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Abstract

Structural causal models are a popular tool to

describe causal relations in systems in many

fields such as economy, the social sciences,

and biology. In this work, we show that these

models are not flexible enough in general to

give a complete causal representation of equi-

librium states in dynamical systems that do

not have a unique stable equilibrium indepen-

dent of initial conditions. We prove that our

proposed generalized structural causal models

do capture the essential causal semantics that

characterize these systems. We illustrate the

power and flexibility of this extension on a dy-

namical system corresponding to a basic en-

zymatic reaction. We motivate our approach

further by showing that it also efficiently de-

scribes the effects of interventions on func-

tional laws such as the ideal gas law.

1 INTRODUCTION

Real world processes are often complex and evolve over

time. A popular approach to model such systems is to de-

scribe the dynamics by a system of (random) differential

equations. This method has many applications in a wide

range of fields (e.g. classical mechanics, thermodynam-

ics, biochemistry, population biology, and economy).

An interesting question is whether dynamical models

also admit a causal interpretation, see for instance [1, 2].

One approach is to model the changes of the system in

a discrete time-setting as in [3]. Another promising idea

is to model the causal semantics of the time-independent

equilibrium states of a dynamical system as in [4, 5, 6, 2].

In this article we consider the causal semantics of the

equilibrium states of a dynamical system, allowing for

and modeling the dependence on initial conditions.

A popular causal modeling framework to model static

systems is provided by Structural Causal Models [7].

These are well-understood and have recently been ex-

tended to also include the cyclic case, see [8] and [9].

In [4, 10, 5, 11, 12, 6, 13] it is shown how cyclic struc-

tural causal models may arise from studying the station-

ary behavior of certain dynamical time series models or

differential equations. But can the equilibrium states of

a dynamical system be represented by a causal model in

general?

In this work, we prove that a structural causal model is

not flexible enough in general to capture the rich causal

semantics of the equilibrium behavior in a dynamical

system whose asymptotic behavior depends on their ini-

tial conditions. The main contribution of this paper is

the introduction of a novel way to represent the causal

semantics of complex data-generating processes and dy-

namical systems: We generalize the SCM framework and

prove that our proposed generalized structural causal

model (GSCM) represents the behavior of equilibrium

states in dynamical systems while pertaining all causal

semantics.

In an SCM, each endogenous variable is associated with

a structural equation that describes its causal dependence

on other variables in the system, which induces a set of

probability distributions over the space of endogenous

variables. We generalize the notion of a structural equa-

tion to the concept of a causal constraint, which is a

functional relation between variables that is invariant un-

der a specified set of interventions. A generalized struc-

tural causal model is then a set of causal constraints in

combination with a probability distribution on the exoge-

nous variables.

We illustrate the power and flexibility of our approach on

a basic enzymatic reaction that can be modeled as a dy-

namical system. These reactions are typically described

by a system of differential equations. We show that, on

the one hand, an SCM can never give a complete descrip-
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tion of the equilibrium behavior in this model, while a

GSCM, on the other hand, fully captures the rich causal

semantics pertaining to this system. We demonstrate how

the causal constraints of this GSCM can be derived nat-

urally from the equations and constants of motion in the

dynamical system. Furthermore, we use our framework

to identify a marginal model that can be described by

an SCM, and which can thus be analyzed using existing

techniques.

We further motivate our approach by considering func-

tional laws, which describe a relation between variables

that is invariant under all interventions. This is another

popular tool, especially for modeling laws of nature. We

show that a GSCM can efficiently and naturally describe

such functional laws. As an example, we consider the

ideal gas law, which relates physical quantities in an ideal

gas. We demonstrate that a GSCM representation, con-

trary to an SCM representation, does not admit solutions

that violate the ideal gas law.

1.1 PRELIMINARIES

Throughout this paper we will denote tuples or sets by

capital letters and sets of variables by bold capital letters.

We will assume that all sets of variables X are indexed

by a set IX and take values in the product space of stan-

dard measurable spaces, X =
∏

i∈IX
Xi.

There are many types of interventions that can be mod-

eled that correspond to different experimental proce-

dures. A perfect (”surgical”) intervention on a variable

forces that variable to take on a specific value through

some external force acting on the system. Henceforth,

we will always refer to perfect interventions.

1.1.1 Structural Causal Models

A statistical model over variables X typically is a pair

(X ,PX ) where P
X is a (parametrized) family of proba-

bility distributions on X . It cannot be used to predict the

effects of interventions, but causal models can. A causal

model can be thought of as a family of statistical models,

one for each intervention,

P
X =

(
P
X

do(I,ξI )
: I ∈ P(IX), ξI ∈ X I

)
, (1)

where P(IX) denotes the power set of IX , I is an in-

tervention target and ξI a tuple of values which the tar-

get is forced to take on. We let I = ∅ denote the null-

intervention corresponding to the observed system.

Structural causal models are a special type of causal

models that are specified by so-called structural equa-

tions. Our formal treatment of SCMs follows that of [8]

and is slightly different from that of [7], because we do

not assume acyclicity (i.e. recursiveness).

Definition 1. (Structural Causal Model (SCM)) Let IX
be an index set for endogenous variables X taking value

in the product of standard measurable spaces, X =∏
i∈IX

X i. Let E be a tuple of latent exogenous vari-

ables taking value in a product of standard measurable

spaces E =
∏

i∈IE
Ei. An SCM is a triple (X , F,PE)

where,

• PE is a factorizing probability measure on E .1

• F is a family of functions2,

fj : X pa(j) × Epa(j) → Xj ∀j ∈ IX ,

Note that a cyclic structural causal model does not need

to imply a unique joint distribution P
X

do(∅) on the space of

endogenous variables in the observed system, although

acyclic SCMs do [8].

Definition 2. A uniquely solvable SCM is an SCM M =
(X , F,PE) such that the structural equations

xj = fj(xpa(j), epa(j)) ∀j ∈ IX ,

with (x, e) ∈ X × E have a unique solution x∗ ∈ X

PE-a.s.

We say that a pair of random variables (X∗,E∗), where

P
E∗

= PE , that satisfies the structural equations in an

SCM PE-a.s. is a solution of the SCM. If the SCM is

not uniquely solvable, there may be multiple solutions or

there may not exist a solution at all.

An intervention do(I, ξI) with target I ⊆ P(IX) and

value ξI ∈ X I on an SCM M = (X , F,PE) maps it to

the intervened SCM Mdo(I,ξI)
= (X , F̃ ,PE) such that

f̃j(xpa(j), epa(j)) =

{
ξj j ∈ I

fj(xpa(j), epa(j)) j ∈ IX\I.

2 GENERALIZED STRUCTURAL

CAUSAL MODELS

As we will show in Section 3, SCMs cannot in general

capture the causal semantics of equilibrium states in dy-

namical systems with initial conditions. To that end, we

introduce generalized structural causal models here, so

that a larger class of systems can be described. Later on,

we prove that these do fully describe the equilibrium be-

havior of dynamical systems with initial conditions.

1In the case that the set of exogenous variables is empty,
one can take a trivial probability measure over a point for PE .

2pa(j) ⊆ IX ∪ IE denotes a subset of indexes that are suf-
ficient to determine the values of fj .
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SCMs are specified by structural equations while gener-

alized structural causal models are specified by causal

constraints, which describe a relation between endoge-

nous and exogenous variables which is active under spe-

cific intervention targets.

Definition 3. (Generalized Structural Causal Model

(GSCM)) Let IX , X , X , E, and E be as in Definition 1.

A GSCM is a triple (X , G,PE) where G = {(gi, Ai) :
i ∈ IG} is a set of causal constraints, and a causal con-

straint is a pair (gi, Ai) where,

• gi : X pa(i) × Epa(i) → R is a measurable function3.

