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Abstract

We introduce Joint Causal Inference (JCI), a powerful formulation of causal discovery from mul-
tiple datasets that allows to jointly learn both the causal structure and targets of interventions from
statistical independences in pooled data. Compared with existing constraint-based approaches for
causal discovery from multiple data sets, JCI offers several advantages: it allows for several dif-
ferent types of interventions in a unified fashion, it can learn intervention targets, it systematically
pools data across different datasets which improves the statistical power of independence tests,
and most importantly, it improves on the accuracy and identifiability of the predicted causal rela-
tions. A technical complication that arises in JCI is the occurrence of faithfulness violations due
to deterministic relations. We propose a simple but effective strategy for dealing with this type of
faithfulness violations. We implement it in ACID, a determinism-tolerant extension of Ancestral
Causal Inference (ACI) (Magliacane et al., 2016), a recently proposed logic-based causal discovery
method that improves reliability of the output by exploiting redundant information in the data. We
illustrate the benefits of JCI with ACID with an evaluation on a simulated dataset.

Keywords: Causal Inference, Structure Learning, Constraint-Based Causal Discovery, Observa-
tional and Experimental Data, Interventions

1. Introduction

Discovering causal relations from data is at the foundation of the scientific method. Traditionally,
causal relations are either recovered from experimental data in which the variable of interest is
perturbed, or from purely observational data, e.g., using the seminal PC and FCI algorithms (Spirtes

et al., 2000; Zhang, 2008).

In recent years, several methods for combining observational and experimental data to discover
causal relations have been proposed, showing that this combination can improve greatly on the
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accuracy and identifiability of the predicted causal relations. Some of the proposed methods are
score-based (e.g., Cooper and Yoo, 1999; Tian and Pearl, 2001; Eaton and Murphy, 2007; Hauser
and Biihlmann, 2012; Mooij and Heskes, 2013), i.e., they evaluate models using a penalized like-
lihood score, while others (e.g., Tian and Pearl, 2001; Claassen and Heskes, 2010; Hyttinen et al.,
2014; Triantafillou and Tsamardinos, 2015; Peters et al., 2015; Magliacane et al., 2016; Borboudakis
and Tsamardinos, 2016) are constraint-based, i.e., they use statistical independences to express con-
straints over possible models.

In this work we propose Joint Causal Inference (JCI), a formulation of causal discovery over
multiple datasets in which both the causal structure and targets of interventions are jointly learnt
from independence test results in pooled data. A related approach was already proposed for score-
based methods by Eaton and Murphy (2007), but here we extend it so that constraint-based methods
can be employed. Our goal is to combine the idea of joint inference from observational and ex-
perimental data from Eaton and Murphy (2007) with the advantages that constraint-based methods
have over score-based methods, namely, the ability to handle latent confounders and selection bias
naturally in a nonparametric approach, and, especially in the case of logic-based methods, an easy
integration of background knowledge.

Existing constraint-based methods for multiple datasets typically learn the causal structure on
each dataset separately and then merge the learnt structures (e.g., Claassen and Heskes, 2010; Hyt-
tinen et al., 2014; Triantafillou and Tsamardinos, 2015; Borboudakis and Tsamardinos, 2016). The
merging process depends on the type of interventions, and most existing methods support only in-
terventions on known targets. Instead, JCI: (1) allows for several different types of interventions; (2)
can learn the intervention targets; (3) systematically pools data across different datasets, which im-
proves the statistical power of independence tests; and (4) improves the identifiability and accuracy
of the predicted causal relations.

On the other hand, JCI poses challenges for current constraint-based methods because of their
susceptibility to violations of the Causal Faithfulness assumption. Specifically, JCI induces faithful-
ness violations due to deterministic relations, which would typically result in erroneous inferences
with standard constraint-based methods. We propose a simple but effective strategy for dealing with
this type of faithfulness violations. The strategy can be applied to any constraint-based causal dis-
covery method for observational data that can handle partial inputs, i.e. missing results for a certain
independence test, thus extending it to a JCI method that can handle a combination of observa-
tional and experimental data. We implement the strategy in ACID (Ancestral Causal Inference with
Determinism), a determinism-tolerant extension of ACI (Ancestral Causal Inference) (Magliacane
et al., 2016), a recently proposed logic-based causal discovery method that improves reliability of
the output by exploiting redundant information in its input. In our evaluation on synthetic data we
show that JCI with ACID improves on the accuracy of the causal predictions with respect to simply
merging separately learned causal graphs, illustrating the advantage of joint causal discovery.

2. Preliminaries

In this section we review a few useful concepts from the related work and introduce the notation
we use in the rest of the paper. Most of the concepts described here are explained in detail in the
seminal books by Pearl (2009) and Spirtes et al. (2000). In the following, we represent variables
with uppercase letters, while sets of variables are denoted by boldface.
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2.1 Graph terminology

Throughout the paper we assume that the data generating process can be modeled by a causal
Directed Acyclic Graph (DAG) that may contain latent variables. For simplicity, we do not consider
selection bias. A directed edge X — Y in the causal DAG represents a direct causal relationship
of cause X on effect Y. We then say that X is a parent of Y, and denote the set of parents of ¥
as PA(Y). A sequence of directed edges X1 — X9 — --- — X, is a directed path. If there is a
directed path from X to Y (or X = Y) then X is an ancestor of Y (denoted as X --+ Y). We
denote the set of ancestors of Y as AN(Y"). If there is no directed path from X to Y (and X # Y) we
denote this as X -/ Y. A sequence of unique nodes (X7, ..., X,,) such that each pair { X;, X; 11}
is connected by an edge is called a path. A collider is a node on a path that has two incoming arrow
heads from both its neighboring nodes on the path, i.e., of the form X;_; — X; < X;;+1. Any
other node on a path (including the end nodes X1, X,,) is called a non-collider.

For a set of variables W, we extend the definition of parents PA(W) to the union of all parents
of any variable W € W. We similarly define AN(W) as the set of ancestors of all W € W. We
write X --+» W if there exists at least one effect Y € W that has X as an ancestor, i.e., X --» Y.
We write X /> Wif X /+» Y forallY € W.

2.2 Independences and d-separation

For disjoint sets of random variables X, Y, W, distributed according to a joint probability distri-
bution P, we denote the conditional independence of X and Y given W inPas X L Y |W [P],
and conditional dependence as X ) Y | W [P]. We often omit [P] when it is obvious from the
context which probability distribution we are referring to. We call the cardinality |W | the order of
the conditional (in)dependence relation.

A well-known graphical criterion for DAGs, with many implications for causal discovery, is
d-separation (Pearl, 2009; Spirtes et al., 2000):

Definition 1 For disjoint sets of variables X,Y ,W in a DAG G, we say that X is d-separated
fromY by W in G, written X LY |W [G], iff every path 7 in G that connects any X € X with
anyY €Y isblocked by W, i.e. at least one of the following holds:

e 7 contains a collider not in AN(W), or

e T contains a non-collider in W.

The opposite, i.e., d-connection, is denoted as X [ qY | W [G]. We often omit [G] from the notation
when it is obvious which DAG we are referring to.

