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Abstract

We prove the main rules of causal calculus (also

called do-calculus) for interventional structural

causal models (iSCMs), a generalization of a

recently proposed general class of non-/linear

structural causal models that allow for cycles, la-

tent confounders and arbitrary probability distri-

butions. We also generalize adjustment criteria

and formulas from the acyclic setting to the gen-

eral one (i.e. iSCMs). Such criteria then allow to

estimate (conditional) causal effects from obser-

vational data that was (partially) gathered under

selection bias and cycles. This generalizes the

backdoor criterion, the selection-backdoor crite-

rion and extensions of these to arbitrary iSCMs.

Together, our results thus enable causal reason-

ing in the presence of cycles, latent confounders

and selection bias.

1 INTRODUCTION

Statistical models are governed by the rules of probabil-

ity (e.g. sum and product rule), which link joint distribu-

tions with the corresponding (conditional) marginal ones.

Causal models follow additonal rules, which relate the ob-

servational distributions with the interventional ones. In

contrast to the rules of probability theory, which directly

follow from their axioms, the rules of causal calculus need

to be proven, when based on the definition of structural

causal models (SCMs). As SCMs will among other things

depend on the underlying graphical structure (e.g. with or

without cycles or bidirected edges, etc.), the used func-

tion classes (e.g. linear or non-linear, etc.) and the allowed

probability distributions (e.g. discrete, continuous, singular

or mixtures, etc.) the respective endeavour is not immedi-

ate.

Such a framework of causal calculus contains rules about

when one can 1.) insert/delete observations, 2.) exchange

action/observation, 3.) insert/delete actions; and about

when and how to recover from interventions and/or selec-

tion bias (backdoor and selection-backdoor criterion), etc.

(see [1, 3, 4, 12, 18–21, 23, 24, 28–30]). While these rules

have been extensively studied for acyclic causal models,

e.g. (semi-)Markovian models, which are attached to di-

rected acyclic graphs (DAGs) or acyclic directed mixed

graphs (ADMGs) (see [1, 3, 4, 12, 18–21, 23, 24, 28–30]),

the case of causal models with cycles stayed in the dark.

To deal with cycles and latent confounders at the same

time in this paper we will introduce the class of inter-

ventional structural causal models (iSCMs), a “condi-

tional” version of the recently proposed class of modu-

lar structural causal models (mSCMs) (see [8, 9]) to also

include external nodes that can play the role of parame-

ter/action/intervention nodes. They have several desirable

properties: iSCMs allow for arbitrary probability distribu-

tions, non-/linear functional relations, latent confounders

and cycles. They can also model non-/probabilistic ex-

ternal and probabilistic internal nodes in one framework.

Furthermore, the class of iSCMs is closed under arbitrary

marginalisations and interventions. All causal models that

are based on acyclic graphs like DAGs, ADMGs or mDAGs

(see [7, 25]) can be interpreted as special acyclic iSCMs.

Thus iSCMs generalize all these classes of causal mod-

els in one framework, but also allow for cycles and exter-

nal non-/probabilistic nodes. Also the generalized directed

global Markov property for mSCMs (see [8, 9]) general-

izes to iSCMs, i.e. iSCMs entail the conditional indepen-

dence relations that follow from the σ-separation criterion

in the underlying graph, where σ-separation generalizes

the usual d-separation (also called m- or m∗-separation,

see [7,17,21,25,33]) from acyclic graphs to directed mixed

graphs (DMGs) (and even HEDGes and σ-CGs) with or

without cycles in a non-naive way.

This paper now aims at proving the mentioned main rules
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of causal calculus for iSCMs and derive adjustment criteria

with corresponding adjustment formulas like generalized

(selection-)backdoor adjustments.

The paper is structured as follows: We will first give

the precise definition and main constructions of interven-

tional structural causal models (iSCMs) closely mirroring

mSCMs from [8, 9]. We then will review the definition

of σ-separation and generalize its criterion from mSCMs

(see [8,9]) to iSCMs. As a preparation for the causal calcu-

lus, which relates observational and interventional distribu-

tions, we will then show how one can extend a given iSCM

to one that also incorporates additional interventional vari-

ables indicating the regime of interventions onto the ob-

served nodes. We will then basically show how the rules of

causal calculus directly follow from the existence of such

an extended iSCM and the σ-separation criterion applied to

it. Finally, we will derive the mentioned general adjustment

criteria with corresponding adjustment formulas.