• Ai ⊆ P(IX) is a set of intervention targets under

which gi is active.

For a model (X , G,PE), let g∅ denote all functions that

are active in the observational system, that is g∅ = {g :
(g,A) ∈ G : ∅ ∈ A}. We refer to

g∅(x, e) = 0, (2)

with x ∈ X and e ∈ E as the generalized structural

equations of the model.

The solution space of a generalized structural causal

model consists of all values that satisfy the generalized

structural equations:

S = {(x, e) ∈ X × E : g∅(x, e) = 0}. (3)

The main idea behind Definition 3 is that we can use an

arbitrary number of flexible equations to restrict the so-

lution space of the causal model, but these restrictions do

not need to hold under all interventions. The following

example illustrates how a causal constraint for a GSCM

can be constructed and interpreted.

Example 1. Consider the price, supply, and demand of

a certain product, which will be denoted by P, S,D re-

spectively. Suppose a simple economic model states that

supply equals demand, unless the price of the product is

intervened upon (e.g. when there is price-fixing)4. We

can capture this description by the following causal con-

straint,

(g,A) = (S −D, {∅, {D}, {S}, {D,S}}) . (4)

The generalized structural equation S − D = 0 con-

strains the solution space of the model. The set A in-

dicates that the constraint is active in the observational

system, when either D or S is targeted by an interven-

tion, or when D and S are both intervened upon. It does

3We can be more general by taking a standard measurable
space Y as the target space of g. For the sake of simplicity we
consider R here.

4Note that this is a toy-example, and is not meant to reflect
a realistic economic model.

not constrain the solution space when P is intervened

upon. This economic model is captured by the GSCM

(R3, G = {(g,A)},P∅).

2.1 SOLUTIONS OF A GSCM

We define a solution of a GSCM in complete analogy

with the definition of a solution to an SCM.

Definition 4. A pair of random variables (X ,E) taking

value in X × E is a solution to a GSCM (X , G,PE) if

• P
E∗

= PE .

• g∅(X,E) = 0 almost surely.

Similar to the solutions of an SCM, Definition 4 implies

that a GSCM may have a unique solution, multiple ran-

dom variables with different distributions as solutions or

it may have no solution at all. After we define interven-

tions on GSCMs in the next section, we will show that for

any SCM there exists a GSCM which has the same solu-

tions under any intervention on endogenous variables.

2.2 INTERVENTIONS

An intervention on an SCM changes the structural equa-

tions of variables that are targeted by the intervention.

For a GSCM, an intervention changes the set of causal

constraints. When an intervention targets a set I and

forces it to take on a certain value ξI ∈ X I , new causal

constraints are introduced to describe this intervention.

In addition, some generalized structural equations may

no longer be active (i.e. they no longer constrain the so-

lution space of the model), after an intervention. Hence

the sets A in (g,A) are altered for causal constraints

(g,A) ∈ G.

Definition 5. (Interventions) Let M = (X , G,PE) be

a GSCM and consider the intervention do(I, ξI), where

I ∈ P(IX) is the intervention target and ξI ∈ X I

the target value. The intervened GSCM is given by

Mdo(I,ξI )
= (X , Gdo(I,ξI)

,PE) where,

• For each i ∈ I we have a causal constraint

describing the intervened value of the targets,

(xi − ξi,P (IX\{i})) ∈ Gdo(I,ξ
I
).

• For each causal constraint (g,A) ∈ G we have a

causal constraint (g,Ado(I)) ∈ Gdo(I,ξI )
, where

Ado(I) =
⋃

Ai∈A:Ai⊇I

{Ai \ J : J ⊆ I}.

Definition 5 describes how activation sets A of causal

constraints (g,A) change under interventions. It says

that for any Ai ∈ A, and for any combination of two

subsequent interventions such that I1 ∪ I2 = Ai, the

constraint will be active. So after I1 (which needs to be
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a subset of Ai), any I2 that adds the remaining elements

Ai \ I1 (plus possibly any elements that were already in

I1) will activate the constraint.

Example 2. This example illustrates the effect of an in-

tervention on a set A = {∅, {1, 2}, {2, 3}}.

Ado(∅) = {∅, {1, 2}, {2, 3}} ,
Ado(1) = {{2}, {1, 2}} ,
Ado(2) = {{1}, {1, 2}, {3}, {2, 3}} ,

Ado({1,2}) = Ado(1)do(2) = Ado(2)do(1)

= {∅, {1}, {2}, {1, 2}} ,
Ado({1,2,3}) = ∅ .

Lemma 1 shows that the effect of multiple interventions

on a GSCM does not depend on the order in which

they are performed, or whether the interventions are per-

formed simultaneously or sequentially.

Lemma 1. Let M be a GSCM for variables X and let

I, J ⊆ P(IX) be two disjoint sets of intervention targets

with intervention values ξI ∈ X I and ξJ ∈ X J respec-

tively. Then

(Mdo(I,ξI))do(J,ξJ ) = (Mdo(J,ξJ ))do(I,ξI)

= Mdo(I∪J,ξI∪J ).

Proof. The result follows directly from Definition 5.

In the following example, we extend the model for price,

supply, and demand that we considered in Example 1,

and demonstrate how an intervention is performed on

this extended GSCM.

Example 3. Consider the simple model for price, sup-

ply, and demand in Example 1, where supply is equal

to demand when price is not intervened upon. Suppose

an economic theory further states that the supply S is

determined by price P and some exogenous variable E
(e.g. cost of production) by some function fS , unless the

supply is targeted by an intervention. The model can be

represented by the GSCM M = (R3, G,PE), where G
consists of the causal constraints

S −D = 0 , {∅, {D}, {S}, {D,S}} ,
S − fS(P,E) = 0 {∅, {D}, {P}, {D,P}} .

We consider the intervened GSCM Mdo(IP ,ξP ) =
(X , Gdo(IP ,ξP ),PE). The causal constraints

(g,Ado(IP )) ∈ Gdo(IP ,ξP ) are

S −D = 0 ∅ ,
S − fS(P,E) = 0 {∅, {D}, {P}, {D,P}} ,

P − ξP = 0 {∅, {D}, {S}, {D,S}} .

Note that after an intervention on P , there is no interven-

tion under which the first generalized structural equation

is active. Hence it no longer restricts the solution space

of the model under any intervention and the causal con-

straint can be discarded.

2.3 RELATION TO AN SCM

In this section, we show that GSCMs can represent any

model that can be described by an SCM. In the next sec-

tion we show that the reverse is not true in general. In

combination with the result we present here, this will

then show that GSCMs are indeed a (strict) generaliza-

tion of SCMs.

Lemma 2 shows how, for any real-valued SCM, we can

construct a GSCM which has the same solutions under

all interventions5.

Lemma 2. Let MSCM = (X , F,PE) be a real-valued

SCM. The GSCM MGSCM = (X , G,PE) with causal

constraints G,

gj = fj(xpa(j), epa(j))− xj , Aj = P(IX\j) ∀j ∈ IX ,

has the same solutions as the SCM under any interven-

tion.

Proof. The proof follows from Definitions 4 and 5.

We give an example of the construction of a GSCM from

an SCM for the system in Example 3.

Example 4. Consider the system of price, supply, and

demand in Example 3. Suppose we try to capture the

same system in an SCM (R3, F,PR) and end up with the

following structural equations6

P = P + S −D

D = D

S = fS(P,E).

Applying the construction in Lemma 2 we find the

GSCM in Example 3 with the extra causal constraint

(D − D = 0, {∅, {S}, {P}, {S, P}}). The generalized

structural equation D −D = 0 imposes no extra restric-

tions on the solutions of the model under any possible

intervention. In a GSCM such redundant constraints can

be discarded.