The following two key assumptions for constraint-based causal discovery have been thoroughly
discussed in the literature (see for example Spirtes et al., 2000). They connect conditional indepen-
dences in the observational distribution P with d-separations in the underlying causal DAG G.

e Causal Markov Assumption: d-separation in the causal DAG G implies conditional indepen-
dence in the observational distribution P. For all disjoint sets of variables X,Y , W

X1, Y|W[G = X LY |W][P],
which can also be expressed contrapositively as:

X LY |WI[P| = X faY[W[F].
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Figure 1: Examples of faithfulness violations: In the left example, we show a set of faithfulness
violations due to a functionally determined relation, in which the parent X fully determines the child
Y. In the right example, X and S are binary variables and & is the XOR function. Conditioning
on {S, Y} fully determines X, even though {.S, Y} are not ancestors of X. This creates a series of
non-trivial faithfulness violations, listed below the graph. In both graphs, we represent the variables
resulting from structural equations without noise terms with a double circled node.

e Causal Faithfulness Assumption: the inverse, i.e., for all disjoint sets of variables X,Y, W:

XULY WPl = X LY |WI[G.

If we assume both the Causal Markov and Causal Faithfulness assumptions to hold, the conditional
independences of the observational distribution correspond one-to-one with the d-separations in the
causal DAG. This setting is very favourable for causal discovery, thus both assumptions are usually
made in constraint-based approaches.

2.3 Deterministic relations and faithfulness violations

Although often reasonable, the Causal Faithfulness assumption is violated in some cases, notably
in the common case of deterministic relations among variables, e.g., for Structural Causal Model
equations (Pearl, 2009) in which there is no noise term. Some of the faithfulness violations related
to determinism are captured by an extension to the d-separation criterion, the D-separation criterion,
first introduced by Geiger et al. (1990) and later extended by Spirtes et al. (2000). Under the
Causal Markov assumption, the formulation of D-separation presented by Geiger et al. (1990) is
proven to be complete for the restricted setting where determinism arises only due to functionally
determined relations, defined recursively as variables that are fully determined by their parents, or
more precisely:

Definition 2 A variable X is functionally determined by a set W for a given DAG G if X €¢ W,
or all parents of X are functionally determined by W'.

We show an example of faithfulness violations due to a functionally determined relation in
Figure 1 (left). Following Geiger et al. (1990), we represent the variables resulting from structural
equations without noise terms with a double circled node.
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In Section 3.8 of their book, Spirtes et al. (2000) extend D-separation to model also some de-
terministic relations that are due to variables being determined when conditioning on their non-
ancestors. In Figure 1 (right) we show an example in which the definition of D-separation from
Geiger et al. (1990) fails to capture the faithfulness violation that is due to the deterministic rela-
tion between non-ancestors of X, but the extended notion of D-separation by Spirtes et al. (2000)
correctly captures it.

Although the version of D-separation by Spirtes et al. (2000) retains completeness for the re-
stricted case of functionally determined relations, it is not proven to be complete in general. Nev-
ertheless, Spirtes et al. (2000) introduce several useful concepts for handling general deterministic
relations, so we summarize their findings here, adapting them to our notation. We start with the
assumption that we have complete knowledge of all deterministic relations in the system.

Assumption 1 D is a complete set of all the deterministic relations among variables, where each
entry ({V1,...,Va_1}, Vi) in the set indicates that variable V,, is a deterministic function of vari-
ables {V1,...,V,_1}, but it is not of any strict subset of {V1,...,V,_1}.

For example, in Figure 1 left, D = {({X},Y)}, and in Figure 1 right, D = {({X,S},Y),
({Y,X},S), {Y,S},X)}. This assumption is not as restrictive as it may seem at first, because
in practice one can easily reconstruct deterministic relations in the data by using several standard
methods. We use D to define a function that maps a given set of variables W to the set of all
variables that are determined by W:

Definition 3 Given a set of variables W and a complete set of deterministic relations D, we define
DETp (W) as the set of variables determined according to D by (a subset of) W. We omit D, using
only DET(W), if it is obvious from the context which set we are referring to.

Note that DETp(W) trivially includes W itself. Also, any variable with constant value is by
definition in DETp(W) for all W as it is determined by (). Following Spirtes et al. (2000), we can
use DET() to extend d-separation for deterministic relations.

Definition 4 Given a DAG G, three disjoint sets of variables X ,Y , W, and the complete set of
deterministic relations D, we define X and'Y to be D-separated by W w.r.t. D and G, denoted as
X 1p Y |W [D,G], iff for every path 7 in G between any X € X and anyY € Y, at least one
of the following holds:

e 7 contains a collider not in AN(W), or

e 7 contains a non-collider' in DETp(W).

If DETp(W) = W, D-separation reduces to standard d-separation. We omit D and G if it is
obvious from the context which set and graph we are referring to.

Under the Causal Markov Assumption, this formulation of D-separation is proven to imply inde-
pendence (Spirtes et al., 2000). More precisely: X Lp Y |W [D,G] — X L Y |W [P]if
‘P is Markov with respect to G and D is the complete set of deterministic relations that hold in P.
For the case of functionally determined relations, this version of D-separation is complete, i.e., it
completely identifies all additional independences due to functionally determined relations, because
in that setting it reduces to the version of D-separation by Geiger et al. (1990), which was shown to
be complete by Geiger et al. (1990).

1. Note that we also refer to the end nodes of a path as non-colliders.
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3. Related work

Given a set of observational and interventional datasets, most constraint-based methods that handle
multiple datasets learn the causal structure from each dataset separately and then merge the learned
structures (e.g., Claassen and Heskes, 2010; Hyttinen et al., 2014; Triantafillou and Tsamardinos,
2015; Borboudakis and Tsamardinos, 2016). Some of these methods, e.g., COMBINE (Triantafil-
lou and Tsamardinos, 2015), perform these two steps sequentially, applying a greedy procedure
to resolve any potential conflict from the causal structures learnt in the first step. Others, e.g.,
HEJ (Hyttinen et al., 2014), combine learning and merging in a single procedure, solving poten-
tial conflicts by formulating an optimization problem. A recent approach, ETIO (Borboudakis and
Tsamardinos, 2016), combines the aspects of the previous approaches by learning and merging in a
single procedure, but using a greedy algorithm for resolving conflicts.

Merging causal structures learnt on each dataset separately has several drawbacks with respect
to a method that can jointly use all datasets, as for example the score-based method from Eaton and
Murphy (2007). First, merging approaches require known targets and cannot learn the targets of the
interventions, since this type of information is only available when considering multiple datasets
jointly. Moreover, they cannot take advantage of certain interventional datasets, e.g., in the case
of a single data point per interventional setting, as for example happens in a popular genomics
dataset (Kemmeren et al., 2014). Two other important drawbacks are a loss of statistical power
because of the separation into smaller isolated datasets, and, as we will show with some examples
in Section 4.1, less identifiable relations with respect to a joint causal inference method.

There is some related work on special cases in which to apply constraint-based methods with
mixtures of observational and experimental datasets (e.g., Tian and Pearl, 2001; Eberhardt, 2008;
Lagani et al., 2012; Peters et al., 2015; Borboudakis and Tsamardinos, 2016), but the problem has
not been systematically discussed and formalized in a general framework yet. In particular, to the
best of our knowledge, no existing work addresses learning the intervention targets, possibly jointly
with the causal graph, from independence tests.

