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Abstract: Dynamical systems are widely used in science and engineering to model systems consisting of
several interacting components. Often, they can be given a causal interpretation in the sense that they not
only model the evolution of the states of the system’s components over time, but also describe how their
evolution is affected by external interventions on the system that perturb the dynamics. We introduce the
formal framework of structural dynamical causal models (SDCMs) that explicates the causal semantics
of the system’s components as part of the model. SDCMs represent a dynamical system as a collection of
stochastic processes and specify the basic causal mechanisms that govern the dynamics of each component
as a structured system of random differential equations of arbitrary order. SDCMs extend the versatile
causal modeling framework of structural causal models (SCMs), also known as structural equation models
(SEMs), by explicitly allowing for time-dependence. An SDCM can be thought of as the stochastic-process
version of an SCM, where the static random variables of the SCM are replaced by dynamic stochastic
processes and their derivatives. We provide the foundations for a theory of SDCMs, by (i) formally defining
SDCMs, their solutions, stochastic interventions, and a graphical representation; (ii) studying existence
and uniqueness of the solutions for given initial conditions; (iii) providing Markov properties for SDCMs
with initial conditions; (iv) discussing under which conditions SDCMs equilibrate to SCMs as time tends to
infinity; (v) relating the properties of the SDCM to those of the equilibrium SCM. This correspondence
enables one to leverage the wealth of statistical tools and discovery methods available for SCMs when
studying the causal semantics of a large class of stochastic dynamical systems. The theory is illustrated
with examples from different scientific domains.
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1 Introduction
Continuous dynamical systems consisting of differential equations are widely used in science and engineering
to model the time-dependent behavior of certain phenomena. A classical example is the modeling of
the trajectory of a die that is thrown, by means of Newton’s equations of motion. Initial conditions or
parameters of the dynamics may be stochastic, which can be modeled mathematically by making use of
random differential equations (RDEs). These provide a natural extension of ordinary differential equations
(ODEs) to the stochastic setting [11, 58, 68, 69]. For example, the initial position of the die is often not
known, and varies from throw to throw, which leads to a probability distribution over the possible trajectories
of the die (and eventually, to an uncertain outcome of the throw).

Many dynamical systems can be considered to consist of several interacting subsystems or components,
for example, mass-spring systems in physics, predator-prey systems in biology, and mass-action law kinetics
in chemistry. These dynamical systems are often implicitly given a causal interpretation in the sense that
they are not only supposed to model the evolution of the state of the system over time, but also describe
how the evolution of the system’s components is affected by external interventions on the system that
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perturb the dynamics. For example, when applying an external force to a particle, the change in the force
term in Newton’s second law of motion results in a changed acceleration, and hence a changed position, of
the particle. Another example is that hunting wolves may lead to an increase in the population of sheep.
The ensuing causal semantics of the system is usually only treated in an implicit and intuitive fashion,
rather than that it is formally specified by (or derivable from) the mathematical model. Indeed, a system of
(random) differential equations simply expresses symmetric relations between the components, without any
preferred order or asymmetry. On the other hand, causal relations may be asymmetric, as they distinguish
cause from effect. Thus, while dynamical systems may describe how the state of a system consisting of
several components evolves over time, by themselves they do not express the inherent “causal structure” of
the system’s components.

An apparently rather different modeling framework that allows to represent the causal semantics
of a system composed of components is provided by structural causal models (SCMs), also known as
(non-parametric) structural equation models (SEMs) [8, 9, 61, 71]. First introduced in genetics by Wright
[75], they became popular over the years in econometrics [37], the social sciences [21, 35], and more recently
in AI [59]. SCMs express causal relationships between variables corresponding to “autonomous” subsystems
or components in the form of deterministic, functional relationships, and stochasticity is introduced through
the assumption that certain variables are exogenous (latent) random variables. Their predictive power stems
from the assumption that the equations of these models are organized in a structural way: each equation
represents a distinct autonomous causal mechanism, where distinctness of the mechanisms means that they
can be changed independently of one another by targeted interventions—at least in principle. While SCMs
explicate the causal semantics of a system composed of different components in this specific way, they have
no built-in notion of time. A commonly used workaround for this limitation is to introduce multiple “copies”
of the variables, corresponding to observations at different points (or intervals) in time. This workaround
only applies to discrete time, and SCMs cannot be used to model causal semantics of continuous-time
systems without somehow discretizing time.

In this work, we propose the modeling framework of structural dynamical causal models (SDCMs),
which on the one hand explicates the causal relationships between components of continuous dynamical
systems, and on the other hand extends structural causal models to explicitly allow for time-dependence.
SDCMs represent a dynamical system as a collection of stochastic processes (each one referring to a causally
“autonomous” component) subject to a “structured” dynamics, which specifies the causal mechanisms that
govern the dynamics of the components by means of random differential equations of arbitrary order. An
SDCM can be thought of as the stochastic-process version of an SCM, where the static (time-independent)
random variables of the SCM are replaced by dynamic (time-dependent) stochastic processes and their
derivatives. Our contributions can be considered as the first steps towards a theory of SDCMs. More
specifically, we:

(i) formally define SDCMs, their solutions, stochastic interventions, and a graphical representation;
(ii) study existence and uniqueness of the solutions for given initial conditions;
(iii) provide Markov properties for SDCMs with initial conditions;
(iv) discuss under which conditions SDCMs equilibrate to SCMs as time tends to infinity;
(v) relate the properties of the SDCM to those of the equilibrium SCM.

This correspondence between SCMs and equilibrated SDCMs enables one to leverage the wealth of statistical
tools and discovery methods available for SCMs when studying the causal semantics of a large class of
stochastic dynamical systems. We illustrate the theory with several well-known examples from different
scientific domains.

Related work
Over the years, several efforts have been made to develop a notion of causality for stochastic processes,
both in discrete and continuous time.



S. Bongers, T. Blom, and J.M. Mooij, Causal Modeling of Dynamical Systems 3

For discrete time, Granger causality [24, 25, 36, 73], simultaneous equation models [27, 48], vector
autoregressive (VAR) models [51, 67] and dynamic Bayesian networks [15, 34] have been studied extensively.
More recently, there has been some work on learning difference-based causal models [72] and structural
equation models [60]. In principle, all these models fit directly into the framework of SCMs by labeling the
random variables with time.

For continuous time, there has been substantial work in the graphical modeling community [1, 17–
20] based on the concept of local independence, which was introduced by Schweder [66]. However, none
of these approaches explicitly takes into account that dynamical models are often based on differential
equations. In parallel, several attempts have been made to arrive at causal interpretations of processes
described by ordinary and stochastic differential equations. Many of these approaches start from the
assumption of a first-order system of ODEs written in canonical form, and implicitly (or explicitly) attribute
a causal interpretation to this [5, 41, 55, 63]. The notion of causality in ODEs has also been studied using
Simon’s causal ordering algorithm [41]. Relations between a certain class of causally interpreted ODEs
and deterministic SCMs at equilibrium have been established under the strong assumption that all the
solutions of the ODE converge to a single static equilibrium state [55], independent of the initial condition.
This assumption can be relaxed to allow for asymptotic dynamics [65] such as periodic oscillations, but
this still requires the assumption that the asymptotic dynamics does not depend on the initial condition.
Another way to relax the assumption of [55] is taken in the framework of causal constraints models [6],
which can model static equilibrium states as long as the dynamical system has a unique static equilibrium
state corresponding to each initial condition, for every intervention. These models can give a more complete
causal description of these static equilibrium states than SCMs can [6], but this comes at the cost that
they appear to be too “flexible” in general. Finally, several approaches in terms of stochastic differential
equations, which are differential equations with an additive white noise term, have been developed over the
years [13, 30, 40, 53, 62]. The stochastic differential equations have the advantage that they can deal with
“instantaneous” stochasticity in the dynamics, but solving them usually requires a considerable mathematical
effort using Itô calculus.

Compared with existing work, the framework of structural dynamical causal models that we propose
here has the novel combination of features that it extends the semantics of continuous dynamical systems
by formally encoding the causal structure into the model, it allows for stochasticity due to uncertainty
over initial conditions or parameters of the dynamics without relying on strong stability assumptions,
and it does not force one to consider time derivatives of processes as being “causally independent” of the
processes themselves (that is, time derivatives of processes are considered to describe the same subsystem or
component as the process itself). Our framework reconciles the traditional intuitive treatment of causality
in the context of deterministic dynamical systems as practiced in many exact sciences with the treatment of
causality of stochastic systems that is nowadays very popular in AI, statistics and other scientific disciplines.
An attractive feature is that it naturally accommodates many causally interpreted continuous dynamical
systems that appear “in the wild” [see e.g., 26, 58].

Contributions
In this paper, we introduce the framework of structural dynamical causal models (SDCMs),1 which allows
to model the causal semantics of stochastic processes for a large class of continuous dynamical systems by
means of a “structured” system of random differential equations of arbitrary order (including zeroth-order).
One can consider SCMs as special cases of SDCMs that only contain zeroth-order equations. The proposed

1 Not to be confused with the dynamic causal models of [33] or the dynamic structural causal models of [65]. The
dynamic causal models of [33] have been developed to infer the causal relations between the activities of different brain
regions, where each neuronal state is modeled by a first order differential equation. These much more restricted models
could in principle be represented by SDCMs. The dynamic structural causal models of [65] have been developed to
model the asymptotic behavior of an ordinary differential equation under non-constant interventions and assume that
the asymptotic behavior does not depend on the initial condition.
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steady SDCM
R

SCM
MR

intervened steady SDCM
Rdo(I,KI)

intervened SCM
(MR)do(I,K∗

I
) =M(Rdo(I,KI ))

(Def. 3.7)do(I,KI)

t→∞
(Def. 4.9)

(Def. 3.7)do(I,K∗I )

t→∞
(Def. 4.9)

Figure 1. This diagram shows that, under certain convergence assumptions, equilibration (left-to-right in the diagram)
commutes with intervention (top-to-bottom in the diagram). The precise statement is made explicit in Theorem 4.18.

modeling framework enables modeling of stochasticity, time-dependence and causality in a natural way. We
study the existence and uniqueness of solutions of SDCMs, and propose a convenient graphical representation
of the model structure for which we derive Markov properties. We define an idealized notion of stochastic
interventions, and show that this yields a natural “interventionist” causal interpretation of the graph of
an SDCM. We define a notion of equilibration of an SDCM to an SCM, which corresponds with letting a
system converge towards equilibrium as time tends to infinity, and relate the properties of the SDCM to
those of the equilibrium SCM. In the next paragraphs, we describe our contributions in more detail.

Intuitively, an SDCM can be thought of as an SCM where the notion of time is added to the structural
equations by replacing the random variables of the SCM by stochastic processes and their (higher-order)
derivatives. In the presence of these derivative processes, these equations, which we coin dynamic structural
equations, can be read as random differential equations. The dynamic structural equations have the property
that they are organized in a structural way, similar to how the structural equations of an SCM are organized
by associating a distinct causal mechanism to each observed variable. This distinguishes SDCMs from other
“non-causal” (random) dynamical systems, and allows to define idealized stochastic interventions on these
models, similarly to how this is usually done for SCMs. The structure of the SCM can be expressed by its
graph, which reflects the functional relationships between the components as encoded by the structural
equations. Similarly, we define the graph of an SDCM to reflect the functional relationships between the
components as encoded by the dynamic structural equations.

The framework of SDCMs on the one hand allows one to specify the causal semantics of a system
of RDEs, and on the other hand it enables temporal extensions for SCMs. In particular, we show when
and how we can equilibrate an SDCM to an SCM, such that the static solutions of the SCM contain the
equilibrium states of the SDCM. Our equilibration operation, inspired by the one of Mooij et al. [55], has
the key property that it preserves the structure of the endogenous processes. Intuitively, the idea is that
in the limit as time tends to infinity, the dynamic structural equations converge to those equations for
which the higher-order derivatives of the processes have been set to zero, yielding the structural equations
of an SCM. This allows us to use SCMs to model the equilibrium states of dynamical systems, including
cases that were previously considered to fall outside their scope, such as the price, supply and demand
model in econometrics. In addition, we show that this equilibration operation commutes with intervention
(as in Figure 1), and naturally maps the graph of the SDCM to the graph of the SCM. This provides a
different perspective on what Dash [16] calls the “violation of the equilibration-manipulation commutability
property”. Our formalism allows us to generalize the main result of Mooij et al. [55], which states that certain
causally interpreted systems of ODEs can be equilibrated to SCMs, in several directions: (i) we replace the
deterministic setting with a more general stochastic setting, that is, we can deal with randomness in the
initial conditions and in the parameters, (ii) we allow the order of the equations of the dynamical model to
be arbitrary, including zeroth-order, rather than restricting to first-order differential equations only, and
(iii) we drop the strong assumption that the dynamical model needs to have a single static equilibrium that
is independent of the initial condition.

By no longer restricting to first-order dynamical systems, we arrive at a more natural causal interpretation
of systems of higher-order RDEs, like the coupled harmonic oscillator. Thereby, we circumvent questions like
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“does position cause velocity, or does velocity cause position, or both?”. However, allowing for zeroth-order
dynamic structural equations leads to additional technical challenges that are absent when solving first-order
RDEs. Indeed, the initial conditions of the solutions may be constrained by the zeroth-order dynamic
structural equations, and possibly even by additional “hidden” constraints. We provide sufficient conditions
under which the existence and uniqueness of a solution of an SDCM with a given initial condition can be
guaranteed. We also provide stronger conditions under which this still holds after certain interventions.

The existence and uniqueness of solutions of an SDCM are of key importance for obtaining Markov
properties for SDCMs. By building on a powerful Markov property for SCMs [9, 31], we derive a Markov
property for SDCMs with initial conditions, which enables one to read off (conditional) independencies
between the stochastic processes that are solutions of the SDCM, provided the latter are uniquely defined.
With a small extension, it can also be applied to the evaluation of the solutions at some specific point in
time.

Even if the existence and uniqueness of a solution of an SDCM can be guaranteed, not all solutions of
an SDCM equilibrate, in general. For example, a coupled harmonic oscillator may oscillate indefinitely in
the absence of friction. Moreover, the solutions that equilibrate may not always equilibrate to the same
equilibrium state. For example, a freely moving particle subject to friction may end up anywhere, depending
on its initial position and velocity. In other words, equilibrium states may depend on the initial condition.
This is compatible with the recently proposed framework of cyclic SCMs of Bongers et al. [9], which
allows for the absence of (or, the presence of multiple) solutions of the structural equations. The intricate
connection between the dependence of the equilibrium states of an SDCM on the initial conditions and the
solvability properties of the equilibrated SCM sheds new light on the counterintuitive “nonancestral” causal
effects in certain “pathological” cyclic SCMs with self-cycles that were first observed by Neal [57].

The scope of this paper is limited to establishing the framework of SDCMs and its bridge to SCMs
at equilibrium. The importance of this bridge is that, although SDCMs can be used for modeling causal
relationships between stochastic processes, inferring such causal models from data may pose certain difficulties.
One significant practical drawback of using SDCMs for modeling systems with an unknown dynamics is
that obtaining time series data with sufficiently high temporal resolution can be costly, impractical or even
impossible.2 The results of this work enable one to study the causal semantics of the equilibrium states of a
large class of random dynamical models in terms of SCMs. In particular, this allows to infer properties of
these dynamical models by employing the statistical tools and discovery methods available for static SCMs
on equilibrium data.

Outline
The paper is organized as follows: In Section 2, we provide the necessary concepts of stochastic processes
and random differential equations. In Section 3, we introduce the class of structural dynamical causal
models, define SCMs as special cases of SDCMs, define interventions, define the graph of an SDCM, discuss
initial conditions, study existence and uniqueness of solutions, and derive a Markov property for SDCMs.
In Section 4, we define the equilibration operation on steady SDCMs, define the graph of the equilibrated
SDCM, describe the commutation of the intervention and the equilibration operation, study the inverse
problem of finding steady SDCMs with non-trivial dynamics for which all the solutions equilibrate to
solutions of the SCM, and discuss subtleties in the causal interpretation of the graph of the equilibrated
SDCM. We conclude with a discussion and some open problems in Section 5. Proofs are provided in
Appendix A.

2 For example, modern measurement techniques in biology, like RNA sequencing and mass cytometry, enable simultaneous
measurements of multiple variables at once in single cells, but at the cost of destroying the cells during the measurement
process. This means that it is impossible to obtain time-series measurements for individual cells, although one can take
a “snapshot” of the internal states of many single cells at the same point in time.
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2 Preliminaries
We start off by defining some basic notation and terminology.

2.1 Stochastic processes

In this subsection, we introduce the basic definitions and terminology for stochastic processes [see also
11, 58]. A stochastic process is an Rn-valued function X : T × Ω→ Rn, where T is some index set, such
that Xt (which denotes X(t, .), also sometimes denoted as X(t)) is for each t ∈ T a random variable3 on a
probability space (Ω,F ,P). A random variable X : Ω→ Rn can itself be seen as a stochastic process that
is constant in time, that is, as the process X : T × Ω→ Rn defined by Xt(ω) := X(ω). We always assume
that there exists some background probability space (Ω,F ,P) on which all random variables and processes
are defined. Furthermore, we only consider processes where T = [t0, t1] or T = [t0,∞) for t0 < t1 with
t0, t1 ∈ R, and the points of T are thought of as representing time. For each ω ∈ Ω we have an Rn-valued
function T → Rn mapping t to Xt(ω), which is called a sample path, or just a path, of X. We call two
stochastic processes X and Y a.s. equal to each other, denoted by X = Y a.s., if P-almost surely all sample
paths are equal, that is, if there exists a P-null set4 N ⊆ Ω such that for all ω ∈ Ω \N and for all t ∈ T we
have Xt(ω) = Yt(ω). We consider stochastic processes, and random variables in particular, only up to a.s.
equality.

A family (Xi)i∈I of stochastic processes for some finite index set I is called independent if for all k ∈ N
and all k-tuples (t1, . . . , tk) of distinct elements of T the family

(X̃i)i∈I

of random variables X̃i := ((Xi)t1 , . . . , (Xi)tk ) is independent.
We call a stochastic process X continuous, if its paths are continuous almost surely, that is, for P-almost

every ω ∈ Ω and for all t ∈ T we have
lim
s→t

Xs(ω) = Xs(ω) .

We call a stochastic process X differentiable, if its paths are differentiable almost surely, that is, for P-almost
every ω ∈ Ω and for all t ∈ T the derivative

X ′t(ω) := dXt

dt
(ω) := lim

h→0

Xt+h(ω)−Xt(ω)
h

exists. The mapping X ′ : T × Ω → Rn defines a stochastic process and is called the derivative of X.
Similarly, one can define, if it exists, the nth-order derivative of X as the derivative of the (n− 1)th-order
derivative of X, which we also write as X(n), where the zeroth-order derivative of X is X(0) := X. We
call a stochastic process X continuously differentiable or a C1-stochastic process, if its derivative X ′ exists
and is continuous. Similarly, we call X a Cm-stochastic process, if its derivatives X ′, X ′′, . . . , X(m) exist
and are continuous. In particular, X is a C0-stochastic process if it is continuous.

Consider a compact interval T = [t0, t1] ⊆ R. The space Cm(T,Rn) ofm times continuously differentiable
functions T → Rn, equipped with the Cm-norm

‖X‖(m) :=
m∑
k=0

sup
t∈T
‖X(k)(t)‖

(where ‖ · ‖ is the Euclidean norm in Rn) is a Polish space, and with its Borel σ-algebra forms a standard
measurable space [43]. A Cm-stochastic process X : T × Ω→ Rn can also be seen as a random variable

3 Assuming the Borel σ-algebra B(Rn) on Rn, that is, the smallest σ-algebra on Rn that contains all open n-balls.
4 Let (Ω,F ,P) be a probability space. A set N ⊆ Ω is called a P-null set if there exists a measurable set Ñ ∈ F with
N ⊆ Ñ and P(Ñ) = 0.
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taking values in Cm(T,Rn) [10]. The following functionals (integration, differentiation and evaluation) are
continuous, and hence measurable:

ι : Rn × Cm(T,Rn)→ Cm+1(T,Rn) : (X[0],X) 7→

t 7→X[0] +
t∫

t0

X(s) ds


∂ : Cm+1(T,Rn)→ Cm(T,Rn) : X 7→

(
t 7→X ′(t)

)
π : Cm(T,Rn)→ Rn : X 7→X(t1) .