5The more general case, where variables take value in an
arbitrary standard measurable space, requires a trivial extension
of GSCMs.

6Note that the second equation imposes no restrictions on
the solutions to this SCM since any random variable D∗ satis-
fies D∗ = D∗ almost surely. Since an SCM needs a structural
equation for each random variable, we need to include this in
our model description.
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3 EQUILIBRIUM STATES OF

DYNAMICAL SYSTEMS

In this section we consider the equilibrium states of dy-

namical systems with initial conditions. We show that

the equilibrium behavior of this class of systems can gen-

erally not be fully described using an ordinary structural

causal model. We show that the causal semantics of the

equilibria are completely represented in the more flexible

framework of GSCMs.

We start with a concise introduction to the dynamical

system that we consider. Before we present our theoret-

ical results, we illustrate the advantages of using a gen-

eralized structural causal model to describe equilibrium

states on an example from biochemistry.

3.1 DYNAMICAL SYSTEMS

We consider dynamical systems describing n variables

X taking value in R
n by a set of coupled first-order or-

dinary differential equations (ODE). We assume that the

initial conditions X0 and parameters K associated with

the ODEs are random variables taking value in R
n and

R
k respectively that do not depend on time.

A dynamical system D for variables X and exogenous

random variables E = (K,X0) is specified as follows

[14]:

dXi(t)

dt
= fi(Xpa(i)(t),Epa(i)), ∀i ∈ IX

Xi(0) = X0
i , ∀i ∈ IX ,

where f is a continuous and measurable function. We

let PE be a probability distribution over the exogenous

variables. For e ∈ R
n, the solution X(t, e) to the initial

value problem is given by the integral equation [14]

X(t, e) = X(0, e) +

∫ t

0

f (X (s, e) , e) ds.

We say that a dynamical system converges to a random

variable X∗ if for PE -almost every e ∈ E ,

lim
t→∞

X(t, e) → X∗(e).

This implies a unique distribution P
X

do(∅).
7

There are various ways to define an intervention that tar-

gets I ⊆ X . We could, for instance, fix the entire sam-

ple path of target variables I from t = 0 to t = ∞ [6].

7Note that ODEs may have multiple equilibrium states, but
since we assume that the initial conditions are specified, the
equilibrium states of the corresponding initial-value problems
are unique under mild assumptions.

Another option is the push-and-let-go intervention [1],

where the targeted variables are forced to take on a spe-

cific value at t = 0 only. Here we follow [6] and consider

interventions that keep the value of the targeted variables

fixed to a constant value until the system converges to an

equilibrium.

An intervention do(I, ξI) where I ∈ P(IX) and ξI ∈
R

n
I then results in the intervened dynamical system

Ddo(I,ξI)
specified by

dXi(t)

dt
= 0, Xi(0) = ξi, ∀i ∈ I

dXi(t)

dt
= fi(Xpa(i)(t),Epa(i)), Xi(0) = X0

i , ∀i ∈ IX\I

3.2 THE BASIC ENZYME REACTION

Enzymes play an important role in biochemical reactions

that regulate biological processes in living organisms. A

well-known example in biochemistry is the basic enzyme

reaction [15]. In this system a substrate S reacts with an

enzyme E to form a complex C which is then converted

into a product P and the enzyme. For the open enzyme

reaction a constant influx of substrate and an efflux of

product are added [16]. The process can then be pre-

sented by the following reaction graph,

S + E C P + E

k1

k−1

k2

k3k0

where k = [k0, k−1, k1, k2, k3] are the rate parameters

of the system [15, 16].

The concentrations are X = (S,C,E, P ) ∈ R+ in a

system8 are strictly positive and may change over time.

The law of mass-action states that the rate of a reaction

is proportional to the product of the concentration of the

reactants [15]. Applying the law of mass-action to the

basic enzyme reaction, we obtain the following dynami-

cal system,

Ṡ(t) = k0 − k1S(t)E(t) + k−1C(t), (5)

Ė(t) = −k1S(t)E(t) + (k−1 + k2)C(t), (6)

Ċ(t) = k1S(t)E(t) − (k−1 + k2)C(t), (7)

Ṗ (t) = k2C(t) − k3P (t), (8)

S(0) = s0, E(0) = e0, C(0) = c0, P (0) = p0,
(9)

where x0 = (s0, e0, c0, p0) are the initial conditions of

the system.

8For the remainder of this paper we consider the concentra-
tions of the molecules and these will be denoted by the same
symbol as the molecules.
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To get an idea of the stationary behavior of this system,

we simulated the system in (5) to (9) with random initial

conditions. The time dependence of the concentrations

over time is shown in Figure 1a for 10 different initial

conditions. This plot shows that a) the concentration of

each reactant converges to an equilibrium b) the equilib-

rium state of S and E depends on the initial conditions

and c) the equilibrium state of C and P does not depend

on the initial conditions.

By explicit calculation one can verify that given strictly

positive initial conditions x0 ∈ R
4
+ and rate parameters

k ∈ R
5
+, the (intervened) dynamical system converges

to an equilibrium X∗ ∈ R
4
+ if it exists (see [16] and

supplementary material for details). For simplicity we

assume that the system is deterministic (i.e. the initial

conditions and rate parameters are non-random). The

stochastic setting, where initial conditions and rate pa-

rameters are sampled from a distribution, can be obtained

as a trivial extension.

3.2.1 Equilibrium states

In this section we look at the equilibrium states of the ba-

sic enzyme reaction, and how they can be derived from

the equations of motion and the constants of motion of

the corresponding dynamical system. In the next sec-

tion we will demonstrate how the causal constraints in

a GSCM representation of the equilibrium states can be

derived naturally from these equations and constants of

motion.

There are many ways to find the equilibrium states of a

dynamical system. One approach is to observe that, at

equilibrium, the system is at rest and all time derivatives

(i.e. equations of motion) are equal to zero. Subsequently

one can look for constants of motion, i.e. functions of

the variables that are time-invariant. A solution to the

resulting system of equations is an equilibrium state.

The observed dynamical system in (5) to (9) has four

equations of motion, which we set to zero. For example,

(5) yields the equilibrium equation

k0 − k1S(t)E(t) + k−1C(t) = 0.

The system also admits a constant of motion. Since

Ċ(t) + Ė(t) = 0 for all t, we have that

C(t) + E(t) = c0 + e0 ∀ t. (10)

Solving the resulting system of five equations one can

find a unique equilibrium solution for the observational

system, see also Table 1. Note that when e0+c0− k0

k2

≤ 0
the system has no solution, because the concentrations

need to be positive.

We also consider the constants of motion in the inter-

vened systems:

Table 1: Solutions to the intervened dynamical system of

the basic enzyme reaction in (5) to (9) under various in-

terventions, where y = 1
2

√
(e0 − s0)2 + 4k0(k−1+k2)

k1k2

.9

I S∗ C∗ E∗

∅ k0+k−1

k0

k2

k1(e0+c0−k0

k2
)

k0

k2

e0 + c0 − k0

k2

S = ξs ξs
k1ξs(e0+c0)
k−1+k2+k1ξs

(k−1+k2)(e0+c0)
k−1+k2+k1ξs

C = k0

k2

(e0−s0)
2 + y k0

k2

−(e0−s0)
2 + y

E = ξe
k0+k−1

k0

k2

k1ξe

k0

k2

ξe

1 An intervention do(I, ξI) on variables I ∈ IX re-

sults in ẊI(t) = 0 and thus in a new constant of

motion XI(t) = ξI .