The approach described by Tian and Pearl (2001) learns the causal structure by combining a
standard constraint-based method on observational data with information extracted from changes
in the marginal probability of each variable. This information can be extracted from a sequence of
(interventional) datasets by comparing each pair of datasets in the sequence, under the assumption
that the only difference between the two datasets is a mechanism change on a single known variable.
This is a quite restrictive assumption in practice.

Other approaches describe sufficient, although restrictive, conditions under which pooling data
does not change the conditional distribution of the variables under consideration. In particular,
Eberhardt (2008) describes how naively pooling data from different experimental settings, while
discarding the information of which experimental setting a sample was taken, may give wrong
results. Thus Eberhardt (2008) proposes a sufficient condition that allows one to pool data for a
given independence test when the conditional distribution of the tested variables is the same in
all experimental conditions. Lagani et al. (2012) present two other approaches: (i) perform the
conditional independence tests separately in each dataset, then define the pooled dependence as a
disjunction of the single dependences; (ii) pool experimental conditions that differ only in the value
of at most one intervened variable. Both of these approaches describe restrictive conditions in which
one can pool datasets, while in this paper we argue that, when done systematically, e.g., as we will
show in the next section, one can always pool all available datasets.
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Other approaches like Invariant Causal Prediction (ICP) (Peters et al., 2015) focus on certain
specific combinations of independence tests that are performed jointly on all datasets. ICP is a
causal discovery method that looks for invariance across different experimental settings, returning
a conservative subset of ancestors (or parents, if one assumes there are no latent confounders) for
a given target variable Y. The main assumption is that the conditional distribution of Y given its
parents does not change in the different interventional settings (in particular, that Y is not directly in-
tervened upon). This assumption is also referred to as invariance or modularity (Pearl, 2009; Spirtes
et al., 2000). Since the method searches for patterns that are invariant across different settings, it
can safely pool together a subset of settings in a new virtual “experimental” setting to increase the
statistical power for settings with few data. On the other hand, as we show with some examples in
Section 4.2, the conservativeness of the ICP estimates sometimes significantly reduces the causal
information that can be inferred. Like ICP, JCI makes an invariance assumption that allows it to
combine different datasets. The invariance assumption made by JCI is that the causal structure is
invariant across experimental settings (but model parameters are allowed to change).

4. Joint Causal Inference (JCI)

We propose to model jointly with a single causal graph n observational or experimental datasets
{D,},¢ {1,...n}- We assume that there is a unique underlying causal DAG Gy in all of these datasets,
defined over the same set of variables that we call the system variables, {X;}jcx, some of which
are possibly hidden.

Each dataset D, has an associated joint probability distribution P,.((X;)jex ) and represents the
d, data points collected after a set of interventions on possibly unknown intervention targets. In the
context of this paper, observational data are simply datasets with an empty set of interventions. We
assume each distribution P, (r = 1, ..., n) to be Markov and faithful with respect to the causal DAG
G x. This assumption precludes certain types of interventions, notably, perfect interventions (Pearl,
2009). On the other hand, it allows for many other types of interventions, e.g., soft interventions
(Markowetz et al., 2005), mechanism changes (Tian and Pearl, 2001), fat-hand interventions (Eaton
and Murphy, 2007), activity interventions (Mooij and Heskes, 2013), etc., as long as they do not
induce new (in)dependences, which can be seen as modifications to the underlying DAG G y.

Using the terminology from Dawid (2002), we call the different distributions in the datasets
regimes. In related work different names have been used, e.g., experimental conditions or environ-
ments (Mooij and Heskes, 2013; Peters et al., 2015). We introduce two types of dummy variables
in the data:

e aregime variable R, representing which dataset D, a data point is from, i.e., Vr = 1,...,n,
R = r for data from D,..

e intervention variables {/;};cz, which are deterministic functions of the regime R. Inter-
vention variables represent the interventions performed in each dataset. In absence of any
information on the interventions performed in the datasets, we can use as intervention vari-
ables the indicator variables for each of the datasets.

We can now state the main assumption of JCIL.

Assumption 2 We assume that the causal relations between system variables {X;};cx and the
introduced dummy variables R and {I;};c1 can be represented as an acyclic Structural Causal
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Figure 2: Prototypical example of JCI setting: A set of four experimental datasets in raw form
(left), in a pooled tabular form with the addition of dummy variables (center) and as a causal DAG G
(right) representing the causal structure of the system variables X7, ..., X4, regime variable R and
intervention variables Iy, I>. The intervention variable /; represents the temperature at which each
experiment was performed, while /5 represents the addition of a drug in some of the experiments.

Model (SCM) M with jointly independent exogenous variables { Ey } .c x (R}:

R = Ep,
I, =g(R), i€l
X] = fj(XPA/Y(Xj)7IPA1(Xj)7Ej)? ] € X?

p((Br)kexu(ry) = H p(Ey).
keXU{R}

Here, PA x (X ;) are the system variable parents of X ;, while PA7(X ;) denote its intervention parents
and E}; is the exogenous parent of X;. The distribution P, corresponding to dataset D, is given by

p((Xj)jex | R=r).

We denote the corresponding causal DAG as G. The Causal Markov assumption then holds by con-
struction. We show an example in Figure 2, where we model four datasets with the same underlying
causal structure.

The JCI assumptions are applicable when the value of the regime/intervention variables are
determined by the experimenter before the system variables are measured. More generally, the as-
sumption is that the system variables cannot cause the regime/intervention variables. In addition,
we assume that the values set by the experimenter are chosen independently of any other possible
cause of the system variables. In other words, we assume there to be no confounders between the
regime variable and the system variables, or between the intervention variables and the system vari-
ables. For the purposes of causal discovery as intended in this paper, there is nothing else that really
distinguishes the regime/intervention variables from the system variables: they can both be consid-
ered to be random variables, where the distribution of the regime/intervention variables just reflects
the empirical distribution of the experimental design chosen by the experimenter. Moreover, there is
no distinction between observational and experimental datasets, allowing for several observational
datasets, possibly from different contexts.
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R | Iaxemh | Tvoizs | ficam || p(R) R | Iirg | Ticam || P(R)
1 0 1 0 0.375 1 0 0 0.375
2 1 0 0 0.125 2 1 0 0.125
3 0 1 1 0.2 3 0 1 0.2
4 1 0 1 0.3 4 1 1 0.3

Table 1: Example of experimental design matrix with additional deterministic relations beyond the
ones allowed in JCI (left) and a reduced version with only allowed deterministic relations (right).
In the right version we joined Iake1nn and Iyoj2e6 in a single intervention variable /g, representing
the addition of a single drug (U0126 when the value is 0, Akt-Inh when it is 1).

Intervention variables are functions of the regime variable, and do not have any associated noise.
This means that they are defermined by the regime. We represent these functions as a matrix:

Definition 5 We define the experimental design matrix as the matrix representing the functional
relations between R and each intervention variable I;, and the corresponding probabilities of the
regime variable p(R =r) = -, where d is the number of data points in dataset D.

We assume that the intervention variables are complete in the sense that every effect of the regime
variable is mediated through an intervention variable. In other words, we assume that there are no
direct effects of R on any of the system variables.

