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Abstract

The gold standard for discovering causal relations is by means of experimentation. Over
the last decades, alternative methods have been proposed that can infer causal relations be-
tween variables from certain statistical patterns in purely observational data. We introduce
Joint Causal Inference (JCI), a novel approach to causal discovery from multiple data sets
that elegantly unifies both approaches. JCI is a causal modeling approach rather than a
specific algorithm, and it can be used in combination with any causal discovery algorithm
that can take into account certain background knowledge. The main idea is to reduce
causal discovery from multiple datasets originating from different contexts (e.g., different
experimental conditions) to causal discovery from a single pooled dataset by adding aux-
iliary context variables and incorporating applicable background knowledge on the causal
relationships involving the context variables. We propose different flavours of JCI that
differ in the amount of background knowledge that is assumed. JCI can deal with sev-
eral different types of interventions in a unified fashion, does not require knowledge on
intervention targets or types in case of interventional data, and allows one to fully exploit
all the information in the joint distribution on system and context variables. We explain
how some well-known causal discovery algorithms can be seen as implementations of the
JCI framework, but we also propose novel implementations that are simple adaptations
of existing causal discovery methods for purely observational data to the JCI setting. We
evaluate different implementations of the JCI approach on synthetic data and on flow cy-
tometry protein expression data and conclude that JCI implementations can outperform
state-of-the-art causal discovery algorithms.
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1. Introduction

The aim of causal discovery is to learn the causal relations between variables of a system of
interest from data. As a simple example, suppose a researcher wants to find out whether
playing violent computer games causes aggressive behavior. She gathers observational data
by taking a sample from several high schools in different countries and observes a significant
correlation between the daily amount of hours spent on playing violent computer games, and
aggressive behavior at school. This in itself does not yet imply a causal relation between the
two. Indeed, an alternative explanation of the observed correlation could be the presence
of a confounder (a latent common cause), for example, a genetic predisposition towards
violence that makes the carrier particularly enjoy such games and also make him behave
more aggressively. The most reliable way to establish whether playing violent computer
games causes aggressive behavior, is to use experimentation, for example by means of a
randomized controlled trial (Fisher, 1935). This would imply assigning each pupil to one
out of two groups randomly, where the pupils in one group are forced to play violent
computer games for several hours a day, while the pupils in the other group are forced to
abstain from playing those games. After several months, the aggressive behavior in both
groups is measured. If a significant correlation between group and outcome is observed (or
equivalently, the outcome is significantly different between the two groups) it can then be
concluded that playing violent computer games indeed causes aggressive behavior.

Given the ethical and practical problems that such an experiment would involve, one
might wonder whether there are alternative ways to answer this question. One such al-
ternative is to combine data from different contexts. For example, in some countries the
government may have decided to forbid certain ultra-violent games from being sold, and
there is data available both before and after the ban. In addition, some schools may have
introduced certain measures to discourage aggressive behavior. By combining the data from
these different contexts in an appropriate way, one may be able to identify the presence or
absence of a causal effect of playing violent computer games on aggressive behavior. For
example, in the setting of Figure 1(c), the causal relationship between the two variables of
interest turns out to be generically identifiable from conditional independence relationships
in pooled data from all the contexts. In particular, in that case the observed correlation
between playing violent computer games and aggressive behavior could be unambiguously
attributed to a causal effect of one on the other. In this paper, we propose a simple and
general way to combine data sets from different contexts that enables one to draw such
strong causal conclusions.

While experimentation is still the gold standard to establish causal relationships, re-
searchers realized in the early nineties that there are other methods that require only purely
observational data (Spirtes et al., 2000; Pearl, 2009). Many methods for causal discovery
from purely observational data have been proposed over the last decades, relying on different
assumptions. These can be roughly divided into constraint-based causal discovery methods,
such as the PC (Spirtes et al., 2000), IC (Pearl, 2009) and FCI algorithms (Spirtes et al.,
1995; Zhang, 2008), score-based causal discovery methods (e.g., Heckerman et al., 1995;
Chickering, 2002; Koivisto and Sood, 2004), and methods exploiting other statistical pat-
terns in the joint distribution (e.g., Mooij et al., 2016; Peters et al., 2017). Originally, these
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Figure 1: Different causal graphs relating X1, the daily amount of hours spent on playing
violent computer games, and X, a measure of aggressive behavior. (a) Playing
violent computer games causes aggressive behavior; (b) The observed correlation
between X7 and Xy is explained by a latent confounder, e.g., a genetic predis-
position towards violence. (c) Hypothetical causal graph also involving context
variables C,, which indicates whether ultra-violent games have been banned by
the government, and Cg, which indicates school interventions to stimulate social
behavior. Without considering contexts, it is not possible to distinguish between
(a) and (b) based on conditional independences in the data. In scenario (c),
JCI allows one to infer from conditional independences in the pooled data that
X1 causes X9 and that X; and X5 are not confounded (assuming that context
variables C, and Cg are not potentially caused by system variables X; and X5).

methods were designed to estimate the causal graph of the system from a single dataset
corresponding to a single (purely observational) context.

More recently, various causal discovery methods have been proposed that extend these
techniques to deal with multiple datasets from different contexts. As an example, the
datasets may correspond with a baseline of purely observational data of measurements
concerning the “natural” state of the system, and data of measurements under different
perturbations of the system caused by external interventions on the system.! More gener-
ally, they can correspond to measurements of the system in different environments. These
methods can be divided into two main approaches:

(a) methods that obtain statistics or constraints from each context separately and then con-
struct a single context-independent causal graph by combining these statistics (Claassen
and Heskes, 2010; Tillman and Spirtes, 2011; Hyttinen et al., 2012, 2014; Triantafillou
and Tsamardinos, 2015; Rothenhé&usler et al., 2015; Forré and Mooij, 2018),

(b) methods that pool all data and construct a single context-independent causal graph di-
rectly from the pooled data (Cooper, 1997; Cooper and Yoo, 1999; Tian and Pearl, 2001;
Sachs et al., 2005; Eaton and Murphy, 2007; Chen et al., 2007; Hauser and Biithlmann,
2012; Mooij and Heskes, 2013; Peters et al., 2016; Oates et al., 2016a; Zhang et al.,
2017).

1. In certain parts of the causal discovery literature, the word “intervention” has become synonymous to
“surgical/atomic/hard/perfect” intervention (i.e., an intervention that precisely sets a variable or set of
variables to a certain value without directly affecting the other variables in the system), but in this work
we use it in the more general meaning of any external perturbation of the system.
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In this paper, we introduce Joint Causal Inference (JCI), a framework for causal discovery
from multiple datasets corresponding to measurements that have been performed in different
contexts, which takes the latter approach.

The key idea of JCI is to (i) consider auxiliary context variables that describe the context
of each data set, (ii) pool all the data from different contexts, including the values of the
context variables, and finally (iii) apply standard causal discovery methods to the pooled
data, incorporating appropriate background knowledge on the causal relationships involving
the context variables. The framework is simple and very generally applicable as it allows
one to deal with latent confounding and cycles (if the causal discovery method supports
this), and various types of interventions in a unified way. It does not require background
knowledge on the intervention types and targets, making it very suitable to the application
on complex systems in which the effects of certain interventions are not known a priori, a
situation that often occurs in practice. JCI can be implemented using any causal discovery
method that can incorporate the appropriate background knowledge on the relationships
between context and system variables. This allows one to benefit from the availability of
sophisticated and powerful causal discovery methods that have been primarily designed for
a single data set from a single context by extending their application domain to the setting
of multiple data sets from multiple contexts. At the same time, JCI accommodates various
well-known causal discovery methods as special cases, such as the standard randomized
controlled trial setting, LCD (Cooper, 1997) and ICP (Peters et al., 2016). By explicitly
introducing the context variables and treating them analogously to the system variables
(but with additional background knowledge about their causal relations with the system
variables), JCI makes it possible to elegantly combine the principles of causal discovery
from experimentation with those of causal discovery from purely observational data.

This paper is structured as follows. In Section 2 we describe the relevant causal modeling
and discovery concepts and define terminology and notation. In Section 3 we introduce the
JCI framework, show how it can be implemented using various causal discovery methods,
and compare it with related work. In Section 4 we report experimental results on synthetic
and flow cytometry data. We conclude in Section 5.

2. Background

In this section, we present the background material on which we will base our exposition. We
start in Section 2.1 with a brief subsection stating the basic definitions and results in the field
of graphical causal modeling that we will use in this paper. In addition to covering material
that is standard in the field, we also discuss more recent extensions to the cyclic setting.
Then, in Section 2.2, we discuss the key idea of causal discovery from experimentation
(in the setting of a randomized controlled trial, or A/B-testing) in these terms. We finish
with Section 2.3 that briefly illustrates the basic idea underlying constraint-based causal
discovery from purely observational data in a simple setting.

2.1 Graphical Causal Modeling

We briefly summarize some basic definitions and results in the field of graphical causal
modeling. For more details, we refer the reader to Pearl (2009) and Bongers et al. (2018).
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2.1.1 DIRECTED MIXED GRAPHS

A Directed Mized Graph (DMG) is a graph G = (V, £, F) with nodes V and two types of
edges: directed edges & C V2, and bidirected edges F C {{i,j} : 4,5 € V,i # j}. We will
denote a directed edge (i,7) € £ asi — j or j < i, and call i a parent of j and j a child
of i. We denote all parents of j as PAg(j) :={i € V : i — j € £}, and all children of i as
CHg(i) :=={j€V:i— je &} We allow for self-cycles i — ¢, so a variable can be its own
parent and child. We will denote a bidirected edge {i,j} € F as i <> j or j <> i, and call
1 and j spouses. Two nodes i,j € V are called adjacent in G if they are connected by an
edge (or multiple edges), i.e.,ifi > j€ori+ jeEori<+ jeF. For asubset of nodes
W C V, we define the induced subgraph Gy := (W, ENW?2 Fn{{i,j} :i,5 € W,i # j}),
i.e., with nodes W and exactly those edges of G that connect two nodes in W.

A walk between i,5 € V is a tuple (ig,e1,11,€2,13,...,€n_1,1in) of alternating nodes
and edges in G (n > 0), such that all ig,...,i, € V, all e1,...,e,_1 € £ U F, starting
with node 79 = ¢ and ending with node %,, = j, and such that for all £k = 1,...,n — 1,

the edge er connects the two nodes ix_1 and i in G. If the walk contains each node at
most once, it is called a path. A trivial walk (path) consists just of a single node and
zero edges. A directed path from i € V to j € V is a path between ¢ and j such that
every edge e on the path is of the form i,_; — i, i.e., every edge is directed and points
away from i. By repeatedly taking parents, we obtain the ancestors of j: ANg(j) := {i €
V:i=1y — i — g = -+ — i = jin G}. Similarly, we define the descendants of
i: DEg(i) :={j € V:i =1y — i1 — ia — -~ — i = jin G}. In particular, each
node is ancestor and descendant of itself. The strongly-connected component of i € V is
defined as SCg(i) := ANg(i) N DEg(i). We extend the definitions to sets I C V by setting
ANg(I) := U;erANg(i), and similarly for DEg(I) and scg(I). A directed cycle is a directed
path from ¢ to j such that in addition, j — ¢ € £. A directed mixed graph G is acyclic if it
does not contain any directed cycle, in which case it is known as an Acyclic Directed Mized
Graph (ADMG). A directed mixed graph that does not contain bidirected edges is known
as a Directed Graph (DG). If a directed mixed graph does not contain bidirected edges and
is acyclic, it is called a Directed Acyclic Graph (DAG).

A subpath (subwalk) (ix_1, €k, ig, €x+1, ik+1) of a path (walk) (ig, €1,41,€2,43, ..., €n_1,in)
in V is said to form a collider on iy if the two edges eg, ex11 meet head-to-head on their
shared node iy (i.e., if the two subsequent edges are of the form ix_1 — ix + igs1,
Ip—1 <> 1 < Tk+1, ko1 — Ttk > lgg1, OF 11 > i & ik+1). Otherwise, the sub-
path (subwalk) is called a non-collider on iy (i.e., if the two subsequent edges are of the
form 1 — 1 — ik+1, Tl < 1 — ik+1, 1 < 1 — ik+1, 1 © 1 — ik+1, or
ig—1 < ik <> ig+1). Also the end points ig, i, of the walk 7 will be referred to as non-
colliders on 7. We will denote the colliders on a walk 7 as cOL(w) and the non-colliders on
7 (including the end-points of 7) as NCOL(7).

2.1.2 STRUCTURAL CAUSAL MODELS

Directed Mixed Graphs form a convenient graphical representation for variables (labelled
by the nodes) and their functional relations (expressed by the edges) in a Structural Causal
Model (SCM) (Pearl, 2009), also known as a (non-parametric) Structural Equation Model
(SEM) (Wright, 1921). Several slightly different definitions of SCMs have been proposed in
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the literature, which all have their (dis)advantages. Here we use a variant of the definition
in Bongers et al. (2018) that is most convenient for our purposes here.

Definition 1 A Structural Causal Model (SCM) is a tuple M = (Z, T, H,X,E, f,Pg) of:
(i) a finite index set I for the endogenous variables in the model;
(ii) a finite index set J for the latent exogenous variables in the model;
(i1i) a directed graph H with nodes T U J, and directed edges pointing from ZU J to Z;
(iv) a product of Bore? spaces X = [Licz Xi, which define the domains of the endogenous
variables;
(v) a product of Borel spaces €& = Hjej &, which define the domains of the exogenous
vartables;
(vi) a measurable function f : X x € — X, the causal mechanism, such that each of its
components f; only depends on a particular subset of the variables, as specified by the
directed graph H:

Jit Xoay()nz X Epag(i)ng — iy i € Z;

(vii) a product probability measure Pg = HjeJ Pg, on E specifying the exogenous distribu-
tion.

An SCM is often specified informally by specifying only the structural equations and the
density? of the exogenous distribution with respect to some product measure, for example:

. {Xz = f’i(XPAH(i)ﬂI7 EPAH(i)ﬂj)
p(E) = Hjejp(Ej)-

In discussing the properties of SCMs, the graphical representation of various objects and
their relations in Figure 2 may be helpful. This shows how the SCM is the central object
containing all information, and how other representations can be derived from the SCM. In
the rest of this section, we will discuss this in more detail.

We refer to the graph H as the augmented functional graph of M. The functional graph
of M, denoted G(M), is the directed mixed graph with nodes Z, directed edges i; — iz iff
i1 — i2 € H, and bidirected edges i1 < iy iff there exists j € PAy(i1) NPAy(i2) N T4 If
G(M) is acyclic, we call the SCM M acyclic, otherwise we call the SCM cyclic.

A pair of random variables (X, E) is called a solution of the SCM M if X = (X;)er
with X; € X for all i € Z, E = (Ej) ey with E; € &; for all j € J, the distribution P(FE)
is equal to the exogenous distribution Pg, and the structural equations:

X = fi(XPAH(i)017 EPAH(i)ﬂj) a.s.

2. A Borel space is both a measurable and a topological space, such that the sigma-algebra is generated by
the open sets. Most spaces that one encounters in applications as the domain of a random variable are
Borel spaces.

3. We denote a probability measure (or distribution) of a random variable X by P(X), and a density of X
with respect to some product measure by p(X).

4. This definition of functional graph makes a slight simplification: a more precise definition would leave
out edges that are redundant. For example, if the structural equation for X3 reads X2 = 0- X1 + X3
it could be that 1 — 2 € H, but this edge would not appear in G(M). For the rigorous version of this
definition, see Bongers et al. (2018).
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Figure 2: Relationships between various representations for simple SCMs. Directed edges
represent mappings. Intervened and marginal SCMs are always defined and are
also simple.

hold for all ¢ € Z. For acyclic SCMs, solutions exist and have a unique distribution that
is determined by the SCM. This is not generally the case in cyclic SCMs, as discussed in
detail by Bongers et al. (2018). Indeed, cyclic SCMs could have no solution at all, or could
have multiple solutions with different distributions.

Definition 2 An SCM M is said to be uniquely solvable w.r.t. O C T if there exists a
measurable mapping go : X (pa,, (0NO)NT X Epay(0)ng — Xonz such that for Pg-almost
every e for all x € X:

O = go(T(pay (O)\O)NT> Eran(O)nT) =  To = fo(x,e).

If M is uniquely solvable with respect to Z, then it induces a unique observational distri-
bution Paq(X). In general, the SCM might induce several observational distributions.

Given an SCM that models a certain system, we can model the system after an idealized
intervention as follows.

Definition 3 Let M be an SCM. The perfect (“surgical”) intervention with target I C T
and value & € X1 induces the intervened SCM Mgq1¢,) by copying M, but letting H be
H without the edges {j —i:j € TUJ,i € I}, and modifying the causal mechanism into f

such that
; B & 1€l
fitw.e) = {fi(w,e) igl.

The interpretation is that the causal mechanisms that normally determine the values of the
components ¢ € I are replaced by mechanisms that assign the values . Other types of
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interventions are possible as well (see also Section 3.3). If the intervened SCM Mgy (¢, in-
duces a unique observational distribution, this is denoted as Pa¢(X |do(I,&)) and referred
to as the interventional distribution of M under the perfect intervention do(I,&r). Pearl
(2009) derived the do-calculus for acyclic SCMs, consisting of three rules that express rela-
tionships between interventional distributions of an SCM. Forré and Mooij (2019) recently
extended the causal do-calculus to certain cyclic SCMs.

In this work, for simplicity of exposition we will focus on a certain subclass of SCMs
that have many convenient properties:

Definition 4 We call an SCM M simple if it is uniquely solvable with respect to any subset
OCI.

Simple SCMs provide a special case of modular SCMs (Forré and Mooij, 2017). They
induce a unique observational distribution, and their marginalizations are always defined
(Bongers et al., 2018). The class of simple SCMs is closed under perfect interventions
and marginalizations. Hence, also all their perfect interventional distributions are uniquely
defined. Later on we will see that simple SCMs have even more convenient properties. All
acyclic SCMs are simple. Simple SCMs can be thought of as the “smallest” generalization
of acyclic SCMs that allows for cycles yet preserves many of the convenient properties that
acyclic SCMs have.

2.1.3 STRUCTURAL CAUSAL MODELS: MARKOV PROPERTIES

Under certain conditions, the functional graph G(M) of an SCM M can be interpreted as
a statistical graphical model, i.e., it allows one to read off (conditional) independences that
must hold in the observational distribution Py (X). One of the most common formulations
of such Markov properties involves the following notion of d-separation, first proposed by
Pearl (1986) in the context of DAGs, and later shown to be more generally applicable:

Definition 5 (d-separation) We say that a walk (ig...i;) in DMG G = (V,E,F) is d-
blocked by C' C V if:

(i) its first node iy € C or its last node iy, € C, or

(1) it contains a collider on a node i ¢ ANg(C'), or
(iii) it contains a non-collider on a node i € C.
If all paths in G between any node in set A CV and any node in set B CV are d-blocked
by a set C CV, we say that A is d-separated from B by C, and we write AJ_g B|C.

In the general cyclic case, however, the notion of d-separation is too strong and needs to
be replaced with a non-trivial generalization of d-separation, known as o-separation (Forré
and Mooij, 2017):

Definition 6 (o-separation) We say that a walk (iy...ig) in DMG G = (V,E,F) is o-
blocked by C C V if:

(1) its first node ig € C or its last node iy, € C, or

(i) it contains a collider on a node i ¢ ANg(C), or

5. It is also sometimes called “m-separation” in the ADMG literature.
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(73) it contains a non-collider on a node i € C' that points to a neighboring node on the path
in another strongly-connected component (i.e., ix_1 — i — Qg1 OT ig—1 <> i —> Tpt1
with tg41 ¢ SCg(ig), ik—1 ¢ ik  Gks1 OT if_1 < i) > Qg1 with ix_q ¢ SCg(ig), or
el — 1 — ik+1 with Th—1 ¢ SCg(ik) or ik+1 ¢ SCg(ik)).

If all paths in G between any node in set A CV and any node in set B C V are o-blocked

by a set C CV, we say that A is o-separated from B by C, and we write A LZ B|C.

