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Structural causal models (SCMs), also known as (non-parametric) struc-
tural equation models (SEMs), are widely used for causal modeling purposes.
In particular, acyclic SCMs, also known as recursive SEMs, form a well-
studied subclass of SCMs that generalize causal Bayesian networks to allow
for latent confounders. In this paper, we investigate SCMs in a more gen-
eral setting, allowing for the presence of both latent confounders and cycles.
We show that in the presence of cycles, many of the convenient properties
of acyclic SCMs do not hold in general: they do not always have a solution;
they do not always induce unique observational, interventional and counter-
factual distributions; a marginalization does not always exist, and if it exists
the marginal model does not always respect the latent projection; they do not
always satisfy a Markov property; and their graphs are not always consistent
with their causal semantics. We prove that for SCMs in general each of these
properties does hold under certain solvability conditions. Our work general-
izes results for SCMs with cycles that were only known for certain special
cases so far. We introduce the class of simple SCMs that extends the class of
acyclic SCMs to the cyclic setting, while preserving many of the convenient
properties of acyclic SCMs. With this paper we aim to provide the founda-
tions for a general theory of statistical causal modeling with SCMs.

1. Introduction Structural causal models (SCMs), also known as (non-parametric)
structural equation models (SEMs), are widely used for causal modeling purposes [5, 73,
51, 55]. They form the basis for many statistical methods that aim at inferring knowledge
of the underlying causal structure from data [see e.g., 37, 45, 56, 7, 48]. In these models,
the causal relationships between the variables are expressed in the form of deterministic,
functional relationships, and probabilities are introduced through the assumption that certain
variables are exogenous latent random variables. SCMs arose out of certain causal models
that were first introduced in genetics [79], econometrics [25], electrical engineering [39, 40],
and the social sciences [23, 12].

Acyclic SCMs, also known as recursive SEMs, form a special well-studied subclass of
SCMs that generalize causal Bayesian networks [51]. They have many convenient proper-
ties [see e.g., 50, 35, 78, 34, 60, 15, 16]: (i) they induce a unique distribution over the vari-
ables; (ii) they are closed under perfect interventions; (iii) they are closed under marginaliza-
tions; (iv) their marginalization respects the latent projection; (v) they obey (various equiva-
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lent versions of) the Markov property; and (vi) their graphs express the causal relationships
encoded by the SCM in an intuitive manner.

One important limitation of acyclic SCMs is that they cannot model systems that involve
causal cycles. In many systems occurring in the real world, there are feedback loops between
observed variables. For example, in economics the price of a product may be a function of
the demanded or supplied quantities, and vice versa, the demanded and supplied quantities
may be functions of the price. The underlying dynamic processes describing such systems
have an acyclic causal structure over time. However, causal cycles may arise when one ap-
proximates such systems over time [17, 43, 42] or when one describes the equilibrium states
of these systems [29, 33, 27, 46, 6, 3, 57]. In particular, in [6] it was shown that the equi-
librium states of a system governed by (random) differential equations can be described by
an SCM that represents their causal semantics, which gives rise to a plethora of SCMs that
include cycles (we provide some examples of such feedback systems in Appendix D.1 in the
Supplementary Material). In contrast to their acyclic counterparts, SCMs with cycles have
enjoyed less attention in the literature and are not as well understood. In general, none of the
above properties (i)–(vi) hold in the class of SCMs. However, some progress has been made
in the case of discrete [52, 49] and linear models [70, 71, 72, 63, 31, 27], and more recently,
for more general cyclic models the Markov properties have been elucidated [18].

Contributions The purpose of this paper is to provide the foundations for a general theory
of statistical causal modeling with SCMs. We study properties of SCMs and allow for cycles,
latent variables and non-linear functional relationships between the variables. We investigate
to which extent and under which sufficient conditions each of the properties (i)–(vi) holds, in
particular, in the presence of cycles. In the next paragraphs, we describe our contributions in
more detail.

When there are cyclic functional relationships between variables, one encounters various
technical complications, which even arise in the linear setting. The structural equations of an
acyclic SCM trivially have a unique solution. This unique solvability property ensures that
the SCM gives rise to a unique, well-defined probability distribution on the variables. In the
case of cycles, however, this property may be violated, and consequently, the SCM may not
have a solution at all, or may allow for multiple different probability distributions [26]. Even
if one starts with a cyclic SCM that is uniquely solvable, performing an intervention on the
SCM may lead to an intervened SCM that is not uniquely solvable. Hence, a cyclic SCM
may not give rise to a unique, well-defined probability distribution corresponding to that
intervention, and whether or not this happens may depend on the intervention. We provide
sufficient conditions for the existence and uniqueness of these probability distributions after
intervention. In general, it is not clear whether the solutions of the structural equations of an
SCM are measurable if cycles are present. In addition, we provide sufficient and necessary
conditions for the measurability of solution functions of cyclic SCMs.

SCMs provide a detailed modeling description of a system. Not all information may be
necessary for a certain modeling task, which motivates to consider certain classes of SCMs
to be equivalent. In this paper, we formally introduce several of such equivalence relations.
For example, we consider two SCMs observationally equivalent if they cannot be distin-
guished based on observations alone. Observationally equivalent SCMs can often still be
distinguished by interventions. We consider two SCMs interventionally equivalent if they
cannot be distinguished based on observations and interventions. While these concepts have
been around in implicit form for acyclic SCMs, we formulate them in such a way that they
also apply to cyclic SCMs that have either no solution at all or have multiple different in-
duced probability distributions on the variables. Finally, we consider two SCMs counterfac-
tually equivalent if they cannot be distinguished based on observations and interventions and
in addition encode the same counterfactual distributions, which are the distributions induced
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by the so-called twin SCM via the twin network method [1]. These different equivalence re-
lations formalize the different levels of abstraction in the so-called causal hierarchy [69, 53].
In addition, we add another, strong version of equivalence, such that equivalent SCMs have
the same solutions. This notion clarifies ambiguities when a function is constant in one of its
arguments, for example.

Marginalization becomes useful if not all variables are observed: given a joint probability
distribution on some variables, we obtain a marginal distribution on a subset of the variables
by integrating out the remaining variables. Analogously, we can marginalize an acyclic SCM
by substituting the solutions of the structural equations of a subset of the endogenous vari-
ables into the structural equations of the remaining endogenous variables. For acyclic SCMs,
the induced observational and interventional distributions of the marginalized SCM coincide
with the marginals of the distributions induced by the original SCM [see 78, 75, 15, 16, a.o.].
In other words, for acyclic SCMs the operation of marginalization preserves the probabilistic
and causal semantics (restricted to the remaining variables). We show that for cyclic SCMs
a marginalization does not always exist without further assumptions. In [18] it is shown that
for modular SCMs, which can be seen as an SCM together with an additional structure of a
compatible system of solution functions, a marginalization can be defined that preserves the
probabilistic and causal semantics. We prove that this additional structure is not necessary and
use a local unique solvability condition instead. Under this condition, we show that an SCM
and its marginalization are observationally, interventionally and counterfactually equivalent
on the remaining endogenous variables. Analogously, we define a marginalization operation
on the associated graph of an SCM, which generalizes the latent projection [78, 76, 15]. In
general, the marginalization of an SCM does not respect the latent projection of its associ-
ated graph, but we show that it does so under an additional local ancestral unique solvability
condition.

In graphical models, Markov properties allow one to read off conditional independencies
in a distribution directly from a graph. Various equivalent formulations of Markov properties
exist for acyclic SCMs [34], one prominent example being the d-separation criterion, also
known as the directed global Markov property, which was originally derived for Bayesian
networks [50]. Markov properties have been of key importance to derive various central re-
sults regarding causal reasoning and causal discovery. For cyclic SCMs, however, the usual
Markov properties do not hold in general, as was already pointed out by Spirtes [71]. His
solution in terms of collapsed graphs was recently generalized and reformulated for a gen-
eral class of causal graphical models [18] by adapting the notion of d-separation into what
has been termed σ-separation. This resulted in a general directed global Markov property
expressed in terms of σ-separation instead of d-separation. Here, we formulate these general
Markov properties specifically within the framework of SCMs. Again, they only hold under
certain unique solvability conditions.

In addition to its interpretation in terms of conditional independencies, the graph of an
acyclic SCM also has a direct causal interpretation [51]. As was already observed in [49], the
causal interpretation of SCMs with cycles can be counterintuitive, as the causal semantics
under interventions no longer needs to be compatible with the structure imposed by the func-
tional relations between the variables. We resolve this issue by showing that under certain
ancestral unique solvability conditions the causal interpretation of SCMs is consistent with
its graph.

Cycles lead to several technical complications related to solvability issues. We introduce
a special subclass of (possibly cyclic) SCMs, the class of simple SCMs, for which most of
these technical complications are absent and which preserves much of the simplicity of the
theory for acyclic SCMs. A simple SCM is an SCM that is uniquely solvable with respect
to every subset of the variables. Because of this strong solvability assumption, simple SCMs
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Fig 1: Overview of the objects constructed from an SCM and the mappings between them. The numbers correspond to the
definition, proposition or theorem of the corresponding object, mapping, or result. When an arrow is dashed, the relation only
holds under non-trivial assumptions that can be found in the corresponding definition or theorem. The symbol “⊆” stands for
the subgraph of a directed mixed graph (see Definition A.1 in the Supplementary Material) and the symbol “	” denotes that
the surrounding diagram commutes. Table 1 gives an overview of the commutativity results for each pair of mappings between
the objects with the names in bold.

have all the convenient properties (i)–(vi): they always have uniquely defined observational,
interventional and counterfactual distributions; we can perform every perfect intervention and
marginalization on them and the result is again a simple SCM; marginalization does respect
the latent projection; they obey the general directed global Markov property, and for special
cases (including the acyclic, linear and discrete case) they obey the (stronger) directed global
Markov property; their graphs have a direct and intuitive causal interpretation.

The scope of this paper is limited to establishing the foundations for statistical causal mod-
eling with cyclic SCMs (Figure 9 in Appendix A.5 in the Supplementary Material shows an
overview of how SCMs relate to other causal graphical models). For a detailed discussion
of causal reasoning, causal discovery and causal prediction with cyclic SCMs we refer the
reader to other literature [e.g., 58, 59, 61, 14, 27, 28, 21]. Several recent results (general-
izations of the do-calculus, adjustment criteria and an identification algorithm) for modular
SCMs [19, 20] directly apply to the subclass of simple SCMs, as well. Finally, many causal
discovery algorithms that have been designed for the acyclic case also apply to simple SCMs
with no or only minor changes [47, 44].

Overview Figure 1 gives an overview of the different objects that can be constructed from
an SCM and the different mappings between them. For pairs of mappings between the objects
with the names in bold we prove commutativity results which are summarized in Table 1.

Outline This paper is structured as follows: In Section 2, we provide a formal definition of
SCMs and a natural notion of equivalence between SCMs, define the (augmented) graph cor-
responding to an SCM, and describe perfect interventions and counterfactuals. In Section 3,
we discuss the concept of (unique) solvability, its properties and how it relates to self-cycles.
In Section 4, we define and relate various equivalence relations between SCMs. In Section 5,
we define a marginalization operation that is applicable to cyclic SCMs under certain condi-
tions. We discuss several properties of this marginalization operation and discuss the relation
with a marginalization operation defined on directed mixed graphs. In Section 6, we discuss
Markov properties of SCMs. In Section 7, we discuss the causal interpretation of the graphs
of SCMs. Section 8 introduces and discusses the class of simple SCMs.
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SCMs do twin marg

G,Ga 2.15 2.20 (5.12)

do 2.16.(1) 2.22.(1) 5.5.(1)

twin · · · - 5.5.(2)

marg · · · · · · 5.4

Graphs do twin marg

do 2.16.(1) 2.22.(2) 5.10.(1)

twin · · · - 5.10.(2)

marg · · · · · · 5.9

Table 1: Overview of the commutativity results of different pairs of mappings, defined on SCMs (left table) and on graphs
(right table). All results apply under the assumptions stated in the corresponding proposition. The entries denoted by dots are
omitted due to symmetry. We do not consider the commutativity of the twin operation with itself in this paper. Proposition 5.12
(in parentheses) is not a commutativity result but a weaker relation. The graphical twin operator is only defined for directed
graphs.

The Supplementary Material introduces causal graphical models in Appendix A. This sec-
tion also contains details on Markov properties and modular SCMs. Appendix B provides
additional (unique) solvability properties, some results for linear SCMs are discussed in Ap-
pendix C, other examples in Appendix D, and the proofs of all the theoretical results are in
Appendix E. Appendix F contains some lemmas and measurable selection theorems that are
used in several proofs.

2. Structural causal models In this section, we provide the definition and properties
of structural causal models (SCMs). Our definition of SCMs slightly deviates from existing
definitions [5, 51, 73], because we make the definition of the SCM independent of the random
variables that solve it. This enables us to deal with the various technical complications that
arise in the presence of cycles.

2.1. Structural causal models and their solutions

DEFINITION 2.1 (Structural causal model). A structural causal model (SCM) is a tuple1

M := 〈I,J ,X ,E,f ,PE〉 ,

where

1. I is a finite index set of endogenous variables,
2. J is a disjoint finite index set of exogenous variables,
3. X =

∏
i∈I Xi is the product of the domains of the endogenous variables, where each

domain Xi is a standard measurable space (see Definition F.1),
4. E =

∏
j∈J Ej is the product of the domains of the exogenous variables, where each do-

main Ej is a standard measurable space,
5. f : X × E→X is a measurable function that specifies the causal mechanism,
6. PE =

∏
j∈J PEj is a product measure, the exogenous distribution, where PEj is a proba-

bility measure on Ej for each j ∈ J .2

In SCMs, the functional relationships between variables are expressed in terms of deter-
ministic equations, where each equation expresses an endogenous variable (on the left-hand
side) in terms of a causal mechanism depending on endogenous and exogenous variables
(on the right-hand side). This allows us to model interventions in an unambiguous way by
changing the causal mechanisms that target specific endogenous variables (see Section 2.4).

1We often use boldface for variables that have multiple components, e.g., vectors in a Cartesian product.
2For the case J = ∅ we have that E is the singleton 1 and PE is the degenerate probability measure P1.
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DEFINITION 2.2 (Structural equations). Let M = 〈I,J ,X ,E,f ,PE〉 be an SCM. We
call the set of equations

xi = fi(x,e) x ∈X ,e ∈ E

for i ∈ I the structural equations of the structural causal modelM.

Although it is common to assume the absence of cyclic functional relations (see Defini-
tion 2.10), we make no such assumption here. In particular, we allow for self-cycles, which
we will discuss in more detail in Section 2.2 and 3.3.

The solutions of an SCM in terms of random variables are defined up to almost sure equal-
ity. Random variables that are almost surely equal are generally considered to be equivalent
to each other for all practical purposes.

DEFINITION 2.3 (Solution). A pair (X,E) of random variables X : Ω→X ,E : Ω→
E , where Ω is a probability space, is a solution of the SCMM= 〈I,J ,X ,E,f ,PE〉 if

1. PE = PE , i.e., the distribution of E is equal to PE ,3 and
2. the structural equations are satisfied, i.e.,

X = f(X,E) a.s..

For convenience, we call a random variable X a solution of M if there exists a random
variable E such that (X,E) forms a solution ofM.

Often, the endogenous random variables X can be observed, while the exogenous ran-
dom variables E are treated as latent. Latent exogenous variables are often referred to as
“disturbance terms” or “noise variables”. For a solution X , we call the distribution PX the
observational distribution ofM associated to X . In general there may be multiple different
observational distributions associated to an SCM due to the existence of different solutions
of the structural equations. This is a consequence of the allowance of cycles in SCMs, as the
following simple example illustrates.

EXAMPLE 2.4 (Cyclic SCMs). For brevity, we use throughout this paper the notation
n := {1,2, . . . , n} for n ∈ N. LetM = 〈2,1,R2,R,f ,PR〉 be an SCM4 with f1(x, e) = x2

and f2(x, e) = x1, and PR an arbitrary probability measure on R. Then (X,X) is a solution
ofM for any arbitrary random variable X with values in R. Hence, any probability distri-
bution on {(x,x) : x ∈ R} is an observational distribution associated toM. Now consider
instead the same SCM but with f1(x, e) = x2 + 1. This SCM has no solutions at all, and
hence induces no observational distribution.

Due to the fact that the structural equations only need to be satisfied almost surely, there
may exist many different SCMs representing the same set of solutions.

3This implies that the components Ej of E are mutually independent, since PE is a product measure on∏
j∈J Ej .

4In our examples, we will abuse notation by using non-disjoint subsets of the natural numbers to index both
endogenous and exogenous variables; these should be understood to be disjoint copies of the natural numbers: if
we write I =n and J =m, we mean instead I = {1,2, . . . , n} and J = {1′,2′, . . . ,m′} where k′ is a copy of
k.
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EXAMPLE 2.5 (Structural equations up to almost sure equality). Consider the SCMM=
〈1,1,X ,E , f,PE〉 with X = E = {−1,0,1}, PE({−1}) = PE({1}) = 1

2 and f(x, e) = e2 +

e− 1. Let M̃ be the SCM M but with a different causal mechanism f̃(x, e) = e. Then the
set of solutions of the structural equations agree for both SCMs for e ∈ {−1,+1}, while they
differ only for e= 0, which occurs with probability zero. Hence, a pair of random variables
(X,E) is a solution ofM if and only if it is a solution of M̃.

It therefore seems natural not to differentiate between structural equations that have dif-
ferent solutions on at most a PE -null set of exogenous variables. This leads to the following
equivalence relation between SCMs. To be able to state the equivalence relation concisely,
we introduce the following notation: For subsets U ⊆ I and V ⊆ J we write X U :=

∏
i∈U Xi

and EV :=
∏
j∈V Ej . In particular, X ∅ and E∅ are defined by the singleton 1. Moreover, for

a subset W ⊆ I ∪ J , we use the convention that we write XW and EW instead of XW∩I
and EW∩J respectively and we adopt a similar notation for the (random) variables in those
spaces, that is, we write xW and eW instead of xW∩I and eW∩J respectively. This allows
us to define the following natural equivalence relation for SCMs.5,6

DEFINITION 2.6 (Equivalence). The two SCMs M = 〈I,J ,X ,E,f ,PE〉 and M̃ =
〈I,J ,X ,E, f̃ ,PE〉 are equivalent, denoted byM≡M̃, if for all i ∈ I , for PE -almost every
e ∈ E and for all x ∈X

xi = fi(x,e) ⇐⇒ xi = f̃i(x,e).

Thus, two equivalent SCMs can only differ in terms of their causal mechanism. Impor-
tantly, equivalent SCMs have the same solutions and, as we will see in Section 2.4 and 2.5,
they have the same causal and counterfactual semantics (see Definition 2.13 and 2.18 re-
spectively). This equivalence relation on the set of all SCMs gives rise to the quotient set of
equivalence classes of SCMs. In this paper we prove properties and define operations on the
equivalence classes of SCMs, by first proving the property and defining the operation for an
SCM and then showing that this property and operation preserves the equivalence relation.

2.2. The (augmented) graph We will now define two types of graphs that can be used
for representing structural properties of the SCM. These graphical representations are related
to Wright’s path diagrams [79]. The structural properties of the functional relations between
variables modeled by an SCM are specified by the causal mechanism of the SCM and can be
encoded in an (augmented) graph. For the graphical notation and standard terminology on di-
rected (mixed) graphs that is used throughout this paper, we refer the reader to Appendix A.1.

We first define the parents of an endogenous variable.

5An attempt at coarsening this notion of equivalence by replacing the quantifier “for all x ∈ X ” by “for
almost every x ∈X under the observational distribution PX ” will not lead to a well-defined equivalence rela-
tion, since in general the observational distribution PX may be non-unique or even non-existent. Refining it by
replacing the quantifier “for PE -almost every e ∈ E” by “for all e ∈ E” would make it too fine for our purposes,
since we assume the exogenous distribution to be fixed and we assume as usual that random variables that are
almost surely identical are indistinguishable in practice.

6We may extend this definition to allow J̃ 6= J and for a larger class of SCMs such that the exogenous
distribution does not factorize. Then, for anyM that satisfies Definition 2.1, except for that it may have a non-
factorizing exogenous distribution, there exists an equivalent SCM with a factorizing exogenous distribution (and
a different J ); the latter can be obtained by partitioning the exogenous components into independent tuples. This
motivates why we can restrict ourselves in Definition 2.1 to factorizing exogenous distributions only.
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DEFINITION 2.7 (Parent). LetM= 〈I,J ,X ,E,f ,PE〉 be an SCM. We call k ∈ I∪J a
parent of i ∈ I if and only if there does not exist a measurable function7 f̃i : X \k×E\k→Xi
such that for PE -almost every e ∈ E and for all x ∈X

xi = fi(x,e) ⇐⇒ xi = f̃i(x\k,e\k).

Exogenous variables have no parents by definition. These parental relations are preserved
under the equivalence relation ≡ on SCMs. They can be represented by a directed graph or a
directed mixed graph.8

DEFINITION 2.8 (Graph and augmented graph). Let M = 〈I,J ,X ,E,f ,PE〉 be an
SCM. We define:

1. the augmented graph Ga(M) as the directed graph with nodes I ∪ J and directed edges
u→ v if and only if u ∈ I ∪J is a parent of v ∈ I;

2. the graph G(M) as the directed mixed graph with nodes I , directed edges u→ v if and
only if u ∈ I is a parent of v ∈ I and bidirected edges u↔ v if and only if there exists a
j ∈ J that is a parent of both u ∈ I and v ∈ I .

We call the mappings Ga and G, that map M to Ga(M) and G(M), the augmented graph
mapping and the graph mapping respectively.

In particular, the augmented graph contains no directed edges pointing towards an exoge-
nous variable, i.e., u ∈ I ∪J cannot be a parent of v ∈ J , because they are not functionally
related through the causal mechanism. We call a directed edge i→ i in Ga(M) and G(M)
(here, i is a parent of itself) a self-cycle at i. By definition, the mappings Ga and G are invari-
ant under the equivalence relation ≡ on SCMs and hence the equivalence class of an SCM
M is mapped to a unique augmented graph Ga(M) and a unique graph G(M).

EXAMPLE 2.9 (Graphs of an SCM). Let M = 〈5,3,R5,R3,f ,PR3〉 be an SCM with
causal mechanism given by

f1(x,e) = x1 − x2
1 + αe2

1 , f3(x,e) =−x4 + e2 , f5(x,e) = x4 · e3 ,

f2(x,e) = x1 + x3 + x4 + e1 , f4(x,e) = x2 + e2 ,

where α 6= 0 and PR3 is a product of three probability measures PR over R that are non-
degenerate. The augmented graph Ga(M) and the graph G(M) ofM are depicted9 in Fig-
ure 2 (left). Observe that if α had been equal to zero, then the endogenous variable 1 would
not have any parents in Ga(M), i.e., it would not have a self-cycle and directed edge from any
exogenous variables in Ga(M), and it would not have a self-cycle and bidirected edge from
any other variable in G(M). Moreover, if one of the probability measures PR over R were
degenerate, then some of the directed edges from the exogenous variables to the endogenous
variables in the augmented graph Ga(M) and bidirected edges in the graph G(M) would be
missing.

7For X =
∏
i∈I Xi, I some index set, I ⊆ I and k ∈ I , we denote X \I =

∏
i∈I\I Xi and X \k =∏

i∈I\{k}Xi, and similarly for their elements.
8A directed mixed graph G = (V,E ,B) consists of a set of nodes V , a set of directed edges E and a set of

bidirected edges B (see Definition A.1 for a more precise definition).
9For visualizing an (augmented) graph, we adapt the common convention of using random variables, with

the index set as a subscript, instead of using the index set itself. With a slight abuse of notation, we still use the
random variables notation in the (augmented) graph in the case that the SCM has no solution at all.
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Fig 2: The augmented graph (top) and the graph (bottom) of the SCM M of Example 2.9 (left) and of the intervened SCM
Mdo({3},1) of Example 2.17 (right).

As is illustrated in this example, the augmented graph provides a more detailed repre-
sentation than the graph. Therefore, we use the augmented graph as the standard graphi-
cal representation for SCMs, unless stated otherwise. For an SCM M, we denote the sets
paGa(M)(U), chGa(M)(U), anGa(M)(U), etc., for some subset U ⊆ I ∪ J , by respectively
pa(U), ch(U), an(U), etc., when the notation is clear from the context.

DEFINITION 2.10. We call an SCM M acyclic if Ga(M) is a directed acyclic graph
(DAG). Otherwise, we callM cyclic.

Equivalently, an SCMM is acyclic if G(M) is an acyclic directed mixed graph (ADMG)
[60]. Acyclic SCMs are also known as semi-Markovian SCMs [51, 76]. A commonly con-
sidered class of acyclic SCMs are the Markovian SCMs, which are acyclic SCMs for which
each exogenous variable has at most one child. Several Markov properties were first shown
for these models [51, 35, 76].

2.3. Structurally minimal representations We have discussed an equivalence relation be-
tween SCMs in Section 2.1. In this subsection we show that for each SCM there exists a
representative of the equivalence class of that SCM for which each component of the causal
mechanism does not depend on its non-parents [see also 55].

DEFINITION 2.11 (Structurally minimal SCM). Let M = 〈I,J ,X ,E,f ,PE〉 be an
SCM. We call M structurally minimal if for all i ∈ I there exists a mapping f̃i : X pa(i) ×
Epa(i)→Xi such that fi(x,e) = f̃i(xpa(i),epa(i)) for all e ∈ E and all x ∈X .

We already encountered a structurally minimal SCMM in Example 2.9. Taking instead
α= 0 in that example gives an SCMM that is not structurally minimal, since the endogenous
variable 1 is then not a parent of itself, while f1(x,e) depends on x1. However, the equivalent
SCM where we have replaced the causal mechanism of 1 by f1(x,e) = 0 yields a structurally
minimal SCM. In general, there always exists an equivalent structurally minimal SCM.

PROPOSITION 2.12 (Existence of a structurally minimal SCM). For an SCM M =
〈I,J ,X ,E,f ,PE〉, there exists an equivalent SCM M̃= 〈I,J ,X ,E, f̃ ,PE〉 that is struc-
turally minimal.
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For a causal mechanism f : X × E → X and a subset U ⊆ I , we write fU : X × E →
X U for the U components10 of f . A structurally minimal representation is compatible with
the (augmented) graph, in the sense that for every U ⊆ I there exists a unique measurable
mapping f̃U : X pa(U)×Epa(U)→X U such that fU (x,e) = f̃U (xpa(U),epa(U)) for all e ∈ E
and all x ∈X . Moreover, for any U ⊆ I there exists a unique measurable mapping f̃an(U) :

X an(U) × Ean(U) → X an(U) with fan(U)(x,e) = f̃U (xan(U),ean(U)) for all e ∈ E and all
x ∈X .

2.4. Interventions To define the causal semantics of SCMs, we consider here an ideal-
ized class of interventions introduced by Pearl [51] that we refer to as perfect interventions.
Other types of interventions, like mechanism changes [77], fat-hand interventions [13], ac-
tivity interventions [45], and stochastic versions of all these are at least as relevant, but we do
not consider them here.

DEFINITION 2.13 (Perfect intervention on an SCM). LetM= 〈I,J ,X ,E,f ,PE〉 be an
SCM, I ⊆ I a subset of endogenous variables and ξI ∈X I a value. The perfect intervention
do(I,ξI) mapsM to the SCMMdo(I,ξI) := 〈I,J ,X ,E, f̃ ,PE〉, where the intervened causal
mechanism f̃ is given by

f̃i(x,e) =

{
ξi i ∈ I
fi(x,e) i ∈ I \ I .

This operation do(I,ξI) preserves the equivalence relation (see Definition 2.6) on the set
of all SCMs and hence this mapping induces a well-defined mapping on the set of equivalence
classes of SCMs. Previous work has considered interventions only on a specific subset of
endogenous variables [67, 2, 3]. Instead, we assume that we can intervene on any subset of
endogenous variables in the model.

We define an analogous operation do(I) on directed mixed graphs.

