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Chapter VI
Rare-Event Simulation



Rare-Event Simulation

In rare-event simulation, we consider the problem of estimating a
rare event A. I.e., think of z := P (A) as being in the order of 10−3

or less.

Q: How to estimate these probabilities efficiently?

A: Naive thought: just do a crude Monte Carlo simulation using
Z = 1{A}, and let it last very long?

A: But we have seen this may take prohibitively long.
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Rare-Event Simulation

As we have seen, number of runs required is roughly

R =
100 · 1.962z(1− z)

z2
.

This number increases like z−1 towards ∞ as z ↓ 0.

This is why we look at importance sampling.
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Rare-Event Simulation

Formal setup (short recap):

I Let A(x) be a family of rare events.

I z(x) := P (A(x))→ 0 as x →∞
I Let Z (x) be an unbiased estimator for z(x): E [Z (x)] = z(x).

I An algorithm is defined as a family Z (x) of such estimators.

Q: find algorithm s such that the required R does not explode.
Different flavors: bounded relative error, logarithmic efficiency, ...
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Two generic examples

Let Sn be defined as
∑n

i=1 Xi for i.i.d. Xi .

Example 1: partial sums. We wish to estimate

πn := P
(
Sn
n
> a

)
for n large and a > EX1.

Example 2: hitting probabilities. We wish to estimate

α(B) := P(∃n ∈ N : Sn ≥ B),

for B large and EX1 < 0.
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Two generic examples

These examples were dealt with by Jan-Pieter last week.

As they are the most important examples, I’ll say a bit more about
them, and explain at an intuitive level why exponential twisting
works so nicely.

(It can be seen as my personal view on Section VI.6.)
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Standard example 1: partial sums

Consider, with Sn :=
∑n

i=1 Xi , the probability
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This probability tends to 0 by virtue of the law of large numbers.
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Standard example 1: partial sums

Bahadur & Rao:

Assume moment generating function F̂ (θ) := EeθX <∞ for some
θ > 0 (∼ light tails!)

Define Legendre transform

I (a) = sup
θ

(θa− log F̂ (θ)).

Then

πn

/(
Ca√
n
e−nI (a)

)
= P

(
Sn
n
> a

)/(
Ca√
n
e−nI (a)

)
→ 1

(if X non-lattice; if X lattice similar formula applies).
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Standard example 1: partial sums

This formula only holds for n→∞, so there is still a need to
estimate πn!

How can that be efficiently done?

Naive simulation: as we have seen, # runs ∼ 400/πn, that is,
grows exponentially in n...
Idea: mimic conditional distribution.



Intermezzo: conditional distribution

Of course, want would like to pick Q such that variance of new
estimator is minimal. Say p is rare-event probability we wish to
estimate.

Proposal: let Q coincide with the distribution conditional on the
event A:

Q(ω) = P(ω |ω ∈ A) =
P(ω)

p

if ω ∈ A and 0 else.
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Intermezzo: conditional distribution

Then,

VarQ(LI ) = EQ(L2I )− p2 =

∫
ω∈A

L2dQ(ω)− p2.

But ∫
ω∈A

L2dQ(ω) =

∫
ω∈A

p2
dP(ω)

p
= p2,

so that VarQ(LI ) = 0.
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So we have found a zero-variance estimator!!

Drawback: it requires knowledge of p, and p is unknown...

But we could try to mimic the conditional distribution!
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Standard example 1: partial sums

Consider distribution of some Xi , and condition on Sn ≥ na:

g(x) := P(Xi ∈ [x , x + dx) | Sn ≥ na) =
f (x)P(Sn−1 ≥ na− x)

P(Sn ≥ na)
,

with f (x) density of Xi under P.

Bahadur-Rao:

P(Sn ≥ na) ∼ Ca√
n
e−nI (a),

whereas

P(Sn−1 ≥ na− x) ∼ Ca√
n

exp

(
−(n − 1) · I

(
na− x

n − 1

))
.