Forré and Mooij (2017) showed the following fundamental result, where we follow the for-
mulation specifically for the SCM setting from Bongers et al. (2018):

Theorem 7 (Generalized Directed Global Markov Property) If an SCM M is uniquely
solvable w.r.t. each strongly-connected component in G(M), then its observational distribu-
tion Pa(X) exists and is unique. Furthermore, for any solution (X, E) of M, the Gener-
alized Directed Global Markov Property holds with respect to the functional graph G(M):

g

A 1 B|C = X, 1L Xp|Xc VABCCT.
G(M) Pam(X)

The following stronger statements have been derived for special cases by Forré and Mooij
(2017) (where again we follow the terminology of Bongers et al. (2018)):

Theorem 8 (Directed Global Markov Property) If an SCM M satisfies at least one
of the following three conditions:
(i) M is acyclic;

(ii) all endogenous spaces X; are discrete, and M is uniquely solvable w.r.t. each ancestral
subgraph of G(M);

(i1i) M is linear (i.e., X; = R for each i € I, ¢ : T — J is a bijection, PAy (i) = ¢(7),
& = R for each j € J and each causal mechanism f; @ Xy, ()nz X Epi) — Xi is
linear, for i € I), its exogenous variables have a density p(E) with respect to Lebesque
measure, and M has a solution;

then the observational distribution P (X)) ezists and is unique. Furthermore, the Directed

Global Markov Property holds for any solution (X, E) of M with respect to the functional

graph G(M):

d
A L B|C = X,
P

Xp|Xc  VA,B,CCT.
G(M)

1
M(X)
The acyclic case is well-known and was first shown by Richardson (2003). The solvability
conditions in the discrete and linear cases above are implied by structural solvability w.r.t.
each strongly-connected component in G(M).

Simple SCMs (see Definition 4) also have convenient Markov properties: They induce
a unique observational distribution that satisfies the Generalized Directed Global Markov
Property, and for any perfect intervention, they induce a unique interventional distribution
that satisfies the Generalized Directed Global Markov Property with respect to the muti-
lated graph. Since the do-calculus relies on Markov properties, it can be extended to simple
SCMs (Forré and Mooij, 2019).

The starting point for constraint-based approaches to causal discovery from observa-
tional data is to assume that the data is modelled by an (unknown) SCM M, such that its
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observational distribution P(X) exists, is unique, and satisfies a Markov property with
respect to its functional graph G(M). In addition, one usually assumes the faithfulness as-
sumption to hold (Spirtes et al., 2000; Pearl, 2009), i.e., that the functional graph explains
all conditional independences present in the observational distribution. For the cases in
which d-separation applies, this amounts to assuming the following implication:

d
A | B|C < X, 1 Xg|Xc VAB,CCV.
G(M) P (X)

Meek (1995) has shown completeness properties of d-separation; more specifically, Meek
(1995) showed that d-separation holds generically for DAGs if (i) all variable domains are
finite, or (ii) if all variables are real-valued, linearly related and have a multivariate Gaussian
distribution. This provides some justification for assuming faithfulness. On the other hand,
no completeness results are known yet for the general cyclic case in which o-separation
applies. Nevertheless, we believe that such results can be shown, and we will assume for
simple SCMs a similar faithfulness assumption as for the d-separation case:

A Ll B|C —= X4 L Xp|Xc VABCCV.
G(M) P (X)

2.1.4 STRUCTURAL CAUSAL MODELS: CAUSAL INTERPRETATION

If the functional graph G(M) is a DAG, then it has a straightforward causal interpretation
(Peters et al., 2017). However, if G(M) contains bidirected edges or cycles, its causal
intepretation becomes more subtle (Bongers et al., 2018).

Direct edges If M is acyclic, the directed edges in G(M) represent potential direct causal
relations between endogenous variables. Indeed, if ¢ is a direct cause of j with respect to
7 according to M, then i — j € G(M). Under faithfulness, the converse holds if G(M)
is a DAG. If G(M) contains bidirected edges, the converse does not necessarily hold under
faithfulness, although it still holds generically. The causal interpretation of cyclic SCMs is
more subtle. Bongers et al. (2018) show that if j € Z has no self-cycle, i.e., if j — j ¢ G(M),
then if 7+ € 7 is a direct cause of j with respect to Z according to M, there must be a directed
edge i — j € G(M). On the other hand, if self-cycles are present, this relationship between
direct edges in the functional graph G(M) and direct causes may no longer hold. Simple
SCMs do not contain self-cycles and hence this relation does hold for simple SCMs. In
addition, the converse relation generically holds for simple SCMs.

Directed paths If M is acyclic, the directed paths in G(M) represent potential causal
relations (indirect ones if the path consists of more than one direct edge). Indeed, if 7 is a
cause of j according to M, then i € ANg(a)(j). The converse only holds generically, even if
G(M) is a DAG and faithfulness holds. The cyclic case is again more subtle. Bongers et al.
(2018) show that even if no self-cycles are present, larger cycles may lead to the situation in
which 4 causes j yet there is no directed path from i to j in G(M). Additional assumptions
need to be made to avoid this counter-intuitive behavior. For example, for simple SCMs it
still holds that if i is a cause of j according to M, then i € ANg()(j). The converse also
holds generically for simple SCMs.

10
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Bidirected edges In general, bidirected edges in G(M) represent potential irreducible
latent common causes. “Irreducible” here means that the latent common cause cannot
be split into two separate causes that are statistically independent. If G(M) is acyclic,
bidirected edges in G(M) also represent potential latent confounding. Indeed, in the acyclic
case one can show that if ¢ and j have latent confounding with respect to Z according to M,
then i <» j € G(M). The converse holds only generically. For the cyclic case, the situation
is again more complicated, and not completely understood at present, in particular because
it is not obvious how to define “confounding” in a general cyclic setting. In this paper we
will work around this complication.

Simple SCMs As we saw, the simple SCMs that we consider in this paper have a simple
causal interpretation. They do not have self-cycles and hence the directed edges can be
interpreted as potential direct causes. Marginalizations of simple SCMs are always defined,
and the simplicity property is inherited by any marginalized SCM. Therefore, also the
interpretation of directed paths as potential causes prevails for simple SCMs. Finally,
bidirected edges can be interpreted as representing potential irreducible latent common
causes. Taken together, we conclude that the functional graph G(M) of a simple SCM can
be interpreted as its potential causal graph.

2.2 Causal Discovery by Experimentation

The gold standard for causal discovery is by means of experimentation. For example,
randomized controlled trials (Fisher, 1935) form the foundation of modern evidence-based
medicine. In engineering, A/B-testing is a common protocol to optimize certain causal
effects of an engineered system. Toddlers learn causal representations of the world through
playful experimentation.

We will discuss here the simplest randomized controlled trial setting by formulating it in
terms of the graphical causal terminology introduced in the last section. The experimental
procedure is as follows. Consider two variables, “treatment” C' and “outcome” X. In the
simplest setting, one considers a binary treatment variable, where C' = 1 corresponds to
“treat with drug” and C' = 0 corresponds to “treat with placebo”. For example, the drug
could be aspirin, and outcome could be the severity of headache perceived two hours later.
Patients are split into two groups, the treatment and the control group, by means of a
coin flip that assigns a value of C' to every patient.® Patients are treated depending on
the assigned value of C'. Some time after treatment, the outcome X is measured for each
patient. This yields a dataset (C'n,Xn)éV:1 with two measurements (C,, X,,) for the n'®
patient. If the distribution of outcome X significantly differs between the two groups, one
concludes that treatment is a cause of outcome.

The important underlying causal assumptions that ensure the validity of the conclusion
are:

(i) outcome X is not a potential cause of treatment C' (which is commonly deemed jus-
tified if the outcome is an event that occurs later in time than the treatment event);

6. Usually this is done in a double-blind way, so that neither the patient nor the doctor knows which group
a patient has been assigned to.

11
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(a) Two separate data sets: (b) Pooled data:
Cc X
Placebo (C = 0): Drug (C =1): 0 -0.2
X X 0 0.6
-0.2 -0.3 0 -1.7
0.6 1.8 0o ...
-1.7 0.1 1 -03
1 18
1 -0.1
1

Figure 3: Ilustration of the data from an example randomized controlled trial. The data
can either be interpreted as (a) two separate data sets, one for the treatment
and one for the control group, or (b) as a single data set including a context
variable indicating treatment /control. Note that in this particular example, C' is
dependent on X in the pooled data (or equivalently, the distribution of X differs
between contexts C' = 0 and C' = 1), which implies that C' is a cause of X.

(ii) there is no potential irreducible latent common cause of treatment and outcome (this
is where the randomization comes in: if treatment is decided solely by a proper coin
flip, then it seems reasonable to assume that there cannot be any latent common cause
of the coin flip C and the outcome X that is not just a combination of two statistically
independent separate causes of C' and X),

(iii) no selection bias is present in the data (in other words, data samples have not been
selected afterwards based on the measured values of C' or X, which could happen for
example if somebody would have selected only a subset of patients that suffered from
certain treatment side effects).

Under these assumptions, one can show that if the distribution of the outcome X differs
between the two groups of patients (“treatment group” with C' = 1 vs. “control group”
with C' = 0), then treatment must be a cause of outcome (in this population of patients).
There are two conceptually slightly different ways of testing this in the data, depending on
whether we treat the data as a single pooled dataset, or rather as two separate datasets
(each one corresponding to a particular patient group), see also Figure 3. If we consider the
data about outcome X in the two groups as two separate data sets (corresponding to the
same variable X, but measured in different contexts C'), then the question is whether the
distribution of X is statistically different in the two data sets. This can be tested with a two-
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sample test, for example, a t-test or a Wilcoxon test. The other alternative is to consider
the data as a single pooled data set (by pooling the data for the two groups), and let the
value of C' indicate the context of each sample (treatment or control). The question now
becomes whether the conditional distribution of X given C' = 0 differs from the conditional
distribution of X given C' = 1, i.e., whether P(X |C = 0) # P(X |C = 1). In other words,
we have to test whether there is a statistically significant dependence C' X X in the pooled
data between treatment C' and outcome X; if there is, it must be due to the treatment C
causing the outcome X, as the following proposition shows:

Proposition 9 Suppose that the data-generating process on context variable C' and outcome
variable X can be modeled by a simple SCM and no selection bias is present. Under the
randomized controlled trial assumptions:

(i) C+ X ¢ G (“outcome X is not a potential cause of treatment C”)

(ii) C < X & G (“there is no potential irreducible latent common cause of treatment C

and outcome C”),

a dependence C' J. X in the joint distribution P(C, X) implies that C causes X, and fur-
thermore, C' and X are unconfounded, i.e., the causal effect of C on X is given by:

P(X |do(C =¢)) =P(X|C =¢). (1)

Proof By the Markov property, if the edge C' — X were absent in G(M), then C would
be independent of X. Therefore, if C' f X, the edge C' — X must be in G(M). In both
cases, the causal do-calculus applied to G(M) yields the identity (1). If C' £ X, then there
must be two values ¢, ¢’ such that P(X |C = ¢) # P(X | C = ¢), and hence, because of (1),
P(X |do(C = ¢)) # P(X|do(C =¢)), i.e., C is a cause of X. [ |

Of course, in this straightforward example the equivalence between the two approaches
(differences between two separate data sets vs. properties of a single pooled data set) is
trivial, and the reader may wonder why we emphasize it. The reason is that the key
idea of our approach is precisely this: reducing an apparently complicated causal discovery
problem with multiple datasets to a more standard causal discovery problem involving a
single pooled data set. The Joint Causal Inference framework that we propose in this paper
can be considered as a straightforward extension of this randomized controlled trial setting
to multiple treatment and outcome variables.

It is important to realize that the simple causal reasoning for the RCT cannot be
made when looking at the two data sets in isolation (i.e., by considering only properties of
P(X |C =0) and P(X |C = 1) separately, and not using in addition any other properties of
the joint distribution P(X, C)). The latter approach is commonly used by constraint-based
methods for causal discovery from multiple data sets (e.g., Tillman, 2009; Claassen and Hes-
kes, 2010; Tillman and Spirtes, 2011; Hyttinen et al., 2014; Triantafillou and Tsamardinos,
2015; Rothenhé&usler et al., 2015; Forré and Mooij, 2018). Under the assumptions made, the
crucial (and possibly very strong) signal in the data that allows one to draw the conclusion
that C' causes X is the dependence C' J X in the pooled data. Methods that only test
for conditional independences within each context and subsequently combine these into a
single context-independent causal model will not yield any conclusion in this setting. The
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approach taken by JCI, on the other hand, is to analyze the pooled data jointly, so that
informative signals like these can be taken into account.

2.3 Causal Discovery from Purely Observational Data

In the previous section, we discussed the current ground truth for discovering causal re-
lations. Over the last two decades, alternative methods have been proposed to perform
causal discovery from purely observational data. This is intriguing and potentially of high
relevance, since experiments may be impossible, unfeasible, impractical, unethical or too
expensive to perform. These causal discovery methods can be divided into constraint-based
causal discovery methods, such as the PC (Spirtes et al., 2000), IC (Pearl, 2009) and FCI
algorithms (Spirtes et al., 1995; Zhang, 2008), and score-based causal discovery methods
(e.g., Heckerman et al., 1995; Chickering, 2002; Koivisto and Sood, 2004). The PC and
IC algorithms and most score-based methods assume causal sufficiency (i.e., the absence
of potential irreducible latent common causes), while the FCI algorithm and other mod-
ern constraint-based algorithms allow for latent confounders and selection bias. Originally,
these methods have been designed to estimate the causal graph of the system from a single
dataset corresponding to a single (purely observational) context.

All these methods try to infer causal relationships on the basis of subtle statistical
patterns in the data. The most important of these patterns are (conditional) independences
between variables. These are exploited by most constraint-based methods, and implicitly,
by score-based methods. Other patterns, such as “Verma constraints” (Shpitser et al.,
2014), algebraic constraints in the linear-Gaussian case (van Ommen and Mooij, 2017),
non-Gaussianity in linear models (Kano and Shimizu, 2003), and non-additivity of noise in
nonlinear models (Peters et al., 2014) can also be exploited. Another class of methods that
has become popular more recently are methods that try to infer the causal direction (A — B
vs. B — A) from purely observational data of variable pairs (see e.g., Mooij et al., 2016).
Since our main goal is to enable constraint-based causal discovery from multiple contexts, we
will focus on this approach here, while noting that the JCI framework that we propose in the
next section is compatible with all approaches to causal discovery from purely observational
data that allow for multiple variables and can handle certain background knowledge.

As discussed in detail by Spirtes et al. (2000), causal discovery from conditional inde-
pendence patterns in purely observational data becomes possible under strong assumptions.
The simplest example of how certain patterns of conditional independences in the obser-
vational distribution can lead to conclusions about the causal relations of the variables is
given by the “Y-structure” pattern (Mani, 2006), which is illustrated in Figure 4. We show
here that the Y-structure pattern also generalizes to the cyclic case.

Proposition 10 Suppose that the data-generating process on four variables X1, Xo, X3, X4
can be modeled by a simple SCM. Assume that the sampling procedure is not subject to
selection bias, and that faithfulness holds. If the following conditional (in)dependences hold
in the observational distribution:

X1 X Xy, Xo N Xy, X1 1L Xo,

X1 L Xy X3, Xo L Xy| X3, X; [ Xo|Xs,

then X3 is a potential direct cause of X4 with respect to {X1, Xa, X3, X4}. Furthermore,
X3 and X4 are unconfounded with respect to {Xs, X4}, i.e., the causal effect of X3 on Xy
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Figure 4: Left: Causal graphs satisfying the “Y-structure” pattern on four variables
(X1,X2,X3,X4). Right: Scatter plots illustrating the Y-structure pattern in
purely observational data, where X3 is discrete-valued and its value is indicated
by color (black, red); left: X; vs. Xo, center: X; vs. Xy, right: Xo vs. Xj.

s given by:

IP)(X4 ‘ dO(X3 = 1‘3)) == IP(X4 ’Xg = .’IJ3). (2)

Proof By the assumed Markovness and faithfulness properties, one can easily see that the
only possible functional graphs that are compatible with the observed conditional indepen-
dences are the ones in Figure 4, where X; must be adjacent to X3 via at least one of the
two dashed edges, and similarly, Xo must be adjacent to X3 via at least one of the two
dashed edges. Hence, X3 is a potential direct cause of X4 with respect to { X1, X, X3, X4},
but X, is not a potential direct cause of X3 with respect to {X;, X2, X3, X4}. Also, there
cannot be a bidirected edge between X3 and X,. By applying the causal do-calculus, we
arrive at (2). |

This example illustrates how conditional independence patterns in the observational distri-
bution allow one to infer certain features of the underlying causal model. This principle
is exploited more generally by constraint-based methods, and implicitly, by score-based
methods that optimize a penalized likelihood over causal graphs.

Typically, the functional graph cannot be completely identified from purely observa-
tional data. For example, in the Y-structure case, the conditional independences in the
observational data do not allow to conclude whether the dependence between X; and X3
is explained by X7 being a potential cause of X3, or by X; and X3 having an irreducible
latent common cause, or both. Another disadvantage of causal discovery methods from
purely observational data is that they typically need very large sample sizes and strong
assumptions in order to work reliably. These are some of the motivations to combine these
ideas with those of causal discovery by experimentation, as we will do in the next section.

3. Joint Causal Inference

In this section we introduce Joint Causal Inference (JCI), a framework for causal discov-
ery from multiple data sets corresponding to measurements that have been performed in
different contexts, that combines the main ideas presented in Sections 2.2 and 2.3.
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3.1 Context Variables

Henceforth, we will distinguish system wvariables (X;);ez describing the system of interest,
and context variables (C)rex describing the context in which the system has been observed.
The decision of what to consider part of the “system” and what to consider part of its
“context” does not reflect an objective property of nature, but is a choice of the modeler.
While the system variables are treated as endogenous variables of the system of interest, we
usually (but not necessarily) think of the context variables as observed erogenous variables
for the system of interest. In particular, context variables could describe which interventions
have been performed on the system (or more specifically, how these interventions have been
performed), in which case we will also refer to them as intervention variables. The possible
interventions are not limited to the perfect (“surgical”) interventions modeled by the do-
operator of Pearl (2009), but can also be more general types of interventions that appear
in practice, like mechanism changes (Tian and Pearl, 2001), soft interventions (Markowetz
et al., 2005), fat-hand interventions (Eaton and Murphy, 2007), activity interventions (Mooij
and Heskes, 2013), and stochastic versions of all these. This will be discussed in more detail
in Section 3.3. Even more generally, a context variable could describe any property of the
environment of the system, including those properties that one would not normally think
about as an intervention. Examples are the lab in which measurements have been done,
the time of the day, the patient population, variables like “gender” or “age”, etc.

The idea of explicitly considering context variables is not novel: they have been discussed
in the literature under various names, such as the “force variables” introduced by Pearl
(1993), “decision variables” in influence diagrams (Dawid, 2002), “regime indicators” in
Didelez et al. (2006), “selection variables” in selection diagrams (Bareinboim and Pearl,
2013), and the “environment variable” in Peters et al. (2016). Some formal aspects in
how these variables are treated vary across accounts, however. For example, Dawid (2002)
treats system variables as random variables and is careful to not treat context (“decision”)
variables as random variables. In this work we simply consider context variables as random
variables with added background knowledge on their causal relations.

Context variables may appear to be a more general concept than intervention variables,
since every intervention can be seen as a change of context, but not every change of context
is naturally thought of as an intervention. For example, the causal effect of some drug on
a certain health outcome may differ for males and females. Taking “gender” as a context
variable that just encodes the specific subpopulation of patients we are considering would
be more natural than considering it to be an intervention variable that encodes the result of
a potentially gender-changing operation on the patient. Furthermore, interventions usually
come with an “observational baseline” of “doing nothing”, but this is not always naturally
available. On the other hand, for context variables, no baseline is necessary. In the following,
we do not need to commit to a particular interpretation, as the two interpretations can be
treated equally from a mathematical modeling perspective.

That being said, the basic idea of JCI is simple: rather than considering a causal model
of the system alone (i.e., modeling only the endogenous system variables), we broaden
its scope to include relevant parts of the environment of the system (i.e., we include the
context variables as additional endogenous variables). Thereby, we “internalize” parts of the
environment of the system, which makes the meta-system (consisting of both system and
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its environment) amenable to formal causal modeling. The meta-system can now formally
be considered as occurring in just a single (meta)-context, and thereby we have reduced the
problem of how to deal with multiple contexts to one of dealing with a single context only.
We will formalise this idea in the next subsection.

3.2 Joint Causal Modeling of Multiple Contexts

Different approaches to modeling multiple contexts can be taken, e.g., using influence dia-
grams (Dawid, 2002), using selection diagrams (Bareinboim and Pearl, 2013), considering
only conditional models (i.e., for the conditional likelihood of the data given the context)
(Eaton and Murphy, 2007; Mooij and Heskes, 2013), or using ioSCMs (Forré and Mooij,
2019). Here, we will take what is perhaps the simplest approach: we treat both context
and system variables as endogenous variables in an SCM.

We will use a simple SCM to model the meta-system (i.e., the system and its contexts)
causally. The endogenous variables of the SCM consist of the system variables X = (X;);ez
with values & € X = [[,.7 & and the context variables C' = (Cy)rex with values ¢ € C =
[I1cx Cr- The latent exogenous variables of the SCM are denoted E = (E;);jcs with values
eec & = Hjej &j. The SCM modeling the meta-system is then assumed to be of the
following form:

Ck = fie(Xoar ()nT> Coagy(h)k> Epag, (k)07 )5 k€ K,
M9 X = filXea,()nT> Coag(i)ics Beayy)ng)s 1 €T, (3)
P(E) =]lesP(E)).