In general, other deterministic relations between dummy variables may arise. For example,
consider the example in Table 1 left in which Ik, represents a drug that was added when the
regime is an odd number, while Iyjg;2¢ indicates another drug that was added when the regime is
an even number. These two variables determine each other. Even though this is clear from the
experimental design matrix, it is not visible in the causal influence diagram.

In this paper, we focus on a special case by allowing only certain types of deterministic relations.
We assume that the regime R determines each of the intervention variables {; };c7. Optionally, we
allow one additional deterministic relation, namely that all intervention variables {I; },c7 together
determine the regime R. We assume that there are no other deterministic relations.

Assumption 3 The deterministic relations that hold in the joint distribution P(R, {I; }icz, {X; }jex)
are ({R}, L;) for all i € I, and optionally, ({I;}ic1, R). No other deterministic relations hold in
the joint distribution.

In practice, one can often “normalize” a system that does not satisfy this assumption. For example,
the experimental design matrix in Table 1 left contains also deterministic relations that are not al-
lowed in JCI, but that arise from “redundant” intervention variables. Table 1 right shows how joining
two intervention variables can yield a “normalized” system that satisfies the JCI assumptions.

D-separation has been shown to be sound (Spirtes et al., 2000), but was only conjectured to be
complete. We prove that in our restricted setting, D-separation is actually complete.

Theorem 6 Under Assumptions 1-3, D-separation is complete, i.e., it gives all conditional inde-
pendences that are entailed by the assumptions.

Proof First we consider the case that the regime variable R is not determined by the intervention
variables. Then, all deterministic relations are functionally determined relations (see Definition 2),
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as they correspond to each intervention variable being a function of the regime variable only. The
notion of D-separation introduced by Geiger et al. (1990) is proved to be sounds and complete under
the Causal Markov assumption for functionally determined relations. If all deterministic relations
are functionally determined relations, then their notion of D-separation is equivalent to the one by
Spirtes et al. (2000) that we use here. Thus the statement follows.

For the other case, we will show that the D-separations do not change by removing the deter-
ministic relation that the regime variable R is determined by all intervention variables {I; };c7. Let
D denote the complete set of deterministic relations according to M and assume ({I; };cz, R) € D.
Let D* = D\ ({I;}icz, R). Let G be the DAG associated with M. We claim that for disjoint sets
of variables X, Y, W:

X1pY|W[D,G] < X LpY|W [D*,g].

Assume X 1p Y |W [D,G] and X [Lp Y |W [D* G]. This can only happen when
{I;}iez € W, because otherwise DETp(W) = DETp+ (W) and then the two D-separations are
identical by definition. So there must exist a path 7 in G that is D-open w.r.t. D* but D-closed w.r.t.
D. This means it must contain R as a non-collider. Also, R ¢ W otherwise the path would be
closed w.r.t. D*. Since X and Y are disjoint, 7 must contain at least one other node that is adjacent
to R, which must be one of the intervention variables {I; };cz. Since the intervention variables can
only be non-colliders on 7 by the JCI assumptions, and {I; };cz C W, they must d-block 7. Hence
we have arrived at a contradiction: 7 cannot be D-open w.r.t. D*.

Moreover, X /p Y |W [D,Gland X L p Y |W [D*, G] cannot happen, because d-separations
are the same for D and D*, and D* C D, so there cannot be additional D-separations w.r.t. D* com-
pared to the D-separations w.r.t. D. Therefore, removing this particular deterministic relation does
not change the D-separation statements, and hence completeness follows also for this case. |

We conjecture that for the more general case of arbitrary deterministic relations between dummy
variables, e.g., Table 1 left, D-separation as defined by Spirtes et al. (2000) is still complete, but we
leave the proof for future work.

The completeness of D-separation is important in the JCI context because it motivates a re-
laxation of the standard Causal Faithfulness assumption. In our setting, the standard assumption
is too restrictive, so we relax it to allow for violations due to deterministic relations between the
regime and the intervention variables. We define our relaxed version, that we call D-Faithfulness
assumption, as follows:

Assumption 4 (D-Faithfulness) For three disjoint sets of variables X,Y ;W and a probability
distribution P that satisfies both the Causal Markov assumption for G and the set of deterministic
relations D, we assume that X L' Y |W [P] = X 1pY |W [D,d].

This assumption, in conjunction with the previous ones, implies that in JCI independences corre-
spond one-to-one with D-separations, which paves the road for constraint-based causal discovery?.
The completeness of D-separation suggests that this relaxation is “tight”, i.e., we only relax the
standard Causal Faithfulness assumption to allow for the extra independences that are due to the
deterministic relations in Assumption 3, but not any more.

2. A consequence of D-Faithfulness is that intervention variables should be pairwise dependent (also when conditioning
on a subset of them). This excludes some experimental design matrices, e.g. a matrix similar to Table 1, but where
P(R = r) = 0.25 for all r. In practice, we can often alleviate this problem, e.g. by dropping some data points.

10
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PAG learnt from D;y:
X, 0—o0 X

PAG learnt from Dy: @

D+ (observational):
Xl — X2

D5 (soft intervention): X X2

X — Xy Merged PAG:
Xy 0—0 Xy JCI method

Figure 3: A simple example in which JCI improves identifiability: Consider two datasets with
the same underlying DAG, one of which has a soft intervention (left). If we learn the causal graphs
of X7 and X5 in each dataset separately and then merge them, e.g., as described by Triantafillou
and Tsamardinos (2015), we cannot learn the causal direction but only that they are dependent
(middle). JCI adds more variables and thus conditional independence tests that allow to distinguish
the direction (right). Here, since R = I;, w.l.o.g. we represent only ;. See details in the main text.

Under Assumptions 1-4, we define Joint Causal Inference (JCI) as the problem of inferring
the causal DAG G from the distributions (P;),=1, ..., or from finite samples (D, ),=1 ., of those.
Moreover, we call any causal discovery method that can solve a JCI instance a JCI method. We will
show in Section 4.2 that the ideas behind some previous approaches, e.g., (Peters et al., 2015), can
be seen as special cases of JCI.

4.1 Joint Causal Inference improves on the identifiability w.r.t. merging learnt structures

As already mentioned, formulating causal inference on multiple datasets as JCI offers several ad-
vantages with respect to the approaches in which the causal graphs are learnt separately from each
dataset and then merged. One of the advantages is the improved identifiability. In this section, we
show a few examples, where, for simplicity, we assume oracle inputs and model only the regime
variable (rather than the regime variable and a single intervention variable).

In Figure 3 we show a simple example in which JCI improves identifiability. In the absence of
information on the intervention targets, we cannot identify the causal direction between the variables
when we learn the structures separately and then combine them. In the same case, a JCI method is
able to correctly reconstruct the causal structure by using additional conditional independence tests
with the intervention variable, specifically, I; J Xy, I; J Xo, 1 1L Xo| X1, I1 X X1 | X,
and X; ) X5 |I;. Using the background knowledge from JCI that system variables cannot cause
the intervention variable Iy, i.e., X1 -4+ I; A X9 /> I, and that there are no latent confounders
between I; and the system variables, we can infer I; — X;, X7 — X5 and that there are no
confounders with any JCI method supporting direct causal relations. Note that in this example,
since there are only two datasets, i = I, so for simplicity we represent only ;.