DEFINITION 2.14 (Perfect intervention on a directed mixed graph). Let G = (V,E ,B)
be a directed mixed graph and I ⊆ V a subset. The perfect intervention do(I) maps G to
the directed mixed graph do(I)(G) := (V, Ẽ , B̃), where Ẽ = E \ {v→ i : v ∈ V, i ∈ I} and
B̃ = B \ {v↔ i : v ∈ V, i ∈ I}.

This operation simply removes all incoming edges on the nodes in I . The two notions of
intervention are compatible with the (augmented) graph mapping.

PROPOSITION 2.15. Let M = 〈I,J ,X ,E,f ,PE〉 be an SCM, I ⊆ I a subset of en-
dogenous variables and ξI ∈ X I a value. Then

(
Ga ◦ do(I,ξI)

)
(M) =

(
do(I) ◦ Ga

)
(M)

and
(
G ◦ do(I,ξI)

)
(M) =

(
do(I) ◦ G

)
(M).

The two notions of perfect intervention satisfy the following elementary properties.

PROPOSITION 2.16. For an SCM and a directed mixed graph we have the following
properties:

1. perfect interventions on disjoint subsets of variables commute;
2. acyclicity is preserved under perfect intervention.

10For U = ∅ we always consider the trivial mapping f∅ :X × E→X ∅ where X ∅ is the singleton 1.
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The following example shows that an SCM with a solution may not have a solution any-
more after performing a perfect intervention on the SCM, and vice versa, that an SCM with-
out a solution may yield an SCM with a solution after intervention.

EXAMPLE 2.17 (Intervened SCM and its graphs). Consider the SCMM of Example 2.9
which has a solution if and only if α≥ 0. Applying the perfect intervention do({3},1) toM
gives the intervened modelMdo({3},1) with the intervened causal mechanism

f̃1(x,e) = x1 − x2
1 + αe2

1 , f̃3(x,e) = 1 , f̃5(x,e) = x4 · e3 ,

f̃2(x,e) = x1 + x3 + x4 + e1 , f̃4(x,e) = x2 + e2 ,

for which the augmented graph Ga(Mdo({3},1)) and the graph G(Mdo({3},1)) are depicted
in Figure 2 (right). This is an example where a perfect intervention leads to an intervened
SCM Mdo({3},1) that does not have a solution anymore. In addition, performing a perfect
intervention do({4},1) onMdo({3},1) yields again an SCM with a solution for α≥ 0.

Remember that for each solution X of an SCMM we call the distribution PX the obser-
vational distribution ofM associated to X . For cyclic SCMs the observational distribution
is in general not unique.11 For example, the SCMM of Example 2.9 has two different ob-
servational distributions if α > 0. Similarly, an intervened SCM may induce a distribution
that is not unique. Whenever the intervened SCMMdo(I,ξI) has a solution X we therefore
call the distribution PX the interventional distribution ofM under the perfect intervention
do(I,ξI) associated to X .12

2.5. Counterfactuals The causal semantics of an SCM are described by the interven-
tions on the SCM. Adding another layer of complexity, one can describe the counterfactual
semantics of an SCM by the interventions on the so-called twin SCM, an idea introduced
in [1].

DEFINITION 2.18 (Twin SCM). LetM= 〈I,J ,X ,E,f ,PE〉 be an SCM. The twin op-
eration mapsM to the twin structural causal model (twin SCM)

Mtwin := 〈I ∪ I ′,J ,X ×X ,E, f̃ ,PE〉 ,

where I ′ = {i′ : i ∈ I} is a copy of I and the causal mechanism f̃ : X ×X × E→X ×X
is the measurable function given by f̃(x,x′,e) =

(
f(x,e),f(x′,e)

)
.

The twin operation on SCMs preserves the equivalence relation ≡ on the set of all SCMs.
We define an analogous twin operation twin(I) on directed graphs.

DEFINITION 2.19 (Twin graph). Let G = (V,E) be a directed graph and I ⊆ V a subset
such that J := V \ I is exogenous, i.e., paG(J ) = ∅. The twin(I) operation maps G to the
twin graph w.r.t. I defined by twin(I)(G) := (Ṽ, Ẽ), where

1. Ṽ = V ∪ I ′, where I ′ is a copy of I ,

11In order to assure the existence of a unique observational distribution it is common to consider only SCMs
for which the structural equations have a unique solution (see for example Definition 7.1.1 in [51]). Although
these SCMs induce a unique observational distribution, they generally do not induce a unique distribution after a
perfect intervention.

12In the literature, one often finds the notation p(x) and p(x |do(XI = xI )) for the densities of the observa-
tional and interventional distribution, respectively, in case these are uniquely defined by the SCM [e.g. 51].
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2. Ẽ = E ∪ E ′, where E ′ is given by

E ′ = {j→ i′ : j ∈ J , i ∈ I, j→ i ∈ E} ∪ {̃i′→ i′ : ĩ, i ∈ I, ĩ→ i ∈ E}

with i′, ĩ′ ∈ I ′ the respective copies of i, ĩ ∈ I .

These two twin operations are compatible with the augmented graph mapping and preserve
acyclicity.

PROPOSITION 2.20. LetM= 〈I,J ,X ,E,f ,PE〉 be an SCM. Then (Ga ◦ twin)(M) =
(twin(I) ◦ Ga)(M).

PROPOSITION 2.21. For SCMs and directed graphs we have that acyclicity is preserved
under the twin operation.

The perfect intervention and the twin operation for SCMs and directed graphs commute
with each other in the following way.

PROPOSITION 2.22. LetM= 〈I,J ,X ,E,f ,PE〉 be an SCM and G = (V,E) a directed
graph. Then we have that perfect intervention commutes with the twin operation on both

1. the SCM M: for a subset I ⊆ I and value ξI ∈X I , (do(I ∪ I ′,ξI∪I′)) ◦ twin)(M) =
(twin ◦ do(I,ξI))(M), and

2. the directed graph G: for subsets I ⊆ I ⊆ V such that J := V \ I is exogenous, (do(I ∪
I ′) ◦ twin(I))(G) = (twin(I) ◦ do(I))(G),

where I ′ is the copy of I in I ′ and ξI′ = ξI .

Whenever the intervened twin SCM (Mtwin)do(Ĩ,ξĨ)
, where Ĩ ⊆ I ∪ I ′ and ξĨ ∈X Ĩ , has

a solution (X,X ′), we call the distribution P(X,X′) the counterfactual distribution of M
under the perfect intervention do(Ĩ ,ξĨ) associated to (X,X ′). In Example D.3 we pro-
vide an example of how counterfactuals can be sensibly formulated for a well-known market
equilibrium model described in terms of a cyclic SCM.

The interpretation of counterfactual statements has received a lot of attention in the litera-
ture [36, 66, 8, 1, 51]. For acyclic graphs, an alternative graphical approach to counterfactuals
is the framework of Single World Intervention Graphs (SWIGs) [64]. One topic of discussion
is that there exist SCMs that induce the same observational and interventional distributions,
but differ in their counterfactual statements [11] (see also Example D.5). This raises the ques-
tion how one can estimate such SCMs from data.

3. Solvability In this section we introduce the notions of solvability and unique solv-
ability with respect to a subset of the endogenous variables of an SCM. They describe the
existence and uniqueness of measurable solution functions for the subsystem of structural
equations that correspond with a certain subset of the endogenous variables. These notions
play a central role in formulating sufficient conditions under which several properties of
acyclic SCMs may be extended to the cyclic setting. For example, we show that solvability
of an SCM is a sufficient and necessary condition for the existence of a solution of an SCM.
Further, unique solvability of an SCM implies the uniqueness of the induced observational
distribution.
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E1 E2 E3

X1

X2

X3

X4

X5
L
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X1 X5

marg(L)

Fig 3: The augmented graphs of the SCM M (left) and M̃ (right) of Example 2.9, 3.2 and 5.2, where the SCM M̃ is a
marginalization ofM w.r.t. L.

3.1. Definition of solvability Intuitively, one can think of the structural equations corre-
sponding to a subset of endogenous variables O ⊆ I as a description of how the subsystem
formed by the variables O interacts with the rest of the system I \ O through the variables
pa(O) \ O. A solution function w.r.t. O assigns each input value (xpa(O)\O,epa(O)) of this
subsystem to a specific output value xO of the subsystem. This is formalized as follows.

DEFINITION 3.1 (Solvability). Let M = 〈I,J ,X ,E,f ,PE〉 be an SCM. We call M
solvable w.r.t. O ⊆ I if there exists a measurable mapping gO : X pa(O)\O × Epa(O)→XO
such that for PE -almost every e ∈ E and for all x ∈X

xO = gO(xpa(O)\O,epa(O)) =⇒ xO = fO(x,e) .

We then call gO a measurable solution function w.r.t. O forM. We callM solvable if it is
solvable w.r.t. I .

By definition, solvability w.r.t. a subset respects the equivalence relation ≡ on SCMs.

EXAMPLE 3.2 (Different cases of solvability). Consider the SCM M of Example 2.9
and the subset of endogenous variables {2,3,4} which is depicted by the box around
the nodes in the augmented graph in Figure 3 (left). For each input value x1 ∈ X1 and
(e1, e2) ∈ E{1,2} of the box, the structural equations for the variables {2,3,4} have a unique
output for x2, x3 and x4, which is given by the mapping g{2,3,4} : R3 → R3 defined by
g{2,3,4}(x1, e1, e2) := (x1 + e1 + e2,−x1 − e1 − e2, x1 + e1 + 2e2). The existence of such a
mapping means that M is solvable w.r.t. {2,3,4}. Solvability does not require the unique-
ness of the function g{2,3,4}. For example, if we consider the subset {1} and take α> 0, then
there exist two measurable solution functions g+

1 , g
−
1 : R1→ R1 ofM w.r.t. {1} defined by

g±1 (e1) :=±
√
αe2

1. In general, solvability does not hold w.r.t. every subset. For example,M
is not solvable w.r.t. the subset {2,4}, because the equality x1 + x3 + e1 + e2 = 0 does not
hold for PE -almost every e ∈ E .

The following theorem states that various possible notions of “solvability” are actually
equivalent.

THEOREM 3.3 (Sufficient and necessary conditions for solvability). For an SCMM=
〈I,J ,X ,E,f ,PE〉 the following are equivalent:

1. M has a solution (see Definition 2.3);
2. for PE -almost every e ∈ E the structural equations

x= f(x,e)

have a solution x ∈X ;
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3. M is solvable (see Definition 3.1).

While in the acyclic case, the above theorem is almost trivial, in the cyclic case the
measure-theoretic aspects are not that obvious. In particular, to prove the existence of a mea-
surable solution function g : Epa(I) → X in case the structural equations have a solution
for almost every e ∈ E , we make use of a strong measurable selection theorem (see Theo-
rem F.8 or [30]). This theorem implies that if there exists a solution X : Ω→X , then there
necessarily exists a random variable E : Ω→ E and a mapping g : Epa(I) → X such that
g(Epa(I)) is a solution. However, it does not imply that there necessarily exists a random
variable E : Ω→ E and a mapping g : Epa(I)→X such that X = g(Epa(I)) holds a.s., e.g.
if X is a non-trivial mixture of such solutions, as in the following example.

EXAMPLE 3.4 (Mixtures of solutions are solutions). Let M = 〈1,∅,R,1, f,P1〉 be an
SCM with causal mechanism f : X × E → X defined by f(x, e) = x− x2 + 1. There exist
only two measurable solution functions g± : E → X for M, defined by g±(e) = ±1. Let
X : Ω→R be a random variable that is a non-trivial mixture of point masses on {−1,+1}.
Then X is a solution ofM, however neither g+(E) =X a.s., nor g−(E) =X a.s., for any
random variable E such that PE = PE .

Solvability w.r.t. a strict subset of I is in general neither sufficient nor necessary for the ex-
istence of a (global) solution of the SCM. Consider for example the SCMM in Example 2.9
with α < 0. Even though this SCM is solvable w.r.t. {2,3,4}, it is not (globally) solvable,
and hence does not have any solution. In Proposition B.1 we provide a sufficient condition
for solvability w.r.t. a strict subset of I that is similar to condition (2) in Theorem 3.3 in the
sense that it is formulated in terms of the solutions of (a subset of) the structural equations
without requiring measurability of the solutions. For the class of linear SCMs we provide in
Proposition C.2 a sufficient and necessary condition for solvability w.r.t. a subset of I .

3.2. Unique solvability The notion of unique solvability w.r.t. a subset O ⊆ I is similar
to the notion of solvability, but with the additional requirement that the measurable solution
function gO : X pa(O)\O × Epa(O)→XO is unique up to a PE -null set.

DEFINITION 3.5 (Unique solvability). LetM= 〈I,J ,X ,E,f ,PE〉 be an SCM. We call
M uniquely solvable w.r.t. O ⊆ I if there exists a measurable mapping gO : X pa(O)\O ×
Epa(O)→XO such that for PE -almost every e ∈ E and for all x ∈X

xO = gO(xpa(O)\O,epa(O)) ⇐⇒ xO = fO(x,e) .

We callM uniquely solvable if it is uniquely solvable w.r.t. I .

IfM≡M̃ andM is uniquely solvable w.r.t. O, then M̃ is uniquely solvable w.r.t. O as
well, and the same mapping gO is a measurable solution function w.r.t. O for both M and
M̃.

The following result explains why the notions of (unique) solvability do not play an im-
portant role in the theory of acyclic SCMs.

PROPOSITION 3.6. An acyclic SCMM= 〈I,J ,X ,E,f ,PE〉 is uniquely solvable w.r.t.
every subset O⊆ I .

The next example illustrates that also cyclic SCMs can be uniquely solvable w.r.t. every
subset.
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Fig 4: The augmented graph of the SCM M̃ (left) of Example 3.7, M (center) of Example 4.2 and 4.4, and M̄ (right) of
Example 4.4. The SCMs M̃ andM are observationally equivalent in Example 4.2, but not interventionally equivalent.

EXAMPLE 3.7 (Cyclic SCM, uniquely solvable w.r.t. each subset). Consider the linear
SCM M̃= 〈2,2,R2,R2, f̃ ,PẼ〉 with causal mechanism given by

f̃1(x, ẽ) = αx2 + ẽ1 , f̃2(x, ẽ) = βx1 + ẽ2 ,

with α,β 6= 0, αβ 6= 1, and PẼ = PẼ with normal distributions Ẽ1 ∼ N (µ1, σ
2
1), Ẽ2 ∼

N (µ2, σ
2
2) and Ẽ1⊥⊥ Ẽ2. This SCM M̃ is uniquely solvable w.r.t. every subset and its (aug-

mented) graph includes a cycle (see Figure 12 on the left).

Theorem 3.3 provides sufficient and necessary conditions for (global) solvability. The next
theorem states that under the additional uniqueness requirement there exists a sufficient and
necessary condition for unique solvability w.r.t. any subset (for solvability w.r.t. a subset
we only have the sufficient condition provided in Proposition B.1), and moreover, that all
solutions of a uniquely solvable SCM induce the same observational distribution.

THEOREM 3.8 (Sufficient and necessary conditions for unique solvability). Let M =
〈I,J ,X ,E,f ,PE〉 be an SCM and O ⊆ I a subset of endogenous variables. The following
are equivalent:

1. for PE -almost every e ∈ E and for all x\O ∈X \O the structural equations

xO = fO(x,e)

have a unique solution xO ∈XO;
2. M is uniquely solvable w.r.t. O.

Furthermore, ifM is uniquely solvable, then there exists a solution, and all solutions have
the same observational distribution.

It is well-known that under acyclicity the observational distribution is unique. Theorem 3.8
generalizes this result to settings with cycles. For linear SCMs the unique solvability condi-
tion w.r.t. a subset of endogenous variables is equivalent to a matrix invertibility condition
(see Proposition C.3).

In general, (unique) solvability w.r.t. O ⊆ I does not imply (unique) solvability w.r.t.
a strict superset O ( V ⊆ I nor w.r.t. a strict subset W ( O (see Example B.2). More-
over, (unique) solvability is in general not preserved under unions and intersections (see
Appendix B.3).

3.3. Self-cycles One can think of a structural equation of a single endogenous variable
i ∈ I as describing a small subsystem that interacts with the rest of the system. If the output
xi of this subsystem is uniquely determined by the input (x\i,e) from the rest of the system
(up to a PE -null set), then i is not a parent of itself (see Definition 2.7).

PROPOSITION 3.9 (Self-cycles). The SCM M = 〈I,J ,X ,E,f ,PE〉 is uniquely solv-
able w.r.t. {i} for i ∈ I if and only if Ga(M) (or G(M)) has no self-cycle i→ i at i ∈ I .



16

A self-cycle at an endogenous variable denotes that that variable is not uniquely deter-
mined by its parents, up to a PE -null set. This implies that an SCM with a self-cycle at an en-
dogenous variable in its graph can be either solvable, or not solvable, w.r.t. that variable. For
the SCMM of Example 2.9 we have indeed that it is solvable w.r.t. {1} for α> 0, while for
α< 0 it is not. For linear SCMs with structural equations Xi =

∑
j∈I BijXj +

∑
k∈J ΓikEk

the endogenous variable i ∈ I has a self-cycle if and only if Bii = 1 (see Appendix C).

3.4. Interventions The property of (unique) solvability is in general not preserved under
perfect intervention. For example, a (uniquely) solvable SCM can lead to a non-uniquely
solvable SCM after intervention, which either has no solution or has solutions with multiple
induced distributions.

EXAMPLE 3.10 (Solvability is not preserved under perfect intervention). Consider the
SCMM= 〈2,∅,R2,1,f ,P1〉 with the following causal mechanism

f1(x) = x1 + x2
1 − x2 + 1 , f2(x) = x2(1− 1{0}(x1)) + 1 .

This SCM is (uniquely) solvable. Doing a perfect intervention do({1}, ξ1) for some ξ1 6= 0,
however, leads to an intervened modelMdo({1},ξ1) that is not solvable. Performing instead
the perfect intervention do({2}, ξ2) for some ξ2 > 1 leads also to a non-uniquely solvable
SCMMdo({2},ξ2) which has solutions with multiple induced distributions, e.g., (X1,X2) =

(φ(ξ2)
√
ξ2 − 1, ξ2) with some measurable φ : R→{−1,+1}, but also mixtures of those.

A sufficient condition for the intervened SCM to be (uniquely) solvable is that the original
SCM has to be (uniquely) solvable w.r.t. the subset of non-intervened endogenous variables.

PROPOSITION 3.11. LetM= 〈I,J ,X ,E,f ,PE〉 be an SCM that is (uniquely) solvable
w.r.t. O ⊆ I . Then, for any set I such that pa(O) \ O ⊆ I ⊆ I \ O and value ξI ∈X I the
intervened SCMMdo(I,ξI) is (uniquely) solvable w.r.t. O ∪ I .

Proposition 3.6 shows that acyclic SCMs are uniquely solvable w.r.t. every subset and
hence are uniquely solvable after every perfect intervention. This also directly follows from
the fact that acyclicity is preserved under perfect intervention (see Proposition 2.16). More-
over, since acyclicity is preserved under the twin operation (see Proposition 2.21), an acyclic
SCM induces unique observational, interventional and counterfactual distributions.

3.5. Ancestral (unique) solvability We saw that, in general, solvability w.r.t. O⊆ I does
not imply solvability w.r.t. a strict subset of O. Here we show that it does imply solvability
w.r.t. the ancestral subsets in G(M)O , that is, in the induced subgraph of the graph G(M)
on O. A subset A⊆O is called an ancestral subset in G(M)O if A= anG(M)O(A), where
anG(M)O(A) are the ancestors of A according to the induced subgraph13 G(M)O .

DEFINITION 3.12 (Ancestral (unique) solvability). LetM= 〈I,J ,X ,E,f ,PE〉 be an
SCM. We call M ancestrally (uniquely) solvable w.r.t. O ⊆ I if M is (uniquely) solvable
w.r.t. every ancestral subset in G(M)O . We call M ancestrally (uniquely) solvable if it is
ancestrally (uniquely) solvable w.r.t. I .

13Here, one can also use the augmented graph Ga(M) onO since anG(M)O
(A) = anGa(M)O

(A) for every
subset A⊆O ⊆ I .
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Fig 5: The graphs of the SCMM (left) of Example 3.14 and the marginal SCMMmarg({2,3}) (right) of Example 5.11.

PROPOSITION 3.13 (Solvability is equivalent to ancestral solvability). The SCM M =
〈I,J ,X ,E,f ,PE〉 is solvable w.r.t. the subsetO⊆ I if and only ifM is ancestrally solvable
w.r.t. O.

A similar result does not hold for unique solvability. Although ancestral unique solvability
w.r.t. O⊆ I implies unique solvability w.r.t. O, the converse does not hold in general, as the
following example illustrates.

EXAMPLE 3.14 (Unique solvability w.r.t. O does not imply ancestral unique solvability
w.r.t. O). Consider the SCMM= 〈4,1,R4,R,f ,PR〉 with causal mechanism given by

f1(x, e) = e , f2(x, e) = x2 · (1− 1{0}(x1 − x3)) + 1 , f3(x, e) = x3 , f4(x, e) = x3

and PR the standard-normal measure on R. This SCM is uniquely solvable w.r.t. the set
{2,3}, and thus solvable w.r.t. this set. Although it is solvable w.r.t. the ancestral subset {3}
in G(M){2,3}, depicted in Figure 5 (left), it is not uniquely solvable w.r.t. this subset. Hence,
it is not ancestrally uniquely solvable w.r.t. {2,3}.

However, for the class of linear SCMs we have that unique solvability w.r.t. O always
implies ancestral unique solvability w.r.t. O (see Proposition C.4).

Although in general unique solvability is not preserved under unions, in Proposition B.4
we show that if an SCM is uniquely solvable w.r.t. two ancestral subsets and w.r.t. their
intersection, then it is uniquely solvable w.r.t. their union.

In general, the property of ancestral unique solvability is not preserved under perfect in-
tervention, as can be seen in Example 3.10. The notion of ancestral unique solvability will
appear in various results in Sections 5 and 6.

4. Equivalences In Section 2 we already encountered an equivalence relation on the
class of SCMs (see Definition 2.6). The (augmented) graph of an SCM, its solutions and
its induced observational, interventional and counterfactual distributions are preserved under
this equivalence relation. In this section we give several coarser equivalence relations on the
class of SCMs: observational, interventional and counterfactual equivalence.

4.1. Observational equivalence Observational equivalence is the property that two
SCMs are indistinguishable on the basis of their observational distributions.

DEFINITION 4.1 (Observational equivalence). Two SCMsM= 〈I,J ,X ,E,f ,PE〉 and
M̃ = 〈Ĩ, J̃ , X̃ , Ẽ, f̃ ,PẼ〉 are observationally equivalent w.r.t. O ⊆ I ∩ Ĩ , denoted by
M≡obs(O) M̃, if XO = X̃O and for all solutions X of M there exists a solution X̃ of

M̃ such that PXO = PX̃O and for all solutions X̃ of M̃ there exists a solutionX ofM such
that PXO = PX̃O .M and M̃ are called observationally equivalent if they are observationally
equivalent w.r.t. I = Ĩ .
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Equivalent SCMs have the same solutions, and hence they are observationally equivalent
w.r.t. every subset O ⊆ I . However, observational equivalence does not imply equivalence,
as the following example illustrates.

EXAMPLE 4.2 (Observational equivalence does not imply equivalence). Let M̃ be the
SCM of Example 3.7. Then, one can always construct an SCM M = 〈2,2,R2,R2,f ,PE〉
with a causal mechanism of the form f1(x,e) = e1 and f2(x,e) = γx1 + e2 with γ 6= 0 such
that M̃ andM are observationally equivalent (see Example D.4 for more details). Because
both SCMs have a different (augmented) graph they are not equivalent to each other (see
Figure 12).

This example shows that if two SCMsM and M̃ are observationally equivalent, then their
associated augmented graphs Ga(M) and Ga(M̃) are not necessarily equal to each other. Al-
though the SCMs of this example are observationally equivalent, they are not interventionally
equivalent, as we will see in the next subsection.

4.2. Interventional equivalence We consider two SCMs to be interventionally equivalent
if they induce the same interventional distributions under all perfect interventions.

DEFINITION 4.3 (Interventional equivalence). Two SCMsM= 〈I,J ,X ,E,f ,PE〉 and
M̃ = 〈Ĩ, J̃ , X̃ , Ẽ, f̃ ,PẼ〉 are interventionally equivalent w.r.t. O ⊆ I ∩ Ĩ , denoted by
M≡int(O) M̃, if XO = X̃O and for every I ⊆O and every value ξI ∈X I their intervened
models Mdo(I,ξI) and M̃do(I,ξI) are observationally equivalent with respect to O. M and
M̃ are called interventionally equivalent if they are interventionally equivalent w.r.t. I = Ĩ .

Equivalent SCMs have the same solutions under every perfect intervention, and hence
they are interventionally equivalent w.r.t. every subsetO⊆ I . SCMs that are interventionally
equivalent w.r.t. a subset O⊆ I are interventionally equivalent w.r.t. every strict subsetW (
O. But, they are, in general, not interventionally equivalent w.r.t. a strict supersetO ( V ⊆ I ,
as can be seen in Example 4.2, where the SCMsM and M̃ are interventionally equivalent
w.r.t. {1} but are not interventionally equivalent.

Interventional equivalence w.r.t. O ⊆ I implies observational equivalence w.r.t. O, since
the empty perfect intervention (I = ∅) is a special case of a perfect intervention. However,
observational equivalence w.r.t.O⊆ I does, in general, not imply interventional equivalence
w.r.t. O, as can be seen in Example 4.2, where the SCM M and M̃ are observationally
equivalent but not interventionally equivalent (see Figure 12).

Although interventional equivalence is a finer notion than observational equivalence, we
have that if two SCMsM and M̃ are interventionally equivalent, then their associated aug-
mented graphs Ga(M) and Ga(M̃) are not necessarily equal to each other, as is shown in the
following example.

EXAMPLE 4.4 (Interventionally equivalent SCMs with different graphs). Consider the
SCMM= 〈2,2,{−1,1}2,{−1,1}2,f ,PE〉 and the SCM M̄ that is the same asM except
for its causal mechanism f̄ , where the causal mechanisms are given by

f1(x,e) = e1 , f2(x,e) = x1e2 , f̄1(x,e) = e1 , f̄2(x,e) = e2 ,

and PE = PE with E1,E2 ∼ U({−1,1}) uniformly distributed and E1⊥⊥E2. Then M and
M̄ are interventionally equivalent although Ga(M) is not equal to Ga(M̄) (see Figure 12).
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4.3. Counterfactual equivalence We consider two SCMs to be counterfactually equiv-
alent if their twin SCMs induce the same counterfactual distributions under every perfect
intervention.

DEFINITION 4.5 (Counterfactual equivalence). Two SCMs M = 〈I,J ,X ,E,f ,PE〉
and M̃ = 〈Ĩ, J̃ , X̃ , Ẽ, f̃ ,PẼ〉 are counterfactually equivalent with respect to O ⊆ I ∩ Ĩ ,
denoted byM≡cf(O) M̃, ifMtwin and M̃twin are interventionally equivalent with respect
to O∪O′, where O′ corresponds to the copy of O in I ′ ∩ Ĩ ′.M and M̃ are called counter-
factually equivalent if they are counterfactually equivalent with respect to I = Ĩ .

The notion of counterfactual equivalence is coarser than equivalence and finer than inter-
ventional equivalence.

PROPOSITION 4.6. For SCMs we have that equivalence implies counterfactual equiva-
lence w.r.t. O, which in turn implies interventional equivalence w.r.t. O, for any O⊆ I .

EXAMPLE 4.7 (Interventional equivalence does not imply counterfactual equivalence).
Consider the same SCMs as in Example 4.4. We have seen that they are interventionally
equivalent. However, they are not counterfactually equivalent, asMtwin

do({1′,1},(1,−1)) is not ob-
servationally equivalent to M̄twin

do({1′,1},(1,−1)). To see this, consider the counterfactual query
p(X2′ = 1 | do(X1′ = 1,X1 =−1),X2 = 1). Both SCMs give a different answer and hence
M and M̄ are not counterfactually equivalent.

Even interventionally equivalent SCMs with the same causal mechanism (that differ only
in their exogenous distribution) may not be counterfactually equivalent (see Example D.5).

Although the notion of counterfactual equivalence is finer than the notion of observational
and interventional equivalence, the (augmented) graphs for counterfactually equivalent SCMs
are in general not equal to each other.

