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1
INTRODUCTION

1.1 Motivation

In today’s society, queueing phenomena arise in many situations. In service facilities, it
frequently occurs that requested services cannot be provided immediately to users. This
results, for example, in waiting lines at counters, elevators and traffic lights, or queues
in a less physical sense in call centers or in healthcare. Less obvious examples of such
congestion phenomena arise in communication systems and computer networks, where
data has to be transported from one place to another. One can think of the internet,
where continuous capacity improvements have to be made in order to keep up with the
fast growing demand. Although delays in transportation of information in this context
occur on a completely different time scale (e.g. in the order of milliseconds), they are not
any less serious for the users. The existence of all these undesirable congestion effects has
led to the development of a mathematical discipline that studies queueing phenomena so
as to answer optimisation questions such as how to allocate resources in order to avoid
queueing as much as possible. This thesis is placed in the context of this discipline, which
goes by the name of queueing theory.

At an abstract level, the queueing models that arise from the study of congestion
phenomena consist of queues, at which customers arrive. The customers wait in the queue
until they can receive the service that they require from a server. Queueing models are
typically of a stochastic nature. Namely, the durations of the interarrival times and service
times of the successive customers are not exactly specified, but they are assumed to have
some (known) probability distribution. This reflects the fact that in most applications, it
is uncertain when demand arises for any type of service or how large that demand will
be.

Since the first paper on queueing theory in 1909, in which A. K. Erlang performed a
systematic study of the dimensioning of telephone switches [94], there has been a vast
body of literature that is concerned with a wide array of queueing models. Perhaps the
best-studied and most elementary queueing model consists of customers arriving at a
single queue that is served by a single server at a constant service speed. This single-server
queue has been studied very extensively (see e.g. [67]). The results obtained for this
model so far have contributed to a better understanding of queueing systems in general.
The analysis of queueing models may, however, be challenging. This is illustrated by
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the fact that under general conditions, the waiting time of a customer in a single-queue
single-server model is not understood completely. On top of that, in many applications,
even the assumptions of a single queue or a single server are not valid.

An example of such an application can be found in the area of manufacturing systems.
In the process from raw material to an end product, a part in a manufacturing plant may
be stored in intermediate buffers multiple times, waiting for the next phase of processing.
Each of these buffers contains parts that need to be processed by a specific work station,
which is typically specialised in providing one such phase of the production process. In
manufacturing systems, one is often interested in the total time it takes for raw materi-
als to be converted into end products. Such performance measures may be analysed by
modelling the production process as a queueing network. Queueing networks are mod-
els that typically consist of multiple queues, each of which are served by a number of
servers. After spending time in a queue and undergoing a subsequent phase of service, a
customer does not necessarily leave the system, but may be routed to any other queue in
the network, or even rerouted to the same queue, in order to receive yet another phase of
service. The first result on queueing networks was presented by [130] in 1957. This work
spurred a significant interest in these networks, leading to many other seminal results,
such as those found in [30, 106, 137, 156, 221]. For an overview of the literature on
queueing networks, see e.g. [48, 60, 138].

This dissertation is concerned with the mathematical study of a particular type of
queueing networks. Recent applications in engineering, business and the public sector
led to systems with complex, often layered, service architectures, where there exist ser-
vice providers that, at times, may require service themselves from other servers. An ap-
pealing example of this architecture is formed by peer-to-peer networks, where users do
not only provide service to other users by uploading their files, but also request service
by downloading files from other users. One may also again think of a manufacturing
setting, where machines processing products in parallel are served by an operator. Yet
another example is given by large call centers, of which the organisational structure is
often multi-layered in the sense that an agent handling external calls may have to con-
sult a more senior agent in case of a complicated query (cf. [148]). We also mention the
application of container transshipment in terminals, where (possibly automated) vehicles
transport containers from a ship to a terminal or vice versa. Upon reaching either destina-
tion, a vehicle needs to wait for a crane to unload the container it carries or to load a new
container onto it in order to resume service (cf. [39, 79, 86]). Other areas where sim-
ilar layered architectures exist include healthcare [266] and, as we will see in the sequel,
many applications in computer science.

The need for the analysis of these important layered structures leads to the formulation
of layered queueing networks. These queueing networks consist of multiple layers, where
the servers of any layer act as customers of the layer directly below. Thus, in layered
queueing networks, the entities do not necessarily act strictly as customers or servers, but
they may assume both roles simultaneously or consecutively. Mathematical analysis of
these networks is challenging, since the interaction between the layers may be significant
and thus must be taken into account. For example, the performance of lower-layer servers
may heavily affect the congestion levels incurred by higher-layer customers.

In this thesis, we perform an in-depth study of three such layered queueing networks,
where the interactions between the layers cannot be ignored. We develop several meth-
ods for the performance analysis and optimisation of each of these models, which take
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their interactions into account. With these methods, we aim to gain insight into the im-
pact of the layer interactions on the performance and control of the queueing networks
considered.

The remainder of this chapter is organised as follows. In Section 1.2, we give an
account of the current body of literature on the performance modelling and analysis of
layered queueing networks. Section 1.3 subsequently presents a detailed model descrip-
tion of the three layered queueing networks that we consider in this dissertation. Finally,
we outline the contributions of the thesis in Section 1.4, and we give an overview of how
the subsequent chapters of this thesis are structured.

1.2 Literature review of layered queueing networks

Despite the ubiquity of queueing phenomena with a layered structure in many discip-
lines, previous studies of layered queueing networks are almost exclusively restricted to
the computer science literature, e.g. for the study of decentralised systems with nested
resource possession or peer-to-peer networks. In these studies, several approximate and
heuristic methods are derived to analyse the dynamics of these applications. The in-
depth mathematical analysis of layered queueing models in general is, however, almost
completely an uncultivated area of research, except for a few initial studies that analyse
models which are very rudimentary when compared to the layered queueing phenomena
occurring in practice. Due to the layered character, however, a detailed analysis of these
stylised models already turns out to be very challenging. In Section 1.2.1, we give a brief
overview of the work performed in the context of computer systems and software engin-
eering, where immensely complex layered structures are analysed by means of heuristic
methods. Subsequently, Section 1.2.2 discusses the initial queueing-theoretical studies
of stylised models, which are not necessarily tailored to solving strictly computer science
related problems.

1.2.1 Computer science literature

We now give an overview of the computer science literature on layered queueing net-
works. The list of references presented is by no means exhaustive; it rather serves the
purpose of indicating the continuing interest in the modelling of layered queueing net-
works in computer science. In the following, we do not present the references in a chro-
nological order, but we group them together in several categories. This taxonomy allows
for a better overview of the variety of the examined subjects.

1.2.1.1 Development of the framework of layered queueing networks and their
analysis

Many studies in the context of computer networks and software engineering concern
themselves with systems that have a layered architecture. For example, in the design of
computer networks, an important question is how functionalities should be allocated to
different layers so as to meet the criteria set by the users in terms of efficiency, robust-
ness and other matters [61]. A possible answer to this question is given by the Open
Systems Interconnection (OSI) model [235, Section 1.4.1], but many such allocations
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are possible. To aid in this kind of decision making, an extensive body of literature ex-
ists that centers around the performance modelling and analysis of decentralised systems
with nested resource possession. These systems are modelled in the framework of layered
queueing networks, where entities that provide service in one layer can request service
from servers in lower layers.

In the computer science literature, layered queueing networks were first introduced as
active-server models in [278, 280], which include the key property that a server may pause
during its service for a nested request to another server in a lower layer. These models
have been extended in [279] to stochastic rendezvous networks that allow for different
types of service, where also an approximate solution method for this type of networks
is obtained based on the Bard-Schweitzer approximate version [29, 219] of the mean
value analysis algorithm [207] known from theory on regular queueing networks. A
similar network is studied in [214], where the method of layers is proposed to analyse the
performance of the layered system. This method is based on a tailored version of another
approximate algorithm based on mean value analysis, namely the lineariser algorithm
[58]. The method of layers is a development from the lazy-boss algorithm [211], of which
the name is based on the comparison of a server waiting for a lower-layer service with a
boss waiting for his employee to finish his own work before continuing to do something
else.

Since this initial flow of papers, many extensions to the framework of layered queueing
networks have been considered. We mention the extension of deferred service, where a
lower-layer server may have to complete a second part of service after ending the service
from a customer’s point of view [101], and that of fair-share queueing, where an effort
is made to incorporate customer fairness into the layered queueing framework [160].
Incorporation of performance degradation into the framework as a result of ‘aging’ of
software and hardware components is considered in [75]. Another extension that has
been studied is that of quorum patterns, where a server, after sending out N requests to a
lower layer, already proceeds operating after J < N of these requests are completed [15].
Finally, inclusion of management components in the model for the automatic detection of
software and hardware failures and subsequent reconfiguration has been a well-studied
topic [73, 74, 76, 77]. In an effort to incorporate most of the work mentioned above
in a single model, [100] attempts to unify many model variations and extensions into
one general framework, and presents a general solution technique adapted to it, which is
again based on mean value analysis.

Apart from the modelling point of view, much attention has also been paid to the
refinement of the initial performance prediction methods found in the seminal work of
[214, 279]. For example, in [16, 17], it is explained how the exploitation of any sym-
metric properties in the system can lead to an increase in computational efficiency. The
enrichment of techniques based on mean value analysis with (non-)linear programming
methods for performance prediction purposes has been considered in [159, 165, 166].
Several other computational techniques, which are not based on mean value analysis, are
covered in [204], where an alternative approximation algorithm is derived by drawing a
parallel with queueing networks with blocking (see e.g. [28]), and in [122, 241, 242],
where stochastic process algebras are used to analyse the performance of the system.
Furthermore, the so-called weighted-average method derived in [151] uses simulation
techniques for performance prediction purposes. The computation of tail probabilities
of the complete distribution of the response times rather than just their means has been
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studied in [291, 292]. Other performance prediction methods have been developed in
[142, 152, 176]. Although perhaps diverse in character, all of these computational meth-
ods have in common that they are only approximate and heuristic in nature. Finally,
we mention the studies [24, 25, 26, 27], where the performance prediction as a result
of modelling systems as a layered queueing network is compared to prediction methods
based on the analysis of historical data.

1.2.1.2 Development of a layered queueing model

In the design of a software system, it is commonly believed that performance analysis
should be integrated into the development process as early as possible as opposed to
the more frequent so-called fix-it-later approach that postpones performance concerns
until the system is completely implemented [226]. The reason is that a failure to detect
performance pitfalls in a system in its earliest state of development may turn out very
costly. Therefore, a significant amount of attention has been paid to the problem of how
to build performance models based on the layered queueing network formalism from a
description of the system’s architecture. For example, [197] proposes a formal approach
for this translation using graph transformations. An automated approach towards the
construction of performance models of software systems based on the traces of behaviour
of the systems, prototypes or executable models is proposed in [128].

In the design of a software system, the first definition of the system may be given in a
Use Case Maps (UCM) notation (see e.g. [57]). Particular attention has thus been given
to the important problem of transforming UCM scenario models into layered queueing
models [192]. The steps needed to achieve such a transformation are given in [191], and
[193, 199] describe tools for the automation of this process. Another important stand-
ard in the specification of software systems, including their structure and design, is the
Unified Modelling Language (UML) [216]. The transformation from UML specifications
to layered queueing networks is a topic first studied in [134], and since then, it has been
considered extensively (see e.g. [71, 198, 284]). Several approaches for the translation
from UML have been proposed based on a graph grammar-based method [112, 195] and
the so-called XSLT language [89, 111]. Transformation approaches specifically tailored
to software product line models, models with non-functional security aspects and aspect-
oriented models are studied in [236], [200, 281] and [196], respectively.

Apart from UCM and UML, model transformations from Palladio component models
and the so-called Specification and Description Language have been studied in [150] and
[92], respectively. In [90, 91], an attempt is made to combine different standards and
proposed frameworks into one automated unified tool.

Following the problem of how to construct a layered queueing network from a design,
the issue arises how to adapt the design and search the design space for the best per-
formance possible without excessive computational efforts. This issue is discussed in
[174, 178, 210].

1.2.1.3 Estimating model parameters

Next to the modelling of a design as a layered queueing network and the subsequent
tuning, another important problem, which needs to be addressed to secure a successful
performance evaluation of the system at any point of the software development process,
constitutes the correct measurement of model parameters, such as the resource demands
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of the servers in higher layers. In [215], two methods are discussed for the estimation
of the resource demands in application services. In the first method, resource consump-
tion is measured directly for each service request to each lower-layer service. The second
methods entails the performance measurement for the service process as a whole (in-
cluding multiple service requests to lower layers) and the use of statistical techniques
afterwards to estimate the resource demands of the services individually. Both methods
are compared and appear to show a clear trade-off between accuracy and feasibility. After
this early study, many regression-based methods for predicting resource demand in multi-
layered systems have been discussed, such as those in [213] and in [290]. Alternatively,
it is shown in [282, 283, 293] how Kalman filtering can be used to track changes in the
parameters of the layered queueing model. Finally, we mention [186], where an online
method for the dynamic estimation of the resource demands is devised that is specifically
tailored to implementation in web servers, which tend to be of a very large scale.

1.2.1.4 Applications

A large number of studies has been devoted to the modelling of a specific application as
a layered queueing network. For example, [83, 258] successfully analyse the client re-
sponse times in web servers and derive several sensitivity properties (e.g. with respect to
the number of available servers or the network latency). Another example is that of mid-
dleware, which is often used in distributed systems to provide interoperability between
the various components of the system. In [168, 194, 262], middleware systems are ana-
lysed at different levels of abstraction. Furthermore, there are several studies that concern
themselves with the advantages and the shortcomings of the layered queueing framework
for the development of enterprise resource planning software [107, 212, 237] and enter-
prise application software in general [169, 240, 246, 285, 286]. Similarly, [72, 243]
discuss the modelling of service-oriented architectures and enterprise resource planning
software, respectively, as layered queueing networks. Finally, to underline the ubiquity of
systems with a layered structure in computer science, we mention that the framework of
layered queueing networks has been applied for the performance evaluation and optim-
isation of database management systems [203], e-commerce applications [164], physic-
ally mobile systems with highly dynamic user mobility [81], telecommunication software
systems [224] and virtual machine technology [133].

1.2.1.5 Miscellaneous

So far, we have given an overview of the studies performed in the computer science lit-
erature in the framework of layered queueing networks, and their application to systems
with a clear layered structure. However, the performance analysis of layered queueing
networks also has less apparent applications than those mentioned previously. As an ex-
ample, we mention peer-to-peer networks. These decentralised networks are used for file
sharing between users and are based on the principle that users downloading a file from
the network themselves contribute their upload bandwidth to allow others to download
pieces of the file they already downloaded.

Although peer-to-peer networks clearly consist of entities that act as both customer
and server by downloading and uploading files concurrently, they violate the assumption
that resource possession in the network is nested. In other words, there is no way to
divide these networks in layers such that a server from one layer only requests service
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from a layer directly below. Despite this violation, however, [222] shows that peer-to-
peer networks can still be modelled in the layered paradigm. Peer-to-peer networks have
spurred a lot of interest, resulting in a separate body of literature concentrating on the
performance analysis of peer-to-peer networks. We refer to [114, 294] and references
therein for an overview of this literature and for a study of the stability of such a system. In
the literature on peer-to-peer networks, many complicated questions are addressed, such
as how the files should be divided into pieces so as to expedite the dissemination of files
[217] and how the dynamics of the system change when a mechanism is implemented
that allocates download bandwidth to users proportional to their upload speed [187].
However, also here, an exact analysis of the download times for the users is still lacking.

1.2.2 Queueing literature

As mentioned before, there hardly exist any in-depth queueing-theoretical studies where
servers of one layer can act as customers in another layer. This is perhaps because even
the simplest layered models do not always allow for simple solutions. Interactions and
dependencies between layers, even when they are a consequence of seemingly simple
model features, often complicate the analysis considerably, possibly up to a point where an
exact analysis is out of reach. We mention a few exceptions found in the literature, where
simplified layered models are analysed in detail. Even though the level of simplification
with respect to the layered architectures found in practice is significant, this does not
directly imply that the analysis in these studies is trivial.

An example of a ‘simple’ model is the following two-layered model where the first
layer consists of a single queue with N servers. The servers of this queue act as customers
in the second layer in the sense that, in turn, these servers receive service resources from
a single second-layer server in a processor-sharing fashion. This model is equivalent to
the so-called limited processor-sharing queue, i.e. a queue of which the first N customers
are each served concurrently at a service rate of 1

min{k,N} when there are k customers in
the system and the remaining max{N − k, 0} customers receive no service at all. Even for
this model, an exact analysis is far from trivial, judging from the fact that the literature
on the limited processor-sharing queue focuses on approximations [22, 287, 288, 289],
stochastic ordering results [183] and asymptotic results [179].

Several generalisations of this layered model have been studied. An example of this
is the case where the first layer does not consist of a single multi-server queue, but two
multi-server queues in a tandem configuration. The servers of both queues still act as
customers in the second layer, where they receive service in a processor-sharing fashion.
In [254], the stability and the throughput of this extended model is studied, whereas
[255] investigates the static optimisation problem of how to divide the first-layer servers
over the queues so as to minimise the expected sojourn time of first-layer customers.
For the case of two first-layer queues in tandem or in parallel, necessary and sufficient
conditions for a product-form solution to exist are derived in [256].

This model has been generalised further to allow for an arbitrary number of first-layer
queues. For a model in which the first-layer queues are placed in tandem, [250] considers
the problem of how to assign the first-layer servers statically to the first-layer queues so
as to maximise the throughput of the system. A similar, but dynamic assignment problem
with the goal of minimising the expected sojourn time is studied in [253]. When we drop
any assumption on the configuration of the first-layer queues, so that the queues do not



8 INTRODUCTION

necessarily have to be placed in tandem or in parallel, stability results on the resulting
model can be found in [132]. This paper not only considers the case where the first-
layer servers (i.e. the second-layer customers) are assigned an equal rate of service from
the server in the second layer, but these service rates may differ mutually depending on
the numbers of first-layer customers waiting in each individual first-layer queue. When
restricting to processor-sharing service in the second layer, it is shown in [268] that a
separation of time scales occurs in heavy traffic. That is, the first layer and the second
layer work on different time scales when the system is under critical load and each layer
views operations at the other layer as if they were constant.

The final layered network encountered in the queueing literature that we discuss again
seems strikingly simple, but is in fact analytically far from trivial to analyse. As before,
this network consists of two layers. Each of these layers is comprised of an M/M/·/· type
queue. The distinguishing feature of this model is that the customers present in the first
queue act as servers of the second queue. In [189], probability generating functions for
the steady-state queue length distributions are derived for two variants of this network. In
both variants, the first layer entails a regular M/M/1 queue. The second layer of the first
variant also constitutes a single-server queue. Its service rate is, however, not constant,
but scales linearly with the number of customers present in the queue of the first layer
(i.e. the first-layer customers work together on serving one second-layer customer). In
the second variant of the model, the queue of the second layer is an M/M/N type queue
where the number of servers is not constant, but in fact equals the varying number of cus-
tomers in the first layer (i.e. the first-layer customers each serve a different second-layer
customer). In a follow-up project, the authors of this work even increase the complexity
of their model by adding the feature that the customers of the second queue now also act
as servers of the first queue (cf. [190]). This creates an interaction between the layers
in two directions, which complicates the analysis even further. As a result, the authors
resort to the usage of matrix-analytic methods (see e.g. [180]) to compute performance
measures such as the mean queue lengths.

1.3 Model descriptions

This dissertation consists of three parts, each of which provides a detailed study of a
particular layered queueing network. We refer to these layered queue networks as the ex-
tended machine repair model, the Markovian polling model and the carousel storage model.
In this section, we provide a detailed description for each of these models.

1.3.1 The extended machine repair model

The first layered queueing network that we consider in this thesis constitutes an extension
of the classical machine repair model. This model, also known as the computer-terminal
model (cf. [33]), the time-sharing system (cf. [143, Section 4.11]) or the machine-inter-
ference problem, is well studied in the literature. In the machine repair model, there is
a number of machines working in parallel and one repairman. The machines are work-
ing independently, and as soon as a machine fails, it joins a repair queue in order to be
repaired by the repairman. It is one of the key models to describe problems with a finite
input population. A fairly extensive analysis of the machine repair model can be found
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FIGURE 1.1: The extended machine repair model.

in Takács [232, Chapter 5], and surveys reviewing the extensive literature on this model
can be found in [116, 228].

So far, the effects of the repairman’s performance on the machine’s availability have
been studied extensively, but the question of how the repairman’s performance affects
the backlogs of products to be processed by the machines has hardly been considered.
Motivated by this, we study the queues of products waiting to be processed by the ma-
chines. This naturally leads to the formulation of a two-layered queueing network, as the
machines now have the dual role of both a customer and a server. As in the traditional
model, the machines have a customer role with respect to the repairman, but they now
also have a server role with respect to the products.

The first layer of the resulting layered queueing network contains the queues of prod-
ucts; see Figure 1.1. Each of these queues is served by its own machine. At any point in
time, a machine is subject to breakdowns irrespective of the state of the first-layer queue.
When a machine breaks down, the service of a product in progress is interrupted and
either restarted or resumed once the machine becomes operational again. For ease of
discussion, we often assume that, as opposed to the classical machine repair model, there
are two machines only. As will become evident, the methods that we apply are readily
extended to more machines or repairmen, but certain computations become increasingly
cumbersome.

The second layer consists of a repairman and a repair buffer. If, upon breakdown of
a machine, the repairman is idle, the machine is immediately taken into service. Once
the machine is again operational after the necessary repair time, it starts serving products
once more. However, when the repairman is busy repairing another machine, the machine
waits in the buffer. In that case, only when the repair of the other machine has been
completed, the repair of the current machine starts. The downtime of the machine then
not only consists of the necessary downtime, but also of a waiting time.

This extension of the machine repair model has immediate applications in manufactur-
ing. Therefore, we will throughout refer to the entities in the model as products, machines
and the repairman, respectively. The extended model is, however, also of interest in other
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application areas, such as telecommunication systems. For instance, the extended ma-
chine repair model occurs naturally in the modelling of middleware technology, where
multi-threaded application servers compete for access to shared object code. Access of
threads to the object code is typically handled by a portable object adapter that serialises
the threads trying to access a shared object. During the complete duration of the serial-
isation and execution time, a thread typically remains blocked, and upon finalising the
execution, the thread is deactivated and ready to process pending requests [117]. In this
setting, the application servers and the shared object code are analogous to the machines
and the repairman, respectively, in the machine repair model.

As mentioned above, virtually all studies so far on the machine repair model have only
considered the second layer as depicted in Figure 1.1 in isolation. The only exception is
[269], where the queue length distributions of a queue in the first layer is approximated
by drawing a connection with a single-server vacation queue. The vacation times are
assumed to have their first two moments equal to those of the downtimes of the machines,
but more importantly, the vacation times are assumed to be mutually independent. In
the context of the extended machine repair model, it is thus assumed that there are no
interactions between the two layers or even that there are no correlations between the
queue lengths in the first layer itself.

An important feature of this model is the fact that machines compete for repair facilit-
ies. This introduces interaction between the two layers, with significant positive depend-
encies in the downtimes of the machines as a result. If the downtime of one machine is
very large, its repair is probably taking longer than usual, increasing the likelihood for
the other machine to break down in the meantime. As a result, the queue lengths of the
first-layer queues exhibit correlations of an unknown form. In fact, consecutive down-
times of a machine in isolation are also correlated. Because of the increased likelihood
of the other machine to break down, the next downtime of the one machine is probably
larger too. These correlations cannot be disregarded, as it turns out that they have a con-
siderable impact on the waiting times. Therefore, the interactions between the two layers
cannot be ignored and the approximation derived in [269] can be improved significantly.
The correlations, however, are not well understood, since they are only implicitly defined
through the uptimes and the repair times of the machines.

In our analysis, we explicitly take the interaction between the layers and the correl-
ations between the first-layer queues into account. However, the dependence between
these queues makes exact analysis of the queue length distributions difficult. The amount
of work present in a first-layer queue can in principle be modelled as a reflected Markov
additive process (see [19, Section XI.2] for a definition), but its distribution is not easily
derived from that. Numerical evaluation, e.g. by simulation, may also be challenging.
Especially when the model involves breakdowns and repairs that occur on a larger time
scale than actual product arrivals and services, the computation time needed to achieve
accurate results may be unacceptably long. Additional difficulties arise since we allow the
machines to have mutually different uptime and repair-time distributions. For example,
as observed in [109], the arrival theorem (cf. [156]) cannot be used anymore to derive
the stationary downtime distributions of the machines. Despite these technical complic-
ations, we derive several powerful approximations for the expectations and the complete
distributions of the queue lengths of the first-layer queues. We also study the question of
how to allocate the repairman’s resources optimally so as to minimise these queue lengths
as much as possible.
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1.3.2 The Markovian polling model

In the second part of this thesis, we study a queueing network consisting of multiple
queues attended by a single server as depicted in Figure 1.2. The server visits the queues
in some order to render service to the customers waiting at each of the queues and incurs
stochastic switch-over times when he moves from one queue to another. The order in
which the server visits the queues is governed by a discrete-time Markov chain. As we
will explain below, the discontinuous nature of the availability of a server at a queue
introduces a layered structure in the queueing network.

This type of queueing system is commonly called a polling system. The first studies on
polling systems originate from the late 1950s, when the papers of Mack et al. [171, 172]
concerning a patrolling repairman model appeared. In a broader perspective, polling
models are applicable in situations where several types of users compete for access to a
common resource which is available to only one type of user at a time. As such, they
find their origin in many real-life applications, such as manufacturing environments and
traffic systems. The polling model gained most of its popularity during the 1980s, when
it turned out to be a suitable model for many computer-communication applications and
protocols. For an extensive overview of the literature on polling systems and an overview
of their applications, we refer to surveys such as [43, 158, 233, 263].

Many studies in the polling literature assume that the server visits the queues in a
fixed, cyclic order. However, this might not be a realistic assumption in cases where the
queue to be visited next is determined by an external random environment. Therefore, as
stated above, we are mainly concerned with so-called Markovian polling systems, where
the server visits the queues in an order that is governed by a discrete-time Markov chain.
Thus, the order in which the server visits the queues is not necessarily a fixed order. Also,
when concluding a visit period at a certain queue, it is now possible for the server to
resume service at the same queue after a necessary switch-over period.

It is remarkable that in the wide body of literature, polling systems with Markovian
routing have received much less attention than polling systems with conventional cyclic
routing. The explanation perhaps is that the analysis of Markovian polling systems is gen-
erally considered to be of a much more complex nature than that of cyclic polling models.
More specifically, it is shown in [208] that there is a striking dichotomy in the complexity
of the analysis of polling systems. Polling systems of which the joint queue length process
observed at time points where the server starts a visit (also referred to as polling epochs)
constitutes a multi-type branching process with immigration (see e.g. [21] for a defini-
tion) are more tractable than polling systems which do not satisfy this so-called branching
property. Due to the stochastic nature of the server routing, Markovian polling systems
generally do not satisfy this branching property. Publications that deal with Markovian
polling systems include [54], in which an expression for the expected amount of work in
the system at an arbitrary moment is derived for a few service disciplines. This work is
extended in [271], where it is shown how to derive expressions for the moments of the
(joint) queue lengths for the same service disciplines. Markovian polling systems have
also been studied in conjunction with theory on large deviations [80, 97] and the func-
tional computation method [123, 124]. Furthermore, stochastic decomposition results
for the queue lengths in a general class of polling systems, which covers systems with a
Markovian routing mechanism, are derived in [34]. Quite a few other generalisations of
the Markovian polling system have been studied in a variety of directions. For example,
gated Markovian polling systems with ‘semi-linear’ feedback are considered in [98], [63]
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discusses Markovian polling systems in which customers are blocked whenever there is
already a customer in the queue and systems with retrial customers have been studied
in [155]. Results for a slightly more general form of Markovian routing, where the rout-
ing probabilities may depend on the event whether a queue is empty or not, are derived
in [95, 227]. Observe that the Markovian routing mechanism is very general and covers
many variations of polling models studied in the literature. For instance, the cyclic polling
model falls in this framework. Another example is the random routing discipline, where
after any visit period, the server visits queue j with probability p j irrespective of the queue
the server just visited (cf. [144]).

The generalised way of server routing finds many applications. For instance, polling
models with a Markovian routing mechanism occur naturally in the modelling of cellular
data services. These services implement so-called opportunistic scheduling to profit from
multi-user diversity [125, 261], which is aimed to utilise fading and shadowing of cellular
users within a single cell in order to optimise bandwidth efficiency [110]. The basic idea
of opportunistic scheduling is that a time slot (representing the right for transmission) is
assigned to the user with the highest instantaneous signal-to-noise ratio among all users
in a cell. In this way, access to the medium is randomly assigned to the multitude of users
in a cell.

Another example that we will pay specific attention to can be found in the context
of wireless random-access networks. So-called carrier-sense multiple-access collision-
avoidance algorithms provide a common mechanism for governing the use of such a
shared wireless medium in a distributed fashion. In these algorithms, the various trans-
mitters obey random back-off times between activity periods, during which they sense
the medium to avoid collisions and provide other nodes an opportunity to activate. In
the case of exponentially distributed back-off durations, the alternating use of the me-
dium by the nodes is probabilistically equivalent to Markovian routing in a polling system
(or in particular, random routing). The queues and their customers in the polling model
represent the packet buffers of the nodes and the packets waiting to be transmitted, re-
spectively. Furthermore, the event of the server visiting a certain queue is tantamount to
the event of the corresponding node being active. The relative values of the back-off rates
induce relative priorities among the nodes, and hence a crucial question is how the back-
off rates should be selected in order to minimise the overall average packet delay, which
corresponds to the optimal selection of the routing probabilities in the polling system.

In addition to many other applications that can be found in the field of computer-
communication systems (see e.g. [144]), Markovian polling systems may also be partic-
ularly useful in the modelling of production systems with machines processing multiple
product types. The type of product that a machine should prioritise for processing at a
certain point (equivalently, the queue that should be visited by the server at that point)
may be dependent on the levels of external demand for each product type and is thus
better modelled by a random environment than a round-robin assumption.

Aside from the characterisation as a polling model, the model that we study in the
second part of this dissertation is also naturally characterised as a layered queueing net-
work; see Figure 1.2. This is perhaps best explained in the setting of wireless random-
access networks as given above. The nodes of that network can be interpreted as servers
of the first layer, as they transmit the packets waiting for transmission. At the same time,
they are also customers of the second layer, as they incur a delay before they activate to
execute their transmission tasks. It goes without saying that this dual role of the nodes
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FIGURE 1.2: The Markovian polling model.

introduces significant interaction between the layers. For instance, if a node cannot ac-
tivate due to congestion of the medium in the second layer, the number of packets to
be sent by the corresponding node in the first layer builds up, increasing their delay in
transmission. These interactions make analysis of the model non-trivial, especially since
the nodes activate in a random order.

For this model, we analyse the waiting times of the first-layer customers in detail while
taking the dynamics of the second layer directly into account. We also study the problem
of how the implications of this analysis can be implemented in the wireless random-access
networks setting, e.g. to achieve optimal back-off rates. Although the nodes are cooper-
ative and strive for the common goal of minimising the overall packet delay, they operate
autonomously and only have partial information available to them. As the remaining
information needed to determine the optimal back-off rate can only be inferred from ob-
served durations of periods between two transmissions in the medium so far, this is a
non-trivial problem.

1.3.3 The carousel storage model

The third layered queueing model that we study also constitutes a polling model, but
differs substantially from the Markovian polling model. More specifically, the third model
involves one server visiting multiple service stations in a certain order like before, but
each time he only serves at most one customer. Furthermore, at each station there is an
infinite queue of customers that needs service. Before going through a service phase A at
the server, a customer must first undergo a preparation phase B. Thus the server, after
having finished serving a customer at one station, may have to wait for the preparation
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phase of the customer at the next station to be completed. Immediately after the server
concludes his service at some station, another customer from the infinite queue begins
his preparation phase there.

This model finds countless applications in systems, where the order of service of the
customers is important. For example, a typical operating strategy in healthcare clinics is
to have a specialist rotate among several treatment rooms. In that case, the preparation
phase represents the preliminary service a patient typically receives from an assistant or
a nurse. The model, however, originates from warehousing. It was introduced in [188],
where a storage facility is considered with bi-directional carousels and a picker that serves
the carousels in turns. Therefore, we call this model the carousel storage model. The
preparation phase represents the rotation time the carousel needs to bring the item to the
origin, and the service time is the actual picking time. In that paper, the authors study
the case of two carousels under specific assumptions. Later on, this special case for two
stations has been further analysed under general distributional assumptions in [264]. For
an extensive literature review on carousel systems, we refer to [167]. We will generalise
many results found in [264] from two stations to multiple stations. This extension leads
to significant challenges in the analysis, but provides valuable managerial insights.

Little work has been done on multiple-carousel warehouse systems. Multiple-carousel
problems differ intrinsically from single-carousel problems in a number of ways. Such
systems tend to be more complicated. The system cannot be viewed as a number of
independently operating carousels [175], since the separate carousels interact by means
of the picker that is assigned to them. Almost all studies involving systems with more
than two carousels resort to simulation.

As mentioned above, the carousel storage model can be viewed as a polling model.
In particular, it can be interpreted as an extension of a one-limited polling-type system
(cf. [50, 88, 259]). In general, polling models with a k-limited service discipline (i.e.
at most k customers are served per visit) are notoriously difficult to analyse, as their
queue lengths do not allow for an interpretation as a multi-type branching process with
immigration as explained in Section 1.3.2; see e.g. [208]. In our case, we also have the
difficulty of an additional preparation phase before the actual service phase. We assume
that when the service of a customer at a station ends, there is always a new customer
waiting in front of the same station. In the carousel setting, this means that there is
always an ample supply of items to pick from. Furthermore, in many service systems,
appointments with customers occur on a scheduled basis, so that this assumption is also
a natural one in that setting. As a result of this assumption, the analysis of the model is
parallel to the study of the server in a one-limited polling-type system where each of the
queues is critically loaded. Note that our main interest for this model is in the waiting
time of the server rather than that of the customers.

This model is evidently a layered queueing network; see Figure 1.3. One may view
the preparation time of a customer as a first phase of service. The service station (first
station) acts in this case as a server of the first layer. However, the second phase of service
(the actual operation) does not necessarily follow immediately. The service station might
have to ‘wait’ for the server to finish working on other stations. At this stage, the service
stations act as customers waiting to be served by the second layer, the server. Thus, we see
that each service station acts both as a server (preparing the customer) and as a customer
(waiting until the server completes his tasks in the previous stations). Apart from the
waiting phases incurred by the service stations, however, interaction between the two
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FIGURE 1.3: The carousel storage model.

layers also clearly manifests itself since the durations of the preparation phases in the
first layer dictate how long the server of the second layer has to wait before a phase of
service can start. In other words, the server of the second layer may also be interpreted
as a customer of the first layer. Summarising, an important and distinguishing feature
of this model is that there are multiple types of ‘dual-role entities’. Not only are there
first-layer servers which are customers in the second layer as in the two previous models,
but now the second-layer server may be interpreted as a first-layer customer as well.

In the analysis that follows for this model, we initially assume that the server polls the
service stations in a fixed, cyclic order. We also investigate a model variation where the
server always serves the customer with the earliest completed preparation phase. Note
that this ‘dynamic’ model variation almost completely reduces the carousel storage model
to the extended machine repair model as described in Section 1.3.1 with a first-come-first-
served repair policy, when interpreting the service stations and the server as the machines
and the repairman, respectively. However, there are two fundamental differences. Apart
from the fact that the first-layer queues are now assumed to consist of an infinite number
of waiting customers, the focus of our analysis of this model lies on the waiting times of
the second-layer server (or equivalently, the idle times of the repairman).

1.4 Contributions and overview of the thesis

In this section, we provide an overview of the results presented in the remainder of this
thesis, along with their implications. For each of the two-layered queueing networks
described in Section 1.3, we present an in-depth analysis of the relevant performance
measures involved using a wide array of mathematical methods. At times, we will also
turn to the question of how to allocate resources so as to optimise these performance
measures as much as possible.

Whenever tractable, we will perform the analysis in an exact fashion. However, an
exact analysis is often prohibited by the existing interactions between the different layers.
These interactions are of a complicated nature, but they cannot be ignored due to the fact
that they have a significant impact on the system. To overcome this problem, one may
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resort to the application of numerical procedures. However, these methods are usually
not transparent, do not give any insights into the nature of the interactions’ impacts and
are computationally complex. Hence, when an exact analysis is out of reach, we often aim
for the derivation of symbolic approximations that are not only accurate and relatively
easily implemented, but also show the main effects that the model parameters have on
the performance measures. This ensures that the results obtained are not only suitable
for optimalisation purposes, but that they may also provide insights into the actual effects
of the interations between the layers on the system’s performance.

Although this thesis is comprised of results for models that consist of two layers, the
observations made may carry over to models with more than two layers. Also, the meth-
ods used to derive these results may be used as a starting point to analyse the many-layer
setting.

We now sketch the organisation and give an overview of the main results that we ob-
tain in the remaining chapters of this thesis. The thesis is divided in three parts, each of
which is concerned with one of the layered queueing networks described in Section 1.3.
We discuss each of these parts below, and we end with a note on some notational conven-
tions used throughout the thesis.

Part I: The extended machine repair model Chapters 2–6 constitute the first part of
this dissertation and contain our work on the extended machine repair model.

In particular, Chapter 2 shows how to compute the stationary distribution of per-
formance measures in the extended machine repair model by applying the power-series
algorithm. Although this is an algorithm geared for the numerical computation of sta-
tionary distributions, we run this algorithm in a symbolic fashion. This unconventional
application of the power-series algorithm results in expressions that describe the beha-
viour of performance measures such as the mean queue length in the so-called light-traffic
regime. This is the asymptotic regime where the utilisation rate of the servers approaches
zero.

In Chapter 3, we study the behaviour of the performance measures in the heavy-traffic
case, where the utilisation rates of the servers are such that the queues are on the verge
of instability. Instability of a queue occurs when the amount of work that the server can
handle per time unit does not exceed the amount of work per time unit that is brought to
the server by arriving customers. In such a case, the queue will grow indefinitely without
bound. By combining a classical functional central limit theorem approach with matrix-
analytic methods, we obtain heavy-traffic results for networks of parallel single-server
queues where the service speeds of all servers are modulated by a single continuous-time
Markov chain. This model covers the extended machine repair model, but it is actually
much broader. As a consequence, the results of this chapter are not restricted to the
extended machine repair model.

Chapter 4 combines the light-traffic and the heavy-traffic results from Chapters 2
and 3, respectively, to obtain approximations of the mean queue lengths of the first-layer
queues in the extended machine repair model. The approximations that we obtain are in
closed form. Furthermore, numerical results show that these approximations are highly
accurate. As a result, they can be used for optimisation purposes.

In Chapter 5, we obtain approximations for the complete (marginal) queue length dis-
tributions of the first-layer queues in the extended machine repair model. We do this by
drawing a connection between a first-layer queue and a single-server queue with server
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vacations that are mutually (one-)dependent and closely resemble the correlated down-
times of a machine. We obtain an approximate expression for the queue length distribu-
tion of the latter queue in terms of probability generating functions and use this expression
as an approximation for the queue length distribution of a first-layer queue in the setting
of the extended machine repair model. Although this approximation does not perform as
well as the approximations in Chapter 4 when approximating the mean queue lengths,
numerical results nonetheless show that it is reasonably accurate over a wide range of
parameter settings. Furthermore, this approximation can also be used to approximate
variances or tail probabilities of the queue length distributions.

Part I is concluded by Chapter 6, where we concern ourselves with the dynamic op-
timisation problem of how to allocate the resources of the repairman so as to minimise a
weighted average of the mean queue lengths of the first-layer queues. We derive several
structural properties of the repairman’s optimal policy. As the actual optimal policy is
hard to find analytically, we also derive a near-optimal policy by combining results from
queueing theory with techniques from Markov decision theory.

The results found in Chapter 2 are largely based on [P8] and the results in Chapter 3
stem from [P11, P12]. The approximations derived in Chapter 4 have also been discussed
in [P8]. Finally, Chapters 5 and 6 are based on the results of [P6] and [P3], respectively.

Part II: The Markovian polling model In the second part of this thesis, which is com-
prised of Chapters 7–9, we provide an analysis of the Markovian polling model.

In Chapter 7, we derive exact expressions for the probability generating functions of
the marginal queue length distributions under the assumptions that there are only two
queues and that the server initiates a switch-over period only when there are no customers
waiting in the queue he is currently visiting (so-called exhaustive service). Furthermore,
we obtain explicit expressions for the (properly scaled) queue length distribution in a
heavy-traffic regime (as before, the case where the server is presented with a critical
load). It turns out that in this regime, the waiting-time and queue length distributions
are very similar to those encountered in a regular cyclic polling system.

Chapter 8 concerns itself with general Markovian polling systems that do not neces-
sarily satisfy the two-queue assumption or the exhaustive-service assumption made in
Chapter 7. This considerably complicates the analysis, since without these assumptions,
the joint queue length process of the Markovian polling system observed at polling epochs
cannot be modelled as a multi-type branching process with immigration as described in
Section 1.3.2. Nevertheless, by exploiting a functional equation for the (probability gen-
erating function of the) joint queue length distribution at points in time at which the
server starts a visit period, we show how to derive expressions for the (cross-)moments of
the queue lengths. We also derive a pseudo-conservation law, from which an expression
for the stationary expected amount of (waiting) work present in the system follows.

In Chapter 9, we turn to the question of how certain parameters of the model should
be chosen so as to minimise a (possibly weighted) average of the mean queue lengths.
We also focus on the application to wireless random-access networks as given in Sec-
tion 1.3.2. In particular, we show how the optimisation results could be implemented in
these networks while dealing with the issues caused by their decentralised character.

The results presented in Chapter 7 can be found in [P5]. Chapters 8 and 9 are largely
built on the results of [P4].
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Part III: The carousel storage model Chapters 10 and 11 together form the final part
of the thesis, where we perform a detailed analysis of the carousel storage model. In
particular, we analyse both the transient and the long-run probabilistic behaviour of this
model by quantifying the waiting-time distribution of the server in the second layer, which
is directly connected to the system’s efficiency and throughput.

In Chapter 10, we consider the carousel storage model under the additional assump-
tion that the server polls the stations in a cyclic order. We give a sufficient condition for
the existence of a limiting distribution for the waiting time of the server, and we study
the tail behaviour of this distribution. We also show that if the preparation times are
exponentially distributed, the waiting time of the server is also exponentially distributed
with the same rate, provided it is non-zero. We subsequently compute the probability of
a non-zero waiting time by combining the memoryless property of the exponential dis-
tribution with the analysis of the appropriate discrete-time Markov chain. Finally, this
chapter provides extensive numerical results that identify the main effects of the model
parameters on the waiting times of the server.

In Chapter 11, we study the question of how the waiting-time distribution of the server
is affected if we drop the restriction that the server is required to serve the service stations
in a cyclic manner. Although the waiting-time distributions corresponding to the cyclic
and the non-cyclic cases are not necessarily stochastically ordered, we prove that the mean
waiting time of the server in the non-cyclic case never exceeds the mean waiting time in
the cyclic case. We also investigate numerically how the earlier discovered main effects
of the model parameters are affected when dropping the assumption of cyclic service.

The work of Chapter 10 is based on [P13]. The results of Chapter 11 can be found in
[P7, P13].

Notational conventions We end this chapter by introducing several notational con-
ventions. Unless otherwise stated, the notation in all chapters adheres to the following.
Throughout the thesis, vectors are printed in bold face. The vectors 0 and 1 represent
vectors of appropriate size of which each element equals zero and one, respectively. The
vector e j represents a unit vector of appropriate size of which the j-th entry equals one
and all other entries equal zero. Furthermore, we denote the indicator function on the
event A by 1{A}. The symbols ∧ and ∨ represent a logical conjunction and a logical dis-

junction, respectively, and equality in distribution is denoted by
d
= . We also use (x)− and

(x)+ as shorthand notation for min{x , 0} and max{x , 0}, respectively.
The Laplace-Stieltjes transform of (the distribution of) any continuous random vari-

able U is denoted by eU(s) = E[e−sU] and is defined for ℜ(s) ≥ 0. Likewise, for any
discrete random variable X or any n-dimensional vector of discrete random variables
Y = (Y1, . . . , Yn), the one-dimensional probability generating function eX (z1) = E[zX

1 ]
and the n-dimensional probability generating function eY (z1, . . . , zn) = E[

∏N
k=1 zYk

k ] are
defined for any complex-valued z1, . . . , zN for which |z1|, . . . , |zn| do not exceed one.
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2
NUMERICAL COMPUTATION AND

LIGHT-TRAFFIC ASYMPTOTICS

In this chapter, we apply the power-series algorithm to the extended machine repair model
as introduced in Section 1.3.1. This algorithm provides a powerful means of numerically
computing performance measures such as the moments of the queue length distribution
of the first-layer queues. However, it also allows one to gain insight into the so-called
light-traffic behaviour of these performance measures. In other words, one can derive
the behaviour of the performance measures with respect to the utilisation rate of the
machines in terms of symbolic expressions in case the utilisation rate approaches zero.
The light-traffic insights gained in this chapter will act as one of the building blocks for
the approximations that we derive in Chapter 4 for the mean queue lengths of the queues
of products.

2.1 Introduction

This chapter considers the power-series algorithm and its application to the extended ma-
chine repair model. The power-series algorithm is a numerical algorithm used to compute
the steady-state distribution of multi-dimensional queueing systems. Although it may be
trivial to derive the global balance equations for these systems, they usually cannot be
solved recursively due to a lack of a product-form solution. The basic idea behind the
power-series algorithm is the transformation of the non-recursively solvable set of bal-
ance equations into a recursively solvable set of equations by adding one dimension to
the state space. This is achieved by expressing the steady-state probabilities as power
series in some variable in light traffic, which allows calculation of steady-state probab-
ilities. The idea behind this algorithm stems from Hooghiemstra et al. [126] and has
been further developed by Blanc (see e.g. [40, 41]). For an overview of the power-series
algorithm and its initial literature, see [42, 146].

The use of the power-series algorithm is in many regards advantageous over numerical
methods such as simulation. The computation time needed to achieve accurate numer-
ical results is generally much less, especially for lightly loaded systems. Apart from this,
the computational scheme provided by the power-series algorithm can also be executed
symbolically to compute the light-traffic behaviour of several performance measures per-
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taining to the first-layer queues, i.e. the behaviour in case the load offered to the machines
tends to zero.

In Section 2.2, we formulate the model assumptions and the notation required to apply
the power-series algorithm to the extended machine repair model. Then, we explain how
to implement the power-series algorithm for this model in Section 2.3. Finally, we derive
symbolic expressions that shed light on the light-traffic behaviour of the first-layer queues
in Section 2.4.

2.2 Model description and notation

In this section, we state our model assumptions and we introduce the notation that we use
in this chapter to analyse the extended machine repair model as depicted in Figure 1.1.
The first layer of this model consists of two machines M1 and M2 as well as the corres-
ponding queues Q1 and Q2, which we will also refer to as first-layer queues. Products
arrive at Q i according to a Poisson process with rate λi . The service requirement of a
product in Q i is exponentially distributed with parameter µi . We denote the load offered
to Q i by ρi =

λi
µi

. The steady-state queue length of Q i , including the product in service, is
denoted by Li . Furthermore, the time between the arrival of a type-i product and the end
of its service is referred to as the sojourn time Si . After an exponentially (σi) distributed
uptime, denoted by Ui , the machine Mi serving Q i will break down, and the service of
Q i stops. The service of a product in progress is then aborted and will be restarted once
the machine is operational again. When a machine breaks down, it moves to the repair
queue, where it will wait if the repairman is busy repairing the other machine. Other-
wise, the repair will start immediately. Thus, a downtime Di of a machine Mi consists of
a repair time and possibly a waiting time. The time Ri needed for a repairman to return
Mi to an operational state is exponentially (νi) distributed. After a repair, the machine
returns to Q i and commences service again. All interarrival, service, uptime and repair
times are assumed to be independent.

In various computations, we need to keep track of the state of the background environ-
ment, namely whether the two machines are working or not. To this end, let {Φ(t), t ≥ 0}
be the continuous-time Markov chain describing the state of the machines M1 and M2.
More specifically, Φ(t) = (Φ1(t),Φ2(t)) specifies for each machine whether it is up (U),
in repair (R) or waiting for repair (W ) at time t. This Markov chain operates on the state
space S = {(U , U), (U , R), (R, U), (W, R), (R, W )} with generator matrix Q. Its stationary
distribution vector π = (πi)i∈S is uniquely determined by the equations πQ = 0 and
∑

j∈S π j = 1.
The queue length of a first-layer queue depends heavily on the availability of its ma-

chine in the past. To keep track of the latter, let Ci(t) represent the amount of time the
machine Mi has been working in the time period [0, t). Assuming the process {Φ(t), t ≥ 0}
is already in stationarity at t = 0, Ci(t) is defined as

Ci(t) =

∫ t

s=0

1{Φi(s)=U}ds. (2.1)

The long-run time-averaged mean of the process {Ci(t), t ≥ 0}, i.e. the fraction of time
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Mi is up, is given by

mC ,i = lim
t→∞

E[Ci(t)]
t

= lim
t→∞

∫ t

s=0 P(Φi(s) = U)ds

t
=

∑

ϕ∈{ψ:ψi=U∧ψ∈S }

πϕ.

Note that by standard renewal arguments, we also have that mC ,i =
E[Ui]

E[Ui]+E[Di]
. To keep

track of the level of saturation of Q i , we introduce the notion of normalised load. If Mi
never breaks down, the stability condition for Q i reads ρi < 1. However, in the case of
breakdowns, this condition is not sufficient any longer, as Mi only works for a fraction
mC ,i of the time. We therefore define ρ̂i =

ρi
mC ,i

. We also refer to ρ̂i as the normalised load
of Q i . Taking the breakdowns of Mi into account, the stability condition for Q i thus reads
ρ̂i < 1.

Throughout this chapter, we denote the L1-norm of a vector z consisting of n elements
by |z|= z1 + · · ·+ zn. Finally, for two functions f (x) and g(x), we write f (x) = O (g(x))
if limx↓0 | f (x)/g(x)|<∞.

2.3 Application of the power-series algorithm

In this section, we show how the power-series algorithm can be used to analyse the ex-
tended machine repair model. The power-series algorithm is typically used to compute
the steady-state distribution of several classes of multiple-queue systems, e.g. those which
fit in the class of quasi birth-and-death processes. The extended machine repair model is
such a multi-dimensional quasi birth-and-death process and consists of two components.
The first component {L(t) = (L1(t), L2(t)), t ≥ 0} describes the queue length at each
of the queues. The second component models any non-exponentiality in the system. In
our system, non-exponentiality is caused by the fact that the machines alternate between
uptimes and downtimes and is represented by the process {Φ(t), t ≥ 0}. In this way,
{(L(t),Φ(t)), t ≥ 0} can be seen as a continuous-time Markov chain on the state space
N2×S . When the system is stable, the steady-state probabilities p(l,ϕ), (l,ϕ) ∈ N2×S ,
can be obtained in principle by solving the set of global balance equations. This, how-
ever, is not a trivial task, as the set of equations is not recursively solvable. To overcome
this problem, we apply the power-series algorithm. As a result, performance measures of
the form E[g(L,Φ)] can be computed, where g(·) is an arbitrary function and (L,Φ) =
limt→∞(L(t),Φ(t)). We first define the one-step transition rates and the global balance
equations corresponding to the Markov chain {(L(t),Φ(t)), t ≥ 0} in Section 2.3.1. Then,
we apply the power-series algorithm directly to the extended machine repair model in
Section 2.3.2.

2.3.1 Preliminaries

We first study the continuous-time Markov chain {(L(t),Φ(t)), t ≥ 0} and consider its
one-step transition rates and global balance equations. The one-step transition rate cor-
responding to the transition from state (l,ϕ) ∈ N2×S to state (l+ei ,ϕ) equals the arrival
rate λi . However, in order to fully exploit the flexibility that the power-series algorithm
provides, we parameterise each of the arrival rates by a ‘relative’ arrival rate a(i)(l,ϕ)
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times a parameter χ. The quantity χ will be used by the power-series algorithm to intro-
duce another dimension to the state space. For (l,ϕ) ∈ N2 ×S and ψ ∈ S , we define
the one-step transition rates as follows:

χa( j)(l,ϕ): the arrival rate at Q j at state (l,ϕ), leading to a transition to state (l+
e j ,ϕ), j = 1,2,

d( j)(l,ϕ): the departure rate from Q j at state (l,ϕ), leading to a transition to state
(l− e j ,ϕ), with d( j)(l,ϕ) = 0 if l j = 0, j = 1,2,

u(l,ϕ,ψ): the transition rate from (l,ϕ) to (l,ψ).

Linking this with the notation given in Section 2.2, this means that for j = 1, 2 and
(l,ϕ) ∈ N2 ×S :

χa( j)(l,ϕ) = λ j ,

d( j)(l,ϕ) = µ j1{l j>0}1{ϕ j=U},

u(l, (U , U), (R, U)) = u(l, (U , R), (W, R)) = σ1,

u(l, (U , U), (U , R)) = u(l, (R, U), (R, W )) = σ2,

u(l, (R, U), (U , U)) = u(l, (R, W ), (U , R)) = ν1,

u(l, (U , R), (U , U)) = u(l, (W, R), (R, U)) = ν2.

It remains to choose an appropriate value for χ. For the application of the power-series
algorithm, it is generally required that there exists a positive real χ∗ such that both Q1
and Q2 are stable for 0≤ χ < χ∗. To satisfy this requirement, we choose

χ = ρ̂1 =
λ1

µ1mC ,1
. (2.2)

This leads to a(1)(l,ϕ) = µ1mC ,1 and a(2)(l,ϕ) = λ2
λ1
µ1mC ,1. Note that for the current

choice of χ, there indeed exists an upper bound below which both queues are stable.
Evidently, when the normalised load does not exceed one, Q1 is stable. Moreover, the
ratio between the service rates µ1 and µ2, as well as the ratio between the time fractions
mC ,1 and mC ,2, is assumed to be finite; i.e. we assume that none of the service rates
and time fractions are zero. Thus, there must exist a positive real c such that Q2 is stable
whenever 0≤ χ < c. As a result, the requirement is satisfied when taking χ∗ =min{1, c}.

The global balance equations of the Markov chain {(L(t),Φ(t)), t ≥ 0}, expressed in
the steady-state probabilities p(l,ϕ), are given by

 

2
∑

j=1

�

χa( j)(l,ϕ) + d( j)(l,ϕ)
�

+
∑

ψ∈S

u(l,ϕ,ψ)

!

p(l,ϕ)

= χ
2
∑

j=1

a( j)(l− e j ,ϕ)p(l− e j ,ϕ)1{l j>0} +
2
∑

j=1

d( j)(l+ e j ,ϕ)p(l+ e j ,ϕ)

+
∑

ψ∈S

u(l,ψ,ϕ)p(l,ψ) (2.3)
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for any (l,ϕ) ∈ N2 ×S . We also have the normalisation equation
∑

(l,ϕ)∈N2×S

p(l,ϕ) = 1. (2.4)

To substitute the steady-state probabilities, we use the following property (cf. [146, 247]).

PROPERTY 2.3.1. For each state (l,ϕ), it holds that p(l,ϕ) = O (χ |l|). This property is
valid for any quasi birth-and-death process where for each state (l,ϕ) with l 6= 0, either
p(l,ϕ) = 0, or there exists a path ϕ(0),ϕ(1), . . . ,ϕ(ζ) in S for some ζ ∈ {0, . . . , |S |} such
that

ϕ(0) =ϕ, u(l,ϕ(i−1),ϕ(i))> 0

for i ∈ {1, . . . ,ζ} and there is at least one queue with a non-zero departure rate in the
state (l,ϕ(ζ)).

Note that the conditions mentioned in Property 2.3.1 are obviously met in the ex-
tended machine repair model. For any queue length configuration, there exists a path
from any ϕ ∈ S to the auxiliary state (U , U). In this state, both machines are opera-
tional and departure rates for both of the queues are non-zero. We therefore introduce
the power-series expansion

p(l,ϕ) = χ |l|
∞
∑

k=0

χk b(k; l,ϕ) (2.5)

for the steady-state probabilities corresponding to the states (l,ϕ) ∈ N2 ×S . The coef-
ficients b(k; l,ϕ) appearing in (2.5) are still unknown. We focus on the computation of
these coefficients in the next section.

2.3.2 Computational scheme

We now apply the power-series algorithm to the extended machine repair model and
derive a recursive, computational scheme for this model. We obtain and solve a recursive
set of equations for the coefficients b(k; l,ϕ) defined in (2.5). From this, all steady-state
probabilities can be computed as well as any performance measures derived from them.
We first substitute the power-series expansion (2.5) into the balance equations given in
(2.3). This leads to a polynomial expression in χ for both sides of the equations. By
equating corresponding powers of χ, we obtain a recursion in the coefficients b(k; l,ϕ)
for k ∈ N, (l,ϕ) ∈ N2 × S . As a result, we can compute many performance measures
by writing them as a power series in χ with different coefficients, but still involving the
obtained values for b(k; l,ϕ) for k ∈ N, (l,ϕ) ∈ N2 ×S .

As mentioned above, the first step of the power-series algorithm constitutes the sub-
stitution of the power-series expansion (2.5) into the balance equations given in (2.3),
which results in the following set of equations for the coefficients b(k; l,ϕ):

χ |l|
∞
∑

k=0

χk

 

2
∑

j=1

�

χa( j)(l,ϕ) + d( j)(l,ϕ)
�

+
∑

ψ∈S

u(l,ϕ,ψ)

!

b(k; l,ϕ)

= χ |l|−1
∞
∑

k=0

χk
2
∑

j=1

χa( j)(l− e j ,ϕ)b(k; l− e j ,ϕ)1{l j>0}
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+χ |l|+1
∞
∑

k=0

χk
2
∑

j=1

d( j)(l+ e j ,ϕ)b(k; l+ e j ,ϕ)

+χ |l|
∞
∑

k=0

χk
∑

ψ∈S

u(l,ψ,ϕ)b(k; l,ψ)

for any (l,ϕ) ∈ N2 × S . After eliminating the factor χ |l| from both sides of this set of
equations, we obtain a polynomial equation of the form

∑∞
i=0 ciχ

i =
∑∞

i=0 γiχ
i . Since

this equation holds for every χ ∈ [0,χ∗), the coefficients of corresponding powers of χ
are equal. Thus, we have that ci = γi for all i, which leads to

 

2
∑

j=1

d( j)(l,ϕ) +
∑

ψ∈S

u(l,ϕ,ψ)

!

b(k; l,ϕ)

=
2
∑

j=1

a( j)(l− e j ,ϕ)b(k; l− e j ,ϕ)1{l j>0} −
2
∑

j=1

a( j)(l,ϕ)b(k− 1; l,ϕ)1{k>0}

+
2
∑

j=1

d( j)(l+ e j ,ϕ)b(k− 1; l+ e j ,ϕ)1{k>0}

+
∑

ψ∈S

u(l,ψ,ϕ)b(k; l,ψ) (2.6)

for each (k; l,ϕ) ∈ N3 ×S . The resulting set of equations now forms a recursive scheme
with respect to the partial ordering ≺ of the vectors (k; l,ϕ), where (k; l,ϕ)≺ (bk;bl, bϕ) if

�

k+ |l|< bk+ |bl|
�

or
�

k+ |l|= bk+ |bl| ∧ k < bk
�

.

Indeed, we see that (2.6) expresses the coefficients b(k; l,ϕ) in terms of coefficients of
lower order than (k; l,ϕ) with respect to ≺, except for the coefficient b(k; l,ψ) in the last
line. Therefore, the coefficients b(k; l,ϕ) can be calculated recursively in increasing order
with respect to ≺, where for each combination (k; l) a set of at most |S | linear equations
must be solved. This set of equations generally possesses a unique solution. The only
exception is when the system is totally empty (l = 0) and thus all departure rates vanish.
For l = 0,ϕ ∈ S , the set of equations in (2.6) reduces to

∑

ψ∈S

u(0,ϕ,ψ)b(k;0,ϕ) =
∑

ψ∈S

u(0,ψ,ϕ)b(k;0,ψ) + y(k;ϕ), (2.7)

where

y(k;ϕ) = −
2
∑

j=1

a( j)(0,ϕ)b(k− 1;0,ϕ)1{k>0} +
2
∑

j=1

d( j)(e j ,ϕ)b(k− 1;e j ,ϕ)1{k>0}.

By summing the equations of (2.7) over all ϕ ∈ S , we observe that these are dependent
sets of equations for the coefficients b(k;0,ϕ). The dependent sets are not contradictory,
since we have that

∑

ϕ∈S y(k;ϕ) = 0 due to a necessary balance between the empty
states and the states with one product in the system. However, due to the dependence,
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additional equations are needed. The law of total probability provides an additional equa-
tion between the coefficients b(k; l,ϕ) for (k; l,ϕ) ∈ N3 ×S when the system is empty.
Namely, observe that if we take χ = 0 in (2.5), which corresponds to zero arrival rates,
all terms vanish, except for the one corresponding to k = 0. Thus, from the law of total
probability (i.e. the normalisation equation (2.4)), we have

∑

ϕ∈S
b(0;0,ϕ) =

∑

ϕ∈S
p(0,ϕ) =

∑

(l,ϕ)∈N2×S

p(l,ϕ) = 1, (2.8)

where the first equality follows from (2.5). The second equality follows due to the fact
that if all arrival rates are zero, then all p(l,ϕ) for which l 6= 0 are zero. Similarly, (2.4)
implies for k > 0 that

∑

ϕ∈S
b(k;0,ϕ) = −

∑

0<|l|≤k

∑

ψ∈S

b(k− |l|; l,ψ). (2.9)

To see how (2.9) is derived, we argue as follows. First, we substitute (2.5) into (2.4) and
thus write the normalisation equation as a power series in χ. As this equation needs to
hold true for each value of χ ∈ [0,χ∗), the first-order and higher-order coefficients of
this power series must be equal to zero. Based on this, we conclude that for every k > 0,
it holds that

∑

0≤|l|≤k

∑

ϕ∈S b(k − |l|; l,ϕ) = 0. Equation (2.9) now follows by moving
terms for which |l|> 0 to the right-hand side.

Note that the right-hand side of (2.9) consists of terms of lower order than b(k;0,ϕ)
with respect to ≺. All but one of the equations of (2.7) in combination with (2.8) or
(2.9) determine b(k;0,ϕ). In general, this set of equations has a unique solution if the
process, conditioned on the event that both queues are empty and no arrivals occur at
all, is irreducible on the subset of S of reachable states. This condition holds for the
current model, as the continuous-time Markov chain {Φ(t), t ≥ 0} on the state space S
is evidently irreducible.

One can now recursively compute all the coefficients b(k;n,ϕ) for k ∈ N, (n,ϕ) ∈
N2 ×S . This not only allows for the computation of the steady-state probabilities them-
selves, but also for the computation of any function of the steady-state probabilities. More
specifically, let g(l,ϕ) represent a function which maps values from the state spaceN2×S
to a real value. Most common performance measures, including moments of the queue
lengths, can be expressed in the form E[g(L,Φ)]. Using (2.5), the expectation of g(L,Φ)
is defined as

E[g(L,Φ)] =
∑

(l,ϕ)∈N2×S

g(l,ϕ)p(l,ϕ) =
∞
∑

m=0

∑

|l|=m

∑

ϕ∈S
g(l,ϕ)

∞
∑

k=0

χk+m b(k; l,ϕ).

By changing the index of the last sum, substituting k−m for k and subsequently changing
the order of summation, we obtain

E[g(L,Φ)] =
∞
∑

k=0

χk
k
∑

m=0

∑

|l|=m

∑

ϕ∈S
g(l,ϕ)b(k−m; l,ϕ).

This implies that performance measures of the form E[g(L,Φ)] can also be written as a
power series in χ:

E[g(L,Φ)] =
∞
∑

k=0

χk f (k), (2.10)
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where the coefficients are given by

f (k) =
∑

0≤|l|≤k

∑

ϕ∈S
g(l,ϕ)b(k− |l|; l,ϕ). (2.11)

While the computation of E[g(L,Φ)] involves the computation of an infinite number
of coefficients, in practice only a finite number of coefficients can be computed. In case
χk f (k) converges to zero as k→∞, we can computeE[g(L,Φ)] up to arbitrary precision
by truncating the series after a finite number of terms. We define M to be this number
minus one, so that the truncated series consists of M + 1 terms. We thus obtain the
following computational scheme to evaluate E[g(L,Φ)]:

1. Determine b(0;0,ϕ) by solving the set of equations consisting of all but one of the
equations in (2.7) together with (2.8). Compute f (0) according to (2.11), i.e.

f (0) =
∑

ϕ∈S
g(0,ϕ)b(0;0,ϕ). (2.12)

2. Let f (k) := 0, k = 1,2, . . .

3. Set m := 1.

4. For all (k; l,ϕ) ∈ N3 × S with l 6= 0 and with k + |l| = m, compute b(k; l,ϕ) by
iteratively solving the equation set (2.6) in increasing order of (k; l,ϕ) with respect
to ≺. Update f (m) according to (2.11).

5. For all ϕ ∈ S , compute b(m;0,ϕ) by solving the set of equations consisting of all
but one of the equations in (2.6) in combination with (2.9). Update f (m) according
to (2.11).

6. Set m := m+ 1. If m ≤ M , return to step 4, otherwise stop. The estimated value
for E[g(L,Φ)] is now given by

∑M
k=0χ

k f (k).

With this computational scheme, performance measures such as the r-th moment of Li
or the cross-moment E[L1 L2] can be computed by taking g(l,ϕ) = l r

i or g(l,ϕ) = l1l2,
respectively. Moreover, note that the steady-state probabilities p(n,ψ) themselves can be
computed through this scheme by taking g(l,ϕ) = 1{l=n,ϕ=ψ}. We end this section with
several remarks.

REMARK 2.3.1. For the numerical evaluation of the performance measures, we compute
(2.10) using the corresponding function g(l,ϕ) and truncate the power series after the
M -th order term. In general, it is hard to say exactly how to choose the value of M in
order to achieve a certain degree of accuracy. First, this number depends on the ‘degree of
symmetry’. If the rates of arrival, service, breakdown and repair do not differ between the
first-layer queues and machines, the power series (2.10) generally converges faster than
for systems where these rates are queue-dependent or machine-dependent. Secondly, the
choice of M also depends heavily on the load offered to the system. For small χ, only a
small number of terms has to be computed for the truncated power series to be accurate.
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REMARK 2.3.2. It is not guaranteed that the power series (2.5) and (2.10) converge for
every value of χ, even if the system is stable. Therefore, it may happen that the power-
series algorithm fails for highly asymmetric systems, because (2.5) and (2.10) are diver-
gent. There are two techniques available in the literature to improve the convergence
properties of these power series. For an extensive discussion of these methods, see e.g.
[42]. The conformal mapping technique attempts to enlarge the radius of convergence
by mapping any singularities outside of the circle |χ| < χ∗. Alternatively, the epsilon
algorithm accelerates convergence of a slowly convergent power series or determines a
value for a divergent series. This is done by approximating the performance measure
under consideration by a sequence of quotients of polynomials.

REMARK 2.3.3. Observe that in Section 2.2, we have assumed the interarrival times, ser-
vice times, breakdown times and repair times to be exponentially distributed. How-
ever, this is not strictly needed to apply the power-series algorithm. In order to use the
power-series algorithm, we only need phase-type distributions. For phase-type distribu-
tions, the auxiliary vector Φ(t) must be expanded to include information on the phase
each of the running times is in, in order to preserve the Markov property of the process
{(L(t),Φ(t)), t ≥ 0}. Therefore, the size of the auxiliary state space S increases. This
may lead to a considerable increase in complexity of the computational scheme, since
the equation set (2.6) now contains more equations and more unknowns. For Coxian
distributions, however, the increased complexity is limited, since the phases of a Coxian
distribution are placed in sequence. Therefore, (2.6) will be a relatively sparse set of
equations. Note that up to now, we have made no distinction between the service of type-
i products being either resumed or restarted after an interruption, since we assumed the
service times to be exponential. However, when assuming phase-type distributed service
times, both scenarios can be modelled by choosing the correct auxiliary destination state
ψ for the rate u(l,ϕ,ψ) that coincides with the end of a repair of Mi . As the current
phase of any service at Q i is stored in the state ϕ, one either takes the state ψ such that
it includes the same service phase information in case of service resumption, or such that
it refers to the first phase of service in case services are restarted. In the latter case, the
current service at Q i resets to its first phase when Mi becomes operational again.