If for each datasets the targets of the intervention are known, then it is possible to retrieve
their descendants (and non-descendants) by checking which variables change in each interventional
dataset with respect to the observational case. This technique was successfully applied in (Maglia-
cane et al., 2016) to retrieve a list of weighted ancestral relations that could be used as background
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Ancestral relations:
(Xl -3 Xg) V (Xg --3
X —2)

PAG learnt from Dy: @

D1 (observational): X1 0—0 Xy 0—0 X3

X1 — X9 — X3 PAG learnt from D>: @
X{ o0—o0 Xy o—o0 X3

D5 (soft intervention on X1, X3) Merged PAG

X1 — X9 — X3 (using ancestral relations):

Xy 0—0 Xy 0—0 X3 JCI method

Figure 4: A more complex example in which JCI improves identifiability: If we have back-
ground knowledge on the intervention targets, e.g., we know that in one of the datasets X; and X3
are intervened upon (left), we can use this information to extract some extra background knowledge
in the form of ancestral relations. Merging separately learnt causal structures and this extra knowl-
edge (as done e.g. by Magliacane et al., 2016) is still not enough information to recover the causal
structure (middle). Instead, a JCI method can identify the true causal structure, more precisely the
ADMG (right). Since R = I, we can represent only /7. See details in the main text.

knowledge. For example, if one were to know that X is the intervention target in D5 in the example
in Figure 3, the change in X3 in Dy with respect to D would imply that X; --+ Xo.

Although (weighted) ancestral relations help in simple cases as the previous example, in general
they cannot reproduce the same results as JCI. An example is given in Figure 4. In this case,
knowing that in dataset Dy the intervention targets are X; and X3, and observing that X5 changes
significantly, allows us to reconstruct that one of these targets causes X5, which is not enough to
reconstruct the causal graph by merging the PAGs learnt from each dataset separately. Instead, a
JCI method that supports direct causal relations can take advantage of the additional conditional
independence tests with the regime variable and infer the complete DAG:

Proposition 7 In the example in Figure 4, a JCI method that supports direct causal relations can
reconstruct correctly the underlying causal graph, more precisely the acyclic directed mixed graph
(ADMG), from oracle independence test results.

Proof For readability, we provide the proof in the Appendix. |

4.2 Reformulation of related work as special cases of JCI

Local Causal Discovery (LCD) (Cooper, 1997) is a simple algorithm that searches for variables
X, Y, W that satisfy the pattern W — X — Y, where W is a variable not caused by any other vari-
able under consideration. We can apply LCD to multiple observational and experimental datasets
with soft interventions by using R as W, since the regime variable is by assumption not caused by
any other variable. Then LCD can be summarized as:

(RLXIANX LY)ARLY|X) = (X -+ 7).

12
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OaOn 020500
ICP: ICP: ANY) =10

AN(Y) = 0 Y
JCI method: PA(Y) = {X>} JCI method: PA(Y) = {X>}

Figure 5: Two examples in which ICP is overly conservative in the JCI setting: In the left
example, for variable Y ICP finds several sets S that satisfy R I Y| S, e.g., {X1}, {X2} and
{X1, X2}, but their intersection is (). Instead, a JCI method that supports direct causal relations
will correctly infer that the single parent of Y is X5. In the right example, naively adding interven-
tion variables does not allow to estimate the ancestors of a variable Y, which would otherwise be
estimated correctly.

This rule can be seen as a restricted case of the JCI setting, in which we can iteratively pick pairs of
variables (X, Y") and apply the above rule to detect a subset of the causal graph.

An extension of this approach is used in Invariant Causal Prediction (ICP) (Peters et al., 2015).
ICP also considers the regime variable R (which is called the discrete environment variable in that
work), but it does not model the intervention variables (see Peters et al., 2015, Appendix). Given a
target variable Y that is not directly intervened upon, we can reformulate the main idea behind ICP
as the search for the intersection of all the sets S such that R 1L Y| S:

= ] s (1)

S:RIY|S

In the absence of confounders, S™* is a conservative estimate of a subset of the parents of Y, even
when the Causal Faithfulness assumption is violated. If we cannot exclude the presence of con-
founders, as in the JCI setting, then ICP requires the Causal Faithfulness assumption to provide S*
as an estimate of a subset of the ancestors of Y. We can see this reformulation of ICP as a special
case of JCI that extends LCD with a more conservative estimate. In principle, one could easily
integrate the conservative estimate (1) in a JCI method to provide more accurate estimates for the
top predictions, but we leave this for future work.

On the other hand, depending on the set of interventions in the available datasets, ICP may be
overly conservative compared to JCI. Besides the restriction on the variable Y not to be directly
intervened upon in any dataset, which is not necessary in JCI, there are some other cases in which
ICP provides an overly conservative estimate of the set of ancestors. We show two examples in
Figure 5. Specifically, in the left example the estimated set of ancestors for a variable Y that is
two hops away from the intervened variable X; is empty, while a JCI method that supports direct
causal relations can find the correct parent set { X2}. Similarly, as shown in the right example,
naively adding the intervention variables reduces the applicability of ICP to only estimate ancestors
of variables that are directly intervened upon (e.g., X3). This naive addition would allow ICP to
learn the intervention targets, but not the structure of the causal graph.

5. A strategy for extending constraint-based methods for JCI
Joint Causal Inference provides some challenges for current constraint-based methods:

o faithfulness violations due to deterministic relations between the dummy variables,

13
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o the availability of complex background knowledge (i.e., not limited to the presence/absence
of edges or ancestral relations) on the dummy variables that can improve structure learning
and recover from some of the faithfulness violations (e.g., R can only cause a system variable
through an intervention variable).

There is some work on dealing with faithfulness violations in the PC algorithm (Lemeire et al.,
2012), but it assumes causal sufficiency (in our context, no hidden variables in G), and cannot han-
dle background knowledge. Logic-based constraint-based algorithms, (e.g., Hyttinen et al., 2014;
Triantafillou and Tsamardinos, 2015; Magliacane et al., 2016) can handle complex background
knowledge and causal insufficiency, but the existing implementations cannot deal with faithfulness
violations due to deterministic relations.

Here we propose a simple but effective strategy for dealing with faithfulness violations due to
deterministic relations. We rephrase the constraints of a constraint-based algorithm in terms of d-
separations and d-connections, instead of independence test results. At testing time we decide for
each independence test result which d-separation or d-connection can be soundly derived from it and
provide these d-separations and d-connections as input to the modified constraint-based algorithm.

Before introducing the rules that we use to derive sound d-separations and d-connections from
input independence test results, we first summarise the basic properties of conditional independence
originally introduced by Dawid (1979), which we will use to prove an intermediate lemma. We
follow the notation and ordering from a more recent publication (Constantinou and Dawid, 2015):

Proposition 8 Let X,Y, Z W be random variables. We write W <Y to denote that W is a
function of Y, or in other words W = f(Y) for a measurable function f. Then the following
properties hold:

1. X1Y|7Z <= Y ULX|Z
22 X 1Y|X,
33X ULY|ZandW Y —= X L W|Z,
4 X UY|ZandW Y = X LY |(Z, W),
S X LY | ZAX L WY, Z2) = X 1L (Y,W)|Z
Lemma9 For X,Y, W disjoint (sets) of random variables and random variable F' < W :
XULY|W <= X UY|WU{F}.