EXAMPLE 4.8 (Counterfactually equivalent SCMs with different graphs). Consider
the SCM M = 〈2,2,{−1,1}2,{−1,1}3,f ,PE〉 with the causal mechanism defined by
f(x, e1,e2) := (e1, e22), where e2 = (e21, e22) ∈ {−1,1}2 and PE = P(E1,E2) such that
E1,E21,E22 ∼U({−1,1}) independent. Let M̃ be the same SCM asM, but with the causal
mechanism f̃(x, e1,e2) := (e21, e22). ThenM and M̃ are counterfactually equivalent (and,
in particular, interventionally and observationally equivalent) although 1↔ 2 ∈ G(M̃) but
1↔ 2 /∈ G(M).

4.4. Relations between equivalences The definitions of observational, interventional and
counterfactual equivalence provide equivalence relations on the set of all SCMs. For two
SCMs to be observationally, interventionally or counterfactually equivalent w.r.t. O⊆ I ∩ Ĩ ,
the domains of their endogenous variablesO have to be equal, that is, XO = X̃O . Apart from
that, the index sets of the endogenous and the exogenous variables, the spaces of the other
endogenous and exogenous variables, the causal mechanism and the exogenous probabil-
ity measure may all differ. The observational, interventional and counterfactual equivalence
classes w.r.t. O⊆ I ∩ Ĩ are related in the following way (see Proposition 4.6):

M and M̃ are equivalent

=⇒M and M̃ are counterfactually equivalent w.r.t. O

=⇒M and M̃ are interventionally equivalent w.r.t. O

=⇒M and M̃ are observationally equivalent w.r.t. O .
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This hierarchy allows us to compare SCMs at different levels of abstractions and formally
establishes the “ladder” of causation (last two implications) [69, 53, 51].

5. Marginalizations In this section we show how, and under which condition, one can
marginalize an SCM over a subset L ⊆ I of endogenous variables (thereby “hiding” the
variables L), to another SCM on the margin I \ L that is observationally, interventionally
and even counterfactually equivalent with respect to I \ L. In other words, we provide a
formal notion of marginalization and show that this preserves the probabilistic, causal and
counterfactual semantics on the margin.

The problem of marginalization of directed graphical models has been addressed for
acyclic graph structures, e.g., ADMGs and mDAGs [see 78, 60, 62, 15, 16, a.o.], and more
recently in [18] for certain graph structures (“HEDGes”) that may include cycles. Although
in the acyclic setting it has been shown that the marginalization for some of these graph struc-
tures preserves the probabilistic and causal semantics, in the cyclic setting this has only been
shown for modular SCMs [18]. We show that without the additional structure of a compat-
ible system of solution functions (see Appendix A.4) one can still define a marginalization
for SCMs under certain local unique solvability conditions. Intuitively, the idea is that if the
state of a subsystem of endogenous variables is uniquely determined by the parents outside
of this subsystem, then one can ignore the internals of this subsystem by treating it as a
“black box” that can be described by certain measurable solution functions (see Figure 3).
One can marginalize over this subsystem by substituting these measurable solution functions
into the rest of the model, thereby removing the functional dependencies on the variables of
the subsystem from the rest of the system, while preserving the probabilistic, causal and the
counterfactual semantics of the rest of the system. We show that in general this marginal-
ization operation defined on SCMs does not respect the latent projection on its associated
(augmented) graph, where the latent projection is a similar marginalization operation defined
on directed mixed graphs [78, 76, 15]. We show that under certain stronger local ancestral
unique solvability conditions the marginalization does respect the latent projection.

5.1. Marginalization of a structural causal model Before we show how one can
marginalize an SCM w.r.t. a subset of endogenous variables, we first point out that in general
it is not always possible to find an SCM on the margin that preserves the causal semantics,
as the following example illustrates.

EXAMPLE 5.1 (No SCM on the margin preserves the causal semantics). Consider the
SCMM= 〈3,∅,R3,1,f ,P1〉 with causal mechanism

f1(x) = x1 + x2 + x3 , f2(x) = x2 , f3(x) = 0 .

Then there exists no SCM M̃ on the endogenous variables {2,3} that is interventionally
equivalent to M w.r.t. {2,3}. To see this, suppose there exists such an SCM M̃, then for
every (ξ2, ξ3) ∈X {2,3} such that ξ2 + ξ3 6= 0 the intervened model M̃do({2,3},(ξ2,ξ3)) has a
solution butMdo({2,3},(ξ2,ξ3)) does not.

More generally, for an SCMM that is not solvable w.r.t. a subset L⊆ I there is no SCM
M̃ on the endogenous variables I \ L that is interventionally equivalent w.r.t. I \ L.

The following example illustrates that for an SCM that is uniquely solvable w.r.t. a subset
there exists an SCM on the margin that preserves the causal semantics.

EXAMPLE 5.2 (SCM on the margin that preserves the causal semantics). Consider the
SCMM= 〈5,3,R5,R3,f ,PR3〉 of Example 2.9. We saw thatM is uniquely solvable w.r.t.
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L = {2,3,4} with the measurable solution function gL given in Example 3.2. The system
of structural equations for the variables L can be seen as a subsystem, that is, for PEpa(L) -
almost every epa(L) ∈ Epa(L) and for every xpa(L)\L ∈X pa(L)\L the input (xpa(L)\L,epa(L))
gives these equations a unique output xL ∈XL. This subsystem is depicted by the gray box
in Figure 3. Substituting the components (gL)2, (gL)3 and (gL)4 into the causal mechanism
components f1, f5 for the remaining endogenous variables {1,5} gives a “marginal” causal
mechanism

f̃1(x,e) := x1 − x2
1 + αe2

1 , f̃5(x,e) := x1 · e3 + e1 · e3 + 2e2 · e3 .

These mappings define an SCM M̃ := 〈2,3,R2,R3, f̃ ,PR3〉 on the margin I \ L = {1,5}.
This constructed SCM M̃, depicted in Figure 3, is interventionally equivalent w.r.t. L, which
can be checked manually or by applying Theorem 5.6 below.

In general, for an SCM M and a given subset L ⊆ I of endogenous variables and
its complement O = I \ L, we can consider the “subsystem” of structural equations
xL = fL(xL,xO,e). If M is uniquely solvable w.r.t. L with measurable solution function
gL : X pa(L)\L × Epa(L)→XL, then for each input (xpa(L)\L,epa(L)) ∈X pa(L)\L × Epa(L)

of the subsystem, there exists an output xL ∈ XL, which is unique for PEpa(L) -almost ev-
ery epa(L) ∈ Epa(L) and for all xpa(L)\L ∈X pa(L)\L. We can remove this subsystem of en-
dogenous variables from the model by substitution. This leads to a marginal SCM that is
observationally, interventionally and counterfactually equivalent to the original SCM w.r.t.
the margin, as we prove in Theorem 5.6.

DEFINITION 5.3 (Marginalization of an SCM). LetM= 〈I,J ,X ,E,f ,PE〉 be an SCM
that is uniquely solvable w.r.t. a subset L ⊆ I and let O = I \ L. For gL : X pa(L)\L ×
Epa(L)→L any measurable solution function ofM w.r.t. L, we call the SCMMmarg(L) :=

〈O,J ,XO,E, f̃ ,PE〉 with the marginal causal mechanism f̃ : XO × E→XO given by

f̃(xO,e) = fO(gL(xpa(L)\L,epa(L)),xO,e) ,

a marginalization of M w.r.t. L. We denote by marg(L)(M) the equivalence class of the
marginalizations ofM w.r.t. L.

The marginalization ofM w.r.t. L is defined up to the equivalence ≡ on SCMs, since the
measurable solution functions gL are uniquely defined up to PE -null sets.

With this definition at hand, we can always construct a marginal SCM over a subset of
the endogenous variables of an acyclic SCM by mere substitution (see also Proposition 3.6).
Moreover, this definition extends that notion to SCMs that are uniquely solvable w.r.t. a
certain subset. For linear SCMs this condition translates into a matrix invertibility condition,
and since substitution preserves linearity, marginalization yields a linear marginal SCM (see
Proposition C.5).

In general, marginalization is not always defined for all subsets. For instance, the SCM of
Example 3.14 cannot be marginalized over the variable 3 (due to the self-cycle at 3), but can
be marginalized over the variables 2 and 3 together. It follows from Proposition 3.9 that we
can only marginalize over a single variable if that variable has no self-cycle. Note that we
may introduce new self-cycles if we marginalize over a subset of variables, as can be seen,
for example, from the SCMM in Example 2.9. This SCM has only one self-cycle, however
marginalizing w.r.t. {2} gives a marginal SCM with another self-cycle at variable 4.

The definition of marginalization satisfies an intuitive property: if we can marginalize over
two disjoint subsets after each other, then we can also marginalize over the union of those
subsets at once, and the respective results agree.
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PROPOSITION 5.4. Let M = 〈I,J ,X ,E,f ,PE〉 be an SCM that is uniquely solvable
w.r.t. a subset L1 ⊆ I and let L2 ⊆ I be a subset disjoint from L1. Then Mmarg(L1) is
uniquely solvable w.r.t. L2 if and only if M is uniquely solvable w.r.t. L1 ∪ L2, Moreover
marg(L2) ◦marg(L1)(M) = marg(L1 ∪L2)(M).

In this proposition L1 and L2 have to be disjoint, since marginalizing first over L1 gives a
marginal SCMMmarg(L1) with endogenous variables I \ L1.

Next we show that the distributions of a marginal SCM are identical to the marginal distri-
butions induced by the original SCM. A simple proof of this result proceeds by showing that
both the intervention and the twin operation commute with marginalization.

PROPOSITION 5.5. Let M be an SCM that is uniquely solvable w.r.t. a subset L ⊆ I .
Then, the marginalization marg(L) commutes with both

1. the perfect intervention do(I,ξI) for a subset I ⊆ I \ L and a value ξI ∈ X I , i.e.,
(marg(L) ◦ do(I,ξI))(M) = (do(I,ξ) ◦marg(L))(M), and

2. the twin operation twin, i.e., (marg(L∪L′) ◦ twin)(M) = (twin ◦marg(L))(M),

where L′ is the copy of L in I ′.

With Proposition 5.5 at hand we can prove the main result of this subsection.

THEOREM 5.6 (Marginalization of an SCM preserves the observational, causal and coun-
terfactual semantics). Let M be an SCM that is uniquely solvable w.r.t. a subset L ⊆ I .
ThenM and marg(L)(M) are observationally, interventionally and counterfactually equiv-
alent w.r.t. I \ L.

This shows that our definition of marginalization (Definition 5.3) preserves the probabilis-
tic, causal and counterfactual semantics, under a certain local unique solvability condition.
Moreover, this allows us to marginalize SCMs w.r.t. a certain subset that do not satisfy the
additional assumptions imposed by modular SCMs, e.g., the SCMM of Example 3.14 does
not have any additional structure of a compatible system of solution functions, butM can be
marginalized w.r.t. the subset {2,3} (see Appendix A.4).

As we saw in Example 4.7 it is generally not true that interventional equivalence implies
counterfactual equivalence. However, for our definition of marginalization we arrive at a
marginal SCM that is not only interventionally equivalent, but also counterfactually equiva-
lent w.r.t. the margin.

For an SCMM, unique solvability w.r.t. a certain subset L ⊆ I is a sufficient, but not a
necessary condition for the existence of an SCM M̃ on the margin I \ L such thatM and
M̃ are counterfactually equivalent w.r.t. I \ L. This is illustrated by the following example.

EXAMPLE 5.7 (Marginalization condition of an SCM is not a necessary condition). Con-
sider the SCMM= 〈4,1,R4,R,f ,PR〉 with causal mechanism given by

f1(x, e) = e , f2(x, e) = x1 , f3(x, e) = x2 , f4(x, e) = x4

and PR is the standard-normal measure on R. This SCM is solvable w.r.t. L= {2,4}, but not
uniquely solvable w.r.t. L, and hence we cannot apply Definition 5.3 to L. However, the SCM
M̃ on the endogenous variables {1,3} with the causal mechanism f̃ given by f̃1(x, e) = e
and f̃3(x, e) = x1 is counterfactually equivalent to M w.r.t. {1,3}, which can be checked
easily.

Hence, in certain cases it may be possible to relax the uniqueness condition.
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5.2. Marginalization of a graph We now turn to a marginalization operation for directed
mixed graphs, which we call the latent projection. This name is inspired from a similar con-
struction on directed mixed graphs in [78]. In [78], the authors concentrate on a mapping
between directed mixed graphs and show that it preserves conditional independence proper-
ties [see also 76]. In this subsection, we provide a sufficient condition for the marginalization
of an SCM to respect the latent projection, i.e., that the augmented graph of the marginal
SCM is a subgraph of the latent projection of the augmented graph of the original SCM.

DEFINITION 5.8 (Marginalization of a directed mixed graph). Let G = (V,E ,B) be a
directed mixed graph and L ⊆ V a subset. The marginalization of G w.r.t. L or the latent
projection of G onto V \ L maps G to the marginal graph marg(L)(G) := (Ṽ, Ẽ , B̃), where

1. Ṽ = V \ L,
2. i→ j ∈ Ẽ if and only if there exists a directed path i→ `1 → · · · → `n → j in G with
n≥ 0 and `1, . . . , `n ∈ L,

3. i↔ j ∈ B̃ if and only if
a) there exist n,m ≥ 0, `1, . . . , `n ∈ L, ˜̀

1, . . . , ˜̀m ∈ L such that i← l1 ← l2 ← · · · ←
`n↔ ˜̀

m→ ˜̀
m−1→ · · · → ˜̀

1→ j in G, or
b) there exist n,m≥ 1, `1, . . . , `n ∈ L, ˜̀

1, . . . , ˜̀m ∈ L such that i← l1← l2← · · · ← `n
and ˜̀

m→ ˜̀
m−1→ · · · → ˜̀

1→ j in G and `n = ˜̀
m.

Note that this gives G(M) = marg(J )(Ga(M)) for any SCMM. Further, for a subgraph
H⊆G we have marg(L)(H)⊆marg(L)(G) for any subset of nodes L. It does not matter in
which order we project out the nodes or if we perform several projections at once.

PROPOSITION 5.9. Let G = (V,E ,B) be a directed mixed graph and L1,L2 ⊆V two dis-
joint subsets. Then (marg(L1)◦marg(L2))(G) = (marg(L2)◦marg(L1))(G) = marg(L1∪
L2)(G).

Similarly to the definition of marginalization for SCMs this definition of the latent projec-
tion commutes with both the (graphical) perfect intervention and the twin operation.

PROPOSITION 5.10. Let G = (V,E ,B) be a directed mixed graph and L,I, I ⊆ V sub-
sets. Then, the marginalization marg(L) commutes with both

1. perfect intervention do(I) if I is disjoint from L, i.e.,(marg(L) ◦ do(I))(G) = (do(I) ◦
marg(L))(G), and

2. the twin operation twin(I) if B = ∅, J := V \ I is exogenous (i.e., paG(J ) = ∅) and
L⊆ I , i.e., (marg(L∪L′) ◦ twin(I))(G) = (twin(I \ L) ◦marg(L))(G),

where L′ is the copy of L in I ′.

In Example 5.2 we already saw an example of a marginalization that respects the latent
projection. However, not all marginalizations respect the latent projection, as is illustrated in
the following example.

EXAMPLE 5.11 (Marginalization does not respect the latent projection). Consider the
SCMM of Example 3.14. AlthoughM and its marginalizationMmarg(L) with L = {2,3}
are interventionally equivalent w.r.t. I \ L = {1,4}, the graph G(Mmarg(L)) is not a sub-
graph of the latent projection of G(M) onto I \L, as can be verified from the graphs depicted
in Figure 5.
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X1 X2

X3 X4

X1 X2

X3 X4

Fig 6: The graphs of the observationally equivalent SCMsM (left) and M̃ (right) of Example 6.1 and 6.2.

Under the local ancestral unique solvability condition, which is a stronger condition than
the local unique solvability condition (i.e., ancestral unique solvability w.r.t. a subset im-
plies unique solvability w.r.t. that subset), one can prove that the marginalization of an SCM
respects the latent projection.

PROPOSITION 5.12. Let M be an SCM that is ancestrally uniquely solvable w.r.t. a
subset L⊆ I . Then

(
Ga ◦marg(L)

)
(M)⊆

(
marg(L)◦Ga

)
(M) and

(
G ◦marg(L)

)
(M)⊆(

marg(L) ◦ G
)
(M).

The following example illustrates why the (augmented) graph of a marginalized SCM can
be a strict subgraph of the corresponding latent projection.

EXAMPLE 5.13 (Graph of the marginal SCM is a strict subgraph of the latent projection).
Consider the SCMM= 〈3,1,R3,R,f ,PR〉 with causal mechanism given by

f1(x,e) = e1 , f2(x,e) = x1 − x3 , f3(x,e) = x1

and take for PR the standard-normal measure on R. In contrast, to the (augmented) graph of
M, there is no directed path in the (augmented) graph of the marginal SCMMmarg({3}).

For acyclic SCMs we recover with Proposition 5.12 the known result that this class is
closed under marginalization (see Proposition 3.6) [15]. For linear SCMs we have that unique
solvability w.r.t. a subset L holds if and only if ancestral unique solvability w.r.t. L holds (see
Proposition C.4), and hence, a marginalization of a linear SCM always respects the latent
projection.

6. Markov properties In this section we give a short overview of Markov properties for
SCMs with cycles. We make use of the Markov properties that were recently developed by
Forré and Mooij [18] for HEDGes, a graphical representation that is similar to the augmented
graph of SCMs. We briefly summarize some of their main results and apply them to the class
of SCMs. In Appendix A.2 we provide a more thorough introduction and give an intuitive
derivation which can act as an entry point for the reader into the more extensive discussion
of Markov properties provided in [18].

Markov properties associate a set of conditional independence relations to a graph. The
directed global Markov property for directed acyclic graphs (see Definition A.4 and A.6),
also known as the d-separation criterion [50], is one of the most widely used. It directly
extends to a similar property for acyclic directed mixed graphs (ADMGs) [60]. It does not
hold in general for cyclic SCMs, however, as was already observed earlier [71, 72].

EXAMPLE 6.1 (Directed global Markov property does not hold for cyclic SCM). Con-
sider the SCMM= 〈4,4,R4,R4,f ,PR4〉 with causal mechanism given by

f1(x,e) = e1 , f2(x,e) = e2 , f3(x,e) = x1x4 + e3 , f4(x,e) = x2x3 + e4

and PR4 is the standard-normal distribution on R4. The graph ofM is depicted in Figure 6
on the left. The model is uniquely solvable w.r.t. every subset. One can check that for every
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solution X of M, X1 is not independent of X2 given {X3,X4}. However, the variables
X1 and X2 are d-separated given {X3,X4} in G(M). Hence the global directed Markov
property does not hold here.

Although some progress has been made in the case of discrete [52, 49, 18] and linear
models [70, 71, 72, 63, 31, 27, 18], only recently a general directed global Markov property
has been introduced for more general cyclic models [18], that is based on σ-separation (see
Definition A.16 and A.20), an extension of d-separation. This notion of σ-separation was
derived from the notion of d-separation in the acyclification of the graph [18] (see Defini-
tion A.13). The acyclification of a graph generalizes the idea of the collapsed graph devel-
oped by Spirtes [71] and can, in particular, be applied to the graphs of SCMs. The main idea
of the acyclification is that under the condition that the SCM is uniquely solvable w.r.t. each
strongly connected component, we can replace the causal mechanisms of these strongly con-
nected components by their measurable solution functions, which results in an acyclic SCM.
This acyclified SCM (see Definition A.11) is observationally equivalent to the original SCM
(see Proposition A.12).

EXAMPLE 6.2 (Construction of an observationally equivalent acyclic SCM). Consider
the SCMM of Example 6.1 which is uniquely solvable w.r.t. all its strongly connected com-
ponents, i.e., the subsets {1}, {2} and {3,4}. Replacing the causal mechanisms of these
strongly connected components by their measurable solution functions gives the SCM M̃
that is the same asM except that its causal mechanism f̃ is given by

f̃1(x,e) := e1, f̃2(x,e) := e2, f̃3(x,e) := x1e4+e3
1−x1x2

, f̃4(x,e) := x2e3+e4
1−x1x2

.

By construction,M and M̃ are observationally equivalent. Because M̃ is acyclic (see Fig-
ure 6 on the right) we can apply the directed global Markov property to M̃. The fact that X1

and X2 are not d-separated given {X3,X4} in G(M̃) is in line with X1 being dependent of
X2 given {X3,X4} for every solution X of M̃ (and hence ofM).

This acyclification preserves solutions, and d-separation in the acyclification can directly
be translated into σ-separation on the original graph (see Proposition A.19). This leads to
the general directed global Markov property. The following theorem summarizes the main
results of [18] applied to SCMs.

THEOREM 6.3 (Global Markov properties for SCMs [18]). Let M be a uniquely solv-
able SCM. Then its observational distribution PX exists, is unique and the following two
statements hold.

1. PX satisfies the directed global Markov property (“d-separation criterion”) relative to
G(M) (see Definition A.6) ifM satisfies at least one of the following conditions:
a) M is acyclic;
b) all endogenous spaces Xi are discrete andM is ancestrally uniquely solvable;
c) M is linear (see Definition C.1), each of its causal mechanisms {fi}i∈I has a non-

trivial dependence on at least one exogenous variable, and PE has a density w.r.t. the
Lebesgue measure on RJ .

2. PX satisfies the general directed global Markov property (“σ-separation criterion”) rela-
tive to G(M) (see Definition A.20) ifM is uniquely solvable w.r.t. each strongly connected
component of G(M).14

14Since [18] also provides results under the weaker condition that an SCM is solvable (not necessarily
uniquely) w.r.t. each strongly connected component of G(M), one might believe that Theorem 6.3.(2) could
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The general directed global Markov property is generally weaker than the directed global
Markov property, since σ-separation implies d-separation. The acyclic case is well-known
and was first shown in the context of linear-Gaussian structural equation models [75, 32].
The discrete case fixes the erroneous theorem by Pearl and Dechter [52], for which a coun-
terexample was found by Neal [49], by adding the ancestral unique solvability condition, and
extends it to allow for bidirected edges in the graph. The linear case is an extension of ex-
isting results for the linear-Gaussian setting without bidirected edges [71, 72, 31] to a linear
(possibly non-Gaussian) setting with bidirected edges in the graph.

In constraint-based approaches to causal discovery, one usually assumes the converse of
the (general) directed global Markov property to hold [73, 51], which is called σ-faithfulness
respectively d-faithfulness (see Definition A.9 and A.23). Meek [41] showed that for multi-
nomial and linear-Gaussian DAG (i.e., acyclic and causally sufficient SCMs) models, d-
faithfulness holds for all parameter values up to a measure zero set. Up to our knowledge
no such result has been shown for any subclass of SCMs that contains cycles, nor in more
general acyclic settings.

7. Causal interpretation of the graph of SCMs In Examples 4.4 and 4.8 we already
saw that sometimes no information in the observational, interventional and even the counter-
factual distributions suffices to decide whether a directed path or bidirected edge is present
in the graph, or not. Here, we do not attempt to provide a complete characterization of all
the conditions under which the presence or absence of a directed path or bidirected edge in
the graph can be identified from the observational and interventional distributions. Instead,
we give some sufficient conditions under which one can detect a directed path and bidirected
edge in the graph.

In general, cyclic SCMs may have none, one or multiple induced observational distribu-
tions, and this may change after intervening in the system. Here, we restrict ourselves to
graphs of SCMs where the induced (marginal) observational and interventional distributions
are uniquely defined.

7.1. Directed paths and edges For cyclic SCMs the causal interpretation of the SCM
is not always consistent with its graph. This can be illustrated with the SCM M of Ex-
ample 5.11. Here, one sees a difference in the marginal distribution PMdo({1},ξ1)

on X4 for
different values of ξ1, although variable 1 is not an ancestor of variable 4 and each marginal
distribution PMdo({1},ξ1)

on X4 is uniquely defined. This counterintuitive behavior that an in-
tervention on a non-ancestor of a variable can change the distribution of that variable was
already observed by Neal [49]. However, under a specific unique solvability condition, we
obtain a direct causal interpretation for the absence of a directed edge or directed path in the
graph of an SCM.

PROPOSITION 7.1 (Sufficient condition for detecting a directed edge in the latent pro-
jection of the graph of an SCM). Consider an SCM M = 〈I,J ,X ,E,f ,PE〉, a subset
O ⊆ I and i, j ∈O such that i 6= j. Let ξI ∈X I , where I :=O \ {i, j}, such thatMdo(I,ξI)

is uniquely solvable w.r.t. anG(Mdo(I,ξI )
)\i(j). If there exist values ξi 6= ξ̃i ∈ Xi such that

be generalized to stating that in that case, any of its observational distributions satisfies the general directed
global Markov property. However, that is not true: consider for example the SCMM= 〈2,∅,R2,1,f ,P1〉 with
f1(x) = x1 and f2(x) = x2. ThenM is solvable w.r.t. each of its strongly connected components {1} and {2}.
The solution with X1 =X2 shows a dependence between X1 and X2 and thus X1⊥⊥X2 does not hold. In gen-
eral, all strongly connected components that admit multiple solutions may be dependent on any other variable(s)
in the model.
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both (Mdo(I,ξI))do({i},ξi) and (Mdo(I,ξI))do({i},ξ̃i) induce unique marginal distributions on
Xj , and these two induced distributions do not coincide, i.e., there exists a measurable set
Bj ⊆Xj such that

P(Mdo(I,ξI )
)do({i},ξi)

(Xj ∈ Bj) 6= P(Mdo(I,ξI )
)do({i},ξ̃i)

(Xj ∈ Bj) ,

then there exists a directed edge i→ j in the latent projection marg(I \O)(G(M)) of G(M)
on O.

Two cases are of special interest: O = I , which corresponds with a directed edge i→ j in
G(M), and O = {i, j}, which corresponds with a directed path i→ · · · → j in G(M).

The condition in Proposition 7.1 is a sufficient condition for determining whether a di-
rected edge or path is present in the graph. In general, not all directed edges and paths can
be identified from the interventional distributions with this sufficient condition. For example,
no interventional distribution satisfies the condition of Proposition 7.1 for the SCM M in
Example 4.4, although there is a directed edge 1→ 2 in the graph G(M).

7.2. Bidirected edges It is well-known that there exists a similar sufficient condition for
detecting bidirected edges in the graph of an acyclic SCM also known as the common-cause
principle [see e.g., 51]. In the two variables case, this criterion informally states that there ex-
ists a bidirected edge between the variables i and j in the graph of the SCM, if the marginal
interventional distribution of Xj under the intervention do({i}, xi) differs from the condi-
tional distribution of Xj given Xi = xi.

EXAMPLE 7.2 (Detecting a bidirected edge in the graph of an SCM). Consider the
acyclic SCM M of Example 4.4 and the SCM M̃ that is the same as M except for its
causal mechanism, which is given by f̃1(x,e) = e1 and f̃2(x,e) = x1e1. For the SCM M̃
we observe that the marginal interventional distribution PM̃do({1},ξ1)

(X2 =−1) is not equal
to the conditional distribution PM̃(X2 = −1 |X1 = ξ1) for both ξ1 = −1 and ξ1 = 1. This
observation suffices to identify the presence of the bidirected edge 1↔ 2 in the graph G(M̃).
For the SCM M, whose graph does not contain the bidirected edge 1↔ 2, the marginal
interventional distribution and conditional distribution coincide.

The following proposition provides a generalization of this sufficient condition for detect-
ing bidirected edges to graphs of SCMs that may include cycles.