Furthermore, if we compose a process X ∈ Cn(T,Rn) with a continuous function f : Rn → Rk, we obtain a
process f(X) ∈ C0(T,Rk).

2.2 Clustered mixed graphs

In this subsection, we introduce some graphical notions.
A mixed graph is a pair G = (V, E), where V is a set of nodes and E is a set of edges between the nodes

of different types, in our case, , , , , . If i j or i j in G, we call i a parent of j and denote with
paG(j) the set of parents of j (which may include j itself in case j j in G). A mixed graph G̃ = (Ṽ, Ẽ) is
a subgraph of a mixed graph G = (V, E) if Ṽ ⊆ V and Ẽ ⊆ E .

A clustered mixed graph is a triple G = (V, E ,P) where (V, E) is a mixed graph and P is a partition
of the nodes V, such that dashed edges , only appear between nodes in the same element of P. Each
element of P is called a cluster of the clustered mixed graph. A clustered mixed graph G = (V, E ,P) induces
a mixed graph col(G) with nodes P, a directed edge K L for K 6= L iff there is a directed edge k l in
G for some k ∈ K, l ∈ L, and a bidirected edge K L for K 6= L iff there is a bidirected edge k l in G
for some k ∈ K, l ∈ L. This construction can be thought of as “collapsing” the clusters in the clustered
mixed graph into nodes and subsequently removing self-cycles.

2.3 Random differential equations

In this subsection, we give a brief overview of some key aspects of random differential equations [for more
details, see 11, 58]. Random differential equations (RDEs) are similar to ordinary differential equations
(ODEs), but can deal with randomness in the initial conditions and in the parameters. Due to their close
connection to ODEs they can be analyzed by use of methods that are analogous to those in the theory of
ODEs [11]. Their formalism is conceptually easier than the formalism of the white-noise driven stochastic
differential equations (SDEs), while still being applicable to those systems via the generalized Doss-Sussmann
correspondence [see 42, 58]. They have been used for many years in a wide range of applications [see, for
example, 11, 39, 49, 58, 68, 69].

A stochastic process X : T × Ω→ Rd is a solution of a (first-order) random differential equation

X ′ = f(X,E) , (1)

where f : Rd ×Re → Rd is a measurable function and E : T × Ω→ Re a stochastic process, if for P-almost
every ω ∈ Ω the (first-order) ordinary differential equation5

X ′t(ω) = f(Xt(ω),Et(ω))

holds for all t ∈ T . An initial condition of the RDE (1) is a tuple (t0,X[0]) that specifies those solutions X
of the RDE (1) that satisfy for P-almost every ω ∈ Ω

Xt0(ω) = X[0](ω)

5 These ordinary differential equations are also called explicit ordinary differential equations [2]. Similarly, the random
differential equations (1) are also called explicit random differential equations.
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m1 m2

L1

m1 m2

L1

Figure 2. Two masses coupled by a spring, freely drifting in space (left, see Example 2.1) and with one of the masses
attached to a fixed point (right, see Example 2.2).

at the initial time t0. Since every nth-order ODE can be rewritten as a system of first-order ODEs, the
general form of the random differential equation (1) can be used to express analogously all the nth-order
random differential equations.6

The inclusion of randomness in the equations can be classified into two basic types. The first type
consists of randomness in the initial conditions, that is, the initial conditions are not a.s. equal to a constant
deterministic process. The second type consists of randomness in the parameters, that is, the process E is
not a.s. equal to a deterministic stochastic process. Of course, a combination of both types can hold. In
particular, an RDE together with an initial condition reduces to an initial value problem for ODEs if it has
no randomness in both the initial conditions and the parameters.

If the stochastic processE is continuous, sufficient conditions that guarantee the existence and uniqueness
of solutions for any initial condition can be found in Bunke [11] and Kloeden and Platen [46]. These results
are similar to the uniqueness and existence theorems for ODEs [12].

Example 2.1 (Two masses coupled by a spring). Consider a one-dimensional system of two point masses
m1 and m2 with positions X1 and X2 respectively that are coupled by an ideal spring with spring constant
κ1 > 0 and equilibrium length L1 > 0 under influence of friction with friction coefficients b1, b2 ≥ 0
respectively (see Figure 2 (left)). The equations of motion of this system, whose derivation can be found in
physics textbooks, are given by the second-order random differential equations

X ′′1 = κ1
m1

(X2 −X1 − L1)− b1
m1

X ′1

X ′′2 = κ1
m2

(X1 −X2 + L1)− b2
m2

X ′2 .

Randomness may enter the system via the initial condition (t0, (X1(t0), X ′1(t0), X2(t0), X ′2(t0))) or via the
parameters. For example, instead of assuming that the length L1 has a fixed value, we can assume that it
is an exogenous random variable distributed according to some distribution. The system of equations then
forms an RDE.

In this paper, we propose a modeling class that allows to model the causal semantics of stochastic processes
with RDEs in an unambiguous way. The following example illustrates that modeling interventions on RDEs,
and thereby grounding their causal semantics, is not a completely trivial matter.

Example 2.2 (Two masses coupled by a spring, continued). Consider again the RDE that describes the
two masses coupled by an ideal spring from Example 2.1. These equations denote a symmetric relation, that
is, for both equations X1 can be expressed in terms of X2, and vice versa. The causal relations between the
processes X1 and X2 are not inherently implied by the form of the equations. For example, what happens to
X2 if we fix the mass m1 to a fixed wall, say, at X1 = 0 (see Figure 2 (right))? The corresponding RDE for
X1 and X2 is then given by 

X1 = 0

X ′′2 = κ1
m2

(X1 −X2 + L1)− b2
m2

X ′2 .

6 Furthermore, explicit time-dependence of f can be incorporated by adding a dummy variable with t with dynamics
t′ = 1 and initial condition t[0] = 0.
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In both cases we implicitly assumed that each mass has its own equation of motion, that is, the first and
second equation determine the motion of the mass m1 and m2, in terms of the processes X1 and X2,
respectively. Therefore, the intervention of fixing the mass m1 to the wall is accomplished by changing
only the equation for m1 to the equation X1 = 0. If instead we had changed the other equation to X1 = 0,
then, as one can easily verify, X2 would always be fixed, which does not correspond to the expected physical
behavior. This additional “structure” of knowing which RDE determines the dynamics of which process
is not “intrinsically” defined by the RDE. Moreover, RDEs usually do not include zeroth-order equations
(also referred to as “algebraic equations”), such as X1 = 0. Allowing for RDEs of arbitrary order, including
zeroth-order, allows to model a wide range of interventions on these models. For example, instead of fixing
the mass m1 to the fixed wall at X1 = 0 we could fix it to a wall that is driven by some external force, such
as X1 = A sin(2πft) for some A, f > 0.

3 Structural dynamical causal models
In this section, we introduce the class of structural dynamical causal models (SDCMs) that allows to
formally specify causal semantics for any RDE of arbitrary order (including zeroth-order). We organize
the differential equations of the RDEs in a structural way, similar to how this is done for structural causal
models, such that each differential equation expresses the causal mechanism that governs the dynamics of
a single stochastic process (corresponding to a single component of the system). This allows us to model
stochastic idealized interventions targeting certain components in dynamical models, similarly to how this
is done for SCMs.

We start in Section 3.1 with introducing the notation and terminology that will be used throughout the
paper. In Section 3.2, we formally define SDCMs and their solutions. In Section 3.3, we formalize the causal
semantics of SDCMs in terms of stochastic “perfect” interventions. In Section 3.4, we introduce and discuss
a graphical representation for SDCMs. In Section 3.5, we discuss the initial conditions and how these relate
to the existence of solutions. In Section 3.6, we state results about the existence and uniqueness of solutions
of certain classes of SDCMs. We finish in Section 3.7 by deriving a Markov property for SDCMs with initial
conditions, suitable for both the solutions of the SDCM and the evaluation of the solutions at any point in
time.

3.1 Notation and terminology

Let I = {1, . . . , d} be a finite index set and X =
∏
i∈I Xi the product of the domains of the components of

a system, where domain Xi = Rdi encodes the range of possible values that the ith component can take.
The stochastic process X = (X1, . . . , Xd) : T × Ω→ X has component processes Xi : T × Ω→ Xi.

Let i ∈ I and ni ∈ N0. If for the ith component Xi the nth
i -order derivative exists, then the complete nth

i -
order derivative of Xi, defined as the stochastic process Xi

(ni) := (Xi, X ′i, X ′′i , . . . , X
(ni)
i ) : T ×Ω→ Xni+1

i ,
is the tuple of all the derivatives of Xi up to and including order ni. We adopt a similar notation for
the values in Xni+1

i , that is, x(ni)
i ∈ Xni+1

i . Each component X(ki)
i of Xi

(ni), or similarly x(ki)
i of x(ni)

i ,
corresponds to an index i(ki), which gives the index set ī(ni) := {i(ki) : 0 ≤ ki ≤ ni} for X(ni)

i , where the
index i(0) is also written as i.

Let n = (n1, . . . , nd) ∈ NI0 be a tuple. If the nth
i -order derivative ofXi exists for every i ∈ I, then the nth-

order derivative of X is defined as the stochastic process X(n) := (X(n1)
1 , . . . , X

(nd)
d ) : T ×Ω→ X and the

complete nth-order derivative ofX is defined as the stochastic processX(n) := (X1
(n1)

, X2
(n2)

, . . . , Xd
(nd)) :

T × Ω→ X n+1, where X n+1 :=
∏d
i=1 X

ni+1
i . We adopt a similar notation for the values in X n+1, that

is, x(n) ∈ X n+1. Similarly, each component X(ki)
i of X(n) corresponds to an index i(ki) which gives the

index set I(n) :=
⋃
i∈I ī

(ni) for X(n).
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For a subset I := {i1, . . . , ik} ⊆ I we will use the notation nI := (ni1 , . . . , nik ) and write X I =
∏
i∈I Xi

and X nI+1
I =

∏
i∈I X

ni+1
i . For the Ith components of the process X and the complete nth-order derivative

X
(n), we write XI := (Xi1 , . . . , Xik ) and X(nI)

I := (X(ni1 )
i1

, . . . , X
(nik

)
ik

) respectively. Similarly, for the
values in X I and X nI+1

I , we write xI := (xi1 , . . . , xik ) ∈ X I and x(nI)
I := (x(ni1 )

i1
, . . . , x

(nik
)

ik
) ∈ X nI+1

I

respectively.
In this notation, a stochastic process X is a Cn-stochastic process, if its complete nth-order derivative

X
(n) exists and is continuous. Similarly, we call a stochastic process X a Cn-stochastic process, if its

complete nth-order derivative X(n) exists and is continuous. We denote by Cn(T,X ) the space of Cn-
stochastic processes. For T = [t0, t1] ⊆ R compact, the space Cn(T,X ) forms a standard measurable space
with Borel σ-algebra given by the Cn-norm

‖X‖(n) :=
∑
i∈I

ni∑
k=0

sup
t∈T
‖X(k)

i (t)‖ .

3.2 Structural dynamical causal models and their solutions

Informally, we think of an SDCM as an SCM where we replace the random variables of the SCM by
stochastic processes and their derivatives, and where each structural equation of the SCM becomes a random
differential equation of arbitrary order. This generalizes the class of SCMs to the continuous time domain
and enables a causal semantics for a broad range of random dynamical models. In this paper, we closely
follow the terminology of Bongers et al. [9] for SCMs and extend it to SDCMs.

Definition 3.1 (Structural dynamical causal model). A structural dynamical causal model (SDCM) is a
tuple7

R := 〈I,J ,X ,E,n,f ,E〉

where

– I is a finite index set for endogenous processes,
– J is a disjoint finite index set for exogenous processes,
– X =

∏
i∈I Xi is the product of the domains of the endogenous processes, where each domain Xi = Rdi ,

– E =
∏
j∈J Ej is the product of the domains of the exogenous processes, where each domain Ej = Rej ,

– n = (ni)i∈I ∈ NI0 is the order tuple,
– f : X n+1 × E → X is a measurable function that specifies the dynamic causal mechanism,
– E : T × Ω→ E is an exogenous stochastic process with independent components, that is, (Ej)j∈J is
independent.

The solutions of a structural dynamical causal model in terms of stochastic processes are defined by the
associated dynamic structural equations.

Definition 3.2 (Solution of an SDCM). A stochastic process X : T ×Ω→ X is a solution of the dynamic
structural equations (dynamic SEs) associated to SDCM R,

X = f(X(n)
,E) ,

if X is a Cn-stochastic process, and for P-almost every ω ∈ Ω the ordinary differential equations8

Xt(ω) = f
(
X

(n)
t (ω),Et(ω)

)
7 We often use boldface for variables that have multiple components, that is, which take values in a Cartesian product.
8 These equations are called implicit ordinary differential equations if the Jacobian matrix ∂f(x(n),e)

∂x(n) is nonsingular for
all its argument values in an appropriate domain, otherwise they are called differential-algebraic equations [2].
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hold for all t ∈ T .

The value ni of the order tuple n denotes the highest-order derivative of Xi that may occur in the dynamic
structural equations. Note that taking higher ni’s will in general reduce the set of possible solutions, due
to additional imposed smoothness constraints on the solutions. In contrast to the common way of writing
RDEs (see equation (1)), the (higher-order) derivatives of the endogenous processes of an SDCM always
appear on the right-hand side of the dynamic SEs.9 This notation explicitly allows us to model zeroth-order
dynamic structural equations, that is, equations that contain no derivatives of order one or higher, in other
words, random algebraic equations.

In particular, if all dynamic structural equations are of zeroth order and the exogenous stochastic
processes in the model are constant in time (that is, random variables), then the structural dynamical
causal model reduces to a structural causal model [see 9]. In contrast to [9], we define an SCM here in terms
of an exogenous random variable instead of an exogenous distribution.

Definition 3.3 (Structural causal model). A structural causal model (SCM) is a tuple

M := 〈I,J ,X ,E,f ,E〉 ,

such that 〈I,J ,X ,E,0,f ,E〉 is an SDCM with E a random variable.

That is, we can identify SCMs with certain special cases of SDCMs. Similarly, we can identify the solutions
of an SCM with the (constant) solutions of the corresponding SDCM. The following definition is equivalent
to Definition 3.2 when the latter is applied to an SCM.

Definition 3.4 (Solution of an SCM). A random variable X : Ω → X is a solution of the structural
equations associated to SCMM,

X = f(X,E) ,

if for P-almost every ω ∈ Ω
X(ω) = f(X(ω),E(ω))

holds.

Similar to the structural equations of an SCM [59, 74], the dynamic structural equations of an SDCM model
the underlying causal mechanisms in a structural way, that is, each dynamic structural equation expresses a
specific endogenous process (on the left-hand side) in terms of a dynamic causal mechanism depending on
certain processes and their derivatives (on the right-hand side). It is this additional structure, which allows
us to explicitly model the causal semantics, that distinguishes structural dynamical causal models from
dynamical models such as ODEs and RDEs.10 Allowing for zeroth and higher-order derivatives of Xi in the
dynamic structural equations gives rise to a broad range of random dynamical models that can be described
by an SDCM, ranging from ODEs (including first-order ODEs as in [55]), RDEs (as in Section 2.3) and
more general random dynamical systems such as partially equilibrated systems (as in [41]).

Example 3.5 (Damped coupled harmonic oscillator). Consider a one-dimensional system of d point
masses mi > 0 (i = 1, . . . , d) with positions Xi ∈ R, which are coupled by ideal springs, with spring
constants κi > 0 and equilibrium lengths Li > 0 (i = 1, . . . , d − 1), under influence of friction with
friction coefficients bi ≥ 0 (i = 1, . . . , d) (see Figure 3 left). This system can be modeled by the SDCM11

9 For every RDE of the form X ′ = f(X,E) with f and E continuous, there exists an SDCM with the same solutions:
X is a solution of the RDE if and only if it is a solution of the SDCM R with the dynamic SE X = X −X ′ + f(X,E),
as long as n = 1 (since all solutions of the RDE must be continuously differentiable).
10 The importance of assigning a differential equation to an endogenous variable was already observed in [55].
11 We abuse notation here; more formally, we should use an index set for J that is disjoint from I, for example,
{1̃, . . . , d̃− 1}.
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m1 m2 m3 m4 m5

L1 L2 L3 L4

m1 m2 m3 m4 m5

L1 L2 L3 L4

X1 = 0 X5 = L

Figure 3. Damped coupled harmonic oscillator model R of Example 3.5 (left) and the intervened model Rdo({1,5},(0,L))

of Example 3.8 (right), both for d = 5.

R = 〈{1, . . . , d}, {1, . . . , d − 1},Rd,Rd−1,n,f ,E〉 with order tuple n := (2, . . . , 2), where the exogenous
process E = L := (L1, . . . , Ld−1) is constant in time (that is, a random variable), and the causal mechanism
is specified by the dynamic structural equations

X1 = f1(X(n)
,L) := X2 − L1 −

b1
κ1
X ′1 −

m1
κ1

X ′′1

Xi = fi(X
(n)

,L) := κi
κi + κi−1

(Xi+1 − Li) + κi−1
κi + κi−1

(Xi−1 + Li−1)

− bi
κi + κi−1

X ′i −
mi

κi + κi−1
X ′′i (i = 2, . . . , d− 1)

Xd = fd(X(n)
,L) := Xd−1 + Ld−1 −

bd
κd−1

X ′d −
md

κd−1
X ′′d .

The motion of the masses, in terms of their positions Xi, velocities X ′i and accelerations X ′′i , is described
by a separate equation of motion for each mass. For the case d = 2, this SDCM R has the same solutions
as those described by the RDE in Example 2.1.

The following example motivates why we only consider processes as solutions of SDCMs in case they satisfy
the smoothness conditions.

Example 3.6 (Sufficient smoothness of the solutions). Let R = 〈{1}, ∅,X , E , n, f, E〉 be the SDCM with
X = R, E the singleton {∗}, n = 0, the dynamic causal mechanism f : X×E → X given by f(x, e) = x−x2+1,
and E the trivial exogenous process. The zeroth-order dynamic structural equation associated to R reads

X = X −X2 + 1 .

This dynamic structural equation does not depend on any exogenous process. The set of endogenous processes
X : T×Ω→ R that satisfy the dynamic structural equation consists of all stochastic processes in {−1, 1}T×Ω.
Most of the stochastic processes in {−1, 1}T×Ω are not continuous. The solutions of R are exactly those
processes in {−1, 1}T×Ω that are C0-stochastic processes. These are the processes that are constant in time,
that is, the random variables of {−1, 1}Ω. In particular, the solutions of the SDCM R correspond exactly to
the solutions of the SCM described by the above structural equation.

3.3 Interventions

Interventions on a structural dynamical causal model can be modeled in different ways. We consider
here a stochastic version of perfect interventions12 on the endogenous processes [23] that are analogous
to stochastic perfect interventions in structural causal models [22, 59]. A stochastic perfect intervention
on some endogenous process forces the intervened process to be equal to a given independent exogenous
process. More generally, we model a stochastic perfect intervention on a subset I := {i1, . . . , ik} ⊆ I of
the endogenous processes by forcing those processes XI to be equal to the intervened processes KI , by

12 These are also referred to as ideal, hard, structural, surgical, atomic [23] or independent [47] interventions.
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changing the model such that the corresponding dynamical structural equations become XI = KI . The
process KI is treated as an independent exogenous process, such that all its components Ki are mutually
independent and independent from all the other exogenous processes that were already present in the model
in the absence of the intervention. The dynamic causal mechanisms of the other endogenous processes I \ I
are untouched and their dynamics are still specified by the same dynamic structural equations associated to
those processes in the absence of the intervention, that is13

X\I = f\I(X
(n)

,E) .

This yields the following formal definition of an intervened structural dynamical causal model.