Proof This is a simple consequence of the properties of conditional independence that we reviewed
in Proposition 8. We first show one direction of the implication:

X I (W,Y)|(W,Y) (Property 2) = X 1 F|(W,Y) (Property 3).

XULY|WAXLF|[(W,Y) = X 1 (Y,F)|W  (Property 5)
= X U (Y,F)|(W,F) (Property 4)
— X LY|(W,F) (Property 3).

14
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And for the other direction:
XLY W, F))ANX UL F|W = X 1 (F,Y)|W (Property 5)
= X UL Y|W  (Property 3).
|

We can now use Lemma 9 to prove a sound conversion from D-separation statements to d-separation
statements:

Theorem 10 For some set of variables W, let DET(W) denote the variables determined by (a
subset of) W (see Definition 3). Let X, Y be two different variables that are disjoint from DET(W).
Under the Causal Markov and D-Faithfulness assumptions, the following holds:

X1pY|W «<— X 1,;Y|DET(W).
Proof The following equivalences hold:
X1pY|W <= X LY |W < X 1LY |DET(W)byLemma (9)
<= X 1pY|DET(W) <= X 1,Y|DET(W).

The first equivalence follows from the Causal Markov and D-Faithfulness assumptions, while the
second is based on Lemma (9). The third equivalence follows again from the Causal Markov and
D-Faithfulness assumptions, while the last one is based on the definition of D-separation, which
reduces to d-separation when conditioning on a set Z for which DET(Z) = Z. |

Using the result from Theorem 10, we can now introduce our strategy for dealing with faith-
fulness violations due to deterministic relations. First we rephrase a constraint-based algorithm in
terms of d-separations and d-connections, which is usually a trivial change, as shown in Section 6.
Then we can convert the problem of possibly unfaithful independences to the problem of possibly
incomplete input. Specifically, we can derive a subset of sound d-separations and d-connections
from independence test results as follows:

Corollary 11 Let X, Y, W be disjoint (sets) of variables. Let DET(W) be the variables determined
by (a subset of) W (see Definition 3). Under the Causal Markov and D-Faithfulness assumptions,
the following holds:

e X LYW — X LY |W,
e f X, Y¢DET(W): X1UY|W = X 1,;Y|DET(W).

Proof The first implication follows from the Causal Markov assumption, while the second follows
from the Causal Markov and D-Faithfulness assumptions, and Theorem 10. |

Note that this procedure outputs d-separations only for a subset of independence test results, ignor-
ing independences when X or Y € DET(W).

The simple strategy in Corollary 11 can be applied to any constraint-based method, providing
that it can deal with partial inputs, i.e., missing results for certain independence tests. Logic-based
methods (e.g., Hyttinen et al., 2014; Magliacane et al., 2016) can be run out-of-the-box with partial
inputs, while other standard algorithms like FCI (Zhang, 2008) would require possibly non-trivial
extensions. Anytime FCI (Colombo et al., 2012) allows one to ignore (in)dependences above a
certain order, but up to that order they are all required to be available, so that algorithm would also
require possibly non-trivial extensions.
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6. Ancestral Causal Inference With Determinism (ACID)

We implement the strategy in Corollary 11 in Ancestral Causal Inference with Determinism (ACID)
as a determinism-tolerant extension of Ancestral Causal Inference (ACI), a recently introduced
logic-based method (Magliacane et al., 2016). Before describing how ACID differs from ACI,
we will briefly describe ACI itself.

6.1 Ancestral Causal Inference (ACI)

AClI reconstructs ancestral structures (combinations of “indirect” causal relations), also in the pres-
ence of latent variables and statistical errors. Ancestral structures are formally defined as:

Definition 12 An ancestral structure is any relation on the observed variables that satisfies the
non-strict partial order axioms:

(reflexivity) : X --+» X 2)
(transitivity) : X --» Y AY --» 7 — X --» 7| 3)
(antisymmetry) : X --+ Y AY -+ X —= X =Y. @)

The underlying causal DAG induces a unique ancestral structure on the observed variables: the
transitive closure of the direct causal relations (directed edges) in the DAG.
ACI encodes the ancestral structure definition and five other causal reasoning rules:

Lemma 13 For X, Y, Z, U, W disjoint (sets of) variables:

L(XLY|W)A(X A+ W) = XY,

2 (XAY |WIANX LY |WUZ) = (X LZ|W)A(Z+>{X,YIUW),

4

- ( ) A (
- )A(

X LY WIAX LY |[WUZ) = (X LZ|W)A(Z - {X,YIUW),
X LY WIAX LY |[WUZ)AX LZ|WUU) = X LY |WUU,
- ) A (

S5 (ZUX|WHNZLY [ WHANX LY |W) = X LY |WUZ

These rules are shown to be sound assuming the Causal Markov and Causal Faithfulness assump-
tions. Causal discovery is then reformulated as an optimization problem where a loss function is
optimized over possible ancestral structures. Given a list of weighted inputs, e.g. a set of conditional
independences weighted by their confidence, the loss function sums the weights of all the inputs that
are violated in a candidate ancestral structure. In addition, ACI provides a method for scoring causal
predictions, which roughly approximates their marginal probability.

6.2 ACID

Out-of-the-box ACI is not able to deal with the faithfulness violations due to deterministic relations,
and thus cannot be used for JCI. Therefore, we propose Ancestral Causal Inference with Determin-
ism (ACID), which extends ACI following the strategy discussed in Section 5. We reformulate the
logical rules of ACI in terms of d-separation, completely decoupling them from any assumption
on the relation between (in)dependences and d-separations/connections, e.g., Causal Faithfulness.
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These new rules, that we call the ACID rules, are almost identical to the original ACI rules, ex-
cept that the independences 1l are substituted by d-separations |4, and the dependences { by
d-connections [ 4, as we show in the following:

Lemma 14 For X, Y, Z, U, W disjoint (sets of) variables:
I (X LgY | WHN(XA+W) = X457,

2. (X LY | W)A(X LaY |WUZ) = (X LaZ|W)A(Z+> {X,YIUW),
3 (X LY [ WIANX LY |WUZ) = (X Lg Z|W)A(Z -5 {X,YIUW),
4. (X LqY |WI)A(X LgY |[WUZ)A(X Ly Z|WUU) = X LY |WUU,
5 (ZLa X |WINZ LaY |WIAX LgY | W) = X fqV |WUZ

Proof The proofs of these rules are slight modifications of the proofs of the ACI rules. For com-
pleteness, we provide them in the Appendix. |

So far, this only changes the interpretation of the implemented rules, but no change of the code is
required. What changes are the inputs: only the sound d-separations and d-connections that can be
derived with Corollary 11 are used as inputs for ACID. Similarly to other logic-based methods, the
ACID rules are sound also with partial inputs (i.e. when some d-separation information may not be
available). On the other hand, using partial inputs may reduce the completeness of causal discovery.
We consider this a minor issue, since our focus is on prediction accuracy, and ACI is already known
not to be complete in the general case, but has nevertheless been shown to obtain state-of-the-art
accuracies (Magliacane et al., 2016).