(Use that
√
n ∼
√
n − 1.)
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Standard example 1: partial sums

Let us consider, for n→∞,

exp

(
−(n − 1) · I

(
na− x

n − 1

))
.

Well, it equals

exp

(
−(n − 1) · I

(
(n − 1)a + a− x

n − 1

))
≈ −(n−1)I (a)−(a−x)I ′(a).

As a consequence,

g(x) =
f (x)P(Sn−1 ≥ na− x)

P(Sn ≥ na)
≈ f (x) · exp(I (a) + (x − a)I ′(a)).
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Standard example 1: partial sums

Now we verify that

g(x) =
f (x)P(Sn−1 ≥ na− x)

P(Sn ≥ na)
≈ f (x) · exp(I (a) + (x − a)I ′(a))

is a genuine density.

To this end, we need some basic convex analysis.



Standard example 1: partial sums

Now we verify that f (x) · exp(I (a) + (x − a)I ′(a)) is a genuine
density.

Define by θ(a) the optimizer in the definition of I (a):

I (a) = sup
θ

(θa− log F̂ (θ)) = θ(a)a− log F̂ (θ(a)).

Hence θ(a) satisfies

a =
F̂ ′(θ(a))

F̂ (θ(a))
.

This entails that

I ′(a) = θ(a) + θ′(a)

(
a− F̂ ′(θ(a))

F̂ (θ(a))

)
= θ(a).



Standard example 1: partial sums

We conclude that we have to consider

f (x) · exp(I (a) + (x − a)θ(a)).

Notice that this expression is non-negative, and in addition∫
f (x) · exp(I (a) + (x − a)θ(a))dx

= exp(I (a)− θ(a)a) ·
∫

eθ(a)x f (x)dx

= exp(I (a)− θ(a)a)F̂ (θ(a)) = e I (a)−I (a) =

1.

Hence

f (x) · exp(I (a) + (x − a)θ(a)) = f (x)
eθ(a)x

F̂ (θ(a))

is a density.
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Standard example 1: partial sums

What did we do so far?

We determined a proxy for the distribution of the increments,
conditional on Sn ≥ na.

Now we analyze the performance of the resulting estimator.
Recall that under the original measure

Var(I ) = πn(1− πn) ≈ πn ≈ (Ca/
√
n) · e−nI (a).
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Standard example 1: partial sums

Under the original measure

Var(I ) = πn(1− πn) ≈ πn ≈ (Ca/
√
n) · e−nI (a).

Under the new measure,

VarQ(LI ) = EQ(L2I )− π2n.

So we have to analyze EQ(L2I ) for large n.

Observe:

L =
n∏

i=1

f (Xi )

g(Xi )
=

n∏
i=1

F̂ (θ(a))

eθ(a)Xi
= (F̂ (θ(a)))n · e−θ(a)Sn .
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If I = 1 (that is, Sn ≥ na),

L = (F̂ (θ(a)))n · e−θ(a)Sn ≤ (F̂ (θ(a)))n · e−θ(a)a = e−2nI (a).

In other words,

VarQ(LI ) = EQ(L2I )− π2n ≤ EQ(L2I ) ≤ e−2nI (a).

Recall that under P we had

Var(I ) = πn(1− πn) ≈ πn ≈ (Ca/
√
n) · e−nI (a).

=⇒ Substantial variance reduction!
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As an aside: more refined analysis is possible:

VarQ(LI ) ∼ C̃a√
n
e−2nI (a).

Straightforward computation: number of runs R required grows
roughly proportional to

√
n (rather than 1/πn, that is proportional

to
√
nenI (a)).

=⇒ Procedure is logarithmically efficient
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Standard example II: hitting probabilities

Focus now on
α(B) := P(∃n ∈ N : Sn ≥ B),

where it is assumed that EX1 < 0.

Again light-tailed regime, that is, F̂ (θ) = EeθX = 1 has a positive
solution, say θ?.



Standard example II: hitting probabilities

Again the recipe is: mimic distribution random walk, conditional
on the rare event.