2 Since an intervention on E results in a differential

equation Ė(t) = 0, and an intervention on C results

in a differential equation Ċ(t) = 0, the constant of

motion in (10) no longer holds if either E, C or both

are targeted by an intervention.

3 The system under the intervention do(C = k0

k2

) im-

plies the following constant of motion,

S(t)− E(t) = s0 − e0 ∀ t, (11)

since Ṡ(t) − Ė(t) = 0 in that case. Similar to the

constant of motion in (10) this no longer holds when

either S, E, or both are targeted by an intervention.

We obtain the equilibrium solutions in Table 1, by solv-

ing the system of equations for each intervention.

Note that the intervention do(C = ξC) and the equations

that we obtain by setting (5) and (6) to zero imply that

k1S(t)E(t) = k0 + k−1ξC = (k−1 + k2)ξC .

This equation can only hold when ξC = k0

k2

, otherwise

the intervened dynamical system does not have an equi-

librium solution.

From Table 1 we can also observe the rich causal seman-

tics of the equilibrium states of the basic enzyme reac-

tion. For example, an intervention on S makes C∗ de-

pendent on the initial conditions and an intervention on

E makes S∗ independent of the initial conditions. We

simulated the intervened dynamical system under inter-

vention on S and E. The change in dependencies on the

initial conditions can be seen clearly from the simulation

results in Figures 1b and 1c respectively.

3.2.2 GSCM representation

In this section we present a GSCM representation of the

basic enzyme reaction that captures all causal seman-

tics of its stationary behavior, given the initial conditions

6
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(a) S,C,E, and P converge to an equi-
librium in the observational system,
where E∗ and S∗ depend on initial
conditions.
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(b) C,E, and P converge to an equilib-
rium that depends on the initial condi-
tions after an intervention on S.
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(c) S,C, and P converge to an equilib-
rium that is independent of the initial
conditions after an intervention E.

Figure 1: Temporal dependence of the concentrations in the basic enzyme reaction in (5) to (9) with random initial

conditions and k = [0.4, 0.3, 1.0, 1.1, 0.5]. Many other choices for the rate parameters give qualitatively similar

results.

of the system. We show that the problem of finding an

appropriate GSCM representation reduces to finding the

constants of motion that the system admits under all in-

terventions such that the equilibrium states are implied.

At equilibrium, the concentration of X is constant. This

means that the equations of motion in (5) to (9) for

S,C,E, and P must be equal to zero, unless the vari-

able itself is intervened upon. This leads to the causal

constraints in (12) to (15) below.

The constant of motion in (10) restricts the system unless

either E or C is intervened upon, which corresponds to

the causal constraint in (16) below. The constant of mo-

tion in (11) only holds when C is intervened upon and

S,E are not, which is captured by the causal constraint

in (17) below. The causal constraints (12) and (14) en-

sure that the model has no solution under the intervention

do(C, ξC) when ξC 6= k0

k2

.

k0 + k−1C − k1SE = 0 P(IX\S) , (12)

k1SE − (k−1 + k2)C = 0 P(IX\C) , (13)

−k1SE + (k−1 + k2)C = 0 P(IX\E) , (14)

k2C − k3P = 0 P(IX\P ) , (15)

C + E − (c0 + e0) = 0 P(IX\{C,E}) , (16)

S − E − (s0 − e0) = 0 {IC , (IC ∪ IP )} . (17)

The GSCM for the basic enzyme reaction is then M =
(R4

+, G,P∅) where G consists of the causal constraints in

equations (12) to (17). Recall that given strictly positive

rate parameters and initial conditions the system con-

verges to an equilibrium state if it exists, under any inter-

vention. The solutions of the GSCM that we constructed

coincide with the equilibrium states of the dynamical

system (see Table 1) under any intervention, since the

equations constraining its solution space are identical to

the ones that characterize the equilibrium states. Hence

the GSCM fully captures the causal semantics pertaining

to the equilibrium behavior of the basic enzyme reaction.

Remark 1. The example of the basic enzyme reaction

also illustrates the crucial difference between interven-

tions that fix concentrations from t = 0 to t = ∞, and

interventions that only fix it at t = 0. In the latter case,

there is no effect on the dynamics of the system and the

causal constraints in (12) to (15) hold under all such in-

terventions, and the only effect of interventions is that

they change the initial state x0. Hence, it would only un-

cover the (causal) dependence of the equilibrium state on

the initial conditions of the system.

3.2.3 What about SCMs?

In this section we show that contrary to a GSCM, an

SCM cannot give a complete description of the equilib-

rium states of the basic enzyme reaction.

The construction of the GSCM in the previous section

gives a complete representation of the equilibria in the

basic enzyme reaction. To construct an SCM from the

ODEs we could follow [6] and derive it by setting the

equations of motion in the dynamical system to zero,

yielding an SCM with structural equations (12)-(15).

This would not incorporate the dependence of the equi-

librium state on the initial conditions that we observed in

the simulations of the observational and intervened dy-

namical systems. Therefore such an SCM would be un-

7



derspecified.

Theorem 1 below shows that there does not exist an SCM

representation of the basic enzyme reaction with initial

conditions. This shows that, if we wish to model the

equilibrium states of dynamical systems and pertain all

causal semantics, we cannot generally use an SCM for

this task.

Theorem 1. The equilibrium states of the basic enzyme

reaction cannot be represented by an SCM.

Proof. From Table 1 it can be seen that the solution

(S∗
∅ , E

∗
∅) in the observational system is different from the

solution (S∗
do(C=ξC), E

∗
do(C=ξC) in the system after an in-

tervention that targets C and sets it equal to k0

k2

(i.e., the

same value as the equilibrium value for C in the observa-

tional setting). Clearly, this behavior cannot be captured

by an SCM.

Interestingly, if we would treat the equilibrium state of C
as a latent endogenous variable that cannot be intervened

upon, there exists a complete SCM representation of the

causal semantics of the system with initial conditions.

Using Lemma 2 to represent it as a GSCM, it takes the

form

k0 + k−1
k0

k2

k1E
− S = 0 , P(IX′\S) ,

(k−1 + k2)(c0 + e0)

k−1 + k2 + k1S
− E = 0 , P(IX′\E) ,

k2
k3

k1SE

k−1 + k2
− P = 0 , P(IX′\P ) .

This SCM can be analyzed using existing methods, see

[8, 9].

3.3 EQUILIBRIUM CAUSAL MODELS

We have shown that the equilibrium solutions of dynam-

ical systems change under intervention, and that for a

realistic example an SCM is not sufficiently flexible to

capture these changes. A GSCM, on the other hand, can

represent the equilibrium distributions of dynamical sys-

tems under interventions, as is shown in Theorem 2 be-

low.

Theorem 2. Let D be a dynamical system describing n
variables X taking value in R

n with initial values X0

taking value in R
n, parameters K taking value in R

m

and PE a probability distribution over the space of ex-

ogenous variables E = (K,X0). Then there exists a

GSCM M(D) so that for I ∈ P(IX) and ξI ∈ R
n
I :

• If Ddo(I,ξ
I
) converges to an equilibrium X∗(I, ξI)

then
(
M(D)

)
do(I,ξI)

has a solution, and all its so-

lutions have the same distribution as X∗(I, ξI).

• If Ddo(I,ξI)
does not converge to an equilibrium

then
(
M(D)

)
do(I,ξI)

has no solutions.

• The following diagram commutes:

D M(D)

Ddo(I,ξ
I
)

(
M(D)

)
do(I,ξ

I
)

Proof. Consider an intervention target I ⊆ P(IX), and

let CI be the set of all intervention values so that for

ξI ∈ CI the dynamical system Ddo(I,ξI )
converges to an

equilibrium X∗(I, ξI). Consider the generalized struc-

tural equation,

X∗(I,XI)1CI
(XI)+(X+1)

(
1−1CI

(XI)
)
−X = 0.