Definition 3.7 (Stochastic perfect intervention on an SDCM). Let R = 〈I,J ,X ,E,n,f ,E〉 be an
SDCM, I ⊆ I a subset, and KI : T × Ω → X I a stochastic process such that ((Ki)i∈I , (Ej)j∈J ) is
independent. The stochastic perfect intervention do(I,KI) maps R to the SDCM14

Rdo(I,KI) := 〈I, I ∪ J ,X ,X I × E,n, f̃ , (KI ,E)〉 ,

where the intervened causal mechanism f̃ : X n+1 × (X I × E)→ X is given by

f̃i(x(n), (eI , eJ )) =

{
fi(x(n), eJ ) i ∈ I \ I
ei i ∈ I .

(2)

We call a stochastic perfect intervention do(I,KI) a perfect intervention if KI is a deterministic stochastic
process (that is, if it does not depend on ω).

This definition explicitly exposes a hitherto implicit but crucial modeling assumption: exogenous processes
are not caused by endogenous processes. Indeed, no stochastic perfect intervention on any subset of the
endogenous processes will lead to a change in any of the exogenous processes.

Example 3.8. Consider the damped coupled harmonic oscillator represented by the SDCM R of Example 3.5.
Performing the perfect interventions on the masses m1 and md by fixing m1 and md to the walls at X1 = 0
and Xd = L > 0, respectively, (see Figure 3 (right)) yields the model Rdo({1,d},(0,L)) with the dynamic
structural equations 

X1 = 0

Xi = κi
κi + κi−1

(Xi+1 − Li) + κi−1
κi + κi−1

(Xi−1 + Li−1)

− bi
κi + κi−1

X ′i −
mi

κi + κi−1
X ′′i (i = 2, . . . , d− 1)

Xd = L .

It is clear from the definition that performing stochastic perfect interventions on disjoint subsets of the
endogenous processes commutes. In case of overlap, the dynamic structural equations of the overlapping
intervention targets are determined by the most recent intervention applied to them.

As a special case, Definition 3.7 reduces to the usual notion of (stochastic) perfect intervention on
SCMs [see 9].

Definition 3.9 (Stochastic perfect intervention on an SCM). LetM = 〈I,J ,X ,E,f ,E〉 be an SCM, I ⊆
I a subset, andKI : Ω→ X I a random variable such that ((Ki)i∈I , (Ej)j∈J ) is independent. The stochastic

13 For I ⊆ I we adopt the notation \I for I \ I.
14 We abuse notation here; more formally, we should make a disjoint copy Ĩ := {̃i : i ∈ I} and use Ĩ ∪ J as the new
exogenous index set instead of I ∪ J , to keep the endogenous indices I and the exogenous indices Ĩ ∪ J disjoint.
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perfect intervention do(I,KI) mapsM to the SCM

Mdo(I,KI) := 〈I, I ∪ J ,X ,X I × E, f̃ , (KI ,E)〉 ,

where f̃ is defined by equation (2).

This provides SDCMs with a causal semantics that is analogous to that of SCMs. The following example
illustrates how this resolves the ambiguity of the causal interpretation of the RDE of Example 2.2.

Example 3.10 (Ambiguous causal interpretation of RDEs). Consider the SDCM R of Example 3.5 for
d = 2, with dynamic structural equations given by

X1 = X2 − L1 −
b1
κ1
X ′1 −

m1
κ1

X ′′1

X2 = X1 + L1 −
b2
κ1
X ′2 −

m2
κ1

X ′′2 .

The solutions of R correspond exactly to the solutions of the RDE that describes the two masses attached to
a spring in Example 2.1. Fixing the mass m1 to the left wall at X1 = 0 (see Figure 2 (right)) by performing
the stochastic perfect intervention15 do(1,K1) with K1 = 0 on R gives the intervened model Rdo(1,0) with
dynamic structural equations given by

X1 = 0

X2 = X1 + L1 −
b2
κ1
X ′2 −

m2
κ1

X ′′2 .

The intervened model Rdo(1,0) has exactly the same solutions as the RDE in Example 2.2.
Consider now the SDCM R̃ that is the same as R except for its dynamic causal mechanism f̃ , for

which the associated dynamic structural equations are given by
X1 = X2 − L1 + b2

κ1
X ′2 + m2

κ1
X ′′2

X2 = X1 + L1 + b1
κ1
X ′1 + m1

κ1
X ′′1 .

Both models R and R̃ have the same solutions as those described by the RDEs in Example 2.1. However,
the intervened models Rdo(1,0) and R̃do(1,0) have different solutions. Only the model Rdo(1,0) describes the
expected physical behavior (see also Example 2.2).

Stochastic perfect interventions are only defined for the endogenous processes, but not for their higher-order
derivatives. The higher-order derivative processes in an SDCM are always obtained by differentiation of the
underlying endogenous processes and hence it suffices to define the stochastic perfect interventions only for
those underlying endogenous processes. Allowing for stochastic perfect intervention on both the endogenous
processes and some of their higher-order derivatives will generally lead to nonsensible causal behavior, as is
illustrated in the following example.

Example 3.11 (Modeling higher-order derivatives as separate endogenous processes). Suppose we model
the velocities X ′i of the positions Xi of the masses between the walls in the damped coupled harmonic
oscillator of Example 3.8 explicitly as separate endogenous processes Vi′ . We could attempt to model this
with an SDCM R̃ for which the dynamic structural equations are given by X1 = 0, Xd = L andXi = κi

κi + κi−1
(Xi+1 − Li) + κi−1

κi + κi−1
(Xi−1 + Li−1)− bi

κi + κi−1
Vi′ −

mi

κi + κi−1
V ′i′

Vi′ = X ′i

15 For convenience, we write do(i,Ki) for a stochastic perfect intervention do(I,KI) whenever I = {i} for some i ∈ I.
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for i = 2, . . . , d− 1. Performing a stochastic perfect intervention on both the position Xi and the velocity Vi′
of one of the masses between the walls (i ∈ {2, . . . , d− 1}) can lead to unphysical behavior. For example, the
perfect intervention do({2, 2′}, (0, 1)) gives an intervened SDCM with a solution that is physically impossible
if we keep interpreting Xi as the position and Vi′ the velocity of the ith mass.

This observation constitutes strong motivation for considering the higher-order derivatives X(ki)
i (up to

and including order ni) to be aspects of the endogenous process Xi rather than as “causally independent”
processes. Thereby, we circumvent modeling velocity as the (instantaneous) cause of position [as in 41], or
the other way around. The resulting modeling framework appears more natural than that of [55], which
is explicitly limited to first-order dynamics and cannot accommodate systems like the damped harmonic
oscillator as easily as SDCMs can, as it has to impose restrictions on the possible interventions to deal with
this problem.

The higher-order derivatives X(ki)
i do not always exist for a process Xi. For example, if we force the

mass m1 to follow a Brownian motion16 K1 in the spring model R of Example 3.10, then the intervened
model Rdo(1,K1) does not yield a solution (because X ′′1 needs to exist and be continuous, which is not the
case for X1 = K1). In practice, we therefore only consider stochastic perfect interventions do(I,KI) for
which KI is a CnI -stochastic process.

3.4 Graphs

We will now define a graphical representation of the structural properties of SDCMs that is inspired by the
graphical representation of SCMs [9, 59]. Where the graph of an SCM describes the functional relationships
between the random variables encoded by the structural equations, the graph of an SDCM expresses the
functional dependencies between the stochastic processes encoded by the dynamic structural equations.

Typically, for i ∈ I, the component fi of the dynamic causal mechanism f only depends on a subset of
the (derivatives of the) endogenous and exogenous processes that we call the functional parents of i.

Definition 3.12 (Functional and integrated parents). Let R = 〈I,J ,X ,E,n,f ,E〉 be an SDCM. For
k ∈ I(n) ∪ J and i ∈ I(n), we call

1. k a functional parent of i if and only if i ∈ I and there does not exist a measurable function17

f̃i : (X n+1)\k × E\k → Xi such that for all e ∈ E and for all x(n) ∈ X n+1

xi = fi(x(n), e) ⇐⇒ xi = f̃i((x(n))\k, e\k) ;

2. k an integrated parent of i if and only if there exists an ` ∈ I such that k = `(m`−1) and i = `(m`) for
some 0 < m` ≤ n`.

Exogenous processes have no functional and integrated parents by definition. The integrated parents denote
the differential relationships that are satisfied by the endogenous processes. That is, for every ` ∈ I and
0 < m` ≤ n` we have that `(m`−1) is an integrated parent of `(m`), which represents the differential
relationship

X
(m`)
` = d

dt
X

(m`−1)
` .

These differential relationships are absent for SCMs, because the endogenous variables are considered
static. In contrast to [41], we express the differential relationships between the endogenous processes by the

16 A stochastic process B on T = [0,∞) is called a Brownian motion if: (i) B0 = 0; (ii) B has independent, stationary
increments; (iii) Bt ∼ N (0, t) for all t > 0; (iv) B is continuous. In particular, B is not differentiable [see, for example,
Theorem 21.17 in 45].
17 For X n+1 =

∏
i(ki)∈I

(n) Xi, some subset I ⊆ I(n) and k ∈ I(n), we denote (X n+1)\I =
∏

i(ki)∈I
(n)
\I
Xi and

(X n+1)\k =
∏

i(ki)∈I
(n)
\{k}
Xi, and similarly for their elements.



16 S. Bongers, T. Blom, and J.M. Mooij, Causal Modeling of Dynamical Systems

X
(n1)
1 X

(n2)
2 X

(n3)
3 X

(n4)
4 X

(n5)
5

X1 X2 X3 X4 X5

L1 L2 L3 L4

X ′1 X ′2 X ′3 X ′4 X ′5

X ′′1 X ′′2 X ′′3 X ′′4 X ′′5

X
(n1)
1 X

(n2)
2 X

(n3)
3 X

(n4)
4 X

(n5)
5

X1 X2 X3 X4 X5

X ′1 X ′2 X ′3 X ′4 X ′5

X ′′1 X ′′2 X ′′3 X ′′4 X ′′5

Figure 4. Augmented graph (left) and graph (right) of the damped coupled harmonic oscillator model R of Example 3.5
for d = 5.

derivative operator, instead of the integration operator. In general, the integration operator of [41] is not
uniquely defined, since for a particular process there may exist several integrated processes differing by a
(possibly random) integration constant. The derivative of a process, however, is always a.s. uniquely defined,
if it exists. Hence, for a solution X of an SDCM we can always derive the higher-order derivatives of Xi
up to order ni by repeatedly applying the derivative operator. In this way, we can consider the complete
nth
i -order derivative X(ni)

i to encode aspects of the same endogenous process Xi.
The different parental relations can be expressed in a clustered mixed graph, where each cluster

represents a complete nth
i -order derivative.

Definition 3.13 (Graph and augmented graph). Let R = 〈I,J ,X ,E,n,f ,E〉 be an SDCM with order
tuple n. We define:

1. the augmented graph Ga(R) of R as the clustered mixed graph with nodes I(n) ∪ J partitioned into
clusters ī(ni) = {i(ki) : 0 ≤ ki ≤ ni} for i ∈ I and clusters {j} for j ∈ J , directed edges k l if and
only if k is functional parent of l in a different cluster, dashed directed edges k l if and only if k is a
functional or integrated parent of l in the same cluster;

2. the graph G(R) of R as the clustered mixed graph with nodes I(n) partitioned into clusters ī(ni) =
{i(ki) : 0 ≤ ki ≤ ni} for i ∈ I, directed edges k l if and only if k is functional parent of l in a
different cluster, dashed directed edges k l if and only if k is a functional or integrated parent of l
in the same cluster, and bidirected edges k l if and only if there exists a j ∈ J that is a functional
parent of both k and l.

The augmented graph differs from the graph in that it gives an explicit representation of the exogenous
processes rather than an implicit one using bidirected edges. The augmented graph contains no directed edge
pointing towards an exogenous process node. The clusters ī(ni) ∈ I(n) for i ∈ I and {j} for j ∈ J of the
(augmented) graph of an SDCM refer to the complete nth

i -order derivative X(ni)
i and Ej respectively, and

are represented by a box around the nodes of the cluster. The graph and augmented graph are illustrated18

in Figure 4 for the damped coupled harmonic oscillator model of Example 3.5, where the white and gray
nodes represent the endogenous and exogenous processes, respectively. Between the nodes of different
clusters there are only functional parental relations. Within a cluster, the higher-order derivatives i(ki) for
ki > 0 of the endogenous processes i ∈ I have no functional parents, but have only integrated parents.

18 For visualizing the graphs we stick to the common convention of using stochastic processes and random variables
with the index as a subscript, instead of using the indices themselves (even when no solutions are defined).
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Figure 5. Augmented graph (left) and graph (right) of the intervened damped coupled harmonic oscillator model
Rdo({1,5},(0,L)) of Example 3.8 for d = 5.

However, any node i(ki) with ki > 0 may be a functional parent of another node j ∈ I; see, for example,
the graph of the SDCM R̃ in Example 3.10.19

In particular, this definition of the (augmented) graph of an SDCM reduces to the usual notion
of the (augmented) graph of an SCM if we ignore the clusters. Indeed, the graph G(M) of an SCM
M = 〈I,J ,X ,E,f ,E〉 is a mixed graph with nodes I, directed edges i j if and only if i is a functional
parent of j with i 6= j, dashed directed edge i i if and only if i is a functional parent of itself, and
bidirected edges i j if and only if there exists a k ∈ J that is a functional parent of both i and j, where
we apply Definition 3.12 of a functional parent toM (note that by definition, an SCM has no integrated
parents). The augmented graph Ga(M) of an SCMM is defined analogously, but the bidirected edges are
replaced by exogenous nodes in J with outgoing directed edges to their functional children.

On the graphs of an SDCM, the operation of a stochastic perfect intervention acts in a simple way.

Proposition 3.14 (Graphs of the intervened SDCM). Let R be an SDCM and do(I,KI) a stochastic
perfect intervention for I ⊆ I a subset and KI an independent stochastic process. The graph G(Rdo(I,KI))
of the intervened SDCM Rdo(I,KI) is the graph G(R), but without the edges that have an arrowhead
pointing towards a node in the intervention target set I. A similar statement holds for the augmented graph
Ga(Rdo(I,KI)).

The graph and augmented graph of the damped coupled harmonic oscillator model of Example 3.8, where
we performed the perfect intervention of fixing the endpoint masses to the walls, are illustrated in Figure 5.
Performing a stochastic perfect intervention on an endogenous process removes all the (bi-)directed edges
that point towards the intervened process, including the dashed directed edges within the cluster. The dashed
directed edges within the cluster that correspond to the integrated parents, that is, those pointing to a
higher-order derivative, indicate that the higher-order derivatives of the intervened endogenous process need
to exist for any solution of the model. Hence, we view a stochastic perfect intervention on an endogenous
process as an intervention on the whole cluster of the intervened process. We say that there is a directed
edge from cluster I to cluster J if there exists a directed edge from some i ∈ I to some j ∈ J . Since a
stochastic perfect intervention can be seen as an intervention on the entire associated cluster, the directed
edges between the clusters express the direct causal relationships between the clusters. We call a dashed
directed edge i i in the graph of an SDCM (that is, where i is a functional parent of itself) a self-cycle

19 A more realistic example could be Faraday’s law of induction. In terms of individual point charges: a moving point
charge generates a magnetic field, which exerts a force on some other point charge that is proportional to the velocity of
the moving point charge.
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Figure 6. Graphs of the price, supply and demand model R (left) of Example 3.15 and the corresponding equilibrated
modelMR (right) of Example 4.17.

at i. An example of a model where a self-cycle arises is the well-known market equilibrium model from
economics, which has been thoroughly discussed in the literature [see, for example, 64].

Example 3.15 (Price, supply and demand). Let XP denote the price, XS denote the supply and XD the
demand of a quantity of a product. The following dynamic structural equations specify an SDCM R that
describes how the demanded and supplied quantities are determined by the price, and how price adjustments
occur in the market: 

XP = XP + λ(XD −XS)−X ′P
XS = βSXP + ES

XD = βDXP + ED ,

where n := (nP , nS , nD) = (1, 0, 0). Here, ES and ED are the exogenous influences on the supply and
demand respectively, βS > 0 is the reciprocal of the slope of the supply curve, βD < 0 is the reciprocal of the
slope of the demand curve, and λ > 0 models how fast the price adjusts to market conditions. The graph of
this model is depicted in Figure 6 (left) and contains a self-cycle at P .

We already encountered several instances of linear SDCMs (for example, in Examples 3.5 and 3.15).

Definition 3.16 (Linear SDCM). We call an SDCM R linear, if the dynamic causal mechanism f :
X n+1 × E → X is of the form

f(x(n), e) := Bx(n) + Γe ,

where B ∈ RI×I
(n)

and Γ ∈ RI×J are matrices.

For a linear SDCM R, a nonzero coefficient Bik for i, k ∈ I(n) such that i 6= k corresponds to a directed
edge k i in the graph G(R) (and augmented graph Ga(R)) if i lies in a different cluster than k, and a
dashed directed edge k i if i lies in the same cluster as k. A coefficient Bii = 1 for i ∈ I corresponds to a
self-cycle i i. There is a bidirected edge i k in the graph G(R) for i, k ∈ I with i 6= k if and only if
there exists a j ∈ J for which Γij 6= 0 and Γkj 6= 0. In the augmented graph Ga(R), there is a directed
edge j i for i ∈ I, j ∈ J if and only if Γij 6= 0.

3.5 Initial conditions

In contrast to RDEs, SDCMs allow for both zeroth and higher-order differential equations. For this reason,
the dynamic SEs of SDCMs admit problems that can be quite different from those of RDEs. For example,
the order of the initial conditions for SDCMs does not directly relate to the order of the SDCM.

Definition 3.17 (Initial condition). Let R be an SDCM, I ⊆ I a subset of the endogenous variables,
mI = (mi)i∈I ∈ NI0 an order tuple, t0 ∈ T and X(mI)

I,[0] a random variable taking values in X mI+1
I . We say
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that a solution X of R has initial condition (t0,X
(mI)
I,[0] ) if X(mI)

I (t0) exists and satisfies

X
(mI)
I (t0) = X

(mI)
I,[0]

almost surely. Here, mI is called the order of the initial condition; for I = I we also refer to the initial
condition as a full initial condition, and for I ( I as a partial initial condition. A solution X of R with
initial condition (t0,X

(mI)
I,[0] ) is called almost surely unique if for every solution Y of R with initial condition

(t0,X
(mI)
I,[0] ) we have X = Y a.s..

For an SDCM for which the dynamic SEs can be rewritten into the form of a system of nth
i -order RDEs

(with all ni ≥ 1), the full initial conditions of order n− 1 of the SDCM correspond exactly with the usually
considered initial conditions of this system of RDEs. For example, the solutions of the damped coupled
harmonic oscillator of Example 3.5 can be a.s. uniquely determined by the full initial conditions of order
n− 1 (see also Corollary 3.28). In general, however, the solutions of an SDCM may not be a.s. uniquely
determined by the full initial conditions of order n− 1, as the following example illustrates.

Example 3.18 (The order of the SDCM and of the initial conditions). Let R = 〈{1}, ∅,X , E , n, f, E〉 be
the SDCM with X = R, E = {∗}, n = 1, the dynamic causal mechanism f : X 2 × E → X given by
f(x(1), e) = x− x2 + (x′)2, and E the trivial exogenous process. The dynamic structural equation associated
to R reads

X = X −X2 + (X ′)2 .

This dynamic SE cannot be written as a (first-order) RDE of the form (1), since it cannot be a.s. uniquely
solved for X ′. “Solving for” X ′ leads to two RDEs that are of the form (1), namely

X ′ = X or X ′ = −X .