The system variables X and context variables C' are all treated as endogenous variables
of the system, and the exogenous variables E are independent latent variables that are
assumed not to be potentially caused by the system variables X or the context variables C.
The augmented functional graph H has nodes Z U J U K and directed edges corresponding
to the functional dependencies of the causal mechanisms on the variables. The functional
graph G(M) has only nodes Z U K, and may contain both directed and bidirected edges
between the nodes, expressing potential direct causal relations and potential irreducible
latent common causes.

Note that the most general way to use SCMs to model multiple contexts would be to use
separate SCMs, one for each context. In that approach, we could have a different functional
graph for each context. Representing the contexts jointly, as in (3), we simply obtain the
union of those functional graphs. In particular, even if within each context, the system is
acyclic, it could be that the mixture of systems in different contexts has a cyclic functional
graph. As a simple example, consider a system with two system variables X; and X5, and
consider two different contexts, where in the first context X; causes Xo (but not vice versa),
and in the second context, Xo causes X; (but not vice versa); see also Figure 5. As a more
concrete example, the engine drives the wheels of a car when going uphill, but when going
downhill, the rotation of the wheels drives the engine. Modeling this in a joint SCM as in
(3) requires a cyclic functional graph.

The model (3) imposes a probability distribution P(C) on the context variables, the
context distribution. The context distribution will reflect the empirical distribution of the
context variables in the pooled data, by using as the probability of a context the fraction of
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E)—®) OWB®

Figure 5: The functional graph of a mixture of two acyclic SCMs can be cyclic. (a) X;
causes X5 in context C' = 0; (b) X5 causes X; in context C' = 1; (c) X7 and X,
cause each other in the joint model.

the total number of samples that have been measured in that context. One might object
that this makes the model very specific to the particular setting, since it also specifies the
relative numbers of samples in each dataset, but as it turns out, the conclusions of the
causal discovery procedure do not depend on these details under reasonable assumptions,
and therefore generalize to other context distributions.

Because the context variables are treated as endogenous variables (similarly to the sys-
tem variables), we have “internalized” them. The main advantage of our modeling approach
over alternative approaches is that in (3), context variables are formally treated in exactly
the same way as the system variables. This implies in particular that all standard defini-
tions and terminology of Section 2.1, and all causal discovery methods that are applicable
in that setting, can be directly applied.

3.3 Modeling Interventions as Context Changes

The causal model in (3) allows one to model a perfect (“surgical”) intervention in the usual
way (Pearl, 2009). Indeed, the perfect intervention that forces X to take on the value &;
(“do(X; = &1)”) for some subset I C T and some value &; € [[;c; Ai can be modeled by
replacing the structural equations for the system variables in (3) by:

X, &i iel
' fi(XPA(i)ﬂIa CPA(i)mICa EPA(i)ﬂj) 1€l \ I,

while leaving the rest of the model invariant.”

Alternatively, the context variables can be used to model interventions. For example,
the same perfect intervention could be modeled by introducing a context variable C} that
has cH(k) = I and domain C, = {0} U]],c; &;, by taking fr to be of the following form:

Fi( Xea@ynz Coayrrc\ (ks Boayng)  Cie =0
i X 7 ) C i ) E i =
b ( PA(i)NZ» “PA(3)NK» L/PA( )ﬂj) {(Ck)z Ck € Hz‘el X
(4)
for i« € I. Modeling a perfect intervention in this way is similar to the concept of “force
variables” introduced by Pearl (1993). If k& has no parents and no spouses, the observational

7. For brevity, we dropped the subscript H of PAy(+).
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distribution (without the intervention) is given by the conditional distribution P(X | Cy, =
(), the interventional distribution corresponding to the perfect intervention do(X; = £;) is
given by the conditional distribution P(X |C = &;), and the marginal distribution P(X)
represents a mixture of those. This is illustrated in Figure 6.

More general types of interventions such as mechanism changes (Tian and Pearl, 2001)
can be modeled in a similar way, simply by not enforcing the dependence on C} to be
of the form (4), but allowing more general forms of functional dependence. For example,
switching the causal mechanism of system variable X; from mechanism A to mechanism
B can be modeled as follows by introducing a context variable Cj, with cH(k) = {i} and
domain C, = {A, B}:

fA(XPA(i)ﬂI> CPA(z‘)ﬂIC\{k}a EPA(z‘)ﬁj) Cr=A

(XpannTs Coaivaic, Epali =2 5

fi(Xeagiynzs Ceagiynics Eeagiing) { 8 (Xon iz Congirs i1 Bongirng) Co = B. ()

As another example, a stochastic surgical intervention on X; that is only successful with a
certain probability can be modeled by having one of the latent exogenous variables E; with
j € PA(i) determine whether the intervention was successful:

_ filXea)nzs Cragynic\{kys Bea@nnggy) Cr=0or E; =0
(X, C.. E...: =
[i(Xpa@)nz> Cratiynic Eeaiyng) {(Ck)i Cr € [lier X and Ej = 1.
(6)
This approach of modeling interventions by means of context variables is very general,
as it allows to treat various types of interventions in a unified way: it can deal with perfect
interventions (Pearl, 2009), mechanism changes (Tian and Pearl, 2001), soft interventions
(Markowetz et al., 2005), fat-hand interventions (Eaton and Murphy, 2007), activity inter-
ventions (Mooij and Heskes, 2013), and stochastic versions of all these. In case the context
variables are used to model interventions in this way, we also refer to those as intervention
variables, and to the context distribution P(C'), the probability for each context to occur,
as the experimental design.

3.4 JCI Assumptions

In this subsection, we discuss additional background knowledge on the causal relationships
of context variables that one may often have in practice, and that can be very helpful for
causal discovery.

3.4.1 JCI ASSUMPTION 0

First, we remind the reader of our basic modeling assumption:

Assumption 0 (“Joint SCM”) The data-generating mechanism is described by a simple
SCM M of the form:

Ck = fe(Xpas, ())nT> Cras, (k)nics Eras, (k)07 ) ke K,
M X = [i(Xeay )0z Cons i)k Boasy(iing)s 1 €T, (7)
P(E) =]lesP(E)),

19



Moo1J, MAGLIACANE, CLAASSEN

Observational: 2
Jointly: @
(Ca = 0) y
Interventional: @.@ @ @.@ @
(Ca=1)
(b) :
Observational: A
Jointly: @
ooy EF—0—) y
ot @) =0
(Ca:l)
(C) Observational: Interventional: Pooled:
(Cy = 0) (Co=1) C, Xi X, X
X, Xo X3 X, X2 X; 0 -02 -04 06
-0.2 -04 0.6 -0.3 1.8 -0.1 0 0.6 0.8 1.3
0.6 0.8 1.3 1.8 -2.2 -0.2 0 -1.7 0.1 0.3
-1.7 0.1 0.3 1 -0.3 1.8 -0.1
1 1.8 -2.2 -0.2

Figure 6: (a—b) Two ways of representing interventions, either through separate context-
dependent causal graphs of the system (left), or through the joint causal graph
of system and context (right). Two different intervention types are considered:
(a) a mechanism change on X»; (b) a perfect (surgical) intervention on Xs. (c)
shows different ways of grouping the data: as separate datasets for each context
(left), or as a single joint data set after pooling (right).
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that jointly models the context distribution P(C) and the system in all contexts. Its func-
tional graph G(M) has nodes ZUK (corresponding to system variables {X;}ict and context
variables {C }kex ).

Whereas we will always make this assumption in order to facilitate the formulation of JCI,
the following three assumptions that we discuss are optional, and their applicability has to
be decided based on a case-by-case basis.

3.4.2 JCI ASSUMPTION 1

Typically, when a modeler decides to distinguish a system from its context, the modeler
possesses background knowledge that expresses that the context is exogenous to the system:

Assumption 1 (“Exogeneity”, optional) No system variable is a potential cause of any
context variable (directly with respect to TUK), i.e.,

Ve K,VieZ: i—k¢gGM).

This exogeneity assumption is often easy to justify, for example if context is gender or
age. Another common case is that the context encodes interventions on the system that
have been decided and performed on the system before measurements on the system are
performed: this already rules out any potential causal influence of system variables on the
intervention (context) variables if time travel is not deemed possible. Of course, one can
imagine settings in which a system variable describes an event that precedes an intervention
event that is performed on the system described by an intervention variable. For example, a
doctor typically first diagnoses a patient before deciding on treatment. Thus, if some of the
system variables are measurements that are performed as part of the medical examination
used for the diagnosis, and the intervention is the treatment that was decided after—and
based upon—these measurements, this assumption may not be applicable.

3.4.3 JCI ASSUMPTION 2

The second JCI assumption generalizes the randomization assumption for Randomized Con-
trolled Trials:

Assumption 2 (“Complete randomized context”, optional) There is no potential irreducible
latent common cause of the system variables and the context variables, i.e.,

Vke K,VieI: i< k¢GM).

This assumption is often harder to justify in practice. It is justifiable in experimental
protocols in which the decision of which intervention to perform on the system does not
depend on anything else that might also affect the system of interest, and in which the
observed context variables provide a complete description of the context. This is ensured
for example in case of proper randomization in a double-blind randomized trial setting, i.e.,
in which neither the patient nor the physician know whether the patient was assigned a
drug or a placebo.

Many experimental protocols that do not involve explicit coin flips or random num-
ber generators are implicitly performing randomization. For example, in the experimental
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procedure described by Sachs et al. (2005), one starts with a collection of human immune
system cells. These are divided into batches randomly, without taking into account any
property of the cells. When done carefully, the experimenter tries to ensure that for exam-
ple the weight of a cell cannot influence the batch it ends up in, by stirring the liquid that
contains the cells before pipetting. Then, after randomly assigning cells to batches, inter-
ventions are performed on each batch separately, by adding some chemical compound to the
batch of cells. Finally, properties of each individual cell within each batch are measured.
If we take the system variables to reflect the measured properties of the individual cells,
and the context variables to encode the batch ID, this experimental procedure justifies JCI
Assumption 2.

However, one should be careful not to jump to the conclusion that the chemical com-
pound administered to the batch is what actually causes the observed system behavior, as
there may be other factors that vary across batches due to unintentional side effects of the
experimental procedure. For example, which person carries out the experiment for a par-
ticular batch of cells might influence the outcome, because slightly different experimental
procedures are used by different lab assistants. Another example is that the time of the
day may affect the measurements, and also correlate with batch ID. In situations like those,
identifying the batch ID with the chemical compound administered to that batch could be
misleading, and could lead one to incorrectly attribute the inferred causal relation between
batch ID and a certain system variable to the causal effect of the intended intervention
corresponding to that batch on the system variable. This is a subtle type of error that
the causal modeler should beware of. Even though we have good reasons to assume that
proper randomization was performed for batch ID in the Sachs et al. (2005) experiment,
it is questionable whether the interpretation of the context variables as concerning solely
the addition of certain chemical compounds (and not any other factors that actually varied
across batches) is appropriate.

The issue can also be understood by noting that JCI Assumption 2 may not be preserved
when marginalizing out context variables, as illustrated in Figure 7. As an example in which
the situation in Figure 7 may occur, consider a randomized trial setup for establishing
whether sugar causes plants to grow. Context variable C, denotes the coin flip result, C
indicates whether sugar is administered to the plant, and C indicates whether water is
administered to the plant. The experimenter decided to use an experimental design with
two groups, and assigning plants to groups with a coin flip. One group of plants was
administered a solution consisting of sugar dissolved in water on a daily basis, the other
(control) group was not treated in any way. The growth rate X; of the plants was measured
for both groups. Suppose the following experimental design was used:

P(C =c¢) ‘ Cq (coin flip) Cj (sugar) C, (water)
0 0 0
1 1 1

D=0

If one would only take context variable Cg (did the plant get sugar?) into account and would
treat C,, and C, as latent, as in Figure 7(b), and would make JCI Assumptions 1 and 2,
one would arrive at the (wrong) conclusion that sugar causes plants to grow. However, if
one would take all three context variables into account, and make JCI Assumptions 1 and
2, one would obtain the right conclusion that at least one of the three context variables
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Figure 7: Confounding between system and context variables due to unobserved context
variables. (a) If all three context variables Cy, Cg, C, are observed, JCI Assump-
tion 2 would be valid. (b) After marginalizing out C\, and C., leaving only context
variable Cg as observed, JCI Assumption 2 is no longer valid.

must cause plants to grow. A simple remedy to avoid the wrong conclusion if only Cj is
observed would be to drop JCI Assumption 2: then it is no longer identifiable whether C'g
causes X1, or whether Cz and X; are just confounded.

As a more realistic example, consider the placebo effect in a randomized controlled
trial that is not performed double-blindly. This is the same setting as in Figure 7, but
with different meanings of the variables. Context variable C,, would still encode the result
of the coin flip that indicates whether a patient is assigned to the treatment or control
group, Cg indicates taking the drug, and C, indicates being under treatment by a medical
professional. In this scenario, the drug itself has no effect on health outcome X;. If the
RCT is not performed double-blindly, it could be that there is a placebo effect, i.e., C,
could cause Xi. JCI Assumption 2 would be valid if all three context variables are observed
and taken into account (Figure 7(a)), but if only context variable Cp (taking the drug) is
considered, then this results in confounding between context node Cg and system node X1,
even though Cg was decided by a random coin flip and therefore it was properly randomized
(Figure 7(b)), in which case JCI Assumption 2 would be invalid.

3.4.4 JCI ASSUMPTION 3
In order to discuss the last JCI assumption, we need more notation and theory.

Definition 11 Given an SCM M satisfying JCI assumption 0, define the influence diagram
G(M)1|do(k) as the (colored) DMG with nodes TUK, and as directed and bidirected edges
a subset of those in G(M), namely precisely those that involve one or more system nodes
in L. We will graphically represent the system nodes I of G(M)1|qo(x) by circles and the
context nodes K of G(M)z a0 by squares.

We have seen that JCI Assumption 1 is often easily justifiable, but the applicability
of JCI Assumption 2 may be less clear in practice. If both assumptions are made, then
one can apply the following result, which basically says that when one is only interested in
modeling the causal relations involving the system variables, one does not need to care about
the causal relations between the context variables, as long as the right context distribution
is induced.
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Theorem 12 Assume that JCI Assumptions 0, 1 and 2 hold for SCM M:

Ck = fk( PAy (k)NKCH EPAH(k‘)ﬂJ)a keK,
M qX; - fz( PAy (4)NL> CPAH(i)ﬂIC’ EPAH(i)ﬁj)a i €1,
P(E) = Iljes P(E)),

For any other SCM M satisfying JCI Assumptions 0, 1 and 2 that is the same as M except
that it models the context differently, i.e., of the form

Co = JCorywrics Boy gyn7): K EK,
M: Xi = fi (XPAH( NI CPAH(i)ﬂIC’ EPAH(i)ﬁj)’ i €1, (8)
P(E) = [l P(E)),

with J C J and PAx(i) = PA; (i) for all i € I, we have that
(i) the influence diagrams coincide: G(M)1|qo(c) = Q(M)I|do(K);

(i1) if M and M induce the same context distribution, i.e., Py (C) = P (C), then for
any perfect intervention on the system variables do(I,&r) with I C I (including the
non-intervention I =), Mao(1,¢;) is observationally equivalent to Myq(r¢,)-

(iii) if G(M)x and G(M)x induce the same separations, then also G(M) and G(M) in-
duce the same separations (where “separations” can refer to either d-separations or
o-separations).

Proof Let M be an SCM of the form (7). Under JCI Assumption 1, the structural
equations for the context variables do not depend on the system variables:

Crk = fie(Crrs (k)i Eray (k)ng)s kek.

Because of JCI Assumption 2, PAy(K) NPAy(Z) N T = 0, i.e., the context variables do not
share any exogenous variable with the system variables. This means that in G(M), any
edge between a context variable and a system variable must be a directed edge pointing
from context to system variable, i.e., of the form k — i with k € K, i € Z.

Since the structural equations for the system variables of M coincide with those of M,
their solutions (in terms of the context and exogenous variables) also coincide, even after
any perfect intervention on a subset of the system variables. Since C is independent of
E;,,,(z) (both for M as well as for M), and since Pg = ]P’gj by assumption, this implies

that the interventional distributions of M and M coincide for any perfect intervention on
a subset of system variables if Pyp((C) =P (C).

Assume now that G (M)]C and G(M)k induce the same separations. In the remainder
of this proof, “open” can be read either consistently as “c-open” or as “d-open”. Note
that by assumption, G(M)z|do(k) = Q(M)I‘do(;c), and that the edges in G(M)z|q0(k) are
a subset of those in G(M), and of those in G(M). We will prove that G(M) and G(M)
induce the same separations by first showing that for any two context nodes connected by
a path 7 in G(M)x such that 7 is A-open in G(M) for some A C ZU K, we can find a
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path 7’ in G(M)x between the two nodes that is A’-open in G(M) where A’ = ANKUB
with B C K N ANG(M); | g, (A \ K). For 7 to be A-open in G(M), any collider on =
that is not a G(M)-ancestor of A N K must be a G(M)-ancestor of A\ K. Since the
latter does not necessarily imply that the collider must also be Q(M)—ancestor of A\ K,
the idea will be to replace the variables from A\ K in the conditioning set by variables in
KOANG(M) ;| 4oy (A\K) (L., context nodes that are guaranteed to be both G(M)-ancestors

and G(M)-ancestors of A\ K) that are G(M)-descendants of those colliders that are not
already G(M)-ancestors of ANK. It will turn out that this is not always possible to achieve
for m, but that we can construct another path 7’ for which this can be done.

Consider a path 7 in G(M)x between ky € K and k, € K that is A-open in G(M)
for some A C ZU K. We will iteratively construct a walk in G(M)x between the same
two nodes kg and k,, that is both A-open in G(M) and (A N K) U B-open in G(M), where
B C K N ANG(M) | 4oy (A \ K). We will proceed by induction. Suppose a walk mp, in
G(M)x between ko and ky, is A-open in G(M). Then it is AU B,,-open in G(M) where
B = (KNANG(M) 7 | 4o () (A\K))\NCOL(7r, ). Comsider the “problematic” colliders COL( )\
ANgMm) (AN K U By,) on 7y, i.e., the ones that are not ancestors of AN K U By,. If there
are any, choose one such problematic collider ¢ € K on 7,,. Since ¢ is not G(M)-ancestor of
ANKU By,, but m, is A-open, it has to be G(M)-ancestor of A\ K. This means that there
is a directed path in G(M) that starts at ¢, passes through zero or more context nodes,
none of which lie in AN X U By, by assumption, and then through zero or more system
nodes, until it ends at a system node in A\ K. Let k. € K be the last context node on
this directed path before the path crosses the context-system boundary. By assumption,
k. must exist as a non-collider on 7, (otherwise it would be in By, and ¢ would be G(M)-
ancestor of By,), hence we can make a shortcut by replacing the subwalk of m, between ¢
and k. by a directed path ¢ — -+ — k. in G(M)x, which necessarily entirely consists of
context nodes that are not in A. If k. occurs more than once on this new walk, remove the
entire subwalk between the two outermost occurrences of k., such that k. only occurs once.
This new walk 7,11 must be A-open: ¢ (if still present) is now a non-collider that is not
in A, none of the (non-collider) nodes on the directed path (if still present) between ¢ and
k. are in A, and k. itself is not in A and is a G(M)-ancestor of A, so it does not matter
whether it is a collider or non-collider. The number of problematic colliders on 7,11 is at
least one less than on 7,,: ¢ is no longer a collider, and if k. became a collider on my,41, it
won’t be problematic (as it is itself in (KN ANgG(r1); |4, (A \ K)) and cannot also occur as
non-collider on 7,,+1), We repeat this procedure until no problematic colliders are present
anymore. This yields a walk 7y, that is both A-open and A’-open, with A’ = (ANK)U B
where B = By = (K N ANG(M); | 4o, (A \ K)) \ NCOL(ma7). We now shorten this A’-open
walk 7y in G(M) into an A’-open path 7" in G(M)x.