PROPOSITION 7.3 (Sufficient condition for detecting a bidirected edge in the latent pro-
jection of the graph of an SCM). Consider an SCM M = 〈I,J ,X ,E,f ,PE〉, a sub-
set O ⊆ I and i, j ∈ O such that i 6= j. Let ξI ∈ X I , where I := O \ {i, j}, such that
Mdo(I,ξI) is uniquely solvable w.r.t. both anG(Mdo(I,ξI )

)(i) and anG(Mdo(I,ξI )
)\i(j). Assume

that for every ξi ∈ Xi both Mdo(I,ξI) and (Mdo(I,ξI))do({i},ξi) induce a unique marginal
distribution on Xj × Xi and Xj respectively. If j /∈ anG(Mdo(I,ξI )

)(i) and there exists a
measurable set Bj ⊆ Xj such that for every version of the regular conditional probability
PMdo(I,ξI )

(Xj ∈ Bj |Xi = ξi) there exists a value ξi ∈ Xi such that

P(
Mdo(I,ξI )

)
do({i},ξi)

(Xj ∈ Bj) 6= PMdo(I,ξI )
(Xj ∈ Bj |Xi = ξi) ,

then there exists a bidirected edge i↔ j in the latent projection marg(I \ O)(G(M)) of
G(M) on O.
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This proposition gives a sufficient condition for determining that a bidirected edge is
present in the graph. In general, not all bidirected edges in the graph can be identified from
the observational, interventional, and even the counterfactual distributions, as we saw in Ex-
ample 4.8. There, we saw that for the SCM M̃, there exists a bidirected edge 1↔ 2 ∈ G(M̃)
while the density p(x2 |do(X1 = x1)) = p(x2 |X1 = x1) for all x1 ∈ X1. For the acyclic set-
ting, the above criterion is generally considered as a universal way to detect a confounder
(note that then one can also deal with the case j ∈ anG(Mdo(I,ξI )

)(i) by swapping the roles of
i and j). If i and j are part of a cycle, the above sufficient condition cannot be applied, and
in that case, to the best of our knowledge, no simple sufficient conditions for detecting the
presence of a bidirected edge are known.

8. Simple SCMs In this section we introduce the well-behaved class of simple SCMs.
Simple SCMs satisfy all the local unique solvability conditions to ensure that this class
is closed under both perfect intervention and marginalization. They extend the subclass of
acyclic SCMs to the cyclic setting, while preserving many of their convenient properties.

DEFINITION 8.1 (Simple SCM). LetM= 〈I,J ,X ,E,f ,PE〉 be an SCM. We callM
simple if it is uniquely solvable w.r.t. every subset O⊆ I .

Loosely speaking, an SCM is simple if any subset of its structural equations can be solved
uniquely for its associated variables in terms of the other variables that appear in these equa-
tions. An example of a simple SCM is given in Example D.1.

On simple SCMs one can perform any number of marginalizations (see Definition 5.3) in
any order (see Proposition 5.4). All these marginalizations respect the latent projection (see
Proposition 5.12) and each resulting marginal SCM is again simple. Moreover, we show that
this class is closed under intervention and the twin operation.

PROPOSITION 8.2. The class of simple SCMs is closed under marginalization, perfect
intervention and the twin operation.

The class of simple SCMs contains the acyclic SCMs as a subclass (see Proposition 3.6). In
particular, a simple SCM has no self-cycles (see Proposition 3.9), since a self-cycle denotes
that that variable cannot be uniquely (up to a PE -null set) determined by its parents.

From Proposition 8.2 it follows that the results summarized in Theorem 6.3 also apply to
all the observational, interventional and counterfactual distributions of simple SCMs.

COROLLARY 8.3 (Global Markov properties for simple SCMs). Let M be a simple
SCM. Then, the

1. observational distribution,
2. interventional distribution after perfect intervention on I ⊂ I ,
3. counterfactual distribution after perfect intervention on Ĩ ⊆ I ∪ I ′,

all exist, are unique and satisfy the general directed global Markov property relative to
G(M), do(I)(G(M)) and do(Ĩ)(twin(G(M))) respectively. Moreover, if M satisfies at
least one of the three conditions (1a), (1b), (1c) of Theorem 6.3, then they also obey the
directed global Markov property relative to G(M), do(I)(G(M)) and do(Ĩ)(twin(G(M)))
respectively.

Many of these properties are also shown to hold for the class of modular SCMs [18], which
contains, in particular, the class of simple SCMs (see Appendix A.4 for more details).
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Moreover, simple SCMs satisfy the unique solvability conditions of Proposition 7.1 and
7.3, which allows us to define the causal relationships for simple SCMs in terms of its graph.

DEFINITION 8.4 (Causal relationships for simple SCMs). LetM be a simple SCM.

1. If there exists a directed edge i→ j ∈ G(M), i.e., i ∈ pa(j), then we call i a direct cause
of j according toM;

2. If there exists a directed path i→ · · · → j in G(M), i.e., i ∈ an(j), then we call i a cause
of j according toM;

3. If there exists a bidirected edge i↔ j ∈ G(M), then we call i and j (latently) confounded
according toM.

Corollary A.24 summarizes sufficient conditions for determining the different causal re-
lationships according to a simple SCM M. For simple SCMs it is in general not possible
to identify all the causal relationships in the graph from the observational, interventional, or
even the counterfactual distributions. Example 4.4 and 4.8 show that this is already impossi-
ble for acyclic SCMs without further assumptions.

Finally, there is a connection between SCMs and potential outcomes [68] that generalizes
to the cyclic setting. One of the consequences of Proposition 8.2 is that all counterfactuals are
defined for a simple SCM (even if it is cyclic). This allows us to define potential outcomes in
terms of a simple SCM in the following way.

DEFINITION 8.5 (Potential outcome). Let M = 〈I,J ,X ,E,f ,PE〉 be a simple SCM,
I ⊆ I a subset, ξI ∈X I a value and E a random variable such that PE = PE . The potential
outcome under the perfect intervention do(I,ξI) is defined as XξI := gMdo(I,ξI )

(Epa(I)),
where gMdo(I,ξI )

: Epa(I)→X is a measurable solution function forMdo(I,ξI).

9. Discussion In this paper, we studied the basic properties of SCMs in the presence of
cycles and latent variables without restricting to linear functional relationships between the
variables. We saw that cyclic SCMs behave differently in many aspects than acyclic SCMs.
Indeed, in the presence of cycles, many of the convenient properties of acyclic SCMs do
not hold in general: SCMs do not always have a solution; they do not always induce unique
observational, interventional and counterfactual distributions; a marginalization does not al-
ways exist, and if it exists the marginal model does not always respect the latent projection;
they do not always satisfy a Markov property; and their graphs are not always consistent with
their causal semantics.

We introduced various notions of (unique) solvability and showed that under appropriate
(unique) solvability conditions, many of the operations and results for the acyclic setting can
be extended to SCMs with cycles. For example, we introduced several equivalence relations
between SCMs to compare SCMs at different levels of abstraction, we showed how to define
marginal SCMs on a subset of the variables that are (in various ways) equivalent to the origi-
nal SCM, we discussed under which conditions the distributions satisfy the (general) directed
global Markov property relative to their graphs, and we showed under which conditions the
graph of an SCM can be interpreted causally. Most of these results are shown under sufficient
conditions that are not necessary (e.g., for the marginalization operation this was shown in
Example 5.7). It may therefore be possible to further relax some of the conditions.

These insights led us to introduce the more well-behaved class of simple SCMs, which
forms an extension of the class of acyclic SCMs to the cyclic setting that preserves many of
its convenient properties: simple SCMs induce unique observational, interventional and coun-
terfactual distributions; the class of simple SCMs is closed under both perfect intervention
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and marginalization; the marginalization respects the latent projection; the induced distribu-
tions obey the general directed global Markov property and obey the directed global Markov
property in the acyclic, discrete and linear case. This class does not contain SCMs that have
self-cycles and graphs of simple SCMs have a direct and intuitive causal interpretation.

One key property of simple SCMs is that the solutions always satisfy the conditional in-
dependencies implied by σ-separation. By simply replacing d-separation with σ-separation
it turns out that one can directly extend results and algorithms for acyclic SCMs to the more
general class of simple SCMs. E.g., adjustment criteria (including the back-door criterion),
Pearl’s do-calculus and Tian’s ID algorithm for the identification of causal effects have been
extended recently to the class of modular SCMs, which contains the class of simple SCMs
[20]. Several causal discovery algorithms have already been proposed that work with simple
SCMs, e.g., the first constraint-based causal discovery algorithm that can deal with cycles
and non-linear functional relationships [19]. Also, Local Causal Discovery (LCD) [10], Y-
structures [38] and the Joint Causal Inference framework (JCI) all apply to simple SCMs [47]
even though they were originally developed for acyclic SCMs only. Recently it has been
shown that even the well-known Fast Causal Inference (FCI) algorithm [74, 80] is directly
applicable to simple SCMs [44] and provides a consistent estimate of the Markov equiva-
lence class (under the faithfulness assumption). Moreover, a method for constructing non-
linear simple SCMs using neural networks and sampling from them has been proposed [19].
This illustrates that the class of simple SCMs forms a convenient and practical extension of
the class of acyclic SCMs that can be used for the purposes of causal modeling, reasoning,
discovery, and prediction.

We hope that this work will provide the foundations for a general theory of statistical
causal modeling with SCMs. Future work might consist of reparametrizing and reducing the
space of the exogenous variables of an SCM while preserving the causal and counterfactual
semantics; extending and generalizing the identifiability results for (direct) causes and con-
founders; extending the graphs of SCMs to represent selection bias; proving completeness
results for some Markov properties for a subclass of SCMs that contains cycles.
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LATENT VARIABLES

Supplementary Material

This Supplementary Material contains a summary of the basic terminology and results
for causal graphical models (Appendix A), additional (unique) solvability properties (Ap-
pendix B), some results for linear SCMs (Appendix C), other examples (Appendix D), the
proofs of all the theoretical results (Appendix E) and the measurable selection theorems (Ap-
pendix F) that are used in several proofs.

APPENDIX A: CAUSAL GRAPHICAL MODELS

In this appendix, we provide a summary of the basic terminology and results for causal
graphical models. In Appendix A.1 we provide the terminology for directed (mixed) graphs.
In Appendix A.2 we give an introduction and an intuitive derivation of Markov properties for
SCMs with cycles. In Appendix A.3 we give a summary of useful conditions for detecting
various causal relationships for simple SCMs. In Appendix A.4 we provide a definition of
modular SCMs and show how they relate to SCMs. In Appendix A.5 we provide an overview
of the causal graphical models related to SCMs. The proofs of the theoretical results in this
appendix are given in Appendix E.

A.1. Directed (mixed) graphs In this subsection we introduce the terminology for di-
rected (mixed) graphs, where we do allow for cycles [34, 60, 51, 18].

DEFINITION A.1 (Directed (mixed) graph).

1. A directed graph is a pair G = (V,E), where V is a set of nodes and E is a set of directed
edges, which is a subset E ⊆ V ×V of ordered pairs of nodes. Each element (i, j) ∈ E can
be represented by the directed edge i→ j or equivalently j← i. In particular, (i, i) ∈ E
represents a self-cycle i→ i.

2. A directed mixed graph is a triple G = (V,E ,B), where the pair (V,E) forms a directed
graph and B is a set of bidirected edges, which is a subset B ⊆ {{i, j} : i, j ∈ V, i 6= j}
of unordered (distinct) pairs of nodes. Each element {i, j} ∈ B can be represented by the
bidirected edge i↔ j or equivalently j↔ i. Note that a directed graph can be considered
as a directed mixed graph without bidirected edges.

3. Let G = (V,E ,B) be a directed mixed graph. A directed mixed graph G̃ = (Ṽ, Ẽ , B̃) is a
subgraph of G if Ṽ ⊆ V , Ẽ ⊆ E and B̃ ⊆ B, in which case we write G̃ ⊆ G. For a subset
W ⊆V , we define the induced subgraph of G onW by GW := (W, Ẽ , B̃), where Ẽ and B̃
are the set of directed and bidirected edges in E and B respectively that lie inW×W and
{{i, j} : i, j ∈W, i 6= j} respectively.

4. A walk between i, j ∈ V in a directed mixed graph G is a tuple (i0, ε1, i1, ε2, i2, . . . , εn, in)
of alternating nodes and edges in G for some n ≥ 0, where all i0, . . . , in ∈ V , all
ε1, . . . , εn ∈ E ∪ B such that εk ∈ {ik−1→ ik, ik−1← ik, ik−1↔ ik} for all k = 1, . . . , n,
and it starts with node i0 = i and ends with node in = j. Note that n= 0 corresponds with
a trivial walk consisting of a single node. If all nodes i0, . . . , in are distinct, it is called a
path. A walk (path) of the form i→ · · · → j, i.e., εk is ik−1→ ik for all k = 1,2, . . . , n, is
called a directed walk (path) from i to j.

31
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5. A cycle through i ∈ V in a directed mixed graph G is a directed path from i to some node
j extended with the edge j→ i ∈ E . In particular, a self-cycle i→ i ∈ E is a cycle. Note
that a path cannot contain any cycles. A directed graph and a directed mixed graph are
said to be acyclic if they contain no cycles, and are then referred to as a directed acyclic
graph (DAG) and an acyclic directed mixed graph (ADMG), respectively.

6. For a directed mixed graph G and a node i ∈ V we define the set of parents of i by
paG(i) := {j ∈ V : j→ i ∈ E}, the set of children of i by chG(i) := {j ∈ V : i→ j ∈ E},
the set of ancestors of i by

anG(i) := {j ∈ V : there is a directed path from j to i in G}

and the set of descendants of i by

deG(i) := {j ∈ V : there is a directed path from i to j in G} .

Note that we have {i} ∪ paG(i) ⊆ anG(i) and {i} ∪ chG(i) ⊆ deG(i). We can apply all
these definitions to subsets U ⊆ V by taking unions, for example paG(U) := ∪i∈UpaG(i).
A subset A⊆ V is called an ancestral subset in G if A= anG(A), i.e., A is closed under
taking ancestors of A in G.

7. Let G = (V,E ,B) be a directed mixed graph. We call G strongly connected if for every
pair of distinct nodes i, j ∈ V , the graph contains a cycle that passes through both i and
j. The strongly connected component of i ∈ V , denoted by scG(i), is the maximal subset
S ⊆ V such that i ∈ S and the induced subgraph GS is strongly connected. Equivalently,
scG(i) = anG(i)∩ deG(i).

8. A loop in a directed mixed graph G = (V,E ,B) is a subset O ⊆ V that is strongly con-
nected in the induced subgraph GO of G on O.

9. For a directed graph G = (V,E), we define the graph of strongly connected components
of G as the directed graph Gsc := (Vsc,Esc), where Vsc are the strongly connected com-
ponents of G, i.e., Vsc are the equivalence classes in V/∼ with the equivalence relation
i ∼ j if and only if i ∈ scG(j), and Esc = (E \ {i→ i : i ∈ V})/∼ with the equivalence
relation (i→ j)∼ (i′→ j′) if and only if i∼ i′ and j ∼ j′.

We omit the subscript G whenever it is clear which directed (mixed) graph G we are refer-
ring to.

LEMMA A.2 (DAG of strongly connected components). Let G = (V,E) be a directed
graph. Then Gsc, the graph of strongly connected components of G, is a DAG.

A.2. Markov properties In this subsection we give a short overview of Markov prop-
erties for SCMs with cycles. We will make use of the Markov properties that were recently
developed by Forré and Mooij [18] for HEDGes, a graphical representation that is similar to
the augmented graph of SCMs. We briefly summarize some of their main results and apply
them to the class of SCMs. We also provide a shorter and more intuitive derivation so that
this subsection can act as an entry point for the reader into the more extensive discussion of
Markov properties provided in [18].

Markov properties associate a set of conditional independence relations to a graph. The
directed global Markov property for directed acyclic graphs, also known as the d-separation
criterion [50], is one of the most widely used. It directly extends to a similar property for
acyclic directed mixed graphs (ADMGs) [60]. It does not hold in general for cyclic SCMs,
however, as was already observed earlier [71, 72]. Under some conditions (roughly speaking,
linearity or discrete variables) the directed global Markov property can be shown to hold also
in the presence of cycles [18].
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Inspired by work of Spirtes [71], Forré and Mooij [18] recognized that in the general
cyclic case a different extension of d-separation, termed σ-separation, is needed, leading to
the general directed global Markov property. One key result in [18] implies that under the
assumption of unique solvability w.r.t. each strongly connected component of its graph, the
observational distribution of an SCM satisfies the general directed global Markov property
w.r.t. its graph. The solvability assumptions are in general not preserved under interventions.
Under the stronger assumption of simplicity, however, they are, and one obtains the corol-
lary that also all interventional and counterfactual distributions of a simple SCM satisfy the
general directed global Markov property w.r.t. to their corresponding graphs.

For a more extensive study of different Markov properties that can be associated to SCMs
we refer the reader to [18].

A.2.1. The directed global Markov property Conditional independencies in the observa-
tional distribution of an acyclic SCM can be read off from its graph by using the graphical cri-
terion called d-separation [51]. The directed global Markov property associates a conditional
independence relation in the observational distribution of the SCM to each d-separation en-
tailed by the graph. Here, we use a formulation of d-separation that generalizes d-separation
for DAGs [50] and m-separation for ADMGs [60] and mDAGs [15].

DEFINITION A.3 (Collider). Let π = (i0, ε1, i1, ε2, i2, . . . , εn, in) be a walk (path) in a
directed mixed graph G = (V,E ,B). A node ik on π is called a collider on π if it is a
non-endpoint node (1 ≤ k < n) and the two edges εk, εk+1 meet head-to-head on ik (i.e.,
if the subwalk (ik−1, εk, ik, εk+1, ik+1) is of the form ik−1→ ik← ik+1, ik−1↔ ik← ik+1,
ik−1→ ik ↔ ik+1, or ik−1↔ ik ↔ ik+1). The node ik is called a non-collider on π other-
wise, i.e., if it is an endpoint node (k = 0 or k = n) or if the subwalk (ik−1, εk, ik, εk+1, ik+1)
is of the form ik−1→ ik→ ik+1, ik−1← ik← ik+1, ik−1← ik→ ik+1, ik−1↔ ik→ ik+1,
or ik−1← ik↔ ik+1.

Note in particular that the end points of a walk are non-colliders on the walk.

DEFINITION A.4 (d-separation). Let G = (V,E ,B) be a directed mixed graph and let
C ⊆ V be a subset of nodes. A walk (path) π = (i0, ε1, i1, . . . , in) in G is said to be C-d-
blocked or d-blocked by C if

1. it contains a collider ik /∈ anG(C), or
2. it contains a non-collider ik ∈C .

The walk (path) π is said to be C-d-open if it is not d-blocked by C . For two subsets of nodes
A,B ⊆ V , we say that A is d-separated from B given C in G if all paths between any node
in A and any node in B are d-blocked by C , and write

A
d
⊥
G
B |C .

The next lemma is a straightforward generalization of Lemma 3.3 in [22] to the cyclic
setting. It implies that it suffices to formulate d-separation in terms of paths rather than walks.

LEMMA A.5. Let G = (V,E ,B) be a directed mixed graph, C ⊆ V and i, j ∈ V . There
exists a C-d-open walk between i and j in G if and only if there exists a C-d-open path
between i and j in G.
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X1 X2

X3 X4

X1 X2

X3 X4

Fig 7: The graphs of the observationally equivalent SCMsM (left) and M̃ (right) of Example A.8 and A.10.

DEFINITION A.6 (Directed global Markov property). Let G = (V,E ,B) be a directed
mixed graph and PV a probability distribution on X V =

∏
i∈V Xi, where each Xi is a stan-

dard probability space. The probability distribution PV satisfies the directed global Markov
property relative to G if for all subsets A,B,C ⊆V we have

A
d
⊥
G
B |C =⇒ XA ⊥⊥

PV
XB |XC ,

i.e., (Xi)i∈A and (Xi)i∈B are conditionally independent given (Xi)i∈C under PV , where we
take the canonical projections Xi : X V →Xi as random variables.

From the results in [18] it directly follows that for the observational distribution of an
SCM, the directed global Markov property w.r.t. the graph of the SCM (also known as the
d-separation criterion), holds under one of the following assumptions.

THEOREM A.7 (Directed global Markov property for SCMs [18]). LetM be a uniquely
solvable SCM that satisfies at least one of the following three conditions:

1. M is acyclic;
2. all endogenous spaces Xi are discrete andM is ancestrally uniquely solvable;
3. M is linear (see Definition C.1), each of its causal mechanisms {fi}i∈I has a non-trivial

dependence on at least one exogenous variable, and PE has a density w.r.t. the Lebesgue
measure on RJ .

Then, its observational distribution PX exists, is unique and satisfies the directed global
Markov property relative to G(M) (see Definition A.6).

The acyclic case is well-known and was first shown in the context of linear-Gaussian struc-
tural equation models [75, 32]. The discrete case fixes the erroneous theorem by Pearl and
Dechter [52], for which a counterexample was found by Neal [49], by adding the ancestral
unique solvability condition, and extends it to allow for bidirected edges in the graph. The
linear case is an extension of existing results for the linear-Gaussian setting without bidi-
rected edges [71, 72, 31] to a linear (possibly non-Gaussian) setting with bidirected edges in
the graph.

The following counterexample of an SCM for which the directed global Markov property
does not hold was already given in [71, 72].

EXAMPLE A.8 (Directed global Markov property does not hold for cyclic SCM). Con-
sider the SCMM= 〈4,4,R4,R4,f ,PR4〉 with causal mechanism given by

f1(x,e) = e1 , f2(x,e) = e2 , f3(x,e) = x1x4 + e3 , f4(x,e) = x2x3 + e4

and PR4 is the standard-normal distribution on R4. The graph ofM is depicted in Figure 7
on the left. The model is uniquely solvable (it is even simple). One can check that for every
solution X of M, X1 is not independent of X2 given {X3,X4}. However, the variables
X1 and X2 are d-separated given {X3,X4} in G(M). Hence the global directed Markov
property does not hold here.
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In constraint-based approaches to causal discovery, one usually assumes the converse of
the directed global Markov property to hold [73, 51].

DEFINITION A.9 (d-Faithfulness). Let G = (V,E ,B) be a directed mixed graph and PV
a probability distribution on X V =

∏
i∈V Xi, where each Xi is a standard probability space.

The probability distribution PV is d-faithful to G if for all subsets A,B,C ⊆V we have

A
d
⊥
G
B |C ⇐= XA ⊥⊥

PV
XB |XC ,

where we take the canonical projections Xi : X V →Xi as random variables.

In other words, the d-faithfulness assumption states that the graph explains, via d-
separation, all the conditional independencies that are present in the observational distri-
bution. Meek [41] showed that for multinomial and linear-Gaussian DAG (i.e., acyclic and
causally sufficient SCMs) models, d-faithfulness holds for all parameter values up to a mea-
sure zero set. Up to our knowledge no such result has been shown for any subclass of SCMs
that contains cycles, nor in more general acyclic settings.

A.2.2. The general directed global Markov property In [18] the general directed global
Markov property is introduced, that is based on σ-separation, an extension of d-separation.
This notion of σ-separation was derived from the notion of d-separation in the acyclification
of the graph. The acyclification of a graph generalizes the idea of the collapsed graph for
directed graphs, developed by Spirtes [71], to HEDGes. In particular, this notion can be
applied to directed mixed graphs, and thus to the graphs of SCMs. The main idea of the
acyclification is that under the condition that the SCM is uniquely solvable w.r.t. each strongly
connected component, we can replace the causal mechanisms of these strongly connected
components by their measurable solution functions, which results in an acyclic SCM. This
acyclification preserves the solutions, and d-separation in the acyclification can directly be
translated into σ-separation in the original graph. This then leads to the general directed
global Markov property. We will discuss this now in more detail.

EXAMPLE A.10 (Construction of an observationally equivalent acyclic SCM). Consider
the SCMM of Example A.8 which is uniquely solvable w.r.t. all its strongly connected com-
ponents, i.e., the subsets {1}, {2} and {3,4}. Replacing the causal mechanisms of these
strongly connected components by their measurable solution functions gives the SCM M̃
that is the same asM except that its causal mechanism f̃ is given by

f̃1(x,e) := e1, f̃2(x,e) := e2, f̃3(x,e) := x1e4+e3
1−x1x2

, f̃4(x,e) := x2e3+e4
1−x1x2

.

By construction,M and M̃ are observationally equivalent. Because M̃ is acyclic (see Fig-
ure 7 on the right) we can apply the directed global Markov property to M̃. The fact that X1

and X2 are not d-separated given {X3,X4} in G(M̃) is in line with X1 being dependent of
X2 given {X3,X4} for every solution X of M̃ (and hence ofM).

One of the key insights in [18] is that this example can easily be generalized as follows.

DEFINITION A.11 (Acyclification of an SCM). Let M = 〈I,J ,X ,E,f ,PE〉 be an
SCM that is uniquely solvable w.r.t. each strongly connected component of G(M). For each
i ∈ I , let gi be the ith component of a measurable solution function gsc(i) : X pa(sc(i))\sc(i) ×
Epa(sc(i)) → X sc(i) of M w.r.t. sc(i), where pa and sc denote the parents and strongly
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X1 X2

G(M)

X1 X2

G(acy(M))

X1 X2

acy(G(M))

Fig 8: The graphs of the original SCMM (left), of the acyclified SCM (center), and of the acyclification of the graph ofM
(right) corresponding to Example A.15.

connected components according to Ga(M) respectively. We call the SCM Macy :=

〈I,J ,X ,E, f̂ ,PE〉 with the acyclified causal mechanism f̂ : X × E→X given by

f̂i(x,e) = gi(xpa(sc(i))\sc(i),epa(sc(i))) , i ∈ I ,

an acyclification ofM. We denote by acy(M) the equivalence class of the acyclifications of
M.

Note that acy(M) is well-defined: all acyclifications of an SCM M belong to the same
equivalence class of SCMs.

PROPOSITION A.12. Let M be an SCM that is uniquely solvable w.r.t. each strongly
connected component of G(M). Then an acyclificationMacy ofM is acyclic and observa-
tionally equivalent toM.

We can also define a graphical acyclification for directed mixed graphs, which is a special
case of the operation defined in [18] for HEDGes.

DEFINITION A.13 (Acyclification of a directed mixed graph). Let G = (V,E ,B) be a di-
rected mixed graph. The acyclification of G maps G to the acyclified graph Gacy := (V, Ê , B̂)

with directed edges j → i ∈ Ê if and only if j ∈ paG(scG(i)) \ scG(i) and bidirected edges
i↔ j ∈ B̂ if and only if there exist i′ ∈ scG(i) and j′ ∈ scG(j) with i′ = j′ or i′↔ j′ ∈ B.

The following compatibility result is immediate from the definitions.

PROPOSITION A.14. Let M be an SCM that is uniquely solvable w.r.t. each strongly
connected component of G(M). Then Ga(acy(M)) ⊆ acy(Ga(M)) and G(acy(M)) ⊆
acy(G(M)).

The following example illustrates that the graph of the acyclification of an SCM can be a
strict subgraph of the acyclification of the graph of the SCM.

EXAMPLE A.15 (Graph of the acyclification of the SCM is a strict subgraph of the acycli-
fication of its graph). Consider the SCMM= 〈2,1,R2,R,f ,PR〉 with the causal mecha-
nism defined by

f1(x, e) = x2 − e , f2(x, e) = 1
2x1 + e

and PR the standard-normal measure on R. The SCMM is uniquely solvable w.r.t. the (only)
strongly connected component {1,2}. An acyclification of M is the acyclified SCM Macy

with the acyclified causal mechanism f̂ defined by

f̂1(x, e) = 0 , f̂2(x, e) = e .

The graph G(acy(M)) is a strict subgraph of acy(G(M)) as can be seen in Figure 8.
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Translating the notion of d-separation from the acyclified graph back to the original graph
led to the notion of σ-separation.

DEFINITION A.16 (σ-separation [18]). Let G = (V,E ,B) be a directed mixed graph and
let C ⊆ V be a subset of nodes. A walk (path) π = (i0, ε1, i1, . . . , in) in G is said to be C-σ-
blocked or σ-blocked by C if

1. its first node i0 ∈C or its last node in ∈C , or
2. it contains a collider ik /∈ anG(C), or
3. it contains a non-endpoint non-collider ik ∈C that points towards a neighboring node on
π that lies in a different strongly connected component of G, i.e., such that ik−1← ik in π
and ik−1 /∈ scG(ik), or ik→ ik+1 in π and ik+1 /∈ scG(ik).

The walk (path) π is said to be C-σ-open if it is not σ-blocked by C . For two subsets of nodes
A,B ⊆ V , we say that A is σ-separated from B given C in G if all paths between any node
in A and any node in B are σ-blocked by C , and write

A
σ
⊥
G
B |C .