The solutions of these RDEs are given by Xt = X[0]e
t and Xt = X[0]e

−t respectively, where (0, X[0]) denotes
the initial condition for both RDEs. These processes are also solutions of the SDCM, and one can show
that all (continuously differentiable) solutions of R are of this form. Note that, in principle, we could
well have taken the order n arbitrarily high without restricting the set of solutions, because the solutions
are C∞-stochastic processes. If we consider the solutions of R with an initial condition (0, X(0)

[0] ) of order
0, then there are always two solutions with this initial condition that are not a.s. equal to each other,
unless X(0)

[0] = 0. For the initial condition (0, X(1)
[0] ) of order 1, we can specify the solution X a.s. uniquely,

if it exists. Take for example X(1)
[0] = (X[0], X[0]), then the solution X with this initial condition is a.s.

uniquely given by Xt = X[0]e
t. However, an arbitrary initial condition (0, X(m)

[0] ) of order m greater or
equal to 1 may well be inconsistent with the dynamic structural equations. For example, the initial condition
X

(1)
[0] = (X[0], 2X[0]) will not have a solution for X[0] 6= 0, since the initial condition X(1)

[0] := (X(0)
[0] , X

(1)
[0] )

does not satisfy (X(0)
[0] )2 = (X(1)

[0] )2.

This example illustrates that an arbitrary imposed initial condition may well be inconsistent with the
dynamic structural equations.

Definition 3.19 (Consistent initial condition). Let R be an SDCM and mI = (mi)i∈I ∈ NI0 an order
tuple for I ⊆ I. We call an initial condition (t0,X

(mI)
I,[0] ) for R consistent if there exists a solution of R

with this initial condition.

In other words, for an initial condition there only exists a solution if and only if the initial condition is
consistent. In particular, zeroth-order dynamic structural equations may constrain the initial conditions (of
any order) for which a solution exists.
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Example 3.20 (Zeroth-order dynamic structural equation constraint). Consider the price, supply and de-
mand model R of Example 3.15 that has order tuple n = (nP , nS , nD) = (1, 0, 0). The zeroth-order dynamic
structural equations of R are those associated with the supply XS and the demand XD processes. Since
the solutions of R satisfy these zeroth-order dynamic structural equations almost surely at every point in
time, the consistent full initial conditions (t0,X

(m)
[0] ) also need to satisfy the zeroth-order dynamic structural

equations almost surely, that is, X[0],S = βSX[0],P + (ES)t0 and X[0],D = βDX[0],P + (ED)t0 almost surely.

By definition, the consistent full initial conditions always need to satisfy the zeroth-order dynamic structural
equations of the SDCM. Initial conditions of an order greater than or equal to the order of the SDCM need
to satisfy the corresponding dynamic structural equations of the SDCM, as we already saw in Example 3.18.
Additionally, in general, SDCMs that have higher-order dynamic structural equations may contain hidden
constraints20 as the following example illustrates.

Example 3.21 (Hidden constraint). Consider the SDCM R = 〈{1, 2}, {3},R2,R,n,f , E〉 with n = (0, 1),
the dynamic causal mechanism f : X n+1 × E → X given by f1(x(n), e) := x′2 and f2(x(n), e) := e, and
E := E3 some exogenous process. The dynamic structural equations associated to R read{

X1 = X ′2

X2 = E .

This model cannot be written as an RDE,21 since the Jacobian matrix

∂f(x(n), e)
∂x(n) :=

[
∂f1
∂x1

∂f1
∂x′2

∂f2
∂x1

∂f2
∂x′2

]
=
[
0 1
0 0

]
is singular everywhere. In order to solve the dynamic SEs we can differentiate the second equation with
respect to time to get

X1 = X ′2 = E′ .

This SDCM only has solutions if the derivative E′ exists. If it exists, then the solutions are given by X1 = E′

and X2 = E. Thus, the solutions satisfy not only the obvious constraint X2 = E, but also need to satisfy
the “hidden” constraint X1 = E′. That a solution of the model depends on a derivative of the exogenous
variable E cannot happen in a system of RDEs. These constraints imply that every consistent full initial
condition (t0,X

(m)
[0] ) of R needs to satisfy X[0],1 = E′t0 and X[0],2 = Et0 almost surely.

After performing a stochastic perfect intervention do(I,KI) on an SDCM R, all consistent full initial
conditions (t0,X(m)

[0] ) must satisfy X(mI)
[0],I = K

(mI)
I almost surely. For example, the consistent initial

conditions (t0, (X
(1)
[0],0, . . . , X

(1)
[0],d)) for the SDCM R in Example 3.8 need to satisfy X(1)

[0],0 = (0, 0) and

X
(1)
[0],d = (L, 0) after the perfect intervention do({1, d}, (0, L)) on the model.
In summary, Examples 3.18, 3.20 and 3.21 show that the initial (random) value problems associated to

dynamic SEs of an SDCM behave differently compared to those of RDEs, as not every initial condition is
consistent, and the solutions may involve (higher-order) derivatives of the exogenous process E.

3.6 Existence and uniqueness of the solutions

For RDEs, there exist sufficient conditions for the existence and uniqueness of the solutions with an
initial condition, which are similar to the existence and uniqueness theorems for initial value problems

20 We refer the reader to the literature on differential-algebraic equations for more details on this, for example, [2].
21 Observe that a higher-order RDE is of the form X(n) = g(X(n−1)

,E) for some measurable function g : X n×E → X
and stochastic process E : T × Ω→ E.
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for ODEs [11, 12, 46]. No similar theorem is known in such generality for dynamic SEs, although there
are some weaker results of this type for differential-algebraic equations [2]. In this subsection, we provide
sufficient conditions for the existence and uniqueness of solutions with a specified initial condition, both
locally (considering only a subset of the stochastic processes) and globally.

We start with an assumption on the form of the dynamic SEs for a subset of endogenous processses
O ⊆ I. This assumption entails that for some subset I ⊆ O, the dynamic SEs corresponding to I can be
written as an RDE, while the remaining dynamic SEs for the complement O \ I can be solved uniquely
for their corresponding endogenous processes in terms of the other processes appearing in these dynamic
SEs. Additionally, smoothness conditions are imposed on exogenous processes and on dynamical causal
mechanisms to ensure the required smoothness of the solution.22

Assumption 1-(I ⊆ O). For the SDCM R and subsets I ⊆ O ⊆ I, writing J := O \ I and P :=
pacol(Ga(R))(O) \ O with col(Ga(R)) the “collapsed” graph,23 the following both hold:

1. the order tuple nI ≥ 1;
2. there exist continuous functions gI : X nI

I ×X J×X nP +1
P ×EP → X I and gJ : X nI

I ×X nP +1
P ×EP → X J

such that24 for all e ∈ E and for all x(n) ∈ X n+1

x
(nI)
I = gI(x(nI−1)

I ,xJ ,x
(nP )
P , eP ) ⇐⇒ xI = fI(x(n), e)

and
xJ = gJ (x(nI−1)

I ,x
(nP )
P , eP ) ⇐⇒ xJ = fJ (x(n), e) .

In particular, under Assumption 1-(I ⊆ I) the dynamic structural equations of R are equivalent to an
RDE. For an SDCM that satisfies Assumption 1-(I ⊆ I) with I a strict subset of I, we can eliminate the
processes XI\I by substitution, giving an RDE for the endogenous processes I of the form

X
(nI)
I = gI(X(nI−1)

I , gI\I(X
(nI−1)
I ,E),E) . (3)

Every solution of the original SDCM satisfies this RDE, and every solution of this RDE induces a solution
of the SDCM, if it is sufficiently smooth. For O ( I we can think of Assumption 1-(I ⊆ O) as applying this
assumption to the subsystem with endogenous processes O, treating the remaining endogenous processes
in I \ O as external inputs of the subsystem. This will turn out to be useful in Section 3.7 for proving a
Markov property.

Example 3.22. Consider the price, supply and demand model of Example 3.15. This model satisfies
Assumption 1-(I ⊆ O) for I = {P} and O = {S, P,D}. Substituting the zeroth-order dynamic structural
equations into the first-order equation of XP yields the RDE

X ′P = λ(βD − βS)XP + λ(ED − ES) . (4)

If instead we take O = {S, P}, then this yields the RDE

X ′P = λ(XD − βSXP − ES) ,

where now XD is treated as an external input of the subsystem O.

22 The required smoothness of the solutions implies that we need to make assumptions about the smoothness of the
exogenous processes and the dynamical causal mechanisms in the model. The assumption we made here is still rather
crude in the sense that it suffices, but it is not at all necessary; if desired, one can arrive at weaker conditions by
carefully tracing through the graph how the required smoothness of the solution can be guaranteed by demanding
certain smoothness of each exogenous process and each dynamical causal mechanism individually.
23 We will abuse notation by using the notation col(Ga(R)) for the graph that is isomorphic to the “collapsed” mixed
graph of Ga(R) where the nodes are labeled by I ∪ J instead of {i(ni) : i ∈ I} ∪ {{j} : j ∈ J}.
24 For a subset P ⊆ I ∪ J , we use the convention that we write X(nP )

P and EP instead of X(nP∩I)
P∩I and EP∩J

respectively, and adopt a similar notation for variables and their spaces.
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We formalize the notions of the existence and uniqueness of solutions of a subsystem of the SDCM as
follows.

Definition 3.23 (Unique solvability of an initial value problem). Let R = 〈I,J ,X ,E,n,f ,E〉 be an
SDCM, I ⊆ O ⊆ I be subsets such that nI ≥ 1, J := O \ I and P := pacol(Ga(R))(O) \ O. We call the
initial value problem 〈R, I,O〉 (uniquely) solvable if for any partial initial condition (t0,X(nI−1)

I,[0] ) and any
CnP -stochastic process XP , there exists an (a.s. unique) CnO -stochastic process XO that is a solution of
the dynamic structural equations25

XO = fO(X(nO)
O ,X

(nP )
P ,EP ) ,

with partial initial condition (t0,X(nI−1)
I,[0] ).

As a special case, we obtain the notion of unique solvability for SCMs [9], where initial values play no role.

Definition 3.24 (Unique solvability of SCMs). LetM := 〈I,J ,X ,E,f ,E〉 be an SCM, O ⊆ I a subset
and P := pacol(Ga(R))(O) \ O. We say thatM is uniquely solvable w.r.t. O if for any value xP ∈ XP and
any value eP ∈ EP , there exists an a.s. unique solution xO ∈ XO of the structural equations

xO = fO(xO,xP , eP ) .

Note that this corresponds to unique solvability of the initial value problem 〈M, ∅,O〉. Since SDCMs that
satisfy Assumption 1-(I ⊆ O) have the property that they determine an RDE on the subset I, we can apply
the existence and uniqueness results of RDEs on this subsystem, which leads to the following result.

Lemma 3.25. Let R be an SDCM that satisfies Assumption 1-(I ⊆ O) for subsets I ⊆ O ⊆ I. Let
J := O \ I and P := pacol(Ga(R))(O) \ O. If the following three conditions hold:

1. the exogenous process EP is continuous;
2. the composition of gI with gJ is uniformly Lipschitz in its I-input, that is, there exists a constant26

κ > 0 such that for all x(nI−1)
I ,y

(nI−1)
I ∈ X nI

I , for all x(nP )
P ∈ X nP +1

P and for all eP ∈ EP the
condition∥∥gI(x(nI−1)

I , gJ (x(nI−1)
I ,x

(nP )
P , eP ),x(nP )

P , eP
)
− gI

(
y

(nI−1)
I , gJ (y(nI−1)

I ,x
(nP )
P , eP ),x(nP )

P , eP
)∥∥

≤ κ‖x(0)
I − y

(0)
I ‖

is satisfied, where ‖ · ‖ denotes the Euclidean norm on X I ;
3. for each j ∈ J , either nj = 0, or gj only depends on eP (that is, gj(x(nI−1)

I ,x
(nP )
P , eP ) = g̃j(eP ) for

g̃j : EP → X j) and gj(EP ) is a Cnj -stochastic process;

then 〈R, I,O〉 is uniquely solvable.

This lemma guarantees the existence and uniqueness of solutions for a large class of (subsystems of) SDCMs.
Indeed, it states that for any partial initial condition (t0,X

(nI−1)
I,[0] ) and any CnP -stochastic process XP

there exists an a.s. unique solution XO of the dynamic structural equations

XO = fO(X(nO)
O ,X

(nP )
P ,EP ) ,

with initial condition(
X

(nI−1)
I (t0),XJ (t0)

)
=
(
X

(nI−1)
I,[0] , gJ

(
X

(nI−1)
I,[0] ,X

(nP )
P (t0),EP (t0)

))

25 These equations are equivalent to the dynamic structural equations (see Definition 3.12).
26 This result can be weakened slightly by making κ dependent on t ∈ T , ω ∈ Ω and the parent processes X(nP−1)

P and
EP (see also Theorem 1.2 in Bunke [11] or Theorem 3.2 in Neckel and Rupp [58]).
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at t0. In particular, this provides a sufficient condition for an initial condition to be consistent (see
Definition 3.19).

In general, Assumption 1-(I ⊆ O) for an SDCM is not preserved under a stochastic perfect intervention.
Consider for example the SDCM R̃ in Example 3.10 which satisfies Assumption 1-(I ⊆ I). Performing the
intervention do(1, 0) on this model yields a model that does not satisfy Assumption 1-(I ⊆ I) for any I ⊆ I.
Under the following stronger assumption the SDCM will satisfy Assumption 1-(I ⊆ I) for some I ⊆ I after
every stochastic perfect intervention.

Assumption 2-(I ⊆ O). For the SDCM R and subsets I ⊆ O ⊆ I, writing J := O \ I and P :=
pacol(Ga(R))(O) \ O, the following all hold:

1. the order tuple nI ≥ 1;
2. there exist continuous functions gi : Xni

i × XO\i × X nP +1
P × EP → Xi for all i ∈ I and gj :

X I ×X nP +1
P ×EP → Xj for all j ∈ J such that for all i ∈ I, all j ∈ J , all e ∈ E and all x(n) ∈ X n+1,

x
(ni)
i = gi(x(ni−1)

i ,xO\i,x
(nP )
P , eP ) ⇐⇒ xi = fi(x(n), e)

and
xj = gj(xI ,x(nP )

P , eP ) ⇐⇒ xj = fj(x(n), e) .

In particular, Assumption 2-(I ⊆ O) implies Assumption 1-(I ⊆ O).

Proposition 3.26 (Assumption 2-(I ⊆ O) under stochastic perfect intervention). Let R be an SDCM that
satisfies Assumption 2-(I ⊆ O) for subsets I ⊆ O ⊆ I. Then, for a stochastic perfect intervention do(L,KL)
for L ⊆ O, the intervened SDCM Rdo(L,KL) satisfies Assumption 2-(I \ L ⊆ O).

This proposition shows the usefulness of Assumption 2-(I ⊆ O), in that it gives a guarantee that after any
stochastic perfect intervention on a subset of O, Assumption 1-(Ĩ ⊆ O) is satisfied for some Ĩ ⊆ O, and
hence Lemma 3.25 can be applied.

Linear SDCMs
Observe that a linear SDCM that satisfies Assumption 1-(I ⊆ O) is of the following form.

Proposition 3.27. Let R be a linear SDCM, I ⊆ O ⊆ I be subsets, and let J := O \ I and P :=
pacol(Ga(R))(O) \ O. Then R satisfies Assumption 1-(I ⊆ O) iff the dynamic causal mechanism fO of R
restricted to O is of the formfI(x

(n), e) := BII(nI )x
(nI)
I +B

II
(nI−1)x

(nI−1)
I +BIJxJ +B

IP
(nP )x

(nP )
P + ΓIPeP

fJ (x(n), e) := B
JI

(nI−1)x
(nI−1)
I +BJJxJ + xJ +B

JP
(nP )x

(nP )
P + ΓJPeP ,

where BII(nI ) and BJJ are invertible matrices.

In particular, for linear SDCMs, Lemma 3.25 gives the following useful corollary.

Corollary 3.28. Let R be a linear SDCM, I ⊆ O ⊆ I be subsets, and let J := O \ I and P :=
pacol(Ga(R))(O) \ O. If

1. R satisfies Assumption 1-(I ⊆ O);
2. EP is continuous;
3. for each j ∈ J , either nj = 0, or (B−1

JJ )jJBJI (nI−1) = 0, (B−1
JJ )jJBJP (nP ) = 0 and (B−1

JJ )jJΓJPEP
is a Cnj -stochastic process;

then 〈R, I,O〉 is uniquely solvable.
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Examples of linear SDCMs that satisfy Assumption 1-(I ⊆ I) for some subset I are the SDCMs R of
Example 3.5 and Rdo({1,d},(0,L)) of Example 3.8, which satisfy Assumption 1-(I ⊆ I) and 1-(I \{1, d} ⊆ I),
respectively. As the other conditions in Corollary 3.28 are fulfilled, they both have an a.s. unique solution
for each respective partial initial condition.

In particular, for linear SDCMs that satisfy Assumption 2-(I ⊆ O) we have the following corollary.

Corollary 3.29. Let R be a linear SDCM, I ⊆ O ⊆ I be subsets, and let J := O \ I and P :=
pacol(Ga(R))(O) \ O. If

1. R satisfies Assumption 2-(I ⊆ O),
2. EP is continuous;
3. for each j ∈ J , either nj = 0, or (B−1

JJ )jJBJI (nI−1) = 0, (B−1
JJ )jJBJP (nP ) = 0 and (B−1

JJ )jJΓJPEP
is a Cnj -stochastic process;

then 〈Rdo(L,KL), I \L,O〉 is uniquely solvable for any stochastic perfect intervention do(L,KL) with L ⊆ O
and KL a CnL-stochastic process.

Examples of linear SDCMs that satisfy Assumption 2-(I ⊆ I) for some subset I are the damped coupled
harmonic oscillator of Example 3.5 and the price, supply and demand model of Example 3.15. Hence,
the existence of solutions is guaranteed for both models after any (sufficiently smooth) stochastic perfect
intervention, and the solutions are a.s. uniquely determined by the respective partial initial conditions.

Nonlinear SDCMs
An example of an SDCM that is not linear but satisfies Assumption 2-(I ⊆ O) is the bathtub model
discussed in [41]. The existence and uniqueness conditions apply to this particular model.

Example 3.30 (Bathtub model). Water enters a bathtub from the faucet at a certain rate XQi
and exits

the bathtub via the drain at a rate XQo
. The drain has a diameter of XK , the depth of the water is XD and

the pressure at the base of the drain is XP . Iwasaki and Simon [41] propose to model this as a dynamical
system with (random) differential equations given by

XK = k0

XQi
= q0

X ′P = α2(α4XD −XP )
X ′Qo

= α3(α1XKXP −XQo
)

X ′D = α0(XQi
−XQo

) ,

(5)

where k0, q0 ∈ R>0 and α = (α0, α1, . . . , α4) ∈ R5
>0 are some constants. We consider the dynamic causal

mechanism 

fK(x(n), e) := eK

fQi
(x(n), e) := eQi

fP (x(n), e) := α4xD − α−1
2 xP ′

fQo
(x(n), e) := α1xKxP − α−1

3 xQ′o

fD(x(n), e) := xD + α0(xQi
− xQo

)− xD′ .
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D

)) :

Figure 7. Graphs of the bathtub model: original model R of Example 3.30 (top left), the equilibrated modelMR (top
right), the intervened model Rdo(D,KD) (bottom left), and the intervened and equilibrated modelMRdo(D,KD)

(bottom
right) of Example 4.19.

with order tuple n := (nK , nQi
, nP , nQo

, nD) = (0, 0, 1, 1, 1) and the exogenous processes are given by
EK(t, ω) := k0, EQi

(t, ω) := q0. The dynamic structural equations of this SDCM, denoted by R, read

XK = EK

XQi
= EQi

XP = α4XD − α−1
2 X ′P

XQo
= α1XKXP − α−1

3 X ′Qo

XD = XD + α0(XQi
−XQo

)−X ′D ,

and have the same solutions as the system of equations (5) (see also Footnote 9). The corresponding
SDCM graph is depicted in Figure 7 (top left). This SDCM of the bathtub model satisfies Assumption 2-
({P,Qo, D} ⊆ I) with I = {K,Qi, P,Qo, D}, and hence, after any sufficiently smooth stochastic perfect
intervention do(L,KL) with L ⊆ I, the intervened bathtub model Rdo(L,KL) satisfies Assumption 2-
({P,Qo, D} \ L ⊆ I). Since the induced RDE of the intervened model Rdo(L,KL) on the endogenous
processes {P,Qo, D} \ L is linear in these endogenous processes, it follows from Lemma 3.25 that (for
sufficiently smooth exogenous process KL) Rdo(L,KL) has an a.s. unique solution for any partial initial
condition (t0,X

(n{P,Qo,D}\L)
{P,Qo,D}\L,[0]).