If XI /∈ CI then this equation yields a contradiction.

Under the intervention do(I, ξI), XI = ξI . In that case,

if ξI ∈ CI then X = X∗(I, ξI) is the only solution

to these equations. Since CI is a measurable set, the

mapping gI corresponding to the generalized structural

equation is measurable.

The GSCM M(D) := (X , G,PE) where G consists of

the causal constraints {(gI , AI = {I}) : I ∈ P(IX)}
satisfies the properties of the theorem by construction

and by Lemma 1.

The result in Theorem 2 proves that a GSCM representa-

tion always exists for the equilibrium states of a dynami-

cal system. Although the GSCM that we construct in the

proof captures the causal semantics of the equilibrium

states, it does not give a parsimonious representation of

the system. In the previous section we sketched an al-

ternative construction method, and showed how a parsi-

monious GSCM can be derived from the equations and

constants of motion in the basic enzyme reaction.10

4 FUNCTIONAL LAWS

In this section, we further motivate the use of GSCMs

by applying it to systems that are described by a func-

tional law, which is a relation between variables that

must hold under all interventions. We show that the

causal constraint describing such a relation has more in-

variance under interventions than an ordinary structural

equation, and that the advantage of a GSCM representa-

tion of a functional law compared to an SCM representa-

tion is two-fold. First of all its solutions never violate the

10In the supplementary material we apply this construction
to two more dynamical systems (Lotka-Volterra model, chemi-
cal reaction network).
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functional law under interventions, and second it gives a

much more parsimonious description.

A functional law describes a relation between endoge-

nous and possibly exogenous variables (X ′ ⊆ X,E′ ⊆
E) that is invariant under any intervention on variables

X in the system. Such a relation can be described by a

causal constraint of the form

g(X ′,E′) = 0 , P(IX)

This ensures that the constraint is active under any in-

tervention on the variables X in the system. Hence any

solution of the intervened GSCM satisfies the functional

law. We will demonstrate the advantage of this represen-

tation in Example 5.

Example 5. It is well-known that the resistance R ∈ R,

the potential V ∈ R, and the current I ∈ R in an electri-

cal circuit are related by Ohm’s law (i.e. V = IR). Let

X = (R, V, I) denote the variables in Ohm’s law. In ab-

sence of any knowledge about the environment, this sys-

tem can be represented by the GSCM M = (X , G,P∅),
where the G consists of the causal constraint,

V − IR = 0 , P(IX). (18)

If we were to describe the same system using an SCM,

then we would need the following three copies of the

causal constraint in (18) as structural equations,

V = IR

I =
V

R

R =
V

I
.

Indeed, considering interventions on two out of three

variables leaves one with no choice for the structural

equation of the third one. Furthermore, a simultaneous

intervention on R, V , and I always has a solution in the

SCM representation, even when this means that Ohm’s

law is violated. The GSCM representation typically does

not have a solution under such an intervention (unless the

target values satisfy the constraint).

Note that a functional law can be any relation that is in-

variant under all interventions. For example, a transfor-

mation of a (set of) variables describing a system to an-

other (set of) variables describing the same system can

be modeled as a functional law. We will illustrate such a

transformation on the description of an ideal gas in Ex-

ample 6.

Example 6. An ideal gas can be described at different

levels. On the one hand, one can look at the microscopic

level and model the speed of each particle in the sys-

tem. On the other hand, it is perhaps more convenient

to model macroscopic quantities such as pressure P and

temperature T . Physicists have shown that, for N par-

ticles of mass m in a fixed cuboid volume V , the mean

squared speed v̄2 of the particles can be related to pres-

sure and temperature by11

P =
Nmv̄2

3V
, (19)

T =
mv̄2

3kB
. (20)

These variable transformations from a microscopic to a

macroscopic description X = (P, T, v̄) of the ideal gas

can be captured by the GSCM M = (X , G,P∅) where

G consists of

3PV −Nmv̄2 = 0 P(IX) ,

3kBT −mv̄2 = 0 P(IX) ,

and N and V are treated as constants. The solutions

to this GSCM will always satisfy the ideal gas law (i.e.

PV = NkbT ). In an SCM representation of this trans-

formed system, first of all we would need to include the

structural equations in (19) and (20). For v̄2 we need

to make sure that it is both a function of P and T , for

instance by enforcing the constraints by a self-loop,

v̄2 = v̄2 + 1{3PV −Nmv̄2 6=0} + 1{3kBT−mv̄2 6=0}.

Note that if we would treat v̄ as a latent variable, the

system can be described by a single causal constraint

PV −NkBT = 0, P(IX).

In analogy to the system in Example 5, if we would try to

capture this in an SCM, we would end up with multiple

copies of this constraint, and a simultaneous intervention

on P and T would typically lead to a solution that does

not satisfy the ideal gas law. Therefore, the GSCM repre-

sentation of functional laws like the ideal gas law is more

parsimonious, more natural, and more accurate than any

SCM representation.

5 CONCLUSION

While structural causal models form a very popular mod-

eling framework in many applied sciences, we have

shown that they are neither powerful enough to model

the rich equilibrium behavior of simple dynamical sys-

tems such as the basic enzyme reaction, nor simple func-

tional laws of nature like the ideal gas law. In order to

represent the causal semantics of such systems, we intro-

duced generalized structural causal models and proved

11This can be shown by using the kinetic theory of gases and
the equipartition theorem [17].
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that they do completely capture the stationary behavior

of dynamical systems that converge to equilibrium and

causal semantics of functional laws.

The main idea of generalized structural causal models

is that they are more flexible than SCMs because they

specify a set of probability distributions on the space of

endogenous variables by causal constraints instead of by

structural equations, where the validity of a causal con-

straint after perfect interventions can be more flexibly

specified than the validity of structural equations.

We illustrated the power and flexibility of our approach

on the simple basic enzyme reaction, one of the funda-

mental building blocks of biochemistry. We showed that

this system has rich stationary behavior and a depen-

dence on initial values that cannot be represented by an

SCM. We demonstrated how the causal constraints can

be derived naturally from the equations and constants of

motion of the corresponding ODEs and initial conditions,

thereby completely representing the system’s stationary

behavior by a parsimonious GSCM. We used our frame-

work to identify a non-trivial marginal model which is

equivalent to an SCM and can be analyzed using existing

methods.

We further motivated generalized structural causal mod-

els by considering their application to systems which can

be described by functional laws such as the ideal gas

law. We pointed out that any solution of an (intervened)

GSCM that includes the ideal gas law, must satisfy this

law. We highlighted the difference with SCMs, which

may have solutions that do not satisfy the ideal gas law.

We believe that the examples we have presented here

form a compelling motivation to introduce GSCMs and

to investigate the properties of these causal models in

more detail in future work. We can only speculate on the

impact of this work, but we are left wondering whether

the standard starting point in causal discovery—that the

data-generating process can be accurately modeled with

an SCM—is tenable in the context of biochemical sys-

tems, considering that even very simple biochemical sys-

tems (a single enzyme reaction) already violate this as-

sumption. An interesting starting point for future work

would be to investigate how and under which conditions

GSCMs can be learned from observational and interven-

tional data.
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Supplementary Material

A Basic Enzyme Reaction

In this section we show the additional results, concerning the basic enzyme reaction, that were discussed in the main

paper. First we discuss the fixed points of the basic enzyme reaction. Then we show that the systems converges to its

fixed point whenever it exists. Finally, we derive a simple marginal model from the GSCM representation of the basic

enzyme reaction.

