- We have treated a series of techniques to be used in discrete-event simulations;
- We have described how to statistically assess simulation output;
- We have treated a number of relevant (and more advanced) topics, such as derivative estimation and rare-event simulation;

EPILOGUE

- We have treated a series of techniques to be used in discrete-event simulations;
- We have described how to statistically assess simulation output;
- We have treated a number of relevant (and more advanced) topics, such as derivative estimation and rare-event simulation;
- ... and we wish you all the best in preparing the exam!