3.7 Markov property for SDCMs with initial conditions

Theoretical results of key importance concerning SCMs are their so-called Markov properties, which allow
to read off conditional independencies in the solutions of an SCM from the graph of the SCM [9, 31]. The
two most well-known Markov properties for SCMs are the d-separation criterion (which applies to acyclic
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SCMs, amongst others), and the σ-separation criterion (which applies for example to the more general class
of simple SCMs that can contain causal cycles). Here we derive a Markov property for SDCMs with initial
conditions that is analogous to the σ-separation criterion for SCMs.

Key to proving Markov properties is the existence and uniqueness of solutions for each subsystem
consisting of one strongly connected component of the collapsed graph of the SDCM, augmented with initial
conditions. By reinterpreting continuous stochastic processes as random variables taking values in a space
of continuous functions, we can make use of the existing σ-separation Markov property for SCMs to derive
Markov properties for SDCMs.

To avoid complicating matters further with smoothness assumptions, we will assume that the order
tuple is as small as possible.

Definition 3.31 (Tight order tuple). Let R = 〈I,J ,X ,E,n,f ,E〉 be an SDCM. Its order tuple n is
called tight if for each i ∈ I, either ni = 0, or ni > 0 and the edge i(ni) i(0) appears in Ga(R).

Note that the order tuple is tight if and only if each cluster i(ni) in the augmented graph Ga(R) forms a
cycle in the cluster, that is, if there is a directed path in the cluster from each node in the cluster to any
other node in the cluster.

Definition 3.32 (Augmented collapsed graph for SDCMs). Let R = 〈I,J ,X ,E,n,f ,E〉 be an SDCM
with tight order tuple. We define the augmented collapsed graph G+

[0](R) of R as the directed graph with
nodes I ∪ J ∪ I[0], where I[0] := {i[0] : i ∈ I : ni ≥ 1}, directed edges k i (but dashed i i if k = i) if
either k(mk) ∈ I(n) is functional parent of i ∈ I for some mk or k ∈ J is functional parent of i ∈ I, and
additional directed edges i[0] i for those i ∈ I with i[0] ∈ I[0].

The nodes i[0] represent partial initial conditions (t0, X(ni−1)
[0],i ), while the nodes in I∪J represent endogenous

stochastic processes Xi for i ∈ I, and exogenous stochastic processes Ej for j ∈ J . The augmented collapsed
graph of an SDCM (with tight order tuple) is similar to its augmented graph, except that clusters are
collapsed and nodes representing initial conditions have been added. Figure 8 (top right) shows the
augmented collapsed graph for the bathtub model of Example 3.30, and for comparison, the augmented
graph is also shown (top left).

We can now prove that under conditions that guarantee the existence and uniqueness of a solution
locally for each strongly connected component of the augmented collapsed graph, there exists a global
solution that is unique and satisfies the σ-separation criterion with respect to the augmented collapsed
graph.

Theorem 3.33 (Markov property for SDCMs with initial conditions). Let R = 〈I,J ,X ,E,n,f ,E〉 be
an SDCM with tight order tuple. Suppose that for each strongly connected component S ⊆ I of G+

[0](R), R
satisfies Assumption 1-(IS ⊆ S) for some subset IS ⊆ S and 〈R, IS , S〉 is uniquely solvable. Then for any
partial initial condition

(
t0, (X(ni−1)

[0],i )i∈I[0]

)
, the SDCM R has an a.s. unique solution with that partial

initial condition. If (X(ni−1)
[0],i )i∈I[0] is independent, and independent of E, the solution X satisfies the

following Markov property:
A

σ
⊥

G+
[0](R)

B |C =⇒ ZA ⊥⊥ ZB |ZC

for all subsets of nodes A,B,C of G+
[0](R), where ZA := (XA∩I ,X

(nA∩I[0] )
[0],A∩I[0]

,EA∩J ) for A ⊆ I ∪ I[0] ∪ J .

The conditional independence in this Markov property requires to interpret the endogenous process X as
a random element of Cn(T,X ) and the exogenous process E as a random element of C0(T,E). In other
words, we may conclude the independence of entire processes (and initial conditions), conditional on entire
processes (and initial conditions).
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We can extend this result to obtain a Markov property for the solutions evaluated at times t0 and t1.
For this, we extend the graph with nodes that correspond to evaluating the endogenous processes at time t1.

Definition 3.34 (Evaluated augmented collapsed graph for SDCMs). Let R = 〈I,J ,X ,E,n,f ,E〉 be an
SDCM with tight order tuple. We define the evaluated augmented collapsed graph G+

[0]...[1](R) of R as the
augmented collapsed graph G+

[0], extended with additional nodes I[1] := {i[1] : i ∈ I} and directed edges
i i[1] for i ∈ I.

The additional nodes in the evaluated augmented collapsed graph G+
[0]...[1](R) correspond with the evaluation

of a process at time t1, that is, i[1] corresponds with X
(ni)
i (t1). Figure 8 (bottom left) shows the evaluated

augmented collapsed graph for the bathtub model of Example 3.30. We get the following corollary almost
for free.

Corollary 3.35. Under the assumptions of Theorem 3.33, the following Markov property also holds:

A
σ
⊥

G+
[0]...[1](R)

B |C =⇒ ZA ⊥⊥ ZB |ZC

for any subsets of nodes A,B,C of the evaluated augmented collapsed graph G+
[0]...[1](R), where for A ⊆

I ∪ I[0] ∪ I[1] ∪ J we write ZA := (XA∩I ,X
(nA∩I[0] )
[0],A∩I[0]

,X
(nA∩I[1] )
A∩I[1]

(t1),EA∩J ) with X being an a.s. unique

solution of R with initial condition
(
t0, (X(ni−1)

[0],i )i∈I[0]

)
.

We can also marginalize out the “process nodes” and retain only the “random variable” nodes, in effect
only considering observations of the processes at times t0 and t1.

Definition 3.36 (Transition graph for SDCMs). Let R = 〈I,J ,X ,E,n,f ,E〉 be an SDCM with tight
order tuple. We define the transition graph G[0]...[1](R) of R as the directed graph with nodes I[0] ∪ I[1] ∪J ,
where I[0] := {i[0] : i ∈ I : ni ≥ 1} and I[1] := {i[1] : i ∈ I}, and directed edges i j if there exists a
directed path i . . . j in the evaluated augmented collapsed graph G+

[0]...[1](R).

The transition graph G[0]...[1](R) is obtained from the evaluated augmented collapsed graph G+
[0]...[1](R) by

graphically marginalizing27 out the nodes I representing the full endogenous processes, and keeping only
the nodes I[0] ∪ I[1] corresponding with the evaluations of the processes at time t0 and time t1, in addition
to the nodes J corresponding with the exogenous processes. Figure 8 (bottom right) shows the transition
graph for the bathtub model of Example 3.30.

Corollary 3.37. Under the assumptions of Theorem 3.33, the following Markov property also holds:

A
σ
⊥

G[0]...[1](R)
B |C =⇒ ZA ⊥⊥ ZB |ZC

for any subsets of nodes A,B,C of the transition graph G[0]...[1](R), where for A ⊆ I[0] ∪ I[1] ∪ J we write

ZA := (X
(nA∩I[0] )
[0],A∩I[0]

,X
(nA∩I[1] )
A∩I[1]

(t1),EA∩J ) with X being an a.s. unique solution of R with initial condition(
t0, (X(ni−1)

[0],i )i∈I[0]

)
.

Example 3.38 (Markov properties for the bathtub model). The bathtub model of Example 3.30 satisfies
the assumptions of Theorem 3.33 and its Corollaries 3.35 and 3.37. The corresponding graphs are illustrated
in Figure 8. We can, for example, read off from the augmented collapsed graph G+

[0](R) that XQi
⊥⊥ XK .

From the evaluated augmented collapsed graph G+
[0]...[1](R) and the transition graph G[0]...[1](R) we can read

27 The result of a graphical marginalization is also known as the “latent projection”, see for example [9].
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augmented graph Ga(R):
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Figure 8. Different graphs of the bathtub model of Examples 3.30 and 3.38.

off that XK(t1) ⊥⊥ XQi
(t1), that is, the inflow through the faucet is independent of the drain diameter at

time t1, provided they are at t0. The latter is hardly surprising, but serves to illustrate how one can use
the Markov properties to arrive at conditional independence statements about the solution without actually
solving the SDCM, by carefully tracing the functional relations encoded in the dynamic structural equations
of the model.

4 Equilibration of SDCMs
In this section, we will take T = [t0,∞) and study the equilibrium states of SDCMs and, in particular, of
steady SDCMs, which are SDCMs for which the dynamic structural equations and exogenous processes
become explicitly time-independent asymptotically as t→∞. We introduce an equilibration operation on a
steady SDCM, which equilibrates the model to an SCM such that all the equilibrium states of the SDCM are
described by the solutions of the SCM. Intuitively, this equilibration operation separately equilibrates each
dynamic causal mechanism, which corresponds mathematically to transforming each dynamic structural
equation into a structural equation of the SCM. We show that this equilibration operation commutes with
perfect stochastic interventions, without requiring the strong global stability assumption of Mooij et al. [55],
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which assumes that all the solutions equilibrate to the same static equilibrium state. This allows to study
the causal semantics of the equilibrium states of steady SDCMs within the framework of SCMs.

We start in Section 4.1 with the definition of equilibrating solutions and their corresponding equilibrium
states. In Section 4.2, we define the class of steady SDCMs which have several convenient convergence
properties. In Section 4.3, we show how one can equilibrate a steady SDCM to an SCM. In Section 4.4, we
show how the equilibration acts on the graph of an SDCM. In Section 4.5, we show that the equilibration
operation commutes with intervention. We discuss in Section 4.6 the inverse problem of finding steady
SDCMs for which all the solutions equilibrate to solutions of the SCM independently of the initial condition.
We provide sufficient conditions under which one can construct a first-order steady SDCM such that its
equilibration coincides with a given linear SCM. This establishes a class of linear SCMs that model the
causal equilibrium semantics of certain linear dynamical systems. In Section 4.7, we discuss some subtleties
in the causal interpretation of the graph of the equilibrated SDCM.

4.1 Equilibrating solutions and equilibrium states

In this subsection, we define the equilibrating solutions of an SDCM as those solutions for which all the
higher-order derivatives that are considered in the model converge to zero a.s.. For a stochastic process
X we say that it converges almost surely to a random variable X∗, if the limit limt→∞Xt exists almost
surely28 and is a.s. equal to X∗. In this case, we call X almost surely convergent.

Definition 4.1 (Equilibrating solution, equilibrium state). Let X be a solution of an SDCM R. We call
X an equilibrating solution, if X(n) is a.s. convergent. In particular, an equilibrating solution X converges
almost surely to a random variable X∗, and we say that X equilibrates to X∗ and call X∗ an equilibrium
state of R.

An example of an SDCM with equilibrium states is the price, supply and demand model of Example 3.15,
where the equilibrium states correspond to “market equilibrium”, as illustrated in the following example.

Example 4.2 (Market equilibrium). Consider the price, supply and demand model of Example 3.15 with
ES and ED constant exogenous processes. Market equilibrium for this model is reached if

X∗D −X∗S = 0 ,

that is, if the demanded and supplied quantities become equal asymptotically. The solutions that satisfy this
condition are equilibrating solutions for which

X ′∗P = 0 , X∗P = ED − ES
βS − βD

, X∗S = X∗D = βSED − βDES
βS − βD

.

In fact, for every solution X that equilibrates, the higher-order derivatives of X must converge to zero
almost surely.

Proposition 4.3. Let X be a solution of an SDCM R. If X equilibrates, then limt→∞X
(ni)
i =

(X∗i , 0, . . . , 0) a.s. for all i ∈ I, where X∗i is the ith component of the corresponding equilibrium state X∗.

In particular, for linear SDCMs we can show that all the solutions of the SDCM equilibrate under certain
conditions.

28 In that case, it defines a random variable, because limt→∞Xt = limt→∞
t∈N

Xt a.s., and the latter is a random variable.
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Proposition 4.4. Let R be a linear SDCM that satisfies Assumption 1-(I ⊆ I) for a subset I ⊆ I with
an order tuple nI = 1 and an exogenous process E that is constant in time.29 By Proposition 3.27, the
dynamical causal mechanism f is of the form{

fI(x(n), e) := BII′x
′
I +BIIxI +BIJxJ + ΓIJ e

fJ (x(n), e) := BJIxI +BJJxJ + xJ + ΓJJ e ,

where J := I \ I and BII′ and BJJ are invertible matrices. If the matrix B−1
II′(BIJB

−1
JJBJI − BII + II),

where II denotes the identity matrix, is Hurwitz (that is, every eigenvalue has a strictly negative real part),
then every solution X of R equilibrates to the same equilibrium state, irrespective of the initial condition.

This proposition allows us to derive a condition for which the price, supply and demand model always
reaches market equilibrium.

Example 4.5 (Market equilibrium, continued). Applying Proposition 4.4 to the price, supply and demand
model of Example 3.15 shows that B−1

II′(BIJB
−1
JJBJI −BII + II) = λ(βD − βS). This matrix is Hurwitz if

and only if λ(βD − βS) < 0. Thus, since λ > 0, the price XP , supply XS and demand XD equilibrate for
constant exogenous processes ED and ES if βS > βD.

4.2 Steady SDCMs

In this subsection, we define the class of steady SDCMs which have the convenient property that their
dynamics become explicitly time-independent asymptotically for t→∞.

Definition 4.6 (Steady SDCM). We call an SDCM R steady, if it has a dynamic causal mechanism f

that is continuous and an exogenous process E that is a.s. convergent.

The continuity of the dynamic causal mechanism and the convergence assumption on the exogenous process
assure us that the equilibrium states satisfy asymptotic dynamic structural equations.

Lemma 4.7. Let R be a steady SDCM and let E∗ be the random variable to which the exogenous process
E converges a.s.. If X is an equilibrating solution of a steady SDCM R, then the random variable X(n)∗

to which the complete nth-order derivative X(n) converges satisfies

X∗ = f(X(n)∗
,E∗) a.s..

In general, not all solutions of a steady SDCM have to be equilibrating solutions, as one sees for example in
Example 3.18.

The class of steady SDCMs is not closed under stochastic perfect interventions, since performing a
stochastic perfect intervention that is not a.s. convergent yields an SDCM that is not steady. However, the
class of steady SDCMs is closed under the following class of interventions.

Definition 4.8 (Steady stochastic perfect intervention). We call a stochastic perfect intervention do(I,KI)
a steady stochastic perfect intervention if the process KI converges a.s. to a random variable K∗I . We call
it a steady perfect intervention if in addition K∗I ∈ X I (that is, it does not depend on ω).

29 In general, we can let E be a continuous exogenous process that depends on time as long as both Et and
exp(At)

∫ t

t0
exp(−As)CE(s)ds converge almost surely for t → ∞, where A := B−1

II′(BIJB
−1
JJBJI − BII + II) and

C := B−1
II′ (BIJB

−1
JJ ΓJJ − ΓIJ ). In that case, the order tuple may matter, and it must be checked whether the solutions

are sufficiently smooth.
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4.3 Equilibration of a steady SDCM

In this subsection, we show how we can equilibrate a steady SDCM to an SCM, such that the equilibrium
states of the SDCM are described by the SCM. In the previous subsections, we saw that for an equilibrating
solution of a steady SDCM, all the higher-order derivatives converge to zero, and the corresponding
equilibrium state satisfies the asymptotic dynamic structural equations. Hence, we can construct an SCM
from a steady SDCM such that every equilibrium state of the steady SDCM is a solution of this SCM.

Definition 4.9 (Equilibration of an SDCM). Let R = 〈I,J ,X ,E,n,f ,E〉 be a steady SDCM and let E∗

be a random variable such that E converges a.s. to it. We call the SCMMR := 〈I,J ,X ,E,f∗,E∗〉 with
the equilibrated dynamic causal mechanism f∗ : X × E → X given by

f∗(x, e) := f(ι(x), e) ,

an equilibration of R, where the mapping ι : X → X n+1 defined by

ι
(ki)
i (x) =

{
xi if ki = 0
0 otherwise,

is the embedding that sets all the higher-order derivatives of the endogenous processes to 0.

In other words, the equilibration of an SDCM sets all the higher-order derivative entries in its dynamic
causal mechanism to zero and replaces its exogenous process by its limiting random variable. In particular,
linearity is preserved under equilibration, that is, a steady linear SDCM equilibrates to a linear SCM.

The equilibration of an SDCM is well defined due to the following result, which shows that the
independence property for the family of exogenous processes (Ej)j∈J is preserved in the limit when time
tends to infinity.

Proposition 4.10. Let (Ej)j∈J be a family of stochastic processes, where J is some finite index set,
such that Ej converges almost surely to the random variable E∗j , for every j ∈ J . Then, if (Ej)j∈J is
independent, so is the family of random variables (E∗j )j∈J .

This equilibration of an SDCM to an SCM leads to the main insight that SCMs are capable of modeling all
the equilibrium states of steady SDCMs.

Theorem 4.11. If X is an equilibrating solution of a steady SDCM R, then its limit X∗ is a solution of
the corresponding equilibrationMR.

Intuitively, the equilibration of a steady SDCM to an SCM can be seen as the approximation of the dynamic
structural equations by the structural equations of the SCM, which becomes exact at equilibrium. This is
illustrated in the following example.

Example 4.12 (Equilibrated damped coupled harmonic oscillator). Consider the intervened damped cou-
pled harmonic oscillator of Example 3.8 for which the dynamic structural equations are specified by

X1 = 0

Xi = κi
κi + κi−1

(Xi+1 − Li) + κi−1
κi + κi−1

(Xi−1 + Li−1)

− bi
κi + κi−1

X ′i −
mi

κi + κi−1
X ′′i (i = 2, . . . , d− 1)

Xd = L ,

and where the exogenous processes L are random variables. In the limit, as time tends to infinity, the
equilibrating solutions of the SDCM converge to the equilibrium states of the equilibrated SDCM, which can
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Figure 9. Simulation of solutions of the SDCM of the price, supply and demand model of Example 4.13 under different
steady perfect interventions.

be obtained by setting the higher-order derivatives to zero. This yields the equations
X∗1 = 0

X∗i =
κi(X∗i+1 − Li) + κi−1(X∗i−1 + Li−1)

κi + κi−1
(i = 2, . . . , d− 1)

X∗d = L ,

which describe the equilibrium states for the positions of the masses. Not all solutions necessarily equilibrate
to an equilibrium, which happens for example in the case when there is no friction, that is, bi = 0 for all
i ∈ {2, . . . , d− 1}. In this case, if any mass mi starts at an off-equilibrium position (that is, if X ′i(t0) 6= 0
or Xi(t0) 6= X∗i for some i ∈ {2, . . . , d− 1}), the solution will not equilibrate, but will keep on oscillating
forever.

In case there is friction and the exogenous processes L are fixed to constant values, the equilibrated damped
coupled harmonic oscillator exactly coincides with the deterministic SCM derived in [55]. In Section 4.5 we
will show that the equilibration operation, as defined in Definition 4.9, also preserves the causal semantics.
The next example illustrates that our equilibration operation can also be applied to models that cannot be
treated with the theory of [55].

Example 4.13 (Equilibrated price, supply and demand model). Setting the higher-order derivatives of
the price, supply and demand model R of Example 3.15 to zero yields the structural equations:

X∗P = X∗P + λ(X∗D −X∗S)
X∗S = βSX

∗
P + E∗S

X∗D = βDX
∗
P + E∗D .

The equations describe the market equilibrium states. In Figure 9, we simulate the solutions of the SDCM
R for random constant exogenous influences ES and ED and random consistent initial conditions. The
dispersion of XP , XS and XD at large t illustrates that the equilibrium state is not unique and depends on
the initial condition. Hence, this example cannot be treated with the theory of [55].