A.1 Fixed points

The fixed points of the basic enzyme reaction, for all intervened systems, are given in Table 2. For any intervention,

these are obtained by solving the system of equations that one gets by considering the causal constraints in the GSCM

in (12) to (17) that are active under that specific intervention. That is, we take all equations for which the intervention

is in the activation set.

Table 2: Fixed points of the basic enzyme reaction, where y = 1
2

√
(e0 − s0)2 + 4k0(k−1+k2)

k1k2

.

intervention S C E P

none
k0+k−1

k0

k2

k1(e0+c0− k0

k2
)

k0

k2

e0 + c0 − k0

k2

k0

k3

do(S = s) s k1s(e0+c0)
k−1+k2+k1s

(k−1+k2)(e0+c0)
k−1+k2+k1s

k2

k3

k1s(e0+c0)
k−1+k2+k1s

do(C = c), c = k0

k2

(s0−e0)
2 + y c −(s0−e0)

2 + y k2

k3

c

do(C = c), c 6= k0

k2

∅ ∅ ∅ ∅
do(E = e)

k0+k−1

k0

k2

k1e
k0

k2

e k0

k3

do(P = p)
k0+k−1

k0

k2

k1(e0+c0− k0

k2
)

k0

k2

e0 + c0 − k0

k2

p

do(S = s, C = c) s c k−1+k2

k1

c
s

k2

k3

c

do(S = s, E = e) s k1

k−1+k2

se e k2

k3

k1

k−1+k2

se

do(S = s, P = p) s k1s(e0+c0)
k−1+k2+k1s

(k−1+k2)(e0+c0)
k−1+k2+k1s

p

do(C = c, E = e)
k0+k−1c

k1e
c e k2

k3

c

do(C = c, P = p), c = k0

k2

(s0−e0)
2 + y c −(s0−e0)

2 + y p

do(C = c, P = p), c 6= k0

k2

∅ ∅ ∅ ∅
do(E = e, P = p)

k0+k−1

k0

k2

k1e
k0

k2

e p

do(S = s, C = c, E = e) s c e k2

k3

c

do(S = s, C = c, P = p) s c k−1+k2

k1

c
s

p

do(S = s, E = e, P = p) s k1

k−1+k2

se e p

do(C = c, E = e, P = p)
k0+k−1c

k1e
c e p

do(S = s, C = c, E = e, P = p) s c e p

A.2 Convergence results for the basic enzyme reaction

In this section, we show that the basic enzyme reaction always converges to its fixed point, as long as it exists. We

also show that the intervened basic enzyme reaction has the same property. To prove this result we rely on both

explicit calculations and a convergence property of so-called cooperative systems that we obtained from [16]. To

prove convergence for the observed system and the system after interventions on P and E, we use the latter technique.

Convergence to the equilibrium solution after interventions on S and C can be shown by explicit calculation. The

convergence results for combinations of interventions can be obtained by a trivial extension of the arguments that were

used in the other cases.
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A.2.1 Cooperativity in the basic enzyme reaction

To show that the basic enzyme reaction converges to a unique equilibrium, if it exists, we first state a result that we

obtained from [16]: cooperative systems as in Definition 6 have the attractive convergence property in Proposition 1.

Definition 6. A system of ODEs Ẋ is cooperative if the Jacobian matrix has non-negative off-diagonal elements,

or there exists an integer k such that the Jabobian has (k × k) and (n − k) × (n − k) main diagonal matrices with

nonnegative off-diagonal entries and the rectangular off-diagonal submatrices have non-positive entries.

Proposition 1. Let Ẋ = f (X) be a cooperative system with a fixed pointx∗. If there exist two pointsxmin,xmax ∈ X

such that xmin ≤ x∗ ≤ xmax and f(xmin) ≥ 0 and f(xmax) ≤ 0, then the hyperrectangle betweeen xmin and xmax is

invariant12 and for almost all initial conditions inside this rectangle the solution converges to x∗.

A.2.2 Convergence of the observed system

Recall that the dynamics of the basic enzyme reaction are given by

Ṡ(t) = k0 − k1S(t)E(t) + k−1C(t) , (21)

Ė(t) = −k1S(t)E(t) + (k−1 + k2)C(t) , (22)

Ċ(t) = k1S(t)E(t)− (k−1 + k2)C(t) , (23)

Ṗ (t) = k2C(t)− k3P (t) , (24)

S(0) = s0, E(0) = e0, C(0) = c0, P (0) = p0, (25)

where x0 = (s0, e0, c0, p0) are the initial conditions of the system.

The analysis in [16] of the basic enzyme reaction makes use of Proposition 1, but also includes feedback from P to C.

In this section, we repeat their analysis on our sligthly different model. Note that the arguments given in this section

can also be applied to the system where P is intervened upon.

We start by rewriting the system of ODEs in equation (21) to (24), by using the fact that Ė(t) + Ċ(t) = 0 so that

E(t) = e0 + c0 − C(t):

Ṡ(t) = k0 − k1S(t)(e0 + c0 − C(t)) + k−1C(t), (26)

Ċ(t) = k1S(t)(e0 + c0 − C(t)) − (k−1 + k2)C(t), (27)

Ṗ (t) = k2C(t)− k3P (t). (28)

Cooperativity The corresponding Jacobian matrix is given by,

J(S,C, P ) =




−k1(e0 + c0 − C(t)) k−1 + k1S(t) 0
k1(e0 + c0 − C(t)) −(k−1 + k2)− k1S(t) 0

0 k2 −k3



 . (29)

Since all off-diagonal elements in the Jacobian matrix are nonnegative, the observational system is a cooperative

system by Definition 6.

Convergence From Table 2 we find that the observed system has a unique (positive) fixed point as long as e0+ c0 >
k0

k2

. We want to use Proposition 1 to show that the system converges to this fixed point, so we need to find xmin and

xmax so that all three derivatives are nonnegative and nonpositive respectively.

For xmin = (0, 0, 0), then Ṡ = k0 > 0 and Ċ = Ṗ = 0 so all derivatives are nonnegative. The upper vertex must be

12An invariant set is a set with the property that once a trajectory of a dynamical set enters it, it cannot leave.
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chosen so that all derivative are non-positive:

Ṡ ≤ 0 ⇐⇒ S ≥ k0 + k−1C

k1(e0 + c0 − C)
,

Ċ ≤ 0 ⇐⇒ S ≥ (k−1 + k2)C

k1(e0 + c0 − C)
,

Ṗ ≤ 0 ⇐⇒ P ≥ k2
k3

C .

The basic enzyme reaction only has a fixed point as long as C < e0 + c0 (otherwise Ṡ(t) > 0). If we let C approach

e0 + c0, then the inequality constraints on the derivatives are satisfied as S and P go to infinity. More formally we can

choose

xmax = (S = max

(
k0 + k−1C

k1(e0 + c0 − C)
,

(k−1 + k2)C

k1(e0 + c0 − C)

)
, C = e0 + c0 − ǫ, P =

k2
k3

C +
1

ǫ
).

When ǫ approaches zero, both S and P go to infinity and all derivatives are nonpositive. Hence, by Proposition 1, the

system converges to its fixed point for almost all valid initial values of S,C, and P (for which the fixed point exists).

A.2.3 Intervention on E

Similarly, we can also show that the system where E is targeted by an intervention that sets it equal to e, converges to

the (unique) equilibrium in Table 2. The intervened system of ODEs is given by

Ṡ = k0 − k1eS + k−1C ,

Ċ = k1eS − (k−1 + k2)C ,

Ṗ = k2C − k3P.