The only difference between σ-separation and d-separation is that d-separation does not
have the extra condition on the non-collider that it has to point to a node in a different strongly
connected component. It is therefore obvious that σ-separation reduces to d-separation for
acyclic graphs, since scG(i) = {i} for each i ∈ V in that case.

Although for proofs it is often easier to make use of walks, it suffices to formulate σ-
separation in term of paths rather than walks because of the following result, which is analo-
gous to a similar result for d-separation (see Lemma A.5).

LEMMA A.17. Let G = (V,E ,B) be a directed mixed graph, C ⊆ V and i, j ∈ V . There
exists a C-σ-open walk between i and j in G if and only if there exists a C-σ-open path
between i and j in G.

It is clear from the definitions that σ-separation implies d-separation. The other way
around does not hold in general, as can be seen in the following example.

EXAMPLE A.18 (d-separation does not imply σ-separation). Consider the directed
graph G as depicted in Figure 7 (left). Here X1 is d-separated from X2 given {X3,X4},
but X1 is not σ-separated from X2 given {X3,X4}.

The following result in [18] relates σ-separation to d-separation.

PROPOSITION A.19. Let G = (V,E ,B) be a directed mixed graph. Then for A,B,C ⊆
V ,

A
σ
⊥
G
B |C ⇐⇒ A

d
⊥

acy(G)
B |C .

By replacing in Definition A.6 “d-separation” by “σ-separation”, one obtains the formu-
lation of what Forré and Mooij [18] termed the general directed global Markov property.
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DEFINITION A.20 (General directed global Markov property [18]). Let G = (V,E ,B) be
a directed mixed graph and PV a probability distribution on X V =

∏
i∈V Xi, where each Xi

is a standard probability space. The probability distribution PV satisfies the general directed
global Markov property relative to G if for all subsets A,B,C ⊆V we have

A
σ
⊥
G
B |C =⇒ XA ⊥⊥

PV
XB |XC ,

i.e., (Xi)i∈A and (Xi)i∈B are conditionally independent given (Xi)i∈C under PV , where we
take the canonical projections Xi : X V →Xi as random variables.

The fact that σ-separation implies d-separation means that the directed global Markov
property implies the general directed global Markov property. In other words, the general
directed global Markov property is weaker than the directed global Markov property. It is
actually strictly weaker, as we saw in Example A.18.

The following fundamental result, also known as the σ-separation criterion, follows di-
rectly from the theory in [18].

THEOREM A.21 (General directed global Markov property for SCMs). Let M be an
SCM that is uniquely solvable w.r.t. each strongly connected component of G(M). Then its
observational distribution PX exists, is unique and it satisfies the general directed global
Markov property relative to G(M).15

The proof is based on the reasoning that, forA,B,C ⊆ I , ifA is σ-separated fromB given
C in G(M), thenA is d-separated fromB byC in acy(G(M)) and hence in G(acy(M)), and
since acy(M) is acyclic and observationally equivalent to M, it follows from the directed
global Markov property applied to acy(M) thatXA ⊥⊥ PX XB |XC for every solutionX of
M. Note that the ancestral unique solvability condition for the discrete case is strictly weaker
than the condition of unique solvability w.r.t. each strongly connected component in Theo-
rem A.21. For the linear case, the condition of unique solvability is equivalent to the condition
of unique solvability w.r.t. each strongly connected component (see Proposition C.4).

The results in Theorems A.7 and A.21 are not preserved under perfect intervention, be-
cause intervening on a strongly connected component could split it into several strongly
connected components with different solvability properties. As the class of simple SCMs
is preserved under perfect intervention and the twin operation (Proposition 8.2), we obtain
the following corollary.

COROLLARY A.22 (Global Markov properties for simple SCMs). Let M be a simple
SCM. Then, the

1. observational distribution,
2. interventional distribution after perfect intervention on I ⊂ I ,
3. counterfactual distribution after perfect intervention on Ĩ ⊆ I ∪ I ′,

15Since [18] also provides results under the weaker condition that an SCM is solvable (not necessarily
uniquely) w.r.t. each strongly connected component of G(M), one might believe that Theorem A.21 could
be generalized to stating that in that case, any of its observational distributions satisfies the general directed
global Markov property. However, that is not true: consider for example the SCMM= 〈2,∅,R2,1,f ,P1〉 with
f1(x) = x1 and f2(x) = x2. ThenM is solvable w.r.t. each of its strongly connected components {1} and {2}.
The solution with X1 =X2 shows a dependence between X1 and X2 and thus X1⊥⊥X2 does not hold. In gen-
eral, all strongly connected components that admit multiple solutions may be dependent on any other variable(s)
in the model.
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all exist, are unique and satisfy the general directed global Markov property relative to
G(M), do(I)(G(M)) and do(Ĩ)(twin(G(M))) respectively. Moreover, if M satisfies at
least one of the three conditions (1), (2), (3) of Theorem A.7, then they also satisfies the
directed global Markov property relative to G(M), do(I)(G(M)) and do(Ĩ)(twin(G(M)))
respectively.

Similarly to d-faithfulness, σ-faithfulness16 is defined as follows.

DEFINITION A.23 (σ-Faithfulness). Let G = (V,E ,B) be a directed mixed graph and PV
a probability distribution on X V =

∏
i∈V Xi, where each Xi is a standard probability space.

The probability distribution PV is σ-faithful to G if for all subsets A,B,C ⊆V we have

A
σ
⊥
G
B |C ⇐= XA ⊥⊥

PV
XB |XC ,

where we take the canonical projections Xi : X V →Xi as random variables.

In other words, the graph explains, via σ-separation, all the conditional independencies
that are present in the observational distribution. Although it has been conjectured [72] that
under certain conditions σ-faithfulness should hold, it is not known if it holds generically for
the class of simple SCMs.

A.3. Simple SCMs In this subsection, we give a summary of useful sufficient conditions
for determining the different causal relationships according to a specific simple SCM M,
which follow directly from Proposition 7.1 and 7.3.

COROLLARY A.24 (Sufficient conditions for the presence of causal relationships for sim-
ple SCMs). LetM be a simple SCM and i, j ∈ I such that i 6= j and I := I \ {i, j}. Then:

1. If there exist values ξI ∈X I and ξi 6= ξ̃i ∈ Xi and a measurable set Bj ⊆Xj such that

P(Mdo(I,ξI )
)do({i},ξi)

(Xj ∈ Bj) 6= P(Mdo(I,ξI )
)do({i},ξ̃i)

(Xj ∈ Bj) ,

then i is a direct cause of j according toM, i.e., i→ j ∈ G(M);
2. If there exist values ξi 6= ξ̃i ∈ Xi and a measurable set Bj ⊆Xj such that

PMdo({i},ξi)
(Xj ∈ Bj) 6= PMdo({i},ξ̃i)

(Xj ∈ Bj) ,

then i is a cause of j according toM, i.e., i→ · · · → j in G(M);
3. If j /∈ anG(Mdo(I,ξI )

)(i) and there exist a value ξI ∈ X I and a measurable set Bj ⊆
Xj such that for every version of the regular conditional probability PMdo(I,ξI )

(Xj ∈
Bj |Xi = ξi) there exists a value ξi ∈ Xi such that

P(
Mdo(I,ξI )

)
do({i},ξi)

(Xj ∈ Bj) 6= PMdo(I,ξI )
(Xj ∈ Bj |Xi = ξi) ,

then i and j are confounded according toM, i.e., i↔ j ∈ G(M).

A.4. Modular SCMs In this subsection we relate the class of (simple) SCMs to that
of modular SCMs. Modular SCMs introduced by Forré and Mooij [18] are causal graphical
models on which marginalizations and interventions are defined and they satisfy the general
directed global Markov property. For a comprehensive account on modular SCMs we refer
the reader to [18].

16In [63] it is called “collapsed graph faithfulness”.
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A.4.1. Definition of a modular SCM In contrast to an SCM from which a graph can be
derived, a modular SCM is defined in terms of a graphical object, which Forré and Mooij [18]
call a directed graph with hyperedges (HEDG). The hyperedges of a HEDG are described in
terms of a simplicial complex.

DEFINITION A.25 (Simplicial complex). Let V be a finite set. A simplicial complex H
over V is a set of subsets of V such that

1. all single element sets {v} are in H for v ∈ V , and
2. if F ∈H, then also all subsets F̃ ⊆ F are elements of H.

DEFINITION A.26 (Directed graph with hyperedges (HEDGes) [18]). A directed graph
with hyperedges (HEDG) is a triple G = (V,E ,H), where (V,E) is a directed graph and H
a simplicial complex over the set of nodes V . The elements F of H are called hyperedges
of G. The elements F of H that are inclusion-maximal elements of H are called maximal
hyperedges and are denoted by Ĥ.

A HEDG G = (V,E ,H) can be represented as a directed graph Ḡ := (V,E) consisting of
nodes V and directed edges E , with additional maximal hyperedges F ∈ Ĥ with |F| ≥ 2 (i.e.,
not corresponding to single element sets {v} ∈ Ĥ), that point to their target nodes v ∈ F . For
a HEDG G we define paG , chG , etc. in terms of the underlying directed graph Ḡ, i.e., paḠ ,
chḠ , etc. respectively.

A loop in a HEDG G = (V,E ,H) is a subsetO⊆V that is a loop in the underlying directed
graph Ḡ = (V,E). In other words, a loop of G is a set of nodes O ⊆ V such that for every
two nodes v,w ∈ O there are directed paths v→ · · · → w and w→ · · · → v in G for which
all the intermediate nodes lie in O (if any exist). In particular, a loop may consist of a single
element {v} for v ∈ V . The set of loops in G is denoted by L(G).

In order to define a modular SCM one needs the notion of a compatible system of solution
functions, which assigns to each loop a separate solution function such that all these solution
functions are “compatible” with each other.

DEFINITION A.27 (Compatible system of solution functions17). Let G = (V,E ,H) be
a HEDG. For every v ∈ V and maximal hyperedge F in Ĥ, let Xv and EF be standard
measurable spaces. For a subset O⊆V we define18

XO :=
∏
v∈O
Xv and ÊO :=

∏
F∈Ĥ
F∩O6=∅

EF .

Consider a family of measurable mappings (gO)O∈L(G) indexed by L(G) which are of the
form

gO : X paG(O)\O × ÊO→XO .

We call the family of measurable mappings (gO)O∈L(G) a compatible system of solution
functions, if for all O, Õ ∈ L(G) with Õ ⊆ O and for all êO ∈ ÊO and xpaG(O)∪O ∈
X paG(O)∪O we have

xO = gO(xpaG(O)\O, êO) =⇒ xÕ = gÕ(xpaG(Õ)\Õ, êÕ) .

17We deviate from the terminology in [18] where this is called a “compatible system of structural equations”.
18We use the “hat” notation ÊO to distinguish it from the ordinary subscript convention that EO =

∏
F∈O EF

for some subset O ⊆ Ĥ.
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This structure of a compatible system of solution functions is at the heart of the defnition
of a modular SCM.

DEFINITION A.28 (Modular structural causal model (mSCM) [18]). A modular struc-
tural causal model (mSCM) is a tuple

M̂ := 〈G,X ,E, (gO)O∈L(G),PE〉 ,

where

1. G = (V,E ,H) is a HEDG,
2. X =

∏
v∈V Xv is the product of standard measurable spaces Xv ,

3. E =
∏
F∈Ĥ EF is the product of standard measurable spaces EF ,

4. (gO)O∈L(G) is a compatible system of solution functions,
5. PE =

∏
F∈Ĥ PEF is a product measure, where PEF is a probability measure on EF for

each F ∈ Ĥ.

Let M̂ = 〈G,X ,E, (gO)O∈L(G),PE〉 be a modular SCM and O1, . . . ,Or ∈ L(G) the
strongly connected components of G ordered according to a topological order of the DAG
of strongly connected components of G. Then, for any random variable E : Ω→ E such that
PE = PE one can inductively define the random variables Xv := (gOi)v(XpaG(Oi)\Oi , ÊOi)

for all v ∈ Oi for all i ≥ 1, starting at Xv := (gO1
)v(ÊO1

) for all v ∈ O1. Because
(gO)O∈L(G) is a compatible system of solution functions, we have for every O ∈L(G)

XO = gO(XpaG(O)\O, ÊO) .

We call the random variableX a solution of the modular SCM M̂. Note that the solutionX
depends on the choice of the random variable E : Ω→ E .

The causal semantics of modular SCMs can be defined in terms of perfect interventions,
which is defined as follows.

DEFINITION A.29 (Perfect intervention on an mSCM). Consider a modular SCM M̂=
〈G,X ,E, (gO)O∈L(G),PE〉, a subset I ⊆ V of endogenous variables and a value ξI ∈ X I .
The perfect intervention do(I,ξI) maps M̂ to the modular SCM

M̂do(I,ξI) := 〈Gdo,X ,Edo, (gdo
O )O∈L(Gdo),PEdo〉 ,

where

1. Gdo = (V,Edo,Hdo), where

Edo = E \ {v→w : v ∈ V,w ∈ I}

Hdo = {F \ I : F ∈H}∪ {{v} : v ∈ I} ,

2. φ : {F ∈ Ĥ : F \ I 6= ∅}→ Ĥdo \ {{v} : v ∈ I} is a mapping such that φ(F)⊇F \ I for
all F ∈ Ĥ for which F \ I 6= ∅,

3. Edo =
∏
F̃∈Ĥdo Edo

F̃ , where

Edo
F̃ =

{
Xv if F̃ = {v} for v ∈ I∏
F=φ−1(F̃) EF if F̃ ∈ Ĥdo \ {{v} : v ∈ I} ,
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4. for every O ∈L(Gdo)

gdo
O =

{
I{v} if O = {v} for v ∈ I
gO otherwise,

(note that if O is a loop in Gdo, then it is a loop in G),
5. PEdo =

∏
F̃∈Ĥdo PEdo

F̃
, where

PEdo
F̃

=

{
δξv if F̃ = {v} for v ∈ I∏
F=φ−1(F̃) PEF if F̃ ∈ Ĥdo \ {{v} : v ∈ I} .

In contrast to SCMs, these perfect interventions on modular SCMs are directly defined on
the underlying HEDG and depend on the choice of the mapping φ.

A.4.2. Relation between SCMs and modular SCMs The solutions of a modular SCM can
be described by an SCM that is loop-wisely solvable.

DEFINITION A.30 (Induced SCM). Let M̂ = 〈G,X ,E, (gO)O∈L(G),PE〉 be a modular
SCM. Then, the mapping ι maps M̂ to the induced SCM M̃ := 〈Ĩ, J̃ , X̃ , Ẽ, f̃ ,PẼ〉, where

1. Ĩ = V ,
2. J̃ = Ĥ,
3. X̃ = X ,
4. Ẽ = E ,
5. f̃ is given by f̃v = (g{v})v for all v ∈ V ,
6. PẼ = PE .

Every solution X of a modular SCM M̂ is also a solution of the induced SCM ι(M̂).
Observe that for the modular SCM M̂ we have that the induced subgraph Ga(ι(M̂))Ĩ , of

the augmented graph of the induced SCM Ga(ι(M̂)) on Ĩ , is a subgraph of the underlying
HEDG G, i.e., Ga(ι(M̂))Ĩ ⊆ G. This implies that, in general, the underlying HEDG G of
M̂ may have more loops than the loops in G(ι(M̂)). For a subset O ⊆ Ĩ we have for the
exogenous parents of the induced SCM ι(M̂)

pa(O)∩ J̃ ⊆ {F ∈ J̃ : F ∩O 6= ∅} ,

where pa(O) denotes the set of parents of O in Ga(ι(M̂)). Hence, in general, not all the
hyperedges F ∈H such that |F|= 2 (i.e., bidirected edges) are in the set of bidirected edges
B of the graph of the induced SCM G(ι(M̂)) = (V,E ,B). We conclude that the graph of the
induced SCM is, in general, a sparser graph than the HEDG of the modular SCM.

Next, we show that the compatible system of solution functions of a modular SCM induces
a compatible system of solution functions on the induced SCM. For this we need the notion
of loop-wise solvability for SCMs.

DEFINITION A.31 (Loop-wise (unique) solvability for SCMs). We call an SCMM

1. loop-wisely solvable, ifM is solvable w.r.t. every loop O ∈L(G(M)), and
2. loop-wisely uniquely solvable, ifM is uniquely solvable w.r.t. every loop O ∈L(G(M)).
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Fig 9: Overview of causal graphical models. The “gray” and “dark gray” areas contain all the causal graphical models that
can be modeled by an SCM and an acyclic SCM respectively.

DEFINITION A.32 (Compatible system of solution functions for SCMs). For a loop-
wisely solvable SCMM, we call a family of measurable solution functions (gO)O∈L(G(M)),
where gO is a measurable solution function ofM w.r.t. O, a compatible system of solution
functions, if for all O, Õ ∈ L(G(M)) with Õ ⊆ O and for PE -almost every e ∈ E and for all
x ∈X we have

xO = gO(xpa(O)\O,epa(O)) =⇒ xÕ = gÕ(xpa(Õ)\Õ,epa(Õ)) .

The induced SCM of a modular SCM always has a compatible system of solution func-
tions, by construction.

PROPOSITION A.33. Let M̂= 〈G,X ,E, (gO)O∈L(G),PE〉 be a modular SCM. Then, the
induced SCM M̃ := ι(M̂) is loop-wisely solvable. Moreover, it has a compatible system of
solution functions (gO)O∈L(G(M̃)), where gO is a measurable solution function of M̃ w.r.t.
O.

This shows that a modular SCM can be seen as an SCM together with an additional struc-
ture of a compatible system of solution functions, and is, in particular, loop-wisely solvable.

Moreover, the class of simple SCMs corresponds exactly with those SCMs that are loop-
wisely uniquely solvable.

LEMMA A.34. An SCMM is simple if and only if it is loop-wisely uniquely solvable.

In particular, for simple SCMs, or loop-wisely uniquely solvable SCMs, there always ex-
ists a compatible system of solution functions.

PROPOSITION A.35. LetM= 〈I,J ,X ,E,f ,PE〉 be a simple SCM. Then, every family
of measurable solution functions (gO)O∈L(G(M)), where gO is a measurable solution func-
tion ofM w.r.t. O, is a compatible system of solution functions.

A.5. Overview of causal graphical models Figure 9 gives an overview of the causal
graphical models related to SCMs. The “gray” area contains all the causal graphical models
that can be modeled by an SCM, by which we mean, that there exists an SCM that can de-
scribe all its observational and interventional distributions. The “dark gray” area contains all
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the causal graphical models which can be modeled by an acyclic SCM. Acyclic SCMs gen-
eralize causal Bayesian networks (causal BNs) [51] to allow for latent confounders and to
derive counterfactuals. Simple SCMs form a subclass of SCMs that extends acyclic SCMs to
the cyclic setting, while preserving many of their convenient properties. Modular SCMs [18]
can be seen as SCMs that have an additional structure of compatible system of solution func-
tions and contain, in particular, the class of simple SCMs. Forré and Mooij [18] showed that
modular SCMs satisfy various convenient properties, like marginalization and the general
directed global Markov property. We show that for SCMs in general various of those prop-
erties still hold under certain solvability conditions. A generalization of SCMs, known as
causal constraints models (CCMs), has been proposed [3] in order to completely model the
causal semantics of the equilibrium solutions of a dynamical system given the initial condi-
tions. This class of CCMs is rich enough to model the causal semantics of SCMs, but does
not come with a single graphical representation that provides both a Markov property and a
causal interpretation [4].

APPENDIX B: (UNIQUE) SOLVABILITY PROPERTIES

In this appendix we provide additional (unique) solvability properties for SCMs. In Ap-
pendix B.1 we provide a sufficient condition of solvability w.r.t. (strict) subsets. In Ap-
pendix B.2 we discuss how (unique) solvability is preserved under strict super- and subsets.
In Appendix B.3 we discuss how (unique) solvability is preserved under unions and intersec-
tions. The proofs of the theoretical results in this appendix are given in Appendix E.

B.1. Sufficient condition for solvability w.r.t. subsets For solvability w.r.t. a (strict)
subset of I there exists a sufficient condition that is similar to the sufficient (and necessary)
condition (2) in Theorem 3.3 in the sense that it is formulated in terms of the solutions of (a
subset of) the structural equations, but no measurability is required.

PROPOSITION B.1 (Sufficient condition for solvability w.r.t. a subset). Let M =
〈I,J ,X ,E,f ,PE〉 be an SCM and O⊆ I a subset. If for PE -almost every e ∈ E and for all
x\O ∈X \O the topological space

S(e,x\O) := {xO ∈XO : xO = fO(x,e)} ,

with the subspace topology induced by XO is non-empty and σ-compact,19 thenM is solv-
able w.r.t. O.

For many purposes, this condition of σ-compactness suffices since it contains for example
all countable discrete spaces, every interval of the real line, and moreover all the Euclidean
spaces. In particular, it suffices to prove a sufficient and necessary condition for unique solv-
ability w.r.t. a subset, in terms of the solutions of a subset of the structural equations (see
Theorem 3.8). For larger solution spaces, we refer the reader to [30]. For the class of linear
SCMs (see Definition C.1), we provide in Proposition C.2 a sufficient and necessary condi-
tion for solvability w.r.t. a (strict) subset of I .

B.2. (Unique) solvability w.r.t. strict super- and subsets In general, (unique) solvabil-
ity w.r.t. O ⊆ I does not imply (unique) solvability w.r.t. a strict superset O ( V ⊆ I nor
w.r.t. a strict subsetW (O, as can be seen in the following example.

19A topological space X is called σ-compact if it is the union of a countable set of compact topological spaces.



45

EXAMPLE B.2 (Solvability is not preserved under strict sub- or supersets). Consider the
SCMM= 〈3,∅,R3,1,f ,P1〉 where the causal mechanism is given by

f1(x) = x1 · (1− 1{1}(x2)) + 1 , f2(x) = x2 , f3(x) = x3 · (1− 1{−1}(x2)) + 1 .

This SCM is (uniquely) solvable w.r.t. the subsets {1,2}, {2,3}, however it is not (uniquely)
solvable w.r.t. the subsets {1}, {3} and {1,2,3}, and not uniquely solvable w.r.t. {2}.

However, in Proposition 3.13 we show that solvability w.r.t. O implies solvability w.r.t.
every ancestral subset in G(M)O .

B.3. (Unique) solvability w.r.t. unions and intersections In general, (unique) solvabil-
ity is not preserved under unions and intersections. The following example illustrates that
(unique) solvability is in general not preserved under intersections.

EXAMPLE B.3 (Solvability is not preserved under intersections). Consider the SCM
M= 〈3,∅,R3,1,f ,P1〉 where the causal mechanism is given by

f1(x) = 0 , f2(x) = x2 · (1− 1{0}(x1 · x3)) + 1 , f3(x) = 0 .

ThenM is (uniquely) solvable w.r.t. {1,2} and {2,3}, however it is not (uniquely) solvable
w.r.t. their intersection.

Example B.2 gives an example where (unique) solvability is not preserved under unions.
Even, if we take the union of disjoint subsets, (unique) solvability is not preserved (see Ex-
ample 3.7 with α = β = 1). Although, in general, unique solvability is not preserved under
unions, we show next that unique solvability is preserved under the union of ancestral subsets,
under the following assumptions.

PROPOSITION B.4 (Combining measurable solution functions on different sets). Let
M= 〈I,J ,X ,E,f ,PE〉 be an SCM, O ⊆ I a subset and A, Ã ⊆ O two ancestral subsets
in G(M)O . IfM is uniquely solvable w.r.t. A, Ã and A∩ Ã, thenM is uniquely solvable
w.r.t. A∪ Ã.

A consequence of this property is that in order to check whether an SCM is ancestrally
uniquely solvable w.r.t. O, it suffices to check that it is uniquely solvable w.r.t. the ancestral
subsets for each node in O.

COROLLARY B.5. LetM= 〈I,J ,X ,E,f ,PE〉 be an SCM and O ⊆ I a subset. Then
M is ancestrally uniquely solvable w.r.t. O if and only if M is uniquely solvable w.r.t.
anG(M)O(i) for every i ∈O.

APPENDIX C: LINEAR SCMS

In this appendix we provide some results about (unique) solvability and marginalization
for linear SCMs. Linear SCMs form a special class of SCMs that has seen much attention in
the literature [see, e.g., 5, 27]. The proofs of the theoretical results in this appendix are given
in Appendix E.

DEFINITION C.1 (Linear SCM). We call an SCM M = 〈I,J ,RI ,RJ ,f ,PRJ 〉 linear
if each component of the causal mechanism is a linear combination of the endogenous and
exogenous variables, that is

fi(x,e) =
∑
j∈I

Bijxj +
∑
k∈J

Γikek ,
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where i ∈ I , B ∈RI×I and Γ ∈RI×J are matrices, and PRJ is a product probability mea-
sure20 on RJ .

For a subset O⊆ I we also use the shorthand vector-notation

fO(x,e) =BOIx+ ΓOJ e .

A non-zero coefficient Bij for i, j ∈ I such that i 6= j corresponds with a directed edge j→ i
in the (augmented) graph, and a coefficient Bii = 1 for i ∈ I corresponds with a self-cycle
i→ i in the (augmented) graph of the SCM. A non-zero coefficient Γij for i ∈ I , j ∈ J
with PEj a non-degenerate probability distribution over R corresponds with a directed edge
j→ i in the augmented graph, and a non-zero entry (ΓΓT )ij for i ∈ I , j ∈ J such that there
exists a k ∈ J with Γik,Γkj 6= 0 and PEk a non-degenerate probability distribution over R
corresponds with a bidirected edge i↔ j in the graph of the SCM.

For linear SCMs the solvability condition w.r.t. a subset, Definition 3.1, translates into a
matrix condition. In order to state this condition we need to define the pseudoinverse (or the
Moore-Penrose inverse) A+ of a real matrix A [54, 24]. The pseudoinverse of the matrix A is
defined by A+ := V Σ+U∗, where A= UΣV ∗ is the singular value decomposition of A and
Σ+ is obtained by replacing each non-zero entry on the diagonal of Σ by its reciprocal [24].
One of its useful properties is that AA+A=A.

PROPOSITION C.2 (Sufficient and necessary condition for solvability w.r.t. a subset for
linear SCMs). Let M be a linear SCM and L ⊆ I and O = I \ L. Then M is solvable
w.r.t. L if and only if for the matrix ALL = IL −BLL, for PE -almost every e ∈ E and for all
xO ∈XO the identity

ALLA
+
LL(BLOxO + ΓLJ e) =BLOxO + ΓLJ e

is satisfied, where A+
LL is the pseudoinverse of ALL. Moreover, ifM is solvable w.r.t. L, then

for every vector v ∈RL the mapping gvL : RO ×RJ →RL given by

gvL(xO,e) =A+
LL(BLOxO + ΓLJ e) + [IL −A+

LLALL]v ,

is a measurable solution function forM w.r.t. L.

For linear SCMs the unique solvability condition w.r.t. a subset translates into a matrix
invertibility condition, as was already shown in [27].

PROPOSITION C.3 (Sufficient and necessary condition for unique solvability w.r.t. a subset
for linear SCMs). Let M be a linear SCM, L ⊆ I and O = I \ L. Then M is uniquely
solvable w.r.t. L if and only if the matrix ALL = IL −BLL is invertible. Moreover, ifM is
uniquely solvable w.r.t. L, then the mapping gL : RO ×RJ →RL given by

gL(xO,e) =A−1
LL(BLOxO + ΓLJ e) ,

is a measurable solution function forM w.r.t. L.

Note that if ALL is invertible, then A+
LL = A−1

LL (see Lemma 1.3 in [54]), and the matrix
condition of Proposition C.2 is always satisfied and all the measurable solution functions gvL
of Proposition C.2 are (up to a PE -null set) equal to the solution function gL of Proposi-
tion C.3.

20Note that we do not assume that the probability measure PRJ is Gaussian.
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REMARK. A sufficient condition for ALL to be invertible is that the spectral radius of
BLL is less than one. If that is the case, then A−1

LL =
∑∞

n=0(BLL)n. Note that the non-zero
non-diagonal entries of the matrix BLL represent the directed edges in the induced subgraph
G(M)L. In particular, if the diagonal entries of the matrix BLL are zero, then for n ∈ N,
the coefficients of the matrix (BLL)n in the sum represent the sum of the product of the edge
weights Bij over directed paths of length n in the induced subgraph G(M)L.