REMARK 2.3.4. Although we have restricted ourselves thus far to the case of two machines
and a single repairman, the power-series algorithm is also applicable for larger numbers
of machines and repairmen. For a larger number of machines and first-layer queues,
information on the order in which the machines are waiting for repair needs to be included
in the auxiliary vector Φ(t). Because the dimension of the vector L(t) and the size of the
state space S will increase, the computational complexity increases accordingly. For a
larger number of repairmen, no additional non-exponentiality is introduced to the system
and thus no additional information needs to be included into Φ(t), although the state
space S and the rates u(l,ϕ,ψ) will evidently change.

2.4 Light-traffic behaviour

In Section 2.3, we have derived a computational scheme to numerically compute per-
formance measures. If the power series (2.10) converges, these computations can be per-
formed up to arbitrary precision by truncating the power series and subsequently recurs-
ively computing the coefficients f (k). This leads to the question whether the power-series
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algorithm can also be used to obtain similar computations in a symbolic fashion. In theory,
this is possible by running the computational scheme as before, but now using symbolic
parameter values instead of numerical values for the rates of arrival, service, breakdown
and repair. However, due to constraints in computational resources, only coefficients f (k)
up to a small value of k can be computed symbolically before the computations become
too cumbersome. The set of equations (2.6) becomes increasingly hard to solve, as the
expressions for the terms b(k; l,ϕ) quickly become very large as k increases.

The number of coefficients that can be computed symbolically in practice is generally
not enough to obtain an accurate approximation for general values of χ. However, as
χ becomes smaller, the higher-order terms become increasingly negligible. Therefore,
the so-called light-traffic behaviour of a performance measure as χ tends to zero can
be identified symbolically. We do so for the performance measures E[L1] and E[L1 L2] in
Sections 2.4.1 and 2.4.2, respectively. For the sake of clarity, we will refer to the k-th order
coefficient f (k) in (2.10) corresponding to g(l,ϕ) = l1 as f1(k) in the sequel. Similarly,
f2(k) denotes the k-th order coefficient corresponding to g(l,ϕ) = l1l2.

2.4.1 Marginal queue length

We are interested in the light-traffic behaviour of the marginal queue length L1 in the
variable χ = ρ̂1. More specifically, we consider the behaviour of the mean of L1 as a
function of the relative load ρ̂1 as ρ̂1 goes to zero. By taking g(l,ϕ) = l1 and running the
power-series algorithm with M = 2, we obtain the following expression for E[g(L,Φ)] =
E[L1]:

E[L1] = f1(0) + f1(1)ρ̂1 + f1(2)ρ̂
2
1 +O (ρ̂

3
1), (2.13)

where O (ρ̂3
1) represents third-order and higher-order terms in ρ̂1. Furthermore, we have

that f1(0) = 0, since g(0,ϕ) = 0 in (2.12). This is explained by the fact that there are
no type-1 arrivals for ρ̂1 = 0, and thus there never is any product in Q1. The coefficient
f1(1) equals d

dρ̂1
E[L1]|ρ̂1=0, the derivative of the mean of L1 with respect to ρ̂1 evaluated

at ρ̂1 = 0. Computing f1(1) leads to a closed-form expression in the service rate of M1
as well as the breakdown and repair rates of each of the machines. Since this term is too
large to display in its entirety, we give the expressions for d

dρ̂1
E[L1]|ρ̂1=0 in each of the

model parameters separately in Table 2.1. When giving the derivative in each of these
parameters, we assume all other parameters to be equal to one. From these results, we
see that d

dρ̂1
E[L1]|ρ̂1=0 is increasing in µ1 and decreasing in ν1 and ν2. The latter is not

surprising, as it intuitively makes sense that the queue length generally decreases (in
some sense) as the repair rates increase. Moreover, we note that the denominators of the
terms in the expressions only involve the model parameters in the form of polynomials of
at most the second order.

It is important to observe that the expression f1(1) also represents the first-order deriv-
ative of higher moments of L1 as ρ̂1 goes to zero. In other words, the first-order derivative
of E[L r

i ]with respect to ρ̂1 evaluated at ρ̂1 = 0 is independent of r. This can be explained
by careful inspection of f (1) in (2.11). The first-order term f1(1) only involves values of
g(l,ϕ) for which |l| ∈ {0, 1}, which implies that l1 can also only take the values zero and
one. To inspect E[L r

i ], we take g(l,ϕ) = l r
1. Since l1 ∈ {0,1}, the function g(l,ϕ) can

only evaluate to the values 0r = 0 or 1r = 1 irrespective of r > 0.
The application of the power-series algorithm in a symbolic manner also allows us to

find closed-form expressions for the second-order derivative d2

dρ̂2
1
E[L1]|ρ̂1=0 = 2 f1(2). In
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TABLE 2.1: Expressions for d
dρ̂1
E[L1]|ρ̂1=0 in each of the model parameters.

Model parameter d
dρ̂1
E[L1]|ρ̂1=0 = f1(1)

µ1
26
25 +

8µ1
25 −

3
25(3+µ1)

σ1 1+ 9
49(3+σ1)

− 36
7(2+3σ1)2

+ 120
49(2+3σ1)

σ2
4
3 −

3
49(3+σ2)

− 13
21(2+3σ2)2

+ 9
49(2+3σ2)

ν1
75
64 +

135
256(1+2ν1)2

+ 21
256(1+2ν1)

+ 567
256(3+2ν1)2

− 21
256(3+2ν1)

ν2
5
4 −

13
75(3+ν2)

+ 27
20(1+2ν2)2

− 57
100(1+2ν2)

− 1
2(3+2ν2)2

+ 11
12(3+2ν2)

TABLE 2.2: Expressions for d2

dρ̂2
1
E[L1]|ρ̂1=0 in each of the model parameters.

Model parameter d2

dρ̂2
1
E[L1]|ρ̂1=0 = 2 f1(2)

µ1
226
125 +

88µ1
125 −

108
125(3+µ1)3

− 18
125(3+µ1)2

+ 18
25(3+µ1)

σ1 2− 36
343(3+σ1)3

+ 222
2401(3+σ1)2

+ 4538
16807(3+σ1)

+ 272
343(2+3σ1)3

− 26800
2401(2+3σ1)2

+ 87228
16807(2+3σ1)

σ2
8
3 −

12
343(3+σ2)3

− 500
2401(3+σ2)2

− 3784
16807(3+σ2)

− 68
343(2+3σ2)3

− 10952
7203(2+3σ2)2

+ 11352
16807(2+3σ2)

ν1
2385
1024 −

459
8192(1+2ν1)3

+ 22725
16384(1+2ν1)2

− 11673
16384(1+2ν1)

+ 19683
8192(3+2ν1)3

+ 105309
16384(3+2ν1)2

+ 12249
16384(3+2ν1)

ν2
5
2 −

52
1125(3+ν2)3

− 2312
5625(3+ν2)2

− 48194
84375(3+ν2)

− 1107
4000(1+2ν2)3

+ 110367
40000(1+2ν2)2

− 106017
100000(1+2ν2)

− 283
288(3+2ν2)3

− 59
64(3+2ν2)2

+ 1903
864(3+2ν2)

Table 2.2, we give this expression in each of the model parameters. Again, we assume the
other parameters to be equal to one. As before, we see that d2

dρ̂2
1
E[L1]|ρ̂1=0 is increasing in

µ1 and decreasing in ν1 and ν2. Furthermore, note that the denominators of the expres-
sions only involve the model parameters in a polynomial fashion up to order three. This
is not surprising, as the expressions for the first derivative only involve the parameters up
to a second order.

REMARK 2.4.1. If we wish to compute the light-traffic behaviour of the moments of L2,
we perform similar computations to the above, or we simply renumber the queues.

REMARK 2.4.2. Note that the computation of f1(1) =
d

dρ̂1
E[L1]|ρ̂1=0 is also possible using

Little’s law:

E[S1]|ρ̂1=0 =
E[L1]|ρ̂1=0

λ1
=

f1(1)ρ̂1 +O (ρ̂2
1)

λ1

�

�

�

�

ρ̂1=0

=
f1(1)
µ1mC ,1

=
d

dρ̂1
E[L1]|ρ̂1=0

µ1mC ,1
, (2.14)

where E[S1]|ρ̂1=0 is the mean sojourn time of a type-1 product, conditioned on the event
there are no other products in the system. This sojourn time consists of the actual service
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TABLE 2.3: Expressions for d2

dρ̂2
1
E[L1 L2]|ρ̂1=0 in each of the model parameters.

Model parameter d2

dρ̂2
1
E[L1 L2]|ρ̂1=0 = 2 f2(2)

µ1 − 1816d
3375 +

3646dµ1
1125 + 413dµ2

1
375 + 36d

125(3+µ1)
+ 32(373d+143dµ1)

3375(8+13µ1+3µ2
1)

µ2
413d
375 +

133d
50µ2
+ 4d

125(3+µ2)
+ 4357d+1235dµ2

750(8+13µ2+3µ2
2)

σ1 − 20d
1+σ1

+ 96d
343(3+σ1)2

− 3560d
2401(3+σ1)

− 120d
2197(5+σ1)

− 110360d
1911(2+3σ1)3

− 5295776d
173901(2+3σ1)2

+ 425228092d
5274997(2+3σ1)

σ2
97d
27 +

4dσ2
3 + 96d

343(3+σ2)2
− 4232d

2401(3+σ2)
− 480d

2197(5+σ2)

− 27590d
17199(2+3σ2)3

− 235012d
57967(2+3σ2)2

− 5574427d
5274997(2+3σ2)

ν1
4779d

896 −
364d

125(3+ν1)
+ 3267d

5120(1+2ν1)3
+ 357131d

51200(1+2ν1)2

− 3557887d
6912000(1+2ν1)

− 189855d
13312(3+2ν1)3

+ 5779335d
346112(3+2ν1)2

− 78477979d
4499456(3+2ν1)

+ 17756000d
415233(17+7ν1)

ν2
531d
224 +

34d
1+ν2
− 364d

1125(3+ν2)
+ 3267d

1280(1+2ν2)3
+ 313571d

12800(1+2ν2)2

− 60000667d
1728000(1+2ν2)

− 21095d
3328(3+2ν2)3

− 4655195d
259584(3+2ν2)2

− 291320479d
10123776(3+2ν2)

+ 710240d
415233(17+7ν2)

requirement, the time the product needs to wait before M1 takes the product into service
and the downtime M1 suffers during the service of the product. The mean of the first term
obviously equals µ−1

1 . The means of the latter two terms can be computed by studying
the continuous-time Markov chain {Φ(t), t ≥ 0}. Eventually, this leads to an expression
for E[S1]|ρ̂1=0, which in turn leads to an expression for d

dρ̂1
E[L1]|ρ̂1=0 due to (2.14).

2.4.2 Joint queue length

In this section, we discuss the light-traffic behaviour of E[L1 L2], the cross-moment of
the queue lengths in the extended machine repair model, as a function of ρ̂1. We study
instances of the model for which both of the arrival rates tend to zero while we preserve
the relative values; i.e. we assume that λ2 = dλ1 at all times for a constant d > 0. This
means that we set a(1)(l,ϕ) = µ1mC ,1 and a(2)(l,ϕ) = dµ1mC ,1 while we let λ1 (or ρ̂1)
go to zero. Furthermore, we take g(l,ϕ) = l1l2. By running the computational scheme
as given in Section 2.3.2 with M = 2, we obtain the following expression for E[L1 L2]:

E[L1 L2] = f2(0) + f2(1)ρ̂1 + f2(2)ρ̂
2
1 +O (ρ̂

3
1). (2.15)

Like before, we have that f2(0) = 0, because g(0,ϕ) = 0 for all ϕ ∈ S in (2.12). We also
have that f2(1) = 0 due to (2.11). The coefficient f2(1) only involves values of g(l,ϕ)
for which 0 ≤ l1 + l2 ≤ 1. Within this domain, there is no combination (l1, l2) for which
l1l2 > 0. Therefore, the most prominent light-traffic behaviour is captured by the term
f2(2).

Going back to the derivatives of the cross-moment, we have that the first-order de-
rivative of E[L1 L2] vanishes at ρ̂1 = 0, since f2(1) = 0. By (2.15), we have for the
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second-order derivative that d2

dρ̂2
1
E[L1 L2]|ρ̂1=0 = 2 f2(2). By evaluation of the computa-

tional scheme up to M = 2, we obtain a closed-form expression for this second-order
derivative evaluated at χ = ρ̂1 = 0. Again, we give the expression separately in each
of the model parameters in Table 2.3 while assuming each of the others to be equal to
one. As in the previous case, we note that the numerators and the denominators of the
terms in d2

dρ̂2
1
E[L1 L2]|ρ̂1=0 only involve the model parameters in a polynomial fashion up

to order three. For the service rates µ1 and µ2, the expressions are equivalent. If we let
λ2 scale along with λ1 such that ρ1 = ρ2 and d = µ2

µ1
, we even have that the expressions

in Table 2.3 pertaining to µ1 and µ2 are the same. The parameter ρ̂1 thus depends on
the service rates µ1 and µ2 in the same way. Also the corresponding equations for the
breakdown rates σ1 and σ2, as well as those for the repair rates ν1 and ν2, are equival-
ent. This is not surprising, because E[L1 L2] behaves symmetrically with respect to both
of the queue lengths and is therefore equally sensitive to characteristics of either of the
machines.
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3
HEAVY-TRAFFIC ASYMPTOTICS

Having studied the light-traffic asymptotics of the extended machine repair model in the
previous chapter, the question arises whether any results for its heavy-traffic asymptotics
can be obtained, i.e. the behaviour of the performance measures when the arrival rates
of products are scaled to such a proportion that the first-layer queues are on the verge of
instability. In this chapter, we derive heavy-traffic asymptotics for a very generic model
that subsumes the extended machine repair model. We study a network of parallel single-
server queues where the speeds of the servers may vary over time and are governed by a
single continuous-time Markov chain. We obtain heavy-traffic limits for the distributions
of the joint workload, waiting-time and queue length processes. We do so by using a
functional central limit theorem approach, which requires the interchange of steady-state
and heavy-traffic limits. The marginals of these limiting distributions are shown to be
exponential with rates that can be computed by matrix-analytic methods. Moreover, we
show how to numerically compute the joint distributions by viewing the limit processes
as multi-dimensional semi-martingale reflected Brownian motions in the non-negative
orthant. We also demonstrate how to use these results for the performance evaluation
of the extended machine repair model. As is the case with the light-traffic results in
Chapter 2, the heavy-traffic insights that we gain in this chapter will serve as a building
block for the approximations that we derive in Chapter 4.

3.1 Introduction

In this chapter, we study a parallel network of N single-server queues, which can be
regarded as a generalisation of the extended machine repair model. The speeds of the
servers vary over time and are mutually dependent. More specifically, we assume that
these service speeds are governed by a single irreducible, continuous-time Markov chain
with a finite state space. For this network, we are interested in both the marginal and the
joint workload processes for each of the queues, as well as the processes describing the
virtual waiting time and the queue length. Stationary distributions for these processes
are difficult to obtain, since the workload process pertaining to one queue, as well as
the virtual waiting-time process and the queue length process pertaining to this queue, is
correlated with the corresponding processes of the other queues. Our goal in this chapter
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is to derive the heavy-traffic behaviour of the network by obtaining the limiting stationary
distributions of the aforementioned processes.

Apart from our intended analysis of the extended machine repair model, the study of
this general network is motivated by the fact that multi-queue performance models with
time-varying and mutually dependent service speeds find a wide variety of other applic-
ations. An example is the field of wireless networks, where multiple users transmit data
packets through a wireless medium at speeds that are typically varying over time and
mutually dependent, e.g. due to phenomena such as ‘shadow fading’ (cf. [244]). Another
such application constitutes an I/O subsystem of an application server (see e.g. [251]), in
which the content of multiple I/O buffers is transferred to clients at varying and mutu-
ally dependent speeds due to the varying level of congestion of the application server’s
network connection. A final example is given by the phenomenon of garbage collection
in multi-threaded computer systems (cf. [225]). Typically, when the total memory util-
isation in such a system exceeds a certain threshold, the processing speeds of the threads
are temporarily reduced, and are as a result mutually dependent.

Queueing models with service speeds that vary over time have received attention in
multiple settings in the literature. In practice, service speeds may be dependent on factors
such as the workload present in the system, which leads to the formulation of queues
with state-dependent service rates; see e.g. [31] for an overview. Another branch of work
on time-varying service speeds is that of service rate control, where the aim is to min-
imise waiting and capacity costs (e.g. [20, 105, 230, 270]) or to optimise a trade-off
between service quality and service speed (e.g. [127]) based on the state of the system
by dynamically varying the service speed. In our case, the service speeds depend on an
external environment that is governed by a continuous-time Markov chain. Analyses of
single-server queueing models with Markov-modulated service speeds can be found in
[115, 173, 182, 201, 234]. However, none of these papers concern themselves with the
derivation of heavy-traffic asymptotics. In this chapter, we focus on a queueing network
where the service speeds of all servers in the network are simultaneously governed by a
single continuous-time Markov chain. This allows us to incorporate mutual dependencies
between the service speeds into the model. Conceptually, there are no additional chal-
lenges in obtaining heavy-traffic results for the queueing network with multiple queues
compared to the single-queue case, although deriving the results for the multi-queue case
is more cumbersome at times.

We are mainly interested in the heavy-traffic asymptotics of the network of queues.
The study of queues in heavy traffic was initiated by Kingman with a series of papers in
the 1960s, starting with [140]; see [141] for an overview of these early results. These pa-
pers were largely focused on the use of Laplace transforms. In our case, however, Laplace
transforms for the stationary distribution of the total workload process or even the work-
load process for a queue in isolation are hard to obtain. The workload process of a queue
in isolation can in principle be modelled as a reflected Markov additive process. For the
definition and an overview of the standard theory on Markov additive processes, see [19,
Section XI.2]. However, the stationary distribution of the workload process is not easily
derived from that. For example, standard techniques such as relating the Laplace trans-
forms of the stationary workload conditional on the states of the modulator to each other
typically lead to a linear system with a number of equations smaller than the number of
unknowns, defying straightforward solutions, as shown in [129]. Less straightforward
computations might involve studying the singularities of the characterising matrix expo-
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nent pertaining to the reflected Markov additive process (cf. [129]). In the past, stationary
distributions for special cases of reflected Markov additive processes have also been ana-
lysed by studying their spectral expansion (e.g. [177]) or by determining the boundary
probabilities in terms of the solution of a generalised eigenvalue problem (e.g. [245]).

As it is not clear that the approach via Laplace transforms will work in our case, we
will use a functional central limit theorem approach mainly developed by Iglehart and
Whitt; see [275] for an overview. This is not always trivial; see for example [78, 149].
Heavy-traffic approximations for generalised Jackson networks were studied in [56, 104].
However, the model that we consider does not fall in the framework of generalised Jack-
son networks. Instead, we tailor more classical arguments for single-node systems to our
setting. An advantage of our approach is that it can be extended to allow for variations
or generalisations of our model. For example, it is assumed that the workload input
processes of the queues are compound Poisson processes. As we will see in the sequel,
however, our approach for deriving heavy-traffic asymptotics still remains valid under
relaxed assumptions if Lemma 3.3.2 can be proved for this more general setting.

As we study networks with general service speeds, the generic model also covers a
class of queues with service interruptions. Heavy-traffic asymptotics for single-server
queues with vacations have been studied in [136]. Related but different problems are net-
works with interruptions of which durations and frequency scale with the traffic intensity,
and have been studied in [59, 136] and [275, Section 14.7]. As opposed to these models,
our model allows the durations of consecutive service interruptions, which we assume
to be independent of the traffic intensity, to be interdependent through the Markovian
random environment (see also [62]), and the interruptions are not restricted to a point
in time the queue empties.

For the network studied in this chapter, we find that the marginal workload, virtual
waiting-time and queue length processes pertaining to a queue in isolation exhibit state-
space collapse under heavy-traffic assumptions and have exponential limiting distribu-
tions. Moreover, we show that the limiting distribution of the joint workload process, as
well as that of the joint virtual waiting-time process and the joint queue length process,
corresponds to the stationary distribution of an N -dimensional semi-martingale reflected
Brownian motion with state space RN

+ (see e.g. [60, Theorem 6.2] for a definition). The
reflection matrix corresponding to this semi-martingale reflected Brownian motion is an
identity matrix, so that positive conclusions about the existence of a stationary distribu-
tion can be drawn (cf. [119]). However, computing this distribution is challenging. The
conditions needed for the stationary distribution to have a product form do not apply to
our model, and results such as those of [82] seem hard to translate to our setting. In
this chapter, we therefore show how to use the numerical methods developed in [70] for
steady-state analysis of multi-dimensional semi-martingale reflected Brownian motions
to analyse the joint limiting distribution of the stationary workload process. This allows
us to compute quantities such as the correlation coefficients between the marginal com-
ponents.

The rest of this chapter is organised as follows. Section 3.2 describes the generic net-
work in more detail, gives the necessary notation and gives several preliminary results.
In Section 3.3, we derive the heavy-traffic limit for a properly scaled workload process
pertaining to this network, and observe that the stationary distribution of the marginal
workload processes converges to an exponential distribution. Section 3.4 extends these
results to heavy-traffic limits for the virtual waiting-time and queue length processes. Fi-
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nally, in Section 3.5, we study how one can compute the joint distribution of the limiting
processes pertaining to the workloads, virtual waiting times and the queue lengths by
viewing these as semi-martingale reflected Brownian motions. We also show how to ap-
ply these results to the extended machine repair model. From the resulting numerical
computations, we conclude that even in a heavy-traffic regime, the interaction between
the layers and the correlations between the first-layer queues can be significant. By means
of simulation results, we also show that the obtained heavy-traffic results give rise to ac-
curate approximations for considerably loaded systems, which marks the usefulness of
the heavy-traffic analysis that we perform from an application perspective.

3.2 Notation and preliminaries

In this section, we introduce the generic model that we study in this chapter as well as its
notation, and we present several preliminary results.

We study a network consisting of N parallel single-server queues Q1, . . . ,QN , each with
its own dedicated arrival stream. Type-i customers arrive at Q i according to a Poisson
process with rate λi and have a service requirement distributed according to a random
variable Bi with finite first two moments E[Bi] and E[B2

i ]. In particular, we represent
by Bi, j the service requirement of the j-th arriving type-i customer. We assume the ser-
vice requirements of all customers to be mutually independent. Further, we denote by
{Ni(t), t > 0} a unit-rate Poisson process. Then, the cumulative workload that enters Q i
during the time interval [0, t) is given by

Vi(λi t) =
Ni(λi t)
∑

j=1

Bi, j ,

where the arrival rate is left as part of the argument, as this will prove to be useful for
heavy-traffic scaling purposes in the sequel. In the remainder of this chapter, we will
refer to {Vi(t), t ≥ 0} as the arrival process of Q i . The mean corresponding to this arrival
process is given by mV,i = E[Vi(1)] = E[Bi]. Similarly, the variance is given by σ2

V,i =
Var[Vi(1)] = E[Ni(1)]Var[Bi] + Var[Ni(1)]E[Bi]2 = Var[Bi] + E[Bi]2 = E[B2

i ]. Note that
the arrival process has stationary and independent increments, so that t−1E[Vi(t)] = mV,i
and t−1Var[Vi(t)] = σ2

V,i for any t > 0.
The service speeds of the N servers serving Q1, . . . ,QN may vary over time and are

mutually dependent. More specifically, the joint process of these service speeds is modu-
lated by a single irreducible, stationary, continuous-time Markov chain {Φ(t), t ≥ 0} with
finite state space S and invariant probability measure π = (πi)i∈S . When this Markov
chain resides in the state ω ∈ S , the server of Q i drains its queue at service rate φi(ω).
As a consequence, we have that the workload that the server of Q i has been capable of
processing during the time interval [0, t) is represented by

Ci(t) =

∫ t

s=0

φi(Φ(s))ds.

We will also refer to the process {Ci(t), t ≥ 0} as the cumulative service process of Q i . Note
that, as the continuous-time Markov chain {Φ(t), t ≥ 0} is in stationarity, the increments
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of the process {Ci(t), t ≥ 0} are also stationary. The mean corresponding to the process
{Ci(t), t ≥ 0} is given by

mC ,i = E[Ci(1)] =

∫ 1

s=0

∑

ω∈S
φi(ω)P(Φ(s) =ω)ds =

∑

ω∈S
φi(ω)πω.

Since the Ci-process has stationary increments, it holds that t−1E[Ci(t)] = mC ,i for any
t > 0. We denote the asymptotic variance limt→∞ t−1Var[Ci(t)] by σ2

C ,i . Similarly, the
long-run time-averaged covariance between the cumulative service processes of the serv-
ers at Q i and Q j is represented by γC

i, j = limt→∞
1
t Cov[Ci(t), C j(t)]. Computing expres-

sions for σ2
C ,i and γC

i, j is not trivial. We focus on this problem in Section 3.5.1.
A queue Q i is said to be stable if the expected amount of arriving work λiE[Bi] per

time unit is smaller than the average workload mC ,i that its server is capable of processing

per time unit. Equivalently, Q i is stable if its load, defined as ρi =
λiE[Bi]

mC ,i
, is less than one.

We are interested in the performance of the network of queues in heavy traffic, i.e. the
case for which the arrival rates λ1, . . . ,λN are scaled so that (ρ1, . . . ,ρN ) → 1. For this
purpose, it is convenient to introduce the index r. In the r-th system, each arrival rate λi
is taken so that βi(1− ρi)−1 = r, where the βi parameters control the rate at which the
arrival rates are scaled by r, while the series of service requirements Bi,1, Bi,2, . . . and the
Ci-processes are not scaled by r. The heavy-traffic limit for any performance measure of
the system corresponds to the limit r →∞. We denote by λi,r the arrival rate of type-
i customers corresponding to the r-th system, so that λi,r →

mC ,i

E[Bi]
when r → ∞. For

notational convenience, we write for two functions f (r) and g(r) that f (r) = o(g(r)) if
limr→∞ f (r)/g(r) = 0.

For purposes that will become clear in the sequel, we now state heavy-traffic limits
for the primitive processes that are scaled in time by a factor r2. First, for the scaled
arrival processes, we observe that E[Vi(λi,r r2 t)] = λi,r r2E[Bi]t. As the arrival processes
constitute independent renewal reward processes, the functional central limit theorem
for renewal reward processes (see e.g. [275, Theorem 7.4.1]) implies that
¨�

V1(λ1,r r2 t)−λ1,r r2E[B1]t
Æ

λ1,r r
, . . . ,

VN (λN ,r r2 t)−λN ,r r2E[BN ]t
Æ

λN ,r r

�

, t ≥ 0

«

d
→{ZV (t), t ≥ 0} (3.1)

as r →∞, where {ZV (t), t ≥ 0} is an N -dimensional Brownian motion with zero drift
and covariance matrix Γ V = diag(σ2

V,1, . . . ,σ2
V,N ).

Similarly, after observing that E[Ci(r2 t)] = mC ,i r
2 t, it follows from results in [274]

that the time-scaled cumulative service processes satisfy
��

C1(r2 t)−mC ,1r2 t

r
, . . . ,

Cn(r2 t)−mC ,N r2 t

r

�

, t ≥ 0

�

d
→{ZC(t), t ≥ 0} (3.2)

as r →∞, where {ZC(t), t ≥ 0} is an N -dimensional Brownian motion with zero drift
and covariance matrix Γ C with elements Γ C

i, j = γ
C
i, j . Alternatively, this result follows from

the functional central limit theorem for Markov additive processes obtained in [229, The-
orem 3.4]. Using the results of [229], we will show how to obtain expressions for γC

i, j in
Section 3.5.1.
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A heavy-traffic limit for the joint scaled net-input process now follows by combining

(3.1) and (3.2) with the observation that
λi,r r2E[Bi]t−mC ,i r

2 t
r = −βimC ,i t. In particular, this

leads to
��

V1(λ1,r r2 t)− C1(r2 t)

r
, . . . ,

VN (λN ,r r2 t)− CN (r2 t)

r

�

, t ≥ 0

�

d
→{Z(t), t ≥ 0} (3.3)

as r → ∞, where {Z(t) = (Z1(t), . . . , ZN (t)), t ≥ 0} is an N -dimensional Brownian
motion with drift vector µ= (−β1mC ,1, . . . ,−βN mC ,N ) and covariance matrix

Γ = diag
� mC ,1

E[B1]
σ2

V,1, . . . ,
mC ,N

E[BN ]
σ2

V,N

�

+ Γ C . (3.4)

We now derive a representation of the amount of work present in each of the queues.
Let {Wr(t) = (W1,r(t), . . . , WN ,r(t)), t ≥ 0} be the process that describes the workload
in each queue of the r-th system at time t and let Wr = (W1,r , . . . , WN ,r) = Wr(∞)
denote the workload in the system in steady state. The processes {Dr(t), t ≥ 0} and
{Lr(t), t ≥ 0}, as well asDr andLr , are similarly defined for the virtual waiting time (the
delay faced by an imaginary customer arriving at time t) and the queue length (excluding
the customer in service), respectively.

The workload Wi,r(t) present in Q i at time t can be represented by the one-sided
reflection of the net-input process {Vi(λi,r t) − Ci(t), t ≥ 0} under the assumption that
Wi,r(0) = 0:

Wi,r(t) = Vi(λi,r t)− Ci(t)− inf
s∈[0,t]

{Vi(λi,rs)− Ci(s)}

= sup
s∈[0,t]

{Vi(λi,r t)− Vi(λi,rs)− (Ci(t)− Ci(s))}. (3.5)

As the joint cumulative service process {(C1(t), . . . , CN (t)), t ≥ 0} has stationary in-
crements, it holds that

(C1(t)− C1(s), . . . , CN (t)− CN (s))
d
= (C1(t − s), . . . , CN (t − s)) .

Furthermore, since the arrival processes are independent and since compound Poisson
processes have time-reversible increments, we also have that

�

V1(λ1,r t)− V1(λ1,rs), . . . , VN (λN ,r t)− VN (λN ,rs)
�

d
=
�

V1(λ1,r(t − s)), . . . , VN (λN ,r(t − s))
�

.

Due to this, we have by (3.5) that Wr(t) satisfies

Wr(t)
d
=

�

sup
s∈[0,t]

{V1(λ1,r(t − s))− C1(t − s)}, . . . , sup
s∈[0,t]

{VN (λN ,r(t − s))− CN (t − s)}
�

=

�

sup
s∈[0,t]

{V1(λ1,r(s))− C1(s)}, . . . , sup
s∈[0,t]

{VN (λN ,r(s))− CN (s)}
�

.

By letting t →∞, this results in

Wr
d
=
�

sup
s≥0
{V1(λ1,rs)− C1(s)}, . . . , sup

s≥0
{VN (λN ,rs)− CN (s)}

�

. (3.6)



3.3 HEAVY-TRAFFIC ASYMPTOTICS OF THE WORKLOAD 41

In this study, we are particularly interested in the distribution of the scaled workload
W r =

Wr
r (as well as the similarly defined scaled virtual waiting time Dr and scaled

queue length Lr) in heavy traffic, i.e. as r → ∞. It is easily seen from (3.6) that the
scaled workload can be written in terms of the similarly scaled net-input process. That is,
after scaling time by a factor r2, we have

W r
d
=

�

sup
t≥0

�

V1(λ1,r r2 t)− C1(r2 t)

r

�

, . . . , sup
t≥0

�

VN (λN ,r r2 t)− CN (r2 t)

r

��

. (3.7)

3.3 Heavy-traffic asymptotics of the workload

In this section, we derive the following heavy-traffic asymptotic result for the scaled work-
load W r .

THEOREM 3.3.1. For the scaled workload vector W r , we have

W r
d
→ Ẑ

as r →∞, where Ẑ = (Ẑ1, . . . , ẐN ), Ẑi = supt≥0{Zi(t)} and Zi(t) is as defined in Section
3.2.

It is tempting to conclude directly from a combination of (3.3) and (3.7) that this
theorem holds true by use of a continuous-mapping argument. However, complications
arise since the supremum applied to càdlàg functions on the infinite domain [0,∞) is
not necessarily a continuous functional. To prove Theorem 3.3.1, we have to justify the
interchange of the heavy-traffic and the steady-state limits. To this end, observe that, as
opposed to the infinite-domain case mentioned above, the supremum of càdlàg functions
on a finite domain [0, M), M ∈ R+, is a continuous functional (see e.g. [275]). The proof
uses this fact in combination with an additional result stated in Lemma 3.3.4. To prove
Lemma 3.3.4, we first establish upper bounds of the tail probabilities for the suprema of
the processes {Vi(λi,r t)− E[Vi(λi,r)]t, t ≥ 0} and {E[Ci(1)]t − Ci(t), t ≥ 0} in Lemmas
3.3.2 and 3.3.3, respectively.

LEMMA 3.3.2. For the arrival process {Vi(λi,r), t ≥ 0} of Q i , we have that

P
�

sup
t∈[0,T )

{Vi(λi,r t)−E[Vi(λi,r)]t} ≥ x

�

≤
λi,rE[B2

i ]T

x2

for any r, x , T ∈ R+.

PROOF. As {Vi(λi,r t)− E[Vi(λi,r)]t, t ≥ 0} is a right-continuous martingale, we have by
Doob’s inequality (cf. [209, Theorem II.1.7]) that

P
�

sup
t∈[0,T )

{Vi(λi,r t)−E[Vi(λi,r)]t} ≥ x

�

≤ x−2 sup
t∈[0,T )

{Var[Vi(λi,r t)]}.

Since Var[Vi(λi,r t)] = λi,rσ
2
V,i t is strictly increasing in t, the lemma follows.
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LEMMA 3.3.3. For the cumulative service process {Ci(t), t ≥ 0} pertaining to the server of
Q i , there exists, for every x , T ∈ R+, a set of positive real constants c1, c2, c3 and c4 such that

P
�

sup
t∈[0,T )

{E[Ci(1)]t − Ci(t)} ≥ x

�

≤
c1T
x2
+

c2

T
+

c3T

ec4
p

x
.

PROOF. The lemma is a consequence of Proposition 1 in [131]. Define the constant h =
maxω∈S {φi(ω)} and the function H(t) = ht−Ci(t). The process {H(t), t ≥ 0} represents
increments of the regenerative process {h−φi(Φ(t)), t ≥ 0} and regenerates, for example,
every time {Φ(t), t ≥ 0} enters the reference state ω = Φ(0). We denote the n-th of such
regeneration times by Tn. Furthermore, we define γ∗n = supTn−1≤t≤Tn

{H(t)−H(Tn−1)} and
νn = Tn−Tn−1. Note that ν1,ν2, . . . can be seen as independent and identically distributed
samples from a random variable Y and represent return times of state ω in the Markov
chain {Φ(t), t ≥ 0}. Proposition 1 in [131] now implies that for all x , T ∈ R+, there exist
positive real constants d1, d2, d3 and d4 such that

P
�

sup
t∈[0,T )

{E[Ci(1)]t − Ci(t)}> x

�

≤ d1

�

e−d2
x2

T + e−d3 T + Te−d4
p

x
�

(3.8)

if E[e
p

sup0≤t≤Y {H(t)}] <∞ and E[e
p
γ∗n] <∞ for any n ∈ N+. This statement follows

by replacing the variables Bt , b and Q(x) in [131, Proposition 1] by H(t), h− E[Ci(1)]
and
p

x , respectively. To show that the necessary conditions hold in our case, observe
that H(t) is non-decreasing in t and takes values from [0, ht]. By combining this with
the fact that

p
x < εx + 1

ε for any x ≥ 0 and ε > 0, we have that E[e
p

sup0≤t≤Y {H(t)}] =

E[e
p

H(Y )] ≤ E[e
p

hY ] < E[eεhY+ε−1
] = eε

−1
E[eεhY ] for any ε > 0. As γ∗n ≤ hνn for any

n > 0, similar computations yield that E[e
p
γ∗n] < eε

−1
E[eεhY ] for all n ∈ N and any

ε > 0. Subsequently, note that the regeneration time Y , which constitutes the return
time of state ω in the Markov chain {Φ(t), t ≥ 0}, can be decomposed into a period
of time Y1 until the transition away from ω and the following period Y2 until re-entry
into state ω. The former period Y1 is exponentially distributed with a certain rate α, so
that E[eεhY1] = α

α−εh for ε < h−1α. The latter period Y2 is easily seen to be stochastic-
ally smaller than a geometrically distributed random variable with the positive success

parameter q = minω′∈S \{ω}{P(Φ(1) = ω | Φ(0) = ω′)}. Hence, E[eεhY2] ≤ qeεh

1−(1−q)eεh

for ε < −h−1 log(1 − q). As Y1 and Y2 are mutually independent, we thus have for

0 < ε < h−1 min{α,− log(1 − q)} that eε
−1
E[eεhY ] ≤ eε

−1 α
α−εh

qeεh

1−(1−q)eεh < ∞, so that
the necessary conditions are satisfied. The lemma now follows from (3.8) by noting that
e−T < T−1 for all T > 0 and taking c1 = d1d−1

2 , c2 = d1d−1
3 , c3 = d1 and c4 = d4.

Based on the results obtained in Lemmas 3.3.2 and 3.3.3, we now establish the final
auxiliary result needed to prove Theorem 3.3.1. This result is summarised in the following
lemma.

LEMMA 3.3.4. The scaled net-input process
n

Vi(λi,r r2 t)−Ci(r2 t)
r , t > 0

o

corresponding to Q i sat-

isfies

lim
M→∞

lim
r→∞
P
�

sup
t≥M

�

Vi(λi,r r2 t)− Ci(r2 t)

r

�

≥ x

�

= 0

for all x , M ∈ R+.
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PROOF. The first part of the proof is inspired by the proof of (20) in [223]. For any r,
let bi,r =

E[Vi(λi,r )]+E[Ci(1)]
2 , so that bi,r − E[Vi(λi,r)] = E[Ci(1)] − bi,r =

mC ,i−λi,rE[Bi]
2 =

βimC ,i(2r)−1. Due to the subadditivity property of the supremum operator, we have for
any M > 0 that

P
�

sup
t≥M

�

Vi(λi,r r2 t)− Ci(r2 t)

r

�

≥ x

�

≤ P
�

sup
t≥M

�

Vi(λi,r r2 t)− bi,r r2 t

r

�

+ sup
t≥M

�

bi,r r2 t − Ci(r2 t)

r

�

≥ x

�

≤ P
�

sup
t≥M
{Vi(λi,r r2 t)− bi,r r2 t} ≥ 0

�

+ P
�

sup
t≥M
{bi,r r2 t − Ci(r

2 t)} ≥ 0
�

≤
∞
∑

j=0

P
�

sup
t∈[2 j M ,2 j+1 M)

{Vi(λi,r r2 t)− bi,r r2 t} ≥ 0

�

+
∞
∑

j=0

P
�

sup
t∈[2 j M ,2 j+1 M)

{bi,r r2 t − Ci(r
2 t)} ≥ 0

�

=
∞
∑

j=0

P
�

sup
t∈[2 j r2 M ,2 j+1 r2 M)

{Vi(λi,r t)−E[Vi(λi,r)]t − βimC ,i(2r)−1 t} ≥ 0

�

+
∞
∑

j=0

P
�

sup
t∈[2 j r2 M ,2 j+1 r2 M)

{E[Ci(1)]t − Ci(t)− βimC ,i(2r)−1 t} ≥ 0

�

≤
∞
∑

j=0

P
�

sup
t∈[0,2 j+1 r2 M)

{Vi(λi,r t)−E[Vi(λi,r)]t} ≥ 2 j−1βimC ,i rM

�

+
∞
∑

j=0

P
�

sup
t∈[0,2 j+1 r2 M)

{E[Ci(1)]t − Ci(t)} ≥ 2 j−1βimC ,i rM

�

≤
∞
∑

j=0

λi,rE[B2
i ]2

j+1r2M

22 j−2β2
i m2

C ,i r
2M2

+
∞
∑

j=0

�

c12 j+1r2M
22 j−2β2

i m2
C ,i r

2M2
+

c2

2 j+1mC ,i r2M
+

c32 j+1r2M

ec4

p
2 j−1βi mC ,i rM

�

(3.9)

for certain positive constants c1, c2, c3 and c4. The penultimate inequality follows by
observing that maxt∈[2 j r2 M ,2 j+1 r2 M]{−βimC ,i(2r)−1 t} = −2 j−1βimC ,i rM and by enlarging
the intervals of the suprema to also include [0, 2 j r2M). The last inequality follows from
Lemmas 3.3.2 and 3.3.3. Simplifying (3.9) leads to

P
�

sup
t≥M

�

Vi(λi,r r2 t)− Ci(r2 t)

r

�

≥ x

�

≤
16(λi,rE[B2

i ] + c1)

β2
i m2

C ,i M
+

c2

mC ,i r2M
+
∞
∑

j=0

fi, j(r, M), (3.10)
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where fi, j(r, M) = c32 j+1r2Me−c4

p
2 j−1βi mC ,i rM . Observe that if

lim
r→∞

∞
∑

j=0

fi, j(r, M) = 0, (3.11)

the lemma follows from (3.10) by taking the limit r → ∞ and subsequently the limit
M → ∞ in (3.10). To show that the condition given in (3.11) indeed holds, observe
that the derivative of fi, j with respect to r reads ∂

∂ r fi, j(r, M) = c32 j rMe−hi, j(M)
p

r(4 −
hi, j(M)

p
r), where hi, j(M) = c4

Æ

2 j−1βimC ,i M . As a result, ∂
∂ r fi, j(r, M)< 0 if and only if

4− hi, j(M)
p

r < 0. Due to the monotonicity of hi, j(M) and
p

r in j and r, respectively,
there thus exist positive constants j0 and r0, so that ∂

∂ r fi, j(r, M) < 0 for any j ≥ j0 and
r ≥ r0. This results in the fact that supr≥r∗ fi, j(r, M) = fi, j(r∗, M) for every r∗ ≥ r0. Hence,
an upper bound for

∑∞
j=0 fi, j(r, M) when r ≥ r∗ ≥ r0 is given by

∞
∑

j=0

fi, j(r, M) =
j0−1
∑

j=0

fi, j(r, M) +
∞
∑

j= j0

fi, j(r, M)≤
j0−1
∑

j=0

fi, j(r, M) +
∞
∑

j= j0

fi, j(r∗, M). (3.12)

When r →∞, we can use (3.12) with r∗ taken arbitrarily large so that

lim
r→∞

∞
∑

j=0

fi, j(r, M)≤ lim
r→∞

j0−1
∑

j=0

fi, j(r, M) +
∞
∑

j= j0

lim
r∗→∞

fi, j(r∗, M).

By observing that limr→∞ fi, j(r, M) = 0, this reduces to limr→∞
∑∞

j=0 fi, j(r, M) ≤ 0.

Hence, since fi, j(r, M)≥ 0, it must hold that limr→∞
∑∞

j=0 fi, j(r, M) = 0, which concludes
the proof.

Using these auxiliary results, we can now prove Theorem 3.3.1.

PROOF OF THEOREM 3.3.1. By (3.7), it is enough to show that

lim
r→∞
P
� N
⋂

i=1

�

sup
t≥0

�

Vi(λi,r r2 t)− Ci(r2 t)

r

�

≥ x i

��

= P
� N
⋂

i=1

§

sup
t≥0
{Zi(t)} ≥ x i

ª

�

(3.13)

for all x1, . . . , xN ≥ 0. We first obtain a lower bound for the left-hand side of (3.13):

lim
r→∞
P
� N
⋂

i=1

�

sup
t≥0

�

Vi(λi,r r2 t)− Ci(r2 t)

r

�

≥ x i

��

≥ lim
r→∞
P
� N
⋂

i=1

�

sup
t∈[0,M)

�

Vi(λi,r r2 t)− Ci(r2 t)

r

�

≥ x i

��

= P
� N
⋂

i=1

�

sup
t∈[0,M)

{Zi(t)} ≥ x i

��

(3.14)

for all M ∈ R+, where the equality follows from (3.3) together with a combination of
the continuous-mapping theorem and the continuity property of the supremum operator
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applied to càdlàg-functions on the finite domain [0, M). Next, to derive an upper bound
for the left-hand side of (3.13), denote by EM ,i the event that

sup
t∈[0,M)

�

Vi(λi,r r2 t)− Ci(r2 t)

r

�

= sup
t≥0

�

Vi(λi,r r2 t)− Ci(r2 t)

r

�

,

and let Ec
M ,i be its complementary event. By De Morgan’s law, we have that

P
� N
⋂

i=1

�

sup
t≥0

�

Vi(λi,r r2 t)− Ci(r2 t)

r

�

≥ x i

��

= P
� N
⋂

i=1

�

sup
t≥0

�

Vi(λi,r r2 t)− Ci(r2 t)

r

�

≥ x i; EM ,i

��

+ P
� N
⋂

i=1

�

sup
t≥0

�

Vi(λi,r r2 t)− Ci(r2 t)

r

�

≥ x i

�

;
N
⋃

i=1

Ec
M ,i

�

. (3.15)

An upper bound for the first term of the right-hand side in (3.15) is given by

P
� N
⋂

i=1

�

sup
t≥0

�

Vi(λi,r r2 t)− Ci(r2 t)

r

�

≥ x i; EM ,i

��

≤ P
� N
⋂

i=1

�

sup
t∈[0,M)

�

Vi(λi,r r2 t)− Ci(r2 t)

r

�

≥ x i

��

(3.16)

for all M ∈ R+. For the second term of the right-hand side in (3.15), we have that

P
� N
⋂

i=1

�

sup
t≥0

�

Vi(λi,r r2 t)− Ci(r2 t)

r

�

≥ x i

�

;
N
⋃

i=1

Ec
M ,i

�

≤
N
∑

i=1

P
�

sup
t≥M

�

Vi(λi,r r2 t)− Ci(r2 t)

r

�

≥ x i

�

, (3.17)

for all M ∈ R+. Thus, by combining (3.15)–(3.17) and taking the limit r →∞, we obtain

lim
r→∞
P
� N
⋂

i=1

�

sup
t≥0

�

Vi(λi,r r2 t)− Ci(r2 t)

r

�

≥ x i

��

≤ P
� N
⋂

i=1

�

sup
t∈[0,M)

{Zi(t)} ≥ x i

��

+ lim
r→∞

N
∑

i=1

P
�

sup
t≥M

�

Vi(λi,r r2 t)− Ci(r2 t)

r

�

≥ x i

�

. (3.18)

The lower bound established in (3.14) converges to P(
⋂N

i=1

�

supt∈[0,∞){Zi(t)} ≥ x i

	

) as
M → ∞. The upper bound found in (3.18) also converges to this expression, as the
second term in the right-hand side of (3.18) vanishes due to Lemma 3.3.4. From this,
(3.13) immediately follows, which proves the theorem.
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REMARK 3.3.1. The joint distribution of Ẑ is not straightforward to derive explicitly. How-
ever, explicit expressions for the marginal distribution of Ẑi are not hard to obtain. Note
that Ẑi = supt≥0 Zi(t) is the all-time supremum of a one-dimensional Brownian motion
with negative drift −βimC ,i and variance

mC ,i

E[Bi]
σ2

V,i+σ
2
C ,i . It is well known that the all-time

supremum of a Brownian motion with negative drift −a and variance b is exponentially
( 2a

b ) distributed (cf. [19, Corollary IX.2.8 and Example IX.3.5]). Therefore, the distribu-
tion of the steady-state scaled workload W i,r present in Q i converges to an exponential

distribution with rate 2βi

�

σ2
V,i

E[Bi]
+
σ2

C ,i

mC ,i

�−1
as r →∞. In the next section, we will see that

the limiting distributions of Di,r and L i,r only differ from the limiting distribution of W i,r
by a multiplicative factor m−1

C ,i and E[Bi]−1, respectively. As a result, the distributions

of the steady-state delay Di,r and the steady-state queue length L i,r also converge to ex-

ponential distributions with rates 2βimC ,i

�

σ2
V,i

E[Bi]
+
σ2

C ,i

mC ,i

�−1
and 2βiE[Bi]

�

σ2
V,i

E[Bi]
+
σ2

C ,i

mC ,i

�−1
,

respectively. We study the derivation of the joint distribution of Ẑ in Section 3.5.2.

3.4 Extension to waiting times and queue lengths

In Section 3.3, we derived a heavy-traffic limit theorem for the scaled workload vector
W r . In this section, we extend this result to heavy-traffic limits for the distributions
of the virtual waiting-time vector Dr and the queue length vector Lr by regarding the
joint distribution of Dr and W r as well as that of Lr and W r in Section 3.4.1 and
Section 3.4.2, respectively. It turns out that, when r →∞, the distributions of both Dr
and Lr are elementwise equal to the distribution of W r up to a multiplicative constant.

3.4.1 Heavy-traffic asymptotics of the virtual waiting time

We now study the distribution of the scaled virtual waiting time in heavy traffic. First, we
obtain the tail probability of the joint distribution of Dr and W r as r →∞. Based on
this, we obtain an extension of Theorem 3.3.1 for the scaled virtual waiting time.

PROPOSITION 3.4.1. The tail probability of the limiting joint distribution of Dr and W r
satisfies

lim
r→∞
P
� N
⋂

i=1

�

Di,r ≥ si; W i,r ≥ t i

	

�

= P
� N
⋂

i=1

�

Ẑi ≥max{mC ,isi , t i}
	

�

,

where Ẑ1, . . . , ẐN is defined as in Theorem 3.3.1.

PROOF. Observe that since the waiting time faced by an imaginary type-i customer arriv-
ing at time u is longer than si time units, the workload present in Q i just before u is larger
than Ci(u+ si)− Ci(u). This is evident, since the latter number represents the amount of
work that the server of Q i is able to process in the si time units following time u. In other
words, the event {Di,r(u) > si} is tantamount to the event {Wi,r(u) > Ci(u+ si)− Ci(u)}
for i = 1, . . . , N , so that in steady state (i.e. u→∞), we have

P
� N
⋂

i=1

�

Di,r > si; Wi,r > t i

	

�

= P
� N
⋂

i=1

�

Wi,r >max{Ci(si), t i}
	

�

. (3.19)
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Based on this, we obtain an expression for the tail probability of the joint distribution of
Dr and W r :

P
� N
⋂

i=1

�

Di,r ≥ si; W i,r ≥ t i

	

�

= P
� N
⋂

i=1

�

Wi,r ≥max{Ci(rsi), r t i}
	

�

= P
� N
⋂

i=1

§

W i,r ≥max
§

Ci(rsi)
r

, t i

ªª

�

, (3.20)

where we used (3.19) in the first equality. We now focus on showing that

lim
r→∞
P
� N
⋂

i=1

§

W i,r ≥max
§

Ci(rsi)
r

, t i

ªª

�

= P
� N
⋂

i=1

�

Ẑi ≥max{mC ,isi , t i}
	

�

, (3.21)

which combined with (3.20) directly implies the result to be proved. To this end, we
observe that, since {Ci(t), t ≥ 0} is a renewal reward process, r−1Ci(rsi)→ mC ,isi almost
surely as r →∞ due to standard results in renewal theory. Denote by Fεi,r for any ε > 0
the event that r−1Ci(rsi) ∈ [mC ,isi − ε, mC ,isi + ε]. Thus, limr→∞ P(Fεi,r) = 1. As a result,
we have due to De Morgan’s law that

P
� N
⋂

i=1

§

W i,r ≥max
§

Ci(rsi)
r

, t1

ªª

�

= P
� N
⋂

i=1

§

W i,r ≥max
§

Ci(rsi)
r

, t i

ª

; Fεi,r

ª

�

+ o(1).

Letting r → ∞ in this expression, using the definition of the event Fεi,r and applying
Theorem 3.3.1, we obtain the following lower bound for the left-hand side of (3.21):

lim
r→∞
P
� N
⋂

i=1

§

W i,r ≥max
§

Ci(rsi)
r

, t i

ªª

�

≥ P
� N
⋂

i=1

�

Ẑi ≥max{mC ,isi + ε, t i}
	

�

. (3.22)

Similarly, an upper bound for the left-hand side of (3.21) is given by

lim
r→∞
P
� N
⋂

i=1

§

W i,r ≥max
§

Ci(rsi)
r

, t i

ªª

�

≤ P
� N
⋂

i=1

�

Ẑi ≥max{mC ,isi − ε, t i}
	

�

. (3.23)

In Remark 3.3.1, we found that Ẑi is exponentially distributed for i = 1, . . . , N , so that
the joint distribution of Ẑ has no discontinuity in the point (mC ,1s1, . . . , mC ,N sN ). As a
consequence, by taking the limit ε→ 0 in the right-hand sides of (3.22) and (3.23), we
obtain (3.21), which, as explained above, proves the proposition.

From Proposition 3.4.1, the heavy-traffic limit for the virtual waiting time follows in
the following corollary.

COROLLARY 3.4.2. For the scaled virtual waiting-time vector Dr , it holds that

Dr
d
→
�

1
mC ,1

, . . . ,
1

mC ,N

�

Ẑ

as r →∞, where Ẑ is defined as in Theorem 3.3.1.

PROOF. This follows immediately from Proposition 3.4.1 by taking t1 = · · ·= tN = 0.
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3.4.2 Heavy-traffic asymptotics of the joint queue length

In this section, we obtain an extension of Theorem 3.3.1 for the scaled steady-state queue
length Lr in heavy traffic. Let BR

i,r be the remaining service requirement of a type-i cus-
tomer in service in the r-th system if Li,r > 0, and zero otherwise. It is then trivially seen
that

Wr = (B
R
1,r , . . . , BR

N ,r) +

 

L1,r
∑

j=1

bB1, j , . . . ,
LN ,r
∑

j=1

bBN , j

!

(3.24)

for all i > 0, where bBi, j represents the service requirement of the waiting customer in the j-
th waiting position of Q i and is distributed according to Bi . These service requirements are
mutually independent as well as independent from Wr and Lr . Note that bBi, j is defined
differently from Bi, j , which we defined in Section 3.2 to be the service requirement of the
j-th arriving type-i customer since the start of the queueing process. The scaled version
of (3.24) is given by

W r = (B
R
1,r , . . . , B

R
N ,r) +

1
r





r L1,r
∑

j=1

bB1, j , . . . ,
r LN ,r
∑

j=1

bBN , j



 , (3.25)

where B
R
i,r =

1
r BR

i,r for i = 1, . . . , N . It would intuitively be tempting to conclude that

(B
R
1,r , . . . , B

R
N ,r)→ 0 as r →∞ and that as a result,W r and Lr are equal elementwise up

to a multiplicative constant. However, this is not straightforward, since, for example, Lr

and (B
R
1,r , . . . , B

R
N ,r) are not independent. We make these results rigorous in this section.

Inspired by [295, Proposition 1], we first obtain another representation for the joint dis-
tribution of L i,r and W i,r for a single queue Q i in Lemma 3.4.3. Based on this result, we

derive the heavy-traffic asymptotics for (L i,r , W i,r , B
R
i,r) in Lemma 3.4.4, which imply that

B
R
i,r → 0 as r →∞. We subsequently conclude that (B

R
1,r , . . . , B

R
N ,r)→ 0 as r →∞ and

derive the joint distribution of Lr and W r as r →∞ in Proposition 3.4.5. From this, an
extension of Theorem 3.3.1 for the scaled queue length Lr follows in Corollary 3.4.6.

In order to construct an additional representation for the joint distribution of L i,r and
W i,r , we need to introduce some additional notation. Denote by W r

i,n and L r
i,n the work-

load present in Q i and the queue length of Q i , respectively, in the r-th system just before
the n-th arrival of a type-i customer. Furthermore, Ar

i, j refers to the time between the j-th

and the ( j+1)-st arriving type-i customer in the r-th system, so that SA,r
i,n =

∑n
j=1 Ar

i, j and

SB
i,n =

∑n
j=1 Bi, j represent the cumulative series of interarrival times and service require-

ments of type-i customers. By construction of the heavy-traffic scaling, Ar
i, j

d
→Ai, j and

E[Ar
i, j]→ E[Ai, j] as r →∞, where the random variables Ai, j are independent and expo-

nentially
�

mC ,i/E[Bi]
�

distributed. Finally, we define S r
i,n = SB

i,n − Ci(S
A,r
i,n ). The required

representation is now given in the following lemma.

LEMMA 3.4.3. For any x , y > 0 and i = 1, . . . , N, the joint distribution of L i,r and W i,r
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satisfies

P
�

L i,r ≥ x; W i,r ≥ y
�

= P
�

Wi,r + Bi ≥ Ci(S
A,r
i,dr xe); r−1 max

§

Wi,r + S r
i,dr xe, max

j∈{1,...,dr xe}
{S r

i,dr xe − S r
i, j}
ª

≥ y
�

.

PROOF. The proof is inspired by [295, Proposition 1]. Observe that for any k ≥ 1 and
n ≥ 1, the event {L r

i,n+k ≥ k} coincides with the event that the workload that the server
at Q i was capable of processing between the arrival of the n-th and (n+ k)-th customer,
Ci(S

A,r
i,n+k−1)−Ci(S

A,r
i,n−1), does not exceed the amount W r

i,n+Bi,n of work present in Q i just
after the arrival of the n-th customer. Hence, we have that

{L r
i,n+k ≥ k}= {W r

i,n + Bi,n ≥ Ci(S
A,r
i,n+k−1)− Ci(S

A,r
i,n−1)}. (3.26)

Moreover, due to Lindley’s recursion, which is given by W r
i,n+1 = (W

r
i,n + S r

i,n − S r
i,n−1)

+ or

W r
i,n+k =max

§

W r
i,n + S r

i,n+k−1 − S r
i,n−1, max

j∈{0,...,k−1}
{S r

i,n+k−1 − S r
i,n+ j}

ª

,

we have for any y > 0 that

{W r
n+k ≥ y}=

§

max
§

W r
i,n + S r

i,n+k−1 − S r
i,n−1, max

j∈{0,...,k−1}
{S r

i,n+k−1 − S r
i,n+ j}

ª

≥ y
ª

. (3.27)

By combining (3.26) and (3.27), taking the probabilities of these events, letting n→∞
and observing that the vector (L r

i,n, W r
i,n) weakly converges to (Li,r , Wi,r), we obtain

P(Li,r ≥ k; Wi,r ≥ y)

= P
�

Wi,r + Bi ≥ Ci(S
A,r
i,k ); max

§

Wi,r + S r
i,k, max

j∈{1,...,k}
{S r

i,k − S r
i, j}
ª

≥ y
�

,

for any k ≥ 1, y > 0. By noting that P(L i,r ≥ x; W i,r ≥ y) = P(Li,r ≥ dr xe; r−1Wi,r ≥ y),
the desired statement follows immediately.

Based on Lemma 3.4.3, we derive the heavy-traffic asymptotics of (L i,r , W i,r , B
R
i,r) in

the following lemma. This lemma directly implies that B
R
i,r → 0 as r →∞.

LEMMA 3.4.4. For any queue, the scaled steady-state queue length, workload and remaining
service requirement exhibit state-space collapse under heavy-traffic assumptions. In particu-
lar, we have that

(L i,r , W i,r , B
R
i,r)

d
→
�

1
E[Bi]

, 1, 0
�

Ẑi

as r →∞ for any i ∈ {1, . . . , N}, where Ẑi is defined as in Section 3.2.

PROOF. Again, the proof is inspired by [295, Proposition 1]. We first focus on the joint dis-
tribution of L i,r and W i,r . Due to the strong law of large numbers, r−1SA,r

i,dr xe→ E[Ai, j]x =
E[Bi]x

mC ,i
almost surely as r →∞. Moreover, t−1Ci(t)→ mC ,i almost surely as t →∞, so

that
Ci(S

A,r
i,dr xe)

r
=

Ci(S
A,r
i,dr xe)

SA,r
i,dr xe

SA,r
i,dr xe

r
→ E[Bi]x (3.28)
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in probability as r →∞. We further have due to the weak law of large numbers that
r−1SB

i,dr xe → E[Bi]x , so that r−1S r
i,dr xe → 0 and r−1 max j∈{1,...,dr xe}{S r

i,dr xe − S r
i, j} → 0 as

r →∞. For any ε > 0, let Gεi,r denote the event

{r−1Ci(S
A,r
i,dr xe) ∈ [E[Bi]x − ε,E[Bi]x + ε]; r−1SB

i,dr xe ∈ [E[Bi]x − ε,E[Bi]x + ε];

r−1S r
i,dr xe ∈ [−ε,ε]; r−1 max

j∈{1,...,dr xe}
{S r

i,dr xe − S r
i, j} ∈ [0,ε]}.

Due to the convergence results above, we have that limr→∞ P(Gεi,r) = 1, so that P(L i,r ≥
x; W i,r ≥ y) = P(L i,r ≥ x; W i,r ≥ y; Gεi,r) + o(1). After combining this with Lemma 3.4.3
and consequently taking the limit r →∞, we obtain

lim
r→∞
P
�

W i,r ≥max{E[Bi]x + ε, y + ε}
�

≤ lim
r→∞
P
�

L i,r ≥ x; W i,r ≥ y
�

≤ lim
r→∞
P
�

W i,r ≥max{E[Bi]x − ε, y − ε}
�

,

since Bi → 0 as r →∞. By first applying Theorem 3.3.1 on the left-hand side and the
right-hand side, next noting that the distribution of Ẑi has no discontinuity points (cf.
Remark 3.3.1) and finally letting ε→ 0, we obtain

lim
r→∞
P(L i,r ≥ x; W i,r ≥ y) = P(Ẑi ≥max{E[Bi]x , y}). (3.29)

It remains to consider the convergence of B
R
i,r . We show that limr→∞ P(B

R
i,r > δ) =

0 for all δ > 0, which finalises the proof of the desired statement. Note that due to

(3.25), we have that P(B
R
i,r > δ) = P(W i,r >

1
r

∑r L i,r

j=1
bBi, j + δ). Let Hεi,r denote the event

{ 1
n

∑n
j=1
bBi, j ∈ (E[Bi]−ε,E[Bi]+ε) ∀n ∈ [

p
r,∞)}. By using the law of total probability

and noting that limr→∞ P(Hεi,r) = 1 due to the weak law of large numbers, we thus have
similar to earlier calculations that

P(B
R
i,r > δ) = P



W i,r >
1
r

r L i,r
∑

j=1

bBi, j +δ; Hεi,r



+ o(1)

= P



W i,r > L i,r
1

r L i,r

r L i,r
∑

j=1

bBi, j +δ; Hεi,r



+ o(1).

By taking the limit r →∞ and using the established convergence of L i,r , we obtain

lim
r→∞
P(W i,r > L i,r(E[Bi]+ε)+δ)≤ lim

r→∞
P(B

R
i,r > δ)≤ lim

r→∞
P(W i,r > L i,r(E[Bi]−ε)+δ).

By letting ε→ 0 and noting, as before, that the limiting distribution of W i,r has no dis-

continuity points, we have that limr→∞ P(B
R
i,r > δ) = limr→∞ P(W i,r > L i,rE[Bi]+δ) for

any δ > 0. Observe that (3.29) implies that limr→∞ P(W i,r > L i,rE[Bi] + δ) = 0 for any
δ > 0, which completes the proof.

Based on the previous results, we now obtain the limiting joint distribution of Lr and
W r in the following proposition.
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PROPOSITION 3.4.5. The tail probability of the limiting joint distribution of Lr and W r
satisfies

lim
r→∞
P
� N
⋂

i=1

�

L i,r ≥ si; W i,r ≥ t i

	

�

= P
� N
⋂

i=1

�

Ẑi ≥min{E[Bi]si , t i}
	

�

, (3.30)

where Ẑ1, . . . , ẐN is defined as in Section 3.2.

PROOF. Equation (3.25) implies that the event {L i,r ≥ si} coincides with the event {W i,r ≥
B

R
i,r +

1
r

∑rsi
j=1
bBi, j}, as the bBi, j can only take non-negative values. Thus, we have

P
� N
⋂

i=1

�

L i,r ≥ si; W i,r ≥ t i

	

�

= P

 

N
⋂

i=1

(

W i,r ≥max

(

B
R
i,r +

1
r

rsi
∑

j=1

bBi, j , t i

))!

.

Let Hεi,r be defined as before and recall that limr→∞ P(
⋂N

i=1 Hεi,r) = 1, so that due to the
law of total probability,

P
� N
⋂

i=1

�

L i,r ≥ si; W i,r ≥ t i

	

�

= P

 

N
⋂

i=1

(

W i,r ≥max

(

B
R
i,r + si

1
rsi

rsi
∑

j=1

bBi, j , t i

)

; Hεi,r

)!

+ o(1).

Note that according to Lemma 3.4.4, B
R
i,r → 0 as r →∞ for i = 1, . . . , N , so that also

(B
R
1,r , . . . , B

R
N ,r)→ 0 as r →∞. We thus obtain

lim
r→∞
P
� N
⋂

i=1

�

W i,r ≥max{E[Bi] + ε, t i}
	

�

≤ lim
r→∞
P
� N
⋂

i=1

�

L i,r ≥ si; W i,r ≥ t i

	

�

≤ lim
r→∞
P
� N
⋂

i=1

�

W i,r ≥max{E[Bi]− ε, t i}
	

�

.

By taking the limit ε→ 0, an application of Theorem 3.3.1 and the notion that the distri-
bution of Ẑ has no discontinuity points yields the desired result.

COROLLARY 3.4.6. For the scaled queue length vector Lr , it holds that

Lr
d
→
�

1
E[B1]

, . . . ,
1
E[BN ]

�

Ẑ,

as r →∞, where Ẑ is defined as in Section 3.2.

PROOF. The desired statement follows immediately from Proposition 3.4.5 by taking t1 =
· · ·= tN = 0.

3.5 Application to the extended machine repair model

In this section, we apply the results obtained so far to the extended machine repair model.
It is evident that this model with the model assumptions as stated in Section 2.2 fits the
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framework of this chapter by taking N = 2, using {Φ(t), t ≥ 0}= {(Φ1(t),Φ2(t)), t ≥ 0} as
defined in Section 2.2 as the modulating Markov chain and choosing the state-dependent
service speeds asφi(ω) = 1{ωi=U} for anyω inS = {(U , U), (U , R), (R, U), (W, R), (R, W )}.
Observe that the generator Q that corresponds to the modulating Markov chain {Φ(t), t ≥
0} is now given by

Q =











−σ1 −σ2 σ2 σ1 0 0
ν2 −ν2 −σ1 0 σ1 0
ν1 0 −ν1 −σ2 0 σ2
0 0 ν2 −ν2 0
0 ν1 0 0 −ν1











.

We denote the elements of this matrix by qi, j , i, j ∈ S . Furthermore, we let qi = −qi,i be
the sum of the outgoing rates of state i. Recall that the invariant probability measure π
is the unique solution of the equations πQ = 0 and

∑

j∈S π j = 1.
In Section 3.5.1, we first study the remaining question of how to compute the cov-

ariance matrix Γ of the N -dimensional Brownian motion Z. More specifically, we obtain
expressions for the covariance terms γC

i, j for the extended machine repair model by using
results from the literature on Markov additive processes. We also compute the limiting
distributions of W r , Dr and Lr . Doing so in an exact fashion turns out to be hard.
Therefore, we study how to numerically obtain the limiting distributions by viewing Ẑ
as an N -dimensional semi-martingale reflected Brownian motion in Section 3.5.2. Based
on the resulting numerical computations, we conclude that the correlations between the
first-layer queues of the extended machine repair model and thus also the interactions
between the layers can be significant even in the heavy-traffic regime. Finally, in Section
3.5.3, we conclude by means of simulation that the distribution ofW r converges quickly
to the distribution of Ẑ as r →∞. Therefore, the heavy-traffic asymptotics constitute
useful approximations for stable systems with a considerable load.

3.5.1 Derivation of the covariance matrix

We now demonstrate how to compute expressions for the covariance matrix Γ of the N -
dimensional Brownian motion Z completely in terms of the model parameters. Although
we do this based on the case of the extended machine repair model, the following meth-
ods can also be used to find the covariance matrix Γ for any instance of the generic model
as described in Section 3.2 without any conceptual complications. By (3.4), it remains
to compute expressions for the covariance terms γC

i, j = limt→∞
1
t Cov[Ci(t), C j(t)] for all

i, j ∈ {1, . . . , N}. In order to compute these, observe that the increments of the pro-
cesses {Ci(t), t ≥ 0} and {C j(t), t ≥ 0} are conditionally independent given {Φ(t), t ≥ 0}.
Therefore, we can view {(Φ(t), Ci(t)), t ≥ 0}, {(Φ(t), C j(t)), t ≥ 0} and {(Φ(t), Ci(t) +
C j(t)), t ≥ 0} as Markov additive processes. For the definition and an overview of the
standard theory on Markov additive processes, see [19, Section XI.2]. As a consequence,
a functional central limit theorem for Markov additive processes obtained in [229] can
be applied to compute γC

i, j for all i, j ∈ {1, . . . , N}. Let ωref ∈ S be an arbitrary reference
state and let Tk be the k-th time after t = 0 that the Markov chain {Φ(t), t ≥ 0} enters
this state. Then, the results of [229] imply the following lemma.