Cramér-Lundberg: α(B) ∼ Ce−θ
?B .

Consider distribution of some Xi , and condition on
{∃n ∈ N : Sn ≥ B}: informally,

g(x) := P(Xi ∈ [x , x + dx) | ∃n ∈ N : Sn ≥ B) =
f (x)α(B − x)

α(B)
,

with f (x) density of Xi under P.

With Cramér-Lundberg:

g(x) ≈ f (x) · eθ?x .

This is a density as θ? solves F̂ (θ?) = 1.
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Standard example II: hitting probabilities

It can be proven that EQX1 > 0, so event is not rare anymore.
Hence, the hitting time T is finite a.s., so I = 1 a.s.

Also,
L = e−θ

?ST .

Thus

α(B) = EQ(L) = e−θ
?BEQe

θ?(B−ST ) ≈ Ce−θ
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This entails

α(B) = EQ(L) = e−θ
?BEQe

θ?(B−ST ) ≈ Ce−θ
?B .

In addition
VarQ(L) ∼ C̃ e−2θ

?B ,

so that number of runs needed remains bounded when B grows!
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Markov modulation

(Cf. Section VI.7.)

Idea: often Xi are affected by external (background) process. Let
background process be a discrete-time Markov chain on {1, . . . , d}.

For instance, Xi is distributed as a sample from the random
variable Yj (with density fj(·)) when Ji = j .

Transition probabilities of Markov chain J are given by pij ;
equilibrium probabilities are πi .
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Markov modulation

We again focus on

α(B) := P(∃n ∈ N : Sn ≥ B),

where it is assumed that

d∑
j=1

πjEYj < 0.



Markov modulation

Idea: solve eigensystem

xj = EeθYj

d∑
k=1

pjkxk .

Perron-Frobenius: there is a positive eigenvalue such that x is
positive componentwise and θ > 0.
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Perron-Frobenius: there is a positive eigenvalue such that x is
positive componentwise and θ > 0.



Markov modulation

With (x , θ) solving the eigensystem

xj = EeθYj

d∑
k=1

pjkxk ,

clearly

qjk = pjk
xk
xj
EeθYj

form a transition probability matrix.

In addition, define the twisted increments by

gj(y) = fj(y)
eθy

E eθYj
.
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Markov modulation

Observe

α(B) := P(∃n ∈ N : Sn ≥ B) = P(TB <∞),

with TB the first hitting time of [B,∞).

Can we evaluate likelihood ratio?

Observe that TB <∞ with probability 1 under Q.
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Markov modulation

By definition,

L =

TB∏
i=1

(
pJiJi+1

qJiJi+1

) (
fJi (Xi )

gJi (Xi )

)
.

This can be simplified to

L =

TB∏
i=1

(
xJi
xJi+1

1

E eθYJi

)(
E eθYJi

eθYJi

)
,

which equals
xJ0

xJTB+1

e−θSTB .
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Markov modulation

From
L =

xJ0
xJTB+1

e−θSTB ,

we conclude that, for a finite contant C ,

α(B) = EQ(LI ) = EQ(L) ≤ Ce−θSTB .

Actually in can be proven that, as B →∞,

α(B) ∼ C̃ e−θSTB ,

and that the procedure has bounded relative error.



Caveats

Slight variations to the ‘leading examples’ model may already
cause serious problems... For a− < µ := EX1 < a+,

πn := P
(
Sn
n
6∈ (a−, a+)

)
.

Assume w.l.o.g. I (a+) < I (a−).

This intuitively means that most
likely point in set is a+.

Define, as before,

θ(a) := arg sup
θ

(θa− log F̂ (θ)).
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Caveats

Näıvely, one would use

g(x) = f (x)
eθ(a+)x

F̂ (θ(a+))
.

To check how this change of measure performs, we analyze

EQ(L2I ) =
(
EQ(e−2θ(a+)Sn1{Sn > na+})

+ EQ(e−2θ(a+)Sn1{Sn 6 na−})
)
× (F̂ (θ(a+)))2n.