The Jacobian is given by

J(S,C, P ) =




−k1e k−1 0
k1e −(k−1 + k2) 0
0 k2 −k3



 . (30)

Since all off-diagonal elements are nonnegative this is a cooperative system by Definition 6.

All derivatives are nonnegative at the point (S,C, P ) = (0, 0, 0), and all derivatives are nonpositive at the point

(s, c, p) where

s = max

(
k−1c+ k0

k1e
,
(k−1 + k2)c

k1e

)
,

p =
k2
k3

c ,

where c → ∞. We then apply Proposition 1 to show that the intervened system converges to the equilibrium value

from all valid initial values.

A.2.4 Intervention on S

We show that the system converges to the equilibrium solution after an intervention on S by explicit calculation. The

intervened system of ODEs is given by

Ṡ(t) = 0 ,

Ė(t) = −k1sE(t) + (k−1 + k2)C(t) ,

Ċ(t) = k1sE(t)− (k−1 + k2)C(t) ,

Ṗ (t) = k2C(t) − k3P (t).
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Since Ċ(t) + Ė(t) = 0, we can write E(t) = e0 + c0 − C(t), resulting in the following differential equation

Ċ(t) = k1s(e0 + c0 − C(t)) − (k−1 + k2)C(t) , (31)

= −(k1s+ k−1 + k2)C(t) + k1s(e0 + c0). (32)

We take the limit t → ∞ of the solution to the initial value problem to obtain

C∗ = lim
t→∞

k1s(e0 + c0)

(k1s+ k1 + k2)
+ e−(k1s+k−1+k2)t =

k1s(e0 + c0)

(k1s+ k−1 + k2)
. (33)

The result for E follows from the fact that E(t) = e0 + c0 − C(t). The result for P follows by explicitly solving the

differential equation and taking the limit t → ∞.

A.2.5 Intervention on C

There is no equilibrium solution when the intervention targeting C does not have value k0

k2

, as can be seen from Table

2. To show that the system converges when the equilibrium solution exists, we can explicitly solve the initial value

problem and take the limit t → ∞. The intervened system of ODEs after an intervention do(C = k0

k2

) is given by

Ṡ(t) = −k1S(t)E(t) + (k−1 + k2)
k0
k2

= −k1S(t)E(t) + k ,

Ė(t) = −k1S(t)E(t) + (k−1 + k2)
k0
k2

= −k1S(t)E(t) + k ,

Ċ(t) = 0 ,

Ṗ (t) = k0 − k3P (t) ,

where we set k = (k−1 + k2)
k0

k2

for brevity.

The initival value problem for P can be solved explicitly, and by taking the limit t → ∞ we obtain

P ∗ = lim
t→∞

P (t) = lim
t→∞

k0
k3

+ c · e−k3t =
k0
k3

,

which is the same as the equilibrium solution in Table 2.

The solution for S is more involved. First we substitute E(t) = S(t)− (s0 − e0) (since Ṡ(t)− Ė(t) = 0) which gives

us the following differential equation

Ṡ(t) = −k1S(t)(S(t)− (s0 − e0)) + k = −k1S(t)
2 + (s0 − e0)k1S(t) + k.

To solve this differential equation we first divide both sides by (−k1(S(t))
2 + (s0 − e0)k1S(t) + k), and integrate

both sides with respect to t,

∫
dS(t)/dt

−k1S(t)2 + (s0 − e0)k1S(t) + k
dt =

∫
1dt (34)

∫
dS(t)

−k1S(t)2 + (s0 − e0)k1S(t) + k
= (t+ c) (35)

To evaluate the left-hand side of this equation we want to apply the following standard integral:

∫
1

ax2 + bx+ c
dx =





− 2√

b2−4ac
tanh−1

(
2ax+b√
b2−4ac

)
+ C, if |2ax+ b| <

√
b2 − 4ac,

− 2√
b2−4ac

coth−1
(

2ax+b√
b2−4ac

)
+ C, else.

(36)

for b2 − 4ac > 0. We first check the condition:

b2 − 4ac = (s0 − e0)
2k21 + 4k1k > 0.
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We now take the first solution to the standard integral (the second solution gives the same limiting result for S, as we

will see later on). We apply the first solution in (36) to (35) to obtain

2 tanh−1

(
2k1S(t)−(s0−e0)k1√

4k1k+(s0−e0)2k2

1

)

√
4k1k + (s0 − e0)2k21

= t+ c (37)

tanh−1

(
2k1S(t)− (s0 − e0)k1√
4k1k + (s0 − e0)2k21

)
=

1

2
(t+ c)

√
4k1k + (s0 − e0)2k21 (38)

2k1S(t)− (s0 − e0)k1√
4k1k + (s0 − e0)2k21

= tanh

(
1

2
(t+ c)

√
4k1k + (s0 − e0)2k21

)
, (39)

Solving (39) for S gives,

S(t) =
1

2k1

(
tanh

(
1

2
(t+ c)

√
4k1k + (s0 − e0)2k21

)√
4k1k + (s0 − e0)2k21 + k1(s0 − e0)

)
.

By taking the limit t → ∞, plugging in k = (k−1 + k2)
k0

k2

, and rewriting we obtain the equilibrium solution in Table

2:

lim
t→∞

S(t) =
k1(s0 − e0) +

√
4k1k + (s0 − e0)2k21
2k1

=
k1(s0 − e0) +

√
4k1(k−1 + k2)

k0

k2

+ (s0 − e0)2k21

2k1

=
1

2


(s0 − e0) +

√

(s0 − e0)2 + 4
k0(k−1 + k2)

k1k2


 .

Note that if we take the second solution to the standard integral in (36), then we would have ended up with the same

solution for S(t) with tanh replaced by coth, but the limit limt→∞ S(t) would still be the same.

The solution for E follows from the fact that E(t) = S(t)− (s0 − e0). The solutions for all joint interventions were

found by combining the arguments that were given for the single interventions.

A.3 Marginal model

In the paper we presented a marginal model for the basic enzyme reaction. Here we show how it can be derived from

the causal constraints in the GSCM, which are given by

k0 + k−1C − k1SE = 0, P(IX\S) , (40)

k1SE − (k−1 + k2)C = 0, P(IX\C) , (41)

−k1SE + (k−1 + k2)C = 0, P(IX\E) , (42)

k2C − k3P = 0, P(IX\P ) , (43)

C + E − (c0 + e0) = 0, P(IX\{C,E}) , (44)

S − E − (s0 − e0) = 0, {IC , (IC ∪ IP )} . (45)

We obtain the marginal model as follows:

1. Reduce the number of variables that can be targeted by an intervention: X ′ = {S,E, P}.

2. Rewrite the causal constraint in (41) to C = k1SE
k−1+k2

. Note that this equation holds under any intervention in

P(IX′) = P(IX\C). Then substitute this expression for C into equation (40) to obtain

k0 + k−1
k0

k2

k1E
− S = 0 , P(IX′\S),
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where the activation set of the causal constraint is given by the intersection P(IX\S) ∩ P(IX′). Then substitute

this expresion for C into equation (43) to obtain

k2
k3

k1SE

k−1 + k2
− P = 0 , P(IX′\P ),

where the activation set of the causal constraint is given by the intersection P(IX\P ) ∩ P(IX′).

3. Rewrite the causal constraint in (44) to C = e0 + c0 −E and note that this equation holds under interventions in

P(IX′\E). Then substitute this expression for C into equation (42) to obtain

(k−1 + k2)(c0 + e0)

k−1 + k2 + k1S
− E = 0 , P(IX′\E),

where the activation set of the causal constraint is given by the intersection P(IX\{C,E}) ∩ P(IX′\E).