This implies that there must be an A’-open path 7’ in g(/\?t),c connecting kg and ky,
by assumption. Every collider on 7’ is a G(M)x-ancestor of AN K U B, and hence G(M)-
ancestor of AN K U B, and hence G(M)-ancestor of A. Therefore, 7’ is also A’-open in
G(M). But then it must also be A-open, as we can add A\ K to the conditioning set without
blocking any non-collider on 7/, and then remove B\ (A \ K) from the conditioning set as

all colliders are still kept open due to either being G(M)-ancestor of AN K or of A\ K.
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Consider now any path in G(M) that is A-open, for A C Z U K. Any edge on the
path between a system node and a context node must be of the form i < k (with i € Z,
k € K) or k — i, where 7 is in another strongly-connected component than k& and k cannot
be in A (because the path was assumed to be A-open). Replacing each longest subpath
consisting entirely of context nodes kg ...k, (with all kg,...,k, € K) by a corresponding
A-open path in G(M)x between kg and k,, gives a walk in G(M) that by construction is also
A-open in G (M) Any system collider on this walk must be a collider on the original path,
and therefore G(M)-ancestor of A, and therefore also G(M)-ancestor of A. Any system
non-collider on this walk is also a system non-collider on the original path and therefore
not in A or, in case of o-separation, pointing only to nodes in the same strongly-connected
component of G(M), and hence of G(M). Any context non-collider on this walk cannot be
in A, or, in case of o-separation, points to the same strongly-connected component in Q(M),
since the replacing path in G(M)x was A-open by construction. Any context collider on
this walk that is a G(M)x-ancestor of (AN K) U B, and therefore must be G(M)-ancestor
of A. The walk can be shortened into an A-open path in G(M).

Similarly, one can show that any path in G (M) that is A-open, there must be a corre-
sponding path in G(M) that is A-open. [ |

We can now state the last JCI assumption. This one can be useful whenever JCI Assump-
tions 1 and 2 are made:

Assumption 3 (“Generic context model”, optional) The context graph G(M)x is of the
following special form:

VK €eK: k#K = koK eGAk— K ¢ GM).

This assumption can be useful to avoid having to infer the causal relations between the
context variables, when one is only interested in the causal relations involving the system
variables. It is illustrated in Figure 8. The following Corollary states that this assumption
can be made without loss of generality if the context distribution contains no conditional
independences:

Corollary 13 Assume that JCI Assumptions 0, 1 and 2 hold for SCM M. Then there
exists an SCM M that satisfies JCI Assumptions 0, 1 and 2 and 8, such that

(i) the influence diagrams coincide: G(M)z|do(cy = G(M)1|do(k)s

(ii) for any perfect intervention on the system variables do(I,&r) with I C T (including
the non-intervention I = (), Mao(1,¢;) is observationally equivalent to Mao(r.¢;)s

(iii) if the context distribution Pp(C) contains no conditional independences, the same
o-separations hold in G(M) as in G(M); if in addition, the Directed Global Markov
Property holds for M, then also the same d-separations hold in G(M) as in G(M).

Proof Let M be an SCM of the form (7). Under JCI Assumption 1, the structural
equations for the context variables do not depend on the system variables:

Crk = fe(Cras (k)i Eray (k)ng)s kek.

26



JOINT CAUSAL INFERENCE FROM MULTIPLE CONTEXTS

(b) (c)
CF DD @A) o] [l [
® ® & ® & ®
@ ® ®

Figure 8: Example functional graphs of (a) a true SCM M and (b) the modified SCM M
constructed in the proof of Corollary 13 that satisfies JCI Assumption 3, and (c)
their corresponding influence diagram G(M)z|gox. Corollary 13 gives sufficient

(a)

conditions for M and M to be equivalent for our purposes.

Because of JCI Assumption 2, PAy(K) NPAy(Z) N T =0, i.e., the context variables do not
share any exogenous variable with the system variables.
Consider now the modified SCM M of the form:

Cv  =g(Ec), kek
M:qX; = fi(XPAH(z')ﬁIa CPAH(i)ﬂICv EPAH(i)ﬂj)v i €1,
P(E) =]l;c7P(E)),

where J = J U {C} contains an additional exogenous variable E¢ € [[cx & with com-
ponents (E¢); € Cp with distribution P(E¢) = Pap(C) and gi the projection on the
kE’th component gx : Ec — (E¢)g. By construction, this SCM M satisfies JCI As-
sumptions 1 and 2. The only aspect that requires a little bit of thought is the sim-
plicity of M. Take @ C T and consider the solution function for © according to M:
go : X(PAH(O)\O)HI X C(PAH(O)\O)OIC X 8PAH(O)OJ — XI\O' This solves the structural equa-
tions for O \ Z, and since these are the same for M as for M, the same solution function
works also for M. Now take Q C K and consider the solution function gg : £ — Cq
with components £ — Ci : ec — gr(ec), k € Q. Any other solution function can be
obtained by composition. We conclude that M is simple. M also induces the same context
distribution P (E) = Pa(E) and satisfies JCI Assumption 3 by construction. The other
statements now follow by applying Theorem 12, where the only thing left to show is that
G(M)x and G(M)x induce the same o-separations if the context distribution P (C) con-
tains no conditional independences, and the same d-separations if in addition the Directed
Global Markov Property holds for M.

Marginalizing out the system variables (both in M as well as in M) yields M\z and
M\Z, with functional graphs G(M\z) = G(M)x and Q(M\I) = G(M), respectively.
By the Generalized Directed Global Markov property, since Ppq(C) has no conditional
independences, there must be a K-o-open path in G(M)x between any two context nodes
k#k €K, for any K C K with {k, &'} N K = (). If the Directed Global Markov property
holds for M, then it holds for G (M\I), and hence there must even be a K-d-open path in
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Figure 9: Functional graphs of (a) the true SCM M and (b) the modified SCM M con-
structed in the proof of Corollary 13 that are not Markov equivalent. The graph in
(a) is identifiable under JCI Assumptions 0-2. The joint distribution P (X, C)
is not faithful with respect to the graph in (b), which is the minimal one that
also satisfies JCI Assumption 3 such that Py (X, C) is Markov with respect to
it.

G(M)k between any two context nodes k # k' € I, for any K C K with {k,k'} N K = 0.
Since by construction G(M)x contains all bidirected edges k <> &', there is a K-d-open path
in M\ between any two context nodes k # k' € K, for any K C K with {k,k'}NK = (. &

JCI Assumption 3 is typically made for convenience. When our aim is not to model the
causal relations between the context variables, but just to use the context variables as
an aid to model the causal relations between system variables and between context and
system variables, Corollary 13 shows that without loss of generality we can assume JCI
Assumption 3 (if JCI Assumptions 1 and 2 are made and the context distribution contains
no conditional independences). The causal discovery algorithm then need not waste time
on learning the causal relations between context variables but can focus directly on learning
the causal relations involving the system variables.

Note that the genericity assumption in statement (iii) of Corollary 13 (i.e., Py (C)
containing no conditional independences) is necessary, as the simple counterexample in
Figure 9 shows. Depending on how well the causal discovery algorithm can handle faithful-
ness violations, model misspecification due to incorrectly assuming JCI Assumption 3 even
though P(C') contains conditional independences might prevent successful identification of
the causal relationships between system variables. Therefore, it is prudent to check that the
empirical context distribution P(C) indeed contains no conditional independences before
making JCI Assumption 3.

An example of a common situation in which the context distribution contains no condi-
tional independences is what we refer to as a diagonal design (see also Table 1). This is a
simple experimental design that is often used to discover the effects of single interventions
when one is not interested in understanding the interactions that multiple interventions
might have. Note that two non-constant binary variables X, Y can only be independent if
P(X =1,Y =1) > 0. Even more, they can only be conditionally independent given a third
discrete variable Z if P(X =1,Y =1|Z = z) > 0 for all z with P(Z = z) > 0. Therefore,
each pair of context variables is dependent in a diagonal design (as there is no context in
which a pair of context variables simultaneously obtains the value 1), even conditionally on
any subset of the other context variables. In other words, the context distribution P(C)
corresponding to any diagonal design contains no (conditional) independences.
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Table 1: Example of a diagonal design with 5 context variables. If the context variables
are indicators of interventions, the context with Cj = 0 for all £ € K corresponds
with the purely observational setting, and the other contexts in which one Cy =1
and the other C; = 0 for | # k correspond with a particular intervention each.

Co Cg C, Cs C. | possible interpretation
0 0 0 0 0 | observational

1 0 0 0 0 intervention «

0 1 0 0 0 | intervention 3

0 0 1 0 0 | intervention -y

0 0 0 1 0 intervention &

0 0 0 0 1 intervention €

JCI Assumption 3 could be modified for situations in which the context distribution
does contain conditional independences. For example, in the extreme case in which all
context variables are jointly independent, one would simply assume that G(M) contains
no directed and no bidirected edges between context variables. Such situations may occur
for symmetric experimental designs in which all context variables are jointly independent
by design (for example, factorial designs with equal sample sizes in each experimental con-
text). However, we believe that this occurs less often in practice than the generic case in
which all context variables are (conditionally) dependent, because resource constraints often
lead experimenters to deviate from completely symmetric experimental designs. Therefore,
rather than assuming the context variables to be jointly independent as a default, we have
opted here for the more generic default of assuming that no conditional independences hold
between context variables in the context distribution. More generally, one could replace
JCI Assumption 3 by assuming that G(M)x equals a certain graph describing the known
conditional independences in the experimental design. Theorem 12 can be applied to these
more general situations as well and shows that for the purpose of constraint-based causal
discovery, any functional graph for the context variables that implies the observed con-
ditional independences (i.e., any functional graph that is Markov equivalent to the true
causal graph) works. An even easier option in general is to just ignore JCI Assumption 3
and instead try to infer the context subgraph Gx from the data. This is computationally
more expensive, but doesn’t seem to make much of a difference in terms of accuracy, as our
experimental results will show.

JCI Assumption 3 only makes sense when both JCI Assumptions 1 and 2 are made.
If we would not make JCI Assumption 1 or 2, the causal relations between the observed
context variables will have testable consequences in the joint distribution in general. For
an example, see Figure 10. Here, C,, could be “lab”, and C5 could be the “temperature” at
which an experiment is performed. In this case, we get different conditional independences
in the joint distribution P(Xo, X1, Cq, Cp) if lab causes temperature rather than that they
are confounded (for example, by geographical location). Something similar can happen if
context variables can be caused by system variables.
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Figure 10: If JCI Assumption 2 does not apply, the causal relations between context vari-
ables have testable consequences for the conditional independences in the joint
distribution. (a) Xo X X1 |{Ca,Cs}; (b) Xo L X;[{C4,Cs}.

3.4.5 SUMMARY OF JCI ASSUMPTIONS

Summarizing, the JCI framework rests on different assumptions, one of which is required,
whereas the others are all optional. The basic assumption that is required is JCI Assump-
tion 0, which states that the meta-system consisting of context and system can be described
by a simple SCM. This is really just the standard assumption made throughout the causal
discovery literature, but now applied to the meta-system rather than to the system. In
addition, assumptions about the causal relationships of the context variables can be made,
which are all optional and can be decided on a case-by-case basis. In most cases, we would
expect JCI Assumption 1 (no system variable is a potential cause of any context variable)
to apply. In some cases, also JCI Assumption 2 (there is no potential irreducible latent
common cause of context and system variables) applies. If both apply, one can assume
JCI Assumption 3 for convenience if the context distribution contains no conditional inde-
pendences. In other words, we only need to model the observed conditional independences
in the context distribution, not necessarily their causal relations, when our interest is in
modeling the causal relations involving system variables only.

For causal discovery in the JCI framework, knowledge of the intervention targets (or
more generally, which system variables are affected directly by which context variables) is
not necessary, but it is certainly helpful and can be exploited similarly to other available
background knowledge, depending on the algorithm used to implement JCI. When using
JCI for a combination of different interventional data sets, intervention targets can be learnt
from data when they are not known, similarly to how the effects of system variables can
be learnt. One main advantage of the JCI framework is that it offers a unified way to deal
with different types of interventions, as discussed in Section 3.3. Therefore, knowledge of
intervention types (e.g., is it a perfect surgical intervention, or a mechanism change?) is
also not necessary, but can still be helpful as it provides additional background knowledge
that may be exploited for causal discovery.

In concluding this subsection, we observe that the JCI framework generalizes and com-
bines the ideas of causal discovery from purely observational data and of causal discovery
by means of randomized controlled trials. Indeed, note that if JCI is applied to a single
context (i.e., 0 context variables), it reduces to the standard setting of causal discovery
from purely observational data described in Section 2.3. If JCI is applied to a setting with
a single context variable and a single system variable, JCI (with Assumptions 1 and 2)
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reduces to the Randomized Controlled Trial setting described in Section 2.2. Therefore, the
Joint Causal Inference framework truly generalizes both these special cases.

3.5 Causal Discovery from Multiple Datasets

In this section, we discuss how causal discovery from multiple contexts is performed in the
Joint Causal Inference framework. Our starting point is the assumption that some model
of the form (7) is an appropriate causal model for the system and its context, and we
have obtained samples of the system variables in multiple contexts. Suppose that the exact
model M (and in particular, its causal graph G(M)) is unknown to us. The goal of causal
discovery is to infer as much as possible about the causal graph G(M) from the available
data and from available background knowledge about context and system.

Let us denote the dataset for context ¢ € C as D(©) = ((miz))lez) 7]:[;, and for simplicity,
assume that no values are missing. The number of samples in each context, given by N,
is allowed to depend on the context. As a first step, which is conceptually different from
typical constraint-based approaches to causal discovery from multiple contexts, we pool the
data, thereby representing it as a single dataset D = (x,, ¢,)_; where N = ccc Ne. We
then assume that D is an i.i.d. sample of Pp(X, C), where (X,C, E) is a solution of the
SCM M of the form (7).

In setting up the problem, we have made the simplifying assumptions that the measure-
ment procedure is not subject to selection bias, nor to (independent) measurement error
(Blom et al., 2018). We will assume that the data has been generated by an SCM in ac-
cordance with JCI Assumption 0, and optionally, a subset of JCI Assumptions 1, 2 and
3. To enable constraint-based causal discovery, we will assume that the joint distribution
Py (X, C) is faithful with respect to the functional graph G(M), using the appropriate
separation criterion (o-separation in general, or d-separation for specific cases, as discussed
in Section 3.6). We will discuss the ramifications of the faithfulness assumption in more
detail in Section 3.6.

Definition 14 We say that a particular feature of G(M) is identifiable from Py (X, E)
and background knowledge if the feature is present in the graph G(M) of any SCM M with
P (X, E) =Pm(X, E) that incorporates the background knowledge.

“Feature” could refer to the presence or absence of a direct edge, a directed path, a bidirected
edge, arbitrary subgraphs, or even the complete graph. The task of causal discovery is then
to identify as many features of G(M) as possible from the data, the i.i.d. sample D of
Ppm (X, E), and the available background knowledge.

The trick of the Joint Causal Inference framework that allows one to deal with data
from multiple contexts (D(C))cec is that by incorporating the context variables explicitly,
and pooling the data, we have now reduced the causal discovery problem to one that is
mathematically equivalent to causal discovery from purely observational data D and appli-
cable background knowledge on the causal relations between context and system variables
(a subset of JCI Assumptions 1 and 2). If applicable, JCI Assumption 3 can be made to
reduce the computational effort.

After discussing the faithfulness assumption in more detail, we will give a few suggestions
of how JCI can be implemented in Section 3.7.
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3.6 Structural Causal Models: Faithfulness Assumption

In this subsection we will discuss the subtleties of the faithfulness assumption in the JCI
setting. We will see how it allows us to deal also with perfect interventions. On the one
hand, our faithfulness assumption is weaker than the usual assumption made in constraint-
based causal discovery methods that combine different datasets by analyzing each dataset
separately before combining the results into one coherent model. On the other hand, it
is stronger, since it implies restrictions on the context distribution: it must be faithful to
some DMG.

Given a simple SCM M of the form (7), the joint distribution P (X, C) induced by
the SCM satisfies the Generalized Directed Global Markov Property (Theorem 7) with
respect to the functional graph G := G(M) of the SCM, i.e., any o-separation U LgV |W
between sets of nodes U, V,W C Z UK in the graph G implies a conditional independence
Xy Lpx,c Xy | Xy, where we write X := (X, C). Under the additional assumptions
of Theorem 8, the stronger Directed Global Markov Property holds (i.e., the d-separation
criterion).

For constraint-based causal discovery, some type of faithfulness assumption is usually
made. For simplicity, the faithfulness assumption that we make in this work is the standard
one, but we apply it to the combination of system and its environment: we assume that
the joint distribution P (X, C) is faithful with respect to the functional graph G(M)
of M. In other words, any conditional independence Xys Lpx.c Xy \ Xy for sets of
nodes U,V,IWW € Z UK is due to the o-separation U LZV |W in G (or d-separation, if
applicable), and no other conditional independences in Pp(X, C) exist. In particular, this
assumption rules out any (conditional) independence between context variables in case JCI
Assumption 3 is made.

This faithfulness assumption allows us to deal with different types of interventions,
including perfect (surgical) interventions. For example, for the surgical intervention on Xo

in the example illustrated in Figure 6(b), the causal graphs gg) (restricted to the system
variables {X;}icz) depend on the context ¢ € C: in the observational context (Cy, = 0),
X1 — Xpo, whereas in the interventional context (C, = 1), this direct causal relation is
no longer present (as it has been overruled by the perfect intervention). This does not
invalidate the faithfulness of the joint distribution P(Cy,, X7, X2, X3) with respect to the
joint causal graph. Indeed, even though X; I X5 |C, = 0, we still have X7 f Xo|C,
because X1 ¥ Xo|C, = 1.8 In other words, the fact that P(X | C, = 1) is not faithful to
the system subgraph Gz (i.e., the induced subgraph of the causal graph G on the system
nodes Z) does not lead to any problem as long as we are not going to test for independences
in the subset of data corresponding to context C, = 1 separately, but restrict ourselves to
testing independences only in the pooled data set that combines all contexts.

Causal discovery methods that analyze data from each context separately (e.g., Hauser
and Bithlmann, 2012; Triantafillou and Tsamardinos, 2015; Hyttinen et al., 2014) typically
make a stronger faithulness assumption. In our notation, such approaches assume that
P(X|C = ¢) is faithful w.r.t. a causal subgraph g;c) that may be context-dependent,
and must then reason about how these context-dependent subgraphs are related, explicitly

8. Note that for a discrete context domain C, we have that A L B|C if and only if A I B|C = c for all
¢ with p(c) > 0. More generally, A I B|C if and only if A I B|C = c for almost all c.
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relying on knowledge about the type of interventions (typically assuming that the interven-
tions are surgical interventions with known targets). One advantage of our approach is its
broader applicability, since it does not rely on knowledge of the intervention types, nor of
the intervention targets.

Under JCI Assumption 1, the faithfulness assumption for the joint distribution P (C, X)
implies in particular that the context distribution Py(C) is faithful with respect to some
DMG (indeed, more specifically, to G(M)x). When JCI Assumption 3 is made, the faith-
fulness assumption even means that the context distribution P(C') does not contain any
(conditional) independences. In case the empirical context distribution P(C') does contain
(conditional) independences, one has several options. The first is to modify the assumed
functional graph of the context variables in JCI Assumption 3 such that the context dis-
tribution is faithful to it. For example, if all context variables are jointly independent, one
could simply assume that the context graph G(M)x has no (directed or bidirected) edges
at all. The second option is to omit JCI Assumption 3 or some analogue of it completely.
In that case, the faithfulness assumption still imposes the restriction that the context dis-
tribution can be faithfully modeled by some DMG. The third option is to use only data
corresponding to a certain subset of the contexts and to ignore data from other contexts. In
addition, one can sometimes work around conditional independences by partitioning the set
of context variables into groups of context variables, and using combined context variables
instead of the original context variables. This will be illustrated in the next paragraph. Fi-
nally, one could ignore the faithfulness violations in the context distribution and hope that
the causal discovery algorithm will handle them well. This last approach usually means
that it will be harder to guarantee consistency of the approach. Note that the faithful-
ness assumption for the context variables is actually testable, since the empirical context
distribution is available, and can be directly tested for conditional independences.

The faithfulness assumption also rules out deterministic relations between the variables
that lead to faithfulness violations. In particular, there could be deterministic relations
between context variables. For example, in the experimental design of the experiments
in Sachs et al. (2005) described in Tables 2 and 3, C, is a (deterministic) function of Cy
and C,: Cq = =(Cyp VvV C,). One might naively believe that this could be dealt with by
simply removing context variable C, from consideration, leaving only context variables
Cg,...,C, as observed context variables, none of which is a (deterministic) function of the
others. However, marginalizing out context variables may give rise to violations of JCI
Assumption 2, as we have seen in Section 3.4.3. An operation that is generally allowed is
grouping context variables together. In the case of the Sachs et al. (2005) experimental
design, we can combine Cy, Cy and C, together into a single context variable given by the
3-tuple (Cy, Cy,C,). Accidentally, in this case this would be mathematically equivalent to
the tuple (Cy, C,), but the interpretation of (Cy, Cy, C,) is different from that of (Cy, C,).
Another option would be to ignore a subset of the contexts. In this case, one could exclude
the two contexts with Cyp =1 or C, = 1. Then, C, becomes a constant, and constants can
be safely ignored (or, trivially combined with any other context variable).”