Richardson and Robins [64] argue that the price, supply and demand model cannot be modeled at equilibrium
as an SCM without self-cycles. We conclude that it can be modeled by an SCM that contains self-cycles,
with the corresponding graph depicted in Figure 6 (right).
A consequence of Theorem 4.11 is that if the SCM MR has no solutions, then the SDCM R has no
equilibrating solutions. However, the converse does not hold in general, as the following example illustrates.

Example 4.14. Let R = 〈{1, 2}, {3},X , E ,n,f , E〉 be the steady SDCM with X = R2, E = R, n = (0, 1),
the dynamic causal mechanism f given by f1(x(n), e) = x2′ and f2(x(n), e) = e, and the exogenous process
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E given by Et = sin(t3)/t. The dynamic structural equations associated to R are given by

X1 = X ′2 , X2 = E .

This model can be equilibrated to the modelMR with structural equations

X∗1 = 0 , X∗2 = E∗ ,

and exogenous variable E∗ = 0. Although the SCM MR clearly has a solution, the SDCM R has no
equilibrium states, since X1 = X ′2 = E′ is not a.s. convergent.

The following result shows that if the exogenous process is constant in time, this cannot happen.

Proposition 4.15. Let R be a steady SDCM such that the exogenous process E is a random variable (i.e.,
E is constant in time). If the SDCM R has no equilibrating solution, then its equilibration MR has no
solutions.

4.4 Graphs of the equilibrated SDCM

In this subsection, we show how the equilibration operation acts on the (augmented) graph of the SDCM.

Proposition 4.16 (Graph of the equilibrated SDCM is a subgraph of the original mixed graph). Let R
be a steady SDCM. The graph G(MR) of the equilibrated SDCMMR is the mixed graph obtained from the
graph G(R) of R by removing the partition into clusters and removing the nodes i(ki) for i ∈ I and ki > 0
together with their adjacent edges. An analogous statement holds for the augmented graph Ga(MR).

The following example illustrates this for the equilibrated price, supply and demand model.

Example 4.17 (Price, supply and demand, continued). Consider the price, supply and demand model R
of Example 3.15 for a very large λ, that is, for which the price adjusts very quickly to changes in supply and
demand. This system can be approximated by the equilibrated price, supply and demand modelMR. The
graph of this equilibrated modelMR is a subgraph of the graph of the original model R, as can be seen in
Figure 6.

4.5 Equilibration commutes with intervention

Theorem 4.11 states that the equilibrium states of a steady SDCM are solutions of the SCM to which the
SDCM equilibrates. In the previous subsection, we showed, moreover, that the functional relationships
between the endogenous processes that are encoded in the dynamic structural equations are preserved
under equilibration. This leads to another important result: the equilibration operation preserves the causal
semantics of the equilibrium states, as is illustrated in Figure 1 in Section 1.

Theorem 4.18. Let R be a steady SDCM and let do(I,KI) be a steady stochastic perfect intervention for
some subset I ⊆ I and stochastic process KI that converges a.s. to a random variable K∗I . Then the steady
stochastic perfect intervention commutes with equilibration, that is

(MR)do(I,K∗
I

) =M(Rdo(I,KI )) .

This result allows us to perform causal reasoning on the equilibrium states of the SDCM by considering
only the equilibrated model, as is illustrated in the following example.
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Example 4.19 (Bathtub model, continued). In Example 3.30 we defined the SDCM for the bathtub model.
The equilibrium states of this model can be described by the structural equations of the equilibrated model, as
depicted in the top row of the following diagram.

steady SDCM

XK = EK

XQi
= EQi

XP = α4XD − α−1
2 X ′P

XQo
= α1XKXP − α−1

3 X ′Qo

XD = XD + α0(XQi
−XQo

)−X ′D

equilibrated SDCM

X∗K = E∗K

X∗Qi
= E∗Qi

X∗P = α4X
∗
D

X∗Qo
= α1X

∗
KX

∗
P

X∗D = X∗D + α0(X∗Qi
−X∗Qo

)

intervened steady SDCM

XK = EK

XQi
= EQi

XP = α4XD − α−1
2 X ′P

XQo
= α1XKXP − α−1

3 X ′Qo

XD = KD

intervened and equilibrated SDCM

X∗K = E∗K

X∗Qi
= E∗Qi

X∗P = α4X
∗
D

X∗Qo
= α1X

∗
KX

∗
P

X∗D = K∗D

t→∞

t→∞

do(D,KD) do(D,K∗D)

After equilibration, one can perform causal reasoning on the level of the equilibrated SDCM, without needing
to resort to the original SDCM description. Indeed, we see in the above diagram that it doesn’t matter whether
we first perform the steady stochastic perfect intervention do(D,KD), and then let the system equilibrate, or
the other way around. The graphs of the SDCM, the equilibrated SDCM and their corresponding intervened
models are depicted in Figure 7. Choosing different a.s. convergent processes for KD yields different solution
processes XP and XQo

of the intervened SDCM, but the solution processes for XQi
and XK stay unchanged.

Similarly, the perfect intervention do(D,K∗D) on the equilibrated SDCM yields different solutions X∗P and
X∗Qo

of the intervened SCM depending on the value of K∗D, but does not change the solutions X∗Qi
and X∗K .

This behavior is also reflected in the graphs depicted in the bottom row of Figure 7.
Intuitively, one would indeed expect the chosen intervention value for the depth to have an effect on

pressure and outflow (but not on inflow or drain size) at equilibrium. For example, one could (approximately)
implement such a perfect intervention by adding a water level control device that constantly monitors the
level and that can pump water in and out of the bathtub via a hose, regulating the depth at KD at all times
by using an optimal control feedback loop, independently of the exogenous processes EK and EQi

. Indeed,
the depth directly determines the pressure XP exerted by the water in the bathtub at the drain, and the
outflow rate XQo

is a direct consequence of that. Once the other processes in the system have equilibrated,
the processes XP and XQo

will also equilibrate to random variables that depend on K∗D. The inflow X∗Qi
of

water through the faucet no longer needs to be equal to the outflow X∗Qo
through the drain at equilibrium

because water is also constantly added or removed via the hose by the water level control device in order to
maintain the (eventually) constant depth K∗D.30

This sheds some new light on the violation of the equilibration-manipulation commutability property
(the “EMC-property”) of Dash [16], who shows the—at first sight contradictory—result that equilibration
does not always commute with intervention. The paradox is resolved by noting that Dash [16] defines a
different notion of “equilibration”, inspired by Iwasaki and Simon [41], for which commutativity with perfect

30 At equilibrium, the total inflow of water through the faucet and the hose has to be equal to the total outflow through
the drain and the hose.
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intervention indeed does not always hold. One can readily verify that the “equilibration” operation of Dash
[16] does not preserve the functional relationships between the endogenous processes that are encoded in the
equations under the equilibration. Recently, Blom and Mooij [5] showed that the “equilibration” operation
of Dash [16] maps an SDCM R to a Markov ordering graph that encodes the conditional independencies in
solutions ofMR instead of the functional relationships. In contrast, our equilibration operation, defined in
Definition 4.9, preserves the functional relationships between the endogenous processes, since each dynamic
structural equation equilibrates to a structural equation associated to the same endogenous process/variable.
This is also reflected in Proposition 4.16 where we showed that the graph of the equilibrated SDCM is a
subgraph of the mixed graph of the SDCM.

Theorem 4.11 and 4.18 together imply that our equilibration operation preserves the equilibrium states
of a steady SDCM while also preserving the causal semantics. In particular, we do not require that all
solutions of the steady SDCM have to equilibrate. As a consequence, the equilibrium states of the model
may depend on the (consistent) initial conditions. This is in contrast to the work of Mooij et al. [55], who
assume that the equilibrium state of the dynamical system is unique and independent of the initial condition.
This is a strong assumption that limits the applicability of the theory, since this does not allow for any
stochasticity at equilibrium. Indeed, many random dynamical systems have multiple equilibrium states that
depend on the chosen initial condition, as is illustrated in the following example.

Example 4.20 (Bathtub model, continued). Consider again the bathtub model R of Example 3.30. Fig-
ure 10 (top left) illustrates some numerical solutions of the dynamic SEs, with α = (1, 1, 1, 1, 4/5),
EK = 1/2, EQi

= 1 and for randomly drawn consistent initial conditions (0,X[0]) of order 0. We see that
the solutions equilibrate to the a.s. unique equilibrium state (X∗K , X∗Qi

, X∗P , X
∗
Qo
, X∗D) = (1/2, 1, 2, 5/2, 1)

corresponding to the solution of the equilibrated SDCM MR. If we now perform the perfect intervention
do(Qo,KQo

) on the system R, where we force the water outflow XQo
to be equal to the water inflow XQi

at all time, that is, KQo
= EQi

, then this does not give an a.s. unique equilibrium state, but the equilibrium
state that is obtained depends on the initial condition, as can be seen in Figure 10 (top center). Indeed, the
depth X∗D at equilibrium will equal the initial depth X[0],D at t0 = 0, if the inflow XQi

equals the outflow
XQo

. This example cannot be treated with the theory of [55], which assumes that the equilibrium state is
unique and does not depend on the initial condition. However, if instead we perform the perfect intervention
do(Qo,KQo

) on R where KQo
< EQi

, then the depth XD will not reach equilibrium, but will increase
indefinitely, since the rate of water flowing into the bathtub is larger than the outflow rate. This is illustrated
in Figure 10 (top right). This is also reflected in the equilibrated SDCM MR, which does not have any
solution after the corresponding perfect intervention do(Qo,KQo

).

Similar behavior is observed for the equilibrium states of the price, supply and demand model R of
Example 4.13. For example, the model R will reach market equilibrium if one holds the price fixed at all
times by the perfect intervention do(P,KP ), but will not reach equilibrium if the supply and demand are
fixed at all times by the perfect intervention do({S,D}, (KS ,KD)) for which KS < KD (see Figure 9 center
and right respectively). In all the cases depicted in Figure 9 we see a dependence of the equilibrium states
on the initial condition.

In summary, the equilibration of a steady SDCM to an SCM generalizes the work of [55] in three
directions: (i) the deterministic setting is replaced with a more general stochastic setting, (ii) the dynamic
structural equations can be of arbitrary order (including zeroth-order), rather than only first-order, which
prevents complications with the causal interpretation (see, for example, Example 3.11), and (iii) the
equilibrium state is allowed to depend on initial conditions. Together, this substantially extends the
applicability of the theory.
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Figure 10. Simulation of solutions of the SDCM of the bathtub model of Example 4.20 and 4.25 under different steady
perfect interventions.

4.6 Realizing a given SCM as a stable SDCM

Although each steady SDCM equilibrates to an SCM, not all solutions of the SDCM need to equilibrate to
solutions of the corresponding SCM (see, for example, Example 4.12). In this subsection, we address the
inverse problem of finding steady SDCMs with non-trivial dynamics for which all solutions equilibrate to
solutions of a specified SCM. This can be thought of as realizing the given SCM as a “stable” SDCM. In
Proposition 4.4 we provided certain conditions under which all the solutions of a linear SDCM equilibrate.
Based on this result and some results in the linear systems theory literature, we show that for a certain
class of SCMs one can construct a first-order SDCM such that all its solutions equilibrate to the solutions
of the SCM. Moreover, we show that under certain stronger conditions, the SDCM can be chosen such that
its solutions still equilibrate to the solutions of the intervened SCM after any constant stochastic perfect
intervention. Hence, the constructed SDCM realizes the causal semantics of the SCM at equilibrium.

First, we observe that one cannot uniquely recover an SDCM from its equilibration in general.

Example 4.21. Consider the linear SDCM R with dynamic SE given by

X = BX −X ′ + ΓE ,

where the matrix A := I − B is invertible and the exogenous process E is a random variable. Consider
another SDCM R̃ which differs only in its dynamic causal mechanism, and has the dynamic SE

X = BX − ΛX ′ + ΓE , (6)

where Λ is some invertible diagonal matrix. The equilibrated SDCMs MR and MR̃ coincide, and have
structural equations of the form

X∗ = BX∗ + ΓE∗ . (7)

Hence, the equilibrium states X∗ of the SDCMs R and R̃ are indistinguishable, since both have to satisfy
X∗ = A−1ΓE∗ a.s.. Furthermore, if the matrix II − BII is invertible for some subset I ⊆ I, then also
for J := I \ I the intervened equilibrium states of Rdo(J,KJ ) and R̃do(J,KJ ) are indistinguishable for any
sufficiently smooth steady stochastic intervention do(J,KJ ).
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Although the equilibrated SDCM in Example 4.21 describes the possible equilibrium state of both SDCMs,
it is not necessarily guaranteed that the solutions of both SDCMs equilibrate. One might hope that for
any given linear SCM of the form (7), one can always find an invertible diagonal matrix Λ such that one
can construct a steady SDCM of the form (6) for which all solutions of the SDCM equilibrate to the (a.s.
unique) solution of the SCM (see Proposition 4.4). Such a “stabilization matrix” Λ does not always exist. A
sufficient condition for its existence was given in [28, 29], leading to the following result.

Corollary 4.22. LetM be a linear SCM with structural equations

X = BX + ΓE ,

where I = {1, . . . , d}, J = {1, . . . , e}, B ∈ Rd×d, Γ ∈ Rd×e, and with E a random variable. Write
A := I− B. For a diagonal matrix Λ ∈ Rd×d, consider the linear SDCM RM,Λ with dynamic SE of the
form

X = BX − ΛX ′ + ΓE.

If there exists a sequence of matrices Md,Md−1, . . . ,M1 with Md = A such that for k = 2, . . . , d each Mk−1
is a principal (k − 1)× (k − 1) submatrix of Mk, with detMk 6= 0 for all k = 1, . . . , d, then there exists a
diagonal stabilization matrix Λ ∈ Rd×d such that the linear SDCM RM,Λ has the properties that (i) its
equilibrated SDCM isMRM,Λ =M, and (ii) all its solutions equilibrate to an a.s. unique equilibrium state
that satisfies the structural equations of the SCMM, independent of the initial condition.

While this sufficient condition guarantees the existence of a stabilization matrix Λ such that the observational
equilibrium distribution of the SCM is recovered as the distribution of the equilibrium state of the SDCM,
it does not guarantee that after a stochastic perfect intervention on the SDCM, all solutions will equilibrate
to an (a.s. unique) equilibrium solution of the corresponding intervened SCM. Indeed, a certain Λ that
stabilizes the dynamics in the absence of the intervention may no longer stabilize the dynamics after the
intervention has been carried out. Can we, under some conditions, find a single Λ that will stabilize the
dynamics after any stochastic perfect intervention? The answer is affirmative, as was shown by Locatelli and
Schiavoni [50] who provide a necessary and sufficient condition for the existence of an invertible diagonal
stabilization matrix Λ that simultaneously stabilizes all subsystems.31 This leads to the following result on
how one can “realize” a given linear SCM as a stable linear first-order SDCM.

Corollary 4.23. LetM be a linear SCM with structural equations

X = BX + ΓE ,

where I = {1, . . . , d}, J = {1, . . . , e}, B ∈ Rd×d, Γ ∈ Rd×e, and with E a random variable. Write
A := I− B. For a diagonal matrix Λ ∈ Rd×d, consider the linear SDCM RM,Λ with dynamic SE of the
form

X = BX − ΛX ′ + ΓE.

If
det(AII) det(diag(AII)) > 0 ∀I ⊆ I , (8)

then there exists an invertible diagonal stabilization matrix Λ ∈ Rd×d such that the linear SDCM RM,Λ
has the properties that (i) its equilibrated SDCM isMRM,Λ =M, and (ii) under every stochastic perfect
intervention do(J,KJ ) with the exogenous process KJ constant in time, all solutions of (RM,Λ)do(J,KJ )
equilibrate to an a.s. unique equilibrium state that is the unique solution of the SCMMdo(J,K∗

J
), independent

of the initial condition.

31 Locatelli and Schiavoni [50] consider an extension of the stabilization problem studied by Fisher and Fuller [29].
Whereas Fisher and Fuller [29] consider the problem of finding a diagonal matrix Λ ∈ Rd×d for a matrix A ∈ Rd×d such
that the matrix ΛA is Hurwitz (for which they provide a sufficient condition), Locatelli and Schiavoni [50] consider the
case where all the principal submatrices of ΛA should be Hurwitz, and provide a condition that is both sufficient and
necessary, as well as a construction of such a stabilization matrix Λ.
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Condition (8) implies that the matrices II −BII are invertible for every subset I ⊆ I. Such linear SCMs
are special cases of the class of simple SCMs (see [9]). Simple SCMs have the convenient property that their
solutions are a.s. unique after any stochastic perfect intervention. We conclude that for the subclass of simple
linear SCMs that satisfy condition (8), we can construct a linear first-order SDCM whose causal semantics
at equilibrium “realizes” that described by the SCM. We speculate that this result can be extended to
higher-order and nonlinear systems, but we will not pursue these questions here.

Example 4.24. We show that the equilibrated SDCM of Example 4.12 (see also Example 3.5), modeling
the equilibrium states of a damped coupled harmonic oscillator, satisfies condition (8). Indeed, taking
I = {1, . . . , d}, the matrix B of this linear SCM is tridiagonal, given as

B =



0 κ1
κ0+κ1

κ1
κ1+κ2

0 κ2
κ1+κ2

κ2
κ2+κ3

0
. . .

. . . . . . κd−1
κd−2+κd−1

κd−1
κd−1+κd

0


,

where κ0 = κd = 0. Hence A = I−B = DC with diagonal

D =



1
κ0+κ1

1
κ1+κ2

1
κ2+κ3

. . .
1

κd−1+κd


and tridiagonal

C =



κ0 + κ1 −κ1
−κ1 κ1 + κ2 −κ2

−κ2 κ2 + κ3
. . .

. . . . . . −κd−1
−κd−1 κd−1 + κd


.

The determinants of D and C can be expressed in closed form as

detD =
d∏
i=1

1
κi−1 + κi

, detC =
d∑
i=0

d∏
j=0
j 6=i

κj .

Hence, since κi > 0 for i = 1, . . . , d− 1, detA = (detC)(detD) > 0. Also, we clearly have det diag(A) > 0.
Hence, condition (8) holds for I = I. A similar calculation (and exploiting the block structure of the principal
submatrices) shows that condition (8) holds for all I ⊆ I.

Remarkably, we can thus apply Corollary 4.23 to the damped harmonic oscillator SCM to obtain a realization
of this causal equilibrium model as a first-order linear SDCM (remember that the original SDCM is a
second-order linear SDCM).

4.7 Causal interpretation of the graph of the equilibrated SDCM

While the graph of an acyclic SCM has a straightforward causal interpretation, this need not be the case
for general SCMs with cycles [9].32 While an acyclic SCM induces a unique “observational” distribution,

32 The straightforward causal interpretation of acyclic SCMs actually extends to a much more general class of possibly
cyclic SCMs, referred to by Bongers et al. [9] as simple SCMs.
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cyclic SCMs may induce none, one or several different observational distributions [9, 38]. Similarly, after
performing a perfect intervention on some of the variables, a cyclic SCM may induce none, one or several
different corresponding interventional distributions. In general, one has to be careful in how to causally
interpret the graph of an SCM if cycles are present; in particular, this caveat holds for SCMs that are
obtained as the equilibration of an SDCM. First, not all directed edges and directed paths in the graph can
easily be identified from differences in interventional distributions in case cycles are present [9]. Second,
if cycles are present, “nonancestral” effects may exist [9, 57], that is, an intervention on a variable may
change the distribution of some of its nondescendants in the graph. In this subsection, we show how these
subtleties and counterintuitive nonancestral effects in cyclic equilibrated SDCMs can be explained in terms
of properties of the underlying SDCM.

In general, the presence or absence of a directed edge or path in the graph of an SCM M cannot
always be identified from the observational and interventional distributions. In the cyclic setting, the
following sufficient condition can be used to identify such directed edges or paths between nodes i and j
(see Proposition 7.1 in [9] for the exact formulation).