2 INTERVENTIONAL STRUCTURAL

CAUSAL MODELS

In this section we will define interventional structural

causal models (iSCMs), which could be seen as a “con-

ditional” version of modular structural causal models

(mSCMs) defined in [8, 9]. We will then construct

marginalized iSCMs and intervened iSCMs. To allow for

cycles we first need to introduce the notion of loop of a

graph and its strongly connected components.

Definition 2.1 (Loops). Let G = (V,E) be a directed

graph (with or without cycles).

1. A set of nodes S ⊆ V is called a loop of G if for every

two nodes v1, v2 ∈ S there are two directed paths

v1 · · · v2 and v2 · · · v1 in G such that

all the intermediate nodes are also in S (if any). The

sets S = {v} are also considered as loops.

2. The set of loops of G is written as L(G).
3. The strongly connected component of v in G is defined

to be: ScG(v) := AncG(v) ∩DescG(v).

Remark 2.2. Let G = (V,E) be a directed graph.

1. We always have v ∈ ScG(v) and ScG(v) ∈ L(G).
2. If G is acyclic then: L(G) = {{v} | v ∈ V }.

In the following, all spaces are meant to be equipped with

σ-algebras, forming standard measurable spaces, and all

maps to be measurable.

Definition 2.3 (Interventional Structural Causal Model).

An interventional structural causal model (iSCM) by defi-

nition consists of:

1. a set of nodes V + = V ∪̇U ∪̇J , where elements of V
correspond to observed variables, elements of U to la-

tent variables and elements of J to intervention vari-

ables.

2. an observation/latent/action space Xv for every v ∈
V +, X :=

∏

v∈V + Xv ,

3. a product probability measure PU =
⊗

u∈U Pu on the

latent space XU :=
∏

u∈U Xu,

4. a directed graph structure G+ = (V +, E+) with the

properties:

(a) V = ChG
+

(U),

(b) PaG
+

(U ∪ J) = ∅,

where ChG+

andPaG
+

stand for children and parents

in G+, resp.,1

5. a system of structural equations g = (gS)S∈L(G+)
S⊆V

:

gS :
∏

v∈PaG
+
(S)\S

Xv →
∏

v∈S

Xv,
2

that satisfy the following global compatibility con-

ditions: For every nested pair of loops S′ ⊆
S ⊆ V of G+ and every element x

PaG+
(S)∪S

∈
∏

v∈PaG
+
(S)∪S

Xv we have the implication:

gS(xPaG+
(S)\S

) = xS

=⇒ gS′(x
PaG+

(S′)\S′) = xS′ ,

where x
PaG

+
(S′)\S′ and xS′ denote the corresponding

components of x
PaG

+
(S)∪S

.

The iSCM will be denoted by M = (G+,X ,PU , g).

Definition 2.4 (Modular structural causal model, see [8,9]).

A modular structural causal model (mSCM) is an iSCM

without intervention nodes, i.e. J = ∅.

Remark 2.5 (Relation between iSCMs and mSCMs).

Given an iSCM M = (G+,X ,PU , g) with graph G+ =
(V ∪̇U ∪̇J,E+) we can construct a well-defined mSCM

by specifying a product distribution PJ :=
⊗

j∈J Pj on

XJ :=
∏

j∈J Xj . For every node j ∈ J we can decide

to change j either to a latent node (U ) or to an observed

node (V ). In the latter case we then formally need to add

a latent node uj to U and an edge uj j to G+, put

Xuj
:= Xj and g{j} := idXj

and consider Pj to live on

the latent space Xuj
(corresponding to uj rather then to j

directly).

The actual joint distributions on the observed space XV and

thus the random variables attached to any iSCM will be

defined in the following.

Definition 2.6. Let M = (G+,X ,PU , g) be an iSCM with

G+ = (V ∪̇U ∪̇J,E+). We fix a value xJ ∈ XJ . The

following constructions will depend on the choice of xJ .

1To have a “reduced” form of the latent space one can in ad-

dition impose the condition: ChG
+

(u1) * ChG
+

(u2) for every
two distinct u1, u2 ∈ U . This can always be achieved by gather-

ing latent nodes together if ChG
+

(u1) ⊆ ChG
+

(u2).
2Note that the index set runs over all “observable loops” S ⊆

V , S ∈ L(G+), not just the sets {v} for v ∈ V .
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1. The latent variables are given by (Xu)u∈U ∼ PU , i.e.

by the canonical projections Xu : XU → Xu, which

are jointly PU -independent. These are still indepen-

dent of xJ , but we put X
do(xJ)
u := Xu.

2. For j ∈ J we put X
do(xJ)
j := xj , the constant vari-

able given by the j-component of xJ .