9. In an earlier draft of this work (Magliacane et al., 2016a), we proposed to handle deterministic relations
between context variables by using the notion of D-separation, first presented in (Geiger et al., 1990)
and later extended in (Spirtes et al., 2000). However, this notion does not provide a complete characteri-
zation of conditional independences due to a combination of graph structure and deterministic relations.
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Table 2: Left: Experimental design used by Sachs et al. (2005). N¢ is the number of data
samples in context C. Interpretation of context variables is provided in Table 3.
Right: Different choice of context variables: C,, Cy and C, have been grouped
together into a single combined context variable (Cy, Cy, C,) in order to deal with
the deterministic relation C,, = =(Cyp Vv C,).

Ca C3 C, G, C. C; C, Gy G [ Neo Ty C, Gy C. C; Oy (Ca,Cs,C) [ Nao
1 0 0 0 0 0 0 0 0 853 0 0 0 0 0 0 (1,0,0) 853
1 1 0 0 0 0 0 0 0 | 902 1 0 0 0 0 0 (1,0,0) 902
1 0 1 0 0 0 0 0 0 | 911 0 1 0 0 0 0 (1,0,0) 911
1 0 0 1 0 0 0 0 0 | 723 0 0 1 0 0 0 (1,0,0) 723
1 0 0 0 1 0 0 0 0 810 0 0 0 1 0 0 (1,0,0) 810
1 0 0 0 0 1 0 0 0 799 0 0 0 0 1 0 (1,0,0) 799
1 0 0 0 0 0 1 0 0 848 0 0 0 0 0 1 (1,0,0) 848
0 0 0 0 0 0 0 1 0 913 0 0 0 0 0 0 (0,1,0) 913
0 0 0 0 0 0 0 0 1 707 0 0 0 0 0 0 (0,0,1) 707
1 1 1 0 0 0 0 0 0 899 1 1 0 0 0 0 (1,0,0) 899
1 1 0 1 0 0 0 0 0 753 1 0 1 0 0 0 (1,0,0) 753
1 1 0 0 1 0 0 0 0 868 1 0 0 1 0 0 (1,0,0) 868
1 1 0 0 0 1 0 0 0 759 1 0 0 0 1 0 (1,0,0) 759
1 1 0 0 0 0 1 0 0 927 1 0 0 0 0 1 (1,0,0) 927

Table 3: For each context variable in Table 2: reagents used in this experimental setting,
and expected intervention type and targets as based on (our interpretation of)
biological background knowledge described in Sachs et al. (2005).

Reagent Intervention
Co | a-CD3, a-CD28 global activator
Cs | ICAM-2 global activator
C, | AKT inhibitor  activity of AKT
Cs | G0076 activity of PKC
C. | Psitectorigenin  abundance of PIP2
C¢ | U0126 MEK activity
C, | LY294002 PIP2, PIP3 mechanism change
Cy | PMA PKC activity
C, | B2CAMP PKA activity

Under JCI Assumption 3, it is advisable to check that there are indeed no conditional
independences between context variables in the empirical context distribution. More gen-
erally, one should check whether the conditional independences in the context distribution
can be faithfully described by a DMG. If not, one can try to work around by applying the
tricks discussed in the last paragraph (grouping context variables, and leaving out certain
contexts). When grouping context variables, one should note that the inferred causal rela-
tions from context variables to system variables may no longer be easily interpretable. A
simple example that illustrates this is to consider two interventions that are always per-
formed together: when drug A is prescribed, also drug B is prescribed, and vice versa. In
that case we cannot be sure whether the effect on outcome is due to drug A or to drug B.
Nonetheless, we can still use the inferred causal relations between system variables.

Therefore, in this work we use the simpler techniques of grouping context variables and ignoring certain
contexts to deal with faithfulness violations due to deterministic relations between context variables.
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3.7 Implementing JCI

Any causal discovery method that is applicable under the assumptions described in Sec-
tion 3.5 can be used for Joint Causal Inference. Identifiability greatly benefits from tak-
ing into account the available background knowledge on the causal graph stemming from
the applicable JCI assumptions as discussed in Section 3.4. In addition, taking into ac-
count background knowledge on targets of intervention variables may help considerably.
Some logic-based causal discovery methods (e.g., Hyttinen et al., 2014; Triantafillou and
Tsamardinos, 2015; Forré and Mooij, 2018), are ideally suited to exploit such background
knowledge. For other methods (e.g., FCI (Spirtes et al., 1995; Zhang, 2008) or methods
that focus on ancestral relations, e.g., ACI (Magliacane et al., 2016b)), incorporating all
background knowledge is less straightforward and as far as we know cannot be done with
off-the-shelf implementations.

Given a causal discovery algorithm for purely observational data that can exploit the JCI
background knowledge, we can implement JCI in a straightforward fashion: (i) introduce
context variables, if not already provided; (ii) pool all data sets, including the values of the
context variables; (iii) handle faithfulness violations between context variables by grouping
context variables and/or leaving out certain contexts, if necessary; (iv) apply the causal
discovery algorithm on the pooled data, while taking into account the appropriate JCI
background knowledge. Any soundness and consistency results for the causal discovery
algorithm in the purely observational setting (plus background knowledge) directly apply
to the JCI setting, as long as there is no model misspecification (i.e., if the assumed JCI
assumptions do hold for the true model). If we use JCI Assumption 3 (or something similar),
we can use Theorem 12 to show that what the algorithm concludes about the causal relations
concerning system variables is still correct. In the remainder of this subsection, we discuss
four specific JCI implementations that we will study in our experiments in Section 4.

3.7.1 LocAL CAusAL DiscovERy (LCD)

Perhaps the first implementation of JCI is provided by the LCD algorithm by Cooper
(1997). LCD is a very simple constraint-based causal discovery algorithm that can be used
for the purely observational causal discovery setting where certain background knowledge
is available, and in particular, in the JCI setting. The basic idea behind the LCD algorithm
is the following result (which we generalized to allow for cycles):

Proposition 15 Suppose that the data-generating process on three variables X1, Xo, X3
can be represented by a faithful, simple SCM M and that the sampling procedure is not
subject to selection bias. If Xo is not a potential cause of X1, the following conditional
(in)dependences in the observational distribution P(X1, Xa, X3)

X1 KXo, Xo) X3, X1l X3[X

imply that the functional graph G(M) must be one of the three graphs in Figure 11. In
particular,

(i) X3 is not a potential cause of Xo;

(i1) Xo is a direct cause of X3 w.r.t. {X1, X9, X3};

(i1i) Xo and X3 are unconfounded, i.e., the causal effect of Xo on X3 is given by:

]P)(Xg |dO(X2 = 1:2)) = P(Xg |X2 = LI?Q). (9)
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= —®) F=—®)

Figure 11: All possible DMGs detected by LCD.

Proof The proof proceeds by enumerating all DMGs on three variables and ruling out the
ones that do not satisfy the assumptions. Since M is assumed to be simple, the assumption
that X5 is not a potential cause of X7 implies that there is no directed edge Xo — X in
the functional graph G(M). If there were an edge between X; and X3, X1 1L X3| X5 would
not hold (faithfulness). Also, since X; [ Xy, X; and X9 must be adjacent (Markovness).
Similarly, X5 and X3 must be adjacent. X5 cannot be a collider on any path between X
and X3 (faithfulness). Since the only possible edges between X; and X are X7 — X
and X; < Xy (both of which have an arrowhead at X3), this means that there must be
a directed edge X9 — X3, but there cannot be a bidirected edge Xy <+ X3 or directed
edge X2 < X3. In other words, the only three possible functional graphs are the ones in
Figure 11. The causal do-calculus applied to G(M) yields (9). Because Xo [ X3, X9 is a
direct cause of X3 with respect to { X1, X9, X3}. [ ]

In a JCI setting where JCI Assumption 1 is made, we can directly apply LCD for
causal discovery on tuples (Ck, X;, X;7) with k € K, i # i’ € Z on the pooled data. In our
experiments, we use — log p13, where p13 denotes the p-value of a (marginal) independence
test on X7 and X3, as a heuristic confidence measure of the LCD prediction. In other words,
the more evidence we have against the null hypothesis that X; and X3 are independent,
the higher our confidence that the conclusions are correct.

A conservative version of LCD has been applied by Triantafillou et al. (2017) to the task
of inferring signaling networks from mass cytometry data. An algorithm closely related to
LCD, named “Trigger”, has been applied on genomics data (Chen et al., 2007). Chen et al.
(2007) motivate the JCI assumptions in the setting of learning the causal relations between
gene expression levels using SNPs as context variables. Since the DNA content cannot be
caused by gene expression levels, the JCI Assumption 1 is satisfied. Chen et al. (2007)
then argue that Mendelian randomization justifies the JCI Assumption 2. Finally, a single
conditional independence in the pooled data (as in LCD) provides the desired evidence for
an unconfounded causal relation between two gene expression levels. In this sense, it is a
direct combination of RCTs with constraint-based causal discovery, using a single context
variable and two system variables at a time.

3.7.2 INVARIANT CAUSAL PREDICTION (ICP)

Invariant Causal Prediction (ICP) exploits invariance in the conditional distribution of a
target variable given its direct causes across multiple contexts, assuming that none of the
contexts corresponds with an intervention that targets the target variable (Peters et al.,
2016). The implementation described in Peters et al. (2016) handles linear relationships,
arbitrary interventions (as long as they do not change the conditional distribution of the
effect variable given its direct causes), assumes the absence of latent confounders between
target variable and its direct causes, and the absence of cycles involving the target variable.
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One of the main advantages of this method over others is that it provides (conservative)
confidence intervals on direct causal relationships that do not require the faithfulness as-
sumption to be made. The authors discuss several possible extensions to broaden the scope
of the method, but do not address this in all generality. A nonlinear extension of the method
has been proposed recently (Heinze-Deml et al., 2017).

We will show here that one can also interpret ICP as a particular implementation of the
JCI framework, even in a very general setting with nonlinear relations between variables
and with irreducible latent common causes and cycles present (although faithfulness is then
required).

We start by introducing a notation and two useful Lemmas that generalize their acyclic
d-separation analogues from (Claassen and Heskes, 2011).

Definition 16 Let X,Y,Z,S CV be sets of nodes in a DMG G = (V,E,F). Let L denote
a DMG-separation property, e.g., d-separation (L¢) or o-separation (1°). We say that the
minimal separation

X Jg_ Y|SuUl[Z]
holds if and only if

Xé_Y|SUZ AN VQCZ:XLY|SUQ.
g

Similarly: we say that the minimal connection

X LY|SU[Z]
g

holds if and only if

XLY|SuZ A VQgZ:XéY|SUQ.
G

Note that despite the notation, a minimal connection is not the logical negation of a minimal
separation. Minimal connections imply the absence of certain ancestral relations:

Lemma 17 Let {X},{Y},S,{Z} CV be mutually disjoint sets of nodes in a DMG G =
(V,E,F). For both d-separation (1) and o-separation (L°), we have that:

X LY |SU[{Z)] = Z¢ang({X,YIUS).
g

Proof The minimal connection means that all paths between X and Y are closed when
conditioning on S and there exists at least one path between X and Y that is open when
conditioning on S U {Z}. For d-separation, this means that such a path (i) contains a
collider not in ANg(.S), (ii) every collider is in ANg(SU{Z}), (iii) every non-collider is not in
SU{Z}. For o-separation, this means that such a path (i) contains a collider not in ANg(S),
(ii) every collider is in ANg(S U {Z}), (iil) every non-collider is either not in S U{Z}, or if
it is, it points to neighboring nodes in the same strongly-connected component only.

Thus there exists a path between X and Y that contains a collider in ANg({Z}) that
is not in ANg(S). If Z € ANg(S) this would be a contradiction. If Z € ANg(X), then
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we can consider the walk between X and Y obtained from composing the subpath of the
original path between Y and the first collider (starting from Y') in ANg({Z}) \ ANg(S) with
a directed path to Z and then on to X, without passing through nodes in S. This walk
between X and Y must be open when conditioning on S, and hence there exists a path
between X and Y that is open when conditioning on S, a contradiction. Similarly we obtain
a contradiction if Z € ANg(Y). [ |

On the other hand, minimal separations imply the presence of certain ancestral relations:

Lemma 18 Let {X},{Y},S,Z C V be mutually disjoint sets of nodes in a DMG G =
(V,E,F). For both d-separation (1¢) and o-separation (1°), we have that:

XLY[SU[Z] = Z Cang({X,Y}US).

Proof Let @ C Z. Consider a path between X and Y that is open when conditioning on
S'UQ, but becomes blocked when conditioning on SU Z. For d-separation, this means that
(i) every collider on the path is in ANg(S U @), (ii) every non-collider is not in S U @, and
(iii) it contains a non-collider in S'U Z. For o-separation, this means that (i) every collider
on the path is in ANg(SUQ), (ii) every non-collider is either not in SUQ or if it is, it points
to a neighboring node on the path in another strongly-connected component, and (iii) it
contains a non-collider in S U Z that points to a neighboring node on the path in another
strongly-connected component. In both cases, we have that (i) every collider on the path
is in ANg(S U Q) and (ii) it contains a non-collider in Z \ . Consider a maximal directed
subpath of the path starting at a non-collider U in Z \ @ and stopping at a collider or at
an endpoint. Then U € ANg({X, Y} USUQ).

So, for each @) C Z, there exists a U € Z\ Q with U € ANg({X,Y} U SUQ). Thus
for every Z; € Z, we either obtain (taking @ = Z \ {Z;}) an ancestral relation of the form
Z; € ANg({X,Y }US), or, otherwise, at least Z; € ANg(Z;) for some Z; € Z\{Z;}. Define a
directed graph A with nodes ZU{w} (where w represents { X, Y }US) and add an edge Z; —
w whenever our construction yields an ancestral relation of the form Z; € ANg({X,Y}US),
or otherwise, an edge Z; — Z; if our construction yields Z; € ANg(Z;).

Then, taking the transitive closure of the constructed directed graph A and using tran-
sitivity of ancestral relations, for any Z; € Z we either obtain Z; € ANg({X,Y} U S), or
Z; is in some strongly-connected component C' C Z in A. In the latter case, we can apply
the reasoning above (taking now @ = Z \ C) to conclude that there exists a Z; € C' with
Z; € ANg({X,Y}US) or Z; € ANg(C") where C’ C Z is another strongly-connected com-
ponent. Since the strongly-connected components of Z form an acyclic structure, repeating
this reasoning a finite number of times, we ultimately conclude that Z; € ANg({X,Y } US).
|

An immediate Corollary is:

Corollary 19 Let X,Y €V be different nodes in a DMG G = (V,E, F). For d-separation
(L) or o-separation (L°), consider Z* == ({Z : X ¢ Z,)Y ¢ Z,X 1gY|Z}. Then
7+ C ANg({X,Y}).

Proof First, note that Z* = ({Z : X ¢ Z)Y ¢ Z, X 1LgY |[Z]}. From Lemma 18,
X LgY|[Z] implies Z C ANg({X,Y}). Hence Z* C ANg({X,Y}). [ |
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The following result strengthens the results in Peters et al. (2016):

Corollary 20 Consider the JCI setting with a single context variable C' and multiple system
variables {X;}iez. Under JCI Assumptions 0 and 1 and faithfulness, the ICP estimator for
target i € IL:

JF = ICZT\{i}:C 1L X;|X

P=U STV 0, L X X))

satisfies J; C ANg(aq)(7), i-e., the set J consists only of potential (possibly indirect) causes
of i.
Note that this means that asymptotically, ICP outputs a subset of ancestors of the target
variable, even in the presence of confounders and linear or nonlinear cycles. This means
that we can interpret ICP as a particular causal discovery algorithm implementing the JCI
framework.

3.7.3 ASD-JCI

Another JCI implementation is easily obtained by using the algorithm by Hyttinen et al.
(2014) and its generalization to o-separation (Forré and Mooij, 2018). Hyttinen et al. (2014)
proposed formulating causal discovery as an optimization problem over possible causal
graphs, where the loss function sums the weights of all the conditional (in)dependences
present in the data that would be violated for a certain underlying causal graph, assum-
ing Markov and faithfulness properties. The input consists of a list of weighted condi-
tional independence statements. The weights A encode the confidence in the conditional
(in)dependence, where a weight of A\ = oo corresponds to a “hard constraint” (absolute
certainty) and a weight of A = 0 corresponds to “no evidence at all”. Hyttinen et al. (2014)
provide an encoding of the notion of d-separation in ASP, while Forré and Mooij (2018)
generalize the encoding to o-separation. The optimization problem is solved by making use
of an off-the-shelf ASP solver.

There may be multiple optimal solutions to the optimization problem, because the
underlying causal graph may not be identifiable from the inputs. Nonetheless, some of
the features of the causal graph (e.g., the presence or absence of a certain directed edge)
may still be identifiable. We employ the method proposed by Magliacane et al. (2016b)
for scoring the confidence that a certain feature is present by calculating the difference
between the optimal losses under the additional hard constraints that the feature is present
vs. that the feature is absent. Magliacane et al. (2016b) showed that this algorithm for
scoring features is sound for oracle inputs and asymptotically consistent under reasonable
assumptions.

We will make use of the weights proposed in Magliacane et al. (2016b): A\; = logp; —
log o, where p; is the p-value of a statistical test for the j’th conditional independence
statement, with independence as null hypothesis, and « is a significance level (e.g., 1%)
that should decrease with sample size at a suitable rate. These weights have the desirable
property that independences get a lower weight than strong dependences.

As we will need an acronym for this algorithm later, we will henceforth refer to it as
ASD (Accounting for Strong Dependences), as it basically tries to explain the observed
dependences in the data, taking into account the strength of these dependences. This is
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fundamentally different from other constraint-based algorithms such as PC or FCI, which
give priority to observed independences and do not take into account the strength of de-
pendences.

Taking into account the JCI background knowledge (a subset of JCI Assumptions 1, 2
and 3), and possible background knowledge on intervention targets, is trivial thanks to the
expressive power of ASP, and can be done with a few lines of ASP code. The resulting
algorithm is very accurate but scales only up to a few variables due to the combinatoric
explosion. Incorporating JCI Assumption 3 considerably reduces computation time.

3.7.4 FCI-JCI

By slightly extending the constraint-based causal discovery algorithm FCI (Spirtes et al.,
1995; Zhang, 2008), it can be used in a JCI setting. The FCI algorithm assumes that
the data was generated by an acyclic SCM. Since interventions and selection bias interact
non-trivially, we postpone treatment of selection bias to future work, and focus here on the
simpler version of FCI that assumes no selection bias is present. The modifications to FCI
to handle the JCI background knowledge are also most straightforward when assuming no
selection bias, because then we can ignore some of the orientation rules (Zhang, 2008), and
in addition, the PAG cannot contain undirected edges, so any invariant tail mark that is
found implies an arrowhead on the opposite edge end.

The FCI algorithm consists of two main phases: an adjacency search phase leading to
the undirected skeleton, followed by an edge orientation phase. In the adjacency search the
algorithm searches for conditional independences to eliminate edges from the graph. The
subsequent orientation stage consists of a set of graphical rules that allow invariant edge
marks, signifying either causal (tail marks) or non-causal (arrowhead marks) relations, to
be added to the skeleton. For a single observational data set the final result is a so-called
Partial Ancestral Graph (PAG) that is a concise representation of ancestral relations and
conditional independences. The PAG represents a set of Maximal Ancestral Graphs (MAGs)
(Richardson and Spirtes, 2002), and each MAG represents a set of ADMGs (Triantafillou
and Tsamardinos, 2015), and each ADMG represents an infinite set of DAGs (with arbitrary
number of latent variables). In the case of purely observational data, the PAG output by
FCI gives a complete representation of the Markov equivalence class (Zhang, 2008).

Extending FCI such that it can take into account the additional JCI background knowl-
edge on the adjacency and causal relations between the combined set of context and system
variables (see also Section 3.4) is straightforward:

e If JCI Assumption 3 is made, all context variables are connected by bidirected edges,
and the adjacency phase of FCI has to be adapted accordingly by not removing any
edges between context variables; afterwards, all edges between context variables can be
oriented as k <+ Kk’ for k # k' € K. In the subsequent phase of orienting v-structures,
only system variables can take on the role of the collider in the “v”.

e If JCI Assumption 1 is made, then (since we are assuming no selection bias) any
adjacent pair of a context variable k& € K and a system variable ¢ € Z must be
connected in the MAG by an edge with an arrowhead at i. Therefore, after the
adjacency phase, all edges between a context and a system variable can be oriented
as k+— ¢, pointing from the context variable k € K to the system variable i € 7.
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e If both JCI Assumptions 1 and 2 are made, any adjacent pair of a context variable
k € K and a system variable i € Z must be connected by a directed edge k — ¢ (since
we are assuming no selection bias) in the MAG. Hence, after the adjacency phase, all
edges between a context and a system variable can be oriented as k — ¢, pointing
from the context variable k € K to the system variable 7 € Z.