LEMMA 3.5.1. Suppose that {Y (t), t ≥ 0} is a Markov-modulated drift process of which the
drift equals dk when the continuous-time Markov chain {Φ(t), t ≥ 0} is in state k ∈ S .
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Furthermore, suppose that |dk| < ∞ for each k ∈ S and that
∑

k∈S πkdk = 0. Then,
{ 1p

s Y (st), t ≥ 0} converges in distribution, as s→∞, to a driftless Brownian motion start-
ing at 0 with variance parameter

σ2
Y = 2

∑

k∈S

πk





d2
k

qk
+

∑

l∈S \{{k}∪{ωref}}

qk,l dk fl

qk



 , (3.31)

where the fl -parameters are the unique solution of the set of linear equations

fm =
dm

qm
+

∑

n∈S \{{m}∪{ωref}}

qm,n

qm
fn.

In particular, we have that limt→∞
1
t Var[Y (t)] = σ2

Y .

PROOF. The convergence in distribution immediately follows from [229, Theorem 3.4]
by taking X (t) = Φ(t) and Di, j = Vi, j = υi = 0 for all i, j ∈ {1, . . . , N} in the notation of
that paper. To show the result for the asymptotic variance of the modulated process Y ,
observe that M(t) =maxk:Tk≤t{k} counts the number of times the Markov chain returned
to the reference state up till time t, so that {M(t), t ≥ 0} can be interpreted as a (delayed)
renewal process. As a consequence,

lim
t→∞

Var[Y (t)]
t

= lim
t→∞

Var[Y (
∑M(t)

i=1 (Ti+1 − Ti))] + o(t)

t

= lim
t→∞

E[M(t)]Var[Y (T2 − T1)] + Var[M(t)]E[Y (T2 − T1)]2

t

= Var[Y (T2 − T1)] lim
t→∞

E[M(t)]
t

=
Var[Y (T2 − T1)]
E[T2 − T1]

.

Section 3 in [229] shows that Var[Y (T2− T1)] = E[(Y (T2− T1))2] = σ2
YE[T2−T1], which

concludes the proof.

We now apply this lemma to obtain the covariance matrix that corresponds to the
extended machine repair model. In particular, to compute σ2

C ,1, we study the process

Y (t) = C1(t)−E[C1(t)] = C1(t)− (π(U ,U) +π(U ,R))t

with conditional drift dk = 1{k∈{(U ,U),(U ,R)}}−(π(U ,U)+π(U ,R))when the modulating process
{Φ(t), t ≥ 0} resides in state k. As Var[Y (t)] = Var[C1(t)] for any t ≥ 0, an expression for
σ2

C ,1 is then readily given in Lemma 3.5.1 by (3.31). An expression for σ2
C ,2 can be found

similarly to the computations above or simply by interchanging the indices in the found
expression for σ2

C ,1. Observe that an expression for limt→∞
1
t Var[C1(t) + C2(t)] can also

be found using the same technique, but now considering the process

Y (t) = C1(t) + C2(t)− (E[C1(t) + C2(t)])
= C1(t) + C2(t)− (2π(U ,U) +π(U ,R) +π(R,U))t

instead with dk = 1{k∈{(U ,U),(U ,R)}} + 1{k∈{(U ,U),(R,U)}} − (2π(U ,U) + π(U ,R) + π(R,U)). Again,
it then holds that an expression for limt→∞

1
t Var[C1(t) + C2(t)] is given in (3.31). After
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these computations, the covariance matrix Γ can be expressed explicitly in terms of the
model parameters. The covariance parameters γC

1,1 and γC
2,2 are by definition equal toσ2

C ,1

and σ2
C ,2, for which we have already derived explicit expressions. As for the remaining

parameters, we have that both γC
1,2 and γC

2,1 are equal to

lim
t→∞

1
t

Cov[C1(t), C2(t)]

=
1
2

�

lim
t→∞

1
t

Var[C1(t) + C2(t)]− lim
t→∞

1
t

Var[C1(t)]− lim
t→∞

1
t

Var[C2(t)]
�

,

where all of the terms between the brackets in the right-hand side are now known. As
the rest of the terms appearing in (3.4) were already expressed in terms of the model
parameters, the covariance matrix Γ is now explicitly known.

3.5.2 Numerical evaluation of the limiting distribution of Ẑ

Now that Γ can be computed explicitly, we investigate in this section the joint distribu-
tion of Ẑ, the limiting distribution of the scaled workload W r , in stationarity. Since the
limiting distributions of Dr or Lr equal the distribution of Ẑ up to a scalar as observed
in Corollaries 3.4.2 and 3.4.6, the results also directly relate to the limiting distributions
of the scaled virtual waiting time and the scaled queue length.

To study the joint distribution of Ẑ as defined in Theorem 3.3.1, we first observe that
this distribution equals the stationary distribution of an N -dimensional semi-martingale
reflected Brownian motion. In particular, by the definitions of Z(t) and Ẑi(t) in Section
3.2 and Theorem 3.3.1, respectively, we have that the process Ẑ(t) = {Ẑ1(t), . . . , ẐN (t)}
satisfies

Ẑ(t) =

�

sup
s∈[0,t]

{Z1(s)}, . . . , sup
s∈[0,t]

{ZN (s)}
�

d
=

�

sup
s∈[0,t]

{Z1(t)− Z1(t − s)}, . . . , sup
s∈[0,t]

{ZN (t)− ZN (t − s)}
�

=
�

Z1(t)− inf
s∈[0,t]

{Z1(s)}, . . . , ZN (t)− inf
s∈[0,t]

{ZN (s)}
�

=Z(t) + RY (t),

where the equality in distribution follows since multi-dimensional Brownian motions are
time-reversible [32, Lemma II.2]. In this representation, R is the N × N identity matrix
and Y (t) = (Y1(t), . . . , YN (t)) = (− infs∈[0,t] {Z1(s)}, . . . ,− infs∈[0,t] {ZN (s)}). Observe that
{Y (t), t ≥ 0} is a continuous, non-decreasing process starting in 0, of which the elements
Yi can only increase at times t when Ẑi(t) = 0. A process with such a representation is
known to be a semi-martingale reflected Brownian motion on the state space RN

+ (see
e.g. [60, Section 7.4]). By letting t →∞, it is now clear that the joint distribution of Ẑ
coincides with the stationary distribution of a semi-martingale reflected Brownian motion
on the non-negative orthant with drift vector µ, covariance matrix Γ and reflection matrix
R.

In general, the computation of the stationary distribution of a multi-dimensional semi-
martingale reflected Brownian motion is a challenging problem. Although the semi-
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TABLE 3.1: Numerical results for several instances of the extended machine repair model.

Parameters Results
In

st
an

ce
no

.

β
1

β
2 E
[B

1
]

E
[B

2 1
]

E
[B

2
]

E
[B

2 2
]

σ
1

σ
2

ν
1

ν
2 E
[Ẑ

1
]

E
[Ẑ

2
]

C
or

r[
Ẑ 1

,Ẑ
2
]

1 1 1 1 2 1 2 1
10

1
10

1
10

1
10 4.33 4.33 0.274

2 1
2 1 1 2 1 2 1

10
1
10

1
10

1
10 8.67 4.33 0.228

3 1 1 1 5 1 5 1
10

1
10

1
10

1
10 5.83 5.83 0.195

4 1 1 1
2

1
2 2 8 1

5
1
20

1
5

1
20 3.84 7.18 0.446

5 1 1 1 2 1 2 1 1 1 1 1.33 1.33 0.080

6 1 1 1 2 1 2 1
20

1
20

1
5

1
5 2.06 2.06 0.124

martingale reflected Brownian motion corresponding to our model satisfies the condi-
tions derived in [119] for a unique stationary distribution to exist, it does not necessarily
satisfy the necessary requirements found in [120] for this distribution to have a product
form. Nonetheless, a numerical approach obtained in [70] to compute the stationary
distribution is applicable to our setting.

We now apply this numerical algorithm to the extended machine repair model and
observe several parameter effects. Observe that for the extended machine repair model,
R resolves to a 2×2 identity matrix and that the underlying Brownian motion {Z(t), t ≥ 0}
has a drift vector

µ=
�

−β1(π(U ,U) +π(U ,R)),−β2(π(U ,U) +π(R,U))
�

and a covariance matrix

Γ = diag

�

E[B2
1]

E[B1]
(π(U ,U) +π(U ,R)),

E[B2
2]

E[B2]
(π(U ,U) +π(R,U))

�

+ Γ C ,

where Γ C is a 2×2 matrix consisting of the elements γC
i, j computed in Section 3.5.1. For

a number of instances of the extended machine repair model, we have computed several
characteristics of the stationary distribution, such as the first two moments and the cross-
moment of Ẑ1 and Ẑ2. The results are summarised in Table 3.1, where for each of the
instances the found values for E[Ẑ1], E[Ẑ2] and the correlation coefficient

Corr[Ẑ1, Ẑ2] =
E[Ẑ1 Ẑ2]−E[Ẑ1]E[Ẑ2]

q

E[Ẑ2
1 ]−E[Ẑ1]2

q

E[Ẑ2
2 ]−E[Ẑ2]2

are given. Recall that the marginal distribution of Ẑi is exponential, so that E[Ẑ2
i ] =

2E[Ẑi]2. Observe also that the limiting distributions of Dr and Lr are equal to the dis-
tribution of Ẑ up to a scalar, so that Corr[Ẑ1, Ẑ2] does not only represent the correlation
coefficient pertaining to the limiting distribution of the scaled workload W r , but also
to that of the scaled virtual waiting time and the scaled queue length. It follows from
Table 3.1 that the competition between the machines of the repair facilities can be of
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TABLE 3.2: Simulation results for W 5,W 10 and W 20.

Results

In
st

an
ce

no
.

E
[W

1,
5
]

E
[W

1,
10
]

E
[W

1,
20
]

E
[W

2,
5
]

E
[W

2,
10
]

E
[W

2,
20
]

C
or

r[
W

1,
5
,W

2,
5
]

C
or

r[
W

1,
10

,W
2,

10
]

C
or

r[
W

1,
20

,W
2,

20
]

1 3.46 3.90 4.12 3.46 3.90 4.12 0.262 0.271 0.273

2 7.80 8.23 8.45 3.46 3.90 4.12 0.217 0.225 0.228

3 4.42 5.11 5.47 4.42 5.11 5.47 0.180 0.189 0.192

4 3.08 3.46 3.65 5.72 6.46 6.82 0.466 0.460 0.453

5 1.07 1.20 1.27 1.07 1.20 1.27 -0.053 0.001 0.044

6 1.64 1.85 1.95 1.64 1.85 1.95 0.121 0.126 0.125

such a level that the correlation coefficient pertaining to the queue lengths is significant.
Moreover, by taking the first instance as a reference, we observe that the correlation coef-
ficient is highly influenced by the relative convergence speed of the arrival rates (instance
no. 2), the variability of the service times (instance no. 3), the level of asymmetry in the
model parameters (instance no. 4), the frequency of machine breakdowns and speed of
machine repairs with respect to the arrivals and services of products (instance no. 5), and
the duration of the machine’s uptimes with respect to that of their repairs (instance no.
6).

3.5.3 Comparison with simulation results

We end this section with an assessment of the quality of the distribution of Ẑ as an ap-
proximation for the joint workload distribution in systems with a considerable load. In
Table 3.2, simulation results for the scaled workload W r corresponding to the values
r = 5,10, 20 are given for each of the instances given in Table 3.1. Recall that ρi = 1− βi

r ,
so that r = 5, 10,20 corresponds to ρi = 0.8, 0.9,0.95 if βi = 1. Thus, the values
r = 5,10, 20 represent systems that operate under a high load, as is often the case in
practice.

As expected, Tables 3.1 and 3.2 suggest that the distribution of Ẑ generally approx-
imates the distribution of W r well in terms of marginal means and the correlation coef-
ficient. In particular, the tables confirm that E[W i,r] converges to E[Ẑi] from below as
r → ∞ at a fast rate, so that E[Ẑi] is a provably useful upper bound close to the ac-
tual value of E[W i,r] for large r (i.e. significantly loaded systems). Surprisingly, the rate
at which E[W i,r] converges to E[Ẑi] does not seem to differ much between the model
instances. The slowest convergence occurs in the third model instance due to the high
variability of the service times, but it does not deviate much from the other instances. The
only outlying rate of convergence can be found in the expected scaled waiting time of the
first queue in the second model instance, where convergence is a lot faster. However, this
is obvious by the nature of our scaling, since β1 = 1/2 for that model instance instead of
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β1 = 1.
Furthermore, the values of Corr[Ẑ1, Ẑ2] given in Table 3.1 turn out to be accurate

approximations of the values Corr[W 1,r , W 2,r] given in Table 3.2 for almost all of the
model instances and any r ∈ {5, 10,20}. Thus, the limiting distribution seems to capture
the correlation structure between the queue lengths in the stable case rather well. One
can argue that the fifth model instance is an exception to this. However, due to the high
frequency of machine breakdowns and repairs, there hardly is any correlation between
the queues, making correlation coefficients hard to approximate accurately.
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4
CLOSED-FORM APPROXIMATIONS FOR

EXPECTED QUEUE LENGTHS

In this chapter, we construct two closed-form approximations for the expected queue
length of any first-layer queue in the extended machine repair model by using the light-
traffic and the heavy-traffic results derived in Chapters 2 and 3, respectively. The first
approximation is based only on the light-traffic asymptotics, and we show through a nu-
merical study that this approximation already performs surprisingly well for arbitrarily
loaded systems. Refinement of this approximation using the heavy-traffic behaviour of
the queue length distribution leads to a second approximation, which remains in closed
form, and its accuracy seems to be on par with that of numerical methods. These approx-
imations may prove to be very useful for optimisation purposes due to their accuracy and
their closed-form property.

4.1 Introduction

Based on the findings of Chapters 2 and 3, we now propose two approximations for the
mean queue lengths of the first-layer queues in the extended machine repair model. In
this chapter, we will present approximations for the queue length of Q1, the first queue of
products, but similar results for Q2, the second queue of products, are readily obtained by
interchanging indices. The first approximation is based on the light-traffic behaviour of
the mean queue length as studied in Chapter 2. More specifically, we assume that E[L1],
the mean queue length of Q1, can be seen as an analytic function of ρ̂1 in [0, 1), and
we choose this function such that its derivatives near ρ̂1 = 0 are in line with the coeffi-
cients f1(0), f1(1) and f1(2) as computed in Section 2.4.1 by the power-series algorithm,
i.e. the first few coefficients of f (k) in (2.10) corresponding to g(l,ϕ) = l1 and χ = ρ̂1
up to k = 2. As we will see, this approximation already achieves a very good accuracy.
Moreover, since the coefficients f1(0), f1(1) and f1(2) are known explicitly, the approxim-
ation can be expressed in closed form. Therefore, it is easily implementable and suitable
for optimisation purposes.

In an effort to further increase accuracy, we derive a second approximation, which
is also consistent with the heavy-traffic theorems obtained in Chapter 3. In principle,
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the idea behind this refined approximation is to interpolate between the derived light-
traffic and heavy-traffic asymptotics based on the value of ρ̂1. In the literature (see e.g.
[99, 206, 273]), such interpolation approximations have been proposed in the past to
approximate performance measures in the GI/G/1 queue and in queueing systems with
Poisson input. More recently, a similar interpolation approximation has been applied suc-
cessfully to approximate the mean waiting times in polling systems with renewal arrivals
[45], which has acted as a basis for a distributional waiting-time approximation in such
systems [P9]. Interpolation approximations derived in the spirit of these papers are also
often well-suited for optimisation purposes due to their simple form, as is demonstrated
in [P10].

The interpolation approximation that we derive in this chapter is still in closed form
and works even better than the first approximation in terms of accuracy, being indistin-
guishable from numerical results.

In the remainder of this chapter, we will use the model assumptions and the notation
introduced in Section 2.2. In Section 4.2, we derive the first approximation based on the
light-traffic asymptotics of the mean queue length and show by a numerical study that it
performs very well over a wide range of parameter settings. Subsequently, in Section 4.3,
we derive the second approximation, which also incorporates the correct heavy-traffic
behaviour. Finally, Section 4.4 presents a number of limiting cases of the model where
the approximation turns out to be exact.

4.2 Light-traffic approximation

In this section, we derive a light-traffic approximation for E[L1], the mean queue length
of Q1. The approximation, which we denote by E[LLT

1,app], is based on the symbolic closed-
form expressions f1(0), f1(1) and f1(2). We also numerically assess its accuracy.

4.2.1 Derivation

To derive an approximation for E[L1], recall that ρ̂1 =
λ1

µ1mC ,1
represents the level of satur-

ation of Q1. We consider the mean queue length of Q1 as a function h of ρ̂1. We assume
this function to be analytic on [0, 1). In other words, we assume that this function can be
written as

h(ρ̂1) =
∞
∑

n=0

f1(n)ρ̂
n
1 =

z(ρ̂1)
1− ρ̂1

(4.1)

for 0≤ ρ̂1 < 1, where

f1(n) =
h(n)(0)

n!
, z(ρ̂1) = f1(0) +

∞
∑

n=1

( f1(n)− f1(n− 1))ρ̂n
1 (4.2)

and h(n)(0) is the n-th derivative of h with respect to ρ̂1 evaluated at ρ̂1 = 0. Observe
that the power series (2.10) and (4.1) are equal when taking g(l,ϕ) = l1 and χ = ρ̂1.
As a consequence, although an exact expression for h(ρ̂1) is not known, the coefficients
f1(n), n = 0, 1, . . . can be computed using the computational scheme as given in Sec-
tion 2.3.2. In Section 2.4.1, we have already obtained symbolic closed-form expressions
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for f1(0) = 0, f1(1) and f1(2) in the model parameters µ1,σ1,σ2,ν1 and ν2. Since h(ρ̂1)
is guaranteed to exist, we approximate the value of z(ρ̂1). When numerically observing
the first few terms of the series { f1(i)− f1(i − 1), i > 0} using the computational scheme
of Section 2.3.2, we generally see that they are moderate in absolute value, but more im-
portantly, alternate in sign. This even seems to be the case when this series is divergent.
Because of this and the decreasing nature of ρ̂n

1 in n, we may assume that the first two
terms alone already approximate this sum well. In other words, since f1(0) equals zero,
we have that z(ρ̂1) should be well approximated by f1(1)ρ̂1 + ( f1(2) − f1(1))ρ̂2

1 . From
this observation, a light-traffic approximation for E[L1] follows immediately.

APPROXIMATION 4.2.1. In the extended machine repair model, a closed-form approximation
for the mean queue length of Q1 is given by

E[LLT
1,app] =

aρ̂1 + bρ̂2
1

1− ρ̂1
, (4.3)

where a = f1(1) and b = f1(2) − f1(1). The coefficients f1(1) and f1(2) are computed in
Section 2.4.1.

An extensive numerical study in the next section shows that Approximation 4.2.1 per-
forms very well in terms of accuracy. Furthermore, because the approximation is given
in a simple and closed form, it is very easy to implement and suitable for optimisation
purposes.

4.2.2 Accuracy

To numerically assess the accuracy of Approximation 4.2.1, we apply the light-traffic ap-
proximation to a number of systems and compare it to values of the mean queue length of
Q1 obtained by numerical methods. The complete test bed of instances that we analysed
contains 675 different combinations of parameter values, all listed in Table 4.1. This table
lists multiple values for the normalised load of Q1 (i.e. ρ̂1), the breakdown rates of M1
and M2 (i.e. σ1 and σ2) and the repair rates of M1 and M2 (i.e. ν1 and ν2). In particular,
these rates are varied in the order of magnitude through the values aσi and aνi , and in the
imbalance through the values bσj and bνj , as specified in the table. As a consequence, the
breakdown rates (σ1,σ2) and the repair rates (ν1,ν2) run from (0.1,0.1), being small
and perfectly balanced, to (50,10), being large and significantly imbalanced. The service
requirements of type-1 products are assumed to be exponentially (1) distributed.

For each of the model instances corresponding to each of the parameter combinations
in Table 4.1, we compare E[LLT

1,app], the approximated mean queue length of Q1, to numer-
ically computed values of E[L1], the mean queue length of Q1. In most cases, we have
computed the numerical values for E[L1] using the power-series algorithm numerically
with M = 39. In these cases, the power series in (2.10) converges and thus produces val-
ues with high precision in less time than simulation would (although the time needed is
still significant). The numerical error made in truncating this power series can then be es-
timated by computing

∑∞
i=M+1χ

k f (M), which evaluated to a number less than 2× 10−5

times the actual computed value for E[L1] in the worst case, and is on average much
smaller. For some cases where the uptimes and repair times are on average much longer
than the interarrival and service times, lengthy simulation runs were used to compute the
numerical values.
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TABLE 4.1: Parameter values of the test bed used to compare the light-traffic approxima-
tion to numerical results.

Parameter Considered parameter values

ρ1 {0.25,0.5, 0.75}

µ1 {1}

(σ1,σ2) aσi · b
σ
j ∀i, j,

where aσ = {0.1,1, 10} and bσ = {(1,1), (1,2), (2,1), (1,5), (5, 1)}

(ν1,ν2) aνi · b
ν
j ∀i, j,

where aν = {0.1,1, 10} and bν = {(1,1), (1,2), (2, 1), (1, 5), (5, 1)}

Subsequently, we compute the relative error of these approximations. In other words,
for every instance of the testbed, we compute

∆= 100%×

�

�

�

�

�

E[LLT
1,app]−E[L1]

E[L1]

�

�

�

�

�

.

The average value of the errors corresponding to the instances is roughly 0.05%. The
largest error encountered in this test bed has an average value of ∆= 1.72% and corres-
ponds to the system with model parameters ρ̂1 = 0.75 and σ1 = σ2 = ν1 = ν2 = 0.1.
This is a system for which the breakdowns and repairs occur on the slowest time scale
compared to the interarrival times and service times of the products in the first queue.

In Table 4.2, the mean values of ∆ are given for each category of the variables in
Table 4.1. We see in Table 4.2(a) that the accuracy of the approximation increases as the
load offered to Q1 decreases. This is not surprising, as the approximation is exact in light
traffic by construction. From Tables 4.2(b) and 4.2(c), it is clear that the approximation
is sensitive to the magnitude of the breakdown rates and repair rates. As will become
evident in Section 4.4, the approximation becomes exact as some of these variables tend
to zero or infinity. Moreover, according to Tables 4.2(d) and 4.2(e), the approximation is
less sensitive to imbalance in the second layer of the system.

Based on these results, we conclude that the approximation works very well in gen-
eral. The accuracy may degrade slightly when breakdown rates and repair rates are very
small compared to the arrival and service rate of type-1 products. To illustrate this, re-
gard a system with µ1 = 1 and σ1 = σ2 = ν1 = ν2 = 0.001. In Figure 4.1, we plot
the light-traffic approximation E[LLT

1,app] for this system along with numerical values for
E[L1], both as a function of ρ̂1. In this extreme example,∆ grows up to roughly 6% as ρ̂1
nears one. However, the light-traffic approximation remains very well suited for optim-
isation purposes. The shapes of the curves of E[LLT

1,app] and E[L1] still match each other
well. Therefore, using the derived light-traffic approximation in an optimisation function
instead of an exact expression if it had been available, should result in an optimum that
is close to the true optimum.



4.3 INTERPOLATION APPROXIMATION 63

TABLE 4.2: Mean percentual relative error ∆ categorised in ρ1 (a), aσi (b), aνi (c), bσj (d)
and bνj (e).

(a)

ρ̂1 0.25 0.5 0.75

Mean rel. error ∆ 0.01% 0.05% 0.10%

(b)

aσi 0.1 1 10

Mean rel. error ∆ 0.15% 0.01% 0.00%

(c)

aνi 0.1 1 10

Mean rel. error ∆ 0.15% 0.01% 0.00%

(d)

bσj (1, 1) (1, 2) (2, 1) (1, 5) (5, 1)

Mean rel. error ∆ 0.07% 0.06% 0.07% 0.03% 0.04%

(e)

bνj (1, 1) (1, 2) (2, 1) (1, 5) (5, 1)

Mean rel. error ∆ 0.07% 0.06% 0.03% 0.04% 0.07%

4.3 Interpolation approximation

Approximation 4.2.1 satisfies the light-traffic limits found by the power-series algorithm,
and we have seen that it already performs very well for arbitrarily loaded systems. Nev-
ertheless, the accuracy degrades slightly as ρ̂1 nears one. To increase the performance
in this region, we refine the approximation so that it also satisfies known heavy-traffic
behaviour. More specifically, we will now also require that the approximation, as ρ̂1
approaches one, coincides with the mean of the limiting queue length distribution as
computed in Section 3. The refined approximation, which we denote by E[LIP

1,app], inter-
polates between the light-traffic and heavy-traffic limits on the basis of ρ̂1, and we will
hence also refer to it as the interpolation approximation. To derive this approximation,
we again assume the form E[LIP

1,app] =
r(ρ̂1)
1−ρ̂1

, where r(ρ̂1) is a polynomial function in ρ̂1.
Note that this form is in line with previously derived interpolation approximations in the
literature [45, 99, 206, 273].

Recall that in Approximation 4.2.1, r(ρ̂1)was chosen to be a second-order polynomial.
Now that we have the additional requirement of satisfying heavy-traffic behaviour, we
choose r(ρ̂1) to be a third-order polynomial. In short, we impose the following constraints
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FIGURE 4.1: E[LLT
1,app] (solid curve) and E[L1] (dashed curve) as a function of ρ̂1.

on the interpolation approximation. First, we require the approximated mean waiting
time at ρ̂1 = 0 and its first two derivatives with respect to ρ̂1 evaluated at the same point
to be equal to the corresponding exact values obtained by the power-series algorithm:
1. E[LIP

1,app]|ρ̂1=0 = E[L1]|ρ̂1=0 = f1(0) = 0,

2. d
dρ̂1
E[LIP

1,app]|ρ̂1=0 =
d

dρ̂1
E[L1]|ρ̂1=0 = f1(1),

3. d2

dρ̂2
1
E[LIP

1,app]|ρ̂1=0 =
d2

dρ̂2
1
E[L1]|ρ̂1=0 = 2 f1(1) + 2 f1(2).

Moreover, we require the interpolation approximation to coincide with the mean of the
heavy-traffic limiting distribution of the queue length. By taking β1 = 1 in the framework
of Chapter 3 and recalling that service times are exponentially (µ1) distributed, we have
by Remark 3.3.1 that in heavy traffic, the (scaled) queue length of Q1 is exponentially

distributed with mean 1+
µ1σ

2
C ,1

2mC ,1
. Thus, we require that

4. limρ̂1↑1E[(1− ρ̂1)LIP
1,app] = 1+

µ1σ
2
C ,1

2mC ,1
.

Recall that we already computed a closed-form expression for the variance parameterσ2
C ,1

in Section 3.5.1, so that this mean is completely known. The assumptions and constraints
above now fully determine the following approximation.

APPROXIMATION 4.3.1. In the extended machine repair model, a closed-form approximation
for the mean queue length of Q1 is given by

E[LIP
1,app] =

aρ̂1 + bρ̂2
1 + cρ̂3

1

1− ρ̂1
, (4.4)

where a = f1(1), b = f1(2)− f1(1) and c = 1+
µ1σ

2
C ,1

2mC ,1
− f1(2). The coefficients f1(1), f1(2) and

the variance parameter σ2
C ,1 are computed in Section 2.4.1 and Section 3.5.1, respectively.

We end this section by observing that Approximation 4.3.1 performs extremely well in
terms of accuracy. When comparing results of this interpolation approximation for each
of the cases displayed in Table 4.1 to the numerical values computed in Section 4.2.2 to
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inspect the accuracy of the light-traffic approximation, we find that the size differences
are of the same order as the expected accuracy error of the numerical methods. However,
the computational effort needed to apply the interpolation approximation is, due to its
closed-form nature, much less than that of any numerical method.

As the accuracy of the interpolation approximation seems to be comparable to that of
numerical methods, it is hard to observe any possible parameter effects. Nevertheless, sev-
eral conjectures can be made about the sensitivity of the accuracy of Approximation 4.3.1
to the model parameters. For example, as the approximation satisfies light-traffic and
heavy-traffic results, its accuracy is assumed to be best for ρ̂1 values close to zero or
one. Furthermore, as the interpolation approximation includes the ingredients used to
construct the light-traffic approximation, it is reasonable to assume that the accuracy of
the interpolation approximation is also sensitive to the magnitude of the breakdown and
repair rates similarly to Approximation 4.2.1.

REMARK 4.3.1. We proposed Approximations 4.2.1 and 4.3.1 for a model with two queues
and one repairman. However, similar strategies to those used in this section lead to ac-
curate approximations for models with larger numbers of queues and repairmen. To ob-
tain the light-traffic terms a and b, the implementation of the power-series algorithm
must be adapted, as suggested in Remark 2.3.4. For the heavy-traffic term, the results
from Chapter 3 still apply. However, expressions for mC ,1 and σ2

C ,1 must be recomputed
based on the adapted cumulative service process {C1(t), t ≥ 0}. Similarly, when relaxing
the model to allow for phase-type distributed service times, breakdown times and repair
times, we can still apply the power-series algorithm to obtain light-traffic results, as ex-
plained in Remark 2.3.3. As for the heavy-traffic term, again only the expressions for mC ,1
and σ2

C ,1 have to be recomputed.

4.4 Behaviour in asymptotic regimes

We conclude this chapter by commenting on the behaviour of Approximation 4.2.1 and
Approximation 4.3.1 in asymptotic instances of the extended machine repair model.

Light traffic and heavy traffic By construction, both the light-traffic and the interpola-
tion approximations are exact for systems where Q1 is lightly loaded, i.e. systems where
λ1 tends to zero. Furthermore, the interpolation approximation coincides with the mean
of the limiting distribution of the scaled queue length (1− ρ̂1)L1 when ρ̂1 tends to one.
The latter property is highly desirable from a practical perspective, as one is often inter-
ested in cases where the queues are heavily loaded. For example, in manufacturing, one
is typically interested in maximising the utilisation of the machines without significantly
deteriorating the performance of the system.

No M1-breakdowns In case M1 never breaks down (i.e. σ1 = 0), both the light-traffic
approximation and the interpolation approximation are exact. When there are no M1-
breakdowns, Q1 behaves like a regular M/M/1 queue. For the M/M/1 model, it is known
that

E[L1] =
∞
∑

n=0

ρ̂n+1
1 =

ρ̂1

1− ρ̂1
. (4.5)
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Since M1 never breaks down, we obviously have that mC ,1 = 1 and σ2
C ,1 = 0. Moreover,

we have that f1(1)|σ1=0 = f1(2)|σ1=0 = 1. Therefore, it is easy to see that (4.3), (4.4) and
(4.5) coincide when there are no M1-breakdowns.

No M2-breakdowns or instant M2-repairs In case M2 does not require any repair time
from the repairman, both approximations are exact as well. Downtimes of M1 then only
consist of the actual repair times and are exponentially (ν1) distributed. Let the comple-
tion time C of a type-1 product be the time between the start of its service period and
the moment it leaves the system. It is easily verified that Q1 in isolation can be modelled
as an M/G/1 queue with server vacations starting at epochs when the queue becomes
empty. We refer to this vacation queue as Y . We obtain the expected queue length of
Q1 in this limiting regime by studying the mean queue length E[LY ] of the equivalent
vacation queue Y . The service times in Y correspond to the completion times in Q1, and
the vacation times in Y are composed of the idle times of M1 plus the downtimes cor-
responding to breakdowns that occurred when there was no product in Q1. Due to the
Fuhrmann-Cooper decomposition property [102] applied to Y , the mean queue length of
Y can be decomposed as follows:

E[LY ] = E[LM/G/1] +E[LY |Y in vacation period]. (4.6)

The first term in the right-hand side corresponds to the expected queue length in an
M/G/1 queue similar to Y , but where the server does not incur any vacations. The second
term is the mean queue length in Y observed at a point in time at which the server is on
vacation. By standard methods, we find after some trivial computations that

E[LY |Y in vacation period] =
λ1

ν1

σ1

σ1 + ν1
.

This result is not surprising, as this expression equals the mean number of Poisson arrivals
during a past part of a downtime D1, which is exponentially (ν1) distributed, times the
probability σ1

σ1+ν1
that a product arriving in an empty system finds the machine not in an

operational state, but in need of repair.
Furthermore, it is well known that

E[LM/G/1] = λ1E[C] +
λ2

1E[C
2]

2(1−λ1E[C])
.

The moments E[C] and E[C2] of the completion time can be determined by using the
relation C = B1+

∑N(B1)
i=1 Vi , where Vi is the duration of the i-th downtime incurred within

the completion time C . The random variable N(B1) denotes the number of breakdowns
during the service period B1 and is Poisson (σ1B1) distributed. The downtimes Vi are
exponentially (ν1) distributed, as a downtime now only consists of a single repair time.
This relation leads to the following Laplace-Stieltjes transform of the completion time:

E[e−sC] = E[e−s(B1+
∑N(B1)

i=1 Vi)] =

∫ ∞

t=0

e−stE[e−s
∑N(t)

i=1 Vi ]dP(B1 < t)

=

∫ ∞

t=0

e−st

�∞
∑

x=0

E[e−sV1]x e−σ1 t (σ1 t)x

x!

�

dP(B1 < t)
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= E[e−(s+σ1(1−E[e−sV1 ]))B1] =
µ1

µ1 + s+σ1(1−
ν1
ν1+s )

,

out of which the moments of C follow by differentiating with respect to s and substituting
s = 0:

E[C] =
ν1 +σ1

µ1ν1
and E[C2] =

2
�

µ1σ1 + (ν1 +σ1) 2
�

µ2
1ν

2
1

.

Since M2 requires no repair time, we have that mC ,1 =
ν1

σ1+ν1
and ρ̂1 =

λ1
µ1

σ1+ν1
ν1

. By
combining the results above,

E[L1] =

�

1+ σ1µ1
(σ1+ν1)2

�

ρ̂1

1− ρ̂1
. (4.7)

One can show that f1(1)|σ2=0 = f1(2)|σ2=0 = f1(1)|ν2→∞ = f1(2)|ν2→∞ = 1 + σ1µ1
(σ1+ν1)2

.

Since (4.7) is also exact in the limit ρ̂1 → 1, the heavy-traffic term 1+
µ1σ

2
C ,1

2mC ,1
also equals

this value. Because of these observations, (4.3), (4.4) and (4.7) coincide whenever there
are no M2-breakdowns or M2-repairs are instant.



68 CLOSED-FORM APPROXIMATIONS FOR EXPECTED QUEUE LENGTHS



5
APPROXIMATIONS FOR THE COMPLETE

QUEUE LENGTH DISTRIBUTION

This chapter aims to find approximations for the complete (marginal) queue length dis-
tributions of the first-layer queues in the extended machine repair model. We do so by
drawing a connection between a first-layer queue and a single-server queue with correl-
ated server downtimes. Based on a careful study of the second layer of the extended
machine repair model, we make an explicit assumption on the form of the dependence
between the consecutive downtimes of a machine, which holds approximately. We ana-
lyse the complete queue length distribution of the single-server queue with this downtime
structure and use the results to approximate the queue length distributions in the exten-
ded machine repair model. By means of a numerical study, we subsequently show this
approximation to be highly accurate.

5.1 Introduction

To approximate the complete queue length distribution of a first-layer queue, we regard
this queue as a single-server queue in isolation. In Section 1.3.1, we observed that the
consecutive downtimes of each machine exhibit autocorrelation. Therefore, we model
the first-layer queue as an M/G/1 queue with interdependent vacation lengths in order
to capture these correlations. More specifically, we use the following approach:

1. For the single-server queue, we use an explicit, generic dependence form for the va-
cation lengths and obtain approximate yet very accurate results for the queue length
distribution.

2. For the extended machine repair model, we compute several characteristics of the
downtime structure, such as the first two moments of the downtime distribution and
the correlation coefficient of the consecutive downtimes of a machine.

3. We choose the parameters of the generic dependence form of the single-server model
so that they match the downtime characteristics of the extended machine repair model
computed in the previous step.
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Thus, we use the results from step one with the parameters from step two as an approx-
imation for the marginal queue length distributions of the first-layer queue.

As mentioned in Section 1.3.1, a similar approach has been used by Wartenhorst in
[269] to derive approximations for the first two moments of the queue length distribu-
tion. In that study, Wartenhorst assumes exponential service times, and equal uptime and
repair-time distributions for the machines. These are assumptions that we generalise in
this chapter. Wartenhorst subsequently approximates the first two moments of a first-layer
queue by computing those of a single-server vacation queue where the distribution of the
vacation lengths is taken to be equal to that of the machine’s downtimes in the extended
machine repair model, but the vacation lengths are assumed to be completely independ-
ent. The resulting approximation is exact by construction for a system where downtimes
are independent and accurate whenever downtimes are only slightly dependent. Since
the dependence is completely ignored, this approximation becomes more inaccurate as
the dependence increases. In this chapter, we explicitly model the dependence, thus im-
proving accuracy greatly, and obtain an approximation for the complete distribution of the
queue length.

The M/G/1 queue with server vacations has been studied extensively; see e.g. [84, 85]
for surveys. Often, vacation lengths or downtimes are assumed to be independent of any
other event in the system. Exceptions can be found in [118], where vacation lengths
are dependent on the number of customers in the system, and in [53], where vacation
lengths are dependent on the length of the previous active period of the server. In the
context of polling systems, vacation queues with interdependent vacation lengths have
been considered in [18, 93, 108]. However, in that context, the start of a server vacation is
usually confined to a point in time at which the server concludes the service of a customer.
This is not the case in the current context, where a machine can break down at any point
in time.

The rest of this chapter is structured as follows. Section 5.2 provides in detail the
model assumptions that we use in this chapter to study the extended machine repair
model and introduces the single-server model, its dependence structure and all of the
notation required. In Section 5.3, we analyse the queue length distribution of the single-
server queue at various time epochs. This results in an approximate expression for the
(probability generating function of the) steady-state queue length distribution at an ar-
bitrary point in time. We believe this result to be of independent interest, but our main
goal is to apply this result to the extended machine repair model. By connecting both
models, the approximate expression for the queue length distribution of the single-server
queue also leads to an approximation for the marginal queue length distribution of the
corresponding first-layer queue in the extended machine repair model. The latter ap-
proximation forms the main result of this chapter and is discussed in Section 5.4. Finally,
Section 5.5 provides extensive numerical results showing that the obtained approximation
is highly accurate and identifies the factors determining the level of accuracy.

5.2 Model description and notation

In this section, we state our model assumptions for the extended machine repair model,
and we introduce the single-server queue with its specific dependence structure, along
with all the necessary notation.
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The extended machine repair model When it concerns the extended machine repair
model, we mostly follow the model assumptions and notation as introduced in Sections
1.3.1 and 2.2. We only deviate from the previous assumptions when it concerns the service
times of the products. In this chapter, we assume the service times of type-i products to
be generally distributed according to some random variable Bi . The Laplace-Stieltjes
transform E[e−sBi ] corresponding to this random variable is denoted by eBi(s). The load
offered to Q i is then defined as ρi = λiE[Bi]. Note that Q i is stable if ρi <

E[Ui]
E[Ui]+E[Di]

.
Finally, we assume a pre-emptive repeat policy: when a machine breaks down, the service
of a product in progress is aborted and will be restarted once the machine is operational
again.

The single-server model In the single-server model, the queue is fed by a Poisson pro-
cess with parameter λ. The service time B required by arriving customers is generally
distributed. The uptime U from the moment a server has just ended a vacation period
until the start of the next one is exponentially distributed with parameter σ. After this
time period U , the server starts a vacation for D time units (a downtime). If a job is in ser-
vice when the server starts a vacation, all of the work done on the job is lost and processing
of the job is restarted once the server ends its vacation (pre-emptive repeat). The Laplace-
Stieltjes transform corresponding to the service time, E[e−sB], is denoted by eB(s). Like-
wise, the downtime D is represented by the Laplace-Stieltjes transform eD(s) = E[e−sD].
The steady-state queue length of the queue, including the job in service, is denoted by L.
It will prove convenient to regard the queue length distribution at specific time epochs.
To this end, let M and N denote the queue length at the beginning and the end of an
arbitrary downtime, respectively.

This model differs from most vacation queues studied in literature, because in our
case the durations of vacations (or breakdowns) are dependent. In particular, we as-
sume these durations to be one-dependent; i.e. we assume that the duration of a vacation
directly depends on the duration of the preceding vacation. Given the duration of the pre-
ceding vacation, however, it does not depend on even earlier vacations. We use a generic
dependence structure that can be used to model positive correlations between consecut-
ive downtimes. We describe the dependence structure of the downtimes by specifying the
Laplace-Stieltjes transform of a downtime D(k+1) conditioned on its previous downtime
D(k):

E[e−sD(k+1)|D(k) = t] = χ(s)e−g(s)t , (5.1)

where χ(s) and g(s) are analytic functions in s with χ(0) = 1− g(0) = 1. This generic
dependence structure is introduced in [47] to model positive correlation between two
random variables. It can be interpreted as follows. The downtime D(k + 1) consists
of an independent component, which is represented by the Laplace-Stieltjes transform
χ(s), and a component dependent on the previous downtime, which is represented by
e−g(s)t . In particular, if one assumes that g(s) has a completely monotone derivative (i.e.
(−1)n+1 dn

dsn g(s) ≥ 0 for all n ≥ 1), then e−g(s) is the Laplace-Stieltjes transform of an
infinitely divisible distribution (see [96, p. 450]). We will use this assumption in the
proof of Lemma 5.3.1.

To give an indication of how rich the class of dependence structures that satisfy (5.1)
is, note that the class of infinitely divisible distributions is strongly connected to the class of
Lévy processes (see e.g. [154, Chapter 1]). In particular, for a Lévy process {X (t), t ≥ 0},
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one has E[e−sX (t)] = e−g(s)t , where g(s) is a function with a completely monotone derivat-
ive. Thus, D(k+1) consists of a time component independent from the previous downtime
D(k) and another component, the value of which is that of a Lévy process observed at a
time which is governed by D(k). For several examples of dependence structures that (5.1)
covers, see e.g. [47] or [267].

In the extended machine repair model, a downtime can also be thought of as the
sum of an independent component (e.g. the repair time) and a component dependent on
the previous downtime (the waiting time). Therefore, the functions χ(s) and g(s) can
be chosen in such a way that they together represent the distribution and the depend-
ence of these downtimes closely. As we discuss in Section 5.4, (5.1) does not model the
downtimes of the extended machine repair model perfectly. However, as we will see in
Section 5.5, it is a good fit.

Note that the functions χ(s) and g(s) determine the stationary downtime D. In par-
ticular, in stationarity it holds that E[e−sD(k+1)] = E[e−sD(k)] = eD(s), so we have that

eD(s) =

∫ ∞

t=0

χ(s)e−g(s)t dP(D < t) = χ(s)eD(g(s)). (5.2)

As a result, the first two moments are given by

E[D] = −eD′(0) =
χ ′(0)

g ′(0)− 1
and

E[D2] = eD′′(0) =
χ ′′(0)−E[D](2χ ′(0)g ′(0) + g ′′(0))

1− g ′(0)2
. (5.3)

By iterating (5.2), one obtains an explicit expression for eD(s):

eD(s) =
∞
∏

j=0

χ(g( j)(s)), (5.4)

where g(0)(s) = s and g( j)(s) = g(g( j−1)(s)). The bivariate Laplace-Stieltjes transform of
D(k) and D(k+ 1) is given by

E[e−s1 D(k)−s2 D(k+1)] =

∫ ∞

t=0

e−s1 tE[e−s2 D(k+1)|D(k) = t]dP(D(k)< t)

= χ(s2)E[e−(s1+g(s2))D(k)], (5.5)

out of which the cross-moment of two consecutive downtimes D(k) and D(k+ 1) can be
derived:

E[D(k)D(k+ 1)] =
∂

∂ s1

∂

∂ s2
χ(s2)E[e−(s1+g(s2))D(k)]

�

�

�

s1=0,s2=0

= −χ ′(0)E[D(k)] + g ′(0)E[D(k)2]. (5.6)

We obtain an expression for the bivariate Laplace-Stieltjes transform of D(k) and D(k+1)
as k→∞ by combining (5.4) and (5.5):

lim
k→∞
E[e−s1 D(k)−s2 D(k+1)] = χ(s2)

∞
∏

j=0

χ(g( j)(s1 + g(s2))).
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FIGURE 5.1: Two server up/down cycles.

Finally, the stability condition for the single-server model is given by

ρ = λE[B]<
E[U]

E[U] +E[D]
.

5.3 Approximating the single-server model

We now focus on the queue length distribution of the single-server model with one-
dependent vacation lengths. In particular, we derive an accurate approximation of the
probability generating function of the queue length distribution. We later use this result
to derive approximations for the extended machine repair model.

We first derive an approximation for the probability generating function of the distri-
bution of N , the queue length at the beginning of an uptime, by studying the transient
behaviour of the queue for two server up/down cycles. An observation length of one cycle
would not suffice, since we explicitly need to take the dependence between consecutive
downtimes (and thus dependence between cycle lengths) into account. Thus, we observe
the system in its k-th uptime U(k) as well as the following k-th downtime D(k) and in
the periods U(k+ 1) and D(k+ 1) thereafter. Referring to the queue length at the end of
an uptime as M , let N(k), M(k), N(k+1), M(k+1) be the corresponding queue lengths;
see Figure 5.1. For k→∞, we obviously have that

E[zN(k)] = E[zN(k+2)] = E[zN ]. (5.7)

In Section 5.3.1, we derive another expression ofE[zN(k+2)] in terms ofE[zN(k)], which
holds approximately. We do this by deriving and connecting expressions for E[zM(k)] in
E[zN(k)], E[zN(k+1)] in E[zM(k)] etc. We then approximate E[zN ] in Section 5.3.2 by com-
bining the two expressions for E[zN(k+2)] in E[zN(k)] as k → ∞. In Section 5.3.3, we
use the results for the embedded times to obtain approximate expressions for E[zM ] and
E[zL], the probability generating functions corresponding to the queue length at the end
of an uptime and at an arbitrary point in time, respectively. We conclude the analysis of
the single-server model in Section 5.3.4 by illustrating the effects of dependence in down-
times. We believe that the analysis of a single-server queue with dependence between
successive vacations is not only useful for studying the extended machine repair model,
but is also of independent interest.

5.3.1 Behaviour of the queue length in two server up/down cycles

To obtain a relation between E[zN(k+2)] and E[zN(k)], we observe the way the queue
length evolves in each of the periods U(k), D(k), U(k+ 1) and D(k+ 1). Connecting the
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results then leads to an expression for E[zN(k+2)] in terms of E[zN(k)].

5.3.1.1 The queue length distribution during the first uptime

We first derive a relation between E[zM(k)] and E[zN(k)]. During the first uptime U(k),
the server is accepting and processing customers. This means that the queue length in
this period of time evolves similarly to the length of a regular M/G/1 queue during an
exponential (σ) interval. This M/G/1 queue has the same customer arrival process and
the same service time distribution, but does not have any service interruptions or server
downtimes.

A relation between the probability generating functions of the queue length distri-
bution at the beginning and the end of an exponentially distributed time interval in
an M/G/1 queue can be obtained from the transition probabilities of the queue length
between these two points in time. In [67, p. 246], these transition probabilities are de-
rived as well as the resulting relation between the queue lengths at the beginning and the
end of an exponentially distributed time interval. The relation between M(k) and N(k)
in our context immediately follows:

E[zM(k)] = A(z)E[zN(k)] + K(z)E[eµN(k)(σ)], (5.8)

where

A(z) =
σ

σ+λ(1− z)
z(1− eB(σ+λ(1− z)))

z − eB(σ+λ(1− z))
,

K(z) = −
σ

σ+λ(1− eµ(σ))
(1− z)eB(σ+λ(1− z))

z − eB(σ+λ(1− z))

and where eµ(σ) is the Laplace-Stieltjes transform of (the distribution of) a busy period
in the regular M/G/1 queue evaluated at σ. The value eµ(σ) is the unique root of the
expression z − eB(σ+λ(1− z)) with |eµ(σ)| < 1 (for a proof of uniqueness, see [232, pp.
47–49]). Therefore, eµ(σ) is a pole of both A(z) and K(z), but these poles compensate
each other. More specifically, by standard methods, we find the following result, which
we will need in the sequel:

lim
z→eµ(σ)

�

A(z) + K(z)
�

= lim
z→eµ(σ)

�

σ

σ+λ(1− z)

+
�

σ

σ+λ(1− z)
−

σ

σ+λ(1− eµ(σ))

�

(1− z)eB(σ+λ(1− z))

z − eB(σ+λ(1− z))

�

=
σ

σ+λ(1− eµ(σ))
+

λeµ(σ)σ(1− eµ(σ))
�

1+λeB′(σ+λ(1− eµ(σ)))
��

σ+λ(1− eµ(σ)))2
. (5.9)

5.3.1.2 The queue length distribution during the first downtime

During the first downtime D(k), the server does not process any customers. Therefore,
the queue length increases by the number of customer arrivals in this period. More spe-
cifically, the difference between M(k) and N(k + 1) is exactly the number of Poisson ar-
rivals during D(k). It will prove convenient in later calculations to condition on the event
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D(k) = t for any t ∈ R+. Let H(t) be Poisson (λt) distributed, i.e. the number of Poisson
arrivals during D(k) = t. Observe that when downtimes exhibit autocorrelation, H(t)
and M(k) are both correlated with the duration of the downtime preceding D(k) and are
thus interdependent too. To keep the analysis tractable, however, we assume that there
is no interdependence between these two quantities; see also Section 5.3.1.6. As a result,
we obtain the following approximate relation between E[zN(k+1)|D(k) = t] and E[zM(k)]:

E[zN(k+1)|D(k) = t] = E[zM(k)+H(t)]

≈ E[zM(k)]
∞
∑

i=0

z ie−λt (λt)i

i!
= E[zM(k)]e−λ(1−z)t . (5.10)

5.3.1.3 The queue length distribution during the second uptime

We now obtain a relation between E[zM(k+1)|D(k) = t] and E[zN(k+1)|D(k) = t]. During
the second uptime U(k+ 1), the server is processing customers for an exponentially (σ)
distributed amount of time, which means that the analysis is largely the same as the
analysis of the queue length during the first uptime U(k). The only difference stems from
the fact that we now choose to condition on the event D(k) = t in order to be able to
concatenate all the results later on. Analogous to (5.8), we find

E[zM(k+1)|D(k) = t] = A(z)E[zN(k+1)|D(k) = t]

+ K(z)E[eµN(k+1)(σ)|D(k) = t]. (5.11)

5.3.1.4 The queue length distribution during the second downtime

To obtain a relation between E[zN(k+2)|D(k) = t] and E[zM(k+1)|D(k) = t], note that the
server is not processing customers during the period D(k+1), which again means that the
difference between M(k+1) and N(k+2) is equal to the number of Poisson arrivals during
the period D(k+1). As described by (5.1), D(k+1) is dependent on D(k). Therefore, the
previously introduced conditioning on the event D(k) = t for t ∈ R+ is convenient at this
point. By extending the analysis resulting in (5.10) to the second downtime conditional
on the duration of the first downtime and implementing the dependence in (5.1), we
obtain the following relation:

E[zN(k+2)|D(k) = t] =

∫ ∞

u=0

E[zM(k+1)+H(u)|D(k) = t] dP(D(k+ 1)< u|D(k) = t)

=

∫ ∞

u=0

E[zM(k+1)|D(k) = t]e−λ(1−z)u dP(D(k+ 1)< u|D(k) = t)

= E[zM(k+1)|D(k) = t]E[e−λ(1−z)D(k+1)|D(k) = t]

= E[zM(k+1)|D(k) = t]χ(λ(1− z))e−g(λ(1−z))t , (5.12)

where E[zH(u)] = e−λ(1−z)u is the probability generating function corresponding to the
number of Poisson arrivals during a time period with duration u.
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5.3.1.5 Connecting all periods

Connecting the individual results corresponding to each of the periods, we now derive
an expression for the conditional probability generating function E[zN(k+2)|D(k) = t] in
terms of E[zN(k)]. Keeping in mind (5.9) and the fact that eµ(σ) is a pole of A(z) and K(z),
we note that for the substitution of E[eµM(k)(σ)], the following important observation
holds:

lim
z→eµ(σ)

E[zM(k)] = lim
z→eµ(σ)

∞
∑

i=0

�

A(z)z i + K(z)eµi(σ)
�

P(N(k) = i)

=
∞
∑

i=0

�

lim
z→eµ(σ)

�

A(z) + K(z)
�

eµi(σ) + lim
z→eµ(σ)

�

A(z)(z i − eµi(σ))
�

�

P(N(k) = i)

=
∞
∑

i=0

�

lim
z→eµ(σ)

�

A(z) + K(z)
�

eµi(σ)

+
σ(1− eµ(σ))

(σ+λ(1− eµ(σ)))(1+λeB′(σ+λ(1− eµ(σ))))
ieµi(σ)

�

P(N(k) = i)

=
�

lim
z→eµ(σ)

�

A(z) + K(z)
�

�

E[eµN(k)(σ)]

+
σ(1− eµ(σ))

(σ+λ(1− eµ(σ)))(1+λeB′(σ+λ(1− eµ(σ))))
E[N(k)eµN(k)(σ)].

As a result, an extra term containing the expression E[N(k)eµN(k)(σ)] arises in the expres-
sion for E[zN(k+2)|D(k) = t]. More specifically, by combining (5.8), (5.10), (5.11) and
(5.12), we obtain

E[zN(k+2)|D(k) = t]

≈ χ(λ(1− z))A2(z)e−(λ(1−z)+g(λ(1−z)))tE[zN(k)]

+χ(λ(1− z))K(z)
�

A(z)e−(g(λ(1−z))+λ(1−z))t

+ lim
p→eµ(σ)

�

A(p) + K(p)
�

e−(g(λ(1−z))+λ(1−eµ(σ)))t
�

E[eµN(k)(σ)]

+χ(λ(1− z))K(z)e−(g(λ(1−z))+λ(1−eµ(σ)))t

×
σ(1− eµ(σ))

(σ+λ(1− eµ(σ)))(1+λeB′(σ+λ(1− eµ(σ))))
E[N(k)eµN(k)(σ)]. (5.13)

In the course of the previous calculations, we conditioned on the event D(k) = t. In
the expression for E[zN(k+2)|D(k) = t], we see that the value t is only found in the form
e−st(s ≥ 0), meaning that unconditioning leads to expressions in terms of the Laplace-
Stieltjes transform eD(·):

E[zN(k+2)]≈
∫ ∞

t=0

E[zN(k+2)|D(k) = t]dP(D(k)< t)

= E(z)E[zN(k)] + F(z)E[eµN(k)(σ)] + G(z)E[N(k)eµN(k)(σ)], (5.14)
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where

E(z) = χ(λ(1− z))A2(z)eD(λ(1− z) + g(λ(1− z))),

F(z) = χ(λ(1− z))K(z)
�

A(z)eD(λ(1− z) + g(λ(1− z)))

+ eD(λ(1− eµ(σ)) + g(λ(1− z))) lim
p→eµ(σ)

(A(p) + K(p))
�

,

G(z) = χ(λ(1− z))K(z)eD(λ(1− eµ(σ)) + g(λ(1− z)))

×
σ(1− eµ(σ))

(σ+λ(1− eµ(σ)))(1+λeB(σ+λ(1− eµ(σ))))
. (5.15)

This expression gives a relation between E[zN(k+2)] and E[zN(k)].

5.3.1.6 A note on the approximation assumptions made

Except when the downtimes are completely independent (i.e. g(s) = 0), the relation
between E[zN(k+2)] and E[zN(k)] given in (5.14) only holds approximately as opposed to
exactly. This is the case, since (5.14) is among other expressions based on (5.10). The
latter expression is approximate of nature, since we assumed D(k), the k-th downtime,
and M(k), the queue length at the end of the k-th uptime, to be independent. In reality,
this is not the case, since D(k) and M(k) are both correlated with D(k−1), the period of
downtime preceding D(k). Thus, these two quantities are mutually correlated too.

When we drop the approximation assumption of independence between D(k) and
M(k), however, the analysis becomes considerably harder. To account for the dependence,
one would have to condition throughout on the event D(k − 1) = s instead of the event
D(k) = t. Equivalent expressions to (5.8), (5.10), (5.11) and (5.12) can still be obtained
in the same fashion as before:

E[zM(k) | D(k− 1) = s] = A(z)E[zN(k) | D(k− 1) = s] + K(z)E[eµN(k)(σ) | D(k− 1) = s],

E[zN(k+1) | D(k− 1) = s] = E[zM(k) | D(k− 1) = s]χ(λ(1− z))e−g(λ(1−z))s,

E[zM(k+1) | D(k− 1) = s] = A(z)E[zN(k+1) | D(k− 1) = s]

+ K(z)E[eµN(k+1)(σ) | D(k− 1) = s]

and

E[zN(k+2) | D(k− 1) = s] = E[zM(k+1) | D(k− 1) = s]

×χ(λ(1− z))χ(g(λ(1− z)))e−g(g(λ(1−z)))s.

Concatenating these results leads to a relation of the following form:

E[zN(k+2) | D(k− 1) = s] = E(s, z)E[zN(k) | D(k− 1) = s]

+ F(s, z)E[µN(k)(σ) | D(k− 1) = s]

+ G(s, z)E[N(k)µN(k)(σ) | D(k− 1) = s].

Extracting a relation between E[zN(k+2)] and E[zN(k)] from this expression is not straight-
forward, as s appears in both the coefficients and the expectations of the right-hand side
of this equation.
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Observe, however, that the assumed independence between D(k) and M(k) is the only
source of approximation error that we introduce in the entire Section 5.3. Moreover, nu-
merical results suggest that this approximation error is generally very small. In fact, the
correlation between the downtimes needs to be very strong in order for the approxima-
tion error to be noticeable. As the main goal of this chapter is to derive an approximation
for the (marginal) queue length distribution of the first-layer queues in the extended ma-
chine repair model, we choose not to extensively discuss these numerical experiments.
Instead, in Section 5.5, we will present and discuss numerical results for the approxima-
tion that we eventually obtain for the extended machine repair model. It will turn out that
the accuracy of this final approximation is very good, while this approximation actually
includes another source of error that we introduce in Section 5.4 to connect the single
server model and the extended machine repair model.

5.3.2 Queue length at the beginning of an arbitrary uptime

We now obtain an expression for E[zN ] = limk→∞E[zN(k)]. Combining (5.7) and (5.14),
we find

E[zN ]≈
F(z)E[eµN (σ)] + G(z)E[N eµN (σ)]

1− E(z)
(5.16)

with E(z), F(z) and G(z) as given in (5.15). Observe that this expression has two unknown
constants E[eµN (σ)] and E[N eµN (σ)]. We show that these constants can be obtained ap-
proximately as the solution of a system of two linear equations. These two equations lead
to a unique solution for E[eµN (σ)] and E[N eµN (σ)]. We derive them below. Expressions
for the constants immediately follow.

The case z = 1 Since the left-hand side of (5.16) evaluates to one for z = 1 and F(1) =
G(1) = 1− E(1) = 0, we have for the right-hand side that

lim
z→1

F(z)E[eµN (σ)] + G(z)E[N eµN (σ)]
1− E(z)

= −
F ′(1)E[eµN (σ)] + G′(1)E[N eµN (σ)]

E′(1)
≈ 1

by l’Hôpital’s rule. Since E(z), F(z) and G(z) are each differentiable at z = 1, this results
in the first linear equation in the two unknowns E[eµN (σ)] and E[N eµN (σ)].

The case z = φ The denominator 1− E(z) of (5.16) has a root z = φ between zero and
eµ(σ)< 1. More specifically, the following lemma holds.

LEMMA 5.3.1. The denominator 1− E(z) has exactly one root on the real line in the domain
(0, eµ(σ)).

PROOF. See Appendix 5.A.

Let φ be the unique root mentioned in Lemma 5.3.1. Since E[zN ] is analytic in z
for |z| ≤ 1 and thus cannot evaluate to ±∞ for 0 < z < eµ(σ), we have that this
root should also be a root for the numerator. Hence, we have that F(φ)E[eµN (σ)] +
G(φ)E[N eµN (σ)] = 0.
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Combining (5.16) with the cases z = 1 and z = φ, we conclude that the probability
generating function corresponding to the queue length at the beginning of an arbitrary
uptime is well approximated by

E[zN ]≈
F(z)E[eµN (σ)] + G(z)E[N eµN (σ)]

1− E(z)
, (5.17)

where

E[eµN (σ)]≈
E′(1)G(φ)

F(φ)G′(1)− F ′(1)G(φ)
and E[N eµN (σ)]≈

E′(1)F(φ)
F ′(1)G(φ)− F(φ)G′(1)

.

5.3.3 Queue length at an arbitrary point in time

The main goal of this section is to study the probability generating function of the queue
length distribution at an arbitrary point in time. To obtain an approximate expression for
this function, we expand the results of the previous section. An expression for the probab-
ility generating function E[zM ] of the queue length at the start of an arbitrary downtime
is easily derived from the probability generating function E[zN ] of the queue length at
the start of an arbitrary uptime. We then derive an expression for the probability generat-
ing functions corresponding to the queue length observed at an arbitrary point within an
uptime and the queue length observed at an arbitrary point within a downtime, respect-
ively. As a result, we finally obtain an approximate expression for E[zL], the probability
generating function corresponding to the queue length at an arbitrary point in time.

5.3.3.1 Observing the queue length during an arbitrary uptime

To obtain the distribution of the queue length at an arbitrary point during an arbitrary
uptime, we first derive an expression for E[zM ]. By letting k →∞ in (5.10) after the
necessary integration to remove the condition D(k) = t, we obtain

E[zN ]≈ lim
k→∞

∫ ∞

t=0

E[zM(k)]e−λ(1−z)t dP(D(k)< t) = E[zM ]eD(λ(1− z)). (5.18)

Next, we make use of the following lemma.

LEMMA 5.3.2. The probability generating function corresponding to the queue length at an
arbitrary point in an uptime satisfies

E[zL |server up] = E[zM ].

PROOF. Let V (t) be the number of vacation initiations of the server in (0, t]. Note that
V (t) is a doubly stochastic process, where during the uptime of a server, initiations of
vacations occur according to a Poisson process with rate σ, whereas they obviously occur
with rate zero when the server is already on a vacation. The conditional PASTA property
(cf. [257]) applied to V (t) implies that the queue length distribution at the start of a
vacation equals the queue length distribution at an arbitrary point in time during an
uptime.
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Combining (5.18) with Lemma 5.3.2 now yields that

E[zL |server up]≈
E[zN ]

eD(λ(1− z))
, (5.19)

where E[zN ] is (approximately) given by (5.17).

REMARK 5.3.1. An expression for E[zM ] into E[zN ] is also readily given by (5.8) when
taking the limit k → ∞. Using Lemma 5.3.2, this expression leads to an alternative
expression for the probability generating function of the queue length distribution when
observed during a downtime:

E[zL |server up] = A(z)E[zN ] + K(z)E[eµN (σ)],

where A(z), K(z) and eµ(σ) are defined as before.

5.3.3.2 Observing the queue length during a downtime

At an arbitrary point in time during a downtime, the number of customers in the sys-
tem can be decomposed into the number of customers already waiting at the end of the
previous uptime M and the number of customers who arrived during the elapsed time
Dpast since the start of the current downtime, which we denote by H(Dpast). Note that
M and H(Dpast) are not independent. A large value of M may imply that the previous
downtime has been very long. Due to the positive correlation between the downtimes as
assumed in both models, this would in turn imply that the current downtime is probably
longer than usual as well. The duration of the current downtime and its past part Dpast

are obviously dependent, which results in the fact that M and H(Dpast) are dependent.
Using the notation illustrated in Figure 5.1, we obtain

E[zL |server down] = E[zM+H(Dpast )]

= lim
k→∞

∫ ∞

0

E[zM(k+1)|D(k) = t]E[zH(Dpast (k+1))|D(k) = t]dP(D(k)< t). (5.20)

From the intermediate calculations leading to (5.14) (or by simply combining (5.12) and
(5.13)), we have that

lim
k→∞
E[zM(k+1)|D(k) = t]≈

2
∑

i=1

qi(z)e
−ri(z)t , (5.21)

where

q1(z) = A(z)(A(z)E[zN ] + K(z)E[eµN (σ)]), (5.22)

q2(z) = K(z)
��

lim
p→eµ(σ)

(A(p) + K(p))
�

E[eµN (σ)] (5.23)

+
σ(1− eµ(σ))

(σ+λ(1− eµ(σ)))(1+λeB′(σ+λ(1− eµ(σ))))
E[N eµN (σ)]

�

,

r1(z) = λ(1− z) and r2(z) = λ(1− eµ(σ)). (5.24)
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Furthermore, from (5.1), we obtain

E[zH(Dpast (k+1))|D(k) = t] = E[e−λ(1−z)Dpast (k+1)|D(k) = t]

=
1−E[e−λ(1−z)D(k+1)|D(k) = t]
λ(1− z)E[D(k+ 1)|D(k) = t]

=
1−χ(λ(1− z))e−g(λ(1−z))t

λ(1− z)(g ′(0)t −χ ′(0))
. (5.25)

Combining (5.21)–(5.25), we have that the evaluation of (5.20) involves the computation
of a linear combination of integrals with the form

∫ ∞

t=0

e−at

bt + c
dP(D < t) =

∫ ∞

t=0

∫ ∞

u=0

e−(at+(bt+c)u)du dP(D < t).

By interchanging the integrals, this expression reduces to

κa,b(c) =

∫ ∞

0

e−cu
eD(a+ bu)du,

i.e. the Laplace transform of the function eD(a+ bu). Combining all of the results, we have
that the probability generating function of the queue length distribution at an arbitrary
point in a downtime is approximately given by

E[zL |server down] (5.26)

≈
∫ ∞

t=0

�

2
∑

i=1

qi(z)e
−ri(z)t

1−χ(λ(1− z))e−g(λ(1−z))t

λ(1− z)(g ′(0)t −χ ′(0))

�

dP(D < t)

=
1

λ(1− z)

2
∑

i=1

qi(z)
�

κri(z),g ′(0)(−χ
′(0))

−χ(λ(1− z))κri(z)+g(λ(1−z)),g ′(0)(−χ ′(0))
�

, (5.27)

where κa,b(c) =
∫∞

0 e−cu
eD(a + bu)du. Note that in case eD(·) is not explicitly known by

inspecting (5.2), one can still evaluate κa,b(c) up to arbitrary precision by truncating the
infinite product in (5.4).

5.3.3.3 Deriving the general queue length distribution

From the results derived for the queue length conditioned on the different states of the
server, an approximation for the unconditional queue length distribution of the single-
server model can be derived, which results in the following statement.

APPROXIMATION 5.3.3. The probability generating function of the queue length distribution
in the single-server model with one-dependent downtimes is given by

E[zL] = pupE[zL |server up] + pdownE[zL |server down], (5.28)

where

pup =
E[U]

E[U] +E[D]
=

1
1+σE[D]

and pdown =
E[D]

E[U] +E[D]
=

σE[D]
1+σE[D]

, (5.29)
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and approximate expressions for E[zL |server up] and E[zL |server down] are given by (5.19)
and (5.27), respectively.

The weights pup and pdown are the probabilities that one finds the server up and
down, respectively, when observing the system at a random point in time in steady state.
These probabilities are derived through the straightforward application of Palm theory
(cf. [23, 220]) and involve the computation of E[U] and E[D]. The former is determ-
ined by the fact that U is exponentially (σ) distributed, and the latter follows from (5.3).
In Section 5.4, we will use this approximation obtained for the (probability generating
function of the) queue length distribution of the single-server model as a basis for the
derivation of an approximation for the marginal queue length distribution of a first-layer
queue in the extended machine repair model.

REMARK 5.3.2. Observe that the evaluation of Approximation 5.3.3 involves the evalu-
ation of several values of the Laplace-Stieltjes transform eD(·). Whenever the Laplace-
Stieltjes transform cannot be derived by solving the functional equation (5.2), computing
the values of eD(·) is not possible in an exact fashion. However, we can use the infinite-
product representation (5.4) to derive these values up to arbitrary precision. This product
converges fast and therefore truncation leads to an arbitrarily accurate approximation.
The numerical experiments in Section 5.5 also confirm this fast convergence.

REMARK 5.3.3. The analysis of the single-server queue as presented in this section can be
extended to dependence forms that are different from (5.1). For example, for Markov-
modulated dependencies the same strategy can be used to obtain approximate expressions
for the queue length distributions. Slight adaptations have to be made in the computa-
tions, starting with the conditional Laplace-Stieltjes transform in (5.12).