3. The observed variables (X
do(xJ )
v )v∈V are inductively

defined by:

Xdo(xJ )
v := gS,v

(

(Xdo(xJ )
w )

w∈PaG
+
(S)\S

)

,

where S := ScG
+

(v) := AncG
+

(v)∩DescG
+

(v) and

where the second index v refers to the v-component of

gS . The induction is taken over any topological order

of the strongly connected components of G+, which

always exists (see [8]).

4. By the compatibility condition for g we then have that

for every S ∈ L(G+) with S ⊆ V the following

equality holds:

X
do(xJ)
S = gS(X

do(xJ )

PaG
+
(S)\S

),

where we put XA :=
∏

v∈A Xv and XA := (Xv)v∈A

for subsets A.

5. We define the family of conditional distributions:

PU (XA|XB, XJ = xJ )

:= PU (XA|XB, do(XJ = xJ ))

:= PU (X
do(xJ )
A |X

do(xJ )
B ),

for A,B ⊆ V and xJ ∈ XJ . Note that in the follow-

ing we will use the do and the do-free notation (only)

for the J-variables interchangeably.

6. If we, furthermore, specify a product distribution

PJ =
⊗

j∈J Pj on XJ , then we get a joint distribution

P on XV ∪J by setting:

P(XV , XJ) := PU (XV | do(XJ))PJ (XJ).

Remark 2.7. Let M = (G+,X ,PU , g) be an iSCM with

G+ = (V ∪̇U ∪̇J,E+). For every subset A ⊆ V we get a

well defined map gA : X
PaG

+
(A)\A

→ XA, by recursively

plugging in the gS into each other for the biggest occuring

loops S ⊆ A by the same arguments as before. These then

are all globally compatible by construction and satisfy:

X
do(xJ)
A = gA(X

do(xJ )

PaG
+
(A)\A

).

Similar to mSCMs (see [8, 9]) we can define the marginal-

isation of an iSCM.

Definition 2.8 (Marginalisation of iSCMs). Let M =
(G+,X ,P, g) be an iSCM with G+ = (V ∪̇U ∪̇J,E+)
and W ⊆ V a subset. The marginalised iSCM M\W

w.r.t. W can be defined by plugging the functions gS re-

lated to W into each other. For example, when marginal-

izing out W = {w} we can define (for the non-trivial case

w ∈ PaG
+

(S) \ S):

gS′,v(xPa(G+)\W (S′)\S′) :=

gS,v(xPaG+
(S)\(S∪{w})

, g{w}(xPaG+
(w)\{w}

)),

where (G+)\W is the marginalised graph of G+, S′ ⊆
V \W := V \ W is any loop of (G+)\W and S the cor-

responding induced loop in G+.

Similar to mSCMs (see [8,9]) we now define what it means

to intervene on observed nodes in an iSCM.

Definition 2.9 (Perfect interventions on iSCMs). Let M =
(G+,X ,P, g) be an iSCM with G+ = (V ∪̇U ∪̇J,E+).
Let W ⊆ V ∪ J be a subset. We then define the post-

interventional iSCM Mdo(W ) w.r.t. W :

1. Define the graph G+
do(W ) by removing all the edges

v w for all nodes w ∈ W and v ∈ PaG
+

(w).
2. Put Vdo(W ) := V \W and Jdo(W ) := J ∪W .

3. Remove the functions gS for loops S with S ∩W 6= ∅.

The remaining functions then are clearly globally compat-

ible and we get a well-defined iSCM Mdo(W ).

3 CONDITIONAL INDEPENDENCE

Here we shortly generalize conditional independence for

structured families of distributions. The main application

will be the distributions (PU (XV | do(XJ = xJ )))xJ∈XJ

coming from iSCMs, but the following definition might be

of more general importance.

Definition 3.1 (Conditional independence). Let XV :=
∏

v∈V Xv and XJ :=
∏

j∈J Xj be product spaces and

P := (PV (XV |xJ ))xJ∈XJ

a family of distributions on XV (measurably3)

parametrized by XJ . For subsets A,B,C ⊆ V ∪̇J
we write:

XA ⊥⊥
P

XB |XC

if and only if for every product distribution PJ =
⊗

j∈J Pj

on XJ we have: XA ⊥⊥ PV ∪J
XB |XC , i.e.:

PV ∪J(XA|XB, XC) = PV ∪J(XA|XC) PV ∪J -a.s.,

where PV ∪J(XV ∪J ) := PV (XV |XJ)PJ(XJ ), the distri-

bution given by XJ ∼ PJ and then XV ∼ PV (_|XJ).