From Proposition 3.13 we know that an SCM is solvable w.r.t. L if and only if it is an-
cestrally solvable w.r.t. L. In particular, this result also holds for linear SCMs. We saw in
Example 3.14 that a similar result for unique solvability does not hold, that is, in general, it
does not hold that unique solvability w.r.t. L implies ancestral unique solvability w.r.t. L. For
the class of linear SCMs we do have the following positive result.

PROPOSITION C.4 (Equivalent unique solvability conditions for linear SCMs). For a
linear SCMM and a subset L⊆ I the following are equivalent:

1. M is uniquely solvable w.r.t. L;
2. M is ancestrally uniquely solvable w.r.t. L;
3. M is uniquely solvable w.r.t. each strongly connected component in G(M)L.

Under the condition of unique solvability w.r.t. a subset L we can define the marginaliza-
tion w.r.t. L of a linear SCM by mere substitution.

PROPOSITION C.5 (Marginalization of a linear SCM). Let M be a linear SCM and
L ⊆ I a subset of endogenous variables such that IL −BLL is invertible. Then there exists
a marginalization Mmarg(L) that is linear and with marginal causal mechanism f̃ : RO ×
RJ →RO given by

f̃(xO,e) = [BOO +BOLA
−1
LLBLO]xO + [BOLA

−1
LLΓLJ + ΓOJ ]e ,

where ALL = IL −BLL. Moreover, this marginalization respects the latent projection, i.e.,(
Ga ◦marg(L)

)
(M)⊆

(
marg(L) ◦ Ga

)
(M).

From Theorem 5.6 we know thatM and its marginalizationMmarg(L) over L are observa-
tionally, interventionally and counterfactually equivalent w.r.t.O. A similar result can also be
found in [27]. In contrast to non-linear SCMs, this class of linear SCMs has the convenient
property that every marginalization of a model of this class respects the latent projection.
Moreover, the subclass of simple linear SCMs is even closed under marginalization.

APPENDIX D: EXAMPLES

In this appendix we provide additional examples. In Appendix D.1 we provide some ex-
amples of SCMs that describe the equilibrium states of certain feedback systems governed by
(random) differential equations [6] that motivated our study of cyclic SCMs. In Appendix D.2
we provide some examples that illustrate how observational, interventional and counterfac-
tual equivalence differ.

D.1. SCMs as equilibrium models In many systems occurring in the real world feed-
back loops between observed variables are present. For example, in economics, the price of
a product may be a function of the demanded or supplied quantities, and vice versa; or in
physics, two masses that are connected by a spring may exert forces on each other. Such sys-
tems are often described by a system of (random) differential equations. In [6] it was shown
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Fig 10: Damped coupled harmonic oscillator (top) and the graph of the SCMM that describes the positions of the masses at
equilibrium (bottom) of Example D.1 for d= 5.

that SCMs are capable of modeling the causal semantics of the equilibrium states of such sys-
tems. For illustration purposes we provide the following toy example of interacting masses
that are attached to springs.

EXAMPLE D.1 (Damped coupled harmonic oscillator). Consider a one-dimensional sys-
tem of d point masses mi ∈R (i= 1, . . . , d) with positions Qi, which are coupled by springs,
with spring constants ki > 0 and equilibrium lengths `i > 0 (i= 0, . . . , d), under influence of
friction with friction coefficients bi ∈ R (i = 1, . . . , d) and with fixed endpoints Q0 = 0 and
Qd+1 = L> 0 (see Figure 10 (top)). The equations of motion of this system are provided by
the following differential equations

d2Qi
dt2

=
ki
mi

(Qi+1 −Qi − `i) +
ki−1

mi
(Qi−1 −Qi + `i−1)− bi

mi

dQi
dt

(i= 1, . . . , d) .

The dynamics of the masses, in terms of the position, velocity and acceleration, is described
by a single and separate equation of motion for each mass. Under friction, i.e., bi > 0 (i =
1, . . . , d), there is a unique equilibrium position, where the sum of forces vanishes for each
mass. If one starts out of equilibrium, for example, by moving one or several masses out of
equilibrium, then the masses will start to oscillate and converge to their unique equilibrium
position. At equilibrium (i.e., for t→∞) the velocity dQi

dt and acceleration d2Qi
dt2 of the masses

vanish (i.e., dQidt ,
d2Qi
dt2 → 0), and thus the following equation holds at equilibrium

0 =
ki
mi

(Qi+1 −Qi − `i) +
ki−1

mi
(Qi−1 −Qi + `i−1) ,

for each mass (i= 1, . . . , d). Hence, for each mass i= 1, . . . , d its equilibrium position Qi is
given by

Qi =
ki(Qi+1 − `i) + ki−1(Qi−1 + `i−1)

ki + ki−1
.

By considering the `i and ki and L as fixed parameters, we arrive at a linear SCM (see [6]
for more details about constructing an SCM from a dynamical system)

M= 〈{1, . . . , d},∅,Rd,1,f ,P1〉 ,
where the causal mechanism f is given by

fi(q) =
ki(qi+1 − `i) + ki−1(qi−1 + `i−1)

ki + ki−1
.

Alternatively, (some of) the parameters could be treated as exogenous variables instead. Its
graph is depicted in Figure 10 (bottom). This SCM allows us to describe the equilibrium
behavior of the system under perfect intervention. For example, when forcing the mass j to a
fixed position Qj = ξj with 0≤ ξj ≤ L, the equilibrium positions of the masses correspond
to the solutions of the intervened modelMdo({j},ξj). It is an easy exercise to show thatM is
a simple SCM by using Proposition C.3.
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Fig 11: The augmented graph of the SCM M (left), its twin SCM Mtwin (center) and the intervened twin SCM
(Mtwin)do({S,S′},(s,s′)) (right) of Examples D.2 and D.3.

Next, we show that the well-known market equilibrium model from economics, which has
been thoroughly discussed in the literature [see e.g., 65], can be described by a (non-simple)
SCM. This example illustrates how self-cycles enrich the class of SCMs.

EXAMPLE D.2 (Price, supply and demand). Let XD denote the demand and XS the
supply of a quantity of a product. The price of the product is denoted by XP . The following
system of differential equations describes how the demanded and supplied quantities are
determined by the price, and how price adjustments occur in the market:

XD = βDXP +ED

XS = βSXP +ES

dXP

dt
=XD −XS ,

where ED and ES are exogenous random influences on the demand and supply respectively,
βD < 0 is the reciprocal of the slope of the demand curve, and βS > 0 is the reciprocal of
the slope of the supply curve. At the situation known as a “market equilibrium”, the price
is determined implicitly by the condition that demanded and supplied quantities should be
equal, since dXP

dt = 0 at equilibrium. Applying the results in [6] gives rise to a linear SCM
M = 〈{P,S,D},{S,D},R3,R2,f ,PE〉 at equilibrium with the causal mechanism defined
by

fD(x,e) := βDxP + eD

fS(x,e) := βSxP + eS

fP (x,e) := xP + (xD − xS) .

Note how we use a self-cycle for P in order to implement the equilibrium equation XD =XS

as the causal mechanism for the price P .21 Moreover,M is uniquely solvable. Its augmented
graph is depicted in Figure 11 (left).

Next, we provide an example of how counterfactuals can be sensibly formulated for cyclic
SCMs, namely for the price, supply and demand model at equilibrium.

21Richardson and Robins [65] argue that this market equilibrium model cannot be modeled as an SCM. We
observe that it can, as long as one allows for self-cycles.
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Fig 12: The augmented graph of the SCM M̃ (left) of Example 3.7, and of the SCMsM (center) and M̂ (right) of Example D.4
(and of Example 4.2). The SCMs M̃,M and M̂ are all observationally equivalent, but not interventionally equivalent.

EXAMPLE D.3 (Price, supply and demand at equilibrium). Consider the price, supply
and demand model at equilibrium of Example D.2 given by the SCMM. As an example of a
counterfactual query, consider

P(X ′P |do(XS = s,XS′ = s′),XP = p) ,

which denotes the conditional distribution of X ′P given XP = p of a solution of the inter-
vened twin modelMtwin

do({S,S′},(s,s′)). In words: how would—ceteris paribus—price have been
distributed, had we intervened to set supplied quantities equal to s′, given that actually we
intervened to set supplied quantities equal to s and observed that this led to price p? A
straightforward calculation shows that this counterfactual distribution of price is the Dirac
measure on x′P = p+ (s′ − s)/βD . The augmented graphs of the SCM, its twin graph, and
its intervened twin graph are depicted in Figure 11.

D.2. Equivalences In this subsection we provide some examples that illustrate how ob-
servational, interventional and counterfactual equivalence differ.

The following example illustrates that observational equivalence does not imply equiva-
lence and interventional equivalence (see also Example 4.2).

EXAMPLE D.4 (Observational equivalence does not imply (interventional) equivalence).
Consider the SCM M̃ of Example 3.7 and letM= 〈2,2,R2,R2,f ,PE〉 be the SCM with the
causal mechanism

f1(x,e) = e1 , f2(x,e) = γx1 + e2 ,

where

γ =
βσ2

1 + ασ2
2

σ2
1 + α2σ2

2

,

and PE = PE with E1 ∼N (µ̄1, σ̄
2
1), E2 ∼N (µ̄2, σ̄

2
2) and E1⊥⊥E2, where

µ̄1 = c[µ1 + αµ2], σ̄2
1 = c2[σ2

1 + α2σ2
2],

µ̄2 = c[(β − γ)µ1 + (1− αγ)µ2], σ̄2
2 = c2[(β − γ)2σ2

1 + (1− αγ)2σ2
2]

with c = (1− αβ)−1. The augmented graphs of M̃ and M are depicted in Figure 12. The
SCMs M̃ and M are observationally equivalent, as one can check by explicit calculation.
Similarly, one can define an SCM M̂ with augmented graph as depicted in Figure 12 that
is observationally equivalent to both M̃ andM. Because each of the SCMs has a different
augmented graph, we conclude that none of the SCMs M̃,M and M̂ are equivalent to each
other. Although M̃,M and M̂ are observationally equivalent, none of them is intervention-
ally equivalent to each other, as one can easily check.

In general, interventional equivalence does not imply counterfactual equivalence. Even
interventionally equivalent SCMs with the same causal mechanism (that differ only in their
exogenous distribution) may not be counterfactually equivalent. For example, the SCMsMρ

andMρ′ with ρ 6= ρ′ in the following example (due to Dawid [11]) are interventionally but
not counterfactually equivalent.
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Fig 13: The augmented graph of the SCM Mρ (left), its twin SCM Mtwin
ρ (center) and the intervened twin SCM

(Mtwin
ρ )do({1′,1},(1,0)) (right) of Example D.5.

EXAMPLE D.5 (Counterfactual density unidentifiable from observational and interven-
tional densities [11]). Let ρ ∈R and

Mρ = 〈2,2,{0,1} ×R,{0,1} ×R2,f ,PE〉

be the SCM with causal mechanism given by

f1(x,e) = e1 , f2(x,e) = e21(1− x1) + e22x1

and PE = P(E1,E2) with E1 ∼Bernoulli(1/2),

E2 :=

(
E21

E22

)
∼N

(
0,

(
1 ρ
ρ 1

))
normally distributed and E1⊥⊥E2. In an epidemiological setting, this SCM could be used
to model whether a patient was treated or not (X1) and the corresponding outcome for that
patient (X2).

Suppose in the actual world we did not assign treatment to a patient (X1 = 0) and the out-
come was X2 = c ∈ R. Consider the counterfactual query “What would the outcome have
been, if we had assigned treatment to this patient?”. We can answer this question by introduc-
ing a parallel counterfactual world that is modeled by the twin SCMMtwin

ρ , as depicted in
Figure 13. The counterfactual query then asks for p(X2′ = x2′ | do(X1′ = 1,X1 = 0),X2 =
c). One can calculate that(

X2′

X2

)
| do(X1′ = 1,X1 = 0)∼N

(
0,

(
1 ρ
ρ 1

))
and hence X2′ | do(X1′ = 1,X1 = 0),X2 = c∼N (−ρc,1−ρ2). Note that the answer to the
counterfactual query depends on a quantity ρ that we cannot identify from the observational
density p(X1,X2) or the interventional densities p(X2 |do(X1 = 0)) and p(X2 |do(X1 =
1)), none of which depends on ρ. Therefore, even data from randomized controlled trials
combined with observational data would not suffice to determine the value of this particular
counterfactual query.

APPENDIX E: PROOFS

This appendix contains the proofs of all the theoretical results in the appendices A, B and
C, and the main text. Some of the proofs will rely on the measure theoretic terminology and
results of Appendix F.

E.1. Proofs of the appendices
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Appendix A

PROOF OF LEMMA A.5. It suffices to show that for every C-d-open walk between i and
j in G, there exists a C-d-open path between i and j in G. Take a C-d-open walk π = (i=
i0, . . . , in = j). If a node ` occurs more than once in π, let ij be the first occurrence of ` in
π and ik the last occurrence of ` in π. We now construct a new walk π′ from π by removing
the subwalk between ij and ik of π from π. It is easy to check that the new walk π′ is still
C-d-open. If ` is an endpoint on π′, then ij or ik must be endpoint of π, and hence ` /∈ C .
If ` is a non-endpoint non-collider on π′, then also ij or ik must have been a non-endpoint
non-collider on π, and hence ` /∈ C . If ` is a collider on π′, then either (i) ij or ik are both
colliders on π, and hence ` is ancestor of C in G, or (ii) on the subwalk between ij and ik
that was removed, there must be a directed path in G from ij or ik to a collider in anG(C),
and hence, ` is in anG(C). The other nodes on π′ cannot be responsible for C-d-blocking
the walk, since they also occur (together with their adjacent edges) on π and they do not
C-d-block π.

In π′, the number of nodes that occur multiple times is at least one less than in π. Repeat
this procedure until no repeated nodes are left.

PROOF OF THEOREM A.7. The first case is a well-known result. An elementary proof
is obtained by noting that an acyclic system of structural equations trivially satisfies the lo-
cal directed Markov property, and then apply [35, Proposition 4], followed by applying the
stability of d-separation with respect to (graphical) marginalization [18, Lemma 2.2.15]. Al-
ternatively, the result also follows from sequential application of Theorems 3.8.2, 3.8.11,
3.7.7, 3.7.2 and 3.3.3 (using Remark 3.3.4) in [18].

The discrete case is proved by the series of results Theorem 3.8.12, Remark 3.7.2, Theo-
rem 3.6.6 and 3.5.2 in [18].

The linear case is proved in Example 3.8.17 in [18]. To connect the assumptions made there
with the ones we state here, observe that under the linear transformation rule for Lebesgue
measures, the image measure of PE under the linear mapping RJ → RI : e 7→ ΓIJ e gives
a measure on X = RI with a density w.r.t. the Lebesgue measure on RI , as long as the
image of the linear mapping is the entire RI . This is guaranteed if each causal mechanism
has a non-trivial dependence on some exogenous variable(s), i.e., for each i ∈ I there is some
j ∈ J with Γij 6= 0.

PROOF OF PROPOSITION A.12. This follows directly from the fact that the strongly con-
nected components of Ga(M) form a DAG by Lemma A.2 and that the directed edges in
Ga(acy(M)) by construction respect every topological ordering of that DAG. Both SCMs
are observationally equivalent by construction.

PROOF OF PROPOSITION A.14. This follows immediately from the Definitions A.11 and
A.13.

PROOF OF LEMMA A.17. It suffices to show that for every C-σ-open walk between i and
j in G, there exists a C-σ-open path between i and j in G. Let π = (i = i0, . . . , in = j) be
a C-σ-open walk in G. If a node ` occurs more than once in π, let ij be the first node in π
and ik the last node in π that are in the same strongly connected component as `. Since ij
and ik are in the same strongly connected component, there are directed paths ij→ · · · → ik
and ik → · · · → ij in G. We now construct a new walk π′ from π by replacing the subwalk
between ij and ik of π by a particular directed path between ij and ik: (i) If k = n, or if
k < n and ik→ ik+1 on π, we replace it by a shortest directed path ij→ · · · → ik, otherwise
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(ii) we replace it by a shortest directed path ij ← · · · ← ik. We now show that the new walk
π′ is still C-σ-open.
π′ cannot become C-σ-blocked through one of the initial nodes i0 . . . ij−1 or one of the

final nodes ik+1 . . . in on π′, since these nodes occur in the same local configuration on π and
do not C-σ-block π by assumption. Furthermore, π′ cannot become C-σ-blocked through
one of the nodes strictly between ij and ik on π′ (if there are any), since these nodes are
all non-endpoint non-colliders that only point to nodes in the same strongly connected com-
ponent on π′. Because π is C-σ-open, ik /∈ C if k = n or if ik → ik+1 on π. This holds in
particular in case (i). Similarly, ij /∈C if j = 0 or ij−1← ij on π.

In case (i), π′ is not C-σ-blocked by ik because ik is a non-collider on π′ but ik /∈C . Also
ij does not C-σ-block π′. Assume ij 6= ik (otherwise there is nothing to prove). If j = 0, or
if j > 0 and ij−1← ij on π′, then the same holds for π and hence ij /∈ C; ij is then a non-
collider on π′, but ij /∈C . If j > 0 and ij−1↔ ij or ij−1→ ij on π′ then ij is a non-endpoint
non-collider on π′ that does not point to a node in another strongly connected component.

Now consider case (ii). If j = 0 or ij−1← ij on π′ then this case is analogous to case (i).
So assume j > 0 and ij−1→ ij or ij−1↔ ij on π′. If ij is an endpoint of π′, then ij = ik and
k = n and therefore ik /∈ C , and hence ij and ik do not C-σ-block π′. Otherwise, ij must
be a collider on π′ (whether ij = ik or not). Then on the subwalk of π between ij and ik
there must be a directed path from ij to a collider that is ancestor of C , which implies that
ij is itself ancestor of C , and hence ij does not C-σ-block π′. Also ik cannot C-σ-block
π′. Assume ij 6= ik (otherwise there is nothing to prove). Since ik ← ik+1 or ik ↔ ik+1 on
π′, ik is a non-endpoint non-collider on π′ that does not point to a node in another strongly
connected component.

Now in π′, the number of nodes that occurs more than once is at least one less than in π.
Repeat this procedure until no nodes occur more than once.

PROOF OF PROPOSITION A.19. This follows directly as a special case of Corollary 2.8.4
in [18].

PROOF OF THEOREM A.21. An SCM M that is uniquely solvable w.r.t. each strongly
connected component is uniquely solvable and hence, by Theorem 3.8, all its solutions
have the same observational distribution. The last statement follows from the series of re-
sults Theorem 3.8.2, 3.8.11, Lemma 3.7.7 and Remark 3.7.2 in [18]. Alternatively, we give
here a shorter proof: Under the stated conditions one can always construct the acyclification
acy(M) which is observationally equivalent toM and is acyclic (see Proposition A.12) and
hence we can apply Theorem A.7 to acy(M). Together with Proposition A.14 and A.19 this
gives

A
σ
⊥
G(M)

B |C ⇐⇒ A
d
⊥

acy(G(M))
B |C =⇒ A

d
⊥

G(acy(M))
B |C =⇒ XA ⊥⊥

PXM
XB |XC ,

for A,B,C ⊆ I and X a solution ofM.

PROOF OF COROLLARY A.22. First observe that simplicity is preserved under both per-
fect intervention and the twin operation (see Proposition 8.2). Now the first statement follows
from Theorem A.21 if one takes into account the identities of Proposition 2.15 and 2.20. Sim-
ilarly, the last statement follows from Theorem A.7.

PROOF OF PROPOSITION A.33. Let M̃ =: 〈V, Ĥ,X ,E, f̃ ,PE〉 be the induced SCM.
Observe that every loop O ∈ L(G(M̃)) is a loop in L(G). Fix x̌ ∈ X and ě ∈ E . For ev-
ery O ∈L(G(M̃)), define

IO := (paG(O) \O) \ (pa(O) \O)⊆ Ĩ
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and

JO := {F ∈ J̃ : F ∩O 6= ∅} \ pa(O)⊆ J̃ .

Now, define the family of measurable mappings (g̃O)O∈L(G(M̃)), where the mapping g̃O :

X pa(O)\O × Epa(O)→XO is given by

g̃O(xpa(O)\O,epa(O)) := gO(xpa(O)\O, x̌IO ,epa(O), ěJO)

where xpaG(O)\O = (xpa(O)\O, x̌IO) and êO = (epa(O), ěJO). Observe that from the defini-
tion of the parents (see Definition 2.7) it follows that for PE -almost every e ∈ E and for all
x ∈X we have

xO = f̃O(x\IO , x̌IO ,e\JO , ěJO) ⇐⇒ xO = f̃O(x,e) .

This, together with the fact that the family of mappings (gO)O∈L(G) is a compatible system
of solution functions, implies that for PE -almost every e ∈ E and for all x ∈X we have

xO = g̃O(xpa(O)\O,epa(O)) =⇒ xO = f̃O(x,e) .

Hence, ι(M̂) is loop-wisely solvable and thus (g̃O)O∈L(G(M̃)) is a family of measurable

solution functions. In particular, for all O, Õ ∈ L(G(M̃)) with Õ ⊆ O and for PE -almost
every e ∈ E and for all x ∈X we have

xO = g̃O(xpa(O)\O,epa(O)) =⇒ xÕ = g̃Õ(xpa(Õ)\Õ,epa(Õ)) .

From this we conclude that (g̃O)O∈L(G(M̃)) is a compatible system of solution functions.

PROOF OF LEMMA A.34. Suppose M is loop-wisely uniquely solvable and consider a
subset O ⊆ I . Consider the induced subgraph Ga(M)O of Ga(M) on the nodes O. Then
every strongly connected component of Ga(M)O is an element of L(G(M)). Let C be such
a strongly connected component in Ga(M)O , and let gC : X pa(C)\C × Epa(C) → X C be a
measurable solution function for M w.r.t. C. Since Ga(M)O partitions into strongly con-
nected components, we can recursively (by following a topological ordering of the DAG
Ga(M)sc

O from Lemma A.2) insert these mappings into each other to obtain a mapping
gO : X pa(O)\O × Epa(O)→XO that makesM uniquely solvable w.r.t. O.

PROOF OF PROPOSITION A.35. Let (gO)O∈L(G(M)) be any family of measurable solu-
tion functions, where gO is measurable solution function of M w.r.t. O. Then, for O, Õ ∈
L(G(M)) such that Õ ⊆ O, we have that for PE -almost every e ∈ E and for all x ∈X

xO = fO(x,e) =⇒ xÕ = fÕ(x,e) .

This implies that for PE -almost every e ∈ E and for all x ∈X

xO = gO(xpa(O)\O,epa(O)) =⇒ xÕ = gÕ(xpa(Õ)\Õ,epa(Õ)) .

PROOF OF COROLLARY A.24. This follows directly from Proposition 7.1 and 7.3.
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Appendix B

PROOF OF PROPOSITION B.1. Let f̃ : E ×X →X be the causal mechanism of a struc-
turally minimal SCM that is equivalent to M (see Proposition 2.12). In particular, for
any ε\pa(O) ∈ E\pa(O) and ξ\pa(O) ∈ X \pa(O), we have that for all x ∈ X and all e ∈ E ,
f̃(x,e) = f̃(xpa(O),ξ\pa(O),epa(O),ε\pa(O)). This means that we may also consider f̃ as a
mapping f̃ : X pa(O) × Epa(O)→X .

Consider the set

S̃ := {(epa(O),xpa(O)\O,xO) ∈ Epa(O) ×X pa(O)\O ×XO : xO = f̃O(xpa(O),epa(O))} .

By similar reasoning as in the proof of Theorem 3.3, S̃ is measurable.
By assumption, for PE -almost every e ∈ E and for all x\O ∈X \O the space {xO ∈XO :

xO = fO(x,e)} is non-empty and σ-compact. By applying Lemma F.10 to the canonical
projection prEpa(O) : E → Epa(O) and using the equivalence of f and f̃ , we obtain that for
PEpa(O)

-almost every epa(O) ∈ Epa(O) and for all xpa(O)\O ∈X pa(O)\O the space

S̃(epa(O),xpa(O)\O) := {xO ∈XO : xO = f̃O(xpa(O),epa(O))}

is non-empty and σ-compact.
The second measurable selection theorem, Theorem F.9, now implies that there exists a

measurable gO : X pa(O)\O × Epa(O) → XO such that for PEpa(O)
-almost every epa(O) ∈

Epa(O) and for all xpa(O)\O ∈X pa(O)\O

gO(xpa(O)\O,epa(O)) = f̃O
(
xpa(O)\O,gO(xpa(O)\O,epa(O)),epa(O)

)
.

Once more applying Lemma F.10, we obtain that for PE -almost every e ∈ E and for all
x ∈X

xO = gO(xpa(O)\O,epa(O)) =⇒ xO = fO(x,e).

HenceM is solvable w.r.t. O.

PROOF OF PROPOSITION B.4. Without loss of generality, we assume that M is struc-
turally minimal (see Proposition 2.12). Define C := A ∩ Ã and D := A ∪ Ã. Let gA, gÃ
be measurable solution functions forM w.r.t. A and Ã, respectively. Note that pa(C) \ C ⊆
pa(A) \ A and similarly pa(C) \ C ⊆ pa(Ã) \ Ã. Indeed, for c ∈ pa(C): if c ∈O then c ∈ C
because A and Ã are both ancestral in G(M)O , while if c /∈O then c /∈A and c /∈ Ã. Hence
by Lemma E.1, for PE -almost all e ∈ E and for all x ∈X

(gA)C(xpa(A)\A,epa(A)) = (gÃ)C(xpa(Ã)\Ã,epa(Ã)) .
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Hence for PE -almost every e ∈ E and for all x ∈X
xD = fD(x,e)

⇐⇒


xA\C = fA\C(x,e)

xC = fC(x,e)

xC = fC(x,e)

xÃ\C = fÃ\C(x,e)

⇐⇒


xA\C = (gA)A\C(xpa(A)\A,epa(A))

xC = (gA)C(xpa(A)\A,epa(A))

xC = (gÃ)C(xpa(Ã)\Ã,epa(Ã))

xÃ\C = (gÃ)Ã\C(xpa(Ã)\Ã,epa(Ã))

⇐⇒

{
xA = gA(xpa(A)\A,epa(A))

xÃ = gÃ(xpa(Ã)\Ã,epa(Ã)) .

Now pa(A) \ A ⊆ pa(D) \ D, and similarly, pa(Ã) \ Ã ⊆ pa(D) \ D. Hence, we conclude
that the mapping hD : X pa(D)\D × Epa(D)→XD defined by

hD(xpa(D)\D,epa(D)) :=(
(gA)A\C(xpa(A)\A,epa(A)), (gA)C(xpa(A)\A,epa(A)), (gÃ)Ã\C(xpa(Ã)\Ã,epa(Ã))

)
is a measurable solution function for M w.r.t. D, and that M is uniquely solvable w.r.t.
D.

PROOF OF COROLLARY B.5. It suffices to show the implication to the left. We have to
show thatM is uniquely solvable w.r.t. each ancestral subset of G(M)O . The proof proceeds
via induction with respect to the size of the ancestral subset. For ancestral subsets of size 0,
the claim is trivially true. Ancestral subsets of size 1 must be of the form {i}= anG(M)O(i)
for i ∈ O and hence the claim is true by assumption. Assume that the claim holds for all
ancestral subsets of size ≤ n. Let A be an ancestral subset of G(M)O of size n + 1. If
A = anG(M)O(i) for some i ∈ O then the claim holds for A by assumption. Otherwise,
A=

⋃
i∈A anG(M)O(i) is a union of ancestral subsets of size ≤ n. Choose distinct elements

{i1, . . . , ik} ⊆ A where k is the smallest integer such that
⋃k
j=1 anG(M)O(ij) = A. By ap-

plying Proposition B.4 to
⋃k−1
j=1 anG(M)O(ij) and anG(M)O(ik), thereby noting that the inter-

section of these two sets is an ancestral subset of size ≤ n and making use of the induction
hypothesis, we arrive at the conclusion thatM is uniquely solvable w.r.t. A.