– A direct causal effect of i on j can be identified, that is, there exists a i j ∈ G(M), if (i) the structural
equation of j can be solved a.s. uniquely for Xj in terms of the other variables that appear in the
equation, and (ii) there exist valuesKI ∈ X I and Ki 6= K̃i ∈ Xi, where I = I \{i, j}, and a measurable
set Bj ⊆ Xj such that the following probabilities are uniquely defined and do not coincide:

P(Mdo(I,KI ))do(i,Ki)(Xj ∈ Bj) 6= P(Mdo(I,KI ))do(i,K̃i)
(Xj ∈ Bj) ;

– An indirect causal effect of i on j can be identified, that is, there exists a directed path i · · · j in
G(M), if (i) the structural equations of the ancestors of j in G(M)\i (that is, the graph G(M) where
we removed the node i and its adjacent edges) can be solved a.s. uniquely for their associated variables
in terms of the other variables that appear in these equations, and (ii) there exist values Ki 6= K̃i ∈ Xi
and a measurable set Bj ⊆ Xj such that the following probabilities are uniquely defined and do not
coincide:

PMdo(i,Ki)(Xj ∈ Bj) 6= PMdo(i,K̃i)
(Xj ∈ Bj) .

In the following example, we illustrate how we can interpret the directed edges and paths of the equilibrated
bathtub model that cannot be identified by this sufficient condition from an SDCM perspective.

Example 4.25 (Bathtub model, continued). Consider again the bathtub model R of Example 3.30. We
simulated some numerical solutions, with parameters as given in Example 4.20, shown in Figure 10 (top left).
In Table 1 (bottom left) one can read off all the indirect causal effects that can be identified by comparing
different interventional distributions from the equilibrated modelMR with the help of Proposition 7.1 in
[9]. The indirect causal effects of P and Qo cannot be identified by comparing interventional distributions,
since the intervened equilibrated models (MR)do(P,KP ) and (MR)do(Qo,KQo ) do not have a solution (except
for one special choice of KP respectively KQo

), and hence condition (i) is not satisfied. This was already
illustrated for the perfect intervention do(Qo,KQo

) in Figure 10 (top center/right) of Example 4.20.
The direct causal effects that can be identified fromMR are given in Table 1 (bottom right). The direct

causes of D cannot be identified due to the self-cycle at D, which means that condition (i) is not satisfied,
that is, the structural equation of D cannot be a.s. uniquely solved for D in terms of the other variables.
Indeed, the depth D will not equilibrate, but will increase indefinitely, if the rate of water into the bathtub is
larger than the outflow rate, that is, KQo

< KQi
(see Figure 10 bottom right). On the other hand, it will

reach an equilibrium state only if the rate of water into and out of the bathtub are equal, that is, KQo
= KQi

.
In this case, the depth D will remain constant over all times, as illustrated in Figure 10 (bottom center).

The directed path from K to Qo in the graph of the equilibrated modelMR cannot be straightforwardly
identified as an indirect causal effect at equilibrium, because the equilibrium distribution of Qo does not
change due to perfect interventions on K (this corresponds to the single question mark in the Table 1, bottom
left), as explicit calculations reveal. However, at some finite time point one does observe changes in the
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directed path to
K Qi P Qo D

fro
m

K - × X X X
Qi × - X X X
P × × - X X
Qo × × X - X
D × × X X X

directed edge to


according
to G(MR)

(see Figure 7
top right)

K Qi P Qo D

fro
m

K - × × X ×
Qi × - × × X
P × × - X ×
Qo × × × - X
D × × X × X

indirect effect
K Qi P Qo D

ca
us
e

K - ? X ? X
Qi ? - X X X
P ?? ?? - ?? ??
Qo ?? ?? ?? - ??
D ? ? X X -

direct effect


Identifiable from
the observational
and interventional
distributions with
Prop. 7.1 in [9]

K Qi P Qo D

ca
us
e

K - ? ? X ??
Qi ? - ? ? ??
P ? ? - X ??
Qo ? ? ? - ??
D ? ? X ? -

Table 1. The directed paths/edges (top tables) of the equilibrated bathtub modelMR and the (in)direct causal effects
that can be identified by Proposition 7.1 in [9] (bottom tables) are denoted by a “X”. Those that cannot be identified are
denoted by the question marks “?” and “??”. A single question mark “?” denotes that condition (i) is satisfied, but not
condition (ii), while a double question mark “??” denotes that condition (i) is not satisfied.

distribution of Qo when performing perfect interventions on K (Figure 10 (left)). Together, this implies
that this system is capable of perfect adaptation [5]. Interestingly, the direct edge K Qo in the graph of
the equilibrated modelMR can be identified by changes in the equilibrium distribution of Qo under perfect
interventions on K,Qi, P,D (which then also implies that there is a directed path from K to Qo in the
graph of the equilibrated model).

In particular, this example illustrates that one can run into several problems when one attempts to identify
directed edges and paths of the graph of the SCM from the differences in equilibrium distributions under
interventions on the SDCM:

– if the intervened SCM has no solutions, then the descendants of the intervention targets cannot be
easily identified;

– if the graph of the SCM has a self-cycle at some variable, then the parents of that variable cannot be
easily identified;

– if the equilibrium distribution of some descendants of the intervention target variable remain insensitive
to the intervention (for example, when the dynamical system exhibits perfect adaptation [5]), these
descendants cannot be easily identified.

In Example 4.25, the identified indirect causal relationships are a subset of the ancestral relationships.
This can be seen from observing that each “X” in Table 1 (bottom left) has a corresponding “X” in Table 1
(top left). In other words, performing a perfect intervention on a variable can only change the distribution of
its descendants in the graph. In general, however, it can happen that an intervention on a nonancestor of a
variable can change the distribution of that variable [9, 57]. This counterintuitive behavior of “nonancestral”
effects in an equilibrated SDCM can be explained by the dependence of the equilibrium states on the initial
conditions in combination with the fact that not each initial condition corresponds to an equilibrating
solution. The following example illustrates this.
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G(R):

X1

X ′1

X2

X ′2X3

X
(n1)
1 X

(n3)
3 X

(n2)
2

G(MR):

X1 X2

X3

Figure 11. Graphs of the SDCM R (left) and the corresponding equilibrated modelMR (right) of Example 4.26.

Example 4.26 (Selection bias leading to nonancestral effects in an equilibrated SDCM). Consider the
SDCM R with dynamic structural equations given by

X1 = X1 −X ′1 + 2X2 −X3

X2 = X2 −X ′2
X3 = E ,

with order tuple n = (1, 1, 0) and E some constant in R. Denote I = {1, 2} and note that R satisfies
Assumption 1-(I ⊆ I). The equilibrated modelMR is given by

X∗1 = X∗1 + 2X∗2 −X∗3
X∗2 = X∗2

X∗3 = E .

The graphs of R andMR are depicted in Figure 11. First observe that the induced equilibrium distribution
of X∗2 differs for two constant perfect interventions do(3,K3) and do(3, K̃3) with K3 6= K̃3, since the
equilibrium state has to satisfy X∗2 = X∗3/2 a.s.. However, there is no directed path from the variable X3 to
the variable X2 in the graph of the SCMMR. This counterintuitive behavior can be explained by taking the
initial conditions of the solutions of the SDCM into account, as we shall now explain.

In Figure 12, we plot the solutions of the SDCM R for different partial initial conditions (t0,Xi
I,[0]) at

t0 = 0 (for i = a, b, . . . , g) under two steady perfect interventions, namely do(3,K3 = 1.0) and do(3, K̃3 =
0.6). For illustration purposes, we consider here only non-random initial conditions, because we can then
identify the initial conditions with “individual” solutions, as depicted in Figure 12 (note that Corollary 3.28
applies). Observe that the set of partial initial conditions that correspond to equilibrating solutions differs for
the two interventions. For the intervened model Rdo(3,K3), the only solution that equilibrates is the one with
initial condition (t0,Xa

I,[0]) (denoted by the dark solid lines Figure 12 (top left)), whereas for the intervened
model Rdo(3,K̃3) the only solution that equilibrates is the one with initial condition (t0,Xb

I,[0]) (denoted by
the dark dotted lines in Figure 12 (top right)). This explains the counterintuitive behavior of nonancestral
effects in the equilibrium SCM: The chosen value for X3 affects which solutions will equilibrate, and thereby
affects the equilibrium distribution of X2.

Note that at any finite point in time, these “nonancestral” effects do not occur; indeed, Figure 12
shows that the distribution of X1 differs for the two interventions at finite time, while that of X2 remains
unaffected.

This example shows that the nonancestral effects in an equilibrated SDCM can be explained by the
dependence of the equilibrium states on the initial conditions, in combination with the fact that not each
initial condition corresponds to an equilibrating solution. Another way to think about this is as selection bias
due to the assumption that the system has reached equilibrium. An intervention targeting a certain variable
may change the set of equilibrating initial conditions of the system, and it can even change initial conditions
for non-ancestors of the intervention target. By only considering these equilibrating initial conditions, this
may appear as a causal effect of a variable on some of its non-ancestors at equilibrium. When seen from this
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do(3, K̃3 = 0.6)

Initial conditions

X1,X
a
I,[0]

X2,X
a
I,[0]

X1,X
b
I,[0]

X2,X
b
I,[0]

X1,X
c...g
I,[0]

X2,X
c...g
I,[0]

K3 and K̃3

(Xi
I,[0])1 (Xi

I,[0])2

i = a 1.5 0.5
i = b 2.2 0.3

i = c . . . g random random

Figure 12. Simulation of solutions of the SDCM of Example 4.26 under different steady perfect interventions on X3 (top
left and right). The simulations in the top left and right plots are performed under the same set of initial conditions,
summarized in the bottom table, but under different interventions.

perspective, these “causal effects” can be considered to be spurious as they do not appear on an “individual
level”, that is, for individual trajectories (at finite time t), but only appear on a “population level” when
selecting on some later event (namely, the system being at equilibrium). One can indeed think of this as
selection bias due to equilibration.

5 Discussion
Dynamical models consisting of (ordinary or random) differential equations are widely applied in science and
engineering to model the dynamics of systems that are composed of several components. These differential
equations by themselves do not have a clearcut causal interpretation. Although they may implicitly explain
a particular phenomenon in terms of its causes, the causal semantics of the constituent components are
generally not explicitly defined without additional assumptions.

In this work, we introduced structural dynamical causal models that formally encode causal semantics
of stochastic processes by means of a structured set of random differential equations. SDCMs can be seen
as stochastic-process versions of structural causal models, where the random variables are replaced by
stochastic processes and their derivatives. By viewing the (higher-order) derivatives X(ki)

i to be aspects
of the process Xi we arrive at a natural causal interpretation, where it is not necessary to even consider
questions like “does position cause velocity, or does velocity cause position, or both?”.

For steady SDCMs (for which the explicit time-dependence of the dynamics vanishes as t→∞) we
introduced an equilibration operation that equilibrates the dynamic causal mechanism of each component
separately. This led to the important result that intervention and equilibration commute, thus connecting
the causal semantics at equilibrium with the causal semantics of the dynamics. It generalizes the analogous
result of Mooij et al. [55] in three directions: (i) we replaced the deterministic setting with a more general
stochastic setting, which allows us to address both cycles and confounders, (ii) we allowed the order of
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the dynamic structural equations to be arbitrary, including zeroth-order, rather than only allowing for
first-order differential equations, and (iii) we have dropped the strong assumption that the dynamical model
needs to have a single globally attractive equilibrium state. This allows us to study the causal semantics of
the equilibrium states of a plethora of dynamical systems subject to time-varying random disturbances
encountered in science and engineering within the framework of structural causal models.

Our commutation result may appear to be at odds with the possible “violation of the equilibration-
manipulation commutability property” pointed out by Dash [16]. Under our notion of equilibration—contrary
to that of Dash—each dynamic structural equation of the SDCM becomes a structural equation of the SCM.
This one-to-one correspondence between the equations leads to the preservation of the causal semantics
under equilibration. We can reinterpret the phenomenon that Dash observed as the fact that the equilibrium
distributions of certain dynamical systems (for example ones that exhibit perfect adaptation) are not faithful
to the graph of the equilibrated SCM [5], in the sense that they can contain conditional independencies not
explained by this graph. For dynamical systems exhibiting perfect adaptation, these faithfulness violations
are due to the structure of the dynamics, rather than “accidental” parameter cancellations. This has serious
repercussions for attempts at inferring the causal structure from (conditional independencies in) equilibrium
data [5]. Thus, in a different way we arrive at the same conclusion as Dash obtained.

In comparison with the causal constraints models of Blom et al. [6], our modeling framework is more
“agnostic” as we decided not to incorporate the initial conditions into the model.33 This allowed us to
causally model all the equilibrium states of a steady SDCM with a single SCM. However, that single SCM
may not provide a complete description of the causal semantics at equilibrium [6]. This is indeed a modeling
tradeoff: the simpler structure of SCMs compared to that of causal constraints models can come at the cost
of a less complete description of the equilibrium behavior of certain dynamical systems. On the other hand,
the connection between the structure of the SCM and that of the underlying SDCM is straightforward,
whereas it is not well understood at present how one can easily derive a concise yet complete representation
of an equilibrated SDCM (and a corresponding initial condition) as a causal constraints model.

However, allowing for multiple (or no) solutions also comes at a cost: the causal interpretation of the
SCM is more subtle than that of acyclic (or more generally, simple) SCMs, and in particular, does not
straightforwardly relate to properties of its graph. We illustrated for the bathtub model how one can causally
interpret the directed edges and paths of the graph of the SCM that models the equilibrium states of the
underlying SDCM. We saw that one may run into several problems when attempting to identify aspects of
the SCM graph from comparing differences in equilibrium distributions after intervening on some of the
variables:

– if the intervened SCM has no solution (which may happen if the intervened SDCM does not converge to
a finite equilibrium state, but instead diverges to infinity, or reaches a periodic limit cycle, for example),
descendants of the intervention targets cannot be easily identified;

– if the SCM graph has a self-cycle at some variable (which may happen if the causal mechanism for that
variable does not equilibrate for certain values of its parents), then the parents of that variable cannot
be easily identified;

– if the equilibrium distributions of some descendants of the intervention target variable remain insensitive
to the intervention (which may happen in dynamical systems exhibiting perfect adaptation), these
descendants cannot be easily identified.

Even worse, the equilibrium SCM may entail distribution changes under interventions that appear to be
of a causal nature, while no corresponding causal relations are present in the dynamics (and therefore, no
corresponding ancestral relations are present in the SCM graph), as we pointed out in Example 4.26. These
counterintuitive “nonancestral causal effects” can be understood as arising from the implicit selection bias due
to conditioning on the system having reached an equilibrium state. Indeed, the solutions of the equilibrium

33 This is analogous to the difference between an ODE and an initial-value problem.
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SCM correspond to those solutions of the SDCM that have equilibrated, while the non-equilibrating solutions
of the SDCM are ignored. In other words, the SCM provides the “population-level” causal semantics of the
population of equilibrating SDCM solutions (at t =∞), which can deviate from the “individual-level” causal
semantics of (possibly non-equilibrating) SDCM solutions (at finite t). The phenomenon that population-
level causality may differ from individual-level causality due to post-intervention selection bias is well-known
in other contexts. For example, a car mechanic who only observes cars that don’t start may conclude that
replacing the battery causes start engines to fail. While this appears as a genuine causal effect on the
population level, it would be foolish to conclude that this causal effect also pertains to individual cars.
Intuitively, one might prefer to interpret such phenomena as not representing “truely causal” relations. On
the other hand, if one is only interested in the effects of interventions on a population level, there seems to
be no harm in considering these distribution changes as causal. Thus, as long as one is explicit whether one
refers to population-level or individual-level causality, both notions of causality can meaningfully co-exist.
The important take-away, from our point of view, is that focussing on equilibrated systems may lead to
selection bias.

As a side note, Example 4.26 also shows that SCMs may not fully capture such population-level causal
relations graphically. We note that the recently proposed framework of Blom et al. [7] is better suited in
general to read off such population-level causal effects graphically from the structure of the equilibrium
equations, under certain “local” solvability assumptions on these equations (rather than having to study
global solutions of intervened equilibrium equations, as we did here).

Apart from these subtleties regarding their causal semantics, SCMs with cycles bring about several
other challenges in general. For example, they generally do not have a Markov property, and the class of
cyclic SCMs is not closed under marginalization. The subclass consisting of simple SCMs [9] allows for
cycles, but simple SCMs share many of the convenient properties of acyclic SCMs. Hence, these convenient
properties are directly applicable to the equilibrium states of those steady SDCMs that equilibrate to a
simple SCM. This enables one to study the equilibrium states of those SDCMs by statistical tools and
discovery methods available for simple SCMs. For example, one can apply adjustment criteria and Pearl’s
do-calculus [32]. Several causal discovery algorithms, originally designed for acyclic SCMs, like Local Causal
Discovery (LCD) [14], Y-structures [52], and the Fast Causal Inference (FCI) algorithm [54, 70, 76], are
directly applicable to simple SCMs as well [56]. Furthermore, the Joint Causal Inference (JCI) framework
can be applied to combine data from different contexts (for example, observational and interventional) for
causal discovery and inference purposes [56].

Given that steady SDCMs for which all solutions equilibrate give rise to SCMs at equilibrium, the inverse
problem becomes interesting as well: given an SCM, can we find an SDCM (with non-trivial dynamics) that
equilibrates to this SCM and for which all solutions equilibrate? This question was answered affirmatively
for a certain class of linear simple SCMs with additional constraints on the parameters by leveraging
existing results from linear systems theory. We speculate that this result can be further generalized to
allow for non-linearity. Perhaps surprisingly, this result allows to start from a second-order SDCM modeling
a system of damped coupled harmonic oscillators, equilibrate it to obtain an SCM, and from that then
construct a first-order SDCM with the same equilibrium SCM that describes all equilibrium states under
any constant stochastic perfect intervention. This shows that the order of the dynamic structural equations
is not necessarily constrained by the equilibrium SCM. Thus, the properties of the system at equilibrium
may contain not enough information to identify the order of the dynamical equations.

We hope that the framework of SDCMs provides a natural starting point for modeling the causal
mechanisms that underlie the dynamics of various systems, which could, in principle, be inferred from
observations and experiments [see, for example, 3, 49, 63]. We believe that most of this work can also
easily be adapted to discrete time by replacing the differential equations by difference equations. Future
work might consist of (i) investigating the notion of local independence in SDCMs, (ii) studying how
SDCM graphs can be interpreted causally, in particular if self-cycles or zeroth order equations are present,
(iii) developing structure and parameter learning algorithms for SDCMs, and (iv) investigating possible
extensions to stochastic dynamics by means of stochastic differential equations.
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Appendix

A Proofs
Proof of Lemma 3.25. Let XP : T × Ω→ XP be a CnP -stochastic process. For every i ∈ I we can write
the random differential equations

X
(ni)
i = gi(X

(nI−1)
I ,XJ ,X

(nP )
P ,EP )

as a system of first-order random differential equations

d

dt
X

(ni−1)
i = g̃i(X(ni−1)

i ,X
(nI\i−1)
I\i ,XJ ,X

(nP )
P ,EP ) ,

where g̃i : Xni
i ×X nI\i

I\i ×X J ×X nP +1
P × EP → Xni

i is the mapping defined by

g̃i(x(ni−1)
i ,x

(nI\i−1)
I\i ,xJ ,x

(nP )
P , eP ) := (x(1)

i , . . . , x
(ni−1)
i , gi(x(nI−1)

I ,xJ ,x
(nP )
P , eP )).

Note that X(ni−1)
i = (Xi, X(1)

i , . . . , X
(ni−1)
i ) and d

dtX
(ni−1)
i = (X(1)

i , . . . , X
(ni−1)
i , X

(ni)
i ).

Substituting the functions gJ yields the following first-order RDE:

d

dt
X

(ni−1)
i = g̃i

(
X

(ni−1)
i ,X

(nI\i−1)
I\i , gJ (X(ni−1)

i ,X
(nI\i−1)
I\i ,X

(nP )
P ,EP ),X(nP )

P ,EP
)
.