3We require that for every measurable F ⊆ XV the map
XJ → [0, 1] given by xJ 7→ PV (XV ∈ F |xJ) is measurable.
Such families of distributions are also called channels or (stochas-
tic) Markov (transition) kernels (see [14]).
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Lemma 3.2. Let the situation be like in 3.1. If A,B,C are

pairwise disjoint, A∩ J = ∅ and J ⊆ B ∪C then we have

the equivalence:

1. XA ⊥⊥ P XB |XC , if and only if

2. PV (XA|XB = xB, XC = xC) is only a function of

xC (for every setting of XA).

Proof. Since the latter does not depend on the choice

of PJ it clearly implies the former. Now assume

the former. For every two values xB 6= x′
B ∈

XB and every xV ∪J\B ∈ XV ∪J\B put PJ :=
⊗

j∈B∩J

(

1
2δxj

+ 1
2δx′

j

)

⊗
⊗

j∈J\B δxj
. Since the former

holds for every PJ of product form we get:

PV (XA|XB, XC) = PV ∪J(XA|XC) PV,J -a.s.

with PV ∪J given by PV (XV |XJ)PJ(XJ ) using PJ from

above. The claim follows:

PV (XA|XB = xB, XC = xC)

= PV (XA|XB = x′
B, XC = xC).

Remark 3.3. 1. Lem. 3.2 shows that definition 3.1 gen-

eralizes the one from [26].

2. Thm. 4.4 in [2] shows that definition 3.1 also general-

izes the one from [2].

3. In contrast with [2, 5, 26] definition 3.1 can accom-

modate any variable from V or J at any spot of the

conditional independence statement.

4. ⊥⊥ P satisfies the semi-graphoid/separoid axioms (see

[5, 11, 22] or see rules 1-5 in Lem. 4.5 for ⊥⊥ P) as

these rules hold for any distribution and are preserved

under conjunction.

4 σ-SEPARATION

In this section we will define σ-separation on directed

mixed graphs (DMG) and present the generalized directed

global Markov property stating that every iSCM will en-

tail the conditional independencies that come from σ-

separation in its induced DMG. We again will closely fol-

low the work in [9].

Definition 4.1 (Directed mixed graph (DMG)). A directed

mixed graph (DMG) G consists of a set of nodes V to-

gether with a set of directed edges ( ) and bidirected

edges ( ). In case G contains no directed cycles it is

called an acyclic directed mixed graph (ADMG).

Definition 4.2 (σ-Open path in a DMG). Let G be a DMG

with set of nodes V and C ⊆ V a subset. Consider a path

π in G with n ≥ 1 nodes:

v1 · · · vn.
4

4The stacked edges are meant to be read as an “OR” at each
place independently. We also allow for repeated nodes in the
paths.

The path will be called C-σ-open if:

1. the endnodes v1, vn /∈ C, and

2. every triple of adjacent nodes in π that is of the form:

(a) collider: vi−1 vi vi+1,
satisfies vi ∈ C,

(b) left chain: vi−1 vi vi+1,

satisfies vi /∈ C or vi ∈ C ∩ ScG(vi−1),
(c) right chain: vi−1 vi vi+1,

satisfies vi /∈ C or vi ∈ C ∩ ScG(vi+1),
(d) fork: vi−1 vi vi+1,

satisfies vi /∈ C or

vi ∈ C ∩ ScG(vi−1) ∩ ScG(vi+1).

Similar to d-separation we define σ-separation in a DMG.

Definition 4.3 (σ-Separation in a DMG). Let G be a DMG

with set of nodes V . Let A,B,C ⊆ V be subsets.

1. We say that A and B are σ-connected by C or not σ-

separated by C if there exists a path π (with some n ≥
1 nodes) in G with one endnode in A and one endnode

in B that is C-σ-open. In symbols this statement will

be written as follows:

A
σ

6⊥⊥
G

B |C.

2. Otherwise, we will say that A and B are σ-separated

by C and write:

A
σ

⊥⊥
G

B |C.

Remark 4.4. 1. In any DMG we will always have that

σ-separation implies d-separation, since every C-d-

open path is also C-σ-open because {v} ⊆ ScG(v).
2. If a DMG G is acyclic, i.e. an ADMG, then σ-

separation coincides with d-separation (also called

m- or m∗-separation in this context).

It was shown in [8] that σ-separation satisfies the

graphoid/separoid axioms (see [5, 11, 22]):

Lemma 4.5 (Graphoid and separoid axioms). Let G be a

DMG with set of nodes V and A,B,C,D ⊆ V subsets.