The subsequent orientation phase of the FCI algorithm does not need to be adapted. This
is a consequence of our assumption that selection bias is absent.

Under the assumptions of the JCI framework, this slightly modified FCI algorithm (that
we will refer to as FCI-JCI) is sound. We do not know whether it is complete, i.e., its output
might not be a PAG that completely characterizes the equivalence classes of ADMGs in the
JCI setting. To read off the presence and absence of (identifiable) ancestral relations from
the PAG output by FCI-JCI, one can use the results of Roumpelaki et al. (2016).

3.8 Related work

In this section we discuss related work. Since the pioneering work by Fisher (1935), many
different causal discovery methods that can deal with data from different contexts have been
proposed. Table 4 provides an overview of some of these methods and the features they offer.
Note that JCI offers most features of all methods. By implementing the JCI framework using
sophisticated causal discovery methods for observational data (plus background knowledge)
one obtains versatile and powerful causal discovery algorithms for multiple contexts. We
will now discuss in detail some of the aspects of the related work.

3.8.1 IRREDUCIBLE LATENT COMMON CAUSES

Most score-based methods (like the ones by Cooper and Yoo, 1999; Tian and Pearl, 2001;
Sachs et al., 2005; Eaton and Murphy, 2007; Hauser and Biihlmann, 2012; Mooij and Hes-
kes, 2013; Oates et al., 2016a) and some constraint-based methods (Zhang et al., 2017)
assume causal sufficiency, i.e., that no irreducible latent common causes are present. This
assumption is likely to be violated in practice and may lead to wrong conclusions. An
example is provided in Figure 12. The true causal graph with confounded system variables
is identifiable from conditional independences in the data by JCI. Due to the presence of an
irreducible latent common cause of Xy and X7, score-based methods will infer the wrong
causal graph(s).

3.8.2 CYCLES

As we have seen in Proposition 9, the method by Fisher (1935) can handle cycles. Less well-
known is that also LCD (Cooper, 1997) and Trigger (Chen et al., 2007) can handle cycles.
Hyttinen et al. (2012) provide an algorithm for linear SCMs with cycles and confounders
that deals with perfect interventions. The methods by Hyttinen et al. (2014) and Mooij and
Heskes (2013) can deal with cycles in a linear (or approximately linear) setting. The method
by Hyttinen et al. (2014) relies on d-separation, which only applies in certain settings (see
Theorem 8). The method can be modified to use o-separation instead (Forré and Mooij,
2018). The way Mooij and Heskes (2013) handle cycles is not as straightforward. Gen-
erally, their method could handle nonlinear cyclic models, but for computational reasons,
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" (Cooper and Yoo, 1999) - + - 4+ - - - - - - 4+ - b
(Tian and Pearl, 2001) e - 4+ - - 4+ - b
(Sachs et al., 2005) -+ - 4+ - - - - - - 4+ - b
(Eaton and Murphy, 2007) - 4+ - 1+ L+ 4+ 4+ + 4+ o+ + - D
(Claassen and Heskes, 2010) + + - - 4+ 4+ + 4+ + - 4+ + a
(Tillman and Spirtes, 2011) + 4+ - - 4+ 4+ 4+ 4+ 4+ - 4+ + a
(Hauser and Biithlmann, 2012) - 4+ - 4+ - - - - - - 4+ - Db
(Hyttinen et al., 2012) e
(Mooij and Heskes, 2013) -+ £ + + 4+ - 4+ - - 4+ - b
(Hyttinen et al., 2014) e
(Triantafillou and Tsamardinos, 2015) + + - + - - - - - - 4+ 4+ a
(Rothenhausler et al., 2015) + - +£ - - - - 4+ 4 4+ 4+ - a
(Oates et al., 2016a) - - - - - - - 4 - - 4+ - b
(Zhang et al., 2017) -+ - + 4+ 4+ + 4+ + + + - Db
_ (Forré and Mooij, 2018) + + + + - - - - - - 4+ 4+ a
Joint Causal Inference: + + + + + + + + + 4+ 4+ +£ b
(Fisher, 1935) + + + + + + + + 4+ + - - Db
LCD (Cooper, 1997) + + + + + 4+ + + 4+ - 4+ - b
Trigger (Chen et al., 2007) + + + + + + + + + 4+ 4+ - b
ICP (Peters et al., 2016) + + + + + + + 4+ + - 4+ - b
FCI-JCI + + - + + + + + + + + - b
ASD-JCI + + + + + + + + + 4+ + - b

Table 4: Overview of causal discovery methods that can combine data from multiple con-
texts. Features offered by the original implementations of these methods are indi-
cated. Combination strategies are: (a) obtain statistics or constraints from each
context separately and then construct a single causal graph based on the com-
bined statistics, (b) pool all data and construct a single causal graph directly
from the pooled data. When a feature is offered only under additional restrictive
assumptions, it is indicated with a =+ sign.
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a b
(a) (b) . s c. s
Figure 12: Example that shows that incorrectly assuming causal sufficiency can lead to
wrong conclusions. (a) True causal graph, with confounded system variables,

which can be completely identified by JCI; (b) optimally scoring influence dia-
grams according to the method of Eaton and Murphy (2007).

their implementation linearizes the SCMs around each (context-dependent) equilibrium,
thereby basically assuming that d-separation holds within each context. The method by
Rothenhé&usler et al. (2015) assumes linearity and can deal with cycles in that case, under a
certain condition that suffices to prove identifiability of the method. The method by Peters
et al. (2016) can handle cycles, as our Corollary 20 shows. The JCI framework in general
can deal with cycles, but requires its implementation to support this. For example, FCI-JCI
was not designed for this.

3.8.3 SELECTION BIAS

The only method that claims to be able to deal with selection bias (i.e., conditioning on
a latent variable that is a common effect of one or more of the observed variables), at
least to some extent, is the IOD algorithm (Tillman and Spirtes, 2011). It allows for
different sets of observed (system) variables in each context and for different distributions
in each context, while assuming that each context can be described by a MAG that is
the marginal of a common PAG defined on the union of all system variables. Under the
assumption that hidden variables are selection variables, both with respect to the union of
all system variables, and with respect to each context’s set of system variables separately,
this framework can handle selection bias. It performs conditional independence tests in
each dataset separately, and merges the p-values of the test results using Fisher’s method.
It then constructs the PAG that represents simultaneously all contexts. Since it doesn’t
assume invariance of the distribution across contexts, it can deal with a single (latent)
context variable that models mechanism changes or other “soft” interventions that do not
change the conditional independences in the distribution.

3.8.4 PERFECT INTERVENTIONS

Even though JCI allows for contexts to correspond with perfect (surgical) interventions, it
does not fully exploit all available information when contexts correspond with perfect inter-
ventions with known targets. Other methods (e.g., Hyttinen et al., 2014; Triantafillou and
Tsamardinos, 2015), that assume perfect interventions with known targets, can sometimes
identify a larger part of the causal graph in such situations. An example is provided in
Figure 16. It features two system variables that are dependent, both observationally, as in
a stochastic surgical intervention on Xj. If the marginal distribution of X differs between
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the two contexts, the graph is identifiable by JCI and by the methods of Hyttinen et al.
(2014); Triantafillou and Tsamardinos (2015). If the marginal distribution of Xy is identical
for both contexts, then JCI can no longer identify the causal graph, whereas the methods
by Hyttinen et al. (2014); Triantafillou and Tsamardinos (2015) still can.

3.8.5 IMPERFECT INTERVENTIONS AND OTHER CONTEXT CHANGES

Cooper and Yoo (1999) provided the first score-based causal discovery algorithm that could
deal with data from multiple contexts, focussing on perfect interventions with known targets.
They describe in detail how to handle perfect interventions and introduced the idea of
adding explicit context variables to deal with imperfect changes, which was later refined by
Eaton and Murphy (2007), who provide an algorithm that can handle (stochastic) perfect
interventions with unknown targets, soft interventions, and mechanism changes. Also Sachs
et al. (2005) use a score-based causal discovery algorithm based on the ideas of Cooper and
Yoo (1999) that uses a greedy search strategy through the space of DAGs.

Tian and Pearl (2001) were the first to consider mechanism changes. They deal with
sequences of subsequent mechanism changes, exploiting changes in the distribution to infer
descendants of the changed mechanism. This is followed by a constraint-based approach
from observational data that uses the background knowledge. A similar approach using
the differences between data from experimental conditions and an observational baseline as
background knowledge for a constraint-based approach was applied by Magliacane et al.
(2016b) on the data of Sachs et al. (2005).

Claassen and Heskes (2010) handle certain environment changes: direct causal relations
between system variables are assumed to be invariant across contexts, but latent confound-
ing (and more generally, the exogenous distribution) may differ. Rothenh&usler et al. (2015)
assume stochastic shift interventions in which the mean of a target variable is shifted by
an (independent) random amount. Various multi-task “structure learning” (i.e., Bayesian
network learning) approaches that put a prior on the similarity of the DAGs in multiple
contexts which encourages them to be similar have been proposed (e.g., Oates et al., 2014,
2016b).

Some methods which allow for a single context variable have been applied in settings on
time-series data, by using time as the context variable (Friedman et al., 2000; Zhang et al.,
2017). This extends the more usual approach of treating time-series data by assuming
invariance of the causal structure across time as in dynamic Bayesian networks (DBNs)
(Murphy, 2002), methods based on Granger causality (Granger, 1969), or constraint-based
a approaches (Entner and Hoyer, 2010).

JCI allows one to handle all interventions and context changes discussed above in a
unified way.

3.8.6 MULTIPLE CONTEXT VARIABLES

Some causal discovery methods for combining data from different contexts that explicitly
consider a context variable, allow for a single context variable only, for example, LCD,
ICP, and the method by Zhang et al. (2017). There is an important advantage to allowing
multiple context variables, as JCI does generally. One might argue that the case of mul-
tiple context variables can always be reduced to a case with a single context variable, by
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Figure 13: Example that shows that allowing multiple context variables (right) has advan-
tages over considering a single context variable only (left). The causal graph on

the right can be identified by JCI from conditional independences in the data,
whereas the causal graph on the left is not identifiable.

simply combining all context variables {C}, }rex into a single tuple C = (Cy)rexc. However,
this reduction to a single context variable typically looses important information. This is
illustrated in Figure 13. When using only a single context variable in that case, the DMG
cannot be identified from conditional independences in the data. On the other hand, when
using all three context variables with JCI, the complete DMG can be identified, even when
the causal relations between context and system variables are unknown.

3.8.7 DEPENDENT CONTEXT VARIABLES

If one allows for multiple context variables and considers the joint distribution on con-
text and system variables, as we do in JCI, one should account for possible dependencies
between the context variables. Indeed, incorrectly assuming the context variables to be
independent a priori may lead to wrong conclusions. An example is provided in Figure 14.
In that example, incorrectly assuming the contexts to be independent leads to the wrong
conclusion that context variable Cjg causes the system variable Xg, at least for causal dis-
covery algorithms that are tolerant to faithfulness violations. Another example is provided
in Figure 15, where incorrectly assuming the contexts to be independent leads to the wrong
conclusion that system variables Xy and X7 are confounded, at least when assuming known
intervention targets.

This issue was recognized and addressed in recent work (Oates et al., 2016a) by intro-
ducing a novel graphical modeling framework, Conditional DAGs (CDAGs), which bears
some similarity with our approach. However, a disadvantage of the CDAG framework is
that existing causal discovery methods cannot be directly applied to learn a CDAG from
data, and the wealth of results on causal modeling with SCMs cannot be used directly. One
of the key advantages of the JCI framework is that it utilizes existing theory and methods,
as it reduces a causal discovery problem from multiple contexts to a purely observational
one with background knowledge. This is one of the reasons why JCI offers many more
features than the approach by Oates et al. (2016a). We also note that CDAGs can be dealt
with as a special case of the JCI framework.

3.8.8 DATA MISSING AT RANDOM

A particular case of data missing at random that has been addressed by some of the methods
is when the set of observed variables differ between datasets, while still having some overlap.
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Figure 14: Example that shows that incorrectly assuming independent context variables can
lead to wrong conclusions when using causal discovery algorithms that are tol-
erant to faithfulness violations. Left: true causal graph, with dependent context
variables, which is identifiable by JCI. Right: causal graph that reproduces all
(conditional) dependences and minimizes the number of faithfulness violations,
when (incorrectly) assuming that context variables are independent.

4

f—x)
Figure 15: Example that shows that incorrectly assuming independent context variables
can lead to wrong conclusions when assuming known intervention targets. Left:
true causal graph, with dependent context variables. Right: wrong causal graph

inferred under JCI Assumptions 1 and 2 and known intervention targets, when
(incorrectly) assuming that context variables are independent.
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Figure 16: Example that shows that JCI does not always allow to fully exploit available
background knowledge for (stochastic) surgical interventions. Left: true causal
graph, where C, € {0, 1} with C, = 0 corresponding to an observational setting
and Cy = 1 to a stochastic surgical intervention on Xy. This graph is identifiable
by JCI. Right: special case where P(X|Cy = 1) = P(Xo|Cy = 0), which is
not identifiable by JCI, but is still identifiable by the method of Hyttinen et al.
(2014).

The first one to address this using constraint-based causal discovery was Tillman (2009),
and several other methods have been proposed over the years (Claassen and Heskes, 2010;
Tillman and Spirtes, 2011; Hyttinen et al., 2014; Triantafillou and Tsamardinos, 2015). JCI
can only deal with this when strengthening its faithfulness assumption: one would need
to assume that the context variables are discrete, and that every conditional distribution
P(X|C = ¢) for ¢ € C with P(C = ¢) > 0 is faithful with respect to the same DMG
Gz. However, in doing so we would give up the ability to handle perfect (“surgical”)
interventions.

3.8.9 INFLUENCE DIAGRAMS

Our representation of a system within a context imposed by its environment bears strong
similarities with influence diagrams (Dawid, 2002). A formal difference is that we consider
the context variables to be random variables that reflect the empirical distribution of the
experimental design, whereas in influence diagrams they are interpreted as non-random de-
cision variables. The advantage of treating context variables as random variables is that this
allows one to apply standard causal discovery techniques (designed for random variables)
jointly on system and context variables. In particular, the notion of (statistical) conditional
independence (Dawid, 1979) suffices. If one would like to treat the context variables as
decision (i.e., non-random) variables, extended notions of conditional independence would
be necessary (such as in Constantinou and Dawid (2017)), but this would only work under
additional assumptions, for example, that context variables are discrete-valued. Since we
can always view the context variables as random variables in the empirical distribution of
the experimental design, this allows us to stick with the standard notion of conditional
independence and in addition, handle non-discrete context variables as well.

3.8.10 SELECTION DIAGRAMS

Our representation also bears some similarities with selection diagrams (Bareinboim and
Pearl, 2013), but one crucial difference is that we are modeling the joint distribution on the
intervention and system variables, whereas a selection diagram represents the conditional
distribution of the system variables given the intervention (“selection”) variables. Because
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we are modeling the joint distribution and not only the conditional one, we can apply
standard causal discovery techniques directly on pooled data, something that would not be
as trivial when using selection diagrams instead.

Bareinboim and Pearl (2013) define a selection diagram as follows:

Definition 21 Let M = (Z,J,H,X,E, f,Pg) and M* = (Z,T,H,X,E, f*,Pz) be two
acyclic SCMs corresponding to two different contexts, that only differ with respect to their
causal mechanisms and exogenous distributions. In particular, they share the same func-
tional graph H and hence also their causal graphs are identical, G(M) = G(M*). The
selection diagram G induced by (M, M*) is the acyclic directed mized graph with nodes
ZUT', where I' is a copy of L of selection variable indices (one i’ € ' for each endogenous
variable index i € T), such that

1. the induced subgraph of G on T equals the causal graph Gz = G(M), and

2. for each i € 1 such that f; # f; or IP’gmgm %+ szg(i) there is an edge i’ — i in G.

Consider a JCI model of the form (7) with a single binary context variable C. The joint
SCM can be split into two context-specific SCMs, MY and M!, and the induced selection
diagram D can be obtained from the causal graph G(M) as follows: (i) each edge i1 — i2
or i1 <> iz in G(M) between system variables i1,i2 € Z is also in D; (ii) if C — i in G(M)
for i € Z then ¢/ — i is in D. Since the JCI framework can be used to learn (features of the)
causal graph G(M) from data, this means that we can thereby learn the selection diagram
from data. It is not clear how a selection diagram could be used to represent the same
information that a JCI SCM with multiple context variables can represent. Indeed, even
though the selection diagram has multiple selection variables, it is still modeling only two
contexts, corresponding with just a single binary context variable in the JCI framework.

4. Experiments

In this section we report on the experiments we performed with JCI, comparing various
implementations of the approach with several baselines and state-of-the-art causal discovery
methods. We experimented both with simulated data with perfectly known ground truth
and with real-world data where the ground truth is only known approximately. We will
make the source code to reproduce our experiments available under a free and open source
license.

4.1 Methods and baselines

In our experiments we study different implementations of JCI, based on two existing causal
discovery algorithms: ASD (Hyttinen et al., 2014; Magliacane et al., 2016b; Forré and
Mooij, 2018) and FCI (Spirtes et al., 1995; Zhang, 2008). The ASD algorithm is accurate
but slow, while FCI is faster but less accurate due to its “greedy” approach. Another
difference between both methods is that ASD can deal with partial inputs, while for FCI it
is necessary to provide all independence test results it asks for. Although FCI (and possibly
ASD) can deal with selection bias, we ignore this additional complication here and use
simplified implementations that assume that there is no selection bias. For the cyclic case,
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we used the adaptation of the ASD algorithm proposed by Forré and Mooij (2018) that
replaces d-separation with its general cyclic generalization, o-separation. Adapting FCI to
the cyclic case seems less straightforward and is beyond the scope of this paper.

4.1.1 ASD VARIANTS

For ASD, we implemented different variants as described in Table 5. The variants ASD-obs,
ASD-pooled and ASD-pikt use the original implementation of (Hyttinen et al., 2014), but
with the weights and query method of (Magliacane et al., 2016b). ASD-obs only uses the
observational context and ignores data from the other contexts, ASD-pooled pools data
from all contexts but does mot add context variables, and ASD-pikt uses data from all
contexts and assumes that the contexts correspond to perfect surgical interventions with
known targets. Inspired by the approach of Tillman (2009) and Tillman and Spirtes (2011),
we also implemented a variant ASD-meta that uses Fisher’s method as a “meta-analysis”
method to combine the p-values of conditional independence tests performed with data from
each context separately into a single overall p-value, which was then used as input for ASD.
We use these implementations as state-of-the-art causal discovery methods for comparison.

For the JCI approach, we study several variants that differ in terms of which JCI as-
sumptions they make, whether they also test conditional independences between context
variables, whether all context variables are used or whether they are first merged into a
single context variable, and whether the intervention targets of the context variables are
considered to be known or not. The different implementations are described in detail in Ta-
ble 5. The “CI Tests” column describes what conditional independence test are performed,
and how, and can have the following values:

A use all variables, including context variables; the conditional independence tests per-
formed are of the form X, I X;|Xg with {a} U{b} U S C ZUK and {a}, {b},S
mutually disjoint.

S use only system variables; the conditional independence tests performed are of the form
Xo L Xp| XS with {a} U{b} US C T and {a}, {b}, S mutually disjoint.

SS system variables only, separately for each context; the conditional independence tests
performed are of the form X, 1 X3 | Xg,C = c for {a}U{b}US C T and {a}, {b}, S
mutually disjoint, for all values ¢ € C with P(c) > 0. Note that this method assumes
that the context domain C is discrete.

SF system variables only, separately for each context, using Fisher’s method;!” the con-
ditional independence tests performed are of the form X, 1 X,| Xg,C = ¢ for
{a}U{b}US C T and {a}, {b}, S mutually disjoint, for all values ¢ € C with P(¢) > 0.
Note that this method assumes that the context domain C is discrete.

NC test all variables, except for (conditional) independences between context variables; the
conditional independence tests performed are of the form X, 1L X;| Xg with a € Z,
{b} US CZUK and {a}, {b}, S mutually disjoint.

10. Fisher’s method (Fisher, 1925) aggregates N independent p-values {pi}f-vzl by computing the p-value
for the statistic F' := —2 Zivzl log pi, which has a x? distribution with 2N degrees of freedom if all N
p-values p; are independent.
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PF test all pairs of context and system variables, conditioning on the remaining context
variables; the conditional independence tests performed are of the form X; I Cy [ Cy\ 1y
forieZ, kelk.

ASD-JCI123sc and ASD-JCIlsc both use a single merged context variable C = (Ck)kex,
whereas the other ASD-JCI variants use all context variables {C}}rex as separate vari-
ables. The background knowledge for all ASD-JCI variants is a subset of the three JCI
Assumptions 1, 2 and 3. The only ASD-JCI variant that uses background knowledge on
intervention targets is ASD-JCI123kt (but it does not make any assumptions on the type of
the intervention).