Appendix C

PROOF OF PROPOSITION C.2. Let e ∈ E and xO ∈XO . For xL ∈X ,

xL = fL(x,e)

⇐⇒ xL =BLLxL +BLOxO + ΓLJ e

⇐⇒ ALLxL =BLOxO + ΓLJ e

⇐⇒

{
ALLA

+
LL(BLOxO + ΓLJ e) =BLOxO + ΓLJ e

∃v∈XL : xL =A+
LL(BLOxO + ΓLJ e) + [IL −A+

LLALL]v ,

where the last equivalence follows from [Theorem 2, 54].
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PROOF OF PROPOSITION C.3. M is uniquely solvable w.r.t. L if and only if for PE -
almost every e ∈ E and for all xO ∈XO the linear system of equations

xL = fL(x,e)

⇐⇒ xL =BLLxL +BLOxO + ΓLJ e

⇐⇒ ALLxL =BLOxO + ΓLJ e

has a unique solution xL ∈ XL. Hence,M is uniquely solvable w.r.t. L if and only if ALL is
invertible.

PROOF OF PROPOSITION C.4. It suffices to show (1) =⇒ (2) and (1) ⇐⇒ (3). We
start by showing that (1) =⇒ (2). Let V ⊆ L and denote U := anG(M)L(V), then we need
to show that M is uniquely solvable w.r.t. U . From Proposition C.3 we know that M is
uniquely solvable w.r.t. L if and only if the matrix ALL = IL−BLL is invertible. The matrix
ALL is invertible if and only if the rows of ALL are all linearly independent. In particular,
the rows of AUL are all linearly independent. Because AUL = [AUU ZUL], where ZUL is the
zero matrix, we know that the rows of AUU = IU − BUU are also all linearly independent,
and hence AUU is invertible.

Next, we show that (1) ⇐⇒ (3). Observe that the strongly connected components
of G(M)L form a partition of the set L and that the directed mixed graph G(M)L and
the directed graph Ga(M)L have the same strongly connected components. Because, by
Lemma A.2, the graph of strongly connected components Gsc of the directed graph Ga(M)L
is a DAG, the square matrix BLL can be permuted to an upper triangular block matrix B̃LL,
where for each diagonal block B̃VV of B̃LL the set of nodes V is a strongly connected com-
ponent in G(M)L.

Without loss of generality we assume now that BLL is an upper triangular block matrix.
From Proposition C.3 it follows thatM is uniquely solvable w.r.t. L if and only if the matrix
ALL = IL −BLL is invertible. Because BLL is an upper triangular block matrix, we know
that ALL is an upper triangular block matrix, where for each diagonal block AVV of ALL
the set of nodes V is a strongly connected component in G(M)L. Since an upper triangular
block matrix ALL is invertible if and only if every diagonal block in ALL is invertible, we
have that M is uniquely solvable w.r.t. L if and only if M is uniquely solvable w.r.t. each
strongly connected component in G(M)L.

PROOF OF PROPOSITION C.5. By the definition of marginalization and Proposition C.3
the marginal causal mechanism f̃ is given by

f̃(xO,e) := fO(xO,gL(xO,e),e)

=BOOxO +BOLgL(xO,e) + ΓOJ e

= [BOO +BOLA
−1
LLBLO]xO + [BOLA

−1
LLΓLJ + ΓOJ ]e .

From Proposition C.4 and 5.12 it follows that the marginalization respects the latent projec-
tion.

E.2. Proofs of the main text

Section 2

PROOF OF PROPOSITION 2.12. Let i ∈ I . Note that Definition 2.7 can alternatively be
formulated as follows: for k ∈ I ∪ J , k 6∈ pa(i) if and only if there exists a measurable
mapping f̂i : X × E→Xi such that for PE -almost every e ∈ E and for all x ∈X ,

xi = fi(x,e) ⇐⇒ xi = f̂i(x,e)
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and either k ∈ I and there exists x̂k ∈ Xk such that f̂i(x,e) = f̂i(x\k, x̂k,e) for all x ∈
X ,e ∈ E , or k ∈ J and there exists êk ∈ Ek such that f̂i(x,e) = f̂i(x,e\k, êk) for all
x ∈X ,e ∈ E . By repeatedly applying (this formulation of) Definition 2.7 to all k /∈ pa(i),
we obtain the existence of a measurable mapping f̃i : X × E →Xi and x̂\pa(i) ∈ X \pa(i),
ê\pa(i) ∈ E\pa(i) such that for PE -almost every e ∈ E and for all x ∈X ,

xi = fi(x,e) ⇐⇒ xi = f̃i(x,e),

and for all e ∈ E and all x ∈X ,

f̃i(x,e) = f̃i(xpa(i), x̂\pa(i),epa(i), ê\pa(i)).

Define the SCM M̃ as M except that its causal mechanism is f̃ instead of f . Then M̃ is
structurally minimal and equivalent toM.

PROOF OF PROPOSITION 2.15. The do(I,ξI) operation on M completely removes the
functional dependence on x and e from the fi components for i ∈ I and hence the cor-
responding incoming directed and bidirected edges on nodes in I from the (augmented)
graph.

PROOF OF PROPOSITION 2.16. The first statement follows from Definitions 2.13 and
2.14. For the second statement, note that a perfect intervention can only remove parental
relations, and therefore will never introduce a cycle.

PROOF OF PROPOSITION 2.20. This follows directly from Definition 2.18 and 2.19.

PROOF OF PROPOSITION 2.21. The additional edges introduced by the twin operation
cannot lead to a directed cycle involving both copied and original nodes, because there are
no edges pointing from copied nodes to original nodes (i.e., of the form i′→ v with i′ ∈ I ′ and
v ∈ V). Directed cycles involving only original nodes are absent by assumption, and directed
cycles involving only copied nodes as well since they would correspond with a directed cycle
in the original directed graph.

PROOF OF PROPOSITION 2.22. It suffices to proof the property for directed graphs, since
the property for SCMs follows directly from Definitions 2.13 and 2.18.

Applying the intervention do(I) on the graph G removes all the incoming edges from the
nodes in I . Now, if we perform the twin operation w.r.t. I on this graph do(I)(G), then we
copy the same edges as if we had twinned the graph G w.r.t. I , except those edges that do
point to one of the nodes in I . Hence, if we apply the intervention do(I ∪ I ′) on the graph
twin(I)(G), which removes all incoming edges of both I and its copy I ′, then we clearly
obtain the same graph.

Section 3

PROOF OF THEOREM 3.3. First we define the solution space S(M) ofM by

S(M) := {(e,x) ∈ E ×X : x= f(x,e)} .

This is a measurable set, since S(M) = h−1(∆), where h : E ×X →X ×X is the mea-
surable mapping defined by h(e,x) = (x,f(x,e)) and ∆ is the set defined by {(x,x) : x ∈
X}, which is measurable since X is Hausdorff. Note that

A := prE(S(M)) = {e ∈ E : ∃x ∈X s.t. x= f(x,e)} ,
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is an analytic set because the projection prE : X ×E→ E is a measurable mapping between
standard measurable spaces (Lemma F.3).

Suppose that (1) holds, that is, M has a solution. Then there exists a pair of random
variables (E,X) : Ω→ E ×X such that X = f(X,E) P-a.s.. Note that

{ω ∈Ω :X(ω) = f
(
X(ω),E(ω)

)
} ⊆ {ω ∈Ω : ∃x ∈X s.t. x= f

(
x,E(ω)

)
}

⊆E−1
(
{e ∈ E : ∃x ∈X s.t. x= f(x,e)}

)
=E−1(A).

By Lemma F.6, A is PE-measurable because it is analytic, and we can write A = B ∪̇N
with B⊆ E measurable and N a PE-null set. Hence E−1(A) =E−1(B)∪E−1(N ) where
E−1(N ) is a P-null set. Therefore,

E−1(B)⊇ {ω ∈Ω :X(ω) = f
(
X(ω),E(ω)

)
} \E−1(N )

which implies that P(E−1(B)) = 1. Hence, E \A is a PE -null set. In other words, for PE -
almost every e ∈ E the structural equations x = f(x,e) have a solution x ∈ X , i.e., (2)
holds.

Suppose that (2) holds. Then E \ prE(S(M)) is a PE -null set. By application of the
measurable selection theorem F.8, there exists a measurable g : E → X such that for PE -
almost all e ∈ E , g(e) = f(g(e),e). Hence, there exists a measurable mapping g : E →X
such that for PE -almost every e ∈ E and for all x ∈X

x= g(e) =⇒ x= f(x,e) ,

which we call property (A). Let f̃ : E ×X →X be the causal mechanism of a structurally
minimal SCM that is equivalent toM (see Proposition 2.12). In particular, for any ε\pa(I) ∈
E\pa(I), we have that f̃(x,e) = f̃(x,epa(I),ε\pa(I)) for all x ∈X and all e ∈ E . This means
that we may also consider f̃ as a mapping f̃ : X × Epa(I)→X . By applying Lemma F.10
to the canonical projection prEpa(I) : E→ Epa(I) and using the equivalence of f and f̃ , we
obtain that for PEpa(I) -almost all epa(I) ∈ Epa(I) there exists x ∈X with x= f̃(x,epa(I)).
By applying the implication (2) =⇒ (A) to Epa(I) and f̃ , we conclude the existence of
a measurable g : Epa(I)→X such that for PEpa(I) -almost all epa(I) ∈ Epa(I), g(epa(I)) =

f̃(g(epa(I)),epa(I)). Once more using Lemma F.10, we obtain that for PE -almost all e ∈ E ,
g(epa(I)) = f(g(epa(I)),e). In other words, (3) holds.

Lastly, suppose that (3) holds, that is there exists a measurable solution function g :
Epa(I) → X . Then the measurable mappings E : E → E and X : E → X , defined by
E(e) := e and X(e) := g(epa(I)) respectively, define a pair of random variables (X,E)
such that X = f(X,E) holds a.s. and hence (X,E) is a solution. Hence (1) holds.

PROOF OF PROPOSITION 3.6. Let f̃ : E ×X →X be the causal mechanism of a struc-
turally minimal SCM M̃ that is equivalent toM (see Proposition 2.12). For a subset O ⊆ I
consider the induced subgraph Ga(M)O of the augmented graph Ga(M) on O. Then the
acyclicity of Ga(M) implies that the induced subgraph Ga(M)O is acyclic, and hence there
exists a topological ordering on the nodes O. We can substitute the components f̃i of the
causal mechanism f̃ for i ∈ O into each other along this topological ordering. This gives
a measurable solution function gO : X pa(O)\O × Epa(O)→XO for M̃, and hence for M.
It is clear from the acyclic structure that this mapping gO is independent of the choice of
the topological ordering and is the only solution function forM. Therefore, M̃ is uniquely
solvable w.r.t. O, and so isM.
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PROOF OF PROPOSITION 3.9. This follows immediately from Definition 2.8 and 3.5.

PROOF OF THEOREM 3.8. Suppose that (1) holds. By Proposition B.1 there exists a mea-
surable solution function gO : X pa(O)\O × Epa(O) → XO for M w.r.t. O. Then for PE -
almost every e ∈ E and for all x\O ∈X \O we have that gO(xpa(O)\O,epa(O)) is a solution
of xO = fO(x,e). Hence, because of (1), for PE -almost every e ∈ E and for all x\O ∈X \O
we have that xO = fO(x,e) implies xO = gO(xpa(O)\O,epa(O)). Thus,M is uniquely solv-
able w.r.t. O, that is, (2) holds.

Suppose that (2) holds. Let gO : X pa(O)\O × Epa(O) → XO be a measurable solution
function forM w.r.t. O. Then, for PE -almost every e ∈ E and for all x ∈X

xO = gO(xpa(O)\O,epa(O)) ⇐⇒ xO = fO(x,e) .

This implies (1).
For the last statement, assume that M is uniquely solvable. Let g : Epa(I) → X be a

measurable solution function. Then there exists a measurable set B ⊆ E with PE(B) = 1
and for all e ∈B,

∀x ∈X : x= f(x,e) =⇒ x= g(epa(I)).

The existence of a solution forM follows directly from Theorem 3.3. Each solution (X,E) :
Ω→X × E ofM satisfies X(ω) = f(X(ω),E(ω)) P-a.s.. In addition, it satisfies E(ω) ∈
B P-a.s., since P ◦ E−1 = PE . Hence, it satisfies X(ω) = g(E(ω)pa(I)) P-a.s.. Thus for
every solution (X,E) the associated observational distribution is the push-forward of PE
under g ◦ prpa(I).

PROOF OF PROPOSITION 3.11. Let gO : X pa(O)\O × Epa(O) → XO be a measurable
solution function for M w.r.t. O. Then the mapping g̃O∪I : Epa(O) → XO∪I defined by
g̃O∪I(epa(O)) := (gO(ξpa(O)\O,epa(O)),ξI) is a measurable solution function for the SCM
Mdo(I,ξI) w.r.t. O ∪ I . IfM is (uniquely) solvable w.r.t. O, then it follows thatMdo(I,ξI) is
(uniquely) solvable w.r.t. O ∪ I .

PROOF OF PROPOSITION 3.13. It suffices to show that solvability ofM w.r.t. O implies
ancestral solvability w.r.t.O. Solvability ofM w.r.t.O implies that there exists a measurable
mapping gO : X pa(O)\O × Epa(O)→ XO such that for PE -almost every e ∈ E and for all
x ∈X

xO = gO(xpa(O)\O,epa(O)) =⇒ xO = fO(x,e) .

Let f̃ : E × X → X be the causal mechanism of a structurally minimal SCM M̃ that is
equivalent to M (see Proposition 2.12). Let P := anG(M)O(A) for some A ⊆ O. Then for
PE -almost every e ∈ E and for all x ∈X{
xP = (gO)P(xpa(O)\O,epa(O))

xO\P = (gO)O\P(xpa(O)\O,epa(O))
=⇒

{
xP = f̃P(xpa(P),epa(P))

xO\P = f̃O\P(xpa(O\P),epa(O\P)) .

Since pa(P) \ P ⊆ pa(O) \O, we have that in particular for PE -almost every e ∈ E and for
all x ∈X

xP = (gO)P(xpa(O)\O,epa(O)) =⇒ xP = f̃P(xpa(P),epa(P)) .

This implies that the mapping (gO)P cannot depend on elements different from pa(P).
Moreover, it follows from the definition of P that (pa(O) \ O) ∩ pa(P) = pa(P) \ P and
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thus we have pa(O) \ O = (pa(P) \ P) ∪ (pa(O) \ (O ∪ pa(P))). Now, pick an element
x̂pa(O)\(O∪pa(P)) ∈ X pa(O)\(O∪pa(P)) and define the mapping g̃P : X pa(P)\P × Epa(P) →
XP by

g̃P(xpa(P)\P ,epa(P)) := (gO)P(xpa(P)\P , x̂pa(O)\(O∪pa(P)),epa(O)) .

Then, for PE -almost every e ∈ E and for all x ∈X

xP = g̃P(xpa(P)\P ,epa(P)) ⇐⇒ xP = (gO)P(xpa(O)\O,epa(O)) .

Together this gives that for PE -almost every e ∈ E and for all x ∈X

xP = g̃P(xpa(P)\P ,epa(P)) =⇒ xP = f̃P(xpa(P),epa(P)) .

which is equivalent to the statement thatM is solvable w.r.t. anG(M)O(A).

Section 4

LEMMA E.1. Let M be an SCM that is uniquely solvable w.r.t. two subsets A,B ⊆ I
that satisfy A ⊆ B and pa(A) \ A ⊆ pa(B) \ B. Let gA : X pa(A)\A × Epa(A) → XA and
gB : X pa(B)\B × Epa(B) → XB be measurable solution functions for M w.r.t. A and B,
respectively. Then for PE -almost every e ∈ E and for all x ∈X

gA(xpa(A)\A,epa(A)) = (gB)A(xpa(B)\B,epa(B)) .

PROOF. Without loss of generality, we assume thatM is structurally minimal (see Propo-
sition 2.12). Let Ē ⊆ E be a measurable set with PE(Ē) = 1 such that for all e ∈ Ē for all
x ∈X :

xA = gA(xpa(A)\A,epa(A)) ⇐⇒ xA = fA(xpa(A),epa(A))

and

xB = gB(xpa(B)\B,epa(B)) ⇐⇒ xB = fB(xpa(B),epa(B)) .

Now let e ∈ Ē and let xA∪pa(B)\B ∈XA∪pa(B)\B . Then

xA = (gB)A(xpa(B)\B,epa(B))

=⇒

{
xA = (gB)A(xpa(B)\B,epa(B))

∃xB\A ∈XB\A : xB\A = (gB)B\A(xpa(B)\B,epa(B))

=⇒ ∃xB\A ∈XB\A : xB = gB(xpa(B)\B,epa(B))

=⇒ ∃xB\A ∈XB\A : xB = fB(xpa(B),epa(B))

=⇒ ∃xB\A ∈XB\A : xA = fA(xpa(A),epa(A))

=⇒ xA = fA(xpa(A),epa(A))

=⇒ xA = gA(xpa(A)\A,epa(A)) ,

where the exists-quantifier could be omitted because the expression it binds to does not de-
pend on xB\A (from the assumptions it follows that (A∪ pa(A))∩ (B \A) = ∅). Hence, for
all e ∈ Ē and all xA∪pa(B)\B ∈XA∪pa(B)\B

xA = (gB)A(xpa(B)\B,epa(B)) =⇒ xA = gA(xpa(A)\A,epa(A)) .
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Hence, for all e ∈ Ē and all xA∪pa(B)\B ∈XA∪pa(B)\B

(gB)A(xpa(B)\B,epa(B)) = gA(xpa(A)\A,epa(A)) .

Since this expression does not depend on x(B\A)∪I\(B∪pa(B)), from Lemma F.11.(2) we
conclude that for all e ∈ Ē and all x ∈X

(gB)A(xpa(B)\B,epa(B)) = gA(xpa(A)\A,epa(A)) .

LEMMA E.2. An SCMM is observationally equivalent toMtwin w.r.t. O⊆ I .

PROOF. Let (X,E) be a solution ofM, then ((X,X),E) is a solution ofMtwin. Con-
versely, let ((X,X ′),E) be a solution ofMtwin, then (X,E) is a solution ofM.

PROOF OF PROPOSITION 4.6. First we show that equivalence implies counterfactual
equivalence w.r.t. O. The twin operation preserves the equivalence relation on SCMs and
since equivalent SCMs are interventionally equivalent w.r.t. every subset, the two equivalent
twin SCMs have to be interventionally equivalent w.r.t. O ∪O′ for every O ⊆ I with O′ the
copy of O in I ′.

Now, letM and M̃ be counterfactually equivalent w.r.t. O. ThenMtwin and M̃twin are
interventionally equivalent w.r.t. O ∪O′. Thus for I ⊆ O, I ′ ⊆ O′ the copy of I and ξI′ =
ξI ∈ X I , Mtwin

do(I∪I′,ξI∪I′ ) and M̃twin
do(I∪I′,ξI∪I′ ) are observationally equivalent w.r.t. O ∪ O′.

In particular, they are observationally equivalent w.r.t. O. From Proposition 2.22 we have
thatMtwin

do(I∪I′,ξI∪I′ ) = (Mdo(I,ξI))
twin and M̃twin

do(I∪I′,ξI∪I′ ) = (M̃do(I,ξI))
twin, and together

with Lemma E.2 this gives thatMdo(I,ξI) and M̃do(I,ξI) are observationally equivalent w.r.t.
O.

Section 5

LEMMA E.3. LetM be an SCM. Let B ⊆ I and A⊆ I ∪J such that (pa(B) \B)⊆A
and B ∩A = ∅. Assume that gB : XA × EA→XB is a measurable function such that for
PE -almost every e ∈ E and for all x ∈X

xB = fB(xpa(B),epa(B)) ⇐⇒ xB = gB(xA,eA) .

ThenM is uniquely solvable w.r.t. B.

PROOF. Assume that for PE -almost every e ∈ E and for all x ∈X

xB = fB(xpa(B),epa(B)) ⇐⇒ xB = gB(xA,eA) .

Let C := A \ (pa(B) \B), then by Lemma F.11.(7) we have that there exists êC ∈ EC and
x̂C ∈XC such that for PEJ\C -almost every eJ\C ∈ EJ\C and for all xI\C ∈X I\C

xB = fB(xpa(B),epa(B)) ⇐⇒ xB = gB(xpa(B)\B, x̂C ,epa(B), êC) .

Defining the mapping hB : X pa(B)\B × Epa(B)→XB by

hB(xpa(B)\B,epa(B)) := gB(xpa(B)\B, x̂C ,epa(B), êC) ,

where we picked êC ∈ EC and x̂C ∈XC such that the above equivalence holds, and applying
Lemma F.11.(6) we get that for PE -almost every e ∈ E and for all x ∈X

xB = fB(xpa(B),epa(B)) ⇐⇒ xB = hB(xpa(B)\B,epa(B))

holds. Thus,M is uniquely solvable w.r.t. B.
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PROOF OF PROPOSITION 5.4. From unique solvability of M w.r.t. L1 it follows that
there exists a mapping gL1

: X pa(L1)\(L1) × Epa(L1)→XL1
such that for PE -almost every

e ∈ E and for all x ∈X

xL1
= gL1

(xpa(L1)\L1
,epa(L1)) ⇐⇒ xL1

= fL1
(x,e) .

Let p̂a denotes the parents in Ga(Mmarg(L1)). Note that p̂a(L2) \L2 ⊆ pa(L1 ∪L2) \ (L1 ∪
L2). Let f̃ denote the marginal causal mechanism of a structurally minimal SCM that is
equivalent to the marginalizationMmarg(L1) constructed from gL1

(see Proposition 2.12).
=⇒ : If Mmarg(L1) is uniquely solvable w.r.t. L2, then there exists a mapping g̃L2

:
X p̂a(L2)\L2

×E p̂a(L2)→XL2
such that for PE -almost every e ∈ E and for all xI\L1

∈X I\L1

xL2
= g̃L2

(xp̂a(L2)\L2
,ep̂a(L2)) ⇐⇒ xL2

= fL2
(gL1

(xpa(L1)\L1
,epa(L1)),xI\L1

,e) .

Define the mapping h : X pa(L1∪L2)\(L1∪L2) × Epa(L1∪L2)→XL1∪L2
by

(hL1
,hL2

)(xpa(L1∪L2)\(L1∪L2),epa(L1∪L2)) :=(
gL1

(
(g̃L2

)pa(L1)(xp̂a(L2)\L2
,ep̂a(L2)),xpa(L1)\(L1∪L2),epa(L1)

)
, g̃L2

(xp̂a(L2)\L2
,ep̂a(L2))

)
.

Then for PE -almost every e ∈ E and for all x ∈X{
xL1

= fL1
(x,e)

xL2
= fL2

(x,e)

⇐⇒

{
xL1

= gL1
(xpa(L1)\L1

,epa(L1))

xL2
= fL2

(x,e)

⇐⇒

{
xL1

= gL1
(xpa(L1)\L1

,epa(L1))

xL2
= fL2

(gL1
(xpa(L1)\L1

,epa(L1)),xI\L1
,e)

⇐⇒

{
xL1

= gL1
(xpa(L1)\L1

,epa(L1))

xL2
= g̃L2

(xp̂a(L2)\L2
,ep̂a(L2))

⇐⇒

{
xL1

= gL1

(
(g̃L2

)pa(L1)(xp̂a(L2)\L2
,ep̂a(L2)),xpa(L1)\(L1∪L2),epa(L1)

)
xL2

= g̃L2
(xp̂a(L2)\L2

,ep̂a(L2))

⇐⇒

{
xL1

= hL1
(xpa(L1∪L2)\(L1∪L2),epa(L1∪L2))

xL2
= hL2

(xpa(L1∪L2)\(L1∪L2),epa(L1∪L2)) ,

where in the first equivalence we used unique solvability w.r.t. L1 of M, in the second we
used substitution, in the third we used unique solvability w.r.t. L2 ofMmarg(L1), in the fourth
we used again substitution and in the last equivalence we used the definition of h. From this
we conclude thatM is uniquely solvable w.r.t. L1 ∪ L2. Hence, by definition it follows that
marg(L2) ◦marg(L1)(M) = marg(L1 ∪L2)(M).
⇐= : If M is uniquely solvable w.r.t. L1 ∪ L2, then there exists a mapping h :

X pa(L1∪L2)\(L1∪L2)×EL1∪L2
→XL1∪L2

such that for PE -almost every e ∈ E for all x ∈X

xL1∪L2
= h(xpa(L1∪L2)\(L1∪L2),epa(L1∪L2)) ⇐⇒ xL1∪L2

= fL1∪L2
(x,e) .
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Then, for PE -almost every e ∈ E for all x ∈X{
xL1

= hL1
(xpa(L1∪L2)\(L1∪L2),epa(L1∪L2))

xL2
= hL2

(xpa(L1∪L2)\(L1∪L2),epa(L1∪L2))

⇐⇒

{
xL1

= fL1
(x,e)

xL2
= fL2

(x,e)

⇐⇒

{
xL1

= gL1
(xpa(L1)\L1

,epa(L1))

xL2
= fL2

(x,e)

⇐⇒

{
xL1

= gL1
(xpa(L1)\L1

,epa(L1))

xL2
= fL2

(gL1
(xpa(L1)\L1

,epa(L1)),xI\L1
,e)

⇐⇒

{
xL1

= gL1
(xpa(L1)\L1

,epa(L1))

xL2
= f̃L2

(xp̂a(L2),ep̂a(L2)) .

This gives for PE -almost every e ∈ E for all xI\L1
∈X I\L1

xL2
= hL2

(xpa(L1∪L2)\(L1∪L2),epa(L1∪L2))

⇐⇒ xL2
= f̃L2

(xp̂a(L2),ep̂a(L2)) .

Now apply Lemma E.3 to conclude thatMmarg(L1) is uniquely solvable w.r.t. L2.

PROOF OF PROPOSITION 5.5. The commutation relation with the perfect intervention
follows straightforwardly from the definitions of perfect intervention and marginalization
and the fact that ifM is uniquely solvable w.r.t. L, thenMdo(I,ξI) is also uniquely solvable
w.r.t. L, since the structural equations for the variables L are the same forM andMdo(I,ξI).

The commutation relation with the twin operation follows straightforwardly from the def-
inition of the twin operation and marginalization and the fact that ifM is uniquely solvable
w.r.t. L, then twin(M) is uniquely solvable w.r.t. L∪L′, where L′ is the copy of L in I ′.

LEMMA E.4. Given an SCMM and a subset L ⊆ I such thatM is uniquely solvable
w.r.t. L. ThenM and marg(L)(M) are observationally equivalent w.r.t. I \ L.

PROOF. Let O := I \ L. From unique solvability w.r.t. L it follows that for PE -almost
every e ∈ E and for all x ∈X{

xL = fL(x,e)

xO = fO(x,e)

⇐⇒

{
xL = gL(xpa(L)\L,epa(L))

xO = fO(gL(xpa(L)\L,epa(L)),xO,e)

⇐⇒

{
xL = gL(xpa(L)\L,epa(L))

xO = f̃(xO,e) ,

where f̃ is the marginal causal mechanism of Mmarg(L) constructed from a measurable
solution function gL : X pa(L)\L × Epa(L)→XL forM w.r.t. L. Hence, a solution (X,E)

of M satisfies XO = f̃(XO,E) a.s.. Conversely, if (X̃O,E) is a solution of the marginal
SCM Mmarg(L) then with X̃L := gL(X̃pa(L)\L,Epa(L)), the random variables (X,E) :=

(X̃O,X̃L,E) are a solution ofM.
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PROOF OF THEOREM 5.6. The observational equivalence follows from Lemma E.4. Us-
ing both Lemma E.4 and Proposition 5.5 we can prove the interventional equivalence.
Observe that from Proposition 5.5 we know that for a subset I ⊆ I \ L and a value
ξI ∈ X I , (marg(L) ◦ do(I,ξI))(M) exists. By Lemma E.4 we know that do(I,ξI)(M)
and (marg(L) ◦ do(I,ξI))(M) are observationally equivalent w.r.t. O and hence by apply-
ing again Proposition 5.5, do(I,ξI)(M) and (do(I,ξ) ◦marg(L))(M) are observationally
equivalent w.r.t. O. This implies that M and marg(L)(M) are interventionally equivalent
w.r.t. O. Lastly, we need to show that twin(M) and (twin ◦ marg(L))(M) are interven-
tionally equivalent w.r.t. (I ∪ I ′) \ (L ∪ L′), where L′ is the copy of L in I ′. From Propo-
sition 5.5 (twin ◦marg(L))(M) is equivalent to (marg(L ∪ L′) ◦ twin)(M) and since we
proved that (marg(L ∪ L′) ◦ twin)(M) and twin(M) are interventionally equivalent w.r.t.
(I ∪ I ′) \ (L∪L′) the result follows.