Then we have the following rules for σ-separation in G
(with ⊥⊥ standing for ⊥⊥ σ

G):

1. Redundancy: A ⊥⊥ B |B always holds.

2. Symmetry: A ⊥⊥ B |D =⇒ B ⊥⊥ A |D.

3. Decomposition: A ⊥⊥ B ∪ C |D =⇒ A ⊥⊥ B |D.

4. Weak Union: A ⊥⊥ B ∪ C |D =⇒ A ⊥⊥ B |C ∪D.

5. Contraction: (A ⊥⊥ B |C ∪D) ∧ (A ⊥⊥ C |D)
=⇒ A ⊥⊥ B ∪ C |D.

6. Intersection: (A ⊥⊥ B |C ∪D) ∧ (A ⊥⊥ C |B ∪D)
=⇒ A ⊥⊥ B ∪ C |D,

whenever A,B,C,D are pairwise disjoint.

7. Composition: (A ⊥⊥ B |D) ∧ (A ⊥⊥ C |D)
=⇒ A ⊥⊥ B ∪ C |D.



Patrick Forré, Joris M. Mooij

It was also shown that σ-separation is stable under

marginalisation (see [8, 9]):

Theorem 4.6 (σ-Separation under marginalisation, see [8,

9]). Let G be a DMG with set of nodes V . Then for any

sets A,B,C ⊆ V and L ⊆ V \ (A ∪B ∪ C) we have the

equivalence:

A
σ

⊥⊥
G

B |C ⇐⇒ A
σ

⊥⊥
G\L

B |C,

where G\L is the DMG that arises from G by marginalising

out the variables from L.

5 A GLOBAL MARKOV PROPERTY

The most important ingredient for our results is a gen-

eralized directed global Markov property that relates the

graphical structure of any iSCM M to the conditional in-

dependencies of the observed random variables via a σ-

separation criterion. Since we have no access to the la-

tent nodes u ∈ U of an iSCM with graph G+ we need to

marginalize them out. This will give us an induced directed

mixed graph (DMG) G.

Definition 5.1 (Induced DMG of an iSCM). Let M =
(G+,X ,PU , g) be an iSCM with G+ = (V ∪̇U ∪̇J,E+).
The induced directed mixed graph (DMG) G of M is de-

fined as follows:

1. G contains all nodes from V ∪ J .

2. G contains all the directed edges of G+ whose

endnodes are both in V ∪ J .

3. G contains the bidirected edge v w with v, w ∈ V
if and only if v 6= w and there exists an u ∈ U with

v, w ∈ ChG
+

(u), i.e. v and w have a common latent

confounder.

The following generalized directed global Markov property

directly generalizes from mSCMs (see [8, 9]) to iSCMs.

Theorem 5.2 (σ-Separation criterion). Let M be an iSCM

with induced DMG G. Then for all subsets A,B,C ⊆ V ∪
J we have the implication:

A
σ

⊥⊥
G

B |C =⇒ XA ⊥⊥
P

XB |XC .

In words, if A and B are σ-separated by C in G then the

corresponding variables XA and XB are conditional in-

dependent given XC under P, i.e. under the joint distribu-

tion PU (XV | do(XJ))PJ (XJ) for any product distribution

PJ =
⊗

j∈J Pj .

Proof. As mentioned, after specifying the product distri-

bution PJ the iSCM M constitutes a well-defined mSCM

with the same induced DMG G. So the σ-separation cri-

terion for iSCMs directly follows from the mSCM-version

proven in [8, 9].

Remark 5.3. Note that, since σ-separation is stable under

marginalisation (see [8,9]) also the σ-separation criterion

is stable under marginalisation.

Remark 5.4 (Causal calculus for mechanism change). The

σ-separation criterion 5.2 can be viewed as the causal cal-

culus for mechanism change (also sometimes called “soft”

interventions, see [6, 15, 16, 21]). As an example consider

A,B ⊆ V , I ⊆ J and x′
I ∈ XI , xJ ∈ XJ . Then we have:

A
σ

⊥⊥
G

I |B ∪ (J \ I)

=⇒ PU (XA|XB, do(XJ = xJ ))

= PU (XA|XB, do(XI = x′
I), do(XJ\I = xJ\I)).

So the graphical independence of the intervention nodes

implies that the conditional probability is independent of

the actual intervention on I .