5.3.4 A note on the impact of dependence

Now that we have obtained an accurate approximation of the probability generating func-
tion of the queue length distribution, we numerically study the influence of the downtime
dependence on the queue length distribution. We will show that the level of dependence
between the downtimes influences the queue length distribution considerably. Observe
an instance of the single-server model where λ = 3, the service time B is exponentially
distributed with rate 5 and the uptime U of the server is exponentially distributed with
rate 1/3. In this particular example, the downtime of the server consists of multiple ex-
ponential phases. The number of phases of which a downtime D(k+1) consists depends
on the previous downtime D(k):

D(k+ 1)
d
=C1 + · · ·+ CJ(D(k))+1, (5.30)

where the Ci , which represent the phases, are independent and exponentially (δ) dis-
tributed, δ > 1, and J(D(k)) is Poisson distributed with parameter D(k). This implies
that

E[e−sD(k+1)|D(k) = t] =
∞
∑

j=0

E[e−s(C1+
∑ j+1

i=2 Ci)]e−t t j

j!
= E[e−sC1]

∞
∑

j=0

E[e−sC1] je−t t j

j!

= E[e−sC1]e−(1−E[e
−sC1 ])t .
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FIGURE 5.2: The percentual relative difference∆ in E[L] between the dependent and the
independent model for various values of the correlation coefficient r.

Therefore, we have that χ(s) = E[e−sC1] = δ
δ+s and g(s) = 1 − E[e−sC1] = s

δ+s . The
stationary downtime is exponentially (δ − 1) distributed, since (5.2) is satisfied for its
Laplace-Stieltjes transform eD(s) = δ−1

δ−1+s . Observe that the stationary downtime distribu-
tion only exists for δ > 1.

We compare the model above with its ‘independent counterpart’, namely a single-
server queue with the same interarrival, service, uptime and stationary downtime distri-
butions as before, but with mutually independent downtimes. The independent down-
times also fit in the dependence structure of (5.1) by simply setting g(s) = 0 for all s. Since
the stationary downtime distribution is exponentially (δ−1) distributed, we trivially have
for the independent model that χ(s) = eD(s) = δ−1

δ−1+s and g(s) = 0.
To see the effect of the dependencies, we compare E[Ldep], the (approximated) expec-

ted queue length in the dependent model, with E[Lindep], the expected queue length of
the independent model. These values are obtained by evaluating the derivative of (5.28)
at z = 1. We compute the percentual relative difference of both quantities, i.e.

∆= 100%×
E[Ldep]−E[Lindep]
E[Lindep]

,

for varying values of δ such that the load of the system varies between 0.6 and 1. For
the dependent model, the value of δ determines the correlation coefficient between two
consecutive downtimes in steady state, which we denote by r. More specifically, by the
definition of the correlation coefficient, we have that

r =
limk→∞E[D(k)D(k+ 1)]− (E[D])2

E[D2]− (E[D])2
. (5.31)

This expression can be given in terms of δ by using (5.3) and (5.6). For the independent
model, the correlation coefficient between the downtimes obviously equals zero at all
times. Figure 5.2 shows the value of ∆ as a function of the correlation r as observed in
the dependent model. We see in this figure that ∆ equals zero for r = 0, while ∆ grows
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as high as 25% for increasing r. This figure shows that the correlation in the downtimes
can have a large impact on the queue length and should thus not be ignored.

5.4 Approximating the extended machine repair model

In this section, we use Approximation 5.3.3 to derive an approximation for the marginal
queue length distributions in the extended machine repair model. We do this by con-
necting the single-server model with the extended machine-repair model, which requires
another approximation step. To connect these models, we observe that arrival streams,
service times and uptimes are equivalent for both models. To describe the downtime dis-
tribution and the dependence of the downtimes in the extended machine repair model in
terms of the parameters of the single-server model as well as possible, we need to obtain
suitable choices for the functions χ(s) and g(s), which are used in (5.1). When invest-
igating Li , the queue length of Q i , we choose suitable functions χi(s) and gi(s) that are
specific to Mi , i = 1,2. The resulting explicit downtime structure matches the downtime
distribution and downtime dependence of the downtimes of Mi in the extended machine
repair model closely, but does not model it exactly. Thus, apart from the approximation
assumption discussed in Section 5.3.1.6, this forms another source of approximation er-
ror. However, numerical results in Section 5.5 will show the final approximation to be
very accurate.

Evidently, the accuracy of the final approximation depends among other things on
the quality of the choices for χi(s) and gi(s). Therefore, we first focus on how to choose
these functions appropriately. For this purpose, we compute in Section 5.4.1 the first two
moments and the correlation coefficient of consecutive downtimes in the extended ma-
chine repair model. Based on these numbers, Section 5.4.2 derives suitable choices for
the functions χi(s) and gi(s) such that they match the situation in the extended machine
repair model as well as possible. After these preliminary steps, we combine these results
with those of the previous section to obtain an approximation for the (probability gener-
ating function of the) distribution of Li , which is one of the main results of this chapter,
in Section 5.4.3. This approximation is applicable for the extended machine repair model
with two machines and a single repairman. However, the approach we follow remains
valid for more general models. We discuss this in Section 5.4.4.

5.4.1 Moments and the correlation coefficient of the downtimes

In this section, we focus on exponential repair times. The analysis can be extended to
phase-type repair times, but at the cost of more cumbersome expressions that offer little
additional insight. We derive the first two moments of the stationary downtime distribu-
tion of machine M1 as well as the correlation coefficient between two consecutive down-
times D1(k) and D1(k + 1) in steady state (i.e. for k →∞). We do this by studying the
two-dimensional Laplace-Stieltjes transform E[e−s1 D1(k)−s2 D1(k+1)]. Evidently, a downtime
D1(k) can be decomposed into a waiting time W1(k) and a repair time R1(k). The wait-
ing time W1(k) is either zero when M2 is operational at the time of breakdown of M1 or
amounts to an exponentially (ν2) distributed residual of the repair time of M2 otherwise.

Assume that the repairman repairs M1 and M2 at rate ν1 and ν2, respectively. As noted
before, machines interfere with each other in the extended machine repair model through
their downtimes. More specifically, we have that a lengthy repair time of M1 may increase
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the waiting time in the next downtime of M2. At the same time, a lengthy downtime for
M2 may have an increasing influence on the next waiting time of M1. Therefore, R1(k) and
W1(k+1) are positively correlated. Thus, the two-dimensional Laplace-Stieltjes transform
of two consecutive downtimes may be written as

E[e−s1 D1(k)−s2 D1(k+1)]

= E[e−s1W1(k)]E[e−s2R1(k+1)]

∫ ∞

0

e−s1 yE[e−s2W1(k+1)|R1(k) = y]ν1e−ν1 y d y. (5.32)

Since R1(k + 1) is exponentially (ν1) distributed (i.e. E[e−s2R1(k+1)] = ν1
ν1+s2

), only the

transforms E[e−s1W1(k)] and E[e−s2W1(k+1)|R1(k) = y] remain to be computed.
First, we derive E[e−s1W1(k)]. Just before M1 breaks down, either M2 is up and running,

or M2 is in repair. The probability of either event happening is derived by studying the
embedded discrete-time Markov chain of the machine states at epochs where any machine
breaks down, starts being repaired or ends a repair period. Let Xn = (X1,n, X2,n) denote
the state of the machines after the n-th transition. As before, we represent the state of Mi
being up, waiting for repair or being in repair after the n-th transition by X i,n = U , X i,n = R
or X i,n = W , respectively. Observe that {Xn, n ≥ 0} is a discrete-time Markov chain on
the state space S as given in Section 2.2. It naturally follows that the non-zero transition
probabilities pi, j from state i ∈ S to state j ∈ S are given by p(U ,U),(R,U) = 1−p(U ,U),(U ,R) =
σ1

σ1+σ2
, p(U ,R),(U ,U) = 1 − p(U ,R),(W,R) =

ν2
σ1+ν2

, p(R,U),(U ,U) = 1 − p(R,U),(R,W ) =
ν1

ν1+σ2
and

p(W,R),(R,U) = p(R,W ),(U ,R) = 1. The discrete-time Markov chain is irreducible and aperiodic,
hence a unique limiting distribution π′ for {Xn, n ≥ 0} exists and can be derived. Given
this distribution, the probability of an arbitrary transition being an event where M1 breaks
down equals π′(U ,U)p(U ,U),(R,U)+π′(U ,R)p(U ,R),(W,R). The probability zup (zdown) of M2 working
(being in repair), given that M1 breaks down next transition, is thus given by

zup =
π′(U ,U)p(U ,U),(R,U)

π′(U ,U)p(U ,U),(R,U) +π′(U ,R)p(U ,R),(W,R)
=

σ1ν1 + (σ2 + ν1)ν2

(σ2 + ν1) (σ1 +σ2 + ν2)
,

zdown =
π′(U ,R)p(U ,R),(W,R)

π′(U ,U)p(U ,U),(R,U) +π′(U ,R)p(U ,R),(W,R)
=

σ2 (σ1 +σ2 + ν1)
(σ2 + ν1) (σ1 +σ2 + ν2)

.

Hence, M1 has to wait with probability zdown, whereas it does not with probability zup.
Therefore, we have that

E[e−s1W1(k)] = zup + zdown
ν2

ν2 + s1

=
s1σ1ν1 + s1(σ2 + ν1)ν2 + (σ2 + ν1)ν2(σ1 +σ2 + ν2)

(σ2 + ν1)(s1 + ν2)(σ1 +σ2 + ν2)
.

For E[e−s2W1(k+1)|R1(k) = y], we first conclude that at the moment M1 is taken into repair
for y time units, M2 must be working. After these y time units, we have a probability
e−ν2 y of M2 having broken down in the meantime, whereas it is still functioning with
probability 1− e−ν2 y . Given the former event that M2 is still working at the end of R1(k),
there is a probability u that M2 is in repair when M1 breaks down again, i.e. at the start of
W1(k+1). Due to the memoryless property of the exponential distribution, this probability
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u is easily determined by the fixed point equation

u=
σ2

σ1 +σ2

�

σ1

σ1 + ν2
+

ν2

σ1 + ν2
u
�

,

which leads to
u=

σ2

σ1 +σ2 + ν2
.

This allows us to determine the probability w that M2 is in repair at the start of W1(k+1),
given that M2 was waiting for repair at the end of R1(k):

w=
σ1

σ1 + ν2
+

ν2

σ1 + ν2
u=

σ1 +σ2

σ1 +σ2 + ν2
.

Taking these probabilities together, we have that W1(k + 1) is exponentially (ν2) distrib-
uted with probability e−ν2 yu + (1 − e−ν2 y)w and equals zero with probability e−ν2 y(1 −
u) + (1− e−ν2 y)(1−w). Thus,

E[e−s2W1(k+1)|R1(k) = y]

=
�

e−ν2 yu+ (1− e−ν2 y)w
� ν2

ν2 + s2
+ e−ν2 y(1− u) + (1− e−ν2 y)(1−w)

= e−ν2 y σ2ν2 + (σ1 + ν2)(ν2 + s2)
(σ1 +σ2 + ν2)(ν2 + s2)

+ (1− e−ν2 y)
(σ1 +σ2)ν2 + (ν2 + s2)ν2

(σ1 +σ2 + ν2)(ν2 + s2)
.

One can now compute E[e−(s1 D1(k)+s2 D1(k+1))] using (5.32). By differentiation, we obtain
the moments of D1 and the autocovariance

Cov[D1(k), D1(k+ 1)] =
σ1σ2

(σ2 + ν1)2ν2(σ1 +σ2 + ν2)
. (5.33)

The correlation coefficient between D1(k) and D1(k+1) is now obtained by dividing this
expression by the variance of the stationary downtime D. Now that the first two moments
of the stationary downtime distribution, as well as the correlation coefficient, are known,
we can approximate the queue length of Q1 in the extended machine repair model with
the result on the queue length in the single-server model.

REMARK 5.4.1. The covariance as given in (5.33) and the resulting correlation coefficient
both evaluate to zero when σ1 or σ2 is zero, or when σ2, ν1 or ν2 tends to infinity. If
either σ1 or σ2 is zero, one of the machines essentially never breaks down and there is no
interference between the machines. When σ2 tends to infinity, there is no correlation in
the downtimes of M1 either, since M2 is practically always down. Therefore, every single
downtime of M1 will consist of a repair time of M1 plus a residual repair time of M2,
which are both independent of anything else. When ν1 tends to infinity, M1 essentially
does not require any repair time from the repairman and M2 will never have to wait
for the repairman to become idle. As a result, the downtimes of M2 are independent.
A waiting time for M1 then comes down to either zero when M2 is up, or the residual
part of an M2 repair. As the points in time at which a repair of M2 is initiated are not
biased by the breakdowns of M1, the downtimes of M1 are independent as well in that
case. Equivalently, when ν2 tends to infinity, M2 does not require any repair time from
the repairman, which means that downtimes of M2 do not influence downtimes of M1.
As a result, there is no correlation in the downtimes of M1 in this case either.
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REMARK 5.4.2. For the case σ1 = σ2 and ν1 = ν2, an expression for the Laplace-Stieltjes
transform E[e−s1W1(k)] can also be obtained using the arrival theorem (cf. [156]), which
states that in a closed queueing network, the stationary state probabilities at instants at
which customers arrive at a service unit are equal to the stationary state probabilities at
arbitrary times for the network with one less customer. This implies that the probability
distribution of the state of M2 (either up or in repair) at a time M1 breaks down is equal
to the steady-state distribution of the state of M2 in a system with σ1 = 0, but with σ2
and ν2 left unchanged. In such a system, M2 is the only machine requiring attention of
the repairman, which greatly simplifies the analysis.

5.4.2 Choosing the appropriate dependence functions

In order to use Approximation 5.3.3 as an approximation for the probability generating
function corresponding to Li in the extended machine repair model, we need to identify
suitable expressions for the functions χi(s) and gi(s). These functions need to match the
dependence in the downtimes of Mi as well as possible; i.e. the expressions for (5.5) and
(5.32) need to agree as much as possible. The quality of the choices for the functions
directly influences the accuracy of the approximation, as they are the only source of er-
ror introduced. In order to obtain suitable expressions for χi(s) and gi(s), we perform
two-moment fits commonly used in literature. To this end, the first two moments of the
distributions represented by the Laplace-Stieltjes transforms χi(s) and e−gi(s) must be de-
termined. We do this based on expressions for χ ′i (0), χ

′′
i (0), g ′i(0) and g ′′i (0), which we

obtain by combining (5.3) and (5.6) with results for the first two moments of the down-
time distribution and the correlation coefficient of the consecutive downtimes. These
depend on the distributions of the repair times R1 and R2, among others. For exponential
repair-time distributions, the results required were obtained in Section 5.4.1 by inspection
of the embedded discrete-time Markov chain {Xn, n ≥ 0}. By using the same methods,
similar results can be obtained for phase-type repair times.

5.4.2.1 Obtaining derivatives of the dependence functions

To obtain values for χ ′i (0), χ
′′
i (0), g ′i(0) and g ′′i (0), we solve a set of equations. In Sec-

tion 5.4.1, we have expressed E[Di], E[D2
i ] and limk→∞E[Di(k)Di(k + 1)] in terms of

the parameters of the extended machine repair model. By (5.3) and (5.6), we have that
these expressions are related to the functions χi(·) and gi(·) as follows:

E[Di] =
χ ′i (0)

g ′i(0)− 1
,

E[D2
i ] =

χ ′′i (0)−E[Di](2χ ′i (0)g
′
i(0) + g ′′i (0))

1− g ′i(0)2
,

E[Di(k)Di(k+ 1)] = −χ ′i (0)E[Di] + g ′i(0)E[D
2
i ]. (5.34)

These three equations in four unknowns fix values for χ ′i (0) and g ′i(0), but leave one
degree of freedom in the determination of χ ′′i (0) and g ′′i (0). This freedom can be used
to fine-tune the model. For example, one might assume the independent component of
the downtime to be distributed according to a certain distribution. This would lead to an
additional equation for χ ′′i (0) in terms of χ ′i (0), which then also fixes values for χ ′′i (0)
and g ′′i (0).
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5.4.2.2 Expressions for the dependence functions

We now determine suitable expressions for χi(·) and gi(·). For this purpose, there are
many approaches possible. Below, we base the choices of χi(·) and gi(·) on two-moment
approximations. To apply these two-moment approximations, we use the squared coef-
ficient of variation, which for a random variable Z is defined as c2

Z = Var[Z]/E[Z]2 =
E[Z2]
E[Z]2 − 1.

Using the derivatives of the dependence function, we obtain the first two moments
of the distributions represented by the Laplace-Stieltjes transforms χi(s) and e−gi(s). As
explained in Section 5.2, the function χi(s) is the Laplace-Stieltjes transform correspond-
ing to a random variable representing the independent component of the downtime. The
first two moments of this component are given by −χ ′i (0) and χ ′′i (0), respectively, and the

squared coefficient of variation is consequently given by
χ ′′i (0)
(χ ′i (0))2

− 1. The function e−gi(s)

is the Laplace-Stieltjes transform of an infinitely divisible distribution, namely the distri-
bution of the incremental component of D(k + 1) per unit of D(k). The corresponding
first two moments are given by g ′i(0) and (g ′i(0))

2− g ′′i (0), respectively, and therefore the

squared coefficient of variation is given by − g ′′i (0)
(g ′i (0))2

.
Based on the two moments and the squared coefficient of variation for each of the

distributions, we employ commonly used distributional two-moment fit approximations
as described in [238, pp. 358–360]. For instance, in case of a squared coefficient of
variation smaller than one, one fits a mixture of an Erlang(k,γ) and an Erlang(k − 1,γ)
distribution to the moments (k ≥ 2,γ > 0), whereas for a squared coefficient of variation
larger than one, one uses a hyperexponential distribution with two phases and balanced
means. In the special case of a squared coefficient of variation of zero or one, one uses a
deterministic or exponential distribution, respectively. The parameters for each of these
distributions are based on the first two moments, which are given as an input for this
procedure.

Thus, we choose the functions χi(s) and gi(s) as follows. First, we compute the mo-
ments (cf. Section 5.4.1), which we use in (5.34) to find the first two derivatives of χi(s)
and gi(s). Based on these derivatives, we then fit repair-time distributions using the two-
moment approximations in [238, pp. 358–360]. Recall that we assumed in Section 5.2
that gi(s) has a completely monotone derivative, so that the Laplace-Stieltjes transform
e−gi(s) represents an infinitely divisible distribution. The distributions mentioned above
satisfy this assumption:
• For a deterministic distribution with value x and Laplace-Stieltjes transform e−sx , we

have gi(s) = sx . This function obviously has a completely monotone derivative, since
d
ds gi(s) = x ≥ 0 and dn

dsn gi(s) = 0 for all n≥ 2.

• For an exponential distribution and a H2 distribution, see [96, p. 452] on mixtures of
exponential distributions.

• A mixture of an Erlang(k,γ) distribution and an Erlang(k − 1,γ) distribution with
weights q ∈ [0, 1] and 1 − q, respectively, results in the Laplace-Stieltjes transform

q
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γ
γ+s
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�k−1
. Hence, the function gi(s) = − log
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Furthermore, we have that

dn

dsn
gi(s) = (−1)n+1(n− 1)!
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k
(γ+ s)n

−
(1− q)n

(γ+ (1− q)s)n
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.
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The second term (n−1)! is positive. The third term is also positive, since we have that
(γ + s)n (1−q)n

(γ+(1−q)s)n ≤
(γ+(1−q)s)n

(γ+(1−q)s)n = 1 < 2 ≤ k. Therefore, derivatives of odd order are
positive through the first term. Similarly, we have that derivatives of even order are
negative. Hence, gi(s) has a completely monotone derivative.

5.4.3 Resulting approximation

Now that we have obtained suitable expressions for χi(s) and gi(s), Approximation 5.3.3
also directly yields an approximation for the (probability generating function of the) mar-
ginal queue length distribution in the extended machine repair model.

APPROXIMATION 5.4.1. In the extended machine repair model, an approximation Li,app for
the queue length of Q i is given by the probability generating function

E[zLi,app] = pupE[zL |server up] + pdownE[zL |server down], (5.35)

where expressions for E[zL |server up], E[zL |server down], pup and pdown are given by (5.19),
(5.27) and (5.29), respectively, but with λ, eB(·), σ, χ(·) and g(·) replaced by the extended
machine repair model counterparts λi , eBi(·), σi , χi(·) and gi(·).

REMARK 5.4.3. Note that (5.32) cannot be rewritten in the form of the two-dimensional
Laplace-Stieltjes transform (5.5); i.e. the dependence structure we assumed in (5.1) or
(5.5) does not perfectly model the distribution and the interdependence of the downtimes
of Mi . In addition to this modelling approximation and the approximation error discussed
in Section 5.3.1.6, a numerical approximation error is introduced by truncation of the
infinite product in (5.4). However, the latter error can be made negligibly small.

5.4.4 Approximations for generalisations of the model

In the previous sections, we derived an approximation for the extended machine repair
model with two machines and a single repairman. However, the approach followed can
be readily extended to approximate queue lengths of first-layer queues in an equivalent
model with a larger number of queues and machines or multiple repairmen. Moreover, the
approach followed in Section 5.4.1 for deriving the moments and the correlation coeffi-
cient of the downtimes remains valid when assuming phase-type repair time distributions.
We discuss these model generalisations below. Note that in the cases below, we apply the
analysis to the single-server model as given in Section 5.3 without any modification.

Larger numbers of machines and first-layer queues When we generalise the extended
machine repair model as described in Section 5.2 to allow for N > 2 machines M1, . . . , MN
and thus N first-layer queues Q1, . . . ,QN , we can still use Approximation 5.4.1 like be-
fore to approximate the probability generating functions of L1, . . . , LN . The approach for
deriving appropriate functions for χi(s) and gi(s), i = 1, . . . , N , needed to use Approx-
imation 5.4.1, remains largely the same. However, by introducing a larger number of
machines, the computation of the first two moments and the correlation coefficient of
downtimes in the extended machine repair model becomes increasingly cumbersome. As
opposed to the case N = 2 as assumed in Section 5.4.1, the repair buffer can now contain
multiple machines. Since the repair facility serves the queue in a first-come-first-served
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manner, the order in which the machines are waiting for repair needs to be included in
the state space of the embedded discrete-time Markov chain describing the states of the
machines. Subsequently, considerably more conditioning is needed to compute the terms
E[e−s1W1(k)] and E[e−s2W1(k+1)|R1(k) = y] in (5.32) and, ultimately, the moments and the
correlation coefficient of the downtimes.

Multiple repairmen In the extended machine repair model, it is assumed there is only
one repairman assigned to repair machines. This assumption can be relaxed to allow for
K > 1 repairmen in the repair facility, each working on a different machine and taking the
broken machines out of the repair buffer in a first-come-first-served manner. When K ≥ N ,
a broken machine will always be taken into repair immediately. As a result, machines do
not compete for repair facilities anymore, and consecutive downtimes of a machine be-
come independent. Therefore, when taking χi(s) such that it equals the Laplace-Stieltjes
transform of the repair-time distribution of Mi and taking gi(0) = 0, the exact probabil-
ity generating function of the distribution of Li is given by Approximation 5.4.1. When
N > K , consecutive downtimes of the machine remain correlated. Again, the approx-
imation as developed in this chapter remains valid, but difficulties arise in deriving the
appropriate functions for χi(s) and gi(s), i = 1, . . . , N . More specifically, the computation
of the moments and the correlation coefficient of the consecutive downtimes of each of
the machines again becomes increasingly complicated. Since machines can now be re-
paired simultaneously, the order in which machines return to service after repair is not
necessarily the same as the order in which machines break down. This introduces extra
conditioning in the computation of E[e−s2W1(k+1)|R1(k) = y] in (5.32), since the machines
which were already waiting for repair at the start of W1(k) may not have returned to an
operational state by the time R1(k) has passed. This evidently influences W1(k+ 1).

Phase-type distributed repair times In Section 5.4.1, we derived an explicit expres-
sion for the correlation coefficient of consecutive downtimes of a machine, in case re-
pair times are exponentially distributed. For phase-type repair-time distributions, a sim-
ilar approach for studying the embedded discrete-time Markov chain can be followed to
obtain the numbers needed to construct the functions χi(s) and gi(s) in Section 5.4.2.
The computations may become more involved, but remain conceptually the same. This
leads to a more complicated expression for E[e−s1W1(k)] in (5.32). For the computation of
E[e−s2W1(k+1)|R1(k) = y], extra conditioning on the repair phase is also needed.

5.5 Numerical study

We now give some numerical examples to assess the accuracy of Approximation 5.4.1. In
Section 5.5.1, we compare our approximation for the marginal queue length to simulation
results for a typical setting. Then, in Section 5.5.2, we observe the effect of the model
parameters and identify several key factors determining the accuracy of the approxima-
tion.
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FIGURE 5.3: Plot of E[zL1,app] (solid curve) and E[zL1] (dashed curve).

5.5.1 Initial glance at the approximation

Consider a system where λ1 = 0.25, σ1 = σ2 = 1 and B1, R1 and R2 are exponentially
(1) distributed. Note that the settings for λ2 and B2 do not influence the length of Q1. In
Figure 5.3, we plot the probability generating function corresponding to L1,app, which is
given in (5.35), and the probability generating function corresponding to L1, which we
obtained by simulation.

We observe in this figure that E[zL1,app] matches E[zL1] very closely. The error made is
largest at z = 0, where E[zL1,app] is 2.09% larger than the value of E[zL1]. As for the ex-
pectation of the queue length, we have that E[L1,app] =

d
dzE[z

L1,app]|z=1 = 2.205, while the
theoretical mean E[L] equals 2.220. This is a typical performance of the approximation.
As we will see in the next section, the accuracy of the approximation can become worse
if the downtimes in the extended machine repair model are extraordinarily correlated.
Nonetheless, in realistic systems, even in the worst-case scenarios, the difference in the
expected queue lengths is not much more than 10%.

5.5.2 Accuracy of the approximation

We now turn to the study of the parameter effects on the accuracy of the approximation.
As we will see, the approximation performs very well over a wide range of parameter
settings. We also observe several parameter effects.

To study the accuracy of the approximation, we compare the approximated values for
the mean of L1 with the values obtained by numerical methods such as simulation or the
power-series algorithm (cf. Chapter 2) in various instances of the extended machine repair
model. We regard instances where B1 is exponentially (µ1) distributed, and R1 and R2 are
exponentially distributed with rates ν1 and ν2, respectively. In fact, we use the same test
bed as the one we used to assess the accuracy of Approximation 4.2.1 in Section 4.2.2.
Thus, the instances we use to test the accuracy of the distributional approximation are
given by the combinations of the parameter values listed in Table 4.1.

For each of these systems, we compare the approximated mean queue lengths of the
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TABLE 5.1: Percentual relative errors∆ of the mean queue length approximation categor-
ised in bins.

0-0.01% 0.01-0.1% 0.1-1% 1-5% >5%+

% of rel. errors ∆ 25.93% 32.30% 32.15% 9.63% 0.00%

first queue, namely E[L1,app] =
d
dzE[z

L1,app]|z=1, to the actual mean queue length E[L1].
Subsequently, we again compute the relative error of these approximations, i.e.

∆= 100%×
�

�

�

�

E[L1,app]−E[L1]

E[L1]

�

�

�

�

. (5.36)

In Table 5.1, the resulting relative errors are summarised. We note that none of these
errors is greater than 5% and that the majority of these errors does not exceed 0.1%.
This seems to remain the case even as the load goes to one or for extreme values of
the imbalance in the system. These results show that Approximation 5.4.1 works very
well for typical systems. Comparing Table 5.1 with the results from Section 4.2.2, the
approximation does not challenge the accuracy of the light-traffic approximation (and as
a consequence neither that of the interpolation approximation) derived in Chapter 4.
The added value of the distributional approximation, however, lies in the fact that it
approximates the entire distribution rather than merely its first moment and thus more
performance measures can be evaluated.

To observe any parameter effects, we also give the mean relative error categorised in
some of the variables in Table 5.2. From Table 5.2(a), we conclude that the accuracy of
the approximation is not very sensitive to the load of the queue. Based on Tables 5.2(b)
and 5.2(c), however, we note that the orders of magnitude of the breakdown and repair
rates do impact the accuracy of the approximation. This is due to the fact that the rate
at which products move (i.e. arrive and get served) with respect to the life and repair
times of the machine differ in these cases. In Tables 5.2(d) and 5.2(e), we see that the
imbalance of the breakdown and repair rates do impact the accuracy as well (but to a
lesser extent). We conclude this chapter by discussing the observed effects in more detail
below.

Effect of fast moving products In Table 5.2, we observe that decreasing the uptimes
and repair times of the machines relative to the movement speed of the products leads
to a decrease in the performance of the approximation. In other words, when the move-
ment speed of products (i.e. arrival rate and service rate) increases with respect to the
breakdown rates and repair rates of the machines, the performance of the approximation
deteriorates. To further examine this effect, we regard the queue length of Q1 in sys-
tems with arrival rates ranging from λ1 = 0 to λ1 = 3 and an exponentially distributed
service time B1 with rate 10λ1/3 varying accordingly so as to keep the load fixed. Fur-
thermore, the breakdown rates are given by σ1 = σ2 = 1 and the repair times R1 and R2
are exponentially (1) distributed. After applying Approximation 5.4.1 to the mean queue
length of Q1 in these systems and comparing it with exact results, we obtain Figure 5.4,
where the relative error ∆ (see (5.36)) is given as a function of λ1. We indeed observe
that the faster the products arrive (and get served), the more inaccurate the approxim-
ation becomes. This effect can be explained by the fact that faster moving products are
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TABLE 5.2: Mean percentual relative error ∆ categorised in ρ1 (a), the variables con-
trolling the order of magnitude of σi and νi , namely aσi (b) and aνi (c), and the variables
controlling the imbalance, bσj (d) and bνj (e).

(a)

ρ1 0.25 0.5 0.75

Mean rel. error ∆ 0.328% 0.316% 0.335%

(b)

aσi 0.1 1 10

Mean rel. error ∆ 0.564% 0.294% 0.121%

(c)

aνi 0.1 1 10

Mean rel. error ∆ 0.727% 0.219% 0.033%

(d)

bσj (1, 1) (1, 2) (2,1) (1, 5) (5, 1)

Mean rel. error ∆ 0.354% 0.275% 0.414% 0.149% 0.439%

(e)

bνj (1, 1) (1, 2) (2,1) (1, 5) (5, 1)

Mean rel. error ∆ 0.395% 0.344% 0.143% 0.212% 0.537%

more sensitive to variations caused by dependence in the downtimes. A small increase
in the downtime causes more additional products to build up in the queue, while such
an increase may even remain unnoticed in case of slow products with long interarrival
times. Hence, in the former case, the error made in approximating the dependence struc-
ture of consecutive downtimes by the functions χ1(·) and g1(·) shows itself more in the
approximation of the mean queue length than in the latter case.

Effect of the degree of dependence From Table 5.2, it is apparent that the accuracy of
the approximation is influenced by the values for bσj and bνj . This can be mainly explained
by the fact that these values determine the strength of the dependence between consecut-
ive downtimes in M1. To illustrate this effect, let us observe systems where B1, as well as
both R1 and R2, is exponentially (1) distributed. Moreover, we have λ1 = 1/4 andσ1 = 1.
In Figure 5.5, we show the relative error∆ in approximating the mean queue length of Q1
as a function of σ2. Since the breakdown rate of M2 varies in these systems, the strength
of the dependence changes accordingly. In Figure 5.5, rscaled, the correlation coefficient
of consecutive downtimes as computed in Section 5.4.1, is given in a scaled form so as
to fit the graph. We see that the accuracy of the approximation is, at least in this case,
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FIGURE 5.4: The percentual relative error ∆ made as a function of the products’ arrival
rate.

largely determined by the strength of the correlation between the downtimes. Intuitively
this makes sense. In case there is no such correlation in the model (for example, when
σ2 = 0 or σ2 ↑∞), the approximation should at least be close to being exact. Using the
procedure of Section 5.4.2, g1(·) will resolve to zero in such a case. When χ1(·) is chosen
to match eD(·), the approximation becomes exact, as the assumed downtime structure in
(5.1) with the functions χ1(·) and g1(·) will then describe the dependence in an exact
way.

Effect of the variability of the repair times Table 4.1 only includes instances of the
extended machine repair model for which repair times are exponentially distributed. In
practice, however, the level of variability in the repair times may be much higher. To
investigate whether the accuracy of Approximation 5.4.1 is influenced by this, we again
study the instance of the model as presented in Section 5.5.1. However, we now assume
the repair times R1 and R2 to be hyperexponentially distributed with mean one. In par-
ticular, we study the behaviour of the relative error made by the approximation as the
squared coefficients of variation of R1 and R2 (c2

R1
and c2

R2
) increase. Figure 5.6 shows the

relative error (as defined in (5.36), however now with the sign included) in approximat-
ing E[L1] versus the squared coefficient of variation of the repair times (which we assume
to be equal). The various parameter combinations for the hyperexponential repair-time
distribution needed to match the squared coefficients of variation are chosen as described
in [238, pp. 358–360]. The figure shows that even up to a squared coefficient of variation
of 8, which represents highly variable repair times for both machines, the error made is
only approximately 1%. Therefore, the accuracy of Approximation 5.4.1 seems to remain
very high even for repair times with very high variability.

Comparison with Wartenhorst’s approximation in [269] The approach that we used
in this chapter to approximate the queue length distributions of the first-layer queues in-
volves the study of the dependence between consecutive downtimes in the second layer
of the model. As mentioned before, the extended machine repair model has also been
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FIGURE 5.5: The percentual relative error made, ∆ (solid curve), and the scaled value of
the correlation coefficient, rscaled (dashed curve), as a function of the breakdown rate of
M2.

studied by Wartenhorst in [269]. However, in [269], it is assumed that σ1 = σ2 and that
R1 and R2 are exponentially distributed with equal rates. This results in eD1(·) = eD2(·). In
his study, Wartenhorst approximates the mean length of Q1 with the mean queue length in
a single-server vacation queue, where the distribution of the vacation lengths equals the
stationary downtime distribution of Mi , but where the downtimes are assumed to be com-
pletely independent. The queue length distribution of this single-server queue is obtained
by applying the Fuhrmann-Cooper decomposition (cf. [102]). Wartenhorst’s approxima-
tion is exact by construction for a system where downtimes are independent, and accurate
whenever downtimes are only slightly dependent. Although [269] assumes equal break-
down rates and identically distributed repair times for the machines, his approach can be
extended with some effort to allow for cases where these assumptions are violated.

To compare the accuracy of the approximation derived in the present chapter with that
of [269], we study a set of systems with highly dependent downtimes. For these systems,
we assume that σ1 = 100, σ2 = 0.02 and that R2 is exponentially distributed with rate
0.01. To maximise the correlation in the downtimes of M1, we assume R1 to be hyperex-
ponentially distributed with probability parameters 0.975 and 0.025 and rate parameters
100 and 0.01. The value for the correlation coefficient in these systems evaluates to 0.26.
We vary λ1 between 0 and 0.01. Furthermore, we assume B1 to be exponentially distrib-
uted with rate 500λ1 so as to keep the load at Q1 fixed.

In Figure 5.7, the relative error ∆ in approximating E[L1] is given for both the ap-
proximation obtained in this chapter and Wartenhorst’s approximation. We see the same
effect of fast moving products as before. The faster the products move, the less accurate
both approximations become. However, we see that the degree of dependence has a sig-
nificantly larger effect on the accuracy of Wartenhorst’s approximation than on that of the
approximation presented here. Since the degree of the dependence between the down-
times is the major source of inaccuracy for both approximations (cf. Section 5.3.4), one
could conclude that Approximation 5.4.1 performs as well as Wartenhorst’s approxima-
tion in cases with only slight dependences and better in cases with stronger correlations
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FIGURE 5.6: The accuracy of the approximation as a function of the squared coefficient
of variation of the repair times R1 and R2.

between the downtimes. This observation shows that the dependence between the layers
cannot be ignored.

Appendix

5.A Proof of Lemma 5.3.1

PROOF. The function E(z) is continuous on [0, eµ(σ)). We also have that 1− E(0) = 1 and
limz→eµ(σ) 1− E(z) = −∞. Hence, there exists at least one root in (0, eµ(σ)) by Bolzano’s
theorem.

To prove that there is at most one root in (0, eµ(σ)), we show that 1− E(z) is strictly
decreasing in z. In other words, we show that E(z) is strictly increasing in z by studying
the monotonicity of each of the terms in (5.15) separately. First, since χ(·) is the Laplace-
Stieltjes transform of (the distribution of) a positive and continuous random variable (see
Section 5.2), it is a strictly decreasing function. Recalling that λ > 0, this means that the
first term χ(λ(1 − z)) is therefore strictly increasing in z. For the monotonicity of the
second term A2(z), we show that A(z) is strictly decreasing (i.e. A′(z)< 0 for all values of
z considered). We have that

A′(z) =
σλ

(σ+λ(1− z))2
z(1− eB(σ+λ(1− z)))

z − eB(σ+λ(1− z))

+
σ

σ+λ(1− z)

�

(1− eB(σ+λ(1− z))) + zλeB′(σ+λ(1− z))

z − eB(σ+λ(1− z))

−
z(1− eB(σ+λ(1− z)))(1+λeB′(σ+λ(1− z)))

(z − eB(σ+λ(1− z)))2

�

. (5.37)

Since eB(·) is a Laplace-Stieltjes transform representing a positive, continuous random
variable, we have that 1 − eB(σ + λ(1 − z)) > 0 and eB′(σ + λ(1 − z)) > 0, which also
readily implies that zλeB′(σ + λ(1− z)) > 0 and 1+ λeB′(σ + λ(1− z)) > 0. This means
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FIGURE 5.7: The percentual relative error made by Approximation 5.4.1 (solid curve) and
Wartenhorst’s approximation (dashed curve).

that in (5.37), the numerator of the second fraction in the first term and the numerators
of the fractions between the brackets are all positive. Moreover, we have that z − eB(σ+
λ(1− z))< 0 for all z ∈ (0, eµ(σ)), which consequently implies through the denominators
that the second fraction of the first term and the expression between the brackets each
are negative. Combining this with the fact that evidently both σ/(σ + λ(1 − z)) and
σλ/(σ + λ(1 − z))2 are positive as z < 1, we have that A′(z) < 0 and thus that the
second term A2(z) is strictly increasing. For the third term eD(λ(1 − z) + g(λ(1 − z))),
we have that λ(1 − z) + g(λ(1 − z)) is strictly decreasing in z, as g(s) is increasing in
s. The latter is the case, since e−g(s) is the Laplace-Stieltjes transform representing a
positive, continuous random variable and therefore strictly decreasing in s. Furthermore,
the Laplace-Stieltjes transform eD(·) is a strictly decreasing function. Therefore, the third
term is strictly increasing in z.

Summarising, all of the terms of E(z) as expressed in (5.15) are strictly increasing for
the values of z considered. As a result, E(z) itself is strictly increasing for z ∈ (0, eµ(σ)).
Therefore, the denominator 1−E(z) has exactly one root on the real line in (0, eµ(σ)).
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6
OPTIMISATION OF QUEUE LENGTHS

The analysis of the extended machine repair model in the previous chapters reveals that
the competition of the machines for the repairman’s resources has a big impact on the first-
layer queues. As the repairman repairs the machines on a first-come-first-served basis and
only one at a time, there exist correlations in the machines’ downtimes that may have a
significant effect on the queue lengths in the first layer. This raises the question whether
the repairman’s strategies could be adapted in order to reduce these queue lengths. Mo-
tivated by this, we now drop the assumption that the repairman repairs the machine in
the order of breakdown. Instead, we concern ourselves in this chapter with the dynamic
control problem of how the repairman should allocate his resources to the machines at
any point in time so that the long-term average (weighted) sum of the queue lengths of
the first-layer queues is minimised. Since the optimal policy for the repairman cannot be
found analytically, we propose a near-optimal policy. We do this by combining intuition
and results from queueing theory with techniques from Markov decision theory. We study
the relative value functions for several policies for which the model can be decomposed
in less complicated subsystems, and we combine the results with the classical one-step
policy improvement algorithm. The resulting policy is easy to apply, is scalable in the
number of machines and performs very well for a wide range of parameter settings.

6.1 Introduction

We are concerned with the question of how the repairman should allocate his capacity
dynamically to the machines at any point in time, given complete information on the
lengths of the queues of products and the states of the machines at all times. We aim
to formulate a policy that minimises the long-term average (weighted) sum of the queue
lengths of the first-layer queues. To this end, we use several techniques from Markov
decision theory. When formulating this problem as a Markov decision problem, one may
be able to obtain the optimal policy numerically for a specific set of parameter settings
by truncating the state space. However, due to the multi-dimensionality of the model,
the computation time needed to obtain reliable and accurate results may be infeasibly
long. Moreover, these numerical methods are cumbersome to implement, do not scale
well in the number of dimensions of the problem, lack transparency and provide little
insight into the effects of the model parameters. To overcome these problems, we derive
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a near-optimal policy that can be expressed explicitly in terms of the model parameters
by use of the one-step policy improvement method.

The one-step policy improvement method requires a relative value function of an ini-
tial policy which can be obtained analytically by solving the Poisson equations known
from standard theory on Markov decision processes. The result is then used in a single
step of the policy iteration algorithm from Markov decision theory to obtain an improved
policy. Although the relative value function of the improved policy is usually hard to
compute, the improved policy itself is known explicitly as a function of the state and the
parameters of the model. Moreover, it is known that the improved policy performs better
in terms of costs than the initial policy, so that it may be used as an approximation for the
optimal policy. The intrinsic idea of one-step policy improvement goes back to Norman
[181]. Since then, this method has been successfully applied to derive nearly optimal
state-dependent policies in a variety of applications, such as the control of traffic lights
[113], production planning [276] and the routing of telephone calls in a network or call
center [36, 185, 218].

In this chapter, we apply the one-step policy improvement method in a more struc-
tured way. It is tempting to construct an improved policy based on a policy that creates
the simplest analytically tractable relative value function. However, this improved policy
might not have the best performance or may result in unstable queues. In our case,
we start with multiple policies that are complementary in different parameter regions in
both of these aspects and combine them to come up with an improved policy that is more
broadly applicable. In our objective to derive a near-optimal policy over a broad range of
parameter values, we need to start with initial policies that do not defy the derivation of
closed-form expressions for their corresponding relative value functions. In some cases,
we use insights from queueing theory to provide an accurate approximation for the rel-
ative value function and the long-term averaged costs. We use these results to construct
a near-optimal policy that requires no computation time, is easy to implement and gives
insights into the effects of the model parameters.

Section 6.2 gives a mathematical description of the control problem and introduces
the notation required. Although the optimal policy for this control problem cannot be
obtained explicitly, several of its structural properties can be derived. As we will see in
Section 6.3, the optimal policy makes the repairman work at full capacity whenever there
is at least one machine down and behaves like a threshold policy. Subsequently, we focus
on finding a policy which generally performs nearly as well as the optimal policy. As input
for the one-step policy improvement algorithm, we study two policies in Section 6.4 for
which the system decomposes into multiple subsystems, so that the system becomes easier
to evaluate. The first of these policies, which we will call the static policy, always reserves
a certain predetermined fraction of repair capacity to each machine regardless of the state
of the machines. Therefore, the machines behave independently of each other under this
policy, which allows us to derive an exact expression for the relative value function. As
the static policy cannot always be used as an input for the one-step policy improvement
algorithm due to instability issues, we also study a second class of policies in Section 6.4.
More specifically, we study the priority policy, in which the repairman always prioritises
the repair of a specific machine over the other when both machines are down. Under
this policy, the repairman assigns his full capacity to the high-priority machine when it is
down irrespective of the state of the low-priority machine. This makes the system easier
to analyse. Nevertheless, it is hard to obtain the relative value function for this policy
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exactly, but we are able to identify most of its behaviour. Although analytic results on the
relative value functions of these policies are of independent interest, we use these results
in Section 6.5 in combination with the one-step policy improvement algorithm. This
ultimately results in a well-performing and nearly optimal policy, which is given in terms
of a few simple decision rules. The resulting policy turns out to be scalable in the number
of machines and corresponding first-layer queues in the model, so that the policy can be
readily extended to allow for a number of machines larger than two. Finally, extensive
numerical results in Section 6.6 show that the proposed policy is highly accurate over a
wide range of parameter settings. Based on these numerical results, we identify the key
factors determining the performance of the near-optimal policy.

6.2 Problem formulation and notation

Again, we follow the majority of the model assumptions and notation as introduced in
Sections 1.3.1 and 2.2. In particular, we assume that the uptime of machine Mi is expo-
nentially (σi) distributed, after which it requires an exponentially (νi) amount of service
from the repairman before it is able to continue processing products. The fundamental
difference with the previous chapters is that we no longer assume the repairman to repair
the machines in the order of breakdown. In fact, the machines share the capacity of the
repairman. At any moment in time, the repairman is able to decide how to divide his
total repair capacity over the machines. More specifically, he can choose the fractions of
capacity q1 and q2 that are allocated to the repair of M1 and M2, respectively, so that the
machines are being repaired at rate q1ν1 and q2ν2, respectively. We naturally have that
0≤ q1+q2 ≤ 1 and that qi = 0 whenever Mi is operational. The objective is to allocate the
repair capacity dynamically in such a way that the average long-term weighted number
of products in the system is minimised.

In order to describe this dynamic optimisation problem mathematically, one does not
only need to keep track of the queues of products, but also of the conditions of the ma-
chines. To this end, we define the state space of the system as S = N2 × {0,1}2. Each
possible state corresponds to an element s = (x1, x2, w1, w2) in S , where x1 and x2 de-
note the number of products in Q1 and Q2, respectively. The variables w1 and w2 denote
whether M1 and M2 are in an operational (1) or in a failed state (0), respectively. Note
that this state space is different from the one introduced in Section 2.2, as there is no
need to keep track of the order in which the machines broke down due to the lack of a
first-come-first-served assumption.

The repairman bases his decision on the information s, and therefore any time the
state changes can be regarded as a decision epoch. At these epochs, the repairman takes
an action a = (q1, q2) out of the state-dependent action space As = {(q1, q2) : q1 ∈
[0,1 − w1] ∧ q2 ∈ [0, 1 − w2] ∧ q1 + q2 ≤ 1}, where qi denotes the fraction of capacity
assigned to Mi , i = 1, 2. The terms 1− w1 and 1− w2 included in the description of the
action set enforce the fact that the repairman can only repair a machine if it is down. Now
that the states and actions are defined, we introduce the cost structure of the model. The
objective is modelled by the cost function c(s,a) = c1 x1+ c2 x2, where c1 and c2 are non-
negative real-valued weights. Thus, when the system is in state s, the weighted number
of customers present in the system equals c(s, ·) regardless of the action a taken by the
repairman.
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With this description, the control problem can be fully described as a Markov decision
problem. To this end, we uniformise the system (see e.g. [162]); i.e. we add dummy
transitions (from a state to itself) such that the outgoing rate of every state equals a
constant parameter γ, the uniformisation parameter. We choose γ= λ1 +λ2 +µ1 +µ2 +
σ1 + σ2 + ν1 + ν2 and we assume that γ = 1 without loss of generality, since we can
always achieve this by scaling the model parameters. Note that this assumption has the
benefit that rates can be considered to be transition probabilities, since the outgoing rates
of each state sum up to one. Thus, for i = 1, 2, any action a ∈ As and any state s ∈ S ,
the transition probabilities p are given by

pa(s,s+ ei) = λi , (product arrivals)
pa(s,s− ei) = µiwi1{x i>0}, (product services)
pa(s,s− ei+2) = σiwi , (machine breakdowns)
pa(s,s+ ei+2) = qiνi , (machine repairs)
pa(s,s) = 1−λi −wi(µi1{x i>0} +σi)− qiνi . (uniformisation)

All other transition probabilities are equal to zero. The tuple (S , {As : s ∈ S }, p, c) now
fully defines the Markov decision problem at hand.

Define a deterministic policy π∗ as a function from S to
⋂

s∈S As such that π∗(s) ∈
As for all s ∈ S . Let {X∗(t), t ≥ 0} be its corresponding continuous-time Markov chain
taking values in S , which describes the state of the system over time when the repairman
adheres to policy π∗. Furthermore, let

u∗(s, t) = E
�∫ t

z=0

c(X∗(z),π∗(X∗(z))) dz |X∗(0) = s
�

denote the total expected costs up to time t when the system starts in state s under policy
π∗.

We call the policy π∗ stable when the average costs g∗ = limt→∞
u∗(s,t)

t per time unit
that arise when the repairman adheres to this policy remain finite. From this, it follows
that the Markov chain corresponding to the model under consideration in combination
with a stable policy has a single positive recurrent class. As a result, the number g∗ is
independent of the initial state s. Due to the definition of the cost function, the average
expected costs may also be interpreted as the long-term average sum of queue lengths
under policy π∗, weighted by the constants c1 and c2. A stable policy thus coincides with
a policy for which the average number of customers in each of the queues is finite. Observe
that there does not necessarily exist a stable policy for every instance of this model. In
fact, a necessary (but not sufficient) condition for the existence of a stable policy reads

λ1 < µ1
ν1

σ1 + ν1
and λ2 < µ2

ν2

σ2 + ν2
. (6.1)

This condition implies that for each first-layer queue Q i , the arrival rate λi of products
is smaller than the rate at which the corresponding machine Mi is capable of processing
products, given that Mi is always repaired instantly at full capacity when it breaks down.
This assumption can in some sense be seen as the best-case scenario from the point of
view of Mi . The latter processing rate is of course equal to the service rate µi times the
fraction (1/σi)/(1/σi+1/νi) = νi/(σi+νi) of time that Mi is operational under this best-
case assumption. When this condition is not satisfied, there is at least one queue where
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on average more products arrive per time unit than the machine can handle under any
repair policy. The costs incurred will then grow without bound over time for any policy in
such case, eliminating the existence of a stable policy. Thus, the converse of the necessary
conditions for existence of a stable policy stated in (6.1) constitutes two different sufficient
conditions for non-existence. That is, if λ1 ≥ µ1

ν1
σ1+ν1

or if λ2 ≥ µ2
ν2

σ2+ν2
, it is guaranteed

that no stable policies exist.
Any policy π∗ can be characterised through its relative value function V ∗(s). This

function is a real-valued function defined on the state space S given by

V ∗(s) = lim
t→∞

(u∗(s, t)− u∗(sref, t))

and represents the asymptotic difference in expected total costs incurred when starting the
process in state s instead of some reference state sref (see e.g. [121, Equation (5.6.2)]).
Among all policies, the optimal policy πopt with relative value function V opt minim-
ises the average costs (i.e. the long-term average weighted sum of queue lengths), thus
gopt = minπ∗ g∗. Its corresponding long-term optimal actions are a solution of the Bell-
man optimality equations gopt + V opt(s) = mina∈As

{c(s,a) +
∑

t∈S pa(s, t)V opt(t)} for
all s ∈ S . For our problem, these equations are given by

gopt + V opt(x1, x2, w1, w2) = Hopt(x1, x2, w1, w2) + Kopt(x1, x2, w1, w2)

for every (x1, x2, w1, w2) ∈ S , where Hopt and Kopt are defined in the following way. For
an arbitrary policy π∗ with a relative value function V ∗, the function H∗ is given by

H∗(x1, x2, w1, w2) = c1 x1 + c2 x2

+λ1V ∗(x1 + 1, x2, w1, w2) +λ2V ∗(x1, x2 + 1, w1, w2)
+µ1w1V ∗((x1 − 1)+, x2, 1, w2) +µ2w2V ∗(x1, (x2 − 1)+, w1, 1)
+σ1w1V ∗(x1, x2, 0, w2) +σ2w2V ∗(x1, x2, w1, 0)

+

�

1−
2
∑

i=1

(λi +wi(µi +σi))

�

V ∗(x1, x2, w1, w2), (6.2)

and it models the costs and the action-independent events of product arrivals, product ser-
vice completions, machine breakdowns and dummy transitions, respectively. The function
K∗ given by

K∗(x1, x2, w1, w2)
= min
(q1,q2)∈A(x1,x2,w1,w2)

{q1ν1(V
∗(x1, x2, 1, w2)− V ∗(x1, x2, 0, w2))

+ q2ν2(V
∗(x1, x2, w1, 1)− V ∗(x1, x2, w1, 0))} (6.3)

models the optimal state-specific decisions of how to allocate the repair capacity over the
machines and includes corrections for the uniformisation term.

As already mentioned in Section 6.1, these equations are exceptionally hard to solve
analytically. Alternatively, the optimal actions can be obtained numerically by recursively
defining V n+1(s) = Hn(s) + Kn(s) for an arbitrary function V 0. For n → ∞, the min-
imising actions converge to the optimal ones (see [163] for conditions on existence and
convergence). We use this procedure called value iteration or successive approximation for
our numerical experiments in Section 6.6.
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6.3 Structural properties of the optimal policy

As mentioned before, it is hard to give a complete, explicit characterisation of the optimal
policy for the problem sketched in Section 6.2. Therefore, we derive a near-optimal policy
later in Section 6.5. Nevertheless, several important structural properties of the optimal
policy can be obtained. It turns out that the optimal policy is a non-idling policy, always
dictates the repairman to work on one machine only and can be classified as a threshold
policy. In this section, we inspect these properties more closely.

6.3.1 Non-idling property

We show in this section that the optimal policy is a non-idling policy, which means the
repairman always repairs at full capacity whenever a machine is not operational, i.e.
q1 + q2 = 1 − w1w2. Intuitively, this makes sense, as there are no costs involved in the
repairman’s service. On the other hand, having less repair capacity go unused has de-
creasing effects on the long-term weighted number of products in the system. There is no
trade-off present, and therefore the repair capacity should be used exhaustively whenever
there is a machine in need of repair.

This property can be proved rigorously. Note that the minimisers of the right-hand
side of (6.3) represent the optimal actions. From this, it follows that the optimal action
satisfies q1+q2 = 1−w1w2 for every state s ∈ S (i.e. the optimal policy satisfies the non-
idling property) if both V opt(x1, x2, 0, w2) − V opt(x1, x2, 1, w2) and V opt(x1, x2, w1, 0) −
V opt(x1, x2, w1, 1) are non-negative for all (x1, x2, w1, w2) ∈ S . The next proposition
proves the latter condition. For the sake of reduction of the proof’s complexity, it also
concerns the trivial fact that under the optimal policy, the system incurs higher costs
whenever the number of products in the system is increasing (i.e. V opt(x1+1, x2, w1, w2)−
V opt(x1, x2, w1, w2) and V opt(x1, x2 + 1, w1, w2)− V opt(x1, x2, w1, w2) are non-negative).

PROPOSITION 6.3.1. The relative value function V opt(s) corresponding to the optimal policy
satisfies the following properties for all s ∈ S :
1. V ∗(x1, x2, 0, w2)− V ∗(x1, x2, 1, w2)≥ 0 and V ∗(x1, x2, w1, 0)− V ∗(x1, x2, w1, 1)≥ 0,

2. V ∗(x1 + 1, x2, w1, w2)− V ∗(x1, x2, w1, w2)≥ 0 and
V ∗(x1, x2 + 1, w1, w2)− V ∗(x1, x2, w1, w2)≥ 0.

PROOF. See Appendix 6.A.

By proving that V opt satisfies property 1 as stated in Proposition 6.3.1, we have estab-
lished that the optimal policy is a non-idling policy, implying that q1 + q2 = 1− w1w2 at
all times. We finish this section by pointing out that it is always optimal for the repair-
man to focus all his attention on one machine. That is, at all times, (q1, q2) = (1−w1, 0)
or (q1, q2) = (0,1− w2) constitutes an optimal action. This is easily derived from (6.3)
in combination with property 1 in Proposition 6.3.1. Even when there are states for
which w1w2 = 0 and ν1(V ∗(x1, x2, 1, w2) − V ∗(x1, x2, 0, w2)) = ν2(V ∗(x1, x2, w1, 1) −
V ∗(x1, x2, w1, 0)), the actions (q1, q2) = (1− w1, 0) and (q1, q2) = (0, 1− w2) will be op-
timal (although they are not uniquely optimal), so that there are always optimal policies
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FIGURE 6.1: The optimal actions for the model instance studied in Section 6.3.2.

that concentrate all repair capacity on one machine. Therefore, Kopt can be simplified to

Kopt(x1, x2, w1, w2) =

min
(q1,q2)∈{(1−w1,0),(0,1−w2)}

{q1ν1(V
opt(x1, x2, 1, w2)− V opt(x1, x2, 0, w2))

+ q2ν2(V
opt(x1, x2, w1, 1)− V opt(x1, x2, w1, 0))}. (6.4)

This is a welcome simplification when one wants to evaluate the optimal policy numeric-
ally, since now the minimum operator only involves two arguments.

6.3.2 Threshold policy

Now that we know that the optimal policy is a non-idling policy and always dictates the
repairman to focus his attention on a single machine, the question arises which machine
this should be. In the event both machines are down, this question is hard to answer
explicitly, since the relative value function V opt pertaining to the optimal policy defies
an exact analysis. However, by inspection of numerical results, one can derive a partial
answer.

To this end, we numerically examine the model with the settings c1 = c2 = µ2 =
σ1 = ν1 = 1.0, λ1 = 0.1, λ2 = 0.2 and µ1 = σ2 = ν2 = 0.5. By using the simplified
version (6.4) of Kopt in the value iteration algorithm, we numerically obtain the optimal
actions for the states (x1, x2, 0, 0), x1 ∈ {0, . . . , 50}, x2 ∈ {0, . . . , 100}. Figure 6.1 shows
the optimal actions in the form of a scatter plot. Given that both machines are down, a
marked point (x1, x2) in the scatter plot indicates that it is optimal for the repairman to
repair M2. If a certain point (x1, x2) is not marked, then the optimal action is to repair
M1 at full capacity.

It is suggested by Figure 6.1 that the optimal policy falls in the class of threshold
policies. That is, if the optimal action for the state (x1, x2, 0, 0) is to repair M1 at full
capacity, then this is also the optimal action for the states (x1 + k, x2, 0, 0), k ∈ N. Mean-
while, if it would be optimal to repair M2 when the system is in the state (x1, x2, 0, 0),
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then the optimal policy also prescribes to repair M2 if there are fewer products waiting in
Q1, i.e. in the states (x1 − k, x2, 0, 0), k ∈ {1, . . . , x1}. Thus, for any value of x2, the num-
ber of products in Q1 from which the optimal policy starts taking the decision to repair
M1 can be seen as a threshold. Similar effects and definitions apply for varying numbers
of products in Q2. The figure clearly exposes a curve that marks the thresholds. At first
glance, this threshold curve may seem linear. However, especially near the origin, this is
not quite true.

One can reason intuitively that for any instance of the model, the optimal policy is
a threshold policy. This is easily understood by the notion that an increasing number of
products in Q1 makes it more attractive for the repairman to repair M1. Then, if it was
already optimal to repair M1, this obviously will not change. Similar notions exist for a
decreasing number of products in Q1 and varying numbers of products in Q2. Although
the threshold effects are easily understood, they are hard to prove rigorously. A possible
approach to this would be to show that the difference between the arguments in (6.4)
is increasing in x1 using the same techniques as used in the proof of Proposition 6.3.1.
However, this turns out to be highly challenging.

6.4 Relative value functions

Recall that for any policy π∗, we defined V ∗ and g∗ to be its corresponding relative value
function and long-run expected weighted number of products in the system, respectively.
The main reason why it is hard to obtain the optimal policy πopt other than through
numerical means, is that its corresponding relative value function V opt does not easily
allow for an exact analysis. As an intermediate step, we therefore study the relative
value functions of two other policies for which explicit expressions can be obtained. In
Section 6.5, these two policies and their relative value functions act as a basis for the
one-step policy improvement method to obtain nearly optimal heuristic policies. We first
examine the static policy in Section 6.4.1, where each machine is assigned a fixed part of
the repair capacity regardless of the state of the system. However, there exist instances of
the model for which no static policies are available that result in a finite average cost, while
stable policies are available in general. Since a one-step policy improvement approach
cannot be based on a static policy in that case, we will also study the priority policy in
Section 6.4.2, which dictates the repairman to prioritise a specific machine (the high-
priority machine) in case both machines are not operational; i.e. in such a case, all repair
capacity is then given to the high-priority machine.

6.4.1 Static policy

As the name of the static policy suggests, the actions taken under this policy do not depend
on the state the system is in. Under the static policy, the repairman always has a fraction
p ∈ (0, 1) of his repair capacity reserved for the repair of M1 regardless of whether M1
(or M2) is down or not. Likewise, the remaining fraction (1 − p) is reserved for M2.
Therefore, repair on M1 at rate pν1 starts instantly the moment it breaks down, and the
same holds for M2 at rate (1− p)ν2. Thus, under this policy, the repairman always takes
the action (p(1− w1), (1− p)(1− w2)). In the sequel, we will refer to p as the splitting
parameter. It is evident that this policy is not optimal, since the repairman does not use
his repair capacity exhaustively when exactly one of the two machines is down; i.e. the
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static policy does not satisfy the non-idling property studied in Section 6.3.1. However,
when the splitting parameter is chosen properly, this policy is not totally unreasonable
either. When analysing this policy, we assume that the system is stable when adhering to
it. That is, for each queue, the rate of arriving products is smaller than the rate at which
the corresponding machine is capable of serving products:

λ1 < µ1
pν1

σ1 + pν1
and λ2 < µ2

(1− p)ν2

σ2 + (1− p)ν2
, (6.5)

where the two fractions denote the fractions of time M1 and M2 are operational, respect-
ively.

Observe that the capacity that M1 receives from the repairman is now completely
independent of that received by M2 at any given time and vice versa. Analysis of the
relative value function of the static policy is tractable, since the machines do not compete
for repair resources anymore under this policy, making the queue lengths in each of the
queues uncorrelated. In a way, it is as if each machine has its own repairman now, who
repairs at rate pν1 and (1− p)ν2, respectively. Therefore, the system can be decomposed
into two components which do not interact. Each of these components can be modelled
as a single-server queue of M/M/1 type with server vacations occurring independently
of the amount of work present in the queue. Because of this decomposition, the relative
value function V sta(x1, x2, w1, w2) of the total system can be seen as the weighted sum
of the relative value functions V com

1 (x1, w1) and V com
2 (x2, w2) corresponding to the two

components. As a result, the long-term average cost gsta is also a weighted sum of the
average costs gcom

1 and gcom
2 :

gsta = c1 gcom
1 + c2 gcom

2 and

V sta(x1, x2, w1, w2) = c1V com
1 (x1, w1) + c2V com

2 (x2, w2). (6.6)

To derive gcom
1 , gcom

2 , V com
1 (x1, w1) and V com

2 (x2, w2), we focus on the relative value func-
tion corresponding to one component in Section 6.4.1.1. We then finalise the analysis of
V sta in Section 6.4.1.2.

6.4.1.1 Relative value function for the components

We now derive the relative value function of one component of the model under the static
policy and omit all indices of the parameters. Thus, we regard a single-server queue of
M/M/1 type, in which products arrive at rate λ and are processed at rate µ if the machine
is up. Independently of this process, the server takes a vacation after an exponentially
(σ) distributed amount of time, even when there is a product in service. The service of
the product is then interrupted and resumed once the server ends its vacation. A vacation
takes an exponentially (ν) distributed amount of time, after which the server will process
products again until the next vacation. This system can be interpreted as a Markov reward
chain with states (x , w) ∈ S com representing the number x of products present in the
system and the state of the server being in a vacation (w = 0) or not (w = 1), where
S com = N× {0, 1} is its state space. The system is said to incur costs at rate c(x , w) = x
per time unit. After uniformisation at rate one, the transition probabilities pcom(s, t) from
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a state s ∈ S com to a state t ∈ S com are given by

pcom((x , w), (x + 1, w)) = λ, pcom((x , w), (x − 1, w)) = µw1{x>0},
pcom((x , 1), (x , 0)) = σ, pcom((x , 0), (x , 1)) = ν and
pcom((x , w), (x , w)) = (1−λ−w(µ1{x>0} +σ) + ν(1−w)).

All other transition probabilities are equal to zero. By this description, the Poisson equa-
tions for this Markov reward chain with long-term average costs per time unit gcom and
relative value function V com(x , w) are given by

gcom + V com(x , w) = x +λV com(x + 1, w) +µwV com((x − 1)+, w)
+σwV com(x , 0) + ν(1−w)V com(x , 1)
+ (1−λ−w(µ+σ)− ν(1−w))V com(x , w) (6.7)

for all (x , w) ∈ N× {0, 1}.
To solve these equations, we first observe that the completion time for a product from

the moment its service is started until it leaves the system consists of an exponentially
(µ) distributed amount of actual service time and possibly some interruption time due
to server vacations. When interruption takes place, the number of interruptions is geo-
metrically ( µ

µ+σ ) distributed due to the Markovian nature of the model. Combined with
the fact that every interruption takes an exponential (ν) amount of time, this means that
the total interruption time, given that it is positive, is exponentially ( µνµ+σ ) distributed.
Thus, the completion time consists of an exponential (µ) service phase and also, with a
probability σ

µ+σ that there is at least one interruption, an exponential ( µν
µ+σ ) interruption

phase. The above implies that the distribution of the completion time falls in the class of
Coxian distributions with two states. Due to this observation, the average costs per time
unit gcom incurred by a component can be calculated by the use of standard queueing
theory; see Remark 6.4.2. However, we are also interested in the relative value function
of the component. If the server would only start a vacation if there is at least one product
in the queue, the component could in principle be modelled as an M/Cox(2)/1 queue by
incorporating the interruption times into the service times (i.e. by replacing the service
times with the completion times). For the M/Cox(2)/1 queue, it is known that the relat-
ive value function can be expressed as a second-order polynomial in the queue length (cf.
[35]). However, in our case, a server may also start a vacation during an idle period, so
that products arriving at an empty system may not be served instantly. Nevertheless, it is
reasonable to conjecture that the relative value function V com is a second-order polyno-
mial too.

If this conjecture holds, substituting V com(x , 0) = α1 x2 +α2 x +α3 and V com(x , 1) =
β1 x2+β2 x+β3 in (6.7) should lead to a consistent system of equations and give a solution
for the coefficients. After substitution, we find the equations

gcom +α3 = λ (α1 +α2) + (1− ν)α3 + νβ3,

gcom + β3 = σα3 +λ (β1 + β2) + (1−σ)β3,

gcom +α1 x2 +α2 x +α3 = ((1− ν)α1 + νβ1) x2 + (1+ 2λα1 + (1− ν)α2 + νβ2) x

+λ (α1 +α2) + (1− ν)α3 + νβ3,

gcom + β1 x2 + β2 x + β3 = (σα1 + (1−σ)β1) x2 +
�

1+σα2 + 2(λ−µ)β1

+ (1−σ)β2

�

x +σα3 + (λ+µ)β1 + (λ−µ)β2 + (1−σ)β3
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for all x ∈ N+. One can easily verify that the system of equations is indeed consistent. By
solving for the coefficients, a solution for gcom and V com up to a constant can be found.
The constant can be chosen arbitrarily (e.g. by assuming that V com(0,1) = 0), but is of no
importance. In principle, there may exist other solutions to (6.7) that do not behave like
a second-order polynomial in x . In fact, when the state space is not finite, as is the case
in our model, it is known that there are many pairs of g and V that satisfy the Poisson
equations (6.7) (see e.g. [37]). There is only one pair satisfying V (0, 1) = 0 that is the
correct stable solution, however, and we refer to this as the unique solution. Showing
that a solution to (6.7) is the unique solution involves the construction of a weighted
norm so that the Markov chain is geometrically recurrent with respect to that norm. This
weighted norm imposes extra conditions on the solution to the Poisson equations, so that
the unique solution can be identified. The next lemma summarises the solution resulting
from the set of equations above and states that this is also the unique solution.

LEMMA 6.4.1. For a stable component instance, the long-term average number of products
gcom and the relative value function V com are given by

gcom =
λ((σ+ ν)2 +µσ)

(µν−λ(σ+ ν))(σ+ ν)
, V com(x , 0) = α1 x2 +α2 x +α3

and V com(x , 1) = α1 x2 +α1 x , (6.8)

where

α1 =
σ+ ν

2(µν−λ(σ+ ν))
,α2 =

2µ+σ+ ν
2(µν−λ(σ+ ν))

and α3 =
λµ

(µν−λ(σ+ ν))(σ+ ν)
,

when taking V com(0,1) = 0 as a reference value.

PROOF. One simply verifies by substitution that the solution given in (6.8) satisfies the
Poisson equations in (6.7) and V com(0, 1) = 0. It is left to show that the above solution
is the unique solution. To this end, we use [37, Theorem 6]. Suppose that there exists a
finite subset of states M and a weight function u : S com → {0,1} such that the Markov
chain, which satisfies the stability and aperiodicity conditions needed for the theorem to
hold, is u-geometrically recurrent, i.e.