4.1.2 FCI VARIANTS

We implemented different variants of the FCI algorithm by adapting the implementation in
the R package pcalg (Kalisch et al., 2012). We used the default configuration, i.e., an order-
independent (“stable”) skeleton phase, and no conservative or majority rule modifications
(Colombo and Maathuis, 2014). For simplicity, we assumed that no selection bias is present,
which means that the rules R5—R7 in Zhang (2008) can be ignored in the FCI algorithm,
and only PAGs without undirected edges need to be considered. We consider two variants of
FCI as the current state-of-the-art: FCI-obs, which uses only the observational context, and
FCI-pooled, which uses pooled data from all contexts but does not add context variables.
We also implemented a “meta-analysis” approach FCI-meta that uses Fisher’s method to
combine the p-values from separate contexts into overall p-values that are used as input for
the FCI algorithm. Finally, we have three variants (FCI-JCI123, FCI-JCI1 and FCI-JCIO)
referring to the JCI adaptation of the FCI algorithm as described in Section 3.7.4, for three
different combinations of JCI Assumptions.

Note that the output of FCI is a PAG. Here, we will not evaluate the PAG itself, but
rather the presence or absence of ancestral relations that can be identified from the PAG.
This also allows us to bootstrap FCI predictions.

4.1.3 LCD VARIANTS

The LCD implementation simply iterates over all context variables and ordered pairs of
system variables and tests for the LCD pattern. As conditional independence test we
test whether the partial correlation vanishes. As confidence measure for an LCD pattern
(C,X,Y), weuse —logpc 1 y. Note that LCD predicts the presence of an ancestral relation,
the absence of a confounder between X and Y, and the absence of a direct causal effect of
ConY.!t

4.1.4 ICP VARIANTS

We also compare with ICP using the ICP function in the R package InvariantCausalPrediction
(Peters et al., 2016).1? Under the assumption of causal sufficiency, ICP returns direct causal

11. The absence of a bidirected edge X <> Y in the marginalization of the functional graph G on {C, X, Y}
implies also the absence of the bidirected edge X <> Y in the full graph G. Furthermore, the absence of
the direct edge C' — Y in this marginalization implies the absence of the direct edge C' — Y in the full
graph G.

12. We used the default arguments, except that we set stopIfEmpty to TRUE.
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relations. However, in our setting, in which causal sufficiency cannot be assumed, ICP will
generally return ancestral causal relations, as we proved in Corollary 20. Note that ICP
assumes a single context variable, whereas we typically have multiple context variables in
our data. One way to deal with this is to merge all context variables before the pooled
data is input to ICP, which we do in ICP-sc. Another way is to run ICP on each context
variable seperately, hiding the other context variables when feeding the pooled data to ICP,
and finally merging all predictions. This is done in ICP-mc.

The conditional independence tests that are performed by ICP are of the form C' L X; | Xg
with § C 7\ {i}, for i € Z. The default conditional independence test used in ICP first
linearly regresses X; on S for each context C' = c individually, and once globally. It then
tests whether there exists a context ¢ in which the mean or the variance of the regression
residuals is different from the global mean or variance. All p-values are then combined using
a Bonferroni correction. Note that this test can detect more conditional dependences than
a simple partial correlation test, as it also considers the variation between the variances
across contexts.

4.1.5 FISHER'S TEST FOR CAUSALITY

This is a very simple and immensely popular baseline in which we simply go through
all pairs (i,k) of a system variable ¢ € Z and a context variable k € K, perform the
conditional independence test X; L Cy | Cic\(x) on the pooled data resulting in p-value pjy.
As confidence value for the ancestral causal relation k € ANg(i) we report — log p;, + log «,
where « is the threshold for the independence test.

4.1.6 BOOTSTRAPPING

A simple way to improve the stability of causal discovery algorithms is bootstrapping. For
a method that outputs a confidence measure for a certain prediction we simply average the
confidence measures over bootstrap samples. For FCI, as confidence measure we simply take
a {—1,0, 1}-valued variable encoding the identifiable absence/unidentifiability/identifiable
presence of an ancestral relation. For LCD, we average —logpc 1 y over bootstrap sam-
ples. For ICP, we similarly average the negative logarithm of the p-values for the discovered
ancestral causal relations. We do not bootstrap ASD variants because of the high com-
putational complexity. In our experiments, we use 100 bootstrap samples. Bootstrapped
methods are indicated with a suffix “~bs”.

4.1.7 CONDITIONAL INDEPENDENCE TESTS

Using an appropriate conditional independence test is important to obtain good causal
discovery results. In this work we will use two different conditional independence tests,
both relying on the assumption that the context variables are discrete and the system
variables have a multivariate Gaussian distribution given the context.

The default conditional independence test that we used is the following. For testing
X, L X, | Xg, we distinguish two cases:

e SNK = (: the test then reduces to a standard partial correlations test.
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Table 5: Variants of implemented JCI algorithms and baselines used in our experiments.
Assumption 0 is always assumed. The meaning of “CI Tests” is (more detailed
explanation in main text): A: use all variables, including context variables; S:
use only system variables; SS: system variables only, separately for each context;
SFE': system variables only, separately for each context, using Fisher’s method to
combine them into a single p-value; NC: test all variables, except for (conditional)
independences between context variables; PF: test all pairs of context and system
variables, conditioning on the remaining context variables. The meaning of the
superscript * is explained in Section 4.1.7. Bootstrapped versions of methods will
be indicated with a suffix “~bs” (and have been omitted from this table for clarity).

Name Data Context variables JCI Assumptions Intervention type CI Tests
1 2 3
Baselines -
ASD-obs observational none - - - none S
ASD-pooled pooled none - - - any S
ASD-meta all none - - - any SF
ASD-pikt all none - - - perfect, known targets SS
FCI-obs observational none - - - none S
FCI-pooled pooled none - - - any S
FCI-meta all none - - - any SF
JCI Implementations
ASD-JCIO pooled all - - - any A
ASD-JCI1 pooled all + - - any A
ASD-JCI12 pooled all + + - any A
ASD-JCI123 pooled all + + + any NC
ASD-JCI123kt pooled all + + + any, known targets NC
FCI-JCI123 pooled all + + + any NC
FCI-JCI1 pooled all + - - any A
FCI-JCIO pooled all - - - any A
LCD-sc pooled single (merged) + - - any A*
ICP-sc pooled single (merged) + - - any A*
ASD-JCI1-sc pooled single (merged) + - - any A*
ASD-JCI123-sc pooled single (merged) + + + any A*
LCD-mc pooled all (one-by-one) + - - any A
ICP-mc pooled all (one-by-one) + - - any A*
Fisher pooled all (one-by-one) + 4+ - any PF
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e Otherwise, we go through all observed values cgnx of Cgni, and use a standard
partial correlations test to calculate a p-value for f(a A Xb \ X S\K> Csnx = csne. We
then aggregate the p-values corresponding to observed values of Cgnx into one overall
p-value for Xa A1 Xb ] X s using Fisher’s method.

Note that for the case with zero context variables (i.e., a single context), this test reduces
to a standard partial correlations test.
For the ICP implementations, we make use of the official implementation in the InvariantCausalPredictic

package. This by default makes use of a conditional independence test that uses more than

just partial correlations. We extended this conditional independence test to allow for con-

ditioning on context variables, and make use of this extended test in all the algorithms that

assume a single merged context, i.e., the ones marked with a * in Table 5. It assumes that

there is a single context variable, i.e., |K| = 1. For testing X, I X, | Xg, it distinguishes

the following cases:

o If ({a} U{b}US)NK =0, it reduces to a standard partial correlations test.

o If Xa = C is the context variable, it uses linear regression to fit Xb as a linear function
of X g, using data pooled over all contexts, and calculates the corresponding residuals.
It then goes through all observed values ¢ of C, and tests whether the residuals in
context ¢ have a different distribution than the residuals in the other contexts (i.e.,
with C # ¢). This two-sample test is performed by comparing the means by a t-
test, and the variance by an F-test. The two resulting p-values are combined with
a Bonferroni correction. The resulting p-values, one for each context, are then also
combined with a Bonferroni correction.?

e If X; = C is the context variable, proceed similarly as in the previous case.

e If the context variable C is part of XS, we go through all observed values cgnx
of Cgsnx, and use a standard partial correlations test to calculate a p-value for
X, L Xp| X S\;C,Cgm;g = cgnx. We then aggregate the p-values corresponding to
observed values of Csnx into one overall p-value for X, 1L Xj | X using Fisher’s
method.

As a final note regarding the conditional independence tests, we state that ASD-pikt
uses a standard partial correlation test to calculate a p-value for each context separately. It
internally subsequently combines all these p-values by adding the log p-values, but taking
into account how the graph structure is changed through surgical interventions.

The choice of the p-value threshold « for rejecting the null hypothesis of independence
is an important one. To obtain consistent results, one should let o decrease to 0 with
increasing sample size. In our experiments, we used fixed sample size and simply used a
global threshold o = 0.01.

4.2 Simulations

We simulated random linear-Gaussian SCMs with p system variables and ¢ context vari-
ables. We considered both the acyclic setting and the cyclic one. We simulated stochastic

13. This is the default test in the ICP function in InvariantCausalPrediction for continuous data.
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interventions of two different intervention types: mechanism changes, and perfect (surgical)
interventions.

Random causal graphs were simulated by drawing directed edges independently between
system variables with probability €. For the acyclic models, we only allowed directed edges
i1 — 19 for i1 < io with 41,79 € Z. For cyclic models, we allowed directed edges i1 — o
for i1 # i9 with i1,i9 € Z, and subsequently selected only the graphs in which at least one
cycle exists. We drew bidirected edges independently between all unordered pairs of system
variables with probability n, and associated each bidirected edge with a separate latent
confounding variable. For each context variable, we randomly selected a single system
variable as its target, while ensuring that each system variable has at most one context
variable as its direct cause. We sampled all linear coefficients between system variables,
context variables and confounders from the uniform distribution on [-1.5,—0.5] U [0.5, 1.5].
The latent variables (“error terms”) were sampled independently from the standard-normal
distribution. To ensure that system variables have comparable scales, we rescaled the weight
matrix such that each system variable would have variance 1 if all its direct causes would
be i.i.d. standard-normal.

We used binary context variables in a “diagonal” design. This means that for each
random SCM, we simulated ¢+ 1 contexts, with the first context being purely observational
(i.e., Cr, =0 for all k € {1,...,q}), and the other ¢ contexts corresponding with one of the
context variables turned on (say Cj = 1 for some k' € {1,...,¢}) and the others turned
off (Cx = 0 for the other k € {1,...,q} \ {k'}). We either took all interventions to be
mechanism changes, or all interventions to be surgical. For mechanism changes, we simply
add the value of the parent context variable to the structural equation (i.e., this corresponds
with adding a constant offset of 1 to the intervention target variable when the intervention is
turned on). For perfect interventions, we additionally set the linear coefficients of incoming
edges on the intervention target to zero. Finally, we sampled N observed values of system

variables from each context and combined all samples into one pooled data set per random
SCM.

4.3 Evaluation

In evaluating the results, we consider different prediction tasks: establishing the absence or
presence of ancestral causal relations between system variables, the absence or presence of
direct causal relations between system variables, and the absence or presence of confounders.
In addition, we consider predicting the absence or presence of indirect intervention targets
(i.e., whether or not some context variable is ancestor of some system variable) and of direct
intervention targets (i.e., whether or not some context variable is parent of some system
variable).

The output of the FCI variants is a Partial Ancestral Graph (PAG), which requires
further processing to read off ancestral relations, direct relations and confounders present
in the Markov equivalence class represented by the PAG. We did not implement methods to
calculate the identifiable (presence and absence of) direct relations, nor the (presence and
absence of) confounders from the PAG, but focus here on the ancestral relations.

Each method outputs a confidence score for each feature of interest, where positive
scores mean that it is more likely that a feature is present in the causal graph G, whereas
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negative scores mean that it is more likely that a feature is absent. The higher the absolute
value of the score, the more likely its presence/absence is. The predictions are pooled both
within model instances (e.g., all possible ancestral relations i € ANg(j) for all ordered pairs
of system variables i,7 € Z) and across model instances to gather more statistics. The
scores are then ranked and turned into ROC curves and PR curves (one PR curve for the
presence, and one for the absence of the features) by comparing with the true features.

4.4 Results: Small models

We first present results for small models with p = 4 system variables and 0 < g < 4 (as a
default, ¢ = 2) context variables. We used € = 0.5, n = 0.5, and sampled N, = 500 samples
for each context, i.e., N = 500(q + 1) samples in total.

4.4.1 ASD-JCI vs. BASELINES (CAUSAL MECHANISM CHANGES)

We start by showing off the advantage that JCI can offer over existing methods. We
first consider only ASD variants because this most clearly shows the impact of how one
merges data from different contexts and how one treats the context variables, since the
other aspects of the causal discovery algorithm are the same for all ASD variants. In
Figure 17 we present results for several ASD variants for acyclic models with causal mech-
anism changes. We compare the JCI variants ASD-JCI123 (unknown intervention targets)
and ASD-JCI123kt (known intervention targets) with the available baselines, ASD-obs (ob-
servational data only), ASD-pooled (pooled data from all context treated as if they were all
observational, context variables not included), ASD-meta (using Fisher’s method to combine
p-values from conditional independence tests in separate contexts), and ASD-pikt (which
assumes that interventions are perfect and uses knowledge of intervention targets). The
tasks of predicting ancestral causal relations and direct causal relations show relatively
similar ROC and PR curves. Predicting the absence or presence of confounders is a more
challenging task.

The three baselines ASD-obs, ASD-pooled and ASD-meta show very similar performance
behaviors. In particular, for the tasks of predicting the presence of the features, these
baselines perform poorly, not much better than random guessing. ASD-pikt even performs
poorly on nearly all prediction tasks in this simulation setting because it incorrectly assumes
that the interventions are perfect. The two JCI variants, on the other hand, strongly outper-
form the baselines and obtain very high precisions. In particular, even without knowing the
intervention targets, ASD-JCI123 manages to predict the presence of (direct and indirect)
causal relations at maximum precision for low recall. Exploiting knowledge of the inter-
vention targets, ASD-JCI123-kt obtains an even more impressive precision for predicting
ancestral causal relations for a large range of recalls. This illustrates the big improvement
in precision that JCI can yield.

Figure 18 shows a similar picture in the cyclic setting, where all ASD variants make use
of o-separation (Forré and Mooij, 2018). The task of predicting the presence of ancestral
relations is easier than in the acyclic setting, because for most pairs of system variables, one
is ancestor of the other due to the cycles. The task of predicting the absence of ancestral
relations, on the other hand, is more challenging. Detecting the presence or absence of
confounders in this setting has become nearly impossible, for any method. For the other
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Figure 17: Results of some ASD variants (acyclic, causal mechanism changes). The two
JCI variants strongly outperform the baselines in this setting.

tasks, the JCI approach again shows substantially improved precisions compared to the
baselines.

4.4.2 ASD-JCI VS. BASELINES (PERFECT INTERVENTIONS)

Figures 19 and 20 show results for respectively the acyclic and cyclic settings, but now for
perfect (surgical) interventions with known targets rather than causal mechanism changes.

In these perfect intervention scenarios, the JCI variants again obtain a much higher
precision than any of the baselines, with the sole exception of ASD-pikt. In this setting,
the latter method successfully exploits the assumed surgical nature of the interventions,
thereby outperforming the JCI variants that do not make any assumption about the nature
of the intervention. However, a significant disadvantage of ASD-pikt in practice is that its
assumption of perfect interventions with known targets may not be valid. As we already
saw in Section 4.4.1, ASD-pikt then breaks down, in contrast to the JCI variants.
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Figure 18: Results of some ASD variants (cyclic, causal mechanism changes). The two JCI
variants substantially outperform the baselines in this setting.
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Figure 19: Results of some ASD variants (acyclic, surgical interventions). ASD-pikt, which
takes into account the surgical nature of the interventions, is the best performing
method in this setting. The JCI variants do not assume perfect interventions,
but still yield a vast improvement of the precision of the predicted features with
respect to the other baselines.

For the cyclic setting with perfect interventions (Figure 20), we observe that predicting
the presence of confounders still seems impossible for all methods, but predicting their
absence seems at least feasible in principle (although it seems a very challenging task).

4.4.3 INFLUENCE OF JCI ASSUMPTIONS

We now investigate in more detail which JCI assumptions are responsible for the excellent
performance of the JCI variants of ASD. Figure 21 shows that, as expected, the more prior
knowledge about the context variables is used, the better the predictions become.
However, surprisingly, the biggest boost in precision with respect to the observational
baseline is due to simply pooling the data and adding the context variables: ASD-JCIO
already strongly improves over ASD-obs. Adding more background knowledge regarding
the nature of the context variables helps to improve the results further. JCI Assumption 1
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picture as in the acyclic case in Figure 19.
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Figure 20: Results of some ASD variants (cyclic, surgical interventions). We see a similar
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Figure 21: Influence of JCI assumptions: making use of more prior knowledge leads to
better results (acyclic, causal mechanism changes). For reference, the non-JCI
baseline ASD-obs is shown which only uses observational data.

yields a marginal improvement. JCI Assumptions 2 (and 3) do not lead to any further
improvements for discovering the causal relations between system variables in this setting,
though. Exploiting knowledge of the intervention targets, on the other hand, turns out to
be very helpful for getting highly accurate predictions for ancestral relations between system
variables, and also significantly improves the precision of predicting direct causal relations
and confounders. We have shown here only the results for the acyclic setting with causal
mechanism changes since we obtained similar results for the other simulation settings.

We also investigated variants of ASD-JCIO, ASD-JCI1 and ASD-JCI12 where we did not
perform any independence tests on the context variables, i.e., using conditional indepen-
dence testing scheme “NC” rather than “A”. This is possible because ASD is capable of
handling incomplete inputs. We obtained almost identical results (in all simulation settings
considered) to the standard variants of those methods in which we do perform conditional
independence tests on the context variables themselves (not shown here).
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Figure 22: For ASD-JCI variants, exploiting multiple context variables leads to better results
than using a single (merged) context variable (acyclic, perfect interventions).

4.4.4 MULTIPLE CONTEXT VARIABLES VS. SINGLE (MERGED) CONTEXT VARIABLE

Figure 22 shows that for ASD-JCI variants, exploiting multiple context variables leads to
better results than using a single (merged) context variable, as expected. Similar results
hold for the cyclic settings and for causal mechanism changes (not shown).

4.4.5 FCI VARIANTS

Figure 23 shows the results for the various FCI variants. FCI is seen to be somewhat less
accurate than ASD, but bootstrapping helps to boost precision for lower recalls. Similarly
to ASD, we conclude that the JCI variants of FCI substantially outperform the non-JCI
variants. Interestingly, FCI-JCI1 and FCI-JCI123 seem to yield identical results in this
setting.

Results for causal mechanism changes are very similar to those for surgical interventions,
and therefore are not shown here. The results for the cyclic setting are also not shown,
because FCI was designed for the acyclic setting.
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Figure 23: Results of FCI variants (acyclic, surgical interventions).
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Figure 24: LCD and ICP benefit from merging the context variables into a single one (per-
fect interventions) for the task of predicting the presence of ancestral relations.
Top: acyclic; bottom: cyclic.

4.4.6 LCD anD ICP

Figure 24 shows the results of the LCD and ICP variants for the task of predicting ancestral
relations. We only show the results for perfect interventions, as the results for causal mech-
anism changes are similar. LCD and ICP both only can predict the presence of ancestral
relations, not their absence. LCD and ICP apparently benefit from merging the context
variables into a single one. We speculate that a possible explanation of this phenomenon
could be that a combination of conditional independence tests of the form Cj L X | X;
with each C} binary (and both X; and X, real-valued) might be less reliable than a single
test C L Xy | X; where C is categorical with > 2 states. Another observation we made is
that bootstrapping does lead to only marginal improvements for these methods (not shown).
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4.4.7 VARYING THE NUMBER OF CONTEXT VARIABLES

As we have seen, discovery of causal relations between system variables can benefit strongly
from observing the system in multiple contexts. As Figure 25 shows, the more context vari-
ables are taken into account, the better the predictions for ASD-JCI123 become. Although
not shown here, the same conclusion holds as well for the other JCI variants ASD-JCIO,
ASD-JCI1 and ASD-JCI123-kt. It does not hold for ASD baselines in general, but it does
for ASD-pikt if interventions are perfect. For the JCI variants of FCI, FCI-JCIO, FCI-JCI1
and FCI-JCI123 we also observed that the more context variables are available, the more
accurate the predictions become.