6 CAUSAL CALCULUS FOR PERFECT

INTERVENTIONS

6.1 The extended iSCM

In this section we want to consider (perfect) interventions

onto the observed nodes and improve upon the general

rules mentioned in 5.4. For an elegant treatment of this

we need to gather for a given iSCM M all interventional

iSCMs Mdo(W ), where W runs through all subsets of ob-

served variables, and glue them all together into one big

extended iSCM M̂ . To consider all interventions at once

we will need to introduce additional intervention variables

Iv to the graph G+, v ∈ V , which indicate which interven-

tional mechanisms to use. Such techniques were already

used in the acyclic case in [18, 19, 21]. The definition will

be made in such a way that M̂ will still be a well-defined

iSCM. So all the results for iSCMs will apply to M̂ , most

importantly the σ-separation criterion (Thm. 5.2).

Definition 6.1. Let M = (G+,X ,PU , g) be an iSCM

with G+ = (V ∪̇U ∪̇J,E+). The extended iSCM M̂ =
(Ĝ+, X̂ ,PU , ĝ) will be defined as follows:

1. For every v ∈ V define the interventional domain

Iv := Xv∪̇{�v}, where �v is a new symbol cor-

responding to the observational (non-interventional)

regime. For a set A ⊆ V we put IA :=
∏

v∈A Iv and

�A := (�v)v∈A.

2. Let Ĝ+ be the graph G+ with the additional interven-

tion nodes Iv and directed edges Iv v for every

v ∈ V . For a uniform notation we sometimes write Ij
instead of j for j ∈ J . So we have:

Ĵ := J ∪ {Iv | v ∈ V } = {Iw |w ∈ V ∪̇J}.

3. For every A ⊆ V we will define the mechanism:

ĝA : X̂
PaĜ

+
(A)\A

= IA×X
PaG

+
(A)\A

→ XA = X̂A.

First, for xA ∈ IA we put I(xA) := {v ∈ A|xv 6=
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�v}. Consider the subgraph of G+:

H(xA) := (PaG
+

(A) ∪ A)do(I(xA)).

Then define recursively for v ∈ A:

ĝA,v(xA, xPaG+
(A)\A

)

:=

{

xv if v ∈ I(xA),
gS,v(xPaH(xA)(S)\S) if v /∈ I(xA),

where S := ScH(xA)(v) is also a loop in G+.

4. These functions then are again globally compatible

and M̂ constitutes a well-defined iSCM.

5. All the distributions in M̂ then are given by the gen-

eral procedure of iSCMs (see Def. 2.6). We introduce

the notation for C ⊆ V and (xC , xJ ) ∈ IC ×XJ :

PU (XV |IC = xC , XJ = xJ ) :=

PU (XV | do((IC , IV \C , XJ) = (xC ,�V \C , xJ )).

6. The extended DMG Ĝ of G+ is then the induced DMG

of Ĝ+, i.e. the induced DMG G with the additional

edges Iv v for every v ∈ V .

The following result now relates the interventional distri-

butions of the iSCM M with the ones from the extended

iSCM M̂ . These relations will be used in the following.

Proposition 6.2. Let M = (G+,X ,PU , g) be an iSCM

with G+ = (V ∪̇U ∪̇J,E+) and M̂ the extended iSCM. Let

A,B,C ⊆ V be pairwise disjoint set of nodes and xC∪J ∈
XC∪J . Then we have the equations:

PU (XA|XB, do(XC∪J = xC∪J))

= PU (XA|XB, IC = xC , XJ = xJ )

= PU (XA|XB, IC = xC , XC = xC , XJ = xJ ).

Proof. Consider the first equality. For any subset D ⊆

V the variable X
do(XC∪J=xC∪J )
D was recursively de-

fined in Mdo(C) via g using G+
do(C), whereas the vari-

able X
do((IC ,IV \C ,XJ )=(xC,�V \C ,xJ))

D was recursively de-

fined in M̂ via the same g but using I(xC ,�V \C)

and G+
do(I(xC ,�V \C))

. Since xC ∈ XC we have that

I(xC ,�V \C) = C and thus G+
do(I(xC ,�V \C))

= G+
do(C).

It directly follows that:

X
do(XC∪J=xC∪J )
D = X

do((IC ,IV \C ,XJ )=(xC ,�V \C ,xJ ))

D .

This shows the equality of top and middle line. For the

equality between the middle and bottom line note that:

IC = xC
xC∈XC=⇒ XC = xC .

6.2 The three main rules of causal calculus

Notation 6.3. Since everything has been defined in detail

in the last section we now want to make use of a simplified

and more suggestive notation for a better readability.