RM ,u(x , w) =
∑

(x ′,w′)/∈M

pcom((x , w), (x ′, w′))u(x ′, w′)
u(x , w)

< 1

for all (x , w) ∈ S and

||c||u = sup
s∈S com

|c(s)|
u(s)

<∞.

Then, this theorem implies that a pair (g, V ) satisfying the Poisson equations (6.7) is the
unique solution when

||V ||u = sup
s∈S com

|V (s)|
u(s)

<∞.

To invoke this theorem, we set M = {(0,0), (0,1)} and u(x , w) = (1+δ)x(1−ε)w for any

δ ∈
�

0,
µ+ ν+σ−

p

(λ−µ− ν−σ)2 + 4 (λν−µν+λσ)
2λ

−
1
2

�
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and for any

ε ∈
�

λ

ν
δ,

δµ−λδ(1+δ)
δµ−λδ(1+δ) +σ(1+δ)

�

.

Then, we have that

RM ,u(x , w) = λ(1+δ) +w
�

µ1{x>1}
1

1+δ
+σ

1
1− ε

�

+ ν(1−w)(1− ε) + (1−λ−w(1{x>1}µ+σ)− (1−w)ν).

For all x ∈ N, the lower bound on ε ensures that RM ,u(x , 0) < 1, and the upper bound
guarantees that RM ,u(x , 1) < 1. The upper bound of δ is derived by equating the two
bounds of ε and thus warrants that the lower bound of ε does not exceed the upper
bound of ε. In turn, the stability condition λ < µ ν

σ+ν (see (6.5)) guarantees that the upper
bound of δ is positive. Observe that for the assessment of the validity of the conditions
||c||u <∞ and ||V com||u <∞, the value of w does not play an essential role, as it can
only influence the value of u(x , w) up to a finite factor (1− ε) for any x ∈ N. We clearly
have that the cost function c(x , w) = x satisfies ||c||u <∞, since it is linear in x and
the weight function u is exponential in x . Likewise, the function V com as given in (6.8)
satisfies ||V com||u <∞, since it is a quadratic polynomial in x , whereas u(x , w) behaves
exponentially in x . Hence, by [37, Theorem 6], the solution given by (6.8) is the unique
solution to the Poisson equations.

This concludes the derivation of the relative value function for a component with
parameters λ, µ, σ and ν.

REMARK 6.4.1. For σ = 0 and w = 1, the component model degenerates to a regular
M/M/1 queue. As expected, gcom and V com(x , 1) then simplify to the well-known expres-
sions gM/M/1 = λ

µ−λ and V M/M/1(x) = 1
2(µ−λ) x(x + 1). For the general case, we may rewrite

V com(x , 1) = 1
2(µ ν

σ+ν−λ)
x(x + 1). Observe that µ ν

σ+ν is the maximum rate at which the
server is able to process products in the long term. When interpreting this as an effective
service rate, we may conclude that the structure of the relative value function V com is
similar to that of the regular M/M/1 queue.

REMARK 6.4.2. As observed above, a component can alternatively be modelled as a single-
server vacation queue with the Coxian completion time of a product regarded as the
service time and with server vacations occurring exclusively when the queue is empty. As a
result, the average costs per time unit, or rather, the average queue length gcom (including
any possible product in service) can also be obtained by applying the Fuhrmann-Cooper
decomposition (cf. [102]) similarly to the computations that led to (4.6) in Section 4.4.

6.4.1.2 Resulting expression for V sta

We now turn back to the relative value function of the complete model as described in
Section 6.2 under the static policy with parameter p. As mentioned before, this model
consists of two components with rates λ1,µ1,σ1, pν1 and λ2,µ2,σ2, (1− p)ν2, respect-
ively. Now that we have found an expression for the relative value functions pertaining
to one such component, we readily obtain an expression for the relative value function
for the complete system. Combining (6.6) with Lemma 6.4.1 results in the following
theorem.
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THEOREM 6.4.2. Given that the stability conditions in (6.5) are satisfied, the long-term aver-
age costs gsta

p and the relative value function V sta
p (x1, x2, w1, w2) corresponding to the static

policy with parameter p are given by

gsta
p = c1

λ1((σ1 + pν1)2 +µ1σ1)
(σ+ pν1)(µ1pν1 −λ1(σ1 + pν1))

+ c2
λ2((σ2 + (1− p)ν2)2 +µ2σ2)

(σ2 + (1− p)ν2)(µ2(1− p)ν2 −λ2(σ2 + (1− p)ν2))

and

V sta
p (x1, x2, w1, w2) = α1,1c1 x2

1 + c1(α2,1(1−w1) +α1,1w1)x1 +α3,1c1(1−w1)

+α1,2c2 x2
2 + c2(α2,2(1−w2) +α1,2w2)x2 +α3,2c2(1−w2)

for all (x1, x2, w1, w2) ∈ S , where

α1,1 =
σ1 + pν1

2µ1pν1 −λ1(σ1 + pν1)
,α1,2 =

σ2 + (1− p)ν2

2µ2(1− p)ν2 −λ2(σ2 + (1− p)ν2)
,

α2,1 =
2µ1 +σ1 + pν1

2µ1pν1 −λ1(σ1 + pν1)
,α2,2 =

2µ2 +σ2 + (1− p)ν2

2µ2(1− p)ν2 −λ2(σ2 + (1− p)ν2)
,

α3,1 =
λ1µ1

(µ1pν1 −λ1(σ1 + pν1))(σ1 + pν1)
and

α3,2 =
λ2µ2

(µ2(1− p)ν2 −λ2(σ2 + (1− p)ν2))(σ2 + (1− p)ν2)
.

6.4.2 Priority policy

In the previous section, we have derived an explicit expression for the relative value func-
tion for the static policy. In Section 6.5, this policy will act as an initial policy for the one-
step policy improvement algorithm to obtain a well-performing heuristic policy. However,
for certain instances of the model, there may be no static policy available for which the
system is stable, whereas the optimal policy does result in stable queues. When this hap-
pens, one-step policy improvement based on the static policy is not feasible, since the
initial policy for this procedure must result in a stable system. In these cases, a priority
policy may still result in stability and thus be suitable as an initial policy, so that a heuristic
policy can still be obtained. For this reason, we study the relative value function of the
priority policy in the current section.

Under priority policy πprio
i , the repairman always prioritises the repair of machine Mi ,

which we will refer to as the high-priority machine. This means that in case both machines
are down, the repairman allocates his full capacity to Mi as a high-priority machine. If
there is only one machine unoperational, the repairman dedicates his capacity to the
broken machine regardless of whether it is the high-priority machine. In case all machines
are operational, the repairman obviously remains idle. Thus, the repairman always takes
the action ((1− w1), w1(1− w2)) if i = 1 or ((1− w1)w2, (1− w2)) if i = 2. The priority
policy πprio

1 , where M1 acts as the high-priority machine, is stable if and only if for each
queue the rate at which products arrive is smaller than the effective service rate of its
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machine:
λ1 < µ1

ν1

σ1 + ν1
and λ2 < µ

eff
2 , (6.9)

where µeff
2 refers to the effective service rate of M2. The right-hand side of the first in-

equality represents the effective service rate of the high-priority machine M1 and consists
of the actual service rate µ1 times the fraction of time M1 is operational under the priority
policy. The effective service rate of M2 analogously satisfies

µ
eff
2 = µ2

1
σ2

1
σ2
+ ξ
ν1
+E[Z2]

. (6.10)

The expression ξ
ν1
+ E[Z2] in the right-hand side represents the expected downtime of

M2. The constant ξ refers to the probability that M2 observes the repairman busy on M1

when it breaks down, so that ξ
ν1

represents the expected time M2 has to wait after its
breakdown until the start of its repair as a result of an M1 failure. The probability ξ is
computed by the fixed-point equation

ξ=
σ1

σ1 +σ2

�

σ2

ν1 +σ2
+

ν1

ν1 +σ2
ξ

�

,

which leads to
ξ=

σ1

σ1 +σ2 + ν1
. (6.11)

Likewise, E[Z2] represents the expected time from the moment the repairman starts repair
on M2 until its finish and is computed by the fixed-point equation

E[Z2] =
1

σ1 + ν2
+

σ1

σ1 + ν2

�

1
ν1
+E[Z2]

�

,

which leads to

E[Z2] =
1
ν2
+
σ1

ν1ν2
.

By repeating the arguments above, it is easy to see that the priority policy πprio
2 is stable

if and only if

λ1 < µ
eff
1 and λ2 < µ2

ν2

σ2 + ν2
, (6.12)

where µeff
1 has an expression similar to µeff

2 , but with indices interchanged.
In the remainder of this section, we study the relative function corresponding to the

priority policy under the assumption that this policy is stable. We will only study the
priority policy πprio

1 where M1 acts as the high-priority machine. Results for the other case
follow immediately by similar arguments or simply by interchanging indices. Therefore,
we drop the machine-specific index in this section, so that V prio actually refers to V prio

1 .
Deriving an expression for the relative value function V prio of the priority policy is

hard. Before, in the case of the static policy, the model could be decomposed into sev-
eral components which exhibit no interdependence. This allowed us to obtain an explicit
expression for V sta. In contrast, a similar decomposition under the current policy does
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lead to interacting components. The first component, which contains the high-priority
machine M1 and its corresponding queue, acts independently of any other component,
since M1 is not affected by M2 when accessing repair resources. However, M2 is affected
by M1. This interference causes the second component, which contains the other ma-
chine and its queue of products, to become dependent on the events occurring in the first
component. Therefore, there exist correlations, which makes an explicit analysis of V prio

hard. Nevertheless, we are still able to derive certain characteristics of the relative value
function.

When decomposing the model in the same way as was done in Section 6.4.1, we have,
similar to (6.6), that the long-term average costs gprio per time unit and the relative value
function V prio pertaining to the priority policy can be written as

gprio = c1 gprc + c2 gnprc and

V prio(x1, x2, w1, w2) = c1V prc(x1, w1) + c2V nprc(x2, w1, w2), (6.13)

where gprc and V prc(x1, w1) are the long-term average costs and the relative value func-
tion pertaining to the first component, which we will also call the priority component.
Similarly, gnprc and V nprc(x2, w1, w2) denote the long-term average costs and the relative
value function of the second component, which we will also refer to as the non-priority
component. In both of these subsystems, the products present are each assumed to incur
costs at rate one. Note that the function V nprc(x2, w1, w2) of the second component now
includes w1 as an argument, since the costs incurred in the second component are now
dependent on the state of M1 in the first component. We first obtain an explicit expression
for V prc. Then, as V nprc defies an explicit analysis due to the aforementioned dependence,
we make several conjectures on its form in Section 6.4.2.2. In Section 6.5, it will turn out
that these conjectures still allow us to use πprio as an initial policy for the one-step policy
improvement algorithm.

6.4.2.1 Relative value function for the priority component

In the priority component, the machine M1 faces no competition in accessing repair facil-
ities. If M1 breaks down, the repairman immediately starts repairing M1 at rate ν1. Thus,
from the point of view of M1, it is as if M1 has its own dedicated repairman. Therefore, the
priority component behaves completely similar to a component of the static policy stud-
ied in Section 6.4.1.1, but now with λ1,µ1,σ1 and ν1 as product arrival, product service,
machine breakdown and machine repair rates. As a result, we obtain by Lemma 6.4.1
that, when products in the queue incur costs at rate one, the long-term average costs gprc

and the relative value function V prc are given by

gprc =
λ1((σ1 + ν1)2 +µ1σ1)

(σ1 + ν1)(µ1ν1 −λ1(σ1 + ν1))
, V prc(x1, 0) = υ1 x2

1 +υ2 x1 +υ3

and V prc(x1, 1) = υ1 x2
1 +υ1 x1, (6.14)

for x1 ∈ N, where

υ1 =
σ1 + ν1

2(µ1ν1 −λ1(σ1 + ν1))
,υ2 =

2µ1 +σ1 + ν1

2(µ1ν1 −λ1(σ1 + ν1))

and υ3 =
λ1µ1

(µ1ν1 −λ1(σ1 + ν1))(σ1 + ν1)
,
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when taking V prc(0, 1) = 0 as a reference value.

6.4.2.2 Heuristic for approximating the relative value function for the non-priority
component

As mentioned earlier, the relative value function V nprc of the non-priority component
defies an explicit analysis due to its dependence on the priority component. Explorat-
ive numerical experiments suggest that V nprc asymptotically behaves like a second-order
polynomial in x2 as x2→∞. We support this insight by arguments from queueing theory,
which are given in Conjecture 6.4.3 below. Building on this, we also pose certain con-
jectures on the first-order and second-order coefficients of this polynomial. This leads to
a heuristic for approximating the relative value function for the non-priority component,
which we present in this section. Finally, we present an approximation for the long-term
expected costs gnprc.

In the non-priority component, products arrive at rate λ2 and are served at rate µ2 by
M2 when it is operational. Independently of this, M2 breaks down at rate σ2 when it is
operational. In case M2 is down, it gets repaired at rate ν2 if M1 is operational and at rate
zero otherwise. Obviously, if M1 is operational, it breaks down at rate σ1. Otherwise,
it gets repaired at rate ν1. The resulting system can again be formulated as a Markov
reward chain with states (x2, w1, w2) ∈ S nprc, representing the number of products in
the component (x2) and the indicator variables corresponding to each of the machine’s
operational states (w1, w2), where S nprc ∈ N×{0,1}2 is its state space. This chain is said
to incur costs at rate c(x2, w1, w2) = x2. After uniformisation at rate one, the transition
probabilities pnprc(s, t) from a state s ∈ S nprc to a state t ∈ S nprc are given by

pnprc((x2, w1, w2), (x2 + 1, w1, w2)) = λ2, pnprc((x2, w1, w2), (x2 − 1, w1, w2))
= µ2w21{x2>0},

pnprc((x2, 1, w2), (x2, 0, w2)) = σ1, pnprc((x2, w1, 1), (x2, w1, 0)) = σ2,
pnprc((x2, 0, w2), (x2, 1, w2)) = ν1, pnprc((x2, 1, 0), (x2, 1, 1)) = ν2 and
pnprc((x2, w1, w2), (x2, w1, w2)) = (1−λ2 −σ1w1 −w2(µ21{x2>0} +σ2)

−ν1(1−w1)− ν2w1(1−w2)).

All other transition probabilities are equal to zero. For this Markov reward chain, the
Poisson equations are given by

gnprc + V nprc(x2, w1, w2)
= x2 +λ2V nprc(x2 + 1, w1, w1) +µ2w2V nprc((x2 − 1)+, w1, 1)
+σ1w1V nprc(x2, 0, w2) +σ2w2V nprc(x2, w1, 0)
+ ν1(1−w1)V

nprc(x2, 1, w2) + ν2w1(1−w2)V
nprc(x2, 1, 1)

+ (1−λ2 −σ1w1 −w2(µ2 +σ2)− ν1(1−w1)− ν2w1(1−w2))
× V nprc(x2, w1, w2). (6.15)

CONJECTURE 6.4.3. Assume that the stability conditions in (6.9) are satisfied. Then, the
relative value function V nprc(x2, w1, w2) of the non-priority component asymptotically be-
haves as a second-order polynomial in x2 with second-order coefficient φ1 =

1
2 (µ

eff
2 −λ2)−1

as x2→∞ for each w1, w2 ∈ {0,1}, where µeff
2 represents the effective service rate of M2 as

given in (6.10).
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ARGUMENT. Recall that V nprc(x2+1, w1, w2)−V nprc(x2, w1, w2) represents the long-term
difference in total expected costs incurred in the non-priority component when starting
the system in state (x2+1, w1, w2) instead of (x2, w1, w2). Since every customer generates
costs at rate one per time unit, it is easily seen by a sample-path comparison argument
that this difference asymptotically (for x2 →∞) amounts to the expected time it takes
for the queue to empty when the system is started in the state (x2 + 1, w1, w2). For small
values of x2, this difference may depend slightly on w1, since the event of M1 being down
at the start of the process may have a relatively significant impact on the time to empty the
queue, as the first repair of M2 is likely to take longer than usual. However, as x2 becomes
larger, the time needed for the queue to empty becomes larger too, so that the process
describing the conditions of the machines is more likely to have advanced towards an
equilibrium in the meantime. As a result, the initial value of w1 does not have a relatively
significant impact on the difference (i.e. the time for the queue to empty) for larger x2
values. In fact, the extra delay in the time to empty imposed by an initial failure of M1
is expected to converge to a constant as x2 increases. Based on these observations, we
expect that asymptotically, the value w1 will only appear in the first-order coefficients of
V nprc(x2, w1, w2) when regarding it as a polynomial function in x2, but not in higher-
order coefficients. This asymptotic linear effect is studied in Conjecture 6.4.4. We also
expect that V nprc starts to exhibit this asymptotic behaviour very quickly as x2 increases,
since the process describing the conditions of the machines regenerates each time M2 is
repaired and thus moves to an equilibrium rather quickly.

Now that we have identified the contribution of w1, we study the behaviour of V nprc in
the direction of x2 that is not explained by w1. When ignoring the interaction with the pri-
ority queue (thus ignoring w1), the queue of products in the non-priority component may
be interpreted as an M/PH/1 queue, by incorporating the service interruptions (consist-
ing of M1 and M2 repairs) into the service times of the products. Thus, queueing-theoretic
intuition suggests that the relative value function for our model may behave similarly to
that of the M/PH/1 queue, particularly if the degree of interdependence between the
queue lengths of Q1 and Q2 is not very high. It is known that the relative value function
of such a queue is a quadratic polynomial (see e.g. [35]). Therefore, asymptotically, V nprc

is likely to behave as a quadratic polynomial too. The second-order coefficient of the re-
lative value function of the M/PH/1 queue satisfies the form 1

2 (µ
eff
2 −λ2)−1, where λ2 is

the arrival rate and µeff
2 is the effective service rate, i.e. the maximum long-term rate at

which the server can process the products. As observed in Remark 6.4.1, the second-order
coefficient α1 of the static component in Lemma 6.4.1 is also of this form, which is inde-
pendent of the value of w2. Therefore, it is reasonable to assume that the second-order
coefficient of V nprc also satisfies this form, although it is independent of the values w1

and w2. The involved effective service rate of M2, µeff
2 , is given in (6.10). By combining

all arguments above, the conjecture follows.

Note that the first-order coefficient of the polynomial, unlike the second-order coef-
ficient, is expected to be dependent on w1 as mentioned in the argument of Conjecture
6.4.3, but also on w2, in line with the results on the components of the static policy. The
first-order coefficient is studied in the next conjecture.
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CONJECTURE 6.4.4. Suppose that Conjecture 6.4.3 holds true, so that, asymptotically,

V nprc(x2, 0, 0) = φ1 x2
2 +φ2 x2 +φ3, V nprc(x2, 1, 0) = φ1 x2

2 +ψ2 x2 +ψ3,

V nprc(x2, 0, 1) = φ1 x2
2 +χ2 x2 +χ3 and V nprc(x2, 1, 1) = φ1 x2

2 +ω2 x2 +ω3 (6.16)

as x2→∞. Then,

ψ2 = φ2 −∆1,0,χ2 = φ2 −∆0,1,ω2 = φ2 −∆1,1,

where

∆0,1 =
µ2 (ν1 +σ1) (ν1 + ν2 +σ1 +σ2)

µ2ν1ν2 (ν1 +σ1 +σ2)−λ2 (ν1 +σ1) (ν1 (ν2 +σ2) +σ2 (ν2 +σ1 +σ2))
,

∆1,0 =
µ2ν2 (ν1 +σ1 +σ2)

µ2ν1ν2 (ν1 +σ1 +σ2)−λ2 (ν1 +σ1) (ν1 (ν2 +σ2) +σ2 (ν2 +σ1 +σ2))

and

∆1,1 =
µ2 (ν1 + ν2 +σ1) (ν1 +σ1 +σ2)

µ2ν1ν2 (ν1 +σ1 +σ2)−λ2 (ν1 +σ1) (ν1 (ν2 +σ2) +σ2 (ν2 +σ1 +σ2))
.

ARGUMENT. The relative value function V nprc is expected to satisfy the Poisson equations
given in (6.15), also asymptotically for x2 →∞. When substituting (6.16) into (6.15)
for x2 > 0, the constraints on φ2, χ2, ψ2 and ω2 mentioned above are necessary for the
first-order terms in x2 on both sides of the equations to be equal.

REMARK 6.4.3. As costs in the non-priority component are generated primarily by hav-
ing customers in the queue, we expect the values of φ3, χ3, ψ3 and ω3 in (6.16) to
be of very moderate significance compared to the second-order and first-order coeffi-
cients. As mentioned before, we also expect that V nprc starts to exhibit its asymptotic
behaviour very quickly as x2 increases. Although we have not found an explicit solu-
tion for the first-order coefficients φ2, χ2, ψ2 and ω2, we can therefore still obtain ac-
curate approximations for expressions such as V prio(x1, x2, 1, 0)− V prio(x1, x2, 0, 0) and
V prio(x1, x2, 0, 1)− V prio(x1, x2, 0, 0) based on the information we have obtained. In par-
ticular, by combining the results in (6.13), (6.14), Conjecture 6.4.3 and Conjecture 6.4.4,
we have that

V prio(x1, x2, 1, 0)− V prio(x1, x2, 0, 0)≈ c1((υ1 −υ2)x1 −υ3)− c2∆1,0 x2,

V prio(x1, x2, 0, 1)− V prio(x1, x2, 0, 0)≈ −c2∆0,1 x2 (6.17)

with the parameters υ1, υ2, υ3,∆1,0 and∆0,1 as previously defined in this section. These
two accurate approximations allow us to apply the one-step policy improvement algorithm
based on the priority policy in Section 6.5.1.2.

In the two conjectures above, we have not studied the long-term expected costs per
time unit gnprc. However, to predict which of the two possible priority policies πprio

1

and πprio
2 will lead to the best one-step improved policy, we will need an expression for

the overall long-term average costs gprio, which includes the costs gnprc generated by the
non-priority queue. Therefore, we end this section by deriving an approximation for gprio,
which is obtained by combining (6.13) and (6.14) with an independence argument.
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APPROXIMATION 6.4.5. An accurate approximation for the long-term expected costs per time
unit gprio is given by

gprio
app ≈ c1

λ1((σ1 + ν1)2 +µ1σ1)
(σ1 + ν1)(µ1ν1 −λ1(σ1 + ν1))

+ c2 gnprc
app , (6.18)

where

gnprc
app = λ2E[Capp] +

λ2
2E[C

2
app]

2(1−λ2E[Capp])
+λ2

σ2E[D2]
2(1+σ2ED)

, (6.19)

E[C i
app] = (−1)i

d i

dsi

�

µ2

µ2 + s+σ2(1− eD(s))

��

�

�

�

s=0

,

E[Di] = (−1)i
d i

dsi
eD(s)

�

�

�

s=0
, eD(s) =

�

(1− ξ) + ξ
ν1

ν1 + s

�

ν2

ν2 + s+σ1(1−
ν1
ν1+s )

and ξ is defined as in (6.11).

JUSTIFICATION. The form of (6.18) is a consequence of (6.13) and (6.14). It thus remains
to obtain an approximation for gnprc. We do this by ignoring the interaction between the
two components. Inspired by Remark 6.4.2, we approximate gnprc by studying the queue
length in an M/G/1 queue with server vacations. As service times of this vacation queue,
we take the completion times C , which incorporate the time lost due to service interrup-
tions as a result of a breakdown of M2 during service. The server vacations, which start
each time the queue becomes empty, include the downtimes of M2 following a breakdown
occurring when the queue is empty. Let D̃(s) = E[e−sD] be the Laplace-Stieltjes transform
representing the duration D of a downtime of M2. This period D consists of an exponen-
tial (ν2) repair time R2, of which the distribution is represented by the Laplace-Stieltjes
transform eR2(s) =

ν2
ν2+s , and a Poisson (σ1R2) number of interruptions N , each caused by

a breakdown of M1. Since M1 has priority, these interruptions take an exponential (ν1)
repair time R1, of which the distribution is represented by the Laplace-Stieltjes transform
eR1(s) =

ν1
ν1+s . Finally, when M2 breaks down, it will have to wait with probability ξ (as

defined in (6.11)) for an M1-repair to finish before repair on M2 can start. Since the re-
pair time of M1 is memoryless, the Laplace-Stieltjes transform of the distribution of this
waiting time also equals eR1(s). Thus, we have that

D̃(s) =
�

(1− ξ) + ξeR1(s)
�

∫ ∞

t=0

e−st

�∞
∑

n=0

eRn
1(s)P(N = n)

�

ν2e−ν2 t d t

=
�

(1− ξ) + ξeR1(s)
�

∫ ∞

t=0

e−st

�∞
∑

n=0

e−σ1 t (σ1 teR1(s))n

n!

�

ν2e−ν2 t d t

=
�

(1− ξ) + ξeR1(s)
�

eR2(s+σ1(1− eR1(s)))

=
�

(1− ξ) + ξ
ν1

ν1 + s

�

ν2

ν2 + s+σ1

�

1− ν1
ν1+s

� .

The completion time C of a product, of which the distribution is represented by its Laplace-
Stieltjes transform eC(s), consists of an exponentially (µ2) distributed service time B2 with
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the Laplace-Stieltjes transform eB2(s) =
µ2
µ2+s and a Poisson (σ2B2) number of interrup-

tions, each caused by a breakdown of M2. Due to the interaction between the compon-
ents, we know that both machines are operational at the start of the first completion time
after a vacation period. As a result, the number of interfering M1 repairs that occur dur-
ing the first completion time is likely to be less than during later completion times. When
ignoring this interaction effect and assuming that each breakdown has a duration that is
distributed according to D and is independent of anything else, we obtain similarly to the
computations above that

eC(s)≈ eB2(s+σ2(1− eD(s))). (6.20)

An application of the Fuhrmann-Cooper decomposition similar to the one encountered in
Section 4.4 suggests that

gnprc ≈ E[LM/G/1] +E[Lvac],

where E[LM/G/1] = λ2E[C] +
λ2E[C2]

2(1−λ2E[C])
is the mean queue length of the number of

products in an M/G/1 queue with Poisson (λ2) arrivals and service times distributed
according to the completion times C . Approximations for the moments of C follow by
differentiation of (6.20) with respect to s. The term E[Lvac] represents the expected
queue length observed when the server is on a vacation, which is initiated any time the
queue empties. This vacation period consists of periods of time where M2 is operational,
but may also consist of periods of time where M2 is down in case a breakdown occurs
before a type-2 product arrival. When conditioning on the event that M2 is operational,
we obviously have that the queue is empty. When conditioning on the event that M2
is down, observe that under the assumption of independent and identically distributed
downtimes, the expected queue length then amounts to the expected number of arrivals
during the past part of a downtime D. The duration of this past part has expectation E[D

2]
2E[D] ,

where the moments of D can be computed by differentiation of eD(s) with respect to s.
Finally, we assert that the probability of the latter event occuring is closely approximated
by E[D]

1
σ2
+E[D]

, where 1
σ2

is the expected duration of an uptime of M2. As a result,

E[Lvac]≈ λ2
E[D2]
2E[D]

E[D]
1
σ2
+E[D]

= λ2
σ2E[D2]

2(1+σ2E[D])
.

By combining the results above, we obtain the approximation gnprc
app as given in (6.19).

Note that the application of the Fuhrmann-Cooper decomposition requires that the com-
pletion times are mutually independent. However, in our case, this requirement is not
met, again due to the interaction between the components. For example, a very long
completion time may imply that the last actual service period of M2 has been longer than
usual. In turn, this implies that M2 has been in operation for some time. Thus, if a M2-
breakdown occurs in the next completion time, it is more likely than usual that M1 is also
down at that point. Due to this interdependence, the application of the Fuhrmann-Cooper
decomposition also results in a computation error. However, all computation errors made
share the same source, namely the interaction between the components and in particular
the role of M1. As we already saw in Conjecture 6.4.3, the influence of M1 on the relative
value function is likely to be limited, especially for states with a large number of products
in the queue. Therefore, we expect this approximation to be accurate, especially for the
purpose of deciding which of the two priority policies available performs best (see also
Remark 6.6.1).
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6.5 Derivation of a near-optimal policy

Based on the explicit expressions for the relative value functions of the static policy and
the priority policy as obtained in the previous section, we derive a nearly optimal dynamic
policy. We do so in Section 6.5.1 by applying the one-step policy improvement method on
both the static policy and the priority policy. The resulting improved policiesπoss,πosp

1 and
π

osp
2 can then be used to construct a nearly optimal policy, as discussed in Section 6.5.2.

By construction, this near-optimal policy is applicable in a broader range of parameter
settings than each of the improved policies separately.

6.5.1 One-step policy improvement

One-step policy improvement is an approximation method that is distilled from the policy
iteration algorithm in Markov decision theory. In policy iteration, one starts with an
arbitrary policyπinit for which the relative value function V init is known. Next, using these
values, an improved policy πimp can be obtained by performing a policy improvement
step:

πimp(s) = arg min
a∈As

¨

∑

s′∈S

pa(s,s′)V init(s′)

«

, (6.21)

i.e. the minimising action of K init(s) as defined in (6.3). If πimp = πinit, the optimal
policy has been found. Otherwise, the procedure can be repeated with the improved
policy by setting πinit := πimp, generating a sequence converging to the optimal policy.
However, as the relative value function of the improved policy may not be known expli-
citly, subsequent iterations may have to be executed numerically. To avoid this problem,
the one-step policy improvement method consists of executing the policy improvement
step only once. In this case, the algorithm starts with a policy for which an expression for
the relative value function is known. The resulting policy is then explicit and can act as
a basis for approximation of the optimal policy. We now derive two one-step improved
policies based on the results of the static policy and the priority policy as obtained in
Section 6.4.

6.5.1.1 One-step policy improvement based on the static policy

In Section 6.4.1, we have found the relative value function V sta for the class of static
policies, in which each policy corresponds to a splitting parameter p ∈ (0,1). As an initial
policy for the one-step policy improvement, we take the policy which already performs
best within this class with respect to the weighted number of products in the system.
Thus, we take as an initial policy the static policy with splitting parameter

poss = argmin
p
{gsta

p : p ∈ P }, (6.22)

where gsta
p is defined as in Theorem 6.4.2 and where P ⊂ (0, 1) is the set of splitting

parameters which satisfy the stability conditions in (6.5). Then, by performing one step
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of policy improvement as given in (6.21), we obtain

πoss(x1, x2, w1, w2)

= argmin
(q1,q2)∈A(x1,x2,w1,w2)

{q1ν1(V
sta
poss (x1, x2, 1, w2)− V sta

poss (x1, x2, 0, w2))

+ q2ν2(V
sta
poss (x1, x2, w1, 1)− V sta

poss (x1, x2, w1, 0))}. (6.23)

It is easily seen that V sta
poss (x1, x2, 1, w2)−V sta

poss (x1, x2, 0, w2), as well as V sta
poss (x1, x2, w1, 1)−

V sta
poss (x1, x2, w1, 0), is non-positive for any state (x1, x2, w1, w2) ∈ S by observing that
α2,i ≥ α1,i and α3,i ≥ 0, i = 1,2. This means that πoss satisfies the properties mentioned
in Section 6.3.1. Therefore, we can simplify (6.23) to

πoss(x1, x2, w1, w2)

= arg min
(q1,q2)∈{(1−w1,0),(0,1−w2)}

{q1ν1(V
sta
poss (x1, x2, 1, w2)− V sta

poss (x1, x2, 0, w2))

+ q2ν2(V
sta
poss (x1, x2, w1, 1)− V sta

poss (x1, x2, w1, 0))}.

Substituting V sta
poss as obtained in Theorem 6.4.2 in this expression yields the following

one-step improved policy:

πoss(x1, x2, w1, w2) =



























(0, 0) if w1 = w2 = 1,

(1, 0) if w1 = 1−w2 = 0, or if w1w2 = 0 and

c1ν1((α1,1 −α2,1)x1 −α3,1)
≤ c2ν2((α1,2 −α2,2)x2 −α3,2),

(0, 1) otherwise

(6.24)

for (x1, x2, w1, w2) ∈ S , where expressions for the α-coefficients are obtained by substi-
tuting the value for p in the expressions given in Theorem 6.4.2 by its optimised coun-
terpart poss. Thus, whenever both machines are not operational, the one-step improved
policy πoss prescribes to repair the machine Mi for which ciνi((α1,i − α2,i)x i − α3,i) is
smallest, when adhering to πoss.

REMARK 6.5.1. If P is empty, there is no static policy available which results in a system
with stable queues. In such circumstances, the static policy cannot be used as an initial
policy for the one-step policy improvement approach. However, the priority policy as
studied in Section 6.4.2 may still result in a stable system. If this is the case, the priority
policy may act as an initial policy for the one-step policy improvement method. We study
this alternative in the next section.

REMARK 6.5.2. Whenever P is not empty, the optimal splitting parameter poss is guar-
anteed to exist. As gsta

p is a continuous function in p for p ∈ P , the optimal splitting

parameter poss is then a root of d
dp gsta

p in the domain P . This derivative, which forms
a sixth-order polynomial in p, defies the possibility of deriving an explicit expression for
poss. For implementational purposes, however, this poses no significant problems, as such
roots can be found numerically up to arbitrary precision with virtually no computation
time needed.
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6.5.1.2 One-step policy improvement based on the priority policy

Although an explicit expression for the relative value function V prio
i is not available, we

have identified enough of its characteristics in Section 6.4.2 to allow the use of a priority
policy πprio

i as an initial policy. We now show how to compute the one-step improved

policy πosp
1 based on the priority policy πprio

1 , i.e. the priority policy where M1 is the high-
priority machine. Of course, the one-step improved policyπosp

2 based on the priority policy

π
prio
2 again follows by interchanging indices in the expressions below. The improvement

step as given in (6.21) implies, after performing the same simplification as in the case of
the static policy, that

π
osp
1 (x1, x2, w1, w2)

= arg min
(q1,q2)∈{(1−w1,0),(0,1−w2)}

{q1ν1(V
prio

1 (x1, x2, 1, w2)− V prio
1 (x1, x2, 0, w2))

+ q2ν2(V
prio

1 (x1, x2, w1, 1)− V prio
1 (x1, x2, w1, 0))}. (6.25)

The simplification is justified by the fact that V prio
1 (x1, x2, 1, w2)−V prio

1 (x1, x2, 0, w2) and

V prio
1 (x1, x2, w1, 1)− V prio

1 (x1, x2, w1, 0) are obviously non-positive, since also under the
priority policy it is always beneficial for the system to have a machine operational. Due
to this, it is clear that πosp

1 (x1, x2, w1, w2) in (6.25) resolves to ((1−w1), (1−w2)) in case
w1 = w2 = 1, w1 = 1− w2 = 1 or 1− w1 = w2 = 1. However, for the case w1 = w2 = 0,
there are no expressions for V prio

1 (x1, x2, 1, 0)−V prio
1 (x1, x2, 0, 0) and V prio

1 (x1, x2, 0, 1)−
V prio

1 (x1, x2, 0, 0) available. Due to their general intractability, we use the approximations
for these differences as derived in (6.17) instead. By plugging these approximations into
(6.25) in case w1 = w2 = 0, we obtain with a slight abuse of notation that

π
osp
1 (x1, x2, w1, w2) =















(1,0) if w1 = 1−w2 = 0, or if w1w2 = 0 and

ν1(c1((υ1 −υ2)x1 −υ3)− c2∆1,0 x2)
≤ −c2∆0,1ν2 x2,

(0,1) otherwise,

(6.26)

where the parameters υ1, υ2, υ3, ∆1,0 and ∆0,1 are as defined in Section 6.4.2.1 and
Conjecture 6.4.4, respectively.

REMARK 6.5.3. We have based πosp on an approximation of the relative value function
V prio rather than an exact expression. Nevertheless, we have already argued in Sec-
tion 6.4.2.2 that these approximations are accurate. Moreover, the argmin operator in
(6.25) only checks which of the two arguments is smallest. Therefore, the improvement
step is very robust against approximation errors, especially since both arguments share
the same source of approximation error.

6.5.2 Resulting near-optimal policy

In the previous section, we have constructed the improved policies πoss, πosp
1 and πosp

2
based on the static policy and the priority policy. However, the question remains which of
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these policies should be followed by the repairman given a particular case of the model.
In this section, we suggest a near-optimal policy, which chooses one of the three policies
based on the model parameters. To this end, we now inspect these improved policies as
well as their initial policies.

First, we observe that each of the improved policies satisfy the structural properties of
the optimal policy. The improved policies πoss, πosp

1 and πosp
2 each instruct the repairman

to work at full capacity whenever at least one of the machines is down and therefore
satisfy the non-idling property as derived in Section 6.3.1. Furthermore, when both of the
machines are down, the improved policies base the action on threshold curves (or, in this
case, threshold lines), so that they also satisfy the properties discussed in Section 6.3.2.
As each of the improved policies satisfy the required properties, we base the decision on
which of the improved policies to follow on their respective initial policies.

In terms of feasibility, the static policy and the priority policy complement each other.
For any model instance, one can construct an improved static policy if there exists a static
policy that results in stable queues; i.e. there exists a value p ∈ (0, 1) such that (6.5)
holds. Similarly, an improved priority policy can be constructed if either (6.9) or (6.12)
holds. There are cases of the model for which there is no stable static policy, whereas
a stable priority policy exists. There are also cases for which the reverse holds true. In
these cases, it is clear whether to use an improved static policy or an improved priority
policy as a near-optimal policy. However, in case both of the approaches are feasible,
other characteristics of the improved policies need to be taken into account.

In case the repairman would have no information to base his decision on (i.e. he has
no knowledge about the state of the machines), it is easily seen that the optimal policy
among the class of deterministic policies belongs to the class of static policies. The optimal
policy in the current model, however, does not constitute a static policy, as the static policy
does not have the non-idling property. This is the case because under the static policy, the
server works at partial capacity when exactly one of the machines is down. Nevertheless,
this problem does not arise with the improved version of the static policy.

As for the priority policy, if the load presented to the system would be such that the
queues of products are never exhausted, it is easily seen that the optimal policy is in
the class of priority policies. In such a case, the possibility of having a machine in an
operational but idle state then disappears, so that the optimal policy always gives priority
to one machine over the other due to faster service of products, a slower breakdown,
faster repair times or a higher cost rate. We therefore expect the priority policy (and
thus also its improved version) to work particularly well in our model when the model
parameters are skewed in the favour of repair of a certain machine and when the queues
of the products are particularly heavily loaded, such that the machines are almost never
idling. The performance of the improved static policy, however, is not expected to be as
sensitive to the load of the system, since the static policy balances the repair fractions
based on, among other things, the load offered to each of the queues.

Based on the observations above, we suggest a near-optimal policy that is expressed
in terms of a few simple decision rules. A schematic representation of this near-optimal
policy is given in Figure 6.2. This near-optimal policy prescribes to follow the improved
static policy as derived in Section 6.5.1.1 if there is a static policy available that results in
a stable system (i.e. when there exists a p for which (6.5) holds). Otherwise, an improved
priority policy should be followed, provided that a stable priority policy exists. In case
only one of the priority policies is stable (i.e. either only (6.9) or only (6.12) holds), the
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FIGURE 6.2: Schematic representation of the near-optimal policy.

choice of which improved priority policy to follow is easy. When both of them are stable,
the choice is based on which of the two initial priority policies are expected to perform
best. That is, the near-optimal policy will then select the improved policy corresponding
to policy πprio

1 , if its approximated long-term average costs gprio
1, app as given in Approxim-

ation 6.4.5 is smaller than its equivalent gprio
2, app obtained by interchanging the indices in

(6.18). Observe that this near-optimal policy is applicable in a wider range of parameter
settings than each of the improved policies πoss, πosp

1 and πosp
2 separately.

We end this section with several remarks concerning the obtained near-optimal policy.

REMARK 6.5.4. As the nearly optimal policy requires a stable static policy or a stable
priority policy as a basis for one-step improvement, the approach only works when either
(6.5) (for some value of p ∈ (0, 1)), (6.9) or (6.12) holds. However, in theory, it is
possible for some parameter settings that none of these conditions are satisfied, whereas
stable policies do actually exist. However, one can reason that the parameter region where
this occurs is fairly small. First, it is trivially seen that the stability condition (6.5) for the
static policy only significantly differs from the necessary stability conditions given in (6.1)
when the breakdown rates are large compared to the repair rates. In practice, however,
breakdown rates are often much smaller than repair rates. Furthermore, for the priority
policy, the conditions for λ1 in (6.9) and λ2 in (6.12) coincide with the requirements given
in (6.1) for λ1 and λ2, respectively. Thus, the parameter region where our approach does
not work only covers parameter settings where both λ1 and λ2 are close to their boundary
values µ1

ν1
σ1+ν1

and µ2
ν2

σ2+ν2
, respectively. Finally, we observe that (6.1) only presents
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necessary conditions for the existence of a stable policy, but does not provide sufficient
conditions. Therefore, the size of this parameter region is limited even further.

REMARK 6.5.5. Many optimisation approaches in Markov decision theory suffer from the
curse of dimensionality. When dimensions are added to the state space, e.g. by adding
more machines to the problem, the size of the state space increases considerably, so that
numerical computation techniques break down due to time and resource constraints.
Note, however, that the approach presented in this chapter generally scales well in the
number of machines and the corresponding queues of products. The one-step improved
policy based on the static policy can be modified to allow for models with N > 2 machines,
since a decomposition of the system in the fashion of (6.6) can then be done into N com-
ponents. After finding a vector of splitting parameters (poss

1 , poss
2 , . . . , poss

N ), the execution
of the one-step policy improvement algorithm will then still result in a simple decision
rule similar to (6.24). Likewise, the priority policy may be used to derive near-optimal
policies in a model with larger dimensions. The current approximation for the relative
value function V prio in the case of N = 2 already accounts for the components containing
the two most prioritised machines in a model with N > 2 machines, as the repair capacity
assigned to a machine is not affected by the breakdown of a machine with lower prior-
ity. When approximations for the relative value function pertaining to lower prioritised
components can be found, a nearly optimal policy follows similarly to the case N = 2.

6.6 Numerical study

In this section, we numerically assess the performance of the near-optimal policy obtained
in Section 6.5 with respect to the optimal policy. We do this by comparing the average
costs per time unit of both policies applied to a large number of model instances. To
ensure that there is heavy competition between the machines for the resources of the
repairman, we study instances with breakdown rates that are roughly of the same order
as the repair rates. In these cases, the event that both machines are in need of repair is
not a rare one, which allows us to compare the performance of the near-optimal policy
to that of the optimal policy. We will see that the near-optimal policy performs very well
over a wide range of parameter settings. Moreover, we observe several parameter effects.
Throughout, we also give results for the improved static and priority policies (insofar as
they exist) in order to observe how the near-optimal policy compares to these policies in
terms of performance.

The complete test bed of instances that are analysed contains all 2916 possible com-
binations of the parameter values listed in Table 6.1. This table lists multiple values for
the cost weights of having products in Q1 and Q2 (i.e. c1 and c2), the service rates at which
M1 and M2 serve products when operational (i.e. µ1 and µ2), their breakdown rates (i.e.
σ1 and σ2) as well as their repair rates (i.e. ν1 and ν2). Finally, the product arrival rates
λ1 and λ2 are specified by the values of the parameters ρ̂FCFS

1 and ρ̂FCFS
2 given in the table,

where ρ̂FCFS
i represents the scaled load offered to Mi if the repairman would repair the

machines in a first-come-first-served manner. More specifically, the arrival rates are taken
such that the values of the scaled load

ρ̂FCFS

i =
λi

µimC ,i
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TABLE 6.1: Parameter values of the test bed.

Parameter Considered parameter values

c1 {0.25,0.75}

c2 {1}

(ρ̂FCFS
1 , ρ̂FCFS

2 ) aρi · b
ρ
j ∀i, j,

where aρ = {0.25,0.5, 0.75} and bρ = {( 2
3 , 4

3 ), (1, 1), ( 4
3 , 2

3 )}

(µ1,µ2) {(0.75,1.25), (1.25,0.75), (1., 1.)}

(σ1,σ2) aσi · b
σ
j ∀i, j,

where aσ = {0.1,1} and bσ = {( 1
2 , 3

2 ), (1,1), ( 3
2 , 1

2 )}

(ν1,ν2) aνi · b
ν
j ∀i, j,

where aν = {0.025, 0.1,1} and bν = {( 1
2 , 3

2 ), (1, 1), ( 3
2 , 1

2 )}

(cf. (2.2)) would coincide with those given in Table 6.1 if the repairman were to follow
a first-come-first-served policy. Recall that mC ,i represents the fraction of time that Mi is
operational under a first-come-first-served policy. The values for ρ̂FCFS

i ,σi and νi are varied
in the order of magnitude through the values aρi , aσi and aνi as specified in the table and in
the imbalance through the values bρj , bσj and bνj . For example, the load values (ρ̂FCFS

1 , ρ̂FCFS
2 )

run from (0.25 · 2
3 , 0.25 · 4

3 ) = (
1
6 , 1

3 ), being small and putting the majority of the load on
the second queue, to (0.75 · 4

3 , 0.75 · 2
3 ) = (1,0.5), being large and putting the majority

on the first queue. Observe that in the latter case, ρ̂FCFS
1 takes the value of one. Thus, we

also consider cases where not all of the queues would be stable if the repairman would
repair the machines in a first-come-first-served fashion.

For the systems corresponding to each of the parameter combinations in Table 6.1,
it turns out that there is always at least one static policy or priority policy available as
an initial policy, so that the near-optimal policy is feasible. We numerically compute the
average costs gn-opt incurred per time unit by the system if the repairman were to follow
the near-optimal policy as suggested in Section 6.5.2. Next to this, we also compute the
average costs gopt incurred per time unit if the repairman were to follow the optimal
policy. We do this by using the value iteration algorithm (see e.g. [202]). Subsequently,
we compute the relative difference ∆n-opt between these approximations, i.e.

∆n-opt = 100%×
gn-opt − gopt

gopt .

For instances where the corresponding initial policy exists, we also compute the relat-
ive differences of the improved policies considered in this chapter. That is, we compute
similarly defined relative differences∆oss and∆osp for the improved static policy and the
improved policy based on the priority policy with the smallest value for gprio

app as computed
in Approximation 6.4.5, respectively. Obviously, ∆n-opt, ∆oss and∆osp cannot take negat-
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TABLE 6.2: Percentual relative differences ∆n-opt, ∆oss and ∆osp categorised in bins.

0-0.1% 0.1-1% 1-10% 10-25% 25%+

% of rel. differences ∆n-opt 36.73% 30.39% 32.55% 0.34% 0.00%
% of rel. differences ∆oss 32.29% 32.44% 35.01% 0.26% 0.00%
% of rel. differences ∆osp 57.95% 18.55% 16.43% 5.27% 1.80%

ive values. Furthermore, the closer these values are to zero, the better the corresponding
policy performs.

In Table 6.2, the computed relative differences are summarised. We note that the vast
majority of relative differences corresponding to the near-optimal policy do not exceed
10%, and more than half of the cases constitute a difference lower than 1%. These res-
ults show that the near-optimal policy works very well. The worst performance of the
near-optimal policy encountered in the test bed is the exceptional case with parameters
(c1, c2) = (0.25, 1), (ρ̂FCFS

1 , ρ̂FCFS
2 ) = (1, 0.5), (µ1,µ2) = (0.75, 1.25), (σ1,σ2) = (0.15,

0.05) and (ν1,ν2) = (0.05, 0.15). For this case, we found that gopt = 26.37, gn-opt =
32.70 and consequently ∆n-opt = 24.05%. For this instance, any static policy, as well as
the first-come-first-served policy, results in unstable queues. Moreover, this instance is
characterised by highly asymmetric model parameters, but in such a way that neither of
the machines would be a clear candidate for the role of the high-priority machine in the
priority policy.

We also see in Table 6.2 that the improved static policy performs similarly to the near-
optimal policy in terms of relative differences calculated. This is not surprising, as by
construction, the near-optimal policy follows the improved static policy in case the latter
exists. However, the gain of the near-optimal policy lies primarily in the fact that the
near-optimal policy can handle a far broader range of parameter settings than the static
policy. For example, of all instances with aρ = 0.75, there are 268 instances for which
the improved static policy is not available due to stability issues. The near-optimal policy,
however, does result in an implementable policy for all 2916 instances considered in the
test bed.

Judging by Table 6.2, the performance of the improved priority policy does differ from
that of the near-optimal policy as opposed to the improved static policy. In 57.95% of the
cases where an improved priority policy is available, the performance of the improved
priority policy is less than 0.1% removed from that of the optimal policy. However, the
relative difference exceeds 10% in more than 7% of the cases. Thus, there is far more
variation in the performance of the priority policy than in the performance of the near-
optimal policy. Furthermore, for 414 of the instances considered in this section, there
is no improved priority policy available. Nevertheless, it is important to note that the
set of instances for which no priority policy exists is completely disjoint of the set con-
sisting of instances with no available improved static policy. This illustrates the fact that
the improved static policy and the improved priority policy are complementary. These
complementary parameter regions are combined in the near-optimal policy.

To observe any further parameter effects, Table 6.3 displays the mean relative differ-
ence ∆n-opt, ∆oss and ∆osp categorised in some of the variables. Based on these results,
we identify four factors determining the quality of the near-optimal policy:
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TABLE 6.3: Mean percentual relative differences categorised in each of the parameters as
specified in Table 6.1.

(a)

c1 0.25 0.75

∆n-opt 1.26% 1.06%
∆oss 1.30% 1.14%
∆osp 2.23% 2.50%

(b)

aνi 0.1 1

∆n-opt 1.84% 0.48%
∆oss 1.89% 0.50%
∆osp 4.58% 1.06%

(c)

aρi 0.25 0.5 0.75

∆n-opt 0.66% 1.00% 1.83%
∆oss 0.66% 1.01% 2.22%
∆osp 2.63% 1.30% 3.24%

(d)

aσi 0.025 0.1 1

∆n-opt 0.42% 0.77% 2.29%
∆oss 0.48% 0.76% 2.32%
∆osp 0.07% 2.21% 6.58%

(e)

(µ1,µ2) (0.75, 1.25) (1, 1) (1.25, 0.75)

∆n-opt 1.26% 1.15% 1.07%
∆oss 1.31% 1.22% 1.14%
∆osp 2.38% 2.38% 2.40%

(f)

bρj ( 2
3 , 4

3 ) (1, 1) ( 4
3 , 2

3 )

∆n-opt 1.39% 0.98% 1.11%
∆oss 1.58% 0.99% 1.13%
∆osp 1.51% 3.99% 1.77%

(g)

bσj ( 1
2 , 3

2 ) (1, 1) ( 3
2 , 1

2 )

∆n-opt 1.09% 1.07% 1.31%
∆oss 1.19% 1.13% 1.35%
∆osp 2.12% 1.90% 3.12%

(h)

bνj ( 1
2 , 3

2 ) (1, 1) ( 3
2 , 1

2 )

∆n-opt 1.39% 1.20% 0.90%
∆oss 1.39% 1.28% 0.99%
∆osp 3.24% 1.70% 2.23%

• Table 6.3(a) suggests that the closer the value of c1 is to the value of c2, the better
the performance of the near-optimal policy becomes. A similar effect can be observed
in Table 6.3(f) with the values ρ̂FCFS

1 and ρ̂FCFS
2 . These effects suggest that the level of

asymmetry in the parameters plays a role in the effectiveness of the near-optimal policy.
Intuitively, this makes sense, as the optimal policy gets easier to predict when the system
becomes more symmetric. For example, in the case of a completely symmetric model
(i.e. λ1 = λ2, µ1 = µ2 etc.), the threshold curve of the optimal policy is easily seen to be
the line x1 = x2 by a switching argument. In that case, the improved static policy also
attains this curve, which suggests that the near-optimal policy is optimal in symmetric
systems, provided that the initial static policy is stable.

• Judging by Table 6.3(c), the performance of the near-optimal policy with respect to
the optimal policy becomes worse when the load of products offered to the queues
increases. This can be explained by the fact that in case of a smaller load, products
on average encounter less waiting products in their respective queue and are therefore
less influenced by the downtimes of their machines which occurred before their arrival.
In turn, this means that the sojourn time of products in the system is less sensitive to
any suboptimal decisions taken in the past, improving the accuracy of the near-optimal
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policy. In the extreme case where the load offered to each queue equals zero (i.e. there
are no products arriving), any policy is optimal, as the system does not incur any costs
in that case.

• From Tables 6.3(b) and 6.3(d), it is apparent that the quality of the near-optimal policy
is influenced by the values of aνi and aσi . This can be explained mainly by the fact that
these values determine the level of competition between the machines for access to
the repairman. When breakdowns do not occur often and repairs are done quickly, the
event of having both machines down is exceptional, so that any suboptimality of the
policy used is expected to have a relatively little impact on the average costs.

• Tables 6.3(e) and 6.3(h) seem to contradict the first observation that a high level of
symmetry in the system improves the performance of the near-optimal policy, as the
near-optimal policy now seems to perform better when M2 has more ‘favourable’ char-
acteristics with respect to M1. In other words, the fast product services and fast repairs
of M2 make it lucrative to repair M2 at the expense of additional downtime for M1.
However, note that this effect occurs because the cost weights are already taken in fa-
vour of the repair of M2 in every instance of the test bed. When the loads are such that
the static policy becomes infeasible, a priority policy with M2 as the high-priority ma-
chine will then already be close to optimal. Therefore, its improved version also works
particularly well. However, if, as opposed to the cost weights, the rates of product ser-
vices, breakdowns and repairs are in favour of M1, a priority policy works less well,
since there is no clear candidate for the high-priority machine any more. This leaves
room for suboptimality of the improved priority policy.

As for the other policies, Table 6.3 suggests that the performance of the improved
static policy exhibits similar parameter effects to that of the near-optimal policy. Again,
this is not surprising considering the way the near-optimal policy is constructed. However,
the improved priority policy behaves differently in a number of ways. First, Tables 6.3(a)
and 6.3(f) show that the improved priority policy performs better in systems with skewed
model parameters. For these systems, the operational state of one machine is generally
evidently more important than the other, so that the initial priority policy already per-
forms quite well. Unlike the near-optimal policy and the improved static policy, we see
in Table 6.3(c) that the performance of the improved priority policy does not necessarily
increase in the load offered to the system. Finally, Table 6.3(e) suggests that the perform-
ance of the improved priority policy is highly insensitive to any difference in the service
rates of the machines.

REMARK 6.6.1. In Section 6.4.2.2, we introduced an approximation gprio
app for the long-term

average costs of the priority policy with either machine as the high-priority machine. We
did this for the purpose of predicting which of the two improved priority policies performs
best in case both of them exist. Of the 2916 instances considered in the test bed, there
are 1782 instances for which both priority policies lead to an improved policy. For each of
these instances, it turns out that the best-performing improved priority policy corresponds
to the initial priority policy with the smallest approximated costs. This suggests that the
approximation for the long-term average costs fulfills its purpose well.

REMARK 6.6.2. In this section, we have considered models which consist of two machines
and have breakdown rates and repair rates that are of a comparable size. Interference
between machines, however, may in practice also occur in systems with a large number
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of machines that have breakdown rates which are much smaller than their repair rates.
In that case, having two or more machines in need of repair is not a rare event, so that the
question of how to allocate the repairman’s resources is still an important one. For models
with a larger number of machines (and thus a larger number of queues), we have already
established in Remark 6.5.5 that the near-optimal policy scales well. However, numerical
computation techniques break down, so that a numerical study similar to the one in this
section for N = 2 becomes infeasible. Nevertheless, observe that if N increases, but the
breakdown rates decrease at a similar intensity, the average number of machines that are
in need of repair fluctuates around the same mean. The situation of N = 2 and similar
rates as considered in this section is thus comparable to the case of a large number of
machines with dissimilar rates. Therefore, we expect that the near-optimal policy also
performs well for the case of N > 2.

Appendix

6.A Proof of Proposition 6.3.1

PROOF. The proof is based on induction and the guaranteed convergence of the value
iteration algorithm. We initially pick the function V0(s) = 0 for all s ∈ S . Obviously, this
function satisfies properties 1 and 2. We show that these properties are preserved when
performing one step of the value iteration algorithm. In mathematical terms, we show
for any n ∈ N that the function V n+1 defined by V n+1(s) = Hn(s) + Kn(s) also satisfies
the properties if V n does. Because of the guaranteed convergence, V opt then satisfies
properties 1 and 2 by induction. For an extensive discussion of this techique to prove
structural properties of relative value functions, see [147].

The induction step is performed as follows. We assume that properties 1 and 2 hold for
V n (the induction assumption). We will show that properties 1 and 2 hold for V n+1. For
the first property, observe that by interchanging the indices of the model parameters, one
obtains another instance of the same model, since the structure of the model is symmetric.
Therefore, the left-hand side of property 1 implies the right-hand side. To prove the left-
hand side of property 1, we expand V n+1(x1, x2, 0, w2)− V n+1(x1, x2, 1, w2) into V n:

V n+1(x1, x2, 0, w2)− V n+1(x1, x2, 1, w2)
= Hn(x1, x2, 0, w2)−Hn(x1, x2, 1, w2) + Kn(x1, x2, 0, w2)− Kn(x1, x2, 1, w2). (6.27)

By rearranging the terms arising from (6.2) and applying the induction assumption, we
have that

Hn(x1, x2, 0, w2)−Hn(x1, x2, 1, w2)
= λ1(V

n(x1 + 1, x2, 0, w2)− V n(x1 + 1, x2, 1, w2))
+λ2(V

n(x1, x2 + 1, 0, w2)− V n(x1, x2 + 1,1, w2))
+µ1(V

n(x1, x2, 1, w2)− V n((x1 − 1)+, x2, 1, w2))
+µ2w2(V

n(x1, (x2 − 1)+, 0, w2)− V n(x1, (x2 − 1)+, 1, w2))
+σ2w2(V

n(x1, x2, 0, 1)− V n(x1, x2, 1, 1))
+ (1−λ1 −λ2 −σ1 −w2(µ2 +σ2))(V

n(x1, x2, 0, w2)− V n(x1, x2, 1, w2))
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≥ (1−λ1 −λ2 −σ1 −w2(µ2 +σ2))(V
n(x1, x2, 0, w2)− V n(x1, x2, 1, w2)). (6.28)

Furthermore, since the difference V n(x1, x2, w1, 1)−V n(x1, x2, w1, 0), as well as the differ-
ence V n(x1, x2, 1, w2)−V n(x1, x2, 0, w2), evaluates to a non-positive number, we can limit
the set of possible minimising actions in Kn (see (6.3)) to {(q1, q2) : q1 ∈ {0, 1−w1}∧q2 ∈
{0,1−w2} ∧ q1 + q2 = 1−w1w2}. By this and (6.3), we obtain

Kn(x1, x2, 0, w2)− Kn(x1, x2, 1, w2)
=min{ν1(V

n(x1, x2, 1, w2)− V n(x1, x2, 0, w2)),
(1−w2)ν2(V

n(x1, x2, 0, 1)− V n(x1, x2, 0, 0))}
− (1−w2)ν2(V

n(x1, x2, 1, 1)− V n(x1, x2, 1, 0)), (6.29)

where the second equality holds because of the induction assumption. Let E1 denote
the event that the last minimum is only minimised by its first argument and let E2 be its
complementary event. As a conclusion we find by combining (6.27)-(6.29) that

V n+1(x1, x2, 0, w2)− V n+1(x1, x2, 1, w2)
≥ (1−λ1 −λ2 −w2(µ2 +σ2)−1{E1}ν1 −1{E2}(1−w2)ν2)

× (V n(x1, x2, 0, w2)− V n(x1, x2, 1, w2))
+1{E1}(1−w2)ν2(V

n(x1, x2, 1, 0)− V n(x1, x2, 1, 1))

+1{E2}(1−w2)ν2(V
n(x1, x2, 0, 1)− V n(x1, x2, 1, 1))

≥ 0.

The last inequality holds by applying the induction assumption on each term of the ex-
pression in front of it and observing, for the first term, that (1−λ1 −λ2 −w2(µ2 +σ2)−
1{E1}ν1−1{E2}(1−w2)ν2) is non-negative due to the uniformisation. This proves property
1.

We now turn to property 2. Note that also for property 2, the left-hand side implies
the right-hand side due to symmetry arguments. To prove the left-hand side of property
2, we expand V n+1(x1 + 1, x2, w1, w2)− V n+1(x1, x2, w1, w2) into V n:

V n+1(x1 + 1, x2, w1, w2)− V n+1(x1, x2, w1, w2)
= Hn(x1 + 1, x2, w1, w2)−Hn(x1, x2, w1, w2) + Kn(x1 + 1, x2, 0, w2)
− Kn(x1, x2, w1, w2). (6.30)

A lower bound for the H terms can be found by rearranging terms stemming from (6.2):

Hn(x1 + 1, x2, w1, w2)−Hn(x1, x2, w1, w2)
= c1 +λ1(V

n(x1 + 2, x2, w1, w2)− V n(x1, x2, w1, w2))
+λ2(V

n(x1 + 1, x2 + 1, w1, w2)− V n(x1, x2, w1, w2))
+µ1w1(V

n(x1, x2, w1, w2)− V n((x1 − 1)+, x2, w1, w2))
+µ2w2(V

n(x1 + 1, (x2 − 1)+, w1, w2)− V n(x1, (x2 − 1)+, w1, w2))
+σ1w1(V

n(x1 + 1, x2, 0, w2)− V n(x1, x2, 0, w2))
+σ2w2(V

n(x1 + 1, x2, w1, 0)− V n(x1, x2, w1, 0))
+ (1−λ1 −λ2 −w1(µ1 +σ1)−w2(µ2 +σ2))
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× (V n(x1 + 1, x2, w1, w2)− V n(x1, x2, w1, w2))
≥ (1−λ1 −λ2 −w1(µ1 +σ1)−w2(µ2 +σ2))
× (V n(x1 + 1, x2, w1, w2)− V n(x1, x2, w1, w2)), (6.31)

where the inequality is easily seen to hold true due to the induction assumption. For
the K terms, we can again limit the set of possible minimising actions to {(q1, q2) : q1 ∈
{0,1−w1}, q2 ∈ {0,1−w2}, q1 + q2 = 1−w1w2}. By (6.3), we then have

Kn+1(x1 + 1, x2, w1, w2)− Kn+1(x1, x2, w1, w2)
=min{(1−w1)ν1(V

n(x1 + 1, x2, 1, w2)− V n(x1 + 1, x2, 0, w2)),
(1−w2)ν2(V

n(x1 + 1, x2, w1, 1)− V n(x1 + 1, x2, w2, 0))}
−min{(1−w1)ν1(V

n(x1, x2, 1, w2)− V n(x1, x2, 0, w2)),
(1−w2)ν2(V

n(x1, x2, w1, 1)− V n(x1, x2, w1, 0))}. (6.32)

We now show that V n+1(x1+1, x2, w1, w2)−V n+1(x1, x2, w1, w2)≥ 0 by combining (6.30)-
(6.32) for every possible combination of w1 and w2 separately.
• For w1 = w2 = 0, we have

V n+1(x1 + 1, x2, 0, 0)− V n+1(x1, x2, 0, 0)
≥ (1−λ1 −λ2)(V

n(x1 + 1, x2, w1, w2)− V n(x1, x2, w1, w2))
+min{ν1(V

n(x1 + 1, x2, 1, 0)− V n(x1 + 1, x2, 0, 0)),
ν2(V

n(x1 + 1, x2, 0, 1)− V n(x1 + 1, x2, 0, 0))}
−min{ν1(V

n(x1, x2, 1, 0)− V n(x1, x2, 0, 0)),
ν2(V

n(x1, y1, 0, 1)− V n(x1, y1, 0, 0))}.

Due to the induction assumption, the arguments of both minimum operators are all
negative. If it would be optimal to repair M1 in the state (x1 + 1, x2, 0, 0), the first
argument of the first minimum is the minimising argument. The expression above
then reduces to

V n+1(x1 + 1, x2, 0, 0)− V n+1(x1, x2, 0, 0)
≥ (1−λ1 −λ2)(V

n(x1 + 1, x2, 0, 0)− V n(x1, x2, 0, 0))
+ ν1(V

n(x1 + 1, x2, 1, 0)− V n(x1 + 1, x2, 0, 0))
−min{ν1(V

n(x1, x2, 1, 0)− V n(x1, x2, 0, 0)),
ν2(V

n(x1, y1, 0, 1)− V n(x1, y1, 0, 0))}
≥ (1−λ1 −λ2)(V

n(x1 + 1, x2, 0, 0)− V n(x1, x2, 0, 0))
+ ν1(V

n(x1 + 1, x2, 1, 0)− V n(x1 + 1, x2, 0, 0))
− ν1(V

n(x1, x2, 1, 0)− V n(x1, x2, 0, 0))
= (1−λ1 −λ2 − ν1)(V

n(x1 + 1, x2, 0, 0)− V n(x1, x2, 0, 0))
+ ν1(V

n(x1 + 1, x2, 1, 0)− V n(x1, x2, 1, 0))
≥ 0,

where the last inequality follows from the induction assumption. In a similar way, it
can be shown that V n+1(x1 + 1, x2, 0, 0)− V n+1(x1, x2, 0, 0) ≥ 0 if it would be optimal
to repair M2 in the state (x1, x2 + 1, 0,0), exhausting all possible actions.
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• If w1 = 0 and w2 = 1, we have

V n+1(x1 + 1, x2, 0, 1)− V n+1(x1, x2, 0, 1)
≥ (1−λ1 −λ2 −µ2 −σ2)(V

n(x1 + 1, x2, 0, 1)− V n(x1, x2, 0, 1))
+ ν1(V

n(x1 + 1, x2, 1, 1)− V n(x1 + 1, x2, 0, 1))
− ν1(V

n(x1, x2, 1, 1)− V n(x1, x2, 0, 1))
= (1−λ1 −λ2 −µ2 −σ2 − ν1)(V

n(x1 + 1, x2, 0, 1)− V n(x1, x2, 0, 1))
+ ν1(V

n(x1 + 1, x2, 1, 1)− V n(x1, x2, 1, 1))
≥ 0,

where the last inequality follows from the induction assumption.

• The case w1 = 1−w2 = 1 is handled similarly to the case w1 = 1−w2 = 0.

• When w1 = w2 = 1, we have

V n+1(x1 + 1, x2, 1, 1)− V n+1(x1, x2, 1, 1)

≥

�

1−
2
∑

i=1

(λi +µi +σi)

�

(V n(x1 + 1, x2, 1, 1)− V n(x1, x2, 1, 1)),

which is easily seen to be non-negative by the induction assumption.
Putting together all four combinations, we have proved that V n+1 satisfies property 2. As
V n+1 satisfies properties 1 and 2, V opt does too by an induction argument.
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7
TWO-QUEUE EXHAUSTIVE MODELS

In this chapter, we start the analysis of the Markovian polling model as described in Sec-
tion 1.3.2 by studying the two-queue subclass. Furthermore, we assume that the server
only initiates a switch-over period to another queue as soon as the queue he is currently
visiting is completely empty. Under these assumptions, we derive an expression for the
probability generating function of the joint queue length distribution at polling epochs
(i.e. the beginnings of a visit period). Based on these results, we obtain explicit expres-
sions for the Laplace-Stieltjes transforms of the complete waiting-time distributions and
the probability generating function of the complete joint queue length distribution at an
arbitrary point in time. We also study the heavy-traffic behaviour of these distributions,
which results in compact and closed-form expressions for the distribution functions them-
selves. The heavy-traffic behaviour turns out to be similar to that of cyclic polling models,
provides insights into the main effects of the model parameters when the system is heav-
ily loaded and can be used to derive closed-form approximations for the waiting-time
distribution or the queue length distribution.

7.1 Introduction

In this chapter, we consider the special setting of two-queue Markovian polling models,
where the queues are served exhaustively (i.e. the server will only start a switch-over
period if the current queue is completely empty). As we have observed in Section 1.3.2,
Markovian polling models are hard to analyse, since they typically do not satisfy the so-
called branching property. In other words, for general Markovian polling models, the
queue length vectors at successive times when the server starts a visit period do not form
a multi-type branching process with immigration. However, it turns out that this property
does hold for the special setting of exhaustive two-queue models, as will be described in
greater detail in Remark 7.4.3. This allows for the derivation of explicit expressions for
(transforms of) the complete waiting-time and queue length distributions.

Initially, we will be concerned with the waiting-time and queue length distributions
when the load offered to the server is such that the queues are stable. The analysis of
non-trivial two-queue polling systems, such as [50], oftentimes includes a solution to a
Riemann-Hilbert boundary value problem. We, however, follow an approach similar to
the analysis of [272], which uses a recursive iteration of a functional equation for the
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probability generating function of the joint queue length distribution at moments the
server starts a visit period, and therefore avoids such a boundary value problem.