6.3 ACID-JCI

To improve the identifiability and accuracy of the predictions, we also add as background knowledge
a series of logical rules describing the causal structure of the regime and intervention variables that
apply in the JCI setting:

Lemma 15 Under the JCI assumptions, for any set of variables W :
L. YieZst ;W :(R-->1L;)N(R LqgL;i| W),
2.VjeXst. X; W : R-—-X; = Jielst - X,

VieXst. X; W R 1L; X;| W U{Ij} ket

VieI,jeX: (Xj4+R)N(X;4+ 1),

VieX: Rff4X; = R--+X;,

VieZ,jeX: i JqgX;|R = I -+ X,

Vj,keXs.t.j#k:ande,XkQW: Xj J_ka|W — Xj J_ka|WUR,

Lo N & U KN W

V’iEI,Vj,kEXS.t.j#k‘ande,XkQW: X 1y Xp | W = X 1y Xp |WUIL

Proof The propositions follow directly from the JCI assumptions and background knowledge:
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1. R causes the intervention variables directly;

2. R cannot cause system variables directly, but only through intervention variables;

3. The intervention variables suffice to block any path between 12 and any other variable;
4. System variables cannot cause any [; or R;

5. There are no confounders between R and the system variables;

6. There are no possible confounders between the intervention variables and system variables
other than R?;

7. Adding R to the separating set cannot open paths;

8. Adding an intervention variable to the separating set cannot open paths.

Adding this background knowledge provides a simple means to ruling out several spurious candidate
causal structures that do not satisfy the JCI modeling assumptions. The integration of such complex
knowledge is one of the main advantages of logic-based methods. We will refer to the combination
of ACID with these rules as ACID-JCI.

If some of the intervention targets are known, we can also use this information as background
knowledge. For example, if we know that the inhibitor I 4z: 1,5 targets the protein Akt, we can
simply add the background knowledge Iax;—rnn --+ Akt. Given the flexibility of logic-based
approaches, we can also include more complex cases. For example, for two mutually exclusive
targets A and B for intervention /1, we can add the background knowledge: I; --+ AV I} --+ B,
I --» A — I —/L-) BandIl; --+ B < 1 —/L-) A.

7. Evaluation

We evaluate ACID on simulated data in the JCI setting. The simulator builds up on a simulator used
in related work (Hyttinen et al., 2014; Magliacane et al., 2016) and implements soft interventions
on unknown targets. For each combination of the number of system variables p and interventions
1, we generate randomly 1000 linear acyclic models with latent variables and Gaussian noise, and
simulate soft interventions on random targets. We then sample N = 500 data points for each
model, randomly distributed between the 7 experimental datasets and the observational dataset,
perform independence tests and weight the (in)dependence statements using the weighting schemes
described by Magliacane et al. (2016).

In our setting, we evaluate the causal discovery methods applied to datasets with unknown-target
soft interventions. Other existing constraint-based methods (e.g., Hyttinen et al., 2014; Triantafillou
and Tsamardinos, 2015) do not apply to this setting as they assume perfect interventions with known
targets. Moreover, we wish to evaluate the net effect of using JCI with respect to merging separately
learnt causal structures, while factoring out the effect due to different algorithms.

Therefore, we choose to compare the ancestral structure predicted by ACID-JCI with a naive
baseline based on ACI, “Merged ACI”. In this baseline we merge ancestral structures learnt on each
dataset separately with ACI by averaging the scores of the causal predictions over the datasets. As
inputs to both algorithms we provide the same weighted independence test results (up to maximum
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Figure 6: Precision-recall curves on synthetic data for p system variables and ¢ interventions: ances-
tral predictions (left column) and non-ancestral predictions (right column). Using JCI substantially
improves the accuracy.

order), computed with a test based on partial correlation and Fisher’s z-transform with significance
threshold oo = 0.05, and the frequentist weighting scheme described by Magliacane et al. (2016).

19



Precision

| |~ Merged ACI

MAGLIACANE, CLAASSEN, MOOIJ

A-',,/-""“—"s-\

- ACID-JCI

Precision

°
~

o
©

®

°

>

o

o
@

o
~

°

| |~ Merged ACI
- ACID-JCI

0.1 02 03 04 05 06 0.7
Recall

(a) PR ancestral, p=3,i=4

08

09

1

o

0.1 02 03 04 0.5 06 0.7 0.8 09 1
Recall

(b) PR non-ancestral, p=3,i=4

Figure 7: Precision-recall curves on synthetic data for p = 3 system variables and ¢ = 4 interven-
tions: ancestral predictions (left column) and non-ancestral predictions (right column). Also in this
setting, JCI substantially improves the accuracy.

In Figures 6 and 7 we report the precision and recall (PR) curves for predicting ancestral rela-
tions (“indirect” causal relations) and non-ancestral relations (the absence of such a causal relation)
for different settings of p system variables and ¢ interventions. We can see from these figures that
ACID-JCI improves significantly on the accuracy of the predictions with respect to the baseline. As
expected, the more interventional datasets are available, the better the accuracy for ACID-JCI, as
we can see in the case of p = 4,7 = 1 vs. p = 4, ¢ = 3 in Figure 6. When there are only few
datasets, e.g., ¢ = 1, the performance of both methods improves as the number of system variables
p increases, and the gap between the method gets smaller, as we can see inthe case of p = 4,7 =1
and p = 6, ¢ = 1 in Figure 6. On the other hand, when there are only few variables, e.g., p = 3
in Figure 7, ACID-JCI is able to predict correctly several ancestral relations that are not identifiable
otherwise. In particular, in the case of p = 3 there are no predicted ancestral relations for standard
methods like “Merged ACI”, which explains why the PR curve for ancestral relations in Figure 7(a)
starts at 0.5 recall. Instead, ACID-JCI is able to accurately predict these relations, illustrating that
the Joint Causal Inference framework not only leads to statistical advantages but also enlarges the
set of identifiable ancestral relations compared to methods that deal with each dataset separately.

8. Conclusions and discussion

In this paper, we presented Joint Causal Inference (JCI), a powerful formulation of causal discov-
ery over multiple datasets that has been unexploited so far by constraint-based methods. Current
constraint-based methods cannot be applied out-of-the-box to JCI because of faitfulness violations,
so we proposed a simple strategy for dealing with this type of faithfulness violations. We im-
plemented this strategy in ACID, a determinism-tolerant extension of a recently proposed causal
discovery method, and applied ACID to JCI, showing its benefits in an evaluation on simulated
data.

A limitation of JCI is that the assumption of a unique underlying causal DAG precludes certain
types of interventions. There are several techniques to extend our formulation of the problem to
perfect interventions, or other interventions that induce new independences. For example, given
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an observational dataset, we could identify the datasets with perfect interventions by noticing the
additional independences, perform causal inference on each of them separately and merge the pre-
dictions in a similar way to the methods presented by Hyttinen et al. (2014) and by Triantafillou and
Tsamardinos (2015). In future work, we plan to investigate these techniques, as well as techniques
to include fat-hand interventions that induce new dependences between the intervention targets.