1. We identify variables XA with the set of nodes A.

2. We omit values xV and the subscript in PU . E.g. we

write P(Y |IT , T, Z, do(W )) instead of

PU (XY |IT = xT , XT = xT , XZ , do(XW = xW )),

where the latter comes from the extended iSCM of the

intervened iSCM Mdo(W ) := Mdo(W\J) of M .

3. We write Y ⊥⊥ P T |Z, do(W ) for

XY ⊥⊥ PU (_| do(XW=xW )) XT |XZ , etc..

4. We write Y ⊥⊥ σ
G IX |X,Z, do(W ) to mean

Y ⊥⊥ σ

Ĝdo(W )
IX |X,Z , where Ĝdo(W ) is the ex-

tended DMG of the intervened graph G+
do(W ).

Theorem 6.4 (The three main rules of causal calculus). Let

M be an iSCM with set of observed nodes V and interven-

tion nodes J and induced DMG G. Let X,Y, Z ⊆ V and

J ⊆ W ⊆ V ∪ J be subsets.

1. Insertion/deletion of observation:

If Y
σ

⊥⊥
G

X |Z, do(W ) then:

P(Y |X,Z, do(W )) = P(Y |Z, do(W )).

2. Action/observation exchange:

If Y
σ

⊥⊥
G

IX |X,Z, do(W ) then:

P(Y | do(X), Z, do(W )) = P(Y |X,Z, do(W )).

3. Insertion/deletion of actions:

If Y
σ

⊥⊥
G

IX |Z, do(W ) then:

P(Y | do(X), Z, do(W )) = P(Y |Z, do(W )).

Proof. 1. Thm. 5.2 applied to Gdo(W ) gives:

Y
σ

⊥⊥
G

X |Z, do(W )
5.2
=⇒ Y ⊥⊥

P

X |Z, do(W ).

The latter directly gives the claim:

P(Y |X,Z, do(W )) = P(Y |Z, do(W )).

2. The σ-separation criterion 5.2 w.r.t. to Ĝdo(W ) gives:

Y
σ

⊥⊥
G

IX |X,Z, do(W )
5.2
=⇒ Y ⊥⊥

P

IX |X,Z, do(W ).

Together with Prp. 6.2 (applied to Mdo(W )) we have:

P(Y | do(X), Z, do(W ))

6.2
= P(Y |IX , X, Z, do(W ))

Y ⊥⊥ IX |X,Z,do(W )
= P(Y |X,Z, do(W )).
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3. As before we have:

Y
σ

⊥⊥
G

IX |Z, do(W )
5.2
=⇒ Y ⊥⊥

P

IX |Z, do(W ).

And again: P(Y | do(X), Z, do(W ))

6.2
= P(Y |IX , Z, do(W ))

Y ⊥⊥ IX |Z,do(W )
= P(Y |Z, do(W )).

Remark 6.5. The conditions for aboves rules are usually

phrased in terms of further graph transformations. E.g. for

rule 3 in the acyclic setting one requires Y ⊥⊥ dX |Z,W in

the graphGdo(W ) that is further mutilated on the set X(Z),
the set of all X-nodes that are not ancestors of any Z-node

in Gdo(W ) (see [18,19,21]). When reduced to those acyclic

settings they will be equivalent to the our formulation via

σ-separation including the intervention nodes.

We presented the above only in terms of σ-separation in

the extended iSCM because in this form it was clear how to

generalize to arbitrary iSCMs. We also believe that the for-

mulaic expressions in terms of σ-separation will be easier

to parse and to remember as their relations to the claims

and implications are directly visible.

6.3 The general adjustment criterion

Notation 6.6. Let M = (G+,X ,P, g) be an iSCM

with G+ = (V ∪̇U ∪̇J,E+). The following set of

nodes/variables will play the described roles:

1. Y : the outcome variables,

2. X: the treatment or intervention variables,

3. Z0: the core set of adjustment variables,

4. Z+: additional adjustment variables,

5. L: “latent adjustment variables”,

6. Z := Z0 ∪ Z+: all actual adjustment variables,

7. C: context variables,

8. W : default intervention variables containing J ,

9. S: variables inducing selection bias when S = s.

We are interested in finding a “do(X)-free” expression

for the (conditional) causal effect P(Y |C, do(X), do(W ))
only using data for C,X, Y, Z that was gathered under se-

lection bias S = s and intervention do(W ) and additional

unbiased observational data for C,Z given do(W ). The

task can be achieved via the following criterion, which is a

generalization of the acyclic case of the selection-backdoor

criterion (see [1]), the backdoor criterion (see [18, 19, 21])

and its extensions (also see [3,23,24,28]) to general iSCMs.