This procedure results in the following marginal model

k0 + k−1
k0

k2

k1E
− S = 0 , P(IX′\S) ,

(k−1 + k2)(c0 + e0)

k−1 + k2 + k1S
− E = 0 , P(IX′\E) ,

k2
k3

k1SE

k−1 + k2
− P = 0 , P(IX′\P ) .

Because we kept track of the interventions under which each equation is active when we substituted C into the equa-

tions of other causal constraints, we preserved the causal structure of the model. That is, the marginal GSCM model

has the same solutions as the original GSCM under interventions in P(IX′).

B Additional examples

B.1 A chemical reaction network

The basic enzyme reaction is not a special case where SCMs cannot fully represent the equilibrium states. The example

in this section is intended to illustrate that the problem occurs more generally in chemical reaction networks.

Consider a chemical reaction where molecules X1 and X2 react to form a molecule X3 at a rate k1, and with rate k2
the molecules X3 are converted back to X2. This reaction is described by the following reaction equations,

X1 +X2
k1−→ X3

X3
k2−→ X2.

We assume that the concentration of X1(t) is kept constant13.

The dynamics of the concentrations in this system as obtained by the law of mass-action are described by the following

equations of motion and initial conditions,

Ẋ1 = 0

Ẋ2 = −k1X1(t)X2(t) + k2X3(t)

Ẋ3 = k1X1(t)X2(t)− k2X3(t),

X1(0) = X0
1 , X2(0) = X0

2 , X3(0) = X0
3 .

We let X(t) = (X1(t), X2(t), X3(t)) be a set of endogenous variables taking value in R
3
+,14 and E =

(X0
1 , X

0
2 , X

0
3 , k1, k2) a set of time-independent exogenous variables taking value in E = R

5
+ with a probability

measure PE .

13This can be accomplished by a process called chemostatting, where a permeable membrane allows one type of particle to move
to and from a large buffer with a fixed concentration.

14
R

3
+ are the strictly positive real numbers.
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Table 3: Solutions to the ODE of the chemical reaction network, under all interventions I ∈ P(IX)

I X1 X2 X3

∅ X0
1 (X0

2 +X0
3 ))

k2

k2+k1X
0

1

(X0
2 +X0

3 )
k1X

0

1

k2+k1X
0

1

{1} ξ1 (X0
2 +X0

3 )
k2

k2+k1ξ1
(X0

2 +X0
3 )

k1ξ1
k2+k1ξ1

{2} X0
1 ξ2

k1

k2

X0
1 ξ2

{3} X0
1

k2

K1

ξ3
X0

1

ξ3

{1, 2} ξ1 ξ2
k1

k2

xi1ξ2
{1, 3} ξ1

k2

k1

ξ3
ξ1

ξ3
{2, 3} X0

1 ξ2 ξ3
{1, 2, 3} ξ1 ξ2 ξ3

Equilibrium solutions The equilibrium solutions of this dynamical system under all possible intervention are dis-

played in Table 3. We can show that the system converges to these solutions by explicit calculation.

For the observed system note that Ẋ2(t) + Ẋ3(t) = 0 so that X2(t) = X0
2 + X0

3 − X3(t), and Ẋ1(t) = 0 so that

X1(t) = X0
1 . Plugging this into Ẋ2 we find that

Ẋ2(t) = −k1X
0
1X2(t) + k2(X

0
2 +X0

3 −X2(t)).

The solution to this differential equation is given by,

X2(t) =
k2(X

0
2 +X0

3 )

k2 + k1X0
1

+ e−(k1X
0

1
+k2)t.

Taking the limit t → ∞ indeed gives the equilibrium solution in Table 3. The equilibrium solution for X3 follows

from X3(t) = X0
2 +X0

3 −X2(t).

After an intervention do(X3 = ξ3), we obtain the differential equation,

Ẋ2(t) = −k1X
0
1X2(t) + k2ξ3.

Solving this differential equation gives,

X2(t) =
k2ξ3
k1X0

1

+ e−k1X
0

1
t.

Taking the limit gives the equilibrium solution in Table 3. Convergence for the system under influence of other

interventions follows similarly.

GSCM representation To obtain the GSCM representation of the equilibrium states in this system, we set all equa-

tions of motions equal to zero. This leads to the following causal constraints,

−K1X1X2 +K2X3 = 0, P(IX\X2
), (46)

K1X1X2 −K2X3 = 0, P(IX\X3
). (47)

Since Ẋ1 = 0 and Ẋ2 + Ẋ3 = 0 for all t, the system also admits two constants of motion. The corresponding causal

constraints are,

X1 −X0
1 = 0, P(IX\X1

) (48)

X2 +X3 − (X0
2 +X0

3 ) = 0, {∅, {1}} (49)

Let G denote the causal constraints in equations (46), (47), (48), and (49). These causal constraints imply a unique

probability distribution on X under all interventions. The solutions to the GSCM correspond to the equilibrium soltu-

ions of the initial value problem, for each intervention. The GSCM (X , G,PE) thus represents the causal semantics

of the equilibrium states of the dynamical system.
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Since an SCM can only have three equations, it cannot completely represent the equilibrium solutions of this system.

This can be seen as follows. In order to capture the causal dependencies in the case that two out of three variables are

intervened upon, an SCM must include the relations in (46) to (48). This leaves no room to include the dependence of

X2 and X3 on the initial conditions, in the cases that both X2 and X3 are not targeted by an intervention.

B.2 Lotka-Volterra Predator-Prey Model

The Lotka-Volterra model describes the dynamics of population sizes of predator and prey species. It typically does

not converge to a single equilibrium state but to steady-state oscillations. The dynamical system is given by

dX1

dt
= X1(t)(θ11 − θ12X2(t))

dX2

dt
= −X2(t)(θ22 − θ21X1)(t),

with initial values X1(0) = X0
1 > 0, X2(0) = X0

2 > 0 and rate parameters θ > 0. Let X1 and X2 be endogenous

variables taking value in the positive reals and E = (X1(0), X2(0)) background variables with probability distribution

PE , where E = R
2
+.

First note that in the equilibrium state the equations of motion need to be equal to zero. This leads to the following

causal constraints

X1(θ11 − θ12X2) = 0 {{∅}, {2}} (50)

X2(θ22 − θ21X1) = 0 {{∅}, {1}} (51)

The observed system admits a constant of motion through a nonlinear dependence between the equations of motion

which is given by

θ21X1 + θ22 log(X1)− θ12X2 + θ11 log(X2) = −θ21X
0
1 + θ22 log(X

0
1 )− θ12X

0
2 + θ11 log(X

0
2 )

To represent this constant of motion in a GSCM, we consider the causal constraint

θ21X1 + θ22 log(X1)− θ12X2 + θ11 log(X2)− (−θ21X
0
1 + θ22 log(X

0
1 )− θ12X

0
2 + θ11 log(X

0
2 )) = 0, {∅} .

(52)

If an intervention on X1 is such that θ22 − θ21X1 = 0, the system admits another constant of motion so that X1(t) =
X1(0) for all t. If the intervention is such that θ22−θ21X1 > 0 then X2(t) tends to zero as t → ∞. If the intervention

on X1 is such that θ22 − θ21X1 < 0, then the system only has a solution if X2(0) = 0, otherwise X2(t) runs of to

infinity. This behavior is captured by the combination of the causal constraints in (51) and (53). Analogously, we

derive an additional causal constraint describing the effects of interventions on X2 given in (54).

X2 = X0
21{θ22−θ21X1≤0} {{1}} (53)

X1 = X0
11{θ11−θ12X2≥0} {{2}} (54)

The GSCM representation of the Lotka-Volterra model is obtained by takingG to be the causal constraints in equations

(50) to (54), and M = (X , G,PE).
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