On the other hand, the same conclusion does not hold for ASD-JCI1-sc and ASD-JCI123-sc.
This suggests that having multiple contexts is mostly beneficial if each context variable tar-
gets only a small subset of system variables, and only for methods that can explicitly take
into account multiple context variables. For LCD and ICP, precision also does not im-
prove monotonically with the number of context variables. Although LCD-mc and LCD-mc
in principle allow for multiple context variables, they suffer from a drop in recall because
they focus on detecting a certain causal pattern that becomes increasingly rare with more
context variables. Indeed, for the extreme case ¢ = p, each system variable is targeted by a
single context variable in our simulation setting, and hence one would expect LCD-mc and
ICP-mc to make no predictions at all. Any predictions they make must therefore be false
positives, resulting in low precision.

4.4.8 LEARNING INDIRECT INTERVENTION TARGETS

Figure 26 shows for the acyclic setting with causal mechanism changes how accurately indi-
rect intervention targets (i.e., which system variables are descendants of each context vari-
able?) can be discovered by various methods. Baselines ASD-obs, ASD-pooled, ASD-meta
and ASD-pikt cannot learn intervention targets (neither direct ones nor indirect ones), since
they do not represent context variables explicitly, and are therefore excluded.'* LCD and
ICP also cannot address this task. Although ASD-JCI123-kt makes use of known direct
intervention targets (i.e., which system variables are children of each context variable?),
this means that there is still a non-trivial task of learning the indirect ones.

The task of deciding that a system variable is targeted is an easier one than deciding that
a system variable is not targeted by an intervention. Although Fisher’s test is generally
hard to beat when it comes to predicting indirect intervention targets, ASD-JCI123-kt
outperforms it in this setting by exploiting the knowledge about direct intervention targets.
While JCI Assumption 2 turned out to be unimportant for learning the causal relations
between system variables, it is seen to be very useful for this task of learning causal relations
between context and system variables.

Figure 27 shows a largely similar picture for the cyclic setting with causal mechanism
changes. Surprisingly, FCI variants are also performing quite well in the cyclic setting. We
do not show the results for perfect interventions here, as we observed that this task is easier,

14. However, it would be trivial to extend ASD-pikt such that it can predict indirect intervention targets, by
combining the known direct intervention targets of a certain intervention variable with the descendants
of those assumed targets as predicted by the method as a postprocessing step.
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Figure 25: Taking into account more context variables leads to better predictions for
ASD-JCI123 (acyclic, causal mechanism changes).
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Figure 26: Learning indirect intervention targets (acyclic, causal mechanism changes). Top:
ASD variants; Bottom: FCI variants.
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Figure 27: Learning indirect intervention targets (cyclic, causal mechanism changes). Top:

and the results are generally better, but otherwise mostly similar conclusions are obtained.
The only exception is that for perfect interventions, the best method is Fisher’s approach.
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4.4.9 LEARNING DIRECT INTERVENTION TARGETS

Fisher’s test is not able to predict direct intervention targets (i.e., which system variables
are children of each intervention variable?), but the ASD-JCI variants can.'® Figure 28
shows the results for the four different simultation settings. The task is considerably easier
in the acyclic setting than in the cyclic setting. Having perfect interventions makes it
slightly easier than with causal mechanism changes. We again notice that exploiting JCI
Assumption 2 considerably improves performance on this task.

4.4.10 COMPUTATION TIME

So far we have only considered the accuracy of the predictions. Another interesting aspect
to study is the computation time that various methods need. Figure 29 shows total com-
putation time (for all prediction tasks together) for all methods considered thus far. Note
the logarithmic scale on the z-axis. We only show runtimes for causal mechanism changes
since those for perfect interventions are nearly identical. On the other hand, we do see that
the cyclic setting is more computationally demanding in general than the acyclic one.

Already for small models of p+¢ = 4+2 = 6 variables, the ASD algorithms become slow
because they are performing an optimization over a large discrete space. The availability of
more background knowledge makes the search space considerably smaller, and hence leads
to reduced computation time for the ASD variants. Also, the search space is considerably
larger in the cyclic setting than in the acyclic one. By design, FCI variants are much faster,
but bootstrapping also takes its toll. The fastest methods are Fisher’s test, LCD and ICP.
Figure 30 shows how computation time scales with the number of context variables, for
three JCI implementations (ASD-JCI123, ASD-JCI1 and FCI-JCI123).

4.5 Results: Larger models

We now present results for larger models, with p = 11 system variables and ¢ = 9 context
variables. We only consider causal mechanism changes here, but we do distinguish the
acyclic and cyclic settings. We again used 500 samples per context. For the acyclic setting,
we used € = 1 = 0.25, while for the cyclic setting we used ¢ = n = 0.15 to get more or less
similarly dense graphs in both scenarios. The motivation for these parameter choices is that
they mimic the setting of the real-world data set that we will study in the next subsection.

4.5.1 FCI

Figure 31 shows the accuracy for the task of predicting ancestral causal relations between
system variables for various JCI variants of FCI and of FCI baselines, in both the acyclic
and the cyclic setting. The conclusions are in line with what we already observed for
smaller models. Again, bootstrapping FCI helps considerably to boost the accuracy of its
predictions. As before, FCI-obs (which uses only observational data) performs worst. The
two baselines FCI-pooled and FCI-meta (that make use of all data) lead to a moderate
improvement. The JCI variants (FCI-JCIO, FCI-JCI1 and FCI-JCI123) perform the best,
delivering almost maximum precision for a considerable recall range on the task of predicting
the presence of an ancestral relation. JCI Assumption 1 does not seem to help much, as

15. With proper postprocessing of the PAG, also FCI-JCI variants could.
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Figure 28: Learning direct intervention targets. From top to bottom: acyclic, causal mech-
anism changes; acyclic, perfect interventions; cyclic, causal mechanism changes;
cyclic, perfect interventions.
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Figure 29: Runtimes for various methods (shown: causal mechanism changes; for perfect
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Figure 31: Accuracy of FCI results for discovering ancestral causal relations between system
variables for acyclic (top) and cyclic (bottom) large models.

the results for FCI-JCIO and FCI-JCI1 seem to be identical. Assuming in addition JCI
Assumption 2 (and 3) does help to obtain slightly higher precision. The good performance
of FCI variants in the cyclic setting is surprising, since FCI relies on the assumption of
acyclicity.

4.5.2 LCD anD ICP

In Figure 32, we show the accuracy of (bootstrapped) LCD and ICP for the task of predict-
ing ancestral causal relations between system variables, in both the acyclic and the cyclic
setting. As for FCI, bootstrapping improves the accuracy of LCD and ICP results, and
we decided to only show the bootstrapped results here. The “multiple context” (“-mc”)
versions of both algorithms clearly outperform the versions that use only a single (merged)
context (“-sc”) in these settings. Interestingly, the accuracy of both methods is quite sim-
ilar. The additional complexity of ICP apparently does not lead to substantially better
results than the LCD algorithm already offers in these settings. Even more strikingly, the
precision of LCD-mc is comparable to that of FCI-JCI123, the most accurate of the JCI
variants of FCI (cf. Figure 31), on the task of predicting the presence of ancestral relations.

4.5.3 LEARNING INDIRECT INTERVENTION TARGETS

Figure 33 shows the performance of JCI variants of FCI (and as a baseline, Fisher’s test)
on the task of learning indirect intervention targets, for both the acyclic and cyclic settings.
Interestingly, JCI Assumption 2 seems necessary to obtain good results on this task. Still,
Fisher’s test outperforms FCI-JCI123-bs. Again, we conclude that with all its complexity,
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Figure 32: Accuracy of (bootstrapped) LCD and ICP results for discovering ancestral causal
relations between system variables for acyclic (top) and cyclic (bottom) large
models.

(JCI variants of) the FCI algorithm cannot beat a simple (JCI) baseline on a particular
task.

4.5.4 COMPUTATION TIME

Finally, Figure 34 shows runtimes of the methods that we considered. First, we observe no
big differences between the runtimes for the cyclic setting with respect to the acyclic one.
However, we do observe huge differences in runtime between various methods. LCD variants
and Fisher’s test are by far the fastest. ICP variants come second. Bootstrapping puts a
large toll on computation time for FCI variants. JCI variants of FCI are much slower than
non-JCI variants. This seems to be mostly due to an exponential increase in the number of
conditional independence tests. Indeed, we observed that FCI-JCI variants are conditioning
on a substantial fraction of all 27 subsets of all context variables before finding a separating
set. Nevertheless, JCI variants of FCI are still computationally feasible in this setting, even
with bootstrapping.

4.6 Results: Real-world (flow cytometry) data

As an application on real-world data, we study the flow cytometry data of Sachs et al. (2005).
This dataset has become a benchmark in causal discovery, even though the reliability and
especially the completeness of its ground truth, the “consensus network” in (Sachs et al.,
2005), is debated. Most causal discovery methods that have been applied on this data use
the background knowledge about the intervention types and targets, which is specified in
Table 3, with the notable exception of the method of Eaton and Murphy (2007). Using that
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Figure 34: Runtimes for various methods on larger models. Left: acyclic; Right: cyclic.
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background knowledge simplifies the causal discovery problem considerably. However, the
accuracy of this background knowledge is not universally accepted.

We ran various FCI-JCI variants on a subset of the flow cytometry data.'® The exper-
imental design is described in Table 2. To enable comparisons with other results reported
in the literature, we only used the 8 (out of 14) experimental conditions in the data set in
which no ICAM.2 had been administered (i.e., with Cg = 0), and ignored the others. In or-
der to avoid deterministic relations between context variables, we merged context variables
Cy (a-CD3/CD28), Cyp (PMA) and C, (82CAMP), as discussed in Section 3.6. This means
that we must interpret the merged context variable as referring to the addition of PMA or
B2CAMP, combined with omitting a-CD3/CD28.

Similarly to Eaton and Murphy (2007), we do not use background knowledge regarding
intervention types or targets, but rather try to learn the intervention targets from the data
itself. We only assume that the experimental setting is captured by the JCI framework.
JCI Assumption 1 should be true because the intervention is performed some time (ap-
proximately 20 minutes) before the measurements are done. We have already discussed
the validity of JCI Assumption 2 for this particular experimental setting in Section 3.4.
Assuming that the context variables provide a complete causal description of the context
(in particular, that there are no unintended batch effects), JCI Assumption 2 may apply.
In that case, JCI Assumption 3 also applies since there are no (conditional) independences
in the context distribution (after merging C,, Cy and C,).

For comparison, we also ran FCI-obs, i.e., standard FCI using only the observational
data set (i.e., the one in which only global activators a-CD3 and a-CD28 have been ad-
ministered). We also ran FCI-meta, which uses Fisher’s method to combine p-values of
conditional independence tests in the 8 separate experimental conditions, which are then
used as input for standard FCI. Finally, we ran FCI-pooled, i.e., standard FCI on the 8
experimental conditions pooled together (but excluding context variables). In all those FCI
variants, we assumed that no selection bias would be present. We additionally compare
with other JCI implementations, in particular, multiple variants of LCD and ICP.

The “consensus network” and the PAGs obtained by the FCI baselines are shown in
Figure 35. Figure 36 shows PAGs obtained by the FCI-JCI variants. Note that we show
the PAGs obtained from using all data (i.e., without bootstrapping), although they are not
necessarily stable. Therefore, we show in Figure 37 also the bootstrapped results for the
learned ancestral relations between system variables and the learned (indirect) intervention
targets. One can see here that most, but not all, of these features are stably predicted.

We draw the following conclusions from these results. First, the reference methods that
exploit knowledge on intervention types and targets obtain rather consistent results. Second,
the JCI methods that do not assume knowledge on intervention types and targets (and the
approach by Eaton and Murphy (2007) show less consistent results. This could indicate that
the data contain not enough signal in order to solve this more ambitious task reliably. If
the “causal signal” is low, some model misspecification (for example, strong non-linearities
or deviations from Gaussianity, which makes a simple partial correlation based conditional
independence test inadequate) could lead to inconsistencies between methods. Nonetheless,
the performance of the FCI-JCI variants seems a big improvement over the simple FCI

16. As preprocessing, we simply took the logarithm of the raw values.
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(c) FCI-obs (d) FCI-meta

Figure 35: PAGs resulting from various FCI baselines on the flow cytometry data of Sachs
et al. (2005). Intervention variables are denoted with rectangles, system variables
with circles. From top to bottom: (a) “Consensus network” according to Sachs
et al. (2005); (b) FCI on pooled data (without adding the context variables);
(c) FCI on the first (“observational”) dataset in which only global activators
a-CD3 and a-CD28 have been administered; (d) FCI with as input the result
of Fisher’s method for combining conditional independence test results from all
datasets.

baselines FCI-obs, FCI-meta and FCI-pooled. Remarkably, FCI-JCI123 manages to orient
most of the edges. The output also resembles the consensus network, although some of the
edges seem to be reversed. Considering that we have not taken into account the available
background knowledge on the intervention types and targets (Table 3), this is still an
impressive result.

5. Conclusions and discussion

In this work, we proposed Joint Causal Inference (JCI), a powerful and elegant framework
for causal discovery from datasets from multiple contexts. JCI generalizes the ideas of
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’ AKT.inh ’ LY294002 ‘

Psitectorigenin ’ PMA/beta2CAMP + noAlphaCD3/28

(a) FCI-JCI123

PMA/beta2CAMP + noAlphaCD3/28 00126 G0076 LY294002
Psitectorigenin Raf PKC Erk PLCg PKA
PIP2 Mek p38 Akt AKT.inh
PIP3 INK

(b) FCI-JCI1

PMA/beta2CAMP + noAlphaCD3/28 V0126 G0076 LY294002
Psitectorigenin Raf PKC Erk PLCg PKA
PIP2 Mek p38 Akt AKT.inh
PIP3 INK

(¢) FCI-JCIO

Figure 36: PAGs resulting from various FCI-JCI variants on the flow cytometry data of
Sachs et al. (2005). These causal discovery methods do not make use of the
biological prior knowledge regarding intervention types and targets, but learn
the intervention targets from the data. Intervention variables are denoted with
rectangles, system variables with circles. From top to bottom, less JCI As-
sumptions are made. Note that these are individual PAGs that have not been
bootstrapped. To get an idea of the robustness, Figure 37 shows also the corre-
sponding bootstrap estimates for certain features of the PAGs.
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Direct causal relations Ancestral relations

Indirect intervention targets

AKT.inh->Raf

Psitectorigenin->Raf
Psitectorigenin->Mek
Psitectorigenin->PLCg
Psitectorigenin->PIP2
Psitectorigenin->PIP3
Psitectorigenin->Erk
Psitectorigenin->Akt
Psitectorigenin->PKA
Psitectorigenin->PKC
Psitectorigenin->p38
Psitectorigenin->JNK

LY294002->PLCg
LY294002->PIP2

LY294002->PIP3

LY294002->Erk

LY294002->Akt

LY294002->PKA

LY294002->PKC

LY294002->p38

LY294002->JNK

PMA/beta2CAMP + noAlphaCD3/28->Raf
PMA/beta2CAMP + noAlphaCD3/28->Mek
PMA/beta2CAMP + noAlphaCD3/28->PLCg
PMA/beta2CAMP + noAlphaCD3/28->PIP2
PMA/beta2CAMP + noAlphaCD3/28->PIP3
PMA/beta2CAMP + noAlphaCD3/28->Erk
PMA/beta2CAMP + noAlphaCD3/28->Akt
PMA/beta2CAMP + noAlphaCD3/28->PKA
PMA/beta2CAMP + noAlphaCD3/28->PKC
PMA/beta2CAMP + noAlphaCD3/28->p38
PMA/beta2CAMP + noAlphaCD3/28->INK
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XY
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Confidence Score

Figure 37: Causal relationships between the biochemical agents in the flow cytometry data
of Sachs et al. (2005), according to different causal discovery methods and the
“consensus network” according to Sachs et al. (2005). We also included results
of causal discovery methods reported in other works.

75



Moo1J, MAGLIACANE, CLAASSEN

causal discovery based on experimentation (as in randomized controlled trials and A/B-
testing) to multiple context and system variables. Seen from another perspective, it also
generalizes the ideas of causal discovery from purely observational data to the setting of
datasets from multiple contexts—for example, different interventional regimes—by reducing
the latter to a special case of the former, with additional background knowledge on the
causal relationships involving the context variables. We proposed different flavours of JCI
that differ in the amount of background knowledge that is assumed, some being more
conservative than others. JCI can be implemented with any causal discovery method that
can take into account the background knowledge. Surprisingly, we saw that one can even
apply an off-the-shelf causal discovery algorithm for purely observational data on the pooled
data, completely ignoring the background knowledge, and thereby already obtain significant
improvements in the accuracy of the discovered causal relations.

We have seen how JCI deals with different types of interventions in a unified fashion,
how it reduces learning intervention targets to learning the causal relations between context
and system variables, and that it allows one to fully exploit all the information in the joint
distribution on system and context variables. JCI was partially inspired on the approach
by Eaton and Murphy (2007), but is much more generally applicable, as it allows for latent
confounders and cycles, which are both important in many application domains. Especially
noteworthy is that more conservative flavours of JCI allow for confounders between system
and context variables, which cannot always be excluded, for example because the relevant
aspects of the system’s context were only partially observed.

Since JCI is a causal modeling approach rather than a specific algorithm, it can be
implemented in many different ways. We have investigated various implementations of
JCI, amongst which some existing algorithms (LCD, ICP, and standard estimators for the
presence of a causal effect in a randomized controlled trial), and also proposed novel imple-
mentations that are adaptations of algorithms for causal discovery from purely observational
data to the JCI setting. In particular, we proposed ASD-JCI, an adaptation of the approach
by Hyttinen et al. (2014) combined with ideas from Magliacane et al. (2016b), which is very
flexible and accurate. By replacing d-separation with o-separation (Forré and Mooij, 2018),
ASD-JCI can also be used in general nonlinear cyclic settings. A major disadvantage of
ASD-JCI is that it becomes computationally extremely expensive already for as few as ~ 7
variables. We also proposed FCI-JCI, an adaptation of the FCI algorithm that enables it
to exploit the applicable JCI background knowledge. This algorithm is less accurate than
ASD-JCI, but much faster.

We evaluated different implementations of the JCI approach on synthetic data. We saw
that JCI implementations outperform other state-of-the-art causal discovery algorithms in
most settings. In some cases, the gains were quite extreme; for example, while purely ob-
servational causal discovery methods did not perform better than random guessing, JCI
variants were able to discover with almost perfect precision ancestral causal relations be-
tween system variables. The only case in which all JCI implementations were outperformed
by another causal discovery algorithm that combines data from different contexts, was the
setting in which the contexts correspond with perfect (surgical) interventions with known
targets. The reason is that none of the JCI implementations exploited the surgical nature
of the interventions. However, we also saw that if interventions are not perfect (for ex-
ample, in the case of causal mechanism changes), JCI implementations still perform very
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well, while algorithms relying on the surgical nature of interventions may suffer from model
misspecification. Another interesting observation we made in the experiments on synthetic
data is that for the task of learning indirect (ancestral) causal relations, the classic (and
very simple and fast) LCD algorithm can be competitive with many more sophisticated
algorithms, like ICP and bootstrapped FCI-JCI.

We further illustrated the use of JCI by analyzing flow cytometry protein expression data
(Sachs et al., 2005), a famous “benchmark” in the field of causal discovery. Unfortunately,
applying ASD-JCT on the 11 system and 6 context variables would take excessive amounts of
computation time, so we had to resort to FCI-JCI instead for causal discovery on a global
scale. We compared with LCD and ICP variants that do causal discovery on more local
scales. The results of various methods differ considerably, but show also some consistent
patterns. This suggests that there is indeed a strong causal signal in the data, but it seems
hard to conclude which of the various methods is best equipped to extract this signal most
reliably, because the ground truth is only partially known. In future work, we plan to analyze
more recent cytometry data sets that will allow for a more principled validation. Because
often the true causal structure is not known, while interventional data is available, this
requires to extend JCI-based causal discovery with causal prediction techniques, enabling
one to predict the results of a particular intervention (Magliacane et al., 2018).

JCI offers increased flexibility when it comes to designing experiments for the purpose
of causal discovery, as the JCI framework facilitates analysis of data from almost arbitrary
experimental designs. This allows researchers to trade off the number and complexity of
experiments to be done with the reliability of the analysis of the data for the purpose of
causal discovery. Compared with existing methods, the framework offered by JCI is the
most generally applicable, handling various intervention types and other context changes in
a unified and non-parametric way, allowing for latent variables and cycles, and also applies
when intervention types and targets are unknown, a common situation in causal discovery
for complex systems.

As future work, we plan to (i) weaken the faithfulness assumption of JCI with respect
to the context variables to allow for even more general experimental designs, (ii) address
the problem of learning from datasets with non-identical (but overlapping) sets of observed
variables, (iii) address selection bias, (iv) develop algorithms that need less computation
time for delivering reliable results, (v) work on more applications on real-world data.
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