We also study the behaviour of the system in a heavy-traffic regime, i.e. when the load
offered to the server is scaled to such a proportion that the queues are on the verge of
instability. Many techniques have been proposed to obtain the heavy-traffic behaviour of
polling models. Initial studies for cyclic polling models can be found in [65, 66], where
the occurrence of a so-called heavy-traffic averaging principle is established. This prin-
ciple implies that, although the total scaled load in the system tends to a Bessel-type
diffusion in the heavy-traffic regime, the total load in the system may be considered as
a constant during the course of a polling cycle, while the loads of the individual queues
fluctuate like in a fluid model. In [248], several heavy-traffic limits have been estab-
lished for models with a first-come-first-served scheduling discipline by taking limits in
known expressions for the Laplace-Stieltjes transform of the waiting-time distribution.
This method has also been used in [P1, P2] to derive heavy-traffic results for models with
scheduling disciplines other than the first-come-first-served discipline. Alternatively, for
the first-come-first-served case, [184] derives the heavy-traffic results obtained in [248]
in a somewhat more general setting by studying the behaviour of the descendant set
approach (a numerical computation method, cf. [145]) in the heavy-traffic limit. An-
other tool in the heavy-traffic analysis of polling models is branching theory, theorems
of which led to heavy-traffic results in [249]. Other methods for obtaining heavy-traffic
behaviour include perturbation techniques, which have been exploited in [44] to study
a specific class of non-branching polling models, and mean-value analysis (cf. [252]). In
our heavy-traffic analysis, we partly use the key ideas of [184].

The remainder of this chapter is structured as follows. In Section 7.2, we introduce the
two-queue Markovian polling model more carefully, and we provide the necessary nota-
tion. Then, under the assumption of a stable system, we obtain explicit expressions for
several performance measures of the two-queue Markovian polling model with exhaustive
service in Section 7.3. In particular, we derive explicit expressions for (transforms of) the
waiting-time distributions and the joint queue length distribution by taking a functional
equation for the probability generating function of the joint queue length distribution at
polling epochs as a starting point. Although these expressions consist of infinite products
and are thus not in closed form, the products converge fast so that truncation leads to
accurate approximations. We also consider the behaviour of the waiting-time and queue
length distributions in a heavy-traffic regime in Section 7.4. From a theoretical perspect-
ive, these results are interesting, since, unlike previous studies, the complete distributions
of the waiting times and queue lengths are analysed. The results in this chapter are only
proved for the two-queue exhaustive case, and are not easily extendable to more general
assumptions. Nevertheless, they may offer some insights into the general case. For in-
stance, we will show that, except for some minor adjustments, the heavy-traffic behaviour
of two-queue Markovian polling models with exhaustive service is similar to that of cyclic
polling models as derived in the literature. It seems that this relation also exists under
more general assumptions, as we will conclude in Remark 7.4.4. From a practical per-
spective, the results are useful, as they not only provide closed-form approximations for
several performance measures that perform well when the system is heavily loaded (as is
usual in practice), but also give insights into the key effects of the model parameters on
the waiting times and queue lengths.
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7.2 Model description and notation

We study a special case of the model as described in Section 1.3.2, which consists of
two infinite-buffer queues, Q1 and Q2, and a single server. Customers arriving at Q i , also
referred to as type-i customers, do so according to a Poisson process with intensity λi . The
generic service requirement of a type-i customer is represented by the random variable
Bi , of which the Laplace-Stieltjes transform is given by eBi(s) = E[e−sBi ], and the moments
E[Bk

i ], k ≥ 1, are assumed to be finite. The load that Q i brings to the system is denoted
by ρi = λiE[Bi]. The aggregate load offered to the server is denoted by ρ = ρ1 + ρ2.
Initially, we study the case where the aggregate load is less than one, so that the queues
are stable. After that, we study the system in a so-called heavy-traffic regime: the case
where ρ tends to one, i.e. the point at which the queues are at the verge of instability.

The single server can only serve one queue at a time. Hence, after serving a given
number of customers at one queue in the order of arrival (a visit period), the server
commences a switch-over period to initiate a new visit period at any queue. Such a setup
takes a random amount of time. In most studies on two-queue polling systems, it is
assumed that the server visits the queues in an alternating order. We, however, adopt a
more general server routing mechanism. We assume that when the server completes a
visit period at Q1, he commences with probability ξ1 ∈ [0,1) a switch-over period to set
up for yet another visit period at Q1. In the other case (which occurs with probability
1−ξ1), the server sets up for a visit to Q2. Similarly, after visiting Q2, the server prepares
for another visit period at Q2 with probability ξ2 ∈ [0,1). Otherwise, he will set up for
service at Q1. This particular routing regime covers the alternating routing regime by
taking ξ1 = ξ2 = 0.

Observe that this routing mechanism falls in the class of Markovian routing mech-
anisms, since the position of the server is governed by a two-state discrete-time Markov
chain of which the transition matrix has diagonal elements ξ1 and ξ2. By calculating the
limiting distribution of this Markov chain, one finds that a fraction q1 =

1−ξ2
2−ξ1−ξ2

of the

switch-over periods correspond to setups to Q1 and the remaining fraction q2 =
1−ξ1

2−ξ1−ξ2

are setups to Q2. The probability vi, j that, provided the server is currently visiting Q j ,
the server visited Q i during the previous visit period follows straightforwardly from these
computations. It is trivial to see that v1,1 + v2,1 = 1 and v1,2 + v2,2 = 1. In particular, we
have that

v1,1 =
ξ1q1

ξ1q1 + (1− ξ2)q2
= ξ1, v1,2 =

(1− ξ1)q1

(1− ξ1)q1 + ξ2q2
= 1− ξ2,

v2,1 =
(1− ξ2)q2

ξ1q1 + (1− ξ2)q2
= 1− ξ1 and v2,2 =

(1− ξ1)q1

(1− ξ1)q1 + ξ2q2
= ξ2.

Over the course of a visit period, the server serves the queues in an exhaustive manner.
In other words, the server will completely empty a queue during a visit period, before he
commences a switch-over period. To gain more insight in the dynamics of the exhaustive
service discipline, let Γi denote the duration of a busy period in an M/G/1 queue with
the same arrival process and service time distribution as Q i . This busy period consists of
the service of its first customer, the services of the customers arriving during the service
of the first customer (i.e. the ‘children’), the services of the customers arriving during
the service of the children (i.e. the ‘grandchildren’) and so forth. The Laplace-Stieltjes
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transform corresponding to Γi , denoted by eΓi(s) = E[e−sΓi ], is well known to satisfy the
functional equation

eΓi(s) = eBi(s+λi(1−eΓi(s))). (7.1)

We denote the number of customers that arrive at Q j over the course of a busy period at
Q i with Ki, j , i 6= j. Its probability generating function eKi, j(z) = E[zKi, j ] is given by

eKi, j(z) =
∞
∑

k=0

zk

∫ ∞

t=0

e−λ j t
(λ j t)k

k!
dP(Γi < t) = eΓi(λ j(1− z)).

If a server starts a visit period at Q i when there are n customers in that queue, the duration
of that visit period is the n-fold convolution of Γi . It is important to note that if the server
sets up for service at the same queue afterwards, Q i is not necessarily empty at the start of
the new visit period, as customers may have arrived over the course of the intermediate
switch-over period.

We assume the distribution of the durations of the switch-over periods to depend on
the queue the server just visited as well as the destination queue. In particular, we assume
that a setup from Q i to Q j takes a continuously distributed stochastic amount of time
Si, j , of which the Laplace-Stieltjes transform is given by eSi, j(s) = E[e−sSi, j ], i, j ∈ {1,2}.
The average duration of an arbitrary switch-over period incurred by the server is given
by σ =

∑2
i=1

∑2
j=1 vi, jq jE[Si, j]. Let M (k)

i, j be the number of arriving type-k customers
over the course of a switch-over period from Q i to Q j . Similar to the computation of
eKi, j(z), it can then be derived that the two-dimensional probability generating function

eMi, j(z1, z2) = E[
∏2

k=1 z
M (k)

i, j

k ] is given by

eMi, j(z1, z2) =

∫ ∞

t=0

∞
∑

n1=0

∞
∑

n2=0

2
∏

k=1

�

znk
k e−λk t (λk t)nk

nk!

�

dP(Si, j < t)

= eSi, j(λ1(1− z1) +λ2(1− z2)).

We assume all interarrival times, service times and switch-over times to be independent.
In the remainder of this chapter, we are interested in the waiting-time distributions

and the queue length distributions (including any customer in service) at several specified
points in time. Let Fi, j be the number of customers present (waiting and in service)
at Q j when the server starts a visit period at Q i (i.e. a polling epoch at Q i). The joint
distribution of Fi,1 and Fi,2 is represented by the two-dimensional probability generating

function eFi(z1, z2) = E[z
Fi,1

1 z
Fi,2

2 ]. Similarly, Fi represents the number of type-i customers
present at a polling epoch of Q i , provided that the previous visit period of the server was
at Q3−i and its probability generating function is given by eFi(z) = E[zFi ]. The random
variable L j represents the number of customers at Q j at an arbitrary point in time and
the corresponding two-dimensional probability generating function is given by eL(z1, z2) =
E[zL1

1 zL2
2 ]. The waiting time of a type-i customer that arrives at an arbitrary point in time

is given by Wi , and its Laplace-Stieltjes transform is given by fWi(s) = E[e−sWi ].
We analyse the system under stability conditions (ρ < 1) and heavy-traffic conditions

(ρ ↑ 1). More specifically, in the latter regime, we scale the total arrival rate λ1 + λ2

while the ratio λ2
λ1

remains fixed. In this way, the heavy-traffic limit is uniquely defined.
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It is moreover convenient, for any variable x that depends on the load ρ, to denote its
value evaluated at ρ = 1 as x̂ . For example, ρ̂i =

ρi
ρ , so that ρ̂ = ρ̂1 + ρ̂2 = 1 and

λ̂i =
ρ̂i
E[Bi]

. The waiting times and queue lengths tend to infinity in heavy traffic, and
as a consequence their distributions are not well-defined in the limiting case. Therefore,
we study the distributions of the scaled waiting times Wi = (1 − ρ)Wi and the scaled
queue lengths Li = (1−ρ)Li . The Laplace-Stieltjes transform of the scaled waiting-time
distribution is given by fWi(s) = E[e−sWi ]. Likewise, the probability generating function
of the scaled queue length distribution is given by fLi(z) = E[zLi ].

Finally, we will call any discrete random variable R to be geometrically (p) distributed
if its probability mass function satisfies P(R= r) = (1−p)pr , and we use Σ(z) throughout
this chapter as shorthand notation for λ1(1− z1) +λ2(1− z2).

7.3 Analysis for arbitrarily loaded systems

In this section, we derive explicit expressions for the marginal distributions of the waiting
time in either queue and the joint queue length distribution. In Section 7.3.1, we first
obtain expressions for eFi(z1, z2), the probability generating function corresponding to the
joint queue length observed at a polling epoch of Q i . These results ultimately lead in
Section 7.3.2 to expressions for the quantities fW1(s), fW2(s) and eL(z1, z2). Throughout this
section, we assume that ρ < 1, i.e. the case where the queues are stable. In Section 7.4,
we will study the limiting case ρ ↑ 1, the case where the system becomes critically loaded.

7.3.1 Joint queue length at polling epochs

To obtain explicit expressions for the probability generating function eFi(z1, z2), we start
with a functional equation for this function. Such a functional equation has already been
derived in [271] for a setting consisting of multiple queues and a wide class of service
disciplines. Applying these results to our case, we obtain

eF1(z1, z2) = v1,1eF1(eK1,2(z2), z2) eM1,1(z1, z2) + v2,1eF2(z1, eK2,1(z1)) eM2,1(z1, z2). (7.2)

We will formally derive this functional equation in Section 8.3.1 under more general as-
sumptions. For now, this equation can be seen to hold for the current model by the
following observations. With probability vi,1, a visit to Q1 is preceded by a visit period at
Q i , during which each type-i customer initially present and all of its offspring is served
(i.e. not only the customer himself, but also his children, grandchildren and so on). Over
the course of each service of a type-i customer, a number of type- j customers, represen-
ted by the probability generating function eKi, j(z j), arrives at Q j . During the switch-over
period Si,1 between the two visits, the population of customers in the system grows with a
number of arriving customers that is represented by eMi,1(z1, z2). By similar observations,
we have that

eF2(z1, z2) = v1,2eF1(eK1,2(z2), z2) eM1,2(z1, z2) + v2,2eF2(z1, eK2,1(z1)) eM2,2(z1, z2). (7.3)

We now develop explicit expressions for eF1(eK1,1(z2), z2) and eF2(z1, eK2,1(z1)), so that (7.2)
and (7.3) in turn offer explicit expressions for eF1(z1, z2) and eF2(z1, z2). To this end, we
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note that substituting z1 = eK1,2(z2) in (7.2) leads to

eF1(eK1,2(z2), z2) =
v2,1 eM2,1(eK1,2(z2), z2)

1− v1,1 eM1,1(eK1,2(z2), z2)
eF2(eK1,2(z2), eK2,1(eK1,2(z2))). (7.4)

Similarly, a substitution of z2 = eK2,1(z1) in (7.3) leads to

eF2(z1, eK2,1(z1)) =
v1,2 eM1,2(z1, eK2,1(z1))

1− v2,2 eM2,2(z1, eK2,1(z1))
eF1(eK1,2(eK2,1(z1)), eK2,1(z1)). (7.5)

A combination of (7.4) and (7.5) gives

eF1(eK1,2(z2), z2) = a1(z2)eF1(eK1,2(b1(z2)), b1(z2)), (7.6)

where

a1(z2) =
v2,1 eM2,1(eK1,2(z2), z2)

1− v1,1 eM1,1(eK1,2(z2), z2)

v1,2 eM1,2(eK1,2(z2), b1(z2))

1− v2,2 eM2,2(eK1,2(z2), b1(z2))

and
b1(z2) = eK2,1(eK1,2(z2)).

Observe that (7.6) constitutes an expression for eF1(eK1,2(z2), ·) in terms of eF1(eK1,2(z2), ·)
itself. Therefore, iteration of (7.6) leads to

eF1(eK1,2(z2), z2) = eF1(eK1,2(b
(∞)
1 (z2)), b(∞)1 (z2))

∞
∏

j=0

a1(b
( j)
1 (z2)), (7.7)

where b(0)1 (z2) = z2 and b( j)1 (z2) = b1(b
( j−1)
1 (z2)). By repeating the analysis above for

eF2(z1, eK2,1(z1)), we obtain that

eF2(z1, eK2,1(z1)) = eF2(b
(∞)
2 (z1), eK2,1(b

(∞)
2 (z1)))

∞
∏

j=0

a2(b
( j)
2 (z1)), (7.8)

where

a2(z1) =
v1,2 eM1,2(z1, eK2,1(z1))

1− v2,2 eM2,2(z1, eK2,1(z1))

v2,1 eM2,1(b2(z1), eK2,1(z1))

1− v1,1 eM1,1(b2(z1), eK2,1(z1))
(7.9)

and
b2(z1) = eK1,2(eK2,1(z1)),

b(0)2 (z1) = z1 and b( j)2 (z1) = b2(b
( j−1)
2 (z1)).

Now that explicit expressions for eF1(eK1,2(z2), z2) and eF2(z1, eK2,1(z1)) are available, we

show in the following two lemmas that the two terms eF1(eK1,2(b
(∞)
1 (z2)), b(∞)1 (z2)) and

eF2(b
(∞)
2 (z1), eK2,1(b

(∞)
2 (z1))) are well-defined constants and that the infinite products in

(7.7) and (7.8) actually converge.

LEMMA 7.3.1. For z1, z2 ∈ {z : z ∈ C∧ |z| ≤ 1}, we have that eF1(eK1,2(b
(∞)
1 (z2)), b(∞)1 (z2))

and eF2(b
(∞)
2 (z1), eK2,1(b

(∞)
2 (z1))) are well-defined constants equal to one.
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PROOF. See Appendix 7.A.

LEMMA 7.3.2. For z1, z2 ∈ {z : z ∈ C ∧ |z| ≤ 1}, the products
∏∞

j=0 a1(b
( j)
1 (z2)) and

∏∞
j=0 a2(b

( j)
2 (z1)) converge.

PROOF. See Appendix 7.B.

Now that we have analysed eF1(eK1,2(z2), z2) and eF2(z1, eK2,1(z1)), we can derive expres-
sions for eF1(z1, z2) and eF2(z1, z2) as follows.

THEOREM 7.3.3. The probability generating functions eF1(z1, z2) and eF2(z1, z2), which cor-
respond to the joint queue length at a polling epoch of Q1 and Q2, respectively, are given
by

eF1(z1, z2) = v1,1 eM1,1(z1, z2)
∞
∏

j=0

a1(b
( j)
1 (z2)) + v2,1 eM2,1(z1, z2)

∞
∏

j=0

a2(b
( j)
2 (z1)) (7.10)

and

eF2(z1, z2) = v1,2 eM1,2(z1, z2)
∞
∏

j=0

a1(b
( j)
1 (z2)) + v2,2 eM2,2(z1, z2)

∞
∏

j=0

a2(b
( j)
2 (z1)). (7.11)

PROOF. The theorems follows by combining (7.2), (7.3), (7.7), (7.8) with Lemmas 7.3.1
and 7.3.2.

We use the expressions of Theorem 7.3.3 to obtain the (probability generating function
of the) joint queue length distribution at an arbitrary point in time in Section 7.3.2. We
conclude this section with a couple of remarks.

REMARK 7.3.1. The infinite products that arise in (7.10) and (7.11) have a clear in-
terpretation. To see this, observe that by substituting z2 = 1 in (7.10), one obtains
eF1(z1, 1) = E[zF1,1

1 ], the probability generating function corresponding to the number of
type-1 customers currently present at a polling epoch of Q1. This yields

eF1(z1, 1) = v1,1 eM1,1(z1, 1) + v2,1 eM2,1(z1, 1)
∞
∏

j=0

a2(b
( j)
2 (z1)), (7.12)

since a1(1) = b1(1) = 1. This expression can be interpreted as follows. At the end of
the previous visit period at Q1, there are no type-1 customers in the system. Thus, with
probability v1,1, the number of type-1 customers that have arrived since the previous visit
period at Q1, did so over the course of a switch-over period S1,1. This number of customers
is represented by the probability generating function eM1,1(z1, 1). With probability v2,1,
the previous visit period was at Q2, so that eF1(z1, 1) represents the probability generating
function corresponding toF1 in this case, i.e. the number of type-1 customers present at a
polling epoch of Q1, given that the server’s previous visit was at Q2. This number of type-1
customers present not only consists of type-1 customers that arrived during a switch-over
period S2,1, but also type-1 customers that arrived between the end of the previous visit
period at Q1 and the end of the latest visit period at Q2. As the former number of customers
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is evidently represented by eM2,1(z1, 1), the infinite product
∏∞

j=0 a2(b
( j)
2 (z1)) should equal

the probability generating function of the latter category of customers. From this, it also
follows that eF1(z) = eM2,1(z, 1)

∏∞
j=0 a2(b

( j)
2 (z)).

Another way to see that the infinite product
∏∞

j=0 a2(b
( j)
2 (z1)) represents the number

of arriving type-1 customers between the last visit period end at Q1 and subsequently the
last visit period end at Q2 is the following. Any type-1 customer currently present (i.e. at
a polling epoch of Q1) is a customer that either arrived during a switch-over period (an
ancestor) or belongs to the offspring of another type-1 or type-2 customer that arrived
during a switch-over period in the past (a descendant). The currently present type-1
customers that are (descendants of) ancestors that arrived during a particular period in
the past are referred to as the contribution of that period to the current polling epoch.
The expression a2(z1) (cf. (7.9)) now represents the complete contribution of the period
that lasted until the end of the last visit to Q2 and started at the most recent visit to Q2
before that time that directly preceded a Q1 visit. This period starts with a switch-over
period S2,1, of which the contribution is easily seen to be given by eM2,1(b2(z1), eK2,1(z1)).
After that, a geometric number of switch-over periods from Q1 to Q1 occur, of which the
(probability generating function of the) contribution is given by

∞
∑

k=0

v2,1vk
1,1
eM k

1,1(b2(z1), eK2,1(z1)) =
v2,1

1− v1,1 eM1,1(b2(z1), eK2,1(z1))
.

Similarly, the contribution of the succeeding switch-over period eS1,2 and the geomet-
ric number of switch-over periods from Q2 to Q2 are given by eM1,2(z1, eK2,1(z1)) and

v1,2

1−v2,2 eM2,2(z1,eK2,1(z1))
, respectively. The product of these expressions constitutes a2(z1) =

a2(b
(0)
2 (z1)), the contribution of the latest ‘inter visit-end period’ of Q2. Based on this,

it is not hard to see, by the nature of b2(z1), that a2(b
(1)
2 (z1)) represents the contribu-

tion of the inter visit-end period preceding the latest inter visit-end period. Extending
this observation, a2(b

( j)
2 (z1)) represents the contribution of the j-th to last inter visit-end

period of Q2. As the customers currently present at Q1 can be the contribution of any inter
visit-end period of Q2 in the past, the number sought is given by

∏∞
j=0 a2(b

( j)
2 (z1)), which

represents the contribution of all inter visit-end periods that have past. An interpretation
for a1(b

( j)
1 (z2)) can be derived in a similar way.

REMARK 7.3.2. In the past, views similar to the contribution interpretation as presented
in Remark 7.3.1 have led to numerical methods for several systems, such as the descend-
ant set approach as developed in [145] for cyclic polling systems. It is shown there that
by truncating the infinite products, accurate approximations of (the probability generat-
ing functions of) the marginal queue length distribution arise. This supports numerical
observations that the infinite-product expressions as derived in this chapter give rise to
efficient numerical means of computing queue length distributions.

7.3.2 Waiting time and joint queue length at an arbitrary point in
time

Now that we have derived expressions for the probability generating function eFi(z1, z2)
pertaining to the queue length at a polling epoch of Q i , we use these results to obtain
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fWi(s), the Laplace-Stieltjes transform of the waiting-time distribution of type-i custom-
ers, and eL(z1, z2), the probability generating function representing the joint queue length
distribution at an arbitrary point in time.

7.3.2.1 Analysis of fWi(s)

To extract an expression for fWi(s) from the expressions found in Section 7.3.1, we use
the observation given in [271, pp. 90–91] that the analysis found in [233, Section 4.3]
applied to Markovian polling systems leads to

fW1(λ1(1− z)) =
q1(1−ρ)(1− eF1(z, 1))

σλ1(eB1(λ1(1− z))− z)
(7.13)

and

fW2(λ2(1− z)) =
q2(1−ρ)(1− eF2(1, z))

σλ2(eB2(λ2(1− z))− z)
, (7.14)

where σ, as defined in Section 7.2, denotes the average duration of an arbitrary switch-
over period. This observation leads to expressions for fWi(s) as stated in the following
theorem.

THEOREM 7.3.4. The Laplace-Stieltjes transform of the waiting-time distribution of type- j
customers is given by

fWj(s) =
q j(1−ρ)

σ(s−λ j(1− eB j(s)))

×

�

1−
2
∑

i=1

vi, j
eSi, j(s)

�

1{i= j} +1{i 6= j}

∞
∏

k=0

ai

�

b(k)i

�

1−
s
λ j

��

��

.

PROOF. By substituting s = λ1(1−z) and s = λ2(1−z), respectively, in (7.13) and (7.14),
we obtain

fW1(s) =
q1(1−ρ)(1− eF1(1−

s
λ1

, 1))

σ(s−λ1(1− eB1(s)))
(7.15)

and

fW2(s) =
q2(1−ρ)(1− eF2(1,1− s

λ2
))

σ(s−λ2(1− eB2(s)))
. (7.16)

Combining these expressions with (7.12) and its equivalent for eF2(1, z2) leads to the the-
orem.

7.3.2.2 Analysis of eL(z1, z2)

To obtain eL(z1, z2), we use an approach that is introduced in [51]. Before we derive the
probability generating function corresponding to the joint queue length at an arbitrary
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point in time, we first regard eX i(z1, z2) = E[z
X i,1

1 z
X i,2

2 ], the probability generating function
representing the queue lengths X i,1 and X i,2 of Q1 and Q2 at an arbitrary point during a
visit period at Q i . It turns out to hold that

eX1(z1, z2) =
q1(1−ρ)
ρ1σ

z1(eF1(z1, z2)− eF1(eK1,2(z2), z2))

z1 − eB1(Σ(z))

1− eB1(Σ(z))
Σ(z)

(7.17)

and

eX2(z1, z2) =
q2(1−ρ)
ρ2σ

z2(eF2(z1, z2)− eF2(z1, eK2,1(z1)))

z2 − eB2(Σ(z))

1− eB2(Σ(z))
Σ(z)

. (7.18)

We will formally derive these results in Section 8.4 under more general assumptions (i.e.
not necessarily two queues or exhaustive service). Furthermore, the results of Section 8.4
reveal that eYi, j(z1, z2) = E[z

Yi, j,1

1 z
Yi, j,2

2 ], the probability generating function representing the
queue lengths Yi, j,1 and Yi, j,2 of Q1 and Q2 at an arbitrary point during a switch-over period
from Q i to Q j is given by

eY1, j(z1, z2) = eF1(eK1,2(z2), z2)
1− eM1, j(z1, z2)

Σ(z)E[S1, j]
(7.19)

and

eY2, j(z1, z2) = eF2(z1, eK2,1(z1))
1− eM2, j(z1, z2)

Σ(z)E[S2, j]
. (7.20)

We now combine the expressions (7.17)–(7.20) into one expression for eL(z1, z2), the prob-
ability generating function representing the joint queue length at an arbitrary point in
time. Observe that the server serves Q i a fraction ρi of the time. In the remaining frac-
tion 1− ρ of the time, the server is setting up for service at another queue. Of the time

the server is in a switch-over period, he spends a fraction
vi, jq jE[Si, j]

σ setting up from Q i to
Q j . Therefore, we have that

eL(z1, z2) =
2
∑

i=1

 

ρi eX i(z1, z2) +
1−ρ
σ

2
∑

j=1

vi, jq jE[Si, j]eYi, j(z1, z2)

!

. (7.21)

This leads to the following theorem.

THEOREM 7.3.5. The probability generating function of the joint queue length distribution
is given by

eL(z1, z2) =
1−ρ
Σ(z)σ

2
∑

i=1

2
∑

j=1

q j

�

z j(1− eB j(Σ(z)))

z j − eB j(Σ(z))
(vi, j eMi, j(z1, z2)−1{i= j})

+ vi, j(1− eMi, j(z1, z2))

� ∞
∏

k=0

ai(b
(k)
i (z3−i)).

PROOF. The theorem follows by combining (7.7), (7.8), Lemma 7.3.1 and Theorem 7.3.3
with (7.17)–(7.21).
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7.4 Heavy-traffic asymptotics

In Section 7.3, we derived expressions for the Laplace-Stieltjes transforms of the waiting-
time distributions and the probability generating function of the joint queue length dis-
tribution. These expressions are suitable for computational purposes, as theoretical and
numerical evidence shows that the infinite products contained in these expressions con-
verge very fast. However, the expressions are not in closed form, and the probability
generating functions and the Laplace-Stieltjes transforms found are hard to invert. In an
effort to obtain closed-form expressions for the distributions themselves, we consider the
heavy-traffic asymptotics of the system, i.e. the behaviour of the system when ρ ↑ 1. Re-
call that we study the case where the heavy-traffic limit ρ ↑ 1 is taken by scaling the total

arrival rate λ1+λ2 such that the ratio λ2
λ1

remains fixed, so that λ̂2

λ̂1
= λ2
λ1

, with λ̂i as defined

in Section 7.2. In this regime, the waiting times and the queue lengths tend to infinity.
Therefore, we now study the scaled waiting times Wi as well as the scaled queue lengths
Li and obtain closed-form expressions directly for their distributions. These expressions
are not only easy to implement, but they also give insight into the primary effects of the
model parameters on the waiting times and queue lengths when the system operates un-
der a heavy load. In Section 7.4.1, we derive the heavy-traffic behaviour of the waiting
times and queue lengths incurred by the customers based on previous results for cyc-
lic polling systems and some insightful observations. Subsequently, we rigorously prove
these results in Section 7.4.2.

7.4.1 Initial study of the heavy-traffic behaviour

Before we study the heavy-traffic behaviour of the model in its full generality, we first
consider the degenerate case ξ1 = ξ2 = 0 of our model. Note that for ξ1 = ξ2 = 0, the
server always switches from Q1 to Q2 or from Q2 to Q1. Thus, in this particular case,
the server follows a fixed alternating (or cyclic) routing mechanism. The heavy-traffic
behaviour of cyclic polling models that are of a branching type and consist of an arbitrary
number of queues has already been established in [184, 248, 249]. Translating this to
our setting with two queues, exhaustive service and cyclic routing (ξ1 = ξ2 = 0), these
results readily imply the following.

PROPOSITION 7.4.1. For ξ1 = ξ2 = 0, the Laplace-Stieltjes transform of the limiting scaled
waiting-time distribution is, in the heavy-traffic regime, given by

lim
ρ↑1

fWi(s) =
1

s(1− ρ̂i)(E[S1,2] +E[S2,1])

 

1−

�

µ
cyc
i

µ
cyc
i + s

�αcyc!

,

where

αcyc =
2ρ̂1ρ̂2(E[S1,2] +E[S2,1])

λ̂1E[B2
1] + λ̂2E[B2

2]
and µcyc

i =
2ρ̂i

λ̂1E[B2
1] + λ̂2E[B2

2]
.

Equivalently,
lim
ρ↑1
P(Wi ≤ t) = P(U Ii ≤ t),

where U is a uniformly [0, 1] distributed random variable, Ii is a gamma distributed ran-
dom variable with shape parameter αcyc + 1 and scale parameter µcyc

i , and U and Ii are
independent.
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The given distribution function immediately follows from inversion of the limiting
Laplace-Stieltjes transform. We observe that for the cyclic system, the complete heavy-
traffic distribution of the waiting time only depends on the switch-over times through
their first moments. In fact, the scaled waiting-time distribution only depends on the
complete switch-over time distributions S1,2 and S2,1 through E[S1,2] + E[S2,1], the first
moment of the total switch-over time incurred between two polling epochs at Q1.

Next, we observe for the general case (i.e. 0 ≤ ξ1,ξ2 < 1) the following. A period
between two polling epochs at Q1 can be divided in a number of subperiods:

(i) The first visit period at Q1 after having visited Q2;

(ii) A geometric (ξ1) number of switch-over periods from Q1 to Q1 and subsequent
‘revisit’ periods at Q1;

(iii) The switch-over period from Q1 to Q2;

(iv) The first visit period at Q2 after having visited Q1;

(v) A geometric (ξ2) number of switch-over periods from Q2 to Q2 and subsequent
‘revisit’ periods at Q2;

(vi) The switch-over period from Q2 to Q1.

In this view, we can draw a connection between the general case and the cyclic polling
model as described above by slightly adjusting this order of events as follows:

(a) All visit periods between a polling epoch at Q1 and the first polling epoch at Q2 to
occur afterwards;

(b) A geometric (ξ1) number of switch-over periods from Q1 to Q1;

(c) The switch-over period from Q1 to Q2;

(d) All visit periods between the polling epoch at Q2 and the first polling epoch at Q1 to
occur afterwards;

(e) A geometric (ξ2) number of switch-over periods from Q2 to Q2;

(f) The switch-over period from Q2 to Q1.

Thus, the ‘revisit’ periods from the subperiods (ii) and (v) have been shifted to the sub-
periods (a) and (d). In the heavy-traffic regime, the implications of this adjustment are,
however, negligible. This is the case because the additional customers served in the sub-
periods (a) and (d) with respect to those in the original subperiods (i) and (iv) are finite in
number (they constitute arrivals during finitely long switch-over times). However, since
these ‘original customers’ are infinite in number in the heavy-traffic regime, the finite
number of additional customers scales away in heavy traffic. As a result, the limiting
waiting-time distribution of the customers served in the periods (i) and (iv) coincides in
the heavy-traffic regime with that of the customers served in the reordered subperiods
(a) and (d), respectively. Note that in this reordered scheme, the polling system can be
interpreted as a cyclic model, as the subperiods (b) and (c) together form a switch-over
period from Q1 to Q2, and the subperiods (e) and (f) together form a switch-over period
from Q2 to Q1. The switch-over period from Q1 to Q2 in this cyclic equivalent then con-
sists of a geometric (ξ1) number of original switch-over periods from Q1 to Q1 and an
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original switch-over period from Q1 to Q2 of the Markovian model. Similarly, the switch-
over period from Q2 to Q1 in the cyclic equivalent consists of a geometric (ξ2) number of
switch-over periods from Q2 to Q2 and a subsequent switch-over period from Q2 to Q1.

Finally, we note that the first moment of the total switch-over time incurred between
two polling epochs at Q1, which we denote by E[Stot], is in our case given by

E[Stot] =
∞
∑

i=0

∞
∑

j=0

(iE[S1,1] +E[S1,2] +E[S2,1] + jE[S2,2])(1− ξ1)ξ
i
1(1− ξ2)ξ

j
2

=
ξ1

1− ξ1
E[S1,1] +E[S1,2] +E[S2,1] +

ξ2

1− ξ2
E[S2,2]. (7.22)

Combining all of the observations above, it is easily understood that the heavy-traffic
behaviour of the general case is similar to the heavy-traffic behaviour as derived in Pro-
position 7.4.1 for the cyclic case, except that the term E[S1,2]+E[S2,1] should be replaced
by E[Stot]. We formulate this result below. A rigorous proof will be given in Section 7.4.2.

THEOREM 7.4.2. For 0 ≤ ξ1,ξ2 < 1, the Laplace-Stieltjes transform of the limiting scaled
waiting-time distribution is given by

lim
ρ↑1

fWi(s) =
1

s(1− ρ̂i)E[Stot]

�

1−
�

µi

µi + s

�α�

, (7.23)

where

α=
2ρ̂1ρ̂2E[Stot]

λ̂1E[B2
1] + λ̂2E[B2

2]
, µi =

2ρ̂i

λ̂1E[B2
1] + λ̂2E[B2

2]
(7.24)

and E[Stot] is given in (7.22). Equivalently,

lim
ρ↑1
P(Wi ≤ t) = P(U Ii ≤ t), (7.25)

where U is a uniformly [0,1] distributed random variable, Ii is a gamma distributed random
variable with shape parameter α+1 and scale parameter µi , and U and Ii are independent.

Based on this theorem concerning the scaled waiting-time distribution, we can also
derive the heavy-traffic distribution of the scaled queue length distribution. From Little’s
law, it is immediate that E[Li] = λ̂iE[Wi]. Furthermore, in many queueing models under
heavy-traffic conditions, the scaled virtual waiting-time processes and queue length pro-
cesses exhibit so-called state-space collapse (cf. [205]), similar to what we encountered
in Section 3 for the extended machine repair model. It is thus reasonable to assume that
in heavy traffic the distribution of Li equals the distribution of Wi scaled by a factor λ̂i .
This leads to the following statement, for which again a rigorous proof will be given in
Section 7.4.2.

THEOREM 7.4.3. For 0≤ ξ1,ξ2 < 1, the limiting scaled marginal queue length distribution
is given by

lim
ρ↑1
P(Li ≤ t) = P(U Ii ≤ t),

where U is a uniformly [0,1] distributed random variable and Ii is a gamma distributed
random variable with shape parameter α+ 1 and scale parameter µi

λ̂i
(α and µi as defined

in (7.24)). Furthermore, the random variables U and Ii are independent.
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REMARK 7.4.1. Besides the distribution of a uniform times a gamma random variable, the
limiting distribution of (1−ρ)Wi as given in Theorem 7.4.2 can also be interpreted as the
distribution of the residual (overshoot) of a gamma distributed random variable. To see
this, observe that (7.23) can be rewritten as

lim
ρ↑1

fWi(s) =
1−

�

µi
µi+s

�α

s αµi

.

As ( µi
µi+s )

α is the Laplace-Stieltjes transform of a gamma (α,µi) distribution with first
moment αµi

, the limiting distribution of the scaled waiting time represents the distribution
of the residual (overshoot) of a gamma distributed random variable with shape parameter
α and scale parameter µi . A similar observation holds for the limiting distribution of
(1−ρ)Wi in the cyclic case as provided in Proposition 7.4.1.

REMARK 7.4.2. Theorems 7.4.2 and 7.4.3 can immediately be used as approximations for
the marginal waiting-time distributions and queue length distributions in stable systems
with a load ρ < 1:

P(Wi < t)≈ P(U Ii < (1−ρ)t) and P(Li < x)≈ P
�

U Ii < λ̂i(1−ρ)
�

x −
1
2

��

,

where U and Ii are independent random variables with a uniform [0,1] distribution and
a gamma (α+1,µi) distribution, respectively. Furthermore, the parameters α and µi are
as defined in (7.24), and the term 1/2 in the right-hand side of the second approximation
appears for reasons of continuity correction. As shown in [184], approximations of this
type are reasonably accurate for heavily loaded polling models (i.e. a load close to one).
This is not surprising, as these approximations have the correct heavy-traffic limiting be-
haviour by construction. Moreover, it is interesting to note that the limiting distributions
of the scaled waiting times and queue lengths only depend on the first two moments of the
service time distribution as well as the first moment of the total switch-over time between
two polling epochs at Q1. They do not require higher moments and are thus useful for
practical purposes, since in reality, information about third-order and higher-order mo-
ments is often hard to get. When one is interested in approximations that also perform
well for lightly loaded systems, one may refine the approximations in the spirit of [P9, 45]
or Section 4.3. More specifically, one may consider to construct approximations by inter-
polating between the found known light-traffic behaviour and heavy-traffic asymptotics
based on the actual load offered to the system.

7.4.2 Proofs of Theorems 7.4.2 and 7.4.3

In this section, we prove Theorems 7.4.2 and 7.4.3. For the former theorem, we rely in
part on the results found in [184]. This paper provides an analysis of the heavy-traffic
behaviour of periodic polling systems of which the marginal queue length distribution
at polling epochs can be (numerically) computed by the descendant set approach (cf.
[145]). More specifically, [184] studies the heavy-traffic behaviour of these systems by
analysing the mechanics of this technique in the heavy-traffic regime. The results that we
particularly rely on are [184, Theorems 3 and 4], which give the limiting behaviour of
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the marginal queue length Ξ of Q1 observed at predefined epochs in time, of which the
corresponding probability generating function eΞ(z) = E[zΞ] can be written as

eΞ(z) =
∞
∏

c=0

eR1

�

λ1(1− eA1,c−1(z)) +λ2(1− eA2,c(z))
�

× eR2

�

λ1(1− eA1,c−1(z)) +λ2(1− eA2,c−1(z))
�

, (7.26)

where eR1(s) and eR2(s) are Laplace-Stieltjes transforms of two positive random variables
R1 and R2,

eA1,c(z) = eΓ1(λ2(1− eA2,c(z))) = eK1,2(eA2,c(z)), eA1,−1(z) = z,

eA2,c(z) = eΓ2(λ1(1− eA1,c−1(z))) = eK2,1(eA1,c−1(z)), eA2,−1(z) = 1 (7.27)

and eΓi(s) is as defined in Section 7.2. The results of [184] state that under these con-
ditions, (1 − ρ)Ξ converges in distribution, as ρ ↑ 1, to a gamma distributed random
variable with shape parameter 2ρ̂1ρ̂2(E[R1]+E[R2])

λ̂1E[B2
1]+λ̂2E[B2

2]
and scale parameter 2ρ̂1

λ̂1(λ̂1E[B2
1]+λ̂2E[B2

2])
.

Furthermore, it is stated that limρ↑1E[(1−ρ)kΞk] coincides with the k-th moment of this
distribution.

We have now only stated the results of [184] applied to two-queue polling systems
with alternating and exhaustive service. A more general statement for polling systems
with a general number of queues and periodic routing is shown to hold in [184] by ex-
ploiting several useful observations based on the descendant set approach.

As noted in Remark 7.3.2, however, the expressions that we obtained for the prob-
ability generating function of the queue length distribution in Section 7.3 allow for an
interpretation in the spirit of the descendant set approach. As a result, the results of
[184] as stated above almost directly lead to the following lemma pertaining to Fi , the
number of type-i customers in the system at a polling epoch of Q i that follows a visit
period at Q3−i .

LEMMA 7.4.4. The distribution of (1− ρ)Fi converges, as ρ ↑ 1, to a gamma distribution
with shape parameter α and scale parameter µi/λ̂i , where α and µi are defined in (7.24).
Furthermore, we have that limρ↑1E[(1 − ρ)kF k

i ] coincides with the k-th moment of this
distribution.

PROOF. We focus on the limiting distribution of (1−ρ)F1. In Remark 7.3.1, we already
concluded that eF1(z) = eM2,1(z, 1)

∏∞
j=0 a2(b

( j)
2 (z)). With some effort, it is straightforward

to see that this can be written alternatively as

eF1(z) = eΞ(z)
1− v1,1 eM1,1(z, 1)

v2,1 eM2,1(z, 1)
, (7.28)

where eΞ(z) is defined as in (7.26) with

eR j(s) = eS j,3− j(s)
v j,3− j

1− v3− j,3− j
eS3− j,3− j(s)

,

i.e. R j is chosen to be the sum of a switch-over time from Q j to Q3− j and an independent
geometric (v3− j,3− j) number of independent switch-over times from Q3− j to Q3− j . From
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this definition, it is easily verified that E[R1]+E[R2] = E[Stot]. As limρ↑1 eM1,1(z1−ρ, 1) =
limρ↑1 eM2,1(z1−ρ, 1) = 1, it is clear from (7.28) that the probability generating function of
the scaled distribution eF1(z1−ρ) = E[z(1−ρ)F1] satisfies

lim
ρ↑1

eF1(z
1−ρ) = lim

ρ↑1
eΞ(z1−ρ).

Thus, the distributions of the scaled versions of F1 and Ξ coincide in the heavy-traffic
limit due to Lévy’s continuity theorem (cf. [277, Section 18.1]), which connects pointwise
convergence of Laplace-Stieltjes transforms with convergence in distribution. For i = 1,
the lemma now follows from the results of [184] as described above. For i = 2, the lemma
follows by interchanging indices.

Now that we have established the heavy-traffic behaviour of Fi , we are able to prove
Theorem 7.4.2 by making use of (7.15) and (7.16).

PROOF OF THEOREM 7.4.2. Again, we focus on the case i = 1 with the understanding that
the proof for the case i = 2 follows by interchanging indices. By (7.12) and (7.15), we
have that

lim
ρ↑1

fW1(s) = lim
ρ↑1

q1(1−ρ)
σ((1−ρ)s−λ1(1− eB1((1−ρ)s)))

× lim
ρ↑1

�

1− v1,1 eM1,1

�

1−
(1−ρ)s
λ1

, 1
�

− v2,1 eF1

�

1−
(1−ρ)s
λ1

��

. (7.29)

By applying L’Hôpital’s rule and observing that q1
σ = (v2,1E[Stot])−1, we obtain for the first

term in the right-hand side that

lim
ρ↑1

q1(1−ρ)
σ((1−ρ)s−λ1(1− eB1((1−ρ)s)))

= lim
ρ↑1

−q1

σs(−1+λ1E[B1e−(1−ρ)sB1])
=

1
v2,1s(1− ρ̂1)E[Stot]

.

Furthermore, it is clear that limρ↑1 eM1,1(1−
(1−ρ)s
λ1

, 1) = 1. Deriving limρ↑1 eF1(1−
(1−ρ)s
λ1
)

takes a bit more effort. By invoking a Taylor expansion in F1, we have that

lim
ρ↑1

eF1

�

1−
(1−ρ)s
λ1

�

= lim
ρ↑1
E
�

�

1−
(1−ρ)s
λ1

�F1
�

= lim
ρ↑1
E





∞
∑

k=0

logk(1− (1−ρ)sλ1
)F k

1

k!



 .

To further reduce this expression, observe that a Taylor expansion around ρ = 1 yields
log(1− (1−ρ)c) = −

∑∞
j=1

(1−ρ) j c j

j for any c ∈ R. Hence,

lim
ρ↑1

eF1

�

1−
(1−ρ)s
λ1

�

= lim
ρ↑1
E





∞
∑

k=0

(−1)k
�

∑∞
j=1(1−ρ)

js jλ
− j
1 / j

�k
F k

1

k!



 . (7.30)
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Note, however, that due to Lemma 7.4.4, we have for any j > k that limρ↑1E[(1 −
ρ) jF k

1 ] = limρ↑1(1−ρ) j−k limρ↑1E[(1−ρ)kF k
1 ] = 0. Therefore, second-order and higher-

order terms of the inner sum of (7.30) disappear in the limit, so that the expression as a
whole reduces to

lim
ρ↑1

eF1

�

1−
(1−ρ)s
λ1

�

= lim
ρ↑1
E

�∞
∑

k=0

(−1)k(1−ρ)kskλ−k
1 F

k
1

k!

�

= lim
ρ↑1
E[e−(1−ρ)

s
λ1
F1] =

�

µ1

µ1 + s

�α

,

where the last equality follows from Lemma 7.4.4. By combining the limits found above,
we can reduce (7.29) to

lim
ρ↑1

fW1(s) =
1

v2,1s(1− ρ̂1)E[Stot]

�

1− v1,1 − v2,1

�

µ1

µ1 + s

�α�

,

which is equivalent to (7.23). Equation (7.25) now follows by inversion of the Laplace-
Stieltjes transform and the subsequent use of Lévy’s continuity theorem.

Now that Theorem 7.4.2 is proved, Theorem 7.4.3 follows almost immediately by the
proof below.

PROOF OF THEOREM 7.4.3. We make use of the distributional form of Little’s law (cf.
[135]), which states that

eLi(z) =fWi(λi(1− z))eBi(λi(1− z)).

Consequently, we have that

lim
ρ↑1

fLi(z) = lim
ρ↑1

eLi(z
1−ρ) = lim

ρ↑1
fWi(λi(1− z1−ρ))eBi(λi(1− z1−ρ))

= lim
ρ↑1

fWi

�

λi(1− z1−ρ)
1−ρ

�

. (7.31)

As limρ↑1
λi(1−z1−ρ)

1−ρ = −λ̂i log(z), a combination of Theorem 7.4.2 and (7.31) now implies
that

lim
ρ↑1

fLi(z) =
1

−λ̂i log(z)(1− ρ̂i)E[Stot]

�

1−
�

µi

µi − λ̂i log(z)

�α�

.

The latter expression is the probability generating function of the distribution mentioned
in the theorem. A straightforward application of Lévy’s continuity theorem thus concludes
the proof.

REMARK 7.4.3. The striking similarity between the heavy-traffic asymptotics of cyclic
polling systems and those of the class of systems that we consider may in part be ex-
plained by the following. Despite the fact that Markovian polling systems generally do
not satisfy the branching property as introduced in Section 1.3.2, the subset of two-queue
exhaustive models does actually satisfy this property. More specifically, in the model that
we consider in this chapter, the joint queue length process observed at Q i polling epochs
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constitutes a multi-type branching process with immigration (see e.g. [21]). As a con-
sequence, this model fits in the framework considered in [249], and Lemma 7.4.4 follows
alternatively from [249, Theorem 5] by taking the particle offspring functions f (i)(z1, z2)
and the immigration function g(z1, z2) as introduced in [249, Equations (3) and (4)]
equal to

f (1)(z1, z2) = eK1,2(eK2,1(z1)), f (2)(z1, z2) = eK2,1(z1)

and

g(z1, z2) = a2(z1)
eM2,1(z1, z2)

eM2,1(b2(z1), eK2,1(z1))
.

REMARK 7.4.4. When one wishes to relax the exhaustive assumption or the two-queue
assumption, the analysis becomes intrinsically harder, as the model does not satisfy the
branching property anymore. However, although an analysis in the spirit of Section 7.3
indeed seems hard to perform when dropping the exhaustive assumption, preliminary
investigations suggest that the heavy-traffic limits of the waiting times and queue lengths
still allow for compact and closed-form expressions. For instance, in the case of two-
queue Markovian models with gated service (i.e. during a visit period, the server only
serves the customers that were present at the start of this period), the heavy-traffic limits
seem to have a similar connection with the heavy-traffic limits of a cyclic polling model
as the one established in this chapter for the exhaustive case. The service discipline of
this cyclic model, however, amounts to the κ-gated discipline as introduced in [260],
but where κ is a geometric random variable rather than a constant. As this ‘geometric
gated’ service discipline defies the branching property as well, heavy-traffic asymptotics
for the cyclic equivalent are not readily available in the literature. As for the two-queue
assumption, although an equivalent of Theorem 7.3.3 seems hard to find for this case,
functional equations similar to (7.2) and (7.3) exist for a larger number of queues (cf.
(8.7)). A heavy-traffic analysis may be found by carefully inspecting the behaviour of
this functional equation under heavy-traffic scalings. In the next chapter, we drop both
assumptions simultaneously and derive (cross-)moments of the joint distribution of the
queue lengths.

Appendix

7.A Proof of Lemma 7.3.1

PROOF. We first focus on the value of
�

�

�1− b(∞)1 (z2)
�

�

�= lim j→∞

�

�

�1− b( j)1 (z2)
�

�

�. For arbitrary

j > 0, we have for any z2 in the unit circle that
�

�

�1− b( j)1 (z2)
�

�

�=
�

�

�1− b1(b
j−1
1 (z2))

�

�

�

=

�

�

�

�

∫ ∞

t=0

(1− e−λ1(1−eK1,2(b
( j−1)
1 (z2)))t)dP(Γ2 < t)

�

�

�

�

≤
∫ ∞

t=0

�

�

�1− e−λ1(1−eK1,2(b
( j−1)
1 (z2)))t

�

�

� dP(Γ2 < t),
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where the inequality constitutes the triangle inequality. Note that |1− e−x | ≤ |x | for any
x ∈ {z : z ∈ C∧ℜ(z)> 0}, so that

�

�

�1− b( j)1 (z2)
�

�

�≤
∫ ∞

t=0

λ1 t
�

�

�1− eK1,2(b
( j−1)
1 (z2))

�

�

� dP(Γ2 < t)

= λ1E[Γ2]
�

�

�1− eK1,2(b
( j−1)
1 (z2))

�

�

�

≤ λ1E[Γ2]
�

�

�

�

∫ ∞

t=0

(1− e−λ2(1−b( j−1)
1 (z2))t)dP(Γ1 < t)

�

�

�

�

≤ λ1E[Γ2]λ2E[Γ1]
�

�

�1− b( j−1)
1 (z2)

�

�

� . (7.32)

Iteration of (7.32) leads to
�

�

�1− b( j)1 (z2)
�

�

�≤ (λ1E[Γ2]λ2E[Γ1])
j |1− z2| . (7.33)

By (7.1), we have that E[Γi] = E[Bi](1−ρi)−1, so that

λ1E[Γ2]λ2E[Γ1] =
ρ1

1−ρ2

ρ2

1−ρ1
< 1. (7.34)

The inequality follows since the queues are assumed to be stable, i.e. 0 ≤ ρ < 1. There-
fore, ρ1 = ρ−ρ2 < 1−ρ2 and similarly ρ2 < 1−ρ1. A combination of (7.32) and (7.34)
now leads to

0≤ lim
j→∞

�

�

�1− b( j)1 (z2)
�

�

�≤ lim
j→∞

(λ1E[Γ2]λ2E[Γ1])
j |1− z2|= 0.

Since lim j→∞

�

�

�1− b( j)1 (z2)
�

�

�= 0, we must have that b(∞)1 (z2) = lim j→∞ b( j)1 (z2) = 1.

By similar arguments, it can be shown that b(∞)2 (z1) = 1 for any z1 in the unit circle.
Finally, it is evident that eK1,2(1) = eK2,1(1) = eF1(1,1) = eF2(1,1) = 1. The lemma now
follows.

7.B Proof of Lemma 7.3.2

PROOF. We initially focus on the product
∏∞

j=0 a1(b
( j)
1 (z2)). By the theory of infinite

products (see e.g. [239, Chapter 1]), we have that
∏∞

j=0 a1(b
( j)
1 (z2)) converges if and

only if
∑∞

j=0(1− a1(b
( j)
1 (z2))) converges. To establish the latter, it is enough to prove that

the series
∑∞

j=0 |1− a1(b
( j)
1 (z2))| converges. We observe that

�

�

�1− a1(b
( j)
1 (z2))

�

�

�

=

�

�

�

�

�

1−
v2,1 eM2,1(eK1,2(b

( j)
1 (z2)), b( j)1 (z2))

1− v1,1 eM1,1(eK1,2(b
( j)
1 (z2)), b( j)1 (z2))

v1,2 eM1,2(eK1,2(b
( j)
1 (z2)), b( j)1 (z2))

1− v2,2 eM2,2(eK1,2(b
( j)
1 (z2)), b( j)1 (z2))

�

�

�

�

�

=

�

�

�

�

�

∑2
i=1 A1,i(b

( j)
1 (z2))(1− eMi,1(eK1,2(b

( j)
1 (z2)), b( j)1 (z2)))

D(z2)
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+

∑2
i=1 A2,i(b

( j)
1 (z2))(1− eMi,2(eK1,2(b

( j)
1 (z2)), b( j)1 (z2)))

D(z2)

�

�

�

�

�

, (7.35)

where

A1,1(z2) = v1,1(1− v2,2),
A1,2(z2) = (1− v1,1)(1− v2,2),

A2,1(z2) = (1− v1,1)(1− v2,2) eM1,2(eK1,2(z2), z2),

A2,2(z2) = v2,2(1− v1,1 eM1,1(eK1,2(z2), z2)) and

D(z2) = (1− v1,1 eM1,1(eK1,2(b
( j)
1 (z2)), b( j)1 (z2)))(1− v2,2 eM2,2(eK1,2(b

( j)
1 (z2)), b( j)1 (z2))).

Using the triangle inequality and similar arguments as those in the proof of Lemma 7.3.1,
we note that for 1≤ i, k ≤ 2 and j > 0,

�

�

�1− eMi,k(eK1,2(b
( j)
1 (z2)), b( j)1 (z2))

�

�

�

≤
∫ ∞

t=0

�

�

�1− e−(λ1(1−eK1,2(b
( j)
1 (z2)))+λ2(1−b( j)1 (z2)))t

�

�

� dP(Si,k < t)

≤ E[Si,k]
�

λ1

�

�

�1− eK1,2(b
( j)
1 (z2))

�

�

�+λ2

�

�

�1− b( j)1 (z2)
�

�

�

�

≤ E[Si,k]λ2(λ1E[Γ1] + 1)
�

�

�1− b( j)1 (z2)
�

�

� .

Moreover, it is trivially seen that
�

�Ai,k(z2)
�

�≤ 1 for 1≤ i, k ≤ 2 and any z2 in the unit circle.
Furthermore, since

�

�
eMi,k(eK1,2(z2), z2)

�

� ≤ 1, we have that |D(z2)| ≥ (1 − v1,1)(1 − v2,2).
Therefore, a combination of (7.33) and (7.35) with the triangle inequality leads to

�

�

�1− a1(b
( j)
1 (z2))

�

�

�≤
E[S1,1] +E[S1,2] +E[S2,1] +E[S2,2]

(1− v1,1)(1− v2,2)

×λ2(λ1E[Γ1] + 1) (λ1E[Γ2]λ2E[Γ1])
j |1− z2| .

This result obviously shows, in combination with (7.34), that
∑∞

j=0 |1 − a1(b
( j)
1 (z2))| is

bounded from above by a converging geometric sum. As a result,
∑∞

j=0 |1− a1(b
( j)
1 (z2))|

converges, so that
∏∞

j=0 a1(b
( j)
1 (z2)) converges. Finally, the convergence of the product

∏∞
j=0 a2(b

( j)
2 (z1)) can be established similarly.



8
MANY-QUEUE MODELS WITH

BRANCHING-TYPE SERVICE DISCIPLINES

Now that the waiting times and the queue lengths of two-queue models with exhaustive
service are completely characterised and their heavy-traffic behaviour is identified, we
study the general class of systems with an arbitrary number of queues and branching-type
service disciplines at each of the queues in this chapter. This general case is significantly
harder to analyse. Although we study branching-type service disciplines, i.e. service dis-
ciplines that in principle allow for the branching property as described in Section 1.3.2
to hold, the Markovian routing mechanism breaks down the branching structure in case
of non-exhaustive service or a number of queues that is larger than two. Therefore, the
analysis of the general case is more complicated. Nevertheless, we derive a functional
equation for the (probability generating function of the) joint queue length distribution
observed at a point in time at which the server visits a certain queue. From this functional
equation, expressions for the (cross-)moments of the queue lengths follow. We also derive
a pseudo-conservation law for this generalised class of polling systems. We will use these
results in Chapter 9 for optimisation purposes.

8.1 Introduction

We now drop the assumptions of two queues and exhaustive service at each of the queues,
which we made in Chapter 7. Instead, we now analyse Markovian polling systems with
an arbitrary number of queues. Rather than just the exhaustive service discipline, we
study the complete class of so-called branching-type service disciplines, i.e. service discip-
lines that would allow the system to satisfy the branching property that we discussed in
Section 1.3.2 in case the server were to visit the queues in a cyclic order (see also [208]).
This is a wide class of service disciplines. Common examples of branching-type service
disciplines are the exhaustive service discipline and the gated service discipline. Under
the gated service discipline, the server will already initiate a switch-over period when he
served all of the customers at the current queue that were present at the start of the cur-
rent visit period. Thus, customers arriving during a visit period will at least have to wait
until the next time the server visits their queue. The class of branching-type service discip-
lines also includes lesser known service disciplines, such as the binomial gated discipline
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introduced in [157] and its exhaustive counterpart as defined in [46] known as the bino-
mial exhaustive discipline. Under the binomial gated discipline, when the server finds n
customers present at the start of a visit period at queue j, he will serve a binomial (n, r j)
number of these customers before switching, 0 < r j ≤ 1. Under the binomial exhaustive
discipline, the server not only serves the binomial (n, r j) number of the customers present
at the start of the visit period, but subsequently also the type- j customers arriving during
the service of these customers (‘the children’), the type- j customers arriving during the
service of the children (‘the grandchildren’) and so on. As a result, the expected number
of type- j customers that are left behind by the server at the end of the visit period equals
n(1− r j). We will give special attention to these binomial service disciplines in Chapter 9.

The class of polling systems that we study in this chapter includes the class of polling
models studied in Chapter 7, but is in fact much broader. This class is much harder to
analyse. As already mentioned in Remark 7.4.4, the absence of the exhaustive and two-
queue assumptions leads to the fact that the queue length vector cannot be modelled as a
multi-type branching process with immigration. This considerably complicates the iden-
tification of the complete distributions of the joint queue length and other performance
measures.

Despite the violation of the branching property, expressions for (cross-)moments of the
joint queue length distribution can still be derived. In this chapter, we use the following
strategy to achieve this goal. After introducing the necessary notation in Section 8.2, we
use an approach similar to the buffer occupancy method introduced in [68, 69] to derive
(cross-)moments of the joint queue length distribution at polling epochs in Section 8.3.
More specifically, we first derive a functional equation for the probability generating func-
tion of the distribution of the joint queue length at polling epochs. By differentiation, this
leads to the derivation of the (cross-)moments of this distribution. We extend this ana-
lysis in Section 8.4 to allow for the computation of (cross-)moments of the joint queue
length at an arbitrary point in time. Finally, as a by-product, we also obtain an explicit
expression for the expected amount of waiting work in the system in Section 8.5 based
on the concept of the so-called pseudo-conservation law obtained in [49].

8.2 Notation

Much of the notation that we will use in this chapter to study the Markovian polling model
under general assumptions is similar to the notation used in Chapter 7. Nevertheless, to
accommodate the broader model assumptions, we give below an exhaustive overview of
the notation used in this chapter.

The model now consists of N ≥ 2 infinite-buffer queues, Q1, . . . ,QN , and a single
server. Customers arriving at Q i , also referred to as type-i customers, do so according to
a Poisson process with intensity λi . The generic service requirement of a type-i customer
is represented by the random variable Bi , of which the Laplace-Stieltjes transform is given
by eBi(s) = E[e−sBi ]. The load that Q i brings to the system is denoted by ρi = λiE[Bi]. We
assume throughout this chapter that the aggregate load ρ =

∑N
i=1ρi is less than one.

All the queues share a single server. However, this server can only serve customers
of one queue at a time. Hence, after serving a given number of customers at one queue
(a visit period), the server will switch over to another queue to start service there. We
assume that the server adheres to a Markovian routing scheme. Thus, the position of
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the server is governed by an irreducible discrete-time Markov chain {Zm, m ≥ 0} on the
state space S = {1, . . . , N}. As a result, the queue being served during the m-th visit
period is QZm

. The one-step transition probability matrix corresponding to the discrete-
time Markov chain {Zm, m≥ 0} is given by P = (pi, j)i, j∈S , and its unique invariant prob-

ability measure denoted by q = (qi)i∈S satisfies the conditions qP = q and
∑N

j=1 q j = 1.
In short, after completing a visit period to Q i , the server will switch over to Q j with prob-
ability pi, j . Such a setup from Q i to Q j takes a continuously distributed random amount
of time Si, j (also referred to as the switch-over time), of which the Laplace-Stieltjes trans-
form is given by eSi, j(s) = E[e−sSi, j ]. We assume all interarrival times, service times and
switch-over times in the model to be independent.

The number of customers that are served during a visit period Vi at Q i is governed by
the service discipline at Q i . We do not limit our analysis to a single service discipline, but
we assume that the service discipline at each of the queues belongs to the class of service
disciplines that satisfy the following property.

PROPERTY 8.2.1. If the server arrives at Q i to find li customers there, then during the
course of the server’s visit, each of these li customers will effectively be replaced in an
independent and identically distributed manner by a random population having a prob-
ability generating function eHi(z) = eHi(z1, . . . , zN ), which is called the offspring function
and can be any N -dimensional probability generating function.

We particularly consider this class of service disciplines since it covers a wide range of
commonly adapted policies. At the same time, it still allows for a tractable analysis.
Observe that cyclic polling systems where the service disciplines satisfy this property allow
their joint queue length processes to be modelled as multi-type branching processes with
immigration. This is not necessarily the case for Markovian polling systems; as we already
noted before, the queue lengths in a Markovian polling system generally do not allow for
such an interpretation.

Two service disciplines satisfying this property that will receive specific attention in the
next chapter are the binomial gated and the binomial exhaustive service discipline. Under
the binomial gated discipline, the number of type-i customers that are served during a visit
period, at the start of which mi type-i customers are present in the system, is binomially
distributed with parameters mi and ri , ri ∈ (0,1]. Thus, a type-i customer present at the
start of a non-empty visit period is still present at the end of this period with probability
1−ri or is served during this period with probability ri . Since new customers will arrive at
each of the queues during the service of a type-i customer, the offspring function is in this
case given by eHi(z) = (1−ri)zi+rieBi(

∑

j∈S λ j(1−z j)). The binomial exhaustive discipline
has many similarities with the binomial gated discipline. Again, a type-i customer present
at the start of a visit period remains in the system with probability 1− ri . However, with
probability ri , not only the customer itself will be served during the visit period, but also
all of its type-i offspring (thus, the type-i ‘children’ that arrive during this service time,
the type-i ‘grandchildren’ that arrive during the service times of the children and so on).
Therefore, the visit period now consists of a number of type-i busy periods (i.e. periods
of time needed to serve a type-i customer and all of its type-i offspring) that is binomially
distributed with parameters mi and ri . When denoting the duration of such a busy period
generated by a type-i customer by Γi , and its corresponding Laplace-Stieltjes transform
by eΓi(s) = E[e−sΓi ], the offspring function of a queue adhering to the binomial exhaustive
service discipline is thus given by eHi(z) = (1− ri)zi + rieΓi(

∑

j∈S \{i}λ j(1− z j)). In both
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of these service disciplines, ri is a measure of the service exhaustiveness; the higher ri ,
the more customers the server will serve on average at Q i over the course of a non-empty
visit period. Therefore, we also refer to ri as the exhaustiveness probability. Observe that
for ri = 1, the binomial gated and binomial exhaustive service disciplines as described
above reduce to the classical gated and exhaustive service disciplines.

We denote by Ci the time between two consecutive points in time at which the server
polls Q i (also called polling epochs or polling instants). A server is said to poll a queue
when he starts a visit period at that queue. The time Ci consists of an average of 1/qi visit
periods and subsequent switch-over periods by virtue of the Markovian routing dynamics.
Furthermore, any arbitrary visit period and subsequent switch-over period in stationarity
corresponds to a visit to Q i with probability qi . Thus, there are on average q j/qi visit
periods and setups to Q j between two polling epochs of Q i . The expected time the server
takes for a visit to Q j and the subsequent setup equals E[Vj] +

∑

k∈S p j,kE[S j,k]. As a
consequence,

E[Ci] =
1
qi

∑

j∈S

q j(E[Vj] +
∑

k∈S

p j,kE[S j,k]). (8.1)

It follows from balance arguments that E[Vi] = ρiE[Ci] and qiE[Vi]
q jE[Vj]

= ρi
ρ j

. As a result, we
have by (8.1) that, for every i ∈ S ,

E[Ci] =
σ

qi(1−ρ)
, (8.2)

where σ =
∑

j∈S q j

∑

k∈S p j,kE[S j,k] (see also [54]). Note that σ represents the overall
mean of the switch-over times incurred by the server. We denote by ζi the reciprocal of
the expected number of customers served by the server during a visit period Vi . We thus
have that ζi =

E[Bi]
E[Vi]

= 1
λiE[Ci]

.
In the remainder of this chapter, we are interested in the joint queue length distri-

butions (including any customer in service) at several time epochs. To this end, we de-
note by Fi = (Fi,1, . . . , Fi,N ) the joint stationary queue length conditioned on the event
that the server currently polls Q i . The vectors Gi , Mi , Ni , Xi and Yi, j similarly rep-
resent the joint stationary queue length observed at a point in time at which the server
ends a visit period at Q i , the server starts serving a type-i customer, the server completes
service of a type-i customer, the server is serving customers at Q i and the server is cur-
rently switching from Q i to Q j , respectively. The unconditional stationary joint queue
length of the queues in the system is given by L. For an arbitrary N -dimensional ran-
dom variableR = (R1, . . . , RN ), we denote its N -dimensional probability generating func-
tion by eR(z) = eR(z1, . . . , zN ) = E[

∏

k∈S zRk
k ]. Furthermore, we define eR(k)(z) = ∂

∂ zk
eR(z),

eR(k,l)(z) = ∂
∂ zl

∂
∂ zk
eR(z), r(k) = eR(k)(z)|z=1 and r(k, l) = eR(k,l)(z)|z=1. Thus, we use lower

cases to refer to derivatives of probability generating functions evaluated at z = 1. It
holds that r(k) = E[Rk], r(k, k) = E[R2

k]− E[Rk] and r(k, l) = E[RkRl] if k 6= l. So, for
example, fi(k) denotes the mean queue length of Qk when the server polls Q i . Likewise,
fi(k, l) refers to the second-order cross-moment pertaining to the queue lengths of Qk and
Q l when the server polls Q i and k 6= l. Besides the shorthand notation z = (z1, . . . , zN )
that we used above, we will also use zH

i = (z1, . . . , zi−1, Hi(z), zi+1, . . . , zN ) and Σ(z) =
∑

k∈S λk(1− zk). Observe that the distribution of the waiting time Wi for type-i custom-
ers with Laplace-Stieltjes transform fWi(s) = E[e−sWi ] is related to the queue length Li

through the distributional form of Little’s law fWi(s) =
eLi(1−s/λi)
eBi(s)

, as shown in [135].
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8.3 Joint queue length at polling epochs

We now derive a functional equation for the probability generating function eFi(z) of the
queue length distribution conditioned on the event that the server polls Q i , i ∈ S . Based
on this functional equation, all moments of the joint queue length distribution at a polling
epoch of Q i can be derived. In particular, we show how to derive solvable sets of equations
for fi(k) and fi(k, l), k, l ∈ S . From these sets, we obtain expressions for the first and
second-order (cross-)moments of the joint queue length distribution at polling epochs.
We note that by using the same methodology, expressions for higher-order moments can
be derived.