Caveats

Consider only exponential terms (in n).

First term:

lim
n→∞

1

n
log
(
EQ(e−2θ(a+)Sn1{Sn > na+})(F̂ (θ(a+)))2n

)
= −2I (a+).

Second term is more difficult. Observe: undershoot below level
na− will be modest. Hence

lim
n→∞

1

n
log
(
EQ(e−2θ(a+)Sn1{Sn 6 na−})× (F̂ (θ(a+)))2n

)
= −2θ(a+)a− + lim

n→∞

1

n
logQ

(
Sn
n

6 a−

)
+ 2 log F̂ (θ(a+)).
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Caveats

To find decay rate of Q(Sn/n 6 a−), let J(·) be the
Legendre-Fenchel transform under Q, that is

J(a−) = sup
θ

[
θa− − logEQe

θX1

]
= sup

θ

[
θa− − log φ(θ + θ(a+)) + log F̂ (θ(a+))

]
= −θ(a+)a− + sup

θ

[
(θ + θ(a+))a− − log F̂ (θ + θ(a+))

]
+ log F̂ (θ(a+))

= −θ(a+)a− + I (a−) + log F̂ (θ(a+)).

We obtain that

lim
n→∞

1

n
log
(
EQ(e−2θ(a+)Sn1{Sn 6 na−})× (F̂ (θ(a+)))2n

)
= −θ(a+)a− − I (a−) + log F̂ (θ(a+)).



Caveats

Hence logarithmic efficiency if

−2I (a+) > −θ(a+)a− − I (a−) + log F̂ (θ(a+)),

or
I (a+) + θ(a+)a+ 6 I (a−) + θ(a+)a−.

This condition is not always met!



Caveats

Example. Let the Xi be i.i.d. samples from an exponential
distribution with mean 1. We take a+ = 2 and a− < 1. We have
that θ(a+) = 1− 1/a+ and I (a+) = a+ − 1− log a+. The
inequality to be verified is therefore

3− log 2 6
3

2
a− − log a−, or log a− 6

3

2
a− − 3 + log 2.

Numerical search: condition is met when 0 < a− < 0.119.



Caveats & remedies

This type of problems arises often when ‘overflow set’ has
‘unfavorable’ shape.

Remedy 1: Split rare event of interest in disjoint parts:

α(n) = P(X̄n 6∈ (a−, a+)) = P
(
Sn
n

> a+

)
+ P

(
Sn
n

6 a−

)
,

and estimate each separately.



Caveats & remedies

Remedy 2: Adaptive change-of-measure. Main problem: rare event
can be reached through path that is ‘far away’ from most-likely
path, leading to large likelihood ratio. Can be avoided by updating
the change-of-measure during simulation run, depending on
current position.



Caveats & remedies

Remedy 3: Random change-of-measure. In this approach, one flips
a coin, and the outcome decides from which twisted distribution
one samples. Assume p ∈ (0, 1); measure Q: tilt with parameter
θ(a+) > 0 (θ(a−) < 0) with probability p (1− p, respectively).
Likelihood equals

L =
(
peθ(a+)Sn F̂ (θ(a+))n + (1− p)eθ(a−)Sn F̂ (θ(a−))n

)−1
.



Caveats & remedies

Then EQ(L2I ) is smaller than

EQ

( 1{Sn > na+}
peθ(a+)Sn F̂ (θ(a+))

)2

+

(
1{Sn 6 na−}

(1− p)eθ(a−)Sn F̂ (θ(a−))

)2


6
1

p2
e−2nI (a+) +

1

(1− p)2
e−2nI (a−),

which has decay rate −2I (a+). Hence procedure is logarithmically
efficient.



EPILOGUE

◦ We have treated a series of techniques to be used in
discrete-event simulations;

◦ We have described how to statistically assess simulation
output;

◦ We have treated a number of relevant (and more advanced)
topics, such as derivative estimation and rare-event simulation;

◦ ... and we wish you all the best in preparing the exam!
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