Moreover, we plan to investigate other possible strategies or extensions to existing algorithms
for dealing with faithfulness violations due to deterministic relations. Finally, although very accu-
rate and flexible, logic-based methods as HEJ (Hyttinen et al., 2014) and ACI (Magliacane et al.,
2016) are limited in the number of possible variables they can handle. JCI introduces additional
variables, reducing their scalability even more. We plan to investigate improvements to the execu-
tion times of methods like ACID.
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Appendix A. Proofs

Proposition 16 In the example in Figure 4, a JCI method that supports direct causal relations can
reconstruct correctly the underlying causal graph, more precisely the acyclic directed mixed graph
(ADMG), from oracle independence test results.

Proof In this proof, we proceed in two steps: first we reconstruct the ancestral relations, then show
that a subset of these relations are actually direct causal relations and finally we show the absence of
confounders. Given their simplicity, for the first step we use the rules from ACI that we will show
in detail in Lemma 13 in Section 6.

From I; J X, the background knowledge that there are no latent confounders between /; and
the system variables and that X; -/» I, we can infer that /; --+ X;. Reasoning in a similar way,
we can also infer that I; --» Xg and I} --» X3. From Iy £ Xy and [; 1L X5 | X; we can use rule
(3) in Lemma 13, which implies that X1 --» {I;, X2}. Given the background knowledge X7 £+ I3
we can infer that X; --» Xo. Similarly, from X; ) X3 |11, X7 1L X3|{l1, X2} we can infer that
X9 --» {11, X1, X3}. Since X7 -/+» I and X2 -£+ X; (from the acyclicity of ancestral relations),
then this must imply that X5 --» X3. Since ancestral relations are transitive, from X; --+ X5 and
X9 --+ X3 we get that X --» X3. Moreover, because of the acyclicity of ancestral relations, these
statements imply that X9 -4+ X7, X34+ X1, X5-/+ Xo.

We now go through the ancestral relations we found and check which of them are direct causal
relations:

e X7 --» Xo:since I} --+ X7 and X9 --+ X3, X; cannot cause X» indirectly through I; or
X3 (from the acyclicity of causal relations), so X; — X3 directly;

e Xy --» Xj3:since I} --+» X9 and X; --+ Xo, X5 cannot cause X3 indirectly through I; or
X1 (acyclicity), so Xo — X3 directly;

e X; --» Xj: this relation is not direct, because X; 1L X3 |{ X2, 1}, so they are not adjacent
in the causal graph;

e I} ——» Xj:since X; --+» Xg and X7 --+ X3, I} cannot cause X indirectly through X5 or
X3 (from the acyclicity of causal relations), so 1 — X directly;

e [; --» Xo: this relation is not direct, because I; L X5 | X, so they are not adjacent in the
causal graph;

e [} --» X3: given all the previous causal relations, the background knowledge that there are
no confounders between I; and the other variables, X; ) X3| X9 and Xy 1L X3|{X2, 1}
the only possible graph includes a direct causal relation I; — X3.

Finally, we show the absence of confounders in the system:

e I, X5 and I, X5 and I, X3 are unconfounded (JCI background knowledge);
e X1, X3 are unconfounded, because X7 1L X3 |{Xo, 1 };

e X1, Xy are unconfounded, because I; 1l Xo | X7;

e X5, X3 are unconfounded, because X; 1 X3|{Xs, I1}.
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For completeness we provide the proofs for the ACID rules, which are just slight modifications
of the proofs for the ACI (Magliacane et al., 2016) rules. These proofs were already implicitly
based on d-separation concepts, with two additional implicit steps that were based on the Causal
Markov and Faithfulness Assumptions: one in which each conditional independence implies a d-
separation, and another one in which each d-separation implies a conditional independence. In this
reformulation we can make these steps explicit and decouple them from the rules.

Lemma 17 For X, Y, Z, U, W disjoint (sets of) variables of a DAG (or ADMG) G:

L (X LgY |[W)A(XA>W) = X/>Y,

XLV | WIANX fgY |WUZ) = (X LaZ|W)A(Z4> {X,YIUW),

X LgY |WIANX LgY |WUZA(X Ly Z | WUU) = X 1,Y |WUU,

( ) A (
( ) A (
(X LaY |WIA(X LgY |WUZ) = (X La Z|W)A(Z -5 {X,YIUW),
( ) A (
(ZLa X |W)ANZ LaY |[WIAN(X LgY | W) = X [,V |WUZ

1. This is a strengthened version of rule R2(i) in (Entner et al., 2013): note that the additional
assumptions made there (Y -£+ W, Y -4+ X) are redundant and not actually used in their
proof. For completeness, we give the proof here. If X --» Y, then there is a directed path
from X to Y in G. As all paths between X and Y in G are blocked by W, the directed path
from X to Y must contain anode W € W. Hence X --» W, a contradiction with X -/» W.

22X Ly Y | W)A(X Lg Y | W U Z) then there exists a path 7 in G between X and
Y such that each noncollider on 7 is not in W U {Z}, every collider on 7 is ancestor of
W U {Z}, and there exists a collider on 7 that is ancestor of Z but not of W. Let C' be the
collider on 7 closest to X that is ancestor of Z but not of W. Note that

(a) Thepath X ---C — --+- — Z is d-connected given W

(b) Z-£+» W (because otherwise C' --» Z --+ W, a contradiction).

(¢) Z-/+Y (because otherwise the path X ---C — -+ = Z — -~ — Y would be
d-connected given W, a contradiction).

Hence we conclude that X V4 Z | W, Z /> W, Z -/ Y, and by symmetry also Z -/+ X.

3. Suppose (X LqY | W)A(X Ly Y | WU Z). Then there exists a path 7 in G between X
and Y, such that each noncollider on 7 is not in W, each collider on 7 is an ancestor of W,
and Z is a noncollider on 7. Note that

(a) The subpath X ... Z must be d-connected given W.

(b) Z has at least one outgoing edge on 7. Follow this edge further along 7 until reaching
either X, Y, or the first collider. When a collider is reached, follow the directed path to
W. Hence there is a directed path from Z to X or Y orto W, ie., Z --» {X, Y}UW.
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4. If in addition, X 14 Z | W U U, then U must be a noncollider on the subpath X ...Z.
Therefore, X 14 Y | WUU.

5. Assume that Z J4 X | Wand Z [/, Y | W. Then there must be paths 7 between Z and
X and p between Z and Y in G such that each noncollider is not in W and each collider is
ancestor of W. Let U be the node on 7 closest to X that is also on p (this could be Z). Then
we have a path X ---U ---Y such that each collider (except U) is ancestor of W and each
noncollider (except U) is not in W. This path must be blocked given W as X 15Y | W. If
U would be a noncollider on this path, it would need to be in W in order to block it; however,
it must then also be a noncollider on 7 or p and hence cannot be in W. Therefore, U must be
a collider on this path and cannot be ancestor of W. We have to show that U is ancestor of
Z. If U were a collider on 7 or p, it would be ancestor of W, a contradiction. Hence U must
have an outgoing arrow pointing towards Z on 7 and p. If we encounter a collider following
the directed edges, we get a contradiction, as that collider, and hence U, would be ancestor of
W . Hence U is ancestor of Z, and therefore, X [4Y | W U Z.
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