8.3.1 Functional equation

To obtain a functional equation for eFi(z), we first relate the joint queue length distribu-
tion at a polling epoch of Q i to the queue length distribution at the preceding polling
instant at any queue. To this end, recall that Zm refers to the index of the queue that
the server visits at the m-th polling instant. Furthermore, let Jm = (Jm,1, . . . , Jm,N ) and
Km = (Km,1, . . . , Km,N ) be the joint queue length at the start of the m-th visit period (to
any queue) since the startup of the system and its end, respectively. By conditioning on
Zm and Zm+1, we have that

E

�

1{Zm+1= j}

∏

k∈S

z
Jm+1,k

k

�

=
∑

i∈S

P(Zm+1 = j | Zm = i)P(Zm = i)E

�

∏

k∈S

z
Jm+1,k

k | Zm+1 = j, Zm = i

�

. (8.3)

Observe that, as per Property 8.2.1, the total population in the system during the m-th visit
period only changes through the replacement of every type-Zm customer by a population
with probability generating function eHZm

(z). More colloquially speaking, the type-Zm
customers that get served during the m-th visit period allow new customers of any type
to arrive to the system over the course of this visit period. As the number of arriving
customers of any type is independent of Jm,i , i ∈ S \{Zm}, we have that

E

�

∏

k∈S

z
Km,k

k | Zm = i

�

= E





∏

k∈S \{i}

z
Jm,k

k | Zm = i





∞
∑

n=0

( eHi(z))
nP(Jm,i = n)

= E



( eHi(z))
Jm,i

∏

k∈S \{i}

z
Jm,k

k | Zm = i



 . (8.4)

Furthermore, the population at the start of the (m + 1)-st visit period consists of the
customers already there at the end of the m-th visit period and the customers that arrive
during the subsequent switch-over period according to type-specific Poisson processes. As
these two subpopulations are independent, we obtain

E

�

∏

k∈S

z
Jm+1,k

k | Zm+1 = j, Zm = i

�
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= E

�

∏

k∈S

z
Km,k

k | Zm = i

�

∫ ∞

t=0

∞
∑

n1=0

. . .
∞
∑

nN=0

∏

k∈S

znk
k e−λk t (λk t)nk

nk!
dP(Si, j < t)

= E

�

∏

k∈S

z
Km,k

k | Zm = i

�

eSi, j(Σ(z)). (8.5)

Combining (8.3)–(8.5) with the fact that P(Zm+1 = j | Zm = i) = pi, j now gives

E

�

1{Zm+1= j}

∏

k∈S

z
Jm+1,k

k

�

=
∑

i∈S

pi, jP(Zm = i)E



( eHi(z))
Jm,i

∏

k∈S \{i}

z
Jm,k

k | Zm = i



eSi, j(Σ(z)). (8.6)

The left-hand side of (8.6) can be rewritten as

E[1{Zm+1= j}

∏

k∈S

z
Jm+1,k

k ] = P(Zm+1 = j)E

�

∏

k∈S

z
Jm+1,k

k | Zm+1 = j

�

.

Furthermore, we have by definition that

lim
m→∞
P(Zm = i) = qi and lim

m→∞
E

�

∏

k∈S

z
Jm,k

k | Zm = i

�

= eFi(z).

Hence, by letting m→∞ and recalling that zH
i = (z1, . . . , zi−1, Hi(z), zi+1, . . . , zN ), (8.6)

implies the following functional equation for all i, j ∈ S :

q j eF j(z) =
∑

i∈S

pi, jqi eFi(z
H
i )eSi, j(Σ(z)). (8.7)

Observe that for N = 2 and eHi(z) = eΓi(
∑

j∈S \{i}λ j(1−z j)) (i.e. exhaustive service), (8.7)
reduces to (7.2) and (7.3), the functional equations found for the two-queue exhaustive
model.

8.3.2 Queue length moments at polling epochs

From the functional equation (8.7), an explicit expression for eFi(z) is not easily derived.
However, using this functional equation, all (cross-)moments of the queue lengths can be
computed. We show how to compute the first-order and second-order (cross-)moments
of the marginal queue lengths found in the system at polling instants. Higher-order
(cross-)moments can be computed through the same methodology at the cost of a lar-
ger computational complexity.

First, recall that (cross-)moments of the (conditional) queue length vector are given
by E[Ll | server just polled Q j] = E[F j,l] = f j(l), E[L2

l | server just polled Q j] = E[F2
j,l] =

f j(l) + f j(l, l) and that E[Ll Lm | server just polled Q j] = E[F j,l F j,m] = f j(l, m) for any
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j, l, m ∈ S , l 6= m. To obtain these numbers, we first take the derivative with respect to
zl in both sides of (8.7). For j, l ∈ S , this leads to

q j eF
(l)
j (z) =

∑

i∈S

pi, jqiλlE[Si, je
−(Σ(z))Si, j ]eFi(z

H
i ) +

∑

i∈S \{l}

pi, jqi S̃i, j(Σ(z))eF
(l)
i (z

H
i )

+
∑

i∈S

pi, jqi
eSi, j(Σ(z)) eH

(l)
i (z)eF

(i)
i (z

H
i ). (8.8)

Evaluating this equation in the point z = 1 subsequently leads to

q j f j(l) =
∑

i∈S

pi, jqiλlE[Si, j] +
∑

i∈S \{l}

pi, jqi fi(l) +
∑

i∈S

pi, jqihi(l) fi(i). (8.9)

This set of N2 equations leads to expressions for f j(l), j, l ∈ S . If one is only interested
in the values of f j(l) for a specific value of l, the complexity of these computations can
be reduced to only solving a set of N equations, since an explicit expression for fi(i) is
available; see Remark 8.3.1.

To find a similar set of equations for f j(l, m), j, l, m ∈ S , we first derive a functional

equation for eF (l,m)j (z). By differentiating both sides of (8.8) with respect to zm, m ∈ S ,
we obtain

q j eF
(l,m)
j (z)

=
∑

i∈S

pi, jqiλlλmE[S2
i, je
−Σ(z)Si, j ]eFi(z

H
i ) +

∑

i∈S \{m}

pi, jqiλlE[Si, je
−Σ(z)Si, j ]eF (m)i (zH

i )

+
∑

i∈S

pi, jqiλlE[Si, je
−Σ(z)Si, j ] eH(m)i (z)eF

(i)
i (z

H
i ) +

∑

i∈S \{l}

pi, jqiλmE[Si, je
−Σ(z)Si, j ]eF (l)i (z

H
i )

+
∑

i∈S \{l,m}

pi, jqi
eSi, j(Σ(z))eF

(l,m)
i (zH

i ) +
∑

i∈S \{l}

pi, jqi
eSi, j(Σ(z)) eH

(m)
i (z)eF

(i,l)
i (zH

i )

+
∑

i∈S

pi, jqiλmE[Si, je
−Σ(z)Si, j ] eH(l)i (z)eF

(i)
i (z

H
i ) +

∑

i∈S

pi, jqi
eSi, j(Σ(z)) eH

(l,m)
i (z)eF (i)i (z

H
i )

+
∑

i∈S

pi, jqi
eSi, j(Σ(z)) eH

(l)
i (z) eH

(m)
i (z)eF

(i,i)
i (zH

i )

+
∑

i∈S \{m}

pi, jqi
eSi, j(Σ(z)) eH

(l)
i (z)eF

(i,m)
i (zH

i ).

Similarly to the computations above, evaluating this equation in the point z = 1 leads to

q j f j(l, m) =
∑

i∈S

pi, jqiλlλmE[S2
i, j] +

∑

i∈S \{m}

pi, jqiλlE[Si, j] fi(m)

+
∑

i∈S

pi, jqiλlE[Si, j]hi(m) fi(i) +
∑

i∈S \{l}

pi, jqiλmE[Si, j] fi(l)

+
∑

i∈S \{l,m}

pi, jqi fi(l, m) +
∑

i∈S \{l}

pi, jqihi(m) fi(i, l)

+
∑

i∈S

pi, jqiλmE[Si, j]hi(l) fi(i) +
∑

i∈S

pi, jqihi(l, m) fi(i)
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+
∑

i∈S

pi, jqihi(l)hi(m) fi(i, i) +
∑

i∈S \{m}

pi, jqihi(l) fi(i, m). (8.10)

For any j, l, m ∈ S , this constitutes a set of N3 equations for f j(l, m). Since expressions
for fi( j), i, j ∈ S , are known after solving the set of equations given in (8.9), expressions
for f j(l, m) can now be calculated for all j, l, m ∈ S . As mentioned above, the expres-
sions for f j(l) and f j(l, m) then subsequently lead to expressions for the first-order and
second-order (cross-)moments of the queue lengths when the server polls Q j . Although
these moments may be of separate interest, we also use the derived expressions for f j(l)
and f j(l, m) in Section 8.4 to obtain moments for L j , the queue length of Q j at an arbit-
rary point in time. We finish this section with the observation that the sets of equations
expressed in (8.9) and (8.10) are uniquely solvable, provided that the aggregate load ρ
is smaller than one. One can confirm this by reducing (8.9) and (8.10) to equation sets
of the form Ax= b and showing in a tedious, but straightforward way that the coefficient
matrix A is invertible in that case.

REMARK 8.3.1. For any i ∈ S , the term fi(i) can be computed explicitly. To do this, we
make use of an observation most notably made by [87], which says that each time a visit
beginning or a service completion occurs, this coincides with either a service beginning
or a visit completion. All service beginning epochs in a visit period to Q i are also service
completion epochs at Q i , except for the first service beginning epoch, because it is actu-
ally a visit beginning epoch. Likewise, all service completion epochs at Q i are also service
beginning epochs at that queue, except for the last service completion epoch, because it is
actually a visit completion epoch. Since ζi denotes the fraction of service beginning (com-
pletion) epochs that also count as a visit beginning (completion) epoch, this observation
leads to

ζi eFi(z) + eNi(z) = ζi
eGi(z) + eMi(z), (8.11)

or more specifically for the means,

ζi fi(i) + ni(i) = ζi gi(i) +mi(i). (8.12)

Over the course of a service time at Q i , on average ρi type-i customers arrive, after which
one type-i customer leaves the system, because its service is completed. Therefore, mi(i)−
ni(i) = 1− ρi . Furthermore, we have by Property 8.2.1 that gi(i) = hi(i) fi(i). Relation
(8.12) therefore reduces to an explicit expression for fi(i):

fi(i) =
1−ρi

ζi(1− hi(i))
=

λiσ(1−ρi)
qi(1−ρ)(1− hi(i))

, (8.13)

where the second equality follows from the fact that ζi = 1/(λiE[Ci]) combined with
(8.2).

8.4 Joint queue length at an arbitrary point in time

In Section 8.3, we have studied the probability generating function and moments of the
joint queue length distribution at polling epochs. We now extend these results to obtain
results for the queue lengths at an arbitrary point in time. We largely follow the approach
of [51, Theorem 1] to express eL(z), the probability generating function representing the
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stationary joint queue length at an arbitrary point in time, in the conditional queue length
probability generating functions studied above. Expressions for all (cross-)moments of the
unconditional queue lengths in the moments of the queue lengths found at polling epochs
subsequently follow from this relation.

To relate the unconditional queue length to the various conditional queue lengths
studied before, we first observe that the server serves Q i a fraction ρi of the time. At an
arbitrary epoch during the remaining fraction (1− ρi) of time, the server is in a switch-
over process, which with probability

qi pi,kE[Si,k]
σ happens to be a setup from Q i to Qk. As a

result, the unconditional probability generating function eL(z) satisfies

eL(z) =
∑

i∈S

�

ρi eX i(z) +
(1−ρ)qi

σ

∑

k∈S

pi,kE[Si,k]eYi,k(z)

�

, (8.14)

where the probability generating functions eX i(z) and eYi,k(z) represent the joint queue
lengths at arbitrary points during a visit period at Q i and a switch-over period from Q i
to Qk, respectively. The customer population present in the system at an arbitrary point
in a visit period to Q i is comprised of the population already there at the start of the
current type-i service and the customers that have arrived during the past part of the
current service period. As these two components are independent, we have that eX i(z) =
eMi(z)

1−eBi(Σ(z))
Σ(z)E[Bi]

. Furthermore, it is easy to see that eNi(z) = z−1
i
eBi(Σ(z)) eMi(z). Combining

these two relations with (8.11) leads to

eX i(z) =
ζi

E[Bi]
zi(eFi(z)− eGi(z))

zi − eBi(Σ(z))

1− eBi(Σ(z))
Σ(z)

, (8.15)

where, due to the fact that the service disciplines satisfy Property 8.2.1,

eGi(z) = eFi(z
H
i ). (8.16)

Similarly, as the customer population at an arbitrary point in a switch-over period from
Q i to Qk is comprised of the population at the end of the past visit period to Q i and the
subsequent customer arrivals in the past part of the switch-over time, we have that

eYi,k(z) = eGi(z)
1− eSi,k(Σ(z))

Σ(z)E[Si,k]
. (8.17)

A combination of the equations (8.14)–(8.17) leads to the unconditional probability gen-
erating function eL(z) of the joint queue length expressed in the probability generating
functions eFi(z) that represent the joint queue length at the moment the server polls Q i .

We now show how one can use this relation to derive expressions for the unconditional
mean marginal queue lengths E[Li] = l(i). The same method can be used to obtain
expressions for higher (cross-)moments, although the computations become lengthier.
By using (8.15), we first obtain the first moment of X i,i as follows:

x i(i) = lim
zi↑1

d
dzi
(eX i(z)|zk=1 ∀k 6=i)

= lim
zi↑1

d
dzi

 

ζi

E[Bi]

zi(E[z
Fi,i

i ]−E[z
Gi,i

i ])

zi − eBi(λi(1− zi))

1− eBi(λi(1− zi))
λi(1− zi)

!



164 MANY-QUEUE MODELS WITH BRANCHING-TYPE SERVICE DISCIPLINES

=
ζi( fi(i)− gi(i))

1−ρi
+
λ2

i ζiE[B2
i ]( fi(i)− gi(i))

2(1−ρi)2
+
ζi( fi(i, i)− gi(i, i))

2(1−ρi)
+
λiE[B2

i ]

2E[Bi]

= 1+
λ2

i E[B
2
i ] + ζi( fi(i, i)(1− hi(i)2)− fi(i)hi(i, i))

2(1−ρi)
+
λiE[B2

i ]

2E[Bi]
, (8.18)

where we used in the fourth equality that ζi( fi(i)− gi(i)) = 1−ρi (cf. Remark 8.3.1) and
the fact that

gi(i, i) = fi(i, i)(hi(i))
2 + fi(i)hi(i, i)

due to (8.16). A similar but slightly shorter computation yields that the first moment of
X i, j , i 6= j, is given by

x i( j) = lim
z j↑1

d
dz j
(eX i(z)|zk=1 ∀k 6= j) = lim

z j↑1

d
dz j

 

ζi

E[Bi]

E[zFi, j

j ]−E[z
Gi, j

j ]

λ j(1− z j)

!

=
ζi(gi( j, j)− fi( j, j))

2λ jE[Bi]

=
ζi(2 fi(i, j)hi( j) + fi(i, i)(hi( j))2 + fi(i)hi( j, j))

2λ jE[Bi]
, (8.19)

where the fourth equality again follows from (8.16), which implies that

gi( j, j) = fi( j, j) + 2 fi(i, j)hi( j) + fi(i, i)(hi( j))
2 + fi(i)hi( j, j).

As for the mean queue length yi,k( j) during a switch-over period from Q i to Qk, we
have by (8.17) that, for all i, j, k ∈ S ,

yi,k( j) = lim
z j↑1

d
dz j
(eYi(z)|zl=1 ∀l 6= j) = lim

z j↑1

d
dz j

�

E[zGi, j

j ]
1− eSi,k(λ j(1− z j))

λ j(1− z j)E[Si,k]

�

= gi( j) +λ j

E[S2
i,k]

2E[Si,k]

= 1{ j 6=i} fi( j) + fi(i)hi( j) +λ j

E[S2
i,k]

2E[Si,k]
, (8.20)

where the last equality follows from

gi( j) = 1{ j 6=i} fi( j) + fi(i)hi( j),

which can be derived from (8.16).
We can now derive an expression for the unconditional mean queue length E[L j] in

terms of the f terms computed in the previous section. After differentiating both sides of
(8.14) and evaluating the result in z = 1, we obtain

E[L j] =
∑

i∈S

�

ρi x i( j) +
(1−ρ)qi

σ

∑

k∈S

pi,kE[Si,k]yi,k( j)
�

. (8.21)

Since we already found expressions for x i(i), x i( j) and yi,k( j) in (8.18), (8.19) and (8.20),
respectively, E[L j] is now obtained in terms of moments of the queue lengths at polling in-
stants, which we have already considered in Section 8.3.2. Note that from this expression
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for the mean queue length, it is straightforward to derive expressions for the mean wait-
ing time or the mean amount of waiting work present in the queue. In the next section,
we provide an expression for the expected total amount of waiting work in the system.

8.5 Pseudo-conservation law

For polling systems with a server that visits the queues in a cyclic fashion, a stochastic
decomposition for the stationary amount of work present in the system has been derived
in [49]. In particular, the amount of work in the polling system can be decomposed
into two independent terms: the amount of work in a corresponding M/G/1 system and
the amount of work in the polling system at an arbitrary point in time during a switch-
over period of the server. This decomposition allows for the derivation of a strikingly
simple expression for the weighted sum

∑

i∈S ρiE[Wi] of mean waiting times. This result
is known as the pseudo-conservation law. Following [49], the pseudo-conservation law
has been extended to allow for polling systems with Markovian routing in [54], but this
extension only allows the server to serve the queues in an exhaustive, gated or one-limited
manner exclusively. In this section, we further extend the pseudo-conservation law to
allow for any branching-type service discipline.

In particular, it is shown in [54] that the expected amount of waiting work in polling
systems with Markovian routing is given by

∑

i∈S

ρiE[Wi] = ρ

∑

i∈S λiE[B2
i ]

2(1−ρ)
+

1
σ

∑

i∈S

qi

∑

k∈S

pi,kE[Si,k]E[Ψi,k], (8.22)

where the latter term represents the expected amount of work in the system during a
switch-over period and where E[Ψi,k] is the expected amount of work in the system when
the server is in the process of switching from Q i to Qk. The authors in [54] then determine
E[Ψi,k] for the exhaustive, gated and one-limited service discipline. Observe, however,
that the expected amount of work in the system equals the sum of the (remaining) service
requirements of all the customers present in the system. As a result, we have for a switch-
over period from Q i to Qk that

E[Ψi,k] =
∑

j∈S

yi,k( j)E[B j]. (8.23)

By combining (8.22) and (8.23) with (8.20) and (8.13), respectively, we thus have for
the general case that

∑

i∈S

ρiE[Wi] = ρ

∑

i∈S λiE[B2
i ]

2(1−ρ)
+

1
σ

∑

i∈S

qi

∑

k∈S

pi,kE[Si,k]
∑

j∈S \{i}

fi( j)E[B j]

+
1

1−ρ

∑

i∈S

λi
1−ρi

1− hi(i)

∑

k∈S

pi,kE[Si,k]
∑

j∈S

E[B j]hi( j)

+
ρ

2σ

∑

i∈S

qi

∑

k∈S

pi,kE[S2
i,k], (8.24)

provided that the service discipline pertaining to each queue satisfies Property 8.2.1. This
expression uses the fi( j) terms that we computed in Section 8.3.2. In the next chapter,
we will use this newly derived pseudo-conservation law for optimisation purposes.
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9
OPTIMISATION WITH AN APPLICATION TO

WIRELESS RANDOM-ACCESS NETWORKS

In Chapters 7 and 8, we analysed performance measures of the Markovian polling model
under various assumptions. While the results obtained are of independent interest, we fo-
cus in this chapter on their application to wireless random-access networks. In particular,
we address several optimisation questions of how to choose certain model parameters so
as to minimise a (weighted) sum of mean queue lengths. Implementation of the resulting
solutions in wireless random-access networks, however, in principle requires each node
to have complete information on each of the other nodes present in the network. This
is not a valid assumption in practice due to the decentralised nature of these networks.
Therefore, we also present an adaptive control algorithm for finding the optimal para-
meter values in a distributed fashion by having the nodes use measurements of the time
between two subsequent periods of activity in the medium.

9.1 Introduction

In this chapter, we focus on the application of Markovian polling systems to wireless
random-access networks. As already explained in Section 1.3.2, the various queues in the
polling system correspond to packet buffers at several wireless transmitters (or, nodes),
which need to share the medium in a mutually exclusive way because of interference.
In wireless random-access networks, carrier-sense multiple-access collision-avoidance al-
gorithms are usually implemented, which provide a common mechanism for governing
the use of the medium by the transmitters in a distributed fashion. In these algorithms,
the nodes obey random back-off times between periods of activity. This is done not only
to avoid collisions, but also to give the other nodes an opportunity to become active.

We assume that the nodes implement back-off times that are independent and expo-
nentially distributed with a rate νi , which we refer to as the back-off rate. The relative
values of the back-off rates indicate the relative priority of transmission among the N
nodes. In other words, a low-priority node aims to be in back-off much longer than a
high-priority node and thus adheres to a smaller back-off rate. Because of the memoryless
property of the exponential distribution, this is equivalent to a polling system with switch-
over times between any pair of queues that are exponentially distributed with parameter
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ν0 =
∑N

i=1 νi and a Markovian routing policy with routing probabilities pi, j = p j = ν j/ν0,
j = 1, . . . , N . These routing probabilities are independent of i, the index of the queue that
the server has just visited. As mentioned in Section 1.3.2, the special case of a Markovian
routing policy with pi, j = p j (and thus also q j = p j) is also referred to as a random routing
policy. Yet another equivalent interpretation is that each queue has the same back-off rate
ν0, but only activates at the end of a back-off period with an activation probability p j . We
will use this interpretation in Section 9.4.

A crucial question that we concern ourselves with in this chapter is how the back-off
rates should be selected in order to minimise the overall average packet delay. To this
end, we use the notation as introduced in Chapter 8 and study the equivalent optimisa-
tion problem in the polling setting. That is, for random polling systems, we study the
question of which routing probabilities p j minimise the weighted sum

∑

i∈S ciE[Wi] of
mean waiting times (or equivalently, through Little’s law, a weighted sum of mean queue
lengths) for any set of non-negative weights c1, . . . , cN , where S = {1, . . . , N} as before.
Of course, one can optimise all these numbers by implementing (8.21) including the
set of equations (8.10) to compute

∑

i∈S ciE[Wi] =
∑

i∈S
ci
λi
(E[Li] − ρi) and searching

through the complete parameter set using numerical optimisation methods. However,
this method lacks transparency and provides little insight into the effects of the model
parameters. Moreover, its computation time becomes prohibitively long as the number of
queues increases. Therefore, there is a need for symbolic and transparent (near-)optimal
expressions which are easy to implement and are suitable for optimisation purposes.

We obtain accurate approximations for the optimal routing probabilities that are ex-
pressed in closed form and are even exact when the weights are chosen such that the
weighted sum represents the mean amount of (waiting) work in the system. To allow for
such expressions, we assume that the first two moments of the switch-over time distribu-
tions between each pair of queues are the same, i.e. E[Si, j] = E[S] and E[S2

i, j] = E[S
2]

for all i, j ∈ S . Note that this is a completely valid assumption in the practice of wire-
less random-access networks as sketched above. Given that each queue adheres to the
binomial gated or the binomial exhaustive service discipline as introduced in Section 8.2
(i.e. the branching-type service disciplines which model the network setting best), we also
study the question of how to choose the exhaustiveness probabilities ri with the same ob-
jective in mind. Contrary to the numerical method described above, the expressions that
we derive provide insight into the effects of the model parameters on the waiting times
and their computation times are negligible.

These (near-)optimal expressions can, however, not be used directly to obtain optimal
back-off rates in the wireless random-access network setting, since these expressions in-
volve the arrival rates of all other queues among other parameters that in practice are
not known to a transmitter. Therefore, we propose a distributed algorithm that makes
each node choose its back-off rate dynamically based on the durations of previous packet
inter-transmissions without requiring information concerning other nodes in the network.
When all nodes adhere to this algorithm, the back-off rates converge in some sense to their
optimal values over time.

The remainder of this chapter is organised as follows. First, in Section 9.2, we derive
expressions for the routing probabilities p j and the exhaustiveness probabilities r j that
minimise the mean total amount of work in the system. Then, in Section 9.3, we derive ap-
proximate expressions for the same parameters that (nearly) optimise any weighted sum
of the mean waiting times and conclude that these approximations are accurate by means
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of a numerical study. Based on the resulting expressions for the (near-)optimal routing
probabilities, we describe the algorithm for obtaining (near-)optimal back-off rates in the
wireless-network setting in Section 9.4.

9.2 Minimising the mean total amount of work in the sys-
tem

We start with finding the routing probabilities and exhaustiveness probabilities that min-
imise the mean total amount of work in the system, which is the sum of the mean amount
∑

i∈S ρiE[Wi] of waiting work in the system and the mean amount
∑

i∈S ρi
E[B2

i ]
2E[Bi]

of re-
maining work to be processed of any customer that is currently being served. Since the
latter expression is insensitive to the routing probabilities and the exhaustiveness probab-
ilities, the probabilities that minimise the mean total amount of work in the system also
minimise

∑

i∈S ρiE[Wi]. We therefore focus on this expression in the remainder of this
section.

Recall that the server now initiates a setup to Q j with probability p j after a visit period
regardless of which queue it actually visited. While doing so, it incurs a switch-over
time with first two moments E[S] and E[S2] for all j ∈ S . Following the analysis of
[54, Remark 5.4], which is based on results of [144], one can show that under these
assumptions, the pseudo-conservation law in (8.24) reduces to

∑

i∈S

ρiE[Wi] = ρ

∑

i∈S λiE[B2
i ]

2(1−ρ)
+
E[S]
1−ρ

∑

i∈S

ρi(1−ρi)
pi

+ρ

�

E[S2]
2E[S]

−E[S]
�

+
E[S]
1−ρ

∑

i∈S

ρi(1−ρi)hi(i)
pi(1− hi(i))

. (9.1)

The last term is the only term in this expression that depends on the service disciplines
of the queues. Furthermore, the summands E[S]1−ρ

ρi(1−ρi)hi(i)
pi(1−hi(i))

= fi(i)hi(i)E[Bi] of the last
term equal the expected amount of work the server leaves behind at Q i when completing
a visit period there.

9.2.1 Routing probabilities

Considering (9.1), it is obvious that for any branching-type service discipline at any queue,
the problem of finding the routing probabilities popt

i that minimise the mean total amount
of work in the system is equivalent to the problem of finding the variable τ = (τ1, . . . ,τN )
that

minimises f (τ ) =
∑

i∈S

ρi(1−ρi)
τi

�

1+
hi(i)

1− hi(i)

�

=
∑

i∈S

ρi(1−ρi)
τi(1− hi(i))

(9.2)

subject to u(τ ) =
∑

i∈S

τi − 1= 0, υ1, j(τ ) = −τ j ≤ 0

and υ2, j(τ ) = τ j − 1≤ 0 for all j ∈ S .

This non-linear optimisation problem with equality and inequality constraints can be
solved using a standard application of the Karush-Kuhn-Tucker conditions (see e.g. [55,
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Section 5.5.3]). Let τ ∗ = (τ∗1, . . . ,τ∗N ) be given by τ∗i =
p
ρi(1−ρi)/(1−hi(i))

∑

j∈S
p
ρ j(1−ρ j)/(1−h j( j))

. Define L
as the number for which ∇ f (τ ∗) +L∇u(τ ∗) equals 0, i.e.

L =

 

∑

j∈S

√

√

√

ρ j(1−ρ j)

1− h j( j)

!2

.

Furthermore, let the N -dimensional vectors a and b be equal to 0. It is then easily verified
that τ ∗, L, a and b satisfy the Karush-Kuhn-Tucker conditions

∇ f (τ ∗) +L∇u(τ ∗) +a∇v1(τ
∗) + b∇v2(τ

∗) = 0, (stationarity)

u(τ ∗) = 0,v1(τ
∗)≤ 0,v2(τ

∗)≤ 0, (primal feasibility)

av1(τ
∗) = 0,bv2(τ

∗) = 0, (complementary slackness)

a≥ 0 and b≥ 0. (non-negativity)

The existence of values of L, a and b that satisfy the Karush-Kuhn-Tucker conditions is
required for τ ∗ to be the solution to the optimisation problem, but it does in general not
imply that τ ∗ is indeed optimal. However, since the objective function f (τ ) is convex in
τ1, . . . ,τN , these conditions are sufficient for τ ∗ to be the solution to (9.2). Consequently,
the optimal routing probabilities pi that minimise the mean total amount of work in the
system are given by

popt
i =

p

ρi(1−ρi)/(1− hi(i))
∑

j∈S

Æ

ρ j(1−ρ j)/(1− h j( j))
. (9.3)

REMARK 9.2.1. The optimal routing probabilities given in (9.3) generalise results ob-
tained in [52, Section 4]. In that paper, the authors derive optimal routing probabilit-
ies for the special cases of exhaustive and gated service, i.e. hi(i) = 0 and hi(i) = ρi ,
respectively.

9.2.2 Exhaustiveness probabilities

We now assume that each of the queues adheres to either a binomial exhaustive or a
binomial gated service discipline as described in Sections 8.1 and 8.2. We therefore par-
tition the set S of queue indices in a set IBE of indices corresponding to queues served
according to the binomial exhaustive service discipline and a set IBG of indices referring
to queues with the binomial gated discipline. Recall that the last term in (9.1) is the only
term in that expression that is sensitive to the service discipline and thus also to the ex-
haustiveness probabilities ri . As we now have that hi(i) = 1− (1−ρi1{i∈IBG})ri , the last

term of (9.1) can be simplified to E[S]1−ρ

∑

i∈S ki(
1
ri
− (1−ρi1{i∈IBG})), where

ki =
ρi(1−ρi)

pi(1−ρi1{i∈IBG})
. (9.4)

We aim to find the exhaustiveness probabilities that minimise
∑

i∈S ρiE[Wi]. Of
course, when there are no restrictions on ri , all exhaustiveness probabilities should be
chosen equal to one in order to minimise the amount of work in the system (see also
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[170, Proposition 4.1]). However, as a result of this choice, the waiting times of the vari-
ous customers may vary considerably depending on their time of arrival. For instance, a
customer arriving just after the server concluded a visit period at his queue is likely to wait
a lot longer than a customer arriving just before that time. This introduces a source of
customer unfairness, especially in case of the binomial exhaustive service discipline. Fur-
thermore, in practice, there may be costs involved in having demanding customer types
(i.e. high exhaustiveness probabilities). In the wireless random-access network applica-
tion, a high exhaustiveness probability of one node may heavily delay the transmission of
packets by other nodes. Therefore, we add the constraint

∑

i∈S di ri ≤ 1 to the problem,
where the parameters di > 0 can be interpreted as cost parameters.

Taking everything into account, the problem of finding the optimal exhaustiveness
probabilities reduces to the problem of finding the vector τ = (τ1, . . . ,τN ) that

minimises f (τ ) =
∑

i∈S

ki

τi
(9.5)

subject to υ1,i(τ ) = −τi ≤ 0, υ2,i(τ ) = τi − 1≤ 0

and υ3(τ ) =
∑

j∈S

d jτ j − 1≤ 0 for all i ∈ S .

Note that f (τ ) is a decreasing function in τ1, . . . ,τN . Thus, if
∑

i∈S di < 1, the constraint
υ3(τ )≤ 0 cannot be binding, as the constraint υ2i

(τ )≤ 0 will prohibit that. The solution
to this problem is for this case thus given by τ∗i = 1 for all i ∈ S . For the case

∑

i∈S di ≥ 1,
observe that if the constraints υ1,i(τ ) ≤ 0 and υ2,i(τ ) ≤ 0 did not exist, one could show
that (9.5) is minimised by the vector τ (0) with elements

τi(0) =

p

ki/di
∑

j∈S
Æ

k jd j

(9.6)

for any i ∈ S . However, this vector does not necessarily satisfy the constraintυ2,i(τ (0))≤
0. It is reasonable to conjecture that if τi(0) ≥ 1, the optimal vector τ ∗ satisfies τ∗i = 1.
In such a case, the optimal solution may be found by truncating any values in (9.6) at one
as needed, and, given that these values equal one, re-evaluating the problem to solve for
the remaining values. As any of the remaining values may become larger than one after
re-evaluation, this needs to be iterated until all values are not larger than one. At most
N of these iterations are needed to achieve this.

To summarise all of the above, it is reasonable to conjecture that the optimal solution
τ ∗ = τ (N) to the problem specified in (9.5) has elements that are defined through the
recursion

τi( j) = 1{τi( j−1)≥1∨
∑

l∈S dl<1}

+1{τi( j−1)<1∧
∑

l∈S dl≥1}
(1−

∑

l∈S dl1{τl ( j−1)≥1})
p

ki/di
∑

l∈S 1{τl ( j−1)<1}
p

kl dl

(9.7)

for j = 1, . . . , N , where (9.6) acts as an initial condition. The number j corresponds to
the j-th step of the recursion. We now show that τ ∗ = τ (N) is indeed a solution to this
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problem including all mentioned constraints. To this end, we introduce

E = 1{∑l∈S dlτ
∗
l=1}

 ∑

l∈S 1{τ∗l<1}
p

kl dl

1−
∑

l∈S dl1{τ∗l≥1}

!2

.

Furthermore, let the vectors a and b be given by ai = 0 and bi = 1{τ∗i=1}(ki − diE ),
respectively. Through some straightforward computations, it can be shown that these
particular choices for a, b and E satisfy the following Karush-Kuhn-Tucker conditions for
the problem in (9.5):

∇ f (τ ∗) +a∇v1(τ
∗) + b∇v2(τ

∗) + E∇υ3(τ
∗) = 0, (stationarity)

v1(τ
∗)≤ 0,v2(τ

∗)≤ 0,υ3(τ
∗)≤ 0, (primal feasibility)

av1(τ
∗) = 0,bv2(τ

∗) = 0,Eυ3(τ
∗) = 0, (complementary slackness)

a≥ 0,b≥ 0 and E ≥ 0. (non-negativity)

Since the Karush-Kuhn-Tucker conditions are satisfied and f (τ ) is a convex function in
τ1, . . . ,τN , τ ∗ is indeed optimal for this problem.

Going back to the original problem of finding the routing probabilities that minimise
the mean total amount of work in the system under the restriction

∑

i∈S di ri ≤ 1, we thus
have that the optimal exhaustiveness probabilities ropt

i are given by

ropt
i = τi(N), (9.8)

where τi(N) is defined through the recursion (9.7) together with the initial value (9.6)
and ki is defined as in (9.4).

REMARK 9.2.2. In Sections 9.2.1 and 9.2.2, we have derived separate expressions for the
optimal routing probabilities and exhaustiveness probabilities. Note that the found ex-
pressions for popt

i (ropt
i ) involve the parameters ri (pi), so that there is an interaction

between the optimal routing probabilities and the optimal exhaustiveness probabilities.
Joint optimisation of both the routing probabilities and exhaustiveness probabilities seems
to be a hard problem. One may, however, obtain optimal values for both the routing prob-
abilities and the exhaustiveness probabilities by using an alternating approach that first
finds the optimal routing probabilities given an arbitrary set of exhaustiveness probabilit-
ies, then determines new optimal exhaustiveness probabilities based on the newly found
routing probabilities and so on. Numerical experiments show that only a few of these
iterations are already enough to obtain virtually optimal values for these parameters.

9.3 Minimising a weighted sum of mean waiting times

Now that we have found the routing probabilities and the exhaustiveness probabilities
that minimise the expected amount of work in the system, the question arises which
routing and exhaustiveness probabilities minimise the weighted sum

∑

i∈S ciE[Wi] =
∑

i∈S
ci
λi
(E[Li] − ρi) with arbitrary, positive weights ci that are not necessarily equal to

ρi . By (8.21), this sum depends on fi( j) and fi(i, j) corresponding to each i, j ∈ S
and thus constitutes an intricate function of the model parameters. Optimisation of this



9.3 MINIMISING A WEIGHTED SUM OF MEAN WAITING TIMES 173

function is hard and does not lead to simple expressions for optimal model parameters.
Therefore, we instead aim to find simple expressions that lead to a near-optimal value of
∑

i∈S
ci
λi
E[Li], which then evidently also leads to a near-optimal value of

∑

i∈S ciE[Wi].
To this end, we initially consider a more tractable problem, namely the optimisation of
the weighted sum

∑

i∈S
ci
λi

fi(i). We thus replace E[Li], the mean queue length of Q i

at any point in time, by fi(i), which refers to the mean queue length of Q i when it is
polled by the server. In Section 9.3.1, we derive expressions for routing probabilities and
exhaustiveness probabilities that minimise

∑

i∈S
ci
λi

fi(i). Using numerical results, we will
see in Section 9.3.2 that these expressions also represent probabilities that nearly optimise
∑

i∈S ciE[Wi].

9.3.1 Near-optimal expressions

We initially study the adapted problem of minimising
∑

i∈S
ci
λi

fi(i). Due to (8.13), we
thus wish to minimise

∑

i∈S

ci

λi
fi(i) =

∑

i∈S

ciE[S](1−ρi)
pi(1−ρ)(1− hi(i))

. (9.9)

To find expressions for the routing probabilities pn-opt
i that minimise this sum, observe that

this adapted problem is equivalent to problem (9.2), but with ρi(1−ρi) in the numerator
of f (τ ) replaced by ci(1−ρi). By following the analysis of Section 9.2.1, one finds that
the optimal routing probabilities for this adapted problem are given by

pn-opt
i =

p

ci(1−ρi)/(1− hi(i))
∑

j∈S

Æ

c j(1−ρ j)/(1− h j( j))
(9.10)

for all i ∈ S .
We now consider the exhaustiveness probabilities, and we again take the constraint

∑

i∈S di ri ≤ 1 into account. Recall that hi(i) = 1−(1−ρi1{i∈IBG})ri when the server serves
each of the queues according to the binomial exhaustive or the binomial gated service
discipline. Hence, we observe by (9.9) that minimising

∑

i∈S
ci
λi

fi(i) is equivalent to the

minimisation of
∑

i∈S
κi
ri

, where κi =
ci(1−ρi)

pi(1−ρi1{i∈IBG })
. By performing similar calculations

to those in Section 9.2.2, we now have that the exhaustiveness probabilities rn-opt
i that

minimise (9.9) are given by
rn-opt

i = ri(N), (9.11)

where ri( j) is for all i, j ∈ S recursively defined through

ri( j) = 1{ri( j−1)≥1∨
∑

l∈S dl<1} +1{ri( j−1)<1∧
∑

l∈S dl≥1}
(1−

∑

l∈S dl1{rl ( j−1)≥1})
p

κi/di
∑

l∈S 1{rl ( j−1)<1}
p

κl dl

with

ri(0) =

p

κi/di
∑

j∈S
Æ

κ jd j

.

We have now found the routing probabilities pn-opt
i and the exhaustiveness probabil-

ities rn-opt
i that minimise the weighted sum

∑

i∈S
ci
λi

fi(i). Observe, however, that in case
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TABLE 9.1: Parameter settings of the polling systems used for the numerical study of
Section 9.3.2.

Parameter Considered parameter settings

N 2,3, 4,5

Service policy Binomial exhaustive, binomial gated

ρ 0.1,0.5, 0.99

(Bi)i∈S
�

Exponential
�

1
2i

��

i∈S , (Deterministic (i))i∈S
(Si)i∈S (Uniform (0,1))i∈S , (Uniform (0,100))i∈S
(λi)i∈S

�

ρ
NE[Bi]

�

i∈S
,
�

2iρ
N(N+1)E[Bi]

�

i∈S
,
�

2(N+1−i)ρ
N(N+1)E[Bi]

�

i∈S
(ci)i∈S

�

ρ2
i

�

i∈S ,
�

eN+1−i
�

i∈S

(di)i∈S
�

(N + 1− i)−1�

i∈S ,
�p

N + 1− i
�

i∈S

ci = ρi for all i ∈ S , the expressions in (9.10) and (9.11) coincide with (9.3) and (9.8).
Therefore, these expressions also represent the probabilities that minimise

∑

i∈S ciE[Wi]
when ci = ρi . Therefore, one may expect that for general ci , the probabilities pn-opt

i and
rn-opt

i nearly optimise the weighted sum of mean waiting times. In the next section, we
conclude on the basis of numerical results that this is indeed the case, so that (9.10) and
(9.11) can be used for the optimisation of waiting times.

9.3.2 Numerical validation

In this section, we numerically study the accuracy of the near-optimal values pn-opt
i and

rn-opt
i as computed in (9.10) and (9.11). To this end, we consider a collection of 1152

model instances corresponding to all possible combinations of the parameter settings
given in Table 9.1. For each of these systems, we compute the smallest possible value
of the weighted sum of mean waiting times, which we denote by βopt, by determining
the optimal routing and exhaustiveness probabilities using numerical optimisation meth-
ods in combination with the results found in Section 8.4. We also compute the routing
and exhaustiveness probabilities derived in Section 9.3.1 that should nearly optimise the
weighted sum

∑

i∈S ciE[Wi] by iteratively calculating (9.10) and (9.11) using an altern-
ating approach as sketched in Remark 9.2.2. We denote the value of the weighted sum
that corresponds to these probabilities by βn-opt.

Based on these numbers, we calculate the accuracy error ∆n-opt of the near-optimal
probabilities for each system:

∆n-opt = 100%×
βn-opt − βopt

βopt .

For the sake of comparison, we also consider the baseline scenario where the routing and
exhaustiveness probabilities are chosen in a naive manner, namely pi =

1
N and ri =

1
di N

for all i ∈ S . This leads to the weighted sum denoted by βbase, so that the accuracy
error ∆base is defined similarly to ∆n-opt. Note that this baseline scenario is optimal for
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TABLE 9.2: The accuracy differences ∆n-opt and ∆base categorised in bins.

0-0.01% 0.01-1% 1-10% >10%

% of accuracy errors ∆n-opt 59.03% 31.68% 8.85% 0.43%
% of accuracy errors ∆base 0.26% 7.99% 33.07% 58.68%

completely symmetric systems. In Table 9.2, the errors ∆n-opt and ∆base pertaining to
all model instances are summarised. In particular, we see that ∆n-opt is smaller than 1%
in more than 90% of all cases and is even smaller than 0.01% in more than half of the
cases. This suggests that the values pn-opt

i and rn-opt
i indeed virtually always lead to a

weighted sum of mean waiting times that is close to optimal. They also seem to perform
much better than the baseline scenario, since Table 9.2 shows almost completely opposite
numbers for ∆base. In particular, the accuracy errors of the baseline scenario are larger
than 1% in more than 90% of all cases and they even exceed 10% in more than half of
the cases. This effect is also captured by the fact that the average value of ∆n-opt equals
0.425% and that of ∆base equals 24.18%.

To give insight into parameter effects, Table 9.3 displays average values of ∆n-opt

categorised in some of the model parameters. From Table 9.3(a), we conclude that the
accuracy of the near-optimal values is hardly influenced by the number of queues in the
system. However, judging by Table 9.3(b), the accuracy is sensitive to the load ρ offered
to the server. As any choice for the routing and exhaustiveness probabilities is optimal
in case of a zero load, it makes sense that the accuracy degrades slowly when the load
increases. Table 9.3(c) suggests that the near-optimal values tend to perform better when
there is less stochasticity in the system. Judging by Table 9.3(d), the performance is
also increasing in the average duration of the switch-over times. This can be explained
by the fact that routing probabilities or exhaustiveness probabilities have less impact on
the waiting time when the switch-over times become an increasing source of waiting
time. Finally, Tables 9.3(e) and 9.3(f) suggest that a higher level of asymmetry in the
model parameters leads to larger inaccuracies. This is as expected, since the near-optimal
probabilities are optimal when the system to be optimised is completely symmetric.

REMARK 9.3.1. In Sections 9.2.2 and 9.3.1, we have derived expressions for exhaust-
iveness probabilities that (nearly) optimise a weighted sum of the mean waiting times.
However, in practice, one may also be interested in keeping the level of variation in the
waiting times low. In an effort to reduce the level of variation, one may thus choose to
adapt the exhaustiveness probability in a dynamic fashion at the start of every n-th visit
period at that queue, based on the number of customers present in the queue at that par-
ticular polling epoch. More specifically, let ropt

i be the expression of the (near-)optimal
exhaustiveness probability at Q i as found before, and let fi,ropt

i
(i) be the corresponding

expected queue length at Q i at the start of any visit period to Q i , which can be com-
puted through (8.13). By using (8.16), we find that the expected number of customers
that the server leaves behind at that queue when initiating the next switch-over period
is given by fi,ropt

i
(i)hi(i) = fi,ropt

i
(i)
�

1− (1−ρi1{i∈IBG})r
opt
i

�

. Likewise, if one decides that

the server at Q i should adhere to the exhaustiveness probability rdyn
i,n instead during the

n-th visit period at Q i , at the start of which zi,n customers are present, the expected
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TABLE 9.3: Average accuracy error categorised in some of the model parameters as spe-
cified in Table 9.1.

(a)

N 2 3 4 5

Average ∆n-opt 0.41% 0.43% 0.43% 0.43%

(b)

ρ 0.1 0.5 0.99

Average ∆n-opt 0.00% 0.03% 1.24%

(c)

(Bi)i∈S
�

Exponential
�

1
2i

��

i∈S (Deterministic (i))i∈S

Average ∆n-opt 0.66% 0.19%

(d)

(Si)i∈S (Uniform (0, 1))i∈S (Uniform (0,100))i∈S

Average ∆n-opt 0.61% 0.24%

(e)

(ci)i∈S
�

ρ2
i

�

i∈S

�

eN+1−i
�

i∈S

Average ∆n-opt 0.23% 0.62%

(f)

(di)i∈S
�

(N + 1− i)−1
�

i∈S

�p
N + 1− i

�

i∈S

Average ∆n-opt 0.62% 0.23%

number of customers left behind at the start of the subsequent switch-over period equals
zi,n

�

1− (1−ρi1{i∈IBG})r
dyn
i,n

�

. To reduce variation in the waiting times, rdyn
i,n could thus

be chosen such that these two numbers are the same:

zi,n(1− (1−ρi1{i∈IBG})r
dyn
i,n ) = fi,ropt

i
(i)
�

1−
�

1−ρi1{i∈IBG}
�

ropt
i

�

.

By rewriting this equation and observing that rdyn
i,n cannot drop below zero or exceed one,

we have that

rdyn
i,n =

�

min

¨

1, (1−ρi1{i∈IBG})
−1

�

1−
fi,ropt

i
(i)

zi,n

�

1− (1−ρi1{i∈IBG})
�

ropt
i

�«�+

.

Observe that this expression only depends on model parameters that pertain to Q i and
not to other queues. Choosing the exhaustiveness probabilities dynamically in this way
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makes customers waiting in a longer (shorter) queue than average have a higher (lower)
probability of getting served during the current visit period than in the static case. This
evidently reduces the variance of the waiting times. There is, however, no guarantee that
the mean waiting times E[Wi] will not increase as a result.

9.4 A distributed algorithm for wireless random-access
networks

Up to now, we have derived expressions for certain model parameters that are optimal
or nearly optimal in some sense. Among them, there are expressions for the routing
probabilities p j that (nearly) optimise a weighted sum of the mean waiting times (or
equivalently, mean queue lengths) under the assumption of random routing. As seen in
(9.3) and (9.10), these expressions are of the form

popt
i =

γi
∑

j∈S γ j
, (9.12)

where the coefficients γi are positive and only depend on parameters pertaining to Q i .
Hence, the numerator of (9.12) only depends on Q i-specific values, but the denominator
pertains to parameters of all queues for normalisation purposes.

We now consider the wireless random-access network setting as described in Sec-
tion 9.1, and as mentioned there, we assume that each node has the same back-off rate
ν0, but only activates at the end of a back-off period with an activation probability p j . An
important question is what the activation probability of each node should be in order to
minimise the overall mean number of packets waiting to be transmitted and hence the
overall mean delay. Although each of the nodes in the network operates autonomously, it
is reasonable to assume that the nodes are cooperative and in principle strive to achieve
such a common goal. The found expressions of the form given in (9.12) in principle offer
a solution to this type of problem. However, these expressions are not directly applic-
able to the wireless setting. Recall that the nodes operate in a distributed way. In other
words, they operate concurrently on the basis of the partial information that is known
to them. The information known to each node includes the value γi and the observed
inter-transmission times so far, but not the values γ j pertaining to other nodes.

To overcome this problem, we propose an algorithm that makes each node update its
activation probability in such a way that these probabilities tend towards their (nearly)
optimal values γi

∑

j∈S γ j
, provided that all nodes in the network follow this algorithm. The

algorithm works in a distributed fashion as desired: all the nodes execute this algorithm
concurrently, but autonomously based on inter-transmission times observed thus far and
their value of γi . In Section 9.4.1, we describe two possible variants of the algorithm. The
first variant makes the nodes choose activation probabilities that over time converge with
probability one to (values near) the desired values popt

i . Although in the second variant
the activation probabilities converge to their limiting values in a weaker sense, we will see
that this variant is more robust to a variable population of nodes in the network or chan-
ging values of γi . Section 9.4.2 subsequently examines both variants of the algorithm in
more detail and elaborates on their convergence properties. Finally, we provide numerical
examples for both variants in Section 9.4.3.
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9.4.1 Description of the distributed algorithm

We now propose an algorithm, which prescribes for each node which activation probab-
ility it should adopt based on the information available to that specific node. We assume
that the information known to any of the N present nodes, which we index by i, includes
the value γi and the durations of the previous inter-transmission times. First, we intro-
duce some additional notation. We index time by n, so that X (n) refers to the duration
of the n-th inter-transmission time. The activation probability of node i during the n-th
inter-transmission time is denoted by pi(n). As the back-off rates of the nodes each equal
ν0, the inter-transmission time X (n) is exponentially distributed with rate ν0

∑

j∈S p j(n),
where the set S = {1, . . . , N} represents the N nodes present in the network. Finally, for
the sake of conciseness, we use [x]zy as shorthand notation for min{max{x , y}, z}.

Now that the required additional notation has been introduced, we proceed to de-
scribe a distributed algorithm that makes the activation probabilities move towards their
(near-)optimal values in the long run.

ALGORITHM 9.4.1. Let α and M be positive constant coefficients, α < γ−1
i . Furthermore, let

the i-th node (i ∈ S ) have an initial activation probability of pi(1) = γiθi(0), i = 1, . . . , N,
where θi(0) is assumed to be in the interval [α,γ−1

i ]. After the n-th transmission time, it
calculates

θi(n) = [(1− ε(n))θi(n− 1) + ε(n)M(ν0X (n)− 1)]
γ−1

i
α , (9.13)

where the ε(n) are step sizes that depend on n. Subsequently, node i updates its activation
probability according to

pi(n+ 1) = γiθi(n). (9.14)

When each node adheres to this algorithm, the activation probabilities pi(n) of the various
nodes will eventually converge in some sense (depending on the choice of ε(n)) to the value
γi θ̂ , where θ̂ is given by

θ̂ =
−M

2
+

√

√

√

M2

4
+

M
∑

j∈S γ j
, (9.15)

provided that α < θ̂ .

In Section 9.4.2, we examine this algorithm in detail and focus on the convergence
properties of this algorithm. However, we first study this algorithm to see why it forms
a solution to our problem and to explore the roles of the step sizes and the algorithm’s
coefficients. To this end, we observe that if the values X (n) did not exhibit random noise,

i.e. X (n) = E[X (n)] =
�

∑

j∈S γ jν0θ j(n− 1)
�−1

, the N -dimensional difference equation
in (9.13) would reduce to

θi(n) =

�

(1− ε(n))θi(n− 1) + ε(n)M

�

1
∑

j∈S γ jθ j(n− 1)
− 1

��γ−1
i

α

, (9.16)

for each i ∈ S . In this N -dimensional difference equation, each of the θi(n) evolves in
exactly the same way, so that the fixed point θ of this N -dimensional difference equation
must satisfy θi = θ̂ for all i for some value θ̂ as a result of symmetry. Thus, the problem of
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finding the (positive) fixed point of the N -dimensional difference equation can be reduced
to finding the (positive) solution of the one-dimensional problem

θ̂ =



(1− ε(n))θ̂ + ε(n)M

 

1

θ̂
∑

j∈S γ j

− 1

!





γ−1
i

α

,

which is easily seen to be given by θ̂ as specified in (9.15) when α is smaller than the
expression displayed in (9.15). Furthermore, it is easily verified that this expression is
a unique fixed point of (9.16) and tends to 1

∑

j∈S γ j
when M →∞. By this observation

and (9.14), it is thus not surprising that the activation probabilities pi of the nodes will
eventually be close to their (near-)optimal values popt

i when taking M large enough. In
fact, as M tends to infinity, the expression of (9.15) tends to its limit from below. This is
a desired property, as the sum of the activation probabilities does not exceed one in that
case.

We consider two different variants of this algorithm. The first variant uses step sizes
ε(n) that satisfy the conditions

ε(n)≥ 0 for all n≥ 1,ε(n)→ 0 if n→∞,
∞
∑

n=1

ε(n) =∞ and
∞
∑

n=1

(ε(n))2 <∞. (9.17)

As we will see in Section 9.4.2, the activation probabilities converge with probability one
to γi θ̂ when using this variant. We also study a second variant of the algorithm, namely
the one which assumes that the step sizes ε(n) = ε are constant over time. We will see
in Section 9.4.2 that although stationary iterates of (9.13) will then still be contained in
a small area around γi θ̂ , this variant does not exhibit convergence with probability one,
since the step sizes do not decrease over time. Due to the constant step sizes, however,
the second variant is more suitable for use in networks with a variable population of
nodes or changing values of γi , i.e. for settings for which the (near-)optimal activation
probability popt

i is of a variable nature. In the first variant, convergence of the activation
probabilities to new values of popt

i would after some point become unacceptably slow due
to the decreasing step sizes. The second variant does not have this problem.

When deploying the algorithm, it is important to choose the coefficients of the al-
gorithm well. In particular, the lower bound α needs to be chosen positive so as to keep
the algorithm from producing negative control parameters θi(n), but smaller than θ̂ so
as to preserve the desired limiting values. Due to the bounds α and γ−1

i , the control para-
meters θ(n) take values in the hypercube H = {θ : θ ∈ R|S | ∧ α ≤ θi ≤ γ−1

i ∀i ∈ S }.
As for the coefficient M , we have already seen that the higher the value of M , the closer
the limiting value γi θ̂ is to the desired value popt

i . However, a large M also implies that
the iterates of (9.13) are prone to a significant amount of random noise. To prevent this,
the step sizes should be chosen such that ε(n)M (or in case of the second variant, εM)
is small enough. Observe that the step sizes should not be taken too small either, as this
will result in slow convergence.
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9.4.2 Convergence properties

Now that Algorithm 9.4.1 has been introduced properly, we study this algorithm in detail
and establish the convergence properties of the two variants as considered in the previous
section. Although both variants exhibit a different form of convergence, we will see that
the arguments needed to establish these convergence properties are similar. In particu-
lar, results from [153] imply that the limiting result in both variants coincides with the
unique asymptotically stable point of the same N -dimensional ordinary differential equa-
tion, which can informally be thought of as the continuous-time equivalent of (9.13). To
be more specific, we can rewrite (9.13) in the form

θi(n) = θi(n− 1) + ε(n)Yi(n) + ε(n)Zi(n) (9.18)

for each i ∈ S , where the variables Yi(n) and Zi(n) are given by

Yi(n) = M(ν0X (n)− 1)− θi(n− 1)

and

Zi(n) =
�

α− θi(n− 1)
ε(n)

− Yi(n)
�+

+

�

γ−1
i − θi(n− 1)

ε(n)
− Yi(n)

�−

,

respectively. Thus, Zi(n) is the number with the smallest absolute value needed to keep
θi(n+ 1) between α and γ−1

i . The N -dimensional ordinary differential equation referred
to in [153] can now be expressed as

θ̇i = gi(θ) + zi(θ) (9.19)

for all i ∈ S , where θ is a function of a continuous-time parameter t rather than the
discrete-time parameter n as before. We use θ̇i and ḟ (θ) to represent the derivative of θi
or any function f (θ), respectively, with respect to this continuous-time parameter. The
function gi(θ) is given by

gi(θ) = E[Yi(n) | θ(n− 1) = θ] = M





 

∑

j∈S

γ jθ j

!−1

− 1



− θi .

Furthermore, zi(θ) is again a number with the smallest absolute value needed to keep
θ from leaving the hypercube H . Thus, zi(θ) becomes positive (negative) whenever θi
takes the boundary value of α (γ−1

i ) and needs to be ‘pushed’ back for θ to stay in H .
More specifically, we have that

zi(θ) = −gi(θ)1{(θi=α∧gi(θ)<0)∨(θi=γ−1
i ∧gi(θ)>0)}.

To find the asymptotically stable points of (9.19), we first look for fixed points of
(9.19), i.e. points for which θ̇i = 0 for all i ∈ S . To this end, note that gi(θ) has a
positive root θ∗ with elements given by θ ∗i = θ̂ for all i ∈ S (cf. (9.15)), provided that
α < θ̂ . As a result, gi(θ) is contained in the interior of H . Since gi(θ) is decreasing in
θi , gi(θ) is positive when θi equals α, as this is a lower boundary of H . Similarly, gi(θ)
is negative when θi equals the upper boundary γ−1

i . As a result, we have that zi(θ) = 0
for any i ∈ S and θ ∈ H . Thus, any fixed point θ∗ of (9.19) satisfies gi(θ∗) = 0 for all
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i ∈ S . Consequently, θ∗ = (θ ∗1 , . . . ,θ ∗N ) = (θ̂ , . . . , θ̂ ) is a fixed point of (9.19). This fixed
point is moreover unique, as gi(θ) only has one positive root due to its decreasingness in
the non-negative orthant.

In order to apply the results from [153], it remains to be shown that the unique fixed
point θ∗ is asymptotically stable. To this end, we consider the Lyapunov function

L(θ) =
�

max
i∈S
{θi} −min

j∈S
{θ j}

�2

+

�

∑

k∈S

γk(θk − θ ∗k )

�2

. (9.20)

It is evident that L(θ∗) = 0 and L(θ) > 0 for all θ ∈ H \{θ∗}. Furthermore, we see that
the time-derivative of L(θ) satisfies

L̇(θ) = 2(θ̇arg maxi∈S {θi} − θ̇arg min j∈S {θ j})
�

max
i∈S
{θi} −min

j∈S
{θ j}

�

+ 2
∑

k∈S

γkθ̇k

∑

l∈S

γl(θl − θ ∗l )

= −2
�

max
i∈S
{θi} −min

j∈S
{θ j}

�2

+ 2
∑

k∈S

γk gk(θ)
∑

l∈S

γl(θl − θ ∗l ), (9.21)

where the second equality follows from (9.19) and the fact that zi(θ) equals zero for all
θ ∈H . Note that the first term of the right-hand side of (9.21) is negative, except when
θi = θ j for all i, j ∈ S , in which case the first term equals zero. As for the second term,
observe that any θ ∈H that satisfies

∑

l∈S γlθl =
∑

l∈S γlθ
∗
l is a root of

∑

k∈S γk gk(θ).
As
∑

k∈S γk gk(θ) is decreasing in
∑

l∈S γlθl , it thus follows that the second term is neg-
ative, except when

∑

l∈S γlθl =
∑

l∈S γlθ
∗
l . Combining these observations, we have that

L̇(θ∗) = 0 and L̇(θ) < 0 for all θ ∈ H \{θ∗}. By standard theory on Lyapunov functions
(see e.g. [139]) and the properties of the particular Lyapunov function L(θ) as established
above, we conclude that the fixed point θ∗ is asymptotically stable.

Now that we have identified the unique asymptotically stable point of (9.19), we
can apply the results from [153] to obtain the convergence properties of both variants
of the algorithm. As proved in [153, Theorem 5.2.1], the iterates of (9.13) (or (9.18))
converge under very broad assumptions (which are satisfied here) with probability one
to the asymptotically stable point θ∗ = (θ̂ , . . . , θ̂ ) of (9.19), in case the step sizes ε(n)
decay over time subject to the conditions given in (9.17). Thus, in the first variant of the
algorithm, the activation probabilities pi(n) converge with probability one to the value
γiθ

∗
i for all i ∈ S , which we have already seen to be close to the desired value popt

i .

As for the second variant, it is stated in [153, Theorem 8.2.1] that for similar al-
gorithms with constant step sizes, the iterates of (9.13) will not converge with probabil-
ity one anymore, but will still in the long run fluctuate around the asymptotically stable
point θ∗ of the ordinary differential equation (9.19). More specifically, the theorem im-
plies there always exists an ε > 0 small enough so that the probability that a stationary
value θi(n) is contained in any arbitrarily small area around this fixed point exceeds any
given positive value smaller than one. Thus, the θi(n) converge to the same limiting val-
ues as in the first variant, but in a weaker sense. However, as discussed in Section 9.4.1,
the second variant can handle changing values of

∑

j∈S γ j better due to the constant step
size.
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FIGURE 9.1: Evolution of the activation probabilities in the first example.

FIGURE 9.2: Evolution of the activation probabilities in the second example.

9.4.3 Numerical examples

We end the study of the distributed algorithm with two numerical examples illustrating
the discussed variants of Algorithm 9.4.1. First, we consider three interfering nodes in
a network with γ1 = θ1(0) = 0.3, γ2 = θ2(0) = 0.15 and γ3 = θ3(0) = 0.05. To con-
trol their activation probabilities, the nodes adopt the first variant of the algorithm. The
coefficients of the algorithm are given by α = 1/1000 and M = 100. Furthermore, the
step sizes are chosen according to ε(n) = (n + log(n) + 10M)−1 and as a result satisfy
the conditions in (9.17). Figure 9.1 plots the activation probabilities as generated by the
three nodes adhering to the algorithm with these settings. As expected, the three back-
off rates converge to (values close to) their optimal values popt

1 = 0.6, popt
2 = 0.3 and

popt
3 = 0.1. Furthermore, the back-off rates become less volatile as time progresses due

to the decaying step sizes.
To illustrate the second variant of the distributed algorithm, we again consider three
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nodes, this time with γ1 = θ1(0) = 0.1, γ2 = θ2(0) = 0.05 and γ3 = θ3(0) = 0.075,
respectively. To show that the second variant allows for changing settings in the network,
we assume that after 5000 packet inter-transmissions, the third node disappears from the
network. Furthermore, after 10000 packet inter-transmissions a new third node appears,
this time with parameter γ3 = θ3(0) = 0.1. To control the activation probabilities of the
various nodes over time, we adopt Algorithm 9.4.1 with coefficients α= 1/1000, M = 35
and constant step sizes ε(n) = ε= 1/2000.

Figure 9.2 plots the resulting evolution of the various activation probabilities pi(n).
Initially, the activation probabilities fluctuate around values that are slightly smaller than
the optimal activation probabilities popt

1 = 4/9, popt
2 = 2/9 and popt

3 = 1/3. Thus, the sum
of the activation probabilities rarely exceeds one, as desired. When the third node disap-
pears after 5000 packet inter-transmissions, the activation probabilities of the remaining
nodes adapt to the new situation and correctly move towards new limiting values. When a
new third node appears after the 10000-th packet inter-transmission, the activation prob-
abilities once again adjust to the new situation. In particular, we see that the activation
probabilities of the first and third node eventually coincide, since γ1 = γ3 for n≥ 10000.

REMARK 9.4.1. In practice, it may happen that a node has no packets to transmit. In such
a case, the ‘empty’ node will deactivate immediately after activation due to its lack of pack-
ets to be transmitted. However, other nodes might not be able to detect such an activation
followed by an immediate deactivation. This would then result in the (de)activating node
updating its control parameter θi(n), while the other nodes do not update their control
parameters. This may cause problems, as the algorithm requires all of the nodes to update
their control parameters simultaneously. To avoid these problems, one may adapt the al-
gorithm such that a node now sets its own activation probability equal to zero when it has
no packets to transmit. Otherwise, it sets its activation probability as before according to
the original Algorithm 9.4.1. Simply put, an ‘empty’ node no longer activates if it has no
packets to transmit. This minor adjustment has the advantage that, when certain nodes
remain empty for a larger amount of time, the activation probabilities of the other nodes
will adapt to this situation accordingly.
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10
THE CYCLIC CAROUSEL STORAGE MODEL

In this chapter, we initiate the analysis of the final layered queueing network that we study
in this dissertation, namely the carousel storage model as introduced in Section 1.3.3. We
first study the waiting times of the server in case the server polls the stations in a cyclic
order. Under this cyclic assumption, we give a sufficient condition for the existence of
a limiting waiting-time distribution and we study the tail behaviour of this distribution.
Furthermore, assuming that preparation times are exponentially distributed, we give a
detailed description of the resulting discrete-time Markov chain that leads to the limiting
waiting-time distribution. Finally, we provide extensive numerical results investigating
the effect of the system parameters to the waiting time of the server.

10.1 Introduction

The carousel storage model, which we study in this chapter, in fact constitutes a polling
model, but it differs substantially from the type of polling models studied in previous
chapters. There is now an infinite number of customers waiting at each of the queues,
and the server now serves at most one customer per visit period. The most important
difference, however, lies in the fact that the carousel storage model has the added feature
of customers undergoing a preparation phase before they are ready to be served by the
server. As a result, when visiting a queue, the server may have to wait for the customer
overthere to have his preparation phase finished before the actual service can be provided.
As explained in Section 1.3.3, the server thus becomes a customer himself in some sense,
which is why this model fits the framework of layered queueing networks.

We concern ourselves with the waiting times of the server under the assumption that
the server visits the stations in a fixed, cyclic order. Under this assumption, this model
leads to a Lindley-type equation, which for two service stations evaluates to

W
d
= (B − A−W )+ .

Here, B denotes the preparation time, A denotes the service time and W is the waiting time
of the server. The difference from the original Lindley equation (cf. [161]) is the minus
sign in front of W at the right-hand side of the equation, which in Lindley’s equation
is a plus. Lindley’s equation describes the waiting time of a customer in a single-server
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queue. It is one of the fundamental and best-studied equations in queueing theory. For a
detailed study on Lindley’s equation, we refer to [19, 67] and the references therein. The
implications of this ‘minor’ difference in sign are rather far-reaching. Lindley’s equation
has a simple solution, whereas the equivalent equation with the minus sign (cf. (10.1))
is very challenging to solve without making additional assumptions, even for the case of
two service stations (cf. [264]).

This adapted Lindley-type equation surprisingly emerges when studying maximum-
weight independent sets in sparse random graphs. More specifically, consider an n-node
sparse random (potentially regular) graph and let the nodes of the graph be equipped
with non-negative weights, independently generated according to some common distri-
bution. Rather than only the size of the maximum independent set, consider also the
maximum weight of an independent set. It is shown in [103] that for certain weight dis-
tributions, a limiting result can be proved both for the maximum independent set and
the maximum weight independent set. What is crucial in this computation is the Lindley-
type equation (10.2) (cf. [103, Equation (3)]). This recursion provides a surprising link
between queueing theory and random graphs.

At a glance, other than the analytical results, the major insights that we gain for the
‘cyclic’ carousel storage model in this chapter are as follows. First, we observe that any
variability in preparation times has a greater influence on the system’s performance than
the variability in service times. Thus, in the healthcare setting mentioned in Section 1.3.3,
one could say that it pays more to have a reliable nurse than a reliable specialist. Second, a
small variability of preparation times actually improves the performance of the server un-
der cyclic routing assumptions, in the sense that he waits less frequently (cf. Figure 10.2).
However, it also decreases the throughput. Thus, the system’s designer may wish to con-
sider how to balance these conflicting goals. Next, when deciding how many stations to
assign to a server in the cyclic model, the shape of the distribution plays a role. However,
in general, when preparation times are smaller than service times and the variability in
the preparation times is low, only few stations per server (about 5 or 6) already come
close to the optimal throughput. The last major insight that we gain is of a mathematical
nature. We observe that as the number of stations goes to infinity, the waiting times of
the server become uncorrelated. The correlation structure of the waiting times, however,
turns out to be very surprising. We additionally provide an analytic lower bound on the
throughput for the cyclic case and an empirical upper bound. Both of these bounds are
easy to compute, converge exponentially to the true throughput as the number of stations
goes to infinity and are tight in some cases. Thus, we get quick and accurate estimates on
the system’s performance.

The rest of the chapter is organised as follows. The notation for the cyclic carousel
storage model is presented in Section 10.2. In Section 10.3, we provide analytical results
for the waiting time of the server. More specifically, we give a sufficient condition for
the existence of a limiting waiting-time distribution and investigate its tail behaviour.
Under the assumption that preparation times are exponential, we also study the transient
behaviour of the waiting time and provide the transition matrix of the underlying discrete-
time Markov chain. Finally, Section 10.4 provides a thorough treatment of the insights
that we described above concerning the system’s performance for the cyclic model. In the
next chapter, we will extensively study the question of how these insights change when
we drop the assumption of cyclic service.
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10.2 Model description and notation

We assume that there are N ≥ 2 identical service stations, Q1, . . . ,QN , operated by a single
server. Each of these service stations has an infinite supply of customers. Before being
served by the server for a duration A, a customer must first undergo a preparation phase
with duration B (not involving the server). Thus, the server, after having finished serving a
customer at one station, may have to wait for the preparation phase of the customer at the
next station to be completed. Immediately after the server concludes his service at some
station, another customer from the queue begins his preparation phase there while the
server moves to the next station. Consequently, at each point in time, there is exactly one
customer at a service station who is either in service, waiting for service or undergoing
preparation. Unless otherwise stated, we assume that A and B are continuous random
variables with finite means, general distribution functions FA (FB) and Laplace-Stieltjes
transforms eA(s) = E[e−sA] and eB(s) = E[e−sB].