PROOF OF PROPOSITION 5.9. A similar proof as for Theorem 1 in [15] works.

PROOF OF PROPOSITION 5.10. First we prove the commutation relation of the perfect
intervention. Observe that applying the do(I) operation to the latent projection marg(L)(G)
removes all the incoming edges on the nodes I . Such an incoming edge at a node in I in
marg(L)(G) corresponds to a path in G that points to that node. But since do(I)(G) is just G
with all the incoming edges on I removed, the graph (marg(L) ◦ do(I))(G) also has all the
incoming edges on the nodes I removed.

Next, we will prove the commutation relation of the twin operation. We will denote the
copy in I ′ of any node i ∈ I by i′, i.e., I ′ = {i′ : i ∈ I}. The edges in (twin(I \ L) ◦
marg(L))(G) can be partitioned into three cases:

v→w v ∈ J ∪ I \ L,w ∈ J ∪ I \ L, v→w ∈marg(L)(G) ,

v→w′ v ∈ J ,w ∈ I \ L, v→w ∈marg(L)(G) ,

v′→w′ v ∈ I \ L,w ∈ I \ L, v→w ∈marg(L)(G) ,

where J := V \ I .
Note that in twin(I)(G), there are no directed edges of the form v′ → w by definition.

Therefore, the edges in (marg(L∪L′) ◦ twin(I))(G) can be partitioned into three cases:
v→w v ∈ J ∪ I \ L,w ∈ J ∪ I \ L, v→ `1→ · · · → `n→w ∈ twin(I)(G) ,

v→w′ v ∈ J ,w ∈ I \ L, v→ `′1→ · · · → `′n→w′ ∈ twin(I)(G) ,

v′→w′ v ∈ I \ L,w ∈ I \ L, v′→ `′1→ · · · → `′n→w′ ∈ twin(I)(G) ,

where all `1, . . . , `n ∈ L and `′1, . . . , `
′
n ∈ L′. Thus, the non-endpoint nodes on the directed

paths in twin(I)(G) must either all lie in L or in L′. With the definition of twin(I)(G) we
can rewrite this as follows:

v→w v ∈ J ∪ I \ L,w ∈ J ∪ I \ L, v→ `1→ · · · → `n→w ∈ G ,
v→w′ v ∈ J ,w ∈ I \ L, v→ `1→ · · · → `n→w ∈ G ,
v′→w′ v ∈ I \ L,w ∈ I \ L, v→ `1→ · · · → `n→w ∈ G ,

where all intermediate `1, . . . , `n must lie in L. This corresponds exactly with the edges in
(twin(I \ L) ◦marg(L))(G).

PROOF OF PROPOSITION 5.12. Without loss of generality, we assume that M is struc-
turally minimal (see Proposition 2.12). Let gL be a measurable solution function forM w.r.t.
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L and denote by Mmarg(L) the marginal SCM constructed from gL. For j ∈ I \ L, define
Aj := anG(M)L(pa(j) ∩ L)⊆ L and let g̃Aj be a measurable solution function forM w.r.t.
Aj . Because Aj ⊆ L and pa(Aj) \ Aj ⊆ pa(L) \ L, by Lemma E.1, for PE -almost every
e ∈ E and for all x ∈X

(gL)Aj (xpa(L)\L,epa(L)) = g̃Aj (xpa(Aj)\Aj ,epa(Aj)) .

Therefore, the component f̃j of the marginal causal mechanism f̃ ofMmarg(L) satisfies for
PE -almost every e ∈ E and for all x ∈X

f̃j(xI\L,e) := fj
(
(gL)pa(j)(xpa(L)\L,epa(L)),xpa(j)\L,epa(j)

)
= fj

(
(g̃Aj )pa(j)∩L(xpa(Aj)\Aj ,epa(Aj)),xpa(j)\L,epa(j)

)
.

Hence, the endogenous parents of j inMmarg(L) are a subset of
(
(pa(Aj) \Aj) ∪ (pa(j) \

L)
)
∩ I and the exogenous parents of j inMmarg(L) are a subset of (pa(Aj)∪ pa(j))∩J .

Hence, all parents of j inMmarg(L) are a subset of those k ∈ (I \L)∪J such that there exists
a path k→ `1→ · · · → `n→ j ∈ Ga(M) for n ≥ 0 and `1, . . . , `n ∈ L. Therefore, the aug-
mented graph Ga

(
marg(L)(M)

)
is a subgraph of the latent projection marg(L)

(
Ga(M)

)
.

Hence,

G
(
marg(L)(M)

)
= marg(J )

(
Ga
(
marg(L)(M)

))
⊆marg(J )

(
marg(L)

(
Ga(M)

))
= marg(L)

(
marg(J )

(
Ga(M)

))
= marg(L)

(
G(M)

)
and we conclude that also the graph G

(
marg(L)(M)

)
is a subgraph of the latent projection

marg(L)
(
G(M)

)
.

Section 6

PROOF OF THEOREM 6.3. This follows directly from Theorem A.7 and A.21.

Section 7

PROOF OF PROPOSITION 7.1. We define M̃ :=Mdo(I,ξI), p̃a := paGa(M̃) and A :=

anG(M̃)\i
(j). Suppose that i → j /∈ marg(I \ O)(G(M)) and assume that the two in-

duced distributions do not coincide. Because i→ j /∈ marg(I \ O)(G(M)) it follows that
(p̃a(A) \ A)∩ I = ∅. Let now g̃A : E p̃a(A)→XA be a measurable solution function for M̃
w.r.t. A, i.e., we have for PE -almost every e ∈ E and for all x ∈X

xA = f̃A(x,e) ⇐⇒ xA = g̃A(ep̃a(A)) ,

where f̃ is the ausal mechanism of M̃. Because i /∈ A and j ∈ A, it follows that for the
intervened model (Mdo(I,ξI))do({i},ξi) the marginal solution Xj is also a marginal solution
of (Mdo(I,ξI))do({i},ξ̃i) and vice versa, which is in contradiction with the assumption.

PROOF OF PROPOSITION 7.3. Let’s define M̃ := Mdo(I,ξI), p̃a := paGa(M̃), Ai :=

anG(M̃)(i) andA\ij := anG(M̃)\i
(j). Suppose that there does not exist a bidirected edge i↔ j
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in the latent projection marg(I \O)(G(M)). Because i↔ j /∈marg(I \O)(G(M̃)), where
here M̃ is the intervened modelMdo(I,ξI), we have that anGa(M̃)\j

(i)∩anGa(M̃)\i
(j)∩J =

∅. From j /∈ anG(M̃)(i) it follows that anG(M̃)\j
(i) = anG(M̃)(i), and hence anGa(M̃)(i) ∩

anGa(M̃)\i
(j) ∩ J = ∅. Observe that p̃a(Ai) ⊆ anGa(M̃)(i) and p̃a(A\ij ) ⊆ anGa(M̃)\i

(j) ∪
{i}, and thus p̃a(Ai)∩ p̃a(A\ij )∩J = ∅. Let gAi : E p̃a(Ai)→XAi be a measurable solution
function for M̃ w.r.t. Ai, i.e., we have for PE -almost every e ∈ E and for all x ∈X

xAi = f̃Ai(x,e) ⇐⇒ xAi = gAi(ep̃a(Ai)) ,

where f̃ is the intervened causal mechanism of M̃. Because p̃a(Ai)∩ p̃a(A\ij )∩J = ∅ and
i ∈Ai, we have that Xi⊥⊥Ep̃a(A\ij ) for every solution (X,E) of M̃.

Assume for the moment that i ∈ p̃a(A\ij )\A\ij , then (p̃a(A\ij )\A\ij )∩I = {i}. Let gA\ij :

Xi × E p̃a(A\ij )→XA\ij be a measurable solution function for M̃ w.r.t. A\ij , i.e., we have for
PE -almost every e ∈ E and for all x ∈X

xA\ij
= f̃A\ij

(x,e) ⇐⇒ xA\ij
= gA\ij

(xi,ep̃a(A\ij )) .

For every measurable set Bj ⊆Xj there exists a version of the regular conditional probability
PMdo(I,ξI )

(Xj ∈ B |Xi = ξi) such that for every value ξi ∈ Xi it satisfies

PMdo(I,ξI )

(
Xj ∈ Bj |Xi = ξi

)
= PM̃

(
Xj ∈ Bj |Xi = ξi

)
= PM̃

(
(gA\ij

)j(Xi,Ep̃a(A\ij )) ∈ Bj |Xi = ξi
)

= PM̃
(
(gA\ij

)j(ξi,Ep̃a(A\ij )) ∈ Bj |Xi = ξi
)

= PM̃
(
(gA\ij

)j(ξi,Ep̃a(A\ij )) ∈ Bj
)

= PM̃do({i},ξi)

(
(gA\ij

)j(Xi,Ep̃a(A\ij )) ∈ Bj
)

= PM̃do({i},ξi)

(
Xj ∈ Bj

)
= P(

Mdo(I,ξI )

)
do({i},ξi)

(
Xj ∈ Bj

)
,

where we used Xi⊥⊥Ep̃a(A\ij ) in the fourth equality.

If we assume i /∈ p̃a(A\ij ) \ A\ij instead of i ∈ pa(A\ij ) \ A\ij , then we similarly arrive at
the same conclusion.

Section 8

PROOF OF PROPOSITION 8.2. We first show that the class of simple SCMs is closed un-
der marginalization. Take two disjoint subsets L1 and L2 in I . Then, it suffices to show that
Mmarg(L1) is uniquely solvable w.r.t. L2. This follows directly from Proposition 5.4.

To show that the class of simple SCMs is closed under perfect intervention. Let M be
a simple SCM, O ⊆ I , I ⊆ I and ξI ∈ X I . Define O1 := O ∩ I and O2 := O \ I , then
O =O1 ∪O2. Note that pa(O2) \ O2 = (pa(O2) \ (O2 ∪ I)) ∪ (pa(O2) ∩ I) and pa(O2) \
(O2 ∪ I) ⊆ pa(O) \ O. Let gO2

: X pa(O2)\O2
× Epa(O2)→ XO2

be a measurable solution
function forM w.r.t. O2. The mapping g̃O : X pa(O)\O × Epa(O)→XO defined by{

(g̃O)O1
(xpa(O)\O,epa(O)) := ξO1

(g̃O)O2
(xpa(O)\O,epa(O)) := gO2

(xpa(O2)\(O2∪I),ξpa(O2)∩I ,epa(O2))
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is a measurable solution function for Mdo(I,ξI) w.r.t. O, and it is clear that Mdo(I,ξI) is
uniquely solvable w.r.t. O.

Next, we show that the class of simple SCMs is closed under the twin operation. Let
Õ ⊆ I ∪ I ′. Take O1 = Õ ∩ I , O′2 = Õ ∩ I ′ and O2 the original copy of O′2 in I . Let
gO1

: X pa(O1)\O1
× Epa(O1) → XO1

and gO2
: X pa(O2)\O2

× Epa(O2) → XO2
be mea-

surable solution functions for M w.r.t. O1 and O2 respectively. Define now the mapping
hÕ : X p̃a(Õ)\Õ × E p̃a(Õ)→X Õ by

(hÕ)Õ∩I(xp̃a(Õ)\Õ,ep̃a(Õ)) := gO1
(xp̃a(O1)\O1

,ep̃a(O1))

(hÕ)Õ∩I′(xp̃a(Õ)\Õ,ep̃a(Õ)) := gO2
(xp̃a(O′2)\O′2 ,ep̃a(O′2)) ,

where we define p̃a := paGa(Mtwin) as the parents w.r.t. the twin graph Ga(Mtwin). Then by
construction this mapping hÕ is a measurable solution function forMtwin w.r.t. Õ, and it is
clear thatMtwin is uniquely solvable w.r.t. Õ.

Lastly, it follows that the observational and all the intervened models of M and Mtwin

are uniquely solvable. From Theorem 3.8 we conclude thatM induces unique observational,
interventional and counterfactual distributions.

PROOF OF COROLLARY 8.3. This follows from Corollary A.22.

APPENDIX F: MEASURABLE SELECTION THEOREMS

In this appendix we derive some lemmas and state two measurable selection theorems that
are used in several proofs in Appendix E. First we introduce the measure theoretic notation
and terminology needed to understand the results (see [30] for more details).

DEFINITION F.1 (Standard measurable space). A measurable space (X ,Σ) is a standard
measurable space if it is isomorphic to (Y ,B(Y)), where Y is a Polish space, i.e., a separable
completely metrizable space,22 and B(Y) are the Borel subsets of Y , i.e., the σ-algebra
generated by the open sets in Y . A measure space (X ,Σ,µ) is a standard probability space
if (X ,Σ) is a standard measurable space and µ is a probability measure.

Examples of standard measurable spaces are the open and closed subsets of Rd, and the
finite sets with the usual complete metric. If we say that X is a standard measurable space,
then we implicitly assume that there exists a σ-algebra Σ such that (X ,Σ) is a standard
measurable space. Similarly, if we say that X is a standard probability space with probability
measure PX , then we implicitly assume that there exists a σ-algebra Σ such that (X ,Σ,PX )
is a standard probability space.

DEFINITION F.2 (Analytic set). Let X be a Polish space. A set A⊆X is called analytic
if there exist a Polish space Y and a continuous mapping f : Y→X with f(Y) = A.

22A metrizable space is a topological space X for which there exists a metric d such that (X , d) is a metric
space and induces the topology on X . For a metric space (X , d), a Cauchy sequence is a sequence (xn)n∈N of
elements of X such that for every ε > 0 there exists an N ∈N such that for all natural numbers p, q >N we have
d(xn, xm) < ε. We call (X , d) complete if every Cauchy sequence has a limit in X . A completely metrizable
space is a topological space X for which there exists a metric d such that (X , d) is a complete metric space that
induces the topology on X . A topological space X is called separable if it contains a countable dense subset, i.e.,
there exists a sequence (xn)n∈N of elements in X such that every non-empty open subset of X contains at least
one element of the sequence. A separable completely metrizable space is called a Polish space (see [9] and [30]
for more details).
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LEMMA F.3. Let X and Y be standard measurable spaces and f : X →Y a measurable
mapping. Then

1. every measurable set A⊆X is analytic;
2. if the subsets A ⊆ X and Ã ⊆ Y are analytic, then the sets f(A) and f−1(Ã) are

analytic.

PROOF. From Proposition 13.7 in [30] it follows that every measurable set A ⊆ X is
analytic. From Proposition 14.4.(ii) in [30] it follows that the image and the preimage of an
analytic set is an analytic set.

DEFINITION F.4 (µ-measurability). Let (X ,Σ,µ) be a measure space. A set E ⊆X is
called a µ-null set if there exists a A ∈Σ with E ⊆A and µ(A) = 0. We denote the class of
µ-null sets by N , and we denote the σ-algebra generated by Σ∪N by Σ̄, and its members
are called the µ-measurable sets. Note that each member of Σ̄ is of the form A ∪ E with
A ∈Σ and E ∈N . The measure µ is extended to a measure µ̄ on Σ̄, by µ̄(A∪E) =µ(A)
for every A ∈Σ and E ∈N , and is called its completion. A mapping f : X →Y between
measurable spaces is called µ-measurable if the inverse image f−1(C) of every measurable
set C ⊆Y is µ-measurable.

DEFINITION F.5 (Universal measurability). Let (X ,Σ) be a standard measurable space.
A set A ⊆X is called universally measurable if it is µ-measurable for every σ-finite mea-
sure23 µ on X (i.e., in particular every probability measure). A mapping f : X →Y between
standard measurable spaces is universally measurable if it is µ-measurable for every σ-finite
measure µ.

LEMMA F.6. Let E be a standard probability space with probability measure PE and
A⊆ E an analytic set. Then A is PE -measurable and there exist measurable sets S,T ⊆ E
such that S ⊆A⊆ T and PE(S) = P̄E(A) = PE(T ), where P̄E is the completion of PE .

PROOF. Let A⊆ E be an analytic set. Since every analytic set in a standard measurable
space is a universally measurable set (see Theorem 21.10 in [30]), we know that A is a
universally measurable set, and hence it is in particular a PE -measurable set. Thus, there exist
a measurable set S ⊆ E and a PE -null set C ⊆ E such that A = S ∪C and P̄E(A) = PE(S),
where P̄E is the completion of PE . Moreover, there exists a measurable set C̃ ⊆ E such that
C ⊆ C̃ and PE(C̃) = 0. Let T := S ∪ C̃, then A⊆ T and PE(T ) = PE(S).

LEMMA F.7. Let f : X →Y be a µ-measurable mapping. If Y is countably generated,
then there exists a measurable mapping g : X →Y such that f(x) = g(x) holds µ-a.e..

PROOF. Let the σ-algebra of Y be generated by the countable generating set {Cn}n∈N.
The µ-measurable set f−1(Cn) = An ∪ En for some An ∈Σ and some En ∈N and hence
there is some En ⊆ Bn ∈ Σ such that µ(Bn) = 0. Let B̂ = ∪n∈NBn, Ân = An \ B̂ and
Â = ∪n∈NÂn, then µ(B̂) = 0, Â and B̂ are disjoint and X = Â ∪ B̂. Now define the
mapping g : X →Y by

g(x) :=

{
f(x) if x ∈ Â,
y0 otherwise,

23A measure µ on a measurable space (X ,Σ) is called σ-finite if X = ∪n∈NAn, with An ∈Σ, µ(An)<
∞.
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where for y0 we can take an arbitrary point in Y . This mapping g is measurable since for
each generator Cn we have

g−1(Cn) =

{
Ân if y0 /∈ Cn,
Ân ∪ B̂ otherwise.

is in Σ. Moreover, f(x) = g(x) µ-almost everywhere.

With this result at hand we can now prove the first measurable selection theorem.

THEOREM F.8 (Measurable selection theorem). Let E be a standard probability space
with probability measure PE , X a standard measurable space and S ⊆ E ×X a measurable
set such that E \prE(S) is a PE -null set, where prE : E ×X → E is the projection mapping
on E . Then there exists a measurable mapping g : E →X such that (e,g(e)) ∈ S for PE -
almost every e ∈ E .

PROOF. Take the subset Ê := E \ B, for some measurable set B ⊇ E \ prE(S) and
PE(B) = 0, and note that Ê is a standard measurable space (see Corollary 13.4 in [30]) and
Ê ⊆ prE(S). Let Ŝ = S ∩ (Ê ×X ). Because the set Ŝ is measurable, it is in particular ana-
lytic (see Lemma F.3). It follows by the Jankov-von Neumann Theorem (see Theorem 18.8 or
29.9 in [30]) that Ŝ has a universally measurable uniformizing function, that is, there exists
a universally measurable mapping ĝ : Ê →X such that for all e ∈ Ê , (e, ĝ(e)) ∈ Ŝ . Hence,
in particular, it is PE

∣∣
Ê -measurable, where PE

∣∣
Ê is the restriction of PE to Ê .

Now define the mapping g∗ : E→X by

g∗(e) :=

{
ĝ(e) if e ∈ Ê
x0 otherwise,

where for x0 we can take an arbitrary point in X . Then this mapping g∗ is PE -measurable.
To see this, take any measurable set C ⊆X , then

g∗−1(C) =

{
ĝ−1(C) if x0 /∈ C
ĝ−1(C)∪B otherwise.

Because ĝ−1(C) is PE
∣∣
Ê -measurable it is also PE -measurable and thus g∗−1(C) is PE -

measurable.
By Lemma F.7 and the fact that standard measurable spaces are countably generated (see

Proposition 12.1 in [30]), we prove the existence of a measurable mapping g : E →X such
that g∗ = g PE -a.e. and thus it satisfies (e,g(e)) ∈S for PE -almost every e ∈ E .

This theorem rests on the assumption that the standard measurable space E has a probabil-
ity measure PE . If this space becomes the product space Y×E , for some standard measurable
space Y where only the space E has a probability measure, then in general this theorem does
not hold anymore. However, if we assume in addition that the fibers of S in Y are σ-compact
for PE -almost every e ∈ E and for all x ∈X , then we can prove a second measurable selec-
tion theorem. A topological space is σ-compact if it is the union of countably many compact
subspaces. For example, all countable discrete spaces, every interval of the real line, and
moreover all the Euclidean spaces are σ-compact spaces.
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THEOREM F.9 (Second measurable selection theorem). Let E be a standard probability
space with probability measure PE , X and Y standard measurable spaces and S ⊆ X ×
E ×Y a measurable set such that E \Kσ is a PE -null set, where

Kσ := {e ∈ E : ∀x ∈X (S(x,e) is non-empty and σ-compact)} ,

with S(x,e) denoting the fiber over (x,e), that is

S(x,e) := {y ∈Y : (x,e,y) ∈S} .

Then there exists a measurable mapping g : X ×E→Y such that for PE -almost every e ∈ E
and for all x ∈X we have (x,e,g(x,e)) ∈S .

PROOF. Take the subset Ê := E \B, for some measurable set B⊇ E \Kσ and PE(B) = 0.
Note that Ê is a standard measurable space, Ê ⊆Kσ and Ŝ = S∩(X ×Ê×Y) is measurable.
By assumption, for each (x,e) ∈X × Ê the fiber Ŝ(x,e) is non-empty and σ-compact and
hence by applying the Theorem of Arsenin-Kunugui (see Theorem 35.46 in [30]) it follows
that the set Ŝ has a measurable uniformizing function, that is, there exists a measurable
mapping ĝ : X × Ê →Y such that for all (x,e) ∈X × Ê , (x,e, ĝ(x,e)) ∈ Ŝ . Now define
the mapping g : X × E→Y by

g(x,e) :=

{
ĝ(x,e) if e ∈ Ê
y0 otherwise,

where for y0 we can take an arbitrary point in Y . This mapping g inherits the measurability
from ĝ and it satisfies for PE -almost every e ∈ E and for all x ∈ X that (x,e,g(x,e)) ∈
S .

The next two lemmas provide some useful properties for the “for PE -almost every e ∈ E”
quantifier.

LEMMA F.10. Let φ : E → Ẽ be a measurable map between two standard measurable
spaces. Let PE be a probability measure on E and let PẼ = PE ◦ φ−1 be its push-forward
under φ. Let P̃ : Ẽ → {0,1} be a property, i.e., a (measurable) boolean-valued function on
Ẽ . Then the property P = P̃ ◦ φ on E holds PE -a.e. if and only if the property P̃ holds
PẼ -a.e..

PROOF. Assume the property P = P̃ ◦ φ holds PE -a.e., then C = {e ∈ E : P (e) =
1} contains a measurable set C∗ with PE -measure 1, i.e., C∗ ⊆ C and PE(C∗) = 1. By
Lemma F.3, φ(C∗) is analytic. By Lemma F.6, there exist measurable sets A,B such that
A⊆ φ(C∗)⊆B and PẼ(A) = PẼ(B). Because φ is measurable, φ−1(A) and φ−1(B) are
both measurable. Also, φ−1(A)⊆ φ−1(φ(C∗))⊆ φ−1(B). As C∗ ⊆ φ−1(φ(C∗)), we must
have that PE(φ−1(B)) ≥ PE(C∗) = 1. Hence PẼ(A) = PẼ(B) = 1. Note that as C∗ ⊆ C,
A⊆ φ(C∗)⊆ φ(C)⊆ {ẽ ∈ Ẽ : P̃ (ẽ) = 1}. Hence the set C̃ := {ẽ ∈ Ẽ : P̃ (ẽ) = 1} contains
a measurable set of PẼ -measure 1, in other words, P̃ holds PẼ -a.s..

The converse is easier to prove. Suppose C̃ = {ẽ ∈ Ẽ : P̃ (ẽ) = 1} contains a measurable
set C̃∗ with PẼ -measure 1, i.e., C̃∗ ⊆ C̃ and PẼ(C̃∗) = 1. Because φ is measurable, the set
φ−1(C̃∗) is measurable and PE(φ−1(C̃∗)) = 1, and furthermore, φ−1(C̃∗) ⊆ φ−1(C̃) = C.
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LEMMA F.11 (Some properties for the for-almost-every quantifier). Let X = X × X̃
and E = E × Ẽ be products of non-empty standard measurable spaces and PE = PE × PẼ
be the product measure of probability measures PE and PẼ on E and Ẽ respectively. Denote
by “∨∼e” the quantifier “for PE -almost every e ∈ E” and by “∀x” the quantifier “for all
x ∈X”, and similarly for their components, e.g. “∨∼e” for “for PE -almost every e ∈ E” and
“∀x” for “for all x ∈ X”. Then we have the following properties:

1. ∨∼e : P (e) =⇒ ∃e : P (e) (similarly to ∀x : P (x) =⇒ ∃x : P (x));
2. ∨∼e : P (e) ⇐⇒ ∨∼e : P (e) (similarly to ∀x : P (x) ⇐⇒ ∀x : P (x));
3. ∃x∨∼e : P (x, e) =⇒ ∨∼e∃x : P (x, e) (similarly to ∃x∀e : P (x, e) =⇒ ∀e∃x : P (x, e));
4. ∨∼e∀x : P (x, e) =⇒ ∀x∨∼e : P (x, e) (similarly to ∀e∀x : P (x, e) =⇒ ∀x∀e : P (x, e));
5. ∨∼e : P (e) =⇒ ∃ẽ∨∼e : P (e) (similarly to ∀x : P (x) =⇒ ∃x̃∀x : P (x));
6. ∨∼e∀x : P (x, e) ⇐⇒ ∨∼e∀x : P (x, e);
7. ∨∼e∀x : P (x,e) =⇒ ∃ẽ∃x̃∨∼e∀x : P (x,e),

where P denotes a property, i.e., a measurable boolean-valued function, on the correspond-
ing measurable spaces and we write e and x for (e, ẽ) and (x, x̃) respectively.

PROOF. We only prove the statements that may not be immediately obvious.
Property 2. Let prE : E → E be the projection mapping on E . Then by Lemma F.10 we

have

∨∼e : P (e) ⇐⇒ ∨∼e : P ◦ prE(e) ⇐⇒ ∨∼e : P (e) .

Property 4: We have

∨∼e∀x : P (x, e)

=⇒ ∃PE -null set N ∀e ∈ E \N ∀x : P (x, e)

=⇒ ∃PE -null set N ∀x∀e ∈ E \N : P (x, e)

=⇒ ∀x∃PE -null set N ∀e ∈ E \N : P (x, e)

=⇒ ∀x∨∼e : P (x, e) .

Property 5: Let N be a measurable PE -null set such that P (e) holds for all e ∈ E \N .
Define for ẽ ∈ Ẽ the set Nẽ := {e ∈ E : (e, ẽ) ∈N}. Note that the sets Nẽ are measurable.
From Fubini’s theorem it follows that for PẼ -almost every ẽ ∈ Ẽ we have PE(Nẽ) = 0. That
is, there exists a measurable PẼ -null set Ñ such that PE(Nẽ) = 0 for all ẽ ∈ Ẽ \ Ñ . Hence,
there exists ẽ ∈ Ẽ \ Ñ such that PE(Nẽ) = 0; for all e ∈ E \Nẽ, P (e) then holds. This means
∃ẽ∨∼e : P (e).

Property 7: We have

∨∼e∀x : P (x,e) =⇒ ∃ẽ∨∼e∀x : P (x,e) =⇒ ∃ẽ∨∼e∀x̃∀x : P (x,e)

=⇒ ∃ẽ∀x̃∨∼e∀x : P (x,e) =⇒ ∃ẽ∃x̃∨∼e∀x : P (x,e) ,

where in the first equivalence we used Property 5, in the third equivalence we used Property 4
and in the last equivalence we used Property 1.
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