Let h̃i(x(nI−1)
I ,x

(nP )
P , eP ) := g̃i(x(nI−1)

I , gJ (x(nI−1)
I ,x

(nP )
P , eP ),x(nP )

P , eP ). We can then write the dy-
namic SEs as:

d

dt
X

(nI−1)
I = h̃I

(
X

(nI−1)
I ,X

(nP )
P ,EP

)
. (9)

The assumed continuity of gi and gJ , the continuity of the exogenous process EP and the assumption
that XP is a CnP -stochastic process together imply that for almost all ω ∈ Ω the function (t,x(nI−1)

I ) 7→
h̃i(x(nI−1)

I ,X
(nP )
P (t, ω),EP (t, ω)) is continuous on T × X nI

I . Moreover, for each x(nI−1)
I ∈ X nI

I the
function (x(nP )

P , eP ) 7→ h̃i(x(nI−1)
I ,x

(nP )
P , eP ) is continuous and in particular measurable. Hence, for all

(t,x(nI−1)
I ) ∈ T ×X nI

I the function ω 7→ h̃i(x(nI−1)
I ,X

(nP )
P (t, ω),EP (t, ω)) is F-measurable.

Under the assumed condition, the following inequality holds for all x(nI−1)
I ,y

(nI−1)
I ∈ X nI

I , for all
x

(nP )
P ∈ X nP +1

P and for all eP ∈ EP :∑
i∈I

∥∥h̃i(x(nI−1)
I ,x

(nP )
P , eP )− h̃i(y(nI−1)

I ,x
(nP )
P , eP )

∥∥2

=
∑
i∈I

∥∥g̃i(x(nI−1)
I , gJ (x(nI−1)

I ,x
(nP )
P , eP ),x(nP )

P , eP
)
− g̃i

(
y

(nI−1)
I , gJ (y(nI−1)

I ,x
(nP )
P , eP ),x(nP )

P , eP
)∥∥2

=
∑
i∈I

[
‖x(1)
i − y

(1)
i ‖

2 + · · ·+ ‖x(ni−1)
i − y(ni−1)

i ‖2+

∥∥gi(x(nI−1)
I , gJ (x(nI−1)

I ,x
(nP )
P , eP ),x(nP )

P , eP
)
− gi

(
y

(nI−1)
I , gJ (y(nI−1)

I ,x
(nP )
P , eP ),x(nP )

P , eP
)∥∥2
]

≤
∑
i∈I

[
‖x(1)
i − y

(1)
i ‖

2 + · · ·+ ‖x(ni−1)
i − y(ni−1)

i ‖2 + κ2‖xi − yi‖2
]

≤ (1 + κ2)‖x(nI−1)
I − y(nI−1)

I ‖2 .

Hence the conditions of Theorem 1.2 in Bunke [11] (or Theorem 3.2 in Neckel and Rupp [58]) are satisfied,
which proves that there exists an a.s. unique solution XI of the system (9) of first-order RDEs for any
partial initial condition (t0,X(nI−1)

I,[0] ). Note that the solution XI is a CnI -stochastic process. Extend this

to a solution XO on O by setting XJ = gJ (X(nI−1)
I ,X

(nP )
P ,EP ). The result satisfies the smoothness

requirement; indeed, from the assumptions it follows for each j ∈ J that Xj is a Cnj -stochastic process.
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Proof of Proposition 3.26. Let gi : Xni
i ×XO\i×X nP +1

P ×EP → Xi and gj : X I ×X nP +1
P ×EP → Xj for

i ∈ I and j ∈ J be continuous mappings that make R satisfy Assumption 2-(I ⊆ O). Consider the stochastic
perfect intervention do(L,KL) with L ⊆ O. Then, the mappings hi : Xni

i ×XO\i×X nP +1
P ×(XL×EP )→ Xi

for i ∈ I \ L defined by

hi(x(ni−1)
i ,xO\i,x

(nP )
P , (ẽL, eP )) := gi(x(ni−1)

i ,xO\i,x
(nP )
P , eP )

and the mappings hj : X I\L ×X nP +1
P × (XL × EP )→ Xj for j ∈ O \ (I \ L) defined by

hj(xI\L,x
(nP )
P , (ẽL, eP )) :=

{
gj((xI\L, ẽL),x(nP )

P , eP ) if j /∈ L
ẽj if j ∈ L

make Rdo(L,KL) satisfy Assumption 2-(I \ L ⊆ O).

Proof of Proposition 3.27. If the causal mechanism fO is defined as in the proposition, then the mappings
gI : X nI

I ×X J ×X nP +1
P × EP → X I and gJ : X nI

I ×X nP +1
P × EP → X J are given by

gI(x(nI−1)
I ,xJ ,x

(nP )
P , eP ) = −B−1

II(nI )(BII (nI−1)x
(nI−1)
I − xI +BIJxJ +B

IP
(nP )x

(nP )
P + ΓIPeP )

gJ (x(nI−1)
I ,x

(nP )
P , eP ) = −B−1

JJ (B
JI

(nI−1)x
(nI−1)
I +B

JP
(nP )x

(nP )
P + ΓJPeP ) .

The converse is shown by taking for BII(nI ) and BJJ the identity matrices.

Proof of Corollary 3.28. For a linear SDCM R that satisfies Assumption 1-(I ⊆ O) there always exists a
κ ∈ R such that the uniformly-Lipschitz condition of Lemma 3.25 holds.

Proof of Corollary 3.29. This follows directly from Corollary 3.28 and Proposition 3.26.

Proof of Theorem 3.33. Let G+
[0] := G+

[0](R) denote the augmented collapsed graph of R. We can construct
the a.s. unique global solution X of R by recursively substituting the solutions into each other along the
topological ordering of the directed acyclic graph formed by the strongly connected components S ⊆ I of
G+

[0].
We construct an SCM that has G+

[0] as its graph. Consider the SCM with endogenous variables Xi
taking values in Cni(T,Xi) for i ∈ I, exogenous variables X(ni−1)

[0],i taking values in Xni
i for i ∈ I[0], as

well as exogenous variables Ej taking values in C0(T, Ej) for j ∈ J . The structural equations of this SCM
are taken to be of the following form. Let S ⊆ I be a strongly connected component of G+

[0] and write
P := paG+

[0]
(S) \ S. Observe that from Assumption 1-(IS ⊆ S) and R having a tight order tuple it follows

that nJS
= 0 for JS = S \ IS . The structural equations for j ∈ JS are taken to be of the form:

Xj = gj(X
(nIS

−1)
IS

,X
(nP )
P ,EP ). (10)

For i ∈ IS , we integrate the equation

X
(ni)
i = gi(X

(nIS
−1)

IS
,XJS

,X
(nP )
P ,EP ),

ni times to turn it into

Xi = ι(X(0)
[0],i, X

(1)
i )

= ι(X(0)
[0],i, ι(X

(1)
[0],i, X

(2)
i ))

= ι(X(0)
[0],i, ι(X

(1)
[0],i, ι(X

(2)
[0],i, X

(3)
i )))

= . . .

= ι(X(0)
[0],i, ι(X

(1)
[0],i, ι(X

(2)
[0],i, · · · ι(X(ni−1)

[0],i , X
(ni)
i ))))

= ι(X(0)
[0],i, ι(X

(1)
[0],i, ι(X

(2)
[0],i, · · · ι(X(ni−1)

[0],i , gi(X
(nIS

−1)
IS

,XJS
,X

(nP )
P ,EP )))))

=: Fi(X(ni−1)
[0],i ,X

(nIS
−1)

IS
,XJS

,X
(nP )
P ,EP )
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where we explicitly incorporate the initial conditions. The mapping Fi : Xni
i × C

nIS∪JS∪P (T,X IS∪JS∪P )×
C0(T,EP )→ Cni(T,Xi) defined in this way is continuous (being a composition of continuous mappings),
and hence, measurable. The structural equations for i ∈ IS are then taken to be of the form

Xi = Fi(X(ni−1)
[0],i ,X

(nIS
−1)

IS
,XJS

,X
(nP )
P ,EP ). (11)

The structural equations in (10) and (11) for all strongly connected components S ⊆ I of G+
[0] together

specify a well-defined SCM. Its exogenous variables (Ej)j∈J and (X(ni−1)
[0],i )i∈I[0] are assumed independent.

The graph of the SCM is G+
[0]. As 〈R, IS , S〉 is assumed to be uniquely solvable, it follows that this SCM

is uniquely solvable w.r.t. IS . As this holds for every strongly connected component S ⊆ I of G+
[0], the

σ-separation Markov property (see Theorem 6.3.(2) in [9]) applies, proving the statement.

Proof of Corollary 3.35. Extend the SCM constructed in the proof of Theorem 3.33 with endogenous
variables X(ni)

[1],i taking values in Xni+1
i for i ∈ I[1], and with the corresponding structural equations

X
(ni)
[1],i = π(Xi, ∂(Xi), . . . , ∂ni(Xi)) .

These functions are continuous, hence measurable, and therefore the extended SCM is well-defined with the
evaluated augmented collapsed graph G+

[0]...[1](R) as its graph. The additional nodes are sink nodes that
form their own strongly connected components, and the SCM is obviously also uniquely solvable w.r.t. each
of these additional nodes. Hence, the σ-separation Markov property (see Theorem 6.3.(2) in [9]) holds for
this extended SCM with graph G+

[0]...[1](R).

Proof of Corollary 3.37. Observe that the transition graph G[0]...[1](R) is obtained from the evaluated
augmented collapsed graph G+

[0]...[1](R) by graphically marginalizing out the nodes I. The statement
then follows from Lemma 3.3.2 in [31], which states that σ-separations are preserved under graphical
marginalization.

Proof of Proposition 4.3. We show that if X is an equilibrating solution and i ∈ I, then X
(ni)∗
i =

(X∗i , 0, . . . , 0) almost surely. For all 0 ≤ ki ≤ ni we have for almost all ω ∈ Ω

lim
t→∞

X
(ki)
i (t, ω) = X

(ki)∗
i (ω) .

Let 0 ≤ mi < ni. Let ω ∈ Ω such that X(ni)∗
i (t, ω) converges. If X(mi+1)∗

i (ω) > 0, then there exists a t̄ ∈ T
such that X(mi+1)

i (t, ω) > 1
2X

(mi+1)∗
i (ω) for t > t̄. From the mean value theorem, it follows that there

exists a c ∈ (t̄, t) such that

X
(mi)
i (t, ω)−X(mi)

i (t̄, ω) = X
(mi+1)
i (c, ω)(t− t̄) > 1

2X
(mi+1)∗
i (ω)(t− t̄)

and hence X(mi)
i (t, ω) cannot converge to X(mi)∗

i (ω). We get a similar contradiction under the assumption
X

(mi+1)∗
i (ω) < 0, and hence X(mi+1)∗

i (ω) = 0. We conclude that X(ni)∗
i = (X∗i , 0, . . . , 0) almost surely.

Proof of Proposition 4.4. We can rewrite the dynamic structural equations of R as{
X ′I = −B−1

II′(BII − II)XI −B−1
II′BIJXJ −B−1

II′ΓIJE
XJ = −B−1

JJBJIXI −B−1
JJΓJJE .

Eliminating XJ from the right-hand side by substitution yields the RDE

X ′I = AXI + CE ,

where A := B−1
II′(BIJB

−1
JJBJI −BII + II) and C := B−1

II′(BIJB
−1
JJΓJJ − ΓIJ ). The matrix A is a Hurwitz

matrix by assumption and thus invertible (note det(A) 6= 0). The solutions of the ODE x′ = Ax + Ce,
where the vector e does not depend on time, are of the form x = exp(At)x0 −A−1Ce, where x0 is some
vector. For any matrix A there exists a nonsingular matrix P (possibly complex) that transforms A into its
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Jordan normal form, that is, P−1AP = Λ is a block diagonal matrix where each block Λi is a Jordan block
associated with the eigenvalue λi of A, and is a square matrix of order mi of the form

Λi =



λi 1 0 · · · · · · 0
0 λi 1 0 · · · 0
...

. . . . . .
...

...
. . . . . . 0

...
. . . 1

0 · · · · · · · · · 0 λi


.

Therefore,
(XI)t = exp(At)XI,[0] −A−1CEt

= exp(PΛP−1t)XI,[0] −A−1CEt

=
n∑
i=1

mi∑
j=1

tj−1 exp(λit)RijXI,[0] −A−1CEt

with XI,[0] some random variable, n the total number of block diagonal matrices, and the Rij ’s certain
block matrices that depend on P and Λ [44]. Since A is a Hurwitz matrix by assumption and E is constant
in time, we conclude that for all solutions X of R,

lim
t→∞

(XI)t = −A−1CE

and
lim
t→∞

(XJ )t = (B−1
JJBJIA

−1C −B−1
JJΓJJ )E

almost surely.
At last, we consider replacing the condition that the exogenous process E is constant in time by the

assumption thatE may depend on time but is continuous, and that bothEt and exp(At)
∫ t
t0

exp(−As)CEsds
converge almost surely. Observe that the general solutions of x′ = Ax + Ce, where we allow e to be a
time-dependent vector, are of the form x = exp(At)x0 + exp(At)

∫ t
t0

exp(−As)CEsds. Then, replacing the
term −A−1CEt in the equation above for (XI)t by exp(At)

∫ t
t0

exp(−As)CEsds implies also that (XI)t
converges a.s., from which the result follows.

Proof of Lemma 4.7. Let X be an equilibrating solution and let E converge a.s. to the random variable
E∗. Then

X∗ = lim
t→∞

Xt = lim
t→∞

f
(
X

(n)
t ,Et

)
= f

(
lim
t→∞

X
(n)
t , lim

t→∞
Et

)
= f(X(n)∗

,E∗)

almost surely, where in the third equality we used the continuity of f .

Proof of Proposition 4.10. Consider the finite index set J = {1, . . . , e} for some e ∈ N. The independence
of (Ej)j∈J implies that, in particular, for every t ∈ T the family of random variables Ẽ :=

(
(Ej)t

)
j∈J is

independent, that is, we have PẼt =
∏
j∈J P(Ej)t , where Ẽt :=

(
(E1)t, . . . , (Ee)t

)
.

Because limt→∞ Ẽt = limn→∞
n∈N

Ẽn a.s., we have limn→∞
n∈N

Ẽn = Ẽ∗ a.s., where Ẽ∗ := (E∗1 , . . .E∗e ).
This implies that Ẽn converges in distribution to Ẽ∗ (see Remark 6.4 and Corollary 13.19 in Klenke [45]),
that is, the distribution of Ẽn converges weakly to the distribution of Ẽ∗, that is, w-limn→∞PẼn = PẼ∗ .34

34 Let P,P1,P2, . . . be probability distributions over Rd, then Pn converges weakly to P, denoted by w-limn→∞Pn = P,
if limn→∞ Pn(U) = P(U) for all measurable sets U in Rd with P(∂U) = 0, where ∂U is the boundary of U , that is, the
closure of U minus the interior of U .



50 S. Bongers, T. Blom, and J.M. Mooij, Causal Modeling of Dynamical Systems

Similarly, we have w-limn→∞P(Ej)n = PE∗j for every j ∈ J . Applying Theorem 2.8 in Billingsley [4] gives
that

PẼ∗ = w-limn→∞PẼn = w-limn→∞
∏
j∈J

P(Ej)n =
∏
j∈J

PE∗j .

We conclude that the family of random variables (E∗j )j∈J is independent.

Proof of Theorem 4.11. Let X be an equilibrating solution and let E converge a.s. to the random variable
E∗. From Lemma 4.7 it follows that

X∗ = f(X(n)∗
,E∗) = f(ι(X∗),E∗) = f∗(X∗,E∗) a.s.,

where we used in the second equality that ι(X∗) = X
(n)∗, since for all i ∈ I we have that X(ni)∗

i is a.s.
equal to (X∗i , 0, . . . , 0) by Proposition 4.3.

Proof of Proposition 4.15. Suppose that the equilibrated SDCMMR has a solutionX∗. Then the stochastic
process X : T × Ω→ X defined by Xt(ω) := X∗(ω) is a solution of R that equilibrates to X∗.

Proof of Proposition 4.16. By definition, the graph of the equilibrated modelMR has nodes I ⊆ I(n) and
the augmented graph ofMR has nodes I ∪ J ⊆ I(n) ∪ J . For every i ∈ I, a functional parent of i inMR
is a functional parent in R, since for all e ∈ E and for all x ∈ X we have

xi = f∗i (x, e) =⇒ xi = fi(ι(x), e) .

Note there are no integrated parents of i inMR and there are no functional parents of j ∈ J .

Proof of Theorem 4.18. This follows directly from Definitions 3.1, 3.7 and 4.9. One can easily check that

(MR)do(I,K∗
I

) = 〈I, I ∪ J ,X ,X I × E, f̃∗, (K∗I ,E∗)〉

= 〈I, I ∪ J ,X ,X I × E, f̃∗, (KI ,E)∗〉
=MRdo(I,KI ) ,

where the intervened and equilibrated dynamic causal mechanism

f̃∗ = f̃∗ : X × (X I × E)→ X

is given by

f̃∗i (x, (eI , eJ )) :=

{
fi(ι(x), eJ ) i ∈ I \ I
ei i ∈ I .

Proof of Corollary 4.22. The statement follows immediately from Theorem 1 of Fisher and Fuller [29]
followed by application of Proposition 4.4.

Theorem 1 of Fisher and Fuller [29] states that under the stated condition, there exists an invertible
diagonal stabilization matrix Λ ∈ Rd×d such that −Λ−1A is Hurwitz.35

Note first that by construction,MRM,Λ =M. The SDCMRM,Λ satisfies Assumption 1-(I ⊆ I), that is,
it can be written in the form of the equations in Proposition 4.4 with I = I, where BII′ = −Λ and BII = B,
and hence B−1

II′(−BII + II) = −Λ−1A is Hurwitz. The statements now follow from Proposition 4.4.

35 A simple counterexample of a system that cannot be stabilized in this way is given by taking the matrix

B =

(
0 1 1
1 0 1
1 1 0

)
,

for which Λ−1(B − I) is not Hurwitz for any diagonal invertible matrix Λ.
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Proof of Corollary 4.23. The statement follows from Theorem 2.1 of Locatelli and Schiavoni [50] followed
by application of Proposition 4.4 and Theorems 4.11 and 4.18.

Theorem 2.1 of Locatelli and Schiavoni [50] states that for every matrix A ∈ Rd×d that satisfies for all
subsets I ⊆ I the condition det(AII) det(diag(AII)) > 0, there exists a diagonal matrix D ∈ Rd×d such
that the matrix DIIAII is Hurwitz for all I ⊆ I. In particular, observe that this matrix D is invertible,
since DII is invertible for every I ⊆ I (note det(DII) 6= 0 due to det(DIIAII) 6= 0).

Let Λ ∈ Rd×d be an invertible diagonal matrix such that −Λ−1
II AII is Hurwitz for every I ⊆ I. Note first

that by construction,MRM,Λ =M. Now let do(J,KJ ) be a stochastic perfect intervention for some subset
J ⊆ I and KJ some stochastic process that is constant in time. The intervened SDCM (RM,Λ)do(J,KJ )
satisfies Assumption 1-(I ⊆ I) for I := I \ J , that is, it can be written in the form of the equations in
Proposition 4.4, where BII′ = −ΛII , BJJ = −IJJ , BJI = 0JI the zero matrix and ΓJJ e = KJ . Moreover,

B−1
II′(BIJB

−1
JJBJI −BII + II) = −Λ−1

II (II −BII) = −Λ−1
II AII ,

which is Hurwitz, from which we conclude that every solution X of (RM,Λ)do(J,KJ ) is an equilibrating
solution. Hence, from Theorem 4.11 it follows that for every solution X of (RM,Λ)do(J,KJ ), its limit X∗ is
a solution of the equilibrated model

M((RM,Λ)do(J,KJ )) = (MRM,Λ)do(J,KJ ) =Mdo(J,KJ ) ,

where we made use of Theorem 4.18. Note that E is assumed constant (in time), and hence RM,Λ is steady;
in addition, KJ is assumed to be constant. The solutions ofMdo(J,KJ ) are a.s. unique, because they satisfy
the equations X∗I = A−1

II (BIJX∗J + ΓIJE) and X∗J = KJ almost surely.
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