In this chapter, we are concerned with the waiting time of the server when assuming
he serves the stations in a cyclic order. Thus, after having served a customer at service
station Q i , the server will move to service station Q i+1 to serve a customer there. Note
that indices of service stations are to be understood modulo N , so that service station Q i
actually refers to service station Q((i−1)mod N)+1. We will refer to this as the cyclic model
or the cyclic case. In Chapter 11, we compare this model to the so-called dynamic model,
where the server does not necessarily poll the service stations in a cyclic order, but always
visits the service station corresponding to the customer that finishes or has finished its
preparation phase the earliest.

The waiting time incurred by the server in the cyclic model can be characterised as
follows. Let Bn denote the preparation time of the n-th customer served, and let An be
the time the server spends on this customer. We assume that {Bn}n≥1 and {An}n≥1 are
comprised of independent and identically distributed realisations of the random variables
B and A. The waiting time W C

n incurred by the server just before serving the n-th customer
then satisfies the equation

W C
n+1 =

�

Bn+1 −
n
∑

i=n−N+2

Ai −
n
∑

i=n−N+2

W C
i

�+

. (10.1)

This equation can be rewritten as

W C
n+1 =

�

Xn+1 −
n
∑

i=n−N+2

W C
i

�+

, (10.2)

where Xn+1 = Bn+1 −
∑n

i=n−N+2 Ai . Note that {Xn, n ≥ N − 1} is comprised of identically
distributed realisations of a random variable X . However, these realisations are not ne-
cessarily independent. They are only independent with an (N−1)-lag. Thus, for example,
XN , X2N−1, X3N−2, X4N−3, . . . are independent. Furthermore, we assume without loss of
generality that in the cyclic case, the server first visits Q1 after time zero. Define RC

j,n
to be the residual preparation time at Q((n+ j−1)mod N)+1 just after the completion of the
(n− 1)-st service in the cyclic case, n ≥ 1, j = 1, . . . , N − 2. Clearly, RC

N−1,n = Bn+N−1 and
RC

N ,n =W C
n . It is not hard to see that the process {(W C

n , RC
1,n, RC

2,n, . . . , RC
N−2,n), n ≥ 1} is a

discrete-time Markov chain, of which the evolution is given by W C
n+1 = (R

C
1,n−W C

n −An)+

and RC
j,n+1 = (R

C
j+1,n −W C

n − An)+ for j = 1,2, . . . , N − 2.
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10.3 Analysis of the cyclic waiting-time distribution

In this section, we study the waiting-time distribution of the server in the cyclic model.
First, we investigate the existence of a unique limiting waiting-time distribution in Sec-
tion 10.3.1. Then, we study the tail behaviour of the stationary waiting time in Sec-
tion 10.3.2 for several classes of preparation time distributions. Finally, Section 10.3.3
shows how to compute the distribution of W C

n for any n ≥ 1 under the assumption of
exponential preparation times. The analysis presented in this section can conceptually be
extended easily to allow for phase-type preparation times.

10.3.1 Existence of a limiting waiting-time distribution

We will argue in this section that a unique limiting waiting-time distribution exists, under
the natural assumption that P(X ≤ 0)> 0. Note that the stochastic process {W C

n , n≥ 1} is
an aperiodic (possibly delayed) regenerative process with regeneration times {n : W C

n =
W C

n−1 = · · ·=W C
n−2N+4 = 0}. Colloquially speaking, this is due to the fact that the server’s

waiting time is independent of past waiting times in case the server did not have to wait in
the past two polling cycles. Let j be any regeneration time after t = 2N−4. Furthermore,
let τ=min{n : n> 0, W C

j =W C
j−1 = · · ·=W C

j−2N+4 =W C
j+n =W C

j+n−1 = · · ·=W C
j+n−2N+4 =

0}, so that τ can be interpreted as the time between two regeneration moments.
We will now show thatE[τ] is finite, which implies by standard theory on regenerative

processes that the limiting distribution of the waiting time exists and that the waiting-time
process converges to it (see e.g. [19, Corollary VI.1.5 and Theorem VII.3.6]). To this end,
observe that for any n≥ 2N − 3,

P(τ > n) = P

�

j+n
⋂

i= j+1

¨

2N−4
∑

k=0

W C
i−k > 0

«�

≤ P

�

j+n
⋂

i= j+2N−3

¨

2N−4
∑

k=0

W C
i−k > 0

«�

.

Due to (10.2) and the fact that waiting times are non-negative, Xn is stochastically not
smaller than W C

n . In other words, we have that

P(W C
n > 0 |W C

n−1, W C
n−2, . . .)≤ P(Xn > 0 |W C

n−1, W C
n−2, . . .).

We also obviously have that P(Xn > 0 |W C
n−k = 0) ≤ P(Xn > 0) for any k ∈ {1,2, . . .}. As

a result, we have for any n≥ 2N − 3 that

P(τ > n)≤ P

�

j+n
⋂

i= j+2N−3

¨

2N−4
∑
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X i−k > 0
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≤ P
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= P

�
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∑
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2N−3 c
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�

2N−3
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X j+k > 0

�

n
2N−3−1

, (10.3)

where the equality follows from the fact that the process {Xn, n ≥ 0} exhibits no auto-
correlation for lag N − 1 or more. The last inequality holds since

∑2N−4
k=0 X j+2N−3−k =

∑2N−3
k=1 X j+k and b n

2N−3 c>
n

2N−3 − 1. Additionally, we have that

P

�

2N−3
∑

k=1

X j+k > 0

�

≤ 1− P
�2N−3
⋂

k=1

¦

X j+k ≤ 0
©

�
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= 1− P(X j+1 ≤ 0)P(X j+2 ≤ 0 | X j+1 ≤ 0)

× · · · × P
�

X j+2N−3 ≤ 0 |
2N−4
⋂

k=1

¦

X j+k ≤ 0
©

�

≤ 1− P(X ≤ 0)2N−3. (10.4)

The last inequality holds since the process {Xn, n ≥ 0} exhibits positive autocorrelation
with a lag up to N − 2, but no autocorrelation for lag N − 1 or more. Thus, we have that
Cov[1{Xn+k≤0},1{Xn≤0}]≥ 0 for any n> N−1 and 0< k ≤ N−2, so that P(Xn+k ≤ 0 | Xn ≤
0) ≥ P(X ≤ 0). For k > N − 2, however, we have that P(Xn+k ≤ 0 | Xn ≤ 0) = P(X ≤ 0).
Finally, from (10.3), we infer that

E[τ] =
2N−4
∑

n=0

P(τ > n) +
∞
∑

n=2N−3

P(τ > n)≤ 2N − 3+
∞
∑

n=0

P

�

2N−3
∑

k=1

X j+k > 0

�

n
2N−3−1

≤ 2N − 3+
∞
∑

n=0

(1− P(X ≤ 0)2N−3)
n

2N−3−1

= 2N − 3+
1

1− P(X ≤ 0)2N−3

1

1− (1− P(X ≤ 0)2N−3)
1

2N−3

<∞,

where the second inequality follows from (10.4). The last inequality holds true under the
assumption that P(X ≤ 0) ∈ (0,1). Observe that in the trivial case of P(X ≤ 0) = 1, the
server never waits, resulting in zero waiting times. Therefore, we conclude that a unique
limiting distribution exists for the waiting time when P(X ≤ 0) > 0. The existence of
such a distribution in the theoretical case P(X < 0) = 0 is proved in [265, Section 2.2]
for N = 2, but this result seems hard to extend to a general value of N .

10.3.2 Tail behaviour

We now study the tail behaviour of W C , the stationary waiting time. For two classes of
preparation time distributions, we derive the asymptotic behaviour of the probability that
the waiting time W C exceeds some large value x . The tail behaviour may be useful when,
for example, the distribution of W C cannot be computed exactly or when knowledge on
the full distribution of W C is not necessary. In the remainder of this section, we write
f ∼ g for two functions f (x) and g(x) when limx→∞ f (x)/g(x) = 1. We also require
the notion of regularly varying and rapidly varying functions.

A measurable function f : (0,∞)→ (0,∞) is called regularly varying of a finite index
κ if

lim
x→∞

f (l x)
f (x)

= lκ

for any l > 0. Observe that this definition demands that the index κ is finite. The defin-
ition can be extended to include cases for which κ is not finite, leading to the notion of
rapid variation. A measurable function f : (0,∞)→ (0,∞) is called rapidly varying of
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index −∞ if it satisfies

lim
x→∞

f (l x)
f (x)

=







0 if l > 1,

1 if l = 1,

∞ otherwise.

A comprehensive account of the theory and applications of regular variation is given in
[38]. By convention, we will call a random variable regularly varying or rapidly varying
if its complementary cumulative distribution function has the corresponding property.

We start with the class of preparation time distributions that satisfies

lim
x→∞

P(B > x + y)
P(B > x)

= e−κy

for some finite constant κ≥ 0, or equivalently,

lim
x→∞

P(eB > ex e y)
P(eB > ex)

= (e y)−κ.

Thus, we regard the class of distributions of B for which eB is a regularly varying random
variable with index −κ ≤ 0. For κ = 0, this means that the random variable B is long-
tailed (i.e. limx→∞ P(B > x + y|B > x) = 1 for all y > 0) and thus also heavy-tailed (i.e.
limx→∞ eλxP(B > x) =∞ for all λ > 0). If κ > 0, then B is light-tailed, but not lighter
than the tail of an exponential distribution.

In order to study the tail behaviour of W C for this class of preparation time distribu-
tions, we will use the following proposition obtained in [64, Corollary 3.6].

PROPOSITION 10.3.1. If Y > 0 is a regularly varying random variable with index −κ, κ≥ 0,
and Z > 0 is a random variable independent of Y satisfying E[Zκ+ε] <∞ for some ε > 0,
then Y Z is also regularly varying with index −κ. In particular, we have that

P(Y Z > x)∼ E[Zκ]P(Y > x).

Now, let Y = B − A, and let Z be a random variable with a distribution equal to the
limiting distribution of W C

n +
∑n−1

i=n−N+2(Ai +W C
i ) as n → ∞ under the conditions of

Section 10.3.1. Then, we have due to the recursion in (10.1) that W C d
=Y − Z . The

following theorem states that the tail of W behaves asymptotically as the tail of B or the
tail of Y , multiplied by a constant.

THEOREM 10.3.2. Let eB be regularly varying with index −κ, κ > 0. Then, we have for the
tail of W C that

P(W C > x)∼ E[e−κ(A+Z)]P(B > x) and P(W C > x)∼ E[e−κZ]P(Y > x).

PROOF. We have from (10.1) that P(W C > x) = P(B − A− Z > x), or equivalently, that
P(eW C

> ex) = P(eBe−(A+Z) > ex). Note that e−(A+Z) is a positive random variable, which
for any ε > 0 satisfies

E[e−(κ+ε)(A+Z)]≤ 1<∞,
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as A+Z cannot take negative values. Therefore, we obtain by applying Proposition 10.3.1
with Y = eB and Z = e−(A+Z) that

P(eW C
> ex)∼ E[e−κ(A+Z)]P(eB > ex) = E[e−κ(A+Z)]P(B > x).

For the second part of the theorem, note that E[e−(κ+ε)A] ≤ 1 <∞ for any ε > 0 as A
only takes non-negative values. Therefore, since eB is regularly varying with index −κ,
eY is too by Proposition 10.3.1. The expression for the tail of W C in terms of the tail of
Y now follows from an analysis similar to the one above using Proposition 10.3.1 with
Y = eY and Z = e−Z .

An example of a random variable B that satisfies the conditions of this theorem is the
one asymptotically having the tail distribution P(B > x)∼ c0 x c1e−c2 x for some real-valued
constants ci , i = 0, 1,2, where c0, c2 > 0.

We now consider the class of preparation time distributions for which eB is rapidly
varying with index −∞, that is

lim
x→∞

P(eB > ex e y)
P(eB > ex)

= lim
x→∞

P(B > x + y)
P(B > x)

=







0 if y > 0,

1 if y = 0,

∞ if y < 0.

This is equivalent to letting the index κ that was given previously go to infinity. For the
random variable B, this means that it is extremely light-tailed. As an example, one can
think of a distribution for which the complementary cumulative distribution function is
given by P(B > x) = e−x p

, where p > 1.
For this class of preparation time distributions, we derive the asymptotic behaviour

of the tail of W C , under the assumption that P(Z = 0) > 0. Thus, we assume among
other things that the distribution of A has an atom at zero. The following theorem states
that, as before, the tail of W C then behaves asymptotically as the tail of Y multiplied by
a constant. A similar result under more general assumptions on the distribution of A and
B seems hard to obtain unless N = 2 (cf. [265]).

THEOREM 10.3.3. Let eB be rapidly varying with index −∞. If P(Z = 0) > 0, the tail of
W C satisfies

P(W C > x)∼ P(Y > x)P(Z = 0).

PROOF. Note that according to (10.1),

P(W C > x) = lim
n→∞
P

�

Bn −
n
∑

i=n−N+2

Ai −
n
∑

i=n−N+2

W C
i > x

�

(10.5)

= P(Y − Z > x)

= P(Y > x)P(Z = 0) + P(Y − Z > x | 0< Z < ε)P(0< Z < ε)

+ P(Y − Z > x | Z ≥ ε)P(Z ≥ ε) (10.6)

for some ε > 0. Since the last two terms of the right-hand side of (10.6) are non-negative,
we conclude immediately that

lim inf
x→∞

P(W C > x)

P(Y > x)P(Z = 0)
≥ 1. (10.7)
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Concerning the upper limit, observe that P(Y − Z > x | 0 < Z < ε) ≤ P(Y > x) and that
P(Y − Z > x | Z ≥ ε) ≤ P(Y > x + ε). As eB is rapidly varying, eY is too (see e.g. [265,
Lemma 1]). Therefore, we have for ε > 0 that

lim
x→∞

P(Y > x + ε)

P(Y > x)
= 0.

Combining the above arguments, we obtain from (10.6) that

lim sup
x→∞

P(W C > x)

P(Y > x)P(Z = 0)
≤ 1+

P(0< Z < ε)

P(Z = 0)
. (10.8)

By taking the limit ε→ 0, we therefore have that

lim sup
x→∞

P(W C > x)

P(Y > x)P(Z = 0)
= 1,

since the inequalities in P(0 < Z < ε) are strict, P(Z = 0) is positive and the left-hand
side of (10.8) does not depend on ε. Combining (10.7) with this expression now leads to
the theorem.

10.3.3 Transient analysis

In this section, we assume that preparation times are exponentially distributed with rateµ.
Note that the analysis can extend to phase-type preparation times, but at the cost of more
cumbersome expressions. Furthermore, little insight is added by such an extension. We
first show that the waiting time has an atom at zero and, provided that it is positive, is also
exponentially distributed with rate µ. We then calculate the atom at zero by computing
the transition matrix of the underlying discrete-time Markov chain. We show that the
matrix has a nice structure that can be exploited for numerical computations.

10.3.3.1 The behaviour of W C
n+1

We show that the waiting time, given that it is positive, is exponentially (µ) distributed.
For n≥ N − 1, we have that

P
�

W C
n+1 > x |W C

n = wn, . . . , W C
n−N+2 = wn−N+2

�

= P

�

Bn+1 >

n
∑

i=n−N+2

Ai +
n
∑

i=n−N+2

wi + x

�

=

∫ ∞

yn−N+2=0

· · ·
∫ ∞

yn=0

e−µ(
∑n

i=n−N+2(yi+wi)+x)dFAn
(yn) . . . dFAn−N+2

(yn−N+2)

= (eA(µ))N−1e−µ(
∑N

i=n−N+2 wi+x), (10.9)
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where we defined eA(µ) = E[e−µA]. From this equation, we conclude that

P(W C
n+1 > x |W C

n+1 > 0, W C
n = wn, . . . , W C

n−N+2 = wn−N+2)

=
P(W C

n+1 > x |W C
n = wn, . . . , W C

n−N+2 = wn−N+2)

P(W C
n+1 > 0 |W C

n = wn, . . . , W C
n−N+2 = wn−N+2)

=
(eA(µ))N−1e−µ(

∑n
i=n−N+2 wi+x)

(eA(µ))N−1e−µ(
∑n

i=n−N+2 wi)
= e−µx ,

meaning that W C
n+1, provided that it is positive, is not affected by the previous N − 1

waiting times. A direct conclusion is that P(W C
n+1 > x |W C

n+1 > 0) = e−µx , so that

P(W C
n+1 > x)

= P(W C
n+1 > x |W C

n+1 > 0)P(W C
n+1 > 0) + P(W C

n+1 > x |W C
n+1 = 0)P(W C

n+1 = 0)

= e−µxP(W C
n+1 > 0). (10.10)

That is, the distribution of W C
n is a mixture of a mass at zero and the exponential distri-

bution with rate µ, in case n ≥ N − 1. The same result for 1 ≤ n < N − 1 follows by
performing a similar analysis. The argument can also be applied to W C , the limit of W C

n
as n→∞, so that P(W C > x) = e−µxP(W C > 0). We now calculate P(W C

n+1 > 0) for all
n, and P(W C > 0). To this end, we will define a discrete-time Markov chain and calculate
its one-step transition probability matrix.

10.3.3.2 Construction of a discrete-time Markov chain

Recall that the process {(W C
n , RC

1,n, RC
2,n, . . . , RC

N−2,n), n≥ 1} is a discrete-time Markov chain.
We have just shown that W C

n , provided that it is positive, is distributed according to B
irrespective of the previous waiting times when B follows an exponential distribution.
It is also trivial to see that a residual preparation time RC

j,N , given that it is positive,
has the same distribution as B, because of the memoryless property of the exponential
distribution. Due to these observations, the process {(F C

n , GC
1,n, . . . , GC

N−2,n), n ≥ 1} is a
discrete-time Markov chain on the state space S C = {0, 1}N−1, where F C

n = 1{W C
n >0} and

GC
j,n = 1{RC

j,n>0}. A state i= (i1, . . . , iN−1) ∈ S C describes the residual preparation time at
each station (positive or zero) at the start of the n-th waiting time of the server (including
zero waiting times). The only station that does not appear in this description is the station
the server has just served before this instant, since the residual preparation time there is
always larger than zero (or, in other words, GC

N−1,n = 1 for all n).
Before we derive the one-step transition probabilities of this discrete-time Markov

chain, we first observe that the chain, provided that it is in state i ∈ S C , may not be able to
transition directly to any state j ∈ S C . This is a result of the fact that a preparation phase
that is already completed when transitioning to state i, obviously remains completed
until after the following transition, unless its corresponding service station is served in
between the two transitions. In that case, a new preparation phase starts at the next
transition. In order words, the chain can only move from a state i to a state j when
jk−1 = 0 for each k ∈ {2, . . . , N − 1} for which ik = 0. Therefore, we define the set
T (i) = {j : jk−1 ≤ ik ∀k ∈ {2, . . . , N − 1}} to be the set of possible states the chain can
transition to after a visit to state i. For any state i, we also define ki =

∑N−1
r=1 ir to be
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the number of preparation phases that are in progress just before the system moves to
state i. Finally, we define di,j = ki − kj to be the difference between these numbers
corresponding to states i and j. Using these definitions, we can now obtain the one-step
transition probabilities Pi,j from any state i ∈ S C to any state j ∈ S C . These results are
summarised in the following proposition.

PROPOSITION 10.3.4. The one-step transition probabilities of the discrete-time Markov chain
{(F C

n , GC
1,n, . . . , GC

N−2,n), n≥ 1} are given by

Pi,j =











∑di,j+1
l=0

�di,j+1
l

�

(−1)l eA((kj + l)µ) if i1 = 0 and j ∈ T (i),
∑di,j

l=0

�di,j

l

�

(−1)l
eA((kj+l)µ)

kj+l+1 if i1 = 1 and j ∈ T (i),

0 otherwise

for any i,j ∈ S C .

PROOF. When i1 = 0 and j ∈ T (i), a service phase starts immediately when the discrete-
time Markov chain enters state i. Therefore, the time between the transition to state i
and the next transition to state j amounts exactly to the duration of this service phase. As
the transition to state i marks the start of a new preparation phase at the service station
served just before this transition, the number of preparation phases in progress just after
this transition equals ki + 1. If the chain then transitions to j, it means that exactly kj
of these preparation phases should still be in progress after the transition to state j. The
other (ki + 1)− kj = di,j + 1 preparation phases must finish over the course of a service
time A. Therefore, we have in this case that

Pi,j =

∫ ∞

y=0

(1− e−µy)di,j+1e−kjµy dFA(y) =
di,j+1
∑

l=0

�

di,j + 1

l

�

(−1)l eA((kj + l)µ).

When i1 = 1 and j ∈ T (i), the time until the transition to state j does not only consist
of a service time A, but also of some waiting time needed for the preparation phase at the
server’s location to finish. We have seen that the distribution of this waiting time equals
that of B, independently of other waiting times (cf. (10.10)). Of the ki + 1 preparation
phases just after the transition to state i, the preparation phase at the server’s location
finishes at any rate before the next transition. Consequently, for the chain to transition
from state i to state j, exactly kj of the remaining ki preparation phases must still be in
progress after the transition to state j, and the other ki − kj = di,j should not. Thus, for
this case, we have that

Pi,j =

∫ ∞

x=0

∫ ∞

y=0

(1− e−µ(x+y))di,j e−kjµ(x+y)µe−µx dFA(y)d x

=
di,j
∑

l=0

�

di,j
l

�

(−1)l
eA((kj + l)µ)

kj + l + 1
.

Finally, it is obvious by the definition of T (i) that Pi,j = 0 if j /∈ T (i). This completes the
derivation of the one-step transition probability matrix.
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Now that the one-step transition probabilities are derived, the one-step transition
probability matrix P = (Pi,j)i,j∈S C can be constructed, e.g. by arranging all states in lex-
icographic order. Using this matrix, one can compute the unknown P(W C

n > 0) needed
to obtain the transient distribution of W C

n for any n (cf. (10.10)) or, in case n→∞, the
stationary distribution of W C . Assume that the system starts in an arbitrary state k ∈ S C .
Let ek be the unit vector of which the entry at the index which corresponds to state k
equals one (and all other elements equal zero). Then, by standard theory on discrete-time
Markov chains, P(W C

n > 0) equals the sum of the entries of the vector ekPn−1 that, accord-
ing to the ordering of states chosen, correspond to states for which the first element equals
one (i.e. a non-zero waiting time). Likewise, the steady-state probability P(W C > 0) can
be found by computing the unique vector π satisfying π = πP and

∑

i∈S C πi = 1. The
probability P(W C > 0) is then again given by the sum of the entries of π that correspond
to states of which the first element equals one. This concludes the analysis of the size of
the probability mass at zero for exponentially distributed preparation times.

REMARK 10.3.1. In this section, we assumed that preparation times are equally distrib-
uted at each of the service stations. One might also be interested in the case where
the duration of a customer’s preparation phase at service station Q i is exponential with
a station-specific rate µi . Then, it follows immediately from the analysis leading up to
(10.10) that the server’s waiting time at Q i , provided that it is positive, is also exponen-
tially (µi) distributed. Furthermore, the size of the mass at zero can still be computed
by constructing a discrete-time Markov chain, using the same conceptual methods. How-
ever, in this case the position of the server needs to be included in the state space to
retain the Markov property, and the residual preparation times in the system are not ne-
cessarily identically distributed anymore. Therefore, the expressions will become more
cumbersome, providing little additional insight into the behaviour of the system.

REMARK 10.3.2. In this section, we mainly studied the waiting time W C of the server as a
performance measure. Another important performance measure pertaining to the system
is the throughput θ C , i.e. the mean number of customers that finish their service per unit
of time. Observe that θ C is equal to the number of customers N served per cycle over the
expected cycle length, which has duration N(E[W C] +E[A]). Thus, we have that

θ C = (E[W C] +E[A])−1;

see also [188]. Consequently, the results of this section can be readily applied to analyse
the throughput of the system, since E[A] is a known constant. In Section 10.4, we will
focus on the impact of the parameter settings on the throughput of the system.

10.4 Insights

In the previous sections, we gave closed-form expressions for exponentially distributed
preparation times. Here, we gain general insights into the behaviour of the cyclic model
by simulation on a larger range of parameter settings. We vary, among other things,
the number of stations and the distributions of the preparation and service times. We
focus on the effect of the first two moments of the preparation and service times on the
throughput. For their distributions, we choose phase-type distributions based on two-
moment-fit approximations commonly used in literature; see e.g. [238, pp. 358–360].
We discuss several interesting conclusions based on the simulation results.
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FIGURE 10.1: Throughput as a function of the number of stations for moderately variable
preparation and service times (solid), highly variable service times (dotted) and highly
variable preparation times (dashed).

Variability of preparation and service times When controlling the system, the variab-
ility of the preparation times seems to play a larger role than the variability of the service
time. This is because the server’s waiting-time process is much more sensitive to the
former than to the latter. See e.g. Figure 10.1, where the throughput θ C is plotted versus
the number of queues N . We observe the throughput for various variability settings for
both time components. We fix the means at E[A] = E[B] = 1 and first consider the same
phase-type distributions with low variability for both the preparation and service time,
i.e. E[A2] = E[B2] = 1.5 (solid curve). We also consider the case with highly variable
service times only, i.e. E[A2] = 10,E[B2] = 1.5 (dotted curve) and highly variable pre-
paration times only, i.e. E[A2] = 1.5,E[B2] = 10 (dashed curve). Although the variability
of the preparation times and the service times is varied in similar ways, the dotted curve
nears the solid curve as N grows larger much faster than the dashed curve. Therefore,
predictability of the preparation times seems to be much more important than that of the
service times. This can be explained by the fact that as the number of stations tends to
infinity, the squared coefficient of variation of the sum of service times in the right-hand
side of (10.1) goes to zero, and thus the effect of any variability in the service times is less
serious. In other words, in service systems, it is more important that one has a reliable
assistant than a reliable server. This holds in particular for large systems. In the ware-
housing setting as described in Section 1.3.3, this is more or less guaranteed; although
the preparation times (i.e. rotation times) depend on the picking strategy followed, they
are bounded by the length of the carousel and therefore exhibit small variability. Whether
the picker is robotic (small variability) or human, does influence the system, but not as
dramatically as the preparation times do.

A similar effect is observed in Figure 10.2, where the mean number of positive waiting
times E[CC] between two zero waiting times is plotted versus the second moment of the
preparation time B (solid curve) or that of the service time A (dashed curve). It is assumed
that N = 4 and E[A] = E[B] = 1 throughout for both of these lines. For the first curve,
the service times A are taken to be exponentially distributed, while for the second, the
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FIGURE 10.2: Mean time between two zero waiting times as a function of E[B2] (solid)
and E[A2] (dashed).

preparation times B are taken to be exponentially distributed. From Figure 10.2, it is
apparent that the mean time between two zero waiting times increases (i.e. the frequency
of zero waiting times decreases) as the service times become more variable. However,
mostly the opposite is observed for the preparation times. Although the expected waiting
time increases in the variability of the preparation times by Figure 10.1, apparently the
mean time between two zero waiting times now decreases anomalously. From this, we
conclude that the server’s waiting time process behaves more and more erratically as
the variability of the preparation times increases and seems to be more resistant against
highly variable service times. Again, this effect may be explained by the nature of the
waiting time (see (10.1)), which is expressed in terms of one preparation time, but a sum
of service times. No matter the variability of the individual service times, the sum of these
service times behaves more and more deterministically as N increases. In other words,
the effect of highly variable service times is mitigated by the fact that the waiting time
only depends on a sum of them.

In summary, we can say that an increase in the variability of preparation times, as
long as the variability is small, makes the server wait less frequently. This also holds for
an increase in the variability in the service times, independent of the degree of variability.
However, both scenarios decrease the throughput of the system. Thus, when waiting
times occur, they tend to be longer. Simulation results show about a 10% decrease in
throughput under common scenarios when ranging the distribution of the preparation
time from deterministic to exponential (thus ranging the squared coefficient of variation
from zero to one). Nonetheless, in some service systems, this may be an advantage, as it
gives the opportunity to perform an additional task (e.g. administration).

Correlations In general, this system has an interesting correlation structure. In Fig-
ure 10.3, we plot the stationary autocorrelation coefficient of lag k between two waiting
times for exponential preparation and service times with rates 1 and 10, respectively. As
we see in Figure 10.3, correlations exhibit a periodic structure, which is natural as it cor-
responds to a return to the first station. Moreover, as the lag increases, the waiting times
become uncorrelated, which is again a natural conclusion. As shown in Section 10.3.1,
there exists a unique limiting waiting-time distribution and the system converges to it.
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FIGURE 10.3: Stationary autocorrelation coefficients of the waiting times in the cyclic
model.

Hence, as time goes to infinity, the system converges to steady state regardless of the
initial state. As a result, the correlation coefficient pertaining to lag k goes to zero as
k→∞. Although the convergence to zero correlations is expected, the way this happens
is intriguing. One may expect some form of periodicity, but it is not clear why the first
cycle looks different than the rest or why correlations should be forming alternatingly
convex and concave loops after the first cycle.

Number of stations to be assigned to a server One of the important management
decisions to be made is the number of stations to be assigned to a server. For instance, in
the warehousing setting as given in Section 1.3.3, the more carousels there are assigned to
the picker, the better his utilisation. However, the utilisation of each carousel decreases.
We wish to understand this interplay. An important measure to be taken into account is
the throughput of the system. Note that the throughput is linearly related to the fraction
of time the server is operating, since service is completed at rate 1/E[A] whenever the
server is not forced to wait. The number of stations to be assigned to a server in order to
reach near-optimal throughput depends very much on the distributions of the preparation
time B and the service time A. This effect is observed in Figure 10.1, where we see that for
highly variable preparation times (dashed line), the throughput does not converge very
fast to the optimal throughput when assigning additional stations to the server. Variability
in the service times also influences the system, but the convergence follows more or less
the pattern of the case with E[A2] = E[B2] = 1.5.

When all distributions are exponential, it is evident that the only quantity that matters
in the determination of the throughput is r = E[B]/E[A]. In order to determine the
optimal number of stations to assign to a server, we plot in Figure 10.4 the throughput
θ C versus the number of stations N for three cases of r, namely for r = 0.5 (dashed
curve), r = 1 (solid curve) and r = 2.0 (dotted curve). In all three cases, the underlying
distributions are exponential. What we observe is that when r ≤ 1 (the top two curves),
the throughput converges fast and little benefit is added by assigning one more station to
the server. This is to be expected, as in this case, the mean service time is not smaller than
the mean preparation time. As a result, the server rarely has to wait. In other words, he
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FIGURE 10.4: Throughput as a function of the number of stations for small (dashed),
moderate (solid) and large preparation times (dotted).

works at almost full capacity, and thus convergence to the maximum service rate is fast.
However, when r > 1, the convergence is very slow. We conclude that the shape of
the distribution plays a role, but in general for r ≤ 1 and low variability in preparation
times, only few stations per server (about 5 or 6) are needed to already come close to the
maximum throughput.

A rough estimate In Figure 10.4, we also plot a rough upper bound and an analytic
lower bound of the throughput that we derive as follows. Recall that the throughput θ C

satisfies
θ C = (E[W C] +E[A])−1.

An approximation θ̂ C
N of θ C can be produced by replacing E[W C] with the mean residual

preparation time multiplied by a rough estimate that the server has to wait, i.e. P(B >
A1 + · · ·+ AN−1). Then, for exponentially (µ) distributed preparation times, this leads to

θ̂ C
N =

�

(eA(µ))N−1

µ
+E[A]

�−1

.

We observe that this expression is a lower bound of the throughput, since the actual
(stationary) probability a server has to wait equals limn→∞ P(B > An−N+2 + · · · + An +
Wn−N+2 + · · ·+Wn) and is thus smaller. We also observe empirically that θ̂ C

N+1 provides
an upper bound for the throughput for the model with N stations in the scenarios we
examined. The analytic lower bound becomes tighter as r increases, while the empirical
upper bound provides a better estimate for small values of r. As a result, the system’s
designer can have a quick, easy and accurate bound on the throughput for all parameter
settings.
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11
COMPARISON WITH A DYNAMIC MODEL

We now drop the cyclic assumption of the previous chapter and investigate the dynamic
model variation where the server always serves the customer with the earliest completed
preparation phase. As in the previous chapter, we analyse the waiting-time distribution of
the server by constructing an appropriate discrete-time Markov chain. Furthermore, we
show that the mean waiting time under this dynamic allocation never exceeds that of the
cyclic model, but that the waiting-time distributions corresponding to both models are
not necessarily stochastically ordered. Finally, we provide extensive numerical results for
the dynamic model, which reveal the effects of the model parameters on the performance
of the system. We compare these effects to those of the cyclic model as obtained in the
previous chapter.

11.1 Introduction

In this chapter, we study the question of how the waiting-time distribution of the server
is affected when we drop the assumption that the server is forced to visit the stations
cyclically. After a service, in an effort to reduce his overall waiting time, the server will
instead visit the service station corresponding to the customer who completes or has had
its preparation completed earlier than all of the other customers that are first in line at
the other service stations. It is thus also possible for the server to serve two customers in
a row at the same service station in case all other service stations still have a preparation
phase in progress when the preparation phase following the service of the first customer
completes. In short, the order in which stations are served now becomes dynamic. The
removal of the cyclic assumption has a significant impact on the analysis, since the waiting
time in the new dynamic model does not satisfy a Lindley-type equation anymore. So far,
results comparing the two models were already derived in [266] for the special case of
two service stations, but these results generally either do not hold for a larger number of
service stations or their derivation is not trivially extended to a general number of service
points. In this chapter, we explicitly consider model instances with more than two service
stations.

As mentioned in Section 1.3.3, the dynamic model which arises after removal of the
cyclic assumption turns out to be equivalent to the extended machine repair problem
described in Section 1.3.1. In particular, the service stations then represent the machines,
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and the server coincides with the repairman. Furthermore, the preparation and the service
phases coincide with the breakdown and repair times of the server. Thus, our study of the
waiting times of the server is equivalent to that of the idle times of the repairman between
the end of a repair of one machine and the breakdown of the next machine, given that
all machines are working in between. These idle times have not been studied extensively
in the classical literature on the machine repair problem, perhaps because the operating
time of the machine is usually more valuable than the utilisation of the repairman. In our
setting, however, we are concerned with the idle times of the repairman.

We use the same notation as in Chapter 10. However, when dealing with the dynamic
model, we refer to the n-th waiting time of the server as W D

n so as to clearly distinguish
between the waiting-time distributions of the cyclic and the dynamic model. As the num-
ber of station visits between two visits of the same station is now stochastic, there is no
simple equivalent of (10.1) available for the waiting times {W D

n , n≥ 0} of the server in the
dynamic case. When defining RD

j,n to be the residual preparation time at Q j just after the
(n− 1)-st service, the process {(RD

1,n, . . . , RD
N ,n), n ≥ 1} also forms a discrete-time Markov

chain. Evidently, we have that W D
n = min j∈{1,...,N}{RD

j,n}. Furthermore, we have that RD
j,n

is an independent copy of B if the (n− 1)-st customer was served at Q j . Otherwise, we
have that RD

j,n+1 = (R
D
j,n −W D

n − An)+.
As before, we study the limiting waiting-time distribution of the server by constructing

an appropriate discrete-time Markov chain in Section 11.2. We then compare this distri-
bution with the cyclic case. Although we will see in Section 11.3 that there is no stochastic
ordering in the distributions in general, it is proved that the mean of the waiting time un-
der the dynamic allocation policy never exceeds the mean waiting time incurred if the
server were to visit the service stations in a cyclic order. By means of a numerical study,
we also comment in Section 11.4 on how the insights gained in Section 10.4 change
when exchanging the cyclic policy for the dynamic policy. In particular, it turns out that
although the variability of the preparation times has a big influence on the system in the
cyclic case, the waiting time of the server is almost insensitive to this variability in the
dynamic case. In the previous chapter, we also saw that having a very small variability of
the preparation times makes the server wait less frequently, but decreases the throughput
of the system. However, this does not occur for the dynamic model either. Furthermore,
when dropping the cyclic assumption, it turns out that fewer service stations per server
are required to guarantee a high utilisation rate of the server, since the expected waiting
time of the server drops dramatically. Finally, the autocorrelation structure of the waiting
times for the dynamic model turns out to behave very differently from that of the cyclic
model.

11.2 Analysis of the dynamic waiting-time distribution

As in the cyclic case, the waiting-time distribution of the server can be analysed using
a Markov chain approach when assuming phase-type preparation times. For exponen-
tially (µ) distributed preparation times, the waiting-time distribution is obtained as fol-
lows. Evidently, a non-zero waiting time occurs in the system only if just after the end of
a service, there is a preparation phase in progress at every service station. The waiting
time then lasts until one of these N preparation times finishes. Due to the memoryless
property of the exponential distribution, the waiting time, provided that it is positive, is
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thus exponentially (Nµ) distributed:

P(W D
n > x) = e−NµxP(W D

n > 0).

The analysis thus again boils down to the computation of the size of the atom at zero.
To this end, we again formulate a discrete-time Markov chain similarly to Section 10.3.3.
Let Z D

n be the number of preparation phases in progress in the complete system just after
the service of the n-th customer. Then, again due to the memoryless property of the
exponential distribution, the process {Z D

n , n≥ 0} constitutes a discrete-time Markov chain
on the state spaceS D = {1, . . . , N}. Observe that zero is not included in the state space, as
the end of a service always marks the start of a preparation phase. The one-step transition
probability from state i to state j is then given by

Pi, j =







� i
j−1

�∑i− j+1
k=0

�i− j+1
k

�

(−1)keA((k+ j − 1)µ) if i ∈ S D\{N}, j ∈ {1, . . . , i + 1},
�N−1

j−1

�∑N− j
k=0

�N− j
k

�

(−1)keA((k+ j − 1)µ) if i = N , j ∈ S D,

0 otherwise.

The expression for i ∈ {1, . . . , N − 1} and j ∈ {1, . . . , i + 1} follows by noting that in that
case i− j+1 preparation phases have been completed during the service time that marks
the transition, and j − 1 preparation phases have not. The distribution of the number
of phases completed during this service time A is obviously binomially distributed with
parameters i − 1 and 1− e−µA. Therefore, we have that

Pi, j =

∫ ∞

x=0

�

i
j − 1

�

(1− e−µx)i− j+1(e−µx) j−1dFA(x)

=
�

i
j − 1

� i− j+1
∑

k=0

�

i − j + 1
k

�

(−1)keA((k+ j − 1)µ)

for i ∈ {1, . . . , N − 1}, j ∈ {1, . . . , i + 1}. The one-step transition probability for i = N and
j ∈ S D follows by noting that in that case first one preparation phase has to finish before
service can start. Therefore, PN , j = PN−1, j for all j ∈ {1, . . . , N − 1}. Finally, transitions
corresponding to any other combination of i and j are not possible, leading to a one-step
transition probability of zero. Now that the discrete-time Markov chain is constructed,
we have that

P(W D
n > 0) = P(Z D

n−1 = N).

Thus, P(W D
n > 0), as well as its steady-state version limn→∞ P(W D

n > 0) = P(W D > 0),
can be computed using standard techniques on discrete-time Markov chains. Note that the
latter limiting probability indeed exists, since {Z D

n , n ≥ 0} is an irreducible and aperiodic
Markov chain. Similarly, expressions for the autocorrelation coefficient of consecutive
waiting times and the expected number of transitions between two zero waiting times can
be computed by analysing this discrete-time Markov chain. This concludes the analysis
for exponential preparation times. Conceptually, this analysis can be easily extended to
allow for phase-type distribution times at the cost of more cumbersome expressions.

11.3 Ordering of the waiting-time distributions

Now that we know how to compute the waiting-time distribution of the dynamic model
for phase-type preparation times, we investigate whether there is any connection between
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FIGURE 11.1: Waiting-time distribution for the cyclic (solid) and dynamic model (dashed)
for N = 3 and standard-exponential preparation times. Service times are exponentially
(10) distributed.

the waiting-time distributions of both models. In Section 11.3.1, we show that there is not
necessarily a stochastic ordering in the two distributions. However, we show in Section
11.3.2 that despite this, the mean waiting time in the dynamic case never exceeds the
mean waiting time in the cyclic case.

11.3.1 Stochastic ordering

Intuitively, one might argue that the waiting time W C of the cyclic system is stochastically
larger than or equal to the waiting time W D of the dynamic system, since one expects that
large waiting times occur with higher probability in the cyclic system. In other words,
one may conjecture that P(W C > x) ≥ P(W D > x) for all x ≥ 0. However, this is not
necessarily true. One may think of a theoretical setting where the duration of a service
time always equals zero. Then, we have for the cyclic case that the n-th waiting time
is zero if the preparation time Bn preceding the service of the n-th customer is already
completed when the server arrives at the service station. This happens, for example, with
positive probability when preparation times are exponentially (µ) distributed (see Section
10.3.1), leading to P(W C > 0) < 1. In the dynamic case, a zero waiting time could only
occur if two preparation phases of different service stations finish at exactly the same
point in time. This is, however, not possible, since preparation times are continuously
distributed. Hence, we have that P(W D > 0) = 1, providing a counterexample to the
conjecture mentioned above.

This theoretical setting is not the only possible counterexample. Figure 11.1 depicts
the waiting-time distributions for both the cyclic and the dynamic case in a system with
N = 3 service stations, standard-exponential preparation times and exponential (10) ser-
vice times. This figure shows that a lack of stochastic ordering can occur in a realistic
setting, as there clearly exist values of x in this case for which P(W C > x)< P(W D > x).
Of course, there also exist systems for which the waiting times are actually stochastic-
ally ordered. For instance, Figure 11.2 shows the waiting-time distributions for the same
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FIGURE 11.2: Waiting-time distribution for the cyclic (solid) and dynamic model (dashed)
for N = 3 and standard-exponential preparation times. Service times are exponentially
(0.5) distributed.

example, except that the service times are now exponentially (0.5) distributed instead.
The figure suggests that the waiting-time distributions now never intersect, which im-
plies that they are indeed stochastically ordered. Observe though that a stochastic or-
dering is not possible in case N = 2. It was shown in [266, Theorem 4] that for that
case P(W C > 0) ≤ P(W D > 0) for all distributions of A and B and that there does not
exist a stochastic ordering for the waiting-time distributions in case preparation times are
non-deterministic.

As it is now clear that the waiting-time distributions are not necessarily stochastically
ordered, one may still argue that there must at least exist a convex ordering. In other
words, one might expect that E[φ(W C)]≥ E[φ(W D)] for any increasing convex function
φ. If the waiting-time distributions intersect exactly once like in Figure 11.1, the Karlin-
Novikoff cut-criterion (cf. [231]) implies that a convex ordering indeed exists. However,
the second example in Figure 11.2 shows that there is not always such an intersection, so
that the existence of a convex ordering for the general case is hard to prove. Therefore,
we focus on the expected waiting times instead in the next section.

11.3.2 Comparison of mean waiting times

Although the waiting-time distributions of the cyclic case and the dynamic case are not
necessarily stochastically ordered, one may still reasonably expect that E[W C]≥ E[W D].
In this section, we prove that this weaker conjecture, contrary to the ones in the previous
section, holds true for any non-negative distribution for A and B by using a sample-path
argument. We assume the sequences of realisations {bi , i ≥ 1} and {ai , i ≥ 1} for the
preparation and service times, respectively, to be the same for both scenarios. More spe-
cifically, we assume that in both cases the i-th customer that leaves the system does so
after having received a service with duration ai , after which a new customer at the same
service station initiates a preparation phase with duration bi . Furthermore, we assume
that when both systems start up, the remaining preparation time of the customer at Q j at
time zero equals ζ j , j = 1, . . . , N .
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To prove that the mean waiting time of the server in the dynamic case does not exceed
that of the cyclic case, we require some additional notation. We will denote by ζ( j) the
j-th order statistic of ζ1, . . . ,ζN , i.e. the j-th smallest value among ζ1, . . . ,ζN . Let dC

i be
the departure time of the i-th customer after time zero in the cyclic case. The index of
the service station at which the server completes a service at time dC

i in the cyclic case is
denoted by qC

i . Note that qC
i = ((i − 1)mod N) + 1 for i > 0. Furthermore, let hC

i, j be the
first moment after dC

i that a customer at service station ((qC
i + j − 1)mod N) + 1 has its

preparation phase completed and is ready to be served by the server in the cyclic case,
j = 1, . . . , N − 1.

With these definitions, we obviously have for the first departure that dC
1 = ζ1 + a1.

Subsequent departures, which are marked by dC
i , also occur exactly ai time units after

the server starts serving the i-th customer. For 1< i ≤ N −1 (thus, during the remainder
of the first cycle), the start of the i-th service occurs at time max{dC

i−1,ζi}, whereas for
i ≥ N (corresponding to later cycles) the i-th service is initiated at time max{dC

i−1, hC
i−1,1}=

hC
i−1,1. Therefore,

dC
i =







ζ1 + a1 if i = 1,

max{dC
i−1,ζi}+ ai if 1< i ≤ N − 1,

hC
i−1,1 + ai otherwise.

(11.1)

As for the h values, we have for i ≤ N − 1 that the first point in time hC
i,1 after dC

i that a
customer at Q i+1 has its preparation phase completed obviously equals either dC

i or ζi+1
(whichever happens last). Hence, for 1≤ i ≤ N − 1,

hC
i,1 =max{dC

i ,ζi+1}. (11.2)

For i ≥ N , this expression is more involved. When the server has finished his (i − 1)-
st service, a new preparation phase starts at the corresponding service station while the
server moves to the next station. The newly started preparation phase ends at dC

i−1+ bi−1.
It takes N −1 additional switches of the server before the customer corresponding to this
preparation phase can be served. Hence, hC

i,N−1 takes the maximum value of this number
and dC

i . For other values of j, hC
i, j retains the value hC

i−1, j+1 corresponding to the situation
after the (i − 1)-st service, in case this value exceeds dC

i . The shift in the second index is
caused because the server has moved one position in the cycle to the next service station
between the (i − 1)-st and the i-th service. To summarise, we thus have for i ≥ N that

hC
i, j =

¨

max{dC
i , hC

i−1, j+1} if j 6= N − 1,

max{dC
i , dC

i−1 + bi−1} if j = N − 1.
(11.3)

To finalise the notation, let dD
i , qD

i and hD
i, j be defined similarly to dC

i , qC
i and hC

i, j for the
dynamic model. In the dynamic case, the server always moves to the service station with
the earliest completed preparation phase. Evidently, we have that dD

1 = ζ(1) + a1. For
1< i ≤ N−1, the preparation phase of the i-th served customer finishes before or at time
ζ(i). Therefore, we have for 1< i ≤ N − 1 that

dD
i ≤max{dD

i−1,ζ(i)}+ ai . (11.4)
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For values of i larger than N−1, we have that the preparation phase the i-th customer goes
through has already finished or finishes exactly at time min j∈{1,...,N−1}{hD

i−1, j}, provided
that the (i−1)-st customer was served at another station. Otherwise, it obviously finishes
at time dD

i−1 + bi . Thus, for i ≥ N , we have

dD
i =min{ min

j∈{1,...,N−1}
{hD

i−1, j}, dD
i−1 + bi}+ ai . (11.5)

By the definition of hD
i, j , it is now not hard to see that for 1≤ i ≤ N − 1,

min
j∈{1,...,N−1}

{hD
i, j} ≤max{dD

i ,ζ(i+1)}. (11.6)

For values of i larger than N − 1, one needs to keep careful track of the position of the
server, but otherwise hD

i, j is expressed similarly to (11.3). Namely, for i ≥ N , we have that

hD
i, j =

¨

max{dD
i , hi−1, j+((qD

i −qD
i−1)mod N)} if j 6= N − ((qD

i − qD
i−1)mod N),

max{dD
i , dD

i−1 + bi−1} if j = N − ((qD
i − qD

i−1)mod N),
(11.7)

where (qD
i − qD

i−1)mod N represents the shift in position of the server between time dD
i−1

and time dD
i in the dynamic case.

Now that we have introduced all notation required, we perform two preliminary steps
before proving the desired result. First, we show in Lemma 11.3.1 that dC

i ≥ dD
i for

i = 1, . . . , N−1. Thus, we first establish that dC
i ≥ dD

i for the special case of the first cycle,
at the start of which a preparation phase commences at each service point. Then, Lemma
11.3.2 shows that this inequality in fact also holds for i ≥ N . In other words, the result
dC

i ≥ dD
i persists after the first cycle. Based on these lemmas, Theorem 11.3.3 finally states

that E[W C]≥ E[W D]without any assumption on the distributions of the preparation and
service times other than that both distributions have a non-negative support.

LEMMA 11.3.1. For the first cycle, namely for i = 1, . . . , N − 1, we have that

dC
i ≥ dD

i and hC
i,1 ≥ min

j∈{1,...,N−1}
{hD

i, j}.

PROOF. We first focus on the first part of the lemma and prove by induction that dC
i ≥ dD

i
for i = 1, . . . , N − 1. We obviously have that

dC
1 = ζ1 + a1 ≥ ζ(1) + a1 = dD

1 ,

which acts as a first step of the induction argument. We now show that dC
i ≥ dD

i for any
1 < i ≤ N − 1 under the assumption that dC

k ≥ dD
k for all k < i. More specifically, we

conclude based on (11.1) and (11.4) that

dC
i =max{dC

i−1,ζi}+ ai ≥max{dD
i−1,ζ(i)}+ ai ≥ dD

i

for any 1 < i ≤ N − 1, by showing that each of the arguments of the second maximum
operator does not exceed max{dC

i−1,ζi}. To see this for the first argument, note that

max{dC
i−1,ζi} ≥ dC

i−1 ≥ dD
i−1
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by the induction assumption. A similar observation for the second argument follows by
noting that

max{dC
i−1,ζi} ≥max{ max

j∈{1,...,i−1}
{ζ j},ζi}= max

j∈{1,...,i}
{ζ j} ≥ ζ(i).

The first inequality holds since dC
i−1 must be larger than any of the times ζ1, . . . ,ζi−1, as

by time dC
i−1 the server has served one customer at the service stations 1, . . . , i−1 already

in the cyclic case.
For the second part of the lemma, we observe based on (11.2) and (11.6) that for

i = 1, . . . , N − 1,

hC
i,1 =max{dC

i ,ζi+1} ≥max{dD
i ,ζ(i+1)} ≥ min

j∈{1,...,N−1}
{hD

i, j}. (11.8)

The first inequality follows by similar steps to those above. Namely, we obviously have
that max{dC

i ,ζi+1} ≥ dC
i ≥ dD

i by the first part of the lemma already proved and that

max{dC
i ,ζi+1} ≥max{ max

j∈{1,...,i}
{ζ j},ζi+1}= max

j∈{1,...,i+1}
{ζ j} ≥ ζ(i+1).

This concludes the proof.

We now generalise the result obtained in Lemma 11.3.1 and show that dC
i ≥ dD

i for
all i ≥ 1 in the following lemma.

LEMMA 11.3.2. At every point in time, namely for every i ≥ 1, we have that

dC
i ≥ dD

i and hC
i,1 ≥ min

j∈{1,...,N−1}
{hD

i, j}.

PROOF. We have proved this statement already in Lemma 11.3.1 for i = 1, . . . , N − 1. To
prove the result for larger i, we again apply induction, where Lemma 11.3.1 acts as a first
step.

For the induction step, we now prove that dC
i ≥ dD

i and hC
i,1 ≥min j∈{1,...,N−1}{hD

i, j} for
all i ≥ N under the assumption that dC

k ≥ dD
k and hC

k,1 ≥min j∈{1,...,N−1}{hD
k, j} for all k < i.

The former statement dC
i ≥ dD

i is easily seen to hold true by observing based on (11.1)
and (11.5) that

dC
i = hC

i−1,1 + ai ≥min{ min
j∈{1,...,N−1}

{hD
i−1, j}, dD

i−1 + bi}+ ai = dD
i , (11.9)

where the inequality holds since hC
i−1,1 ≥ min j∈{1,...,N−1}{hD

i−1, j} as per the induction as-
sumption.

For the latter statement hC
i,1 ≥min j∈{1,...,N−1}{hD

i, j}, we derive from (11.3) that for the
cyclic case

hC
i,1 =max{dC

i , hC
i−1,2}=max{dC

i , hC
i−2,3}= · · ·

=max{dC
i , hC

i−N+2,N−1}=max{dC
i , dC

i−N+1 + bi−N+1}. (11.10)

Similarly, it can be derived from (11.7) that there exist k, l ∈ {1, . . . , N − 1} so that hD
i,k =

max{dD
i , hD

i−N+2,l}. This leads to the inequality

min
j∈{1,...,N−1}

hD
i, j ≤max{dD

i , max
j∈{1,...,N−1}

{hD
i−N+2, j}}. (11.11)



11.3 ORDERING OF THE WAITING-TIME DISTRIBUTIONS 211

We now proceed to show that hC
i,1 ≥min j∈{1,...,N−1}{hD

i, j} by arguing that hC
i,1 is not smaller

than each of the arguments in the outer maximum operator in the right-hand side of
(11.11). For the first argument, we have by using (11.10) and (11.9), respectively, that

hC
i,1 =max{dC

i , dC
i−N+1 + bi−N+1} ≥ dC

i ≥ dD
i .

To deal with the second argument of the maximum operator, we observe that by (11.7)
max j∈{1,...,N−1}{hD

i−N+2, j} can evaluate either to a) dD
i−N+2, to b) one of the values from the

set {dD
j + b j : j ∈ {1, . . . , i − N + 1}} or to c) ζ(N). We treat each of these cases separately

below.

a) By (11.10) and (11.9), respectively, we have that

hC
i,1 =max{dC

i , dC
i−N+1 + bi−N+1} ≥ dC

i ≥ dD
i ≥ dD

i−N+2.

b) We show that hC
i,1 is not smaller than any value in the set {dD

j + b j : j ∈ {1, . . . , i−N +
1}}. To this end, observe that hC

k,1 ≥ hC
l,1 for any k ≥ l, since

hC
l,1 ≤ dC

l+1 ≤ dC
k ≤ hC

k,1

for all k > l. For any j ∈ {1, . . . , i − N + 1}, it follows from (11.10), (11.9) and this
observation that

hC
i,1 ≥ hC

j+N−1,1 =max{dC
j+N−1, dC

j + b j} ≥ dC
j + b j ≥ dD

j + b j .

c) By (11.10) and again the observation that in the cyclic case hC
k,1 ≥ hC

l,1 if k ≥ l, we
have that

hC
i,1 ≥ hC

N ,1 ≥ dC
N ,1 ≥ ζ(N),

where the first inequality again follows from the observation that hC
k,1 ≥ hC

l,1 if k ≥ l.
The second inequality follows from the fact that at time dC

N ,1, the server has served
exactly one customer at each of the service stations, and therefore dC

N ,1 cannot be
smaller than each of the initial residual preparation times ζ1, . . . ,ζN .

By these observations, we have that hC
i,1 ≥ min j∈{1,...,N−1}{hD

i, j}, which concludes the
induction step. The lemma now follows by induction on i.

A combination of Lemmas 11.3.1 and 11.3.2 now leads to the following theorem.

THEOREM 11.3.3. Given any two non-negative distributions for the service time A and the
preparation time B, we have that E[W C]≥ E[W D].

PROOF. Given any two sets of independent and identically distributed sequences {ai , i ≥
1} and {bi , i ≥ 1} from the random variables A and B, and any initial set of preparation
times (ζ1, . . . ,ζN ), Lemma 11.3.2 states that dC

i ≥ dD
i for all i ≥ 1.

Observe that dC
i =

∑i
j=1(w

C
j +a j), where wC

j is the time the server has to wait directly
before the start of the j-th service in the cyclic scenario. Likewise, we have that dD

i =
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FIGURE 11.3: Throughput as a function of the number of stations for moderately variable
preparation and service times (solid), highly variable service times (dotted) and highly
variable preparation times (dashed) in the dynamic model.

∑i
j=1(w

D
j + a j), where wD

i is defined similarly to wC
i for the dynamic scenario. Therefore,

the lemma implies that for all i > 0,

i
∑

j=1

(wC
j + a j)≥

i
∑

j=1

(wD
j + a j), (11.12)

which, after subtracting
∑i

j=1 a j , dividing by i and taking limits on both sides, leads to

lim
i→∞

∑i
j=1 wC

j

i
≥ lim

i→∞

∑i
j=1 wD

j

i
.

The left-hand side (right-hand side) represents the asymptotic mean waiting time of the
server in the cyclic (dynamic) scenario given the realisations {bi , i ≥ 1}, {ai , i ≥ 1} and
(ζ1, . . . ,ζN ). Therefore, the theorem follows by conditioning on these realisations.

REMARK 11.3.1. It is suggested by (11.12) that
∑i

j=1 W C
j is stochastically larger than or

equal to
∑i

j=1 W D
j for all i > 0, where W C

j (W D
j ) is the random variable representing

the j-th waiting time of the server in the cyclic (dynamic) case. Although there is not
necessarily a stochastic ordering in the limiting distributions of the waiting times W C and
W D (cf. Section 11.3.1), it thus appears that there exists a stochastic ordering in partial
sums of transient waiting times starting at j = 1.

11.4 Numerical comparison

In Section 10.4, we gained several insights into the effect of the system parameters on its
performance in the cyclic model. More specifically, we commented on the effect of vari-
ability of the preparation and service times, we studied the autocorrelation coefficients of
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the waiting times and we studied the number of stations to be assigned to a server. In this
section, we compare the insights gained for the cyclic model with equivalent observations
for the dynamic model based on additional simulation results, and we explicitly comment
on similarities and differences between the two models.

Variability of preparation and service times We observed in Section 10.4 that the
variability of the preparation time in the cyclic model seems to have a bigger impact on
the server’s waiting-time process than the variability of the service times. This observation
does not extend to the dynamic case. Although the impact of the variability of the service
times is similar, the variability of the preparation times hardly seems to matter for the
waiting-time process. In Figure 11.3, we have plotted the counterpart of Figure 10.1
where the server now visits the service stations dynamically rather than cyclically. Thus,
for the same variability settings considered before, we now plot the throughput θ D versus
the number of queues N .

It turns out that the solid curve and the dotted curve corresponding to moderately vari-
able preparation times are similar to the ones corresponding to the cyclic model, except
that, as expected, these curves converge faster to the maximum throughput. However,
whereas the dashed curve corresponding to highly variable preparation times was farthest
away from the solid curve in Figure 10.1, the solid and dashed curves now almost coin-
cide. This indicates that the variability of the preparation times hardly matters for the
server’s waiting time in the dynamic model. This can be explained by the fact that the
dynamic model has many similarities with the Erlang loss model. In fact, if the service
time A were exponentially distributed, the dynamic model would reduce to an M/G/N/N
queueing system. The service completions in the dynamic model are then equivalent to
Poisson arrivals in the M/G/N/N queue, of which the number of customers present rep-
resents the number of preparations in progress. A distinctive feature of the M/G/N/N
queue is that its performance measures are insensitive to the distribution of B apart from
its first moment (see e.g. [138]). Thus, if we would have chosen exponential service
times, the solid curve and the dashed curve would have coincided. As this is not the case
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in our current example, the curves do not completely coincide, but the throughput of the
system nevertheless seems hardly sensitive to the distribution of B.

To further study the effects of the variability of the two time components, we define
the squared coefficient of variation c2

A = Var[A]/(E[A])2. Let c2
B be defined similarly, and

let r = E[B]/E[A] represent the ratio of the two time components. Consider the systems
with N = 3, E[A] = 1 and the values r = 0.5, r = 0.8 and r = 1.2. Figures 11.4
and 11.5 plot the mean waiting time E[W ] versus c2

A (keeping c2
B fixed at 1.5) and c2

B
(keeping c2

A fixed at 1.5), respectively. In these two graphs, thick lines correspond to
the cyclic case, whereas the thin, marked lines indicate results where the server visits
the stations dynamically. From Figure 11.4, we conclude that as c2

A increases, the mean
waiting time also increases for both cases, but that the rate of change is bigger in the cyclic
case. However, the difference between a curve corresponding to the dynamic case and its
equivalent for the cyclic case is eventually almost constant, and this difference increases
as the value of r decreases. In Figure 11.5, we see that the mean waiting time in the
cyclic model is more sensitive to c2

B than c2
A as observed before. However, for the dynamic

system it is indeed almost insensitive to c2
B. Finally, we observe that in case c2

B = 0 (i.e.
deterministic preparation times), the mean waiting times for the cyclic and the dynamic
model coincide. Since deterministic preparation phases will always complete in the order
they were initiated, the server will also serve the service points in a fixed cyclic order in
the dynamic case, which leads to this behaviour.

Correlations In Section 10.4, we observed that the stationary autocorrelation coeffi-
cients of the waiting times in the cyclic model show a rather surprising behaviour. The
stationary autocorrelation coefficients pertaining to the dynamic model turn out to be-
have just as surprisingly, but they show a behaviour completely different from the cyclic
case. In Figures 11.6, 11.7 and 11.8, we plot the stationary autocorrelation coefficients of
the waiting times in the dynamic model based on the same system settings as those used
to construct Figure 10.3, namely exponentially (1) distributed preparation times, expo-
nentially (10) distributed service times and N = 5. However, apart from the exponential
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FIGURE 11.6: Stationary autocorrelation coefficients of the waiting times in the dynamic
model with c2

B = 1.

FIGURE 11.7: Stationary autocorrelation coefficients of the waiting times in the dynamic
model with c2

B = 0.5.

case c2
B = 1 in Figure 11.6, we now also regard the autocorrelation coefficients for the

values c2
B = 0.5 and c2

B = 10 in Figures 11.7 and 11.8, respectively.
In the cyclic case, increasing the value of c2

B does not alter the shape of the curve
depicted in Figure 10.3, although the correlation generally becomes less significant. Fig-
ures 11.6, 11.7 and 11.8 show not only that the correlation becomes more significant and
converges to zero slower in the dynamic case as c2

B increases, but also that the shape of
the curve is sensitive to c2

B. Figures 11.6 and 11.7 clearly show that also in the dynamic
model periodicity effects are present, as alternatingly convex and concave loops can be
observed. However, an increasing c2

B also seems to have a significant effect on the correl-
ation itself. For c2

B = 0.5, the correlation is negative for small k, whereas this is not the
case for c2

B = 1.0. For c2
B = 10, Figure 11.8 even shows a monotonously decreasing curve.

It is not clear why these effects are present. The significant influence of the variability of
the preparation times on the autocorrelation is highly surprising, as we observed that the
waiting-time distribution itself is hardly sensitive to c2

B. Such peculiar behaviour is also
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FIGURE 11.8: Stationary autocorrelation coefficients of the waiting times in the dynamic
model with c2

B = 10.
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dynamic model (squares).

present for the variability of the service time, but in an opposite fashion. Whereas the
waiting-time distribution is sensitive to c2

A in the dynamic case (cf. Figure 11.4), numer-
ical results show that this number has little effect on the correlation curves as depicted in
Figures 11.6, 11.7 and 11.8.

Number of stations to be assigned to a server We now study how the number of
stations to be assigned to a server changes when one switches from a cyclic to a dynamic
regime. In Figure 11.9, we plot the same curves as those depicted in Figure 10.4, and we
add the curves one would obtain when the server visits the service stations dynamically.
This figure shows intuitive results. Obviously, the throughput θ D for the dynamic model
is larger than its equivalent θ C for the cyclic model. This is not surprising, since we found
in Section 11.3.2 that E[W C]≥ E[W D]. As a result, the number of stations to be assigned
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to a server in order to be close to maximum throughput decreases. Whereas we concluded
before that generally about 5 or 6 servers are needed for the cyclic case, it seems that for
the dynamic case about 3 to 4 servers are already enough.
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SUMMARY

Layered Queueing Networks – Performance Modelling, Analysis and Optimisation

This dissertation is concerned with the mathematical study of layered queueing networks.
This topic can be placed within the domain of queueing theory, which analyses conges-
tion phenomena and provides methods to evaluate the performance of complex systems
arising in areas such as computer and communication networks, supply chains, traffic
networks, manufacturing and customer contact centers. Typical models involve servers
working on customers that arrive randomly and require a random amount of service.

Recent applications in engineering, business and the public sector led to systems with
much more complex, often layered, service architectures, where entities that provide ser-
vice at one layer can request service at a lower layer. This naturally leads to the modelling
of such applications as layered queueing networks. These queueing networks consist of
multiple layers and have the distinctive property that servers of any layer can act as cus-
tomers in the layer directly below. Mathematical analysis of this subclass of networks
is very challenging, since the resulting interactions between layers must be taken into
account. For instance, the performance of lower-layer servers may heavily impact the
congestion levels incurred by higher-layer customers. In this thesis, we perform an in-
depth analysis of three such layered queueing networks consisting of two layers, where
the interactions between the layers cannot be ignored. With this analysis, we aim to gain
insights into the impact of the layer interactions on the performance and control of the
queueing networks considered and layered queueing networks in general. Furthermore,
the methods used and the analysis performed might be used as a starting point to study
queueing networks with a larger number of layers.

The first network, which we study in Chapters 2–6, is an extension of what is known
in queueing theory as the machine repair model. This model consists of a number of
machines working in parallel in a manufacturing setting and a single repairman. As soon
as a machine fails, it joins a repair queue in order to be repaired by the repairman. Thus,
the machines are customers of the repairman, who is the server. In practice, however, a
machine also acts as a server in a higher layer when it processes products. We therefore
extend the machine repair model by adding queues of products to the model. Because of
the dual role of the machines in different layers, this model constitutes a layered queueing
network. For this extended model, we obtain several approximations for the waiting time
of the products, while explicitly taking the characteristics of the repairman into account.
We do so by deriving light-traffic and heavy-traffic asymptotics of the extended model in
Chapters 2 and 3, respectively, which we combine to form highly accurate approximations
for the mean queue lengths of the queues of products in Chapter 4. In Chapter 5, we
derive an accurate approximation for the complete queue length distribution by carefully
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studying the dependence structure between the layers. From the results of these chapters,
it is apparent that the characteristics of the repairman have a large impact on the delay
incurred by the products as a result of machine failures. Therefore, in Chapter 6, by
utilising the framework of Markov decision processes, we formulate an answer to the
question of how the repairman should allocate his repair resources to the machines in
order to minimise the delay incurred at each of the machines.

Chapters 7–9 are devoted to the study of the second layered queueing network, which
involves a queueing network consisting of multiple queues attended by a single server.
The server visits the queues in some order to render service to the customers waiting
at each of the queues and incurs stochastic switch-over times when he moves from one
queue to another. The order in which the server visits the queues is assumed to be determ-
ined by an external random environment. More specifically, we assume that this order
is governed by a discrete-time Markov chain. We study this model with a view towards
an application to wireless random-access networks, where nodes share a medium (i.e.
the server) to transmit packets waiting in packet buffers (i.e. the queues). This queueing
network evidently falls in the class of layered queueing networks. The nodes are servers
in their role of packet transmitter, but they can also be interpreted as customers in a lower
layer, since they incur delays in claiming the medium to execute their transmitted tasks.
In Chapters 7 and 8, we perform an in-depth analysis of the waiting times of the first-layer
customers in a variety of settings, while taking the routing dynamics of the second-layer
server into account. The results obtained in these chapters, which we believe to be of
independent interest, also serve as building blocks for Chapter 9. In this chapter, we
formulate a distributed algorithm to optimise these waiting times in the setting of wire-
less random-access networks, where the nodes typically suffer the problem of incomplete
information due to the decentralised nature of these networks.

Finally, Chapters 10 and 11 concern themselves with the third layered queueing net-
work considered in this thesis, where customers first undergo a preparation phase at a
service station and subsequently require a phase of service from a specialised server who
polls the service stations. This problem originates from warehousing, but also has appli-
cations in healthcare, where surgeons poll multiple surgery rooms. As the service stations
act as both customers and servers in different layers (they provide a phase of preparation,
but are blocked when this phase ends and the server is not available), this third model
also constitutes a layered queueing network. Observe that the specialised server, however,
also has a dual role, since the server has to wait at times for a preparation phase of a cus-
tomer to finish. In these cases, the server becomes a customer in some sense. In Chapter
10, under the assumption of an infinite number of waiting customers and cyclic routing
of the specialised server through the service stations, we provide a detailed analysis of the
waiting times incurred by the server. In doing so, we identify several parameter effects
that influence this waiting time. In Chapter 11, we extensively investigate the effects of
the removal of the restriction of cyclic routing by the server, which turn out to be major.
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