Theorem 6.7 (General adjustment criterion and formula).

Let the setting be like in 6.6. Assume that data was col-

lected under selection bias, P(V |S = s, do(W )) (or under

P(V | do(W )) and S = ∅), but there are unbiased samples

from P(Z|C, do(W )). Further assume that the variables

satisfy:

1. (Z0, L)
σ

⊥⊥
G

IX |C, do(W ), and

2. Y
σ

⊥⊥
G
(IX , Z+) |C,X,Z0, L, do(W ), and

3. Y
σ

⊥⊥
G

S |C,X,Z, do(W ), and

4. L
σ

⊥⊥
G

X |C,Z, do(W ).

Then one can estimate the conditional causal effect

P(Y |C, do(X), do(W )) via the adjustment formula:

P(Y |C, do(X), do(W ))

=

∫

P(Y |X,Z,C, S = s, do(W )) dP(Z|C, do(W )).

Proof. Since C, do(W ) occur everywhere as a condition-

ing set, we will suppress C, do(W ) in the following every-

where. Then note that the σ-separation criterion 5.2 implies

the corresponding conditional independencies in following

when indicated. The adjustment formula then derives from

the following computations:

P(Y | do(X))

=

∫

P(Y |Z0, L, do(X))

dP(Z0, L| do(X))

6.2
=

∫

P(Y |IX , X, Z0, L) dP(Z0, L|IX)

Y ⊥⊥ IX |X,Z0,L;
=

(Z0,L) ⊥⊥ IX

∫

P(Y |X,Z0, L) dP(Z0, L)

∫
dP(Z+|Z0,L)=1

=

∫ ∫

P(Y |X,Z0, L)

dP(Z+|Z0, L) dP(Z0, L)

Y ⊥⊥ Z+|X,Z0,L
=

∫

P(Y |X,Z0, Z+, L) dP(Z+, Z0, L)

Z=Z+∪Z0
=

∫

P(Y |X,Z,L) dP(Z,L)

=

∫ ∫

P(Y |X,Z,L) dP(L|Z) dP(Z)

L ⊥⊥ X|Z
=

∫ ∫

P(Y |L,X,Z)

dP(L|X,Z) dP(Z)

=

∫

P(Y |X,Z) dP(Z)

Y ⊥⊥ S|X,Z
=

∫

P(Y |X,Z, S) dP(Z).

Remark 6.8. Note that the adjustment formula in theorem

6.7 does not depend on L. This thus allows us to even

choose variables for L that come from an iSCM M ′ that

marginalizes to M , e.g. L ⊆ U or by extending directed

edges v w by v ℓ w with ℓ ∈ L. This technique

was used in [28] to find all adjustment sets in the acyclic

case with S = C = ∅, see below.
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IX X

W

Y

Z0 L1
C

Z1
Z2

L2
S

Figure 1: An induced DMG G with intervention node IX
(the others are left out for readability). The variables satisfy

the general adjustment criterion for P(Y |C, do(X)) with

L = {L1, L2} and Z+ = {Z1, Z2}. Note that L2 could

also have been a latent variable.

Corollary 6.9. Let the notations be like in 6.6 and 6.7 and

W = J = ∅. We have the following special cases, which

in the acyclic case will reduce to the ones given by the in-

dicated references:

1. General selection-backdoor (see [3]): C = ∅, and

(a) (Z0, L)
σ

⊥⊥
G

IX , and

(b) Y
σ

⊥⊥
G
(IX , Z+) |X,Z0, L, and

(c) Y
σ

⊥⊥
G

S |X,Z , and

(d) L
σ

⊥⊥
G

X |Z , implies:

P(Y | do(X)) =

∫

P(Y |X,Z, S = s) dP(Z).

2. Selection-backdoor (see [1]): C = L = ∅, and

(a) Z0

σ

⊥⊥
G

IX , and

(b) Y
σ

⊥⊥
G
(IX , Z+, S) |X,Z0 implies:

P(Y | do(X)) =

∫

P(Y |X,Z, S = s) dP(Z).

3. Extended backdoor5 (see [23, 28]): C = S = ∅,

(a) (Z0, L)
σ

⊥⊥
G

IX , and

(b) Y
σ

⊥⊥
G
(IX , Z+) |X,Z0, L, and

(c) L
σ

⊥⊥
G

X |Z , implies:

P(Y | do(X)) =

∫

P(Y |X,Z) dP(Z).

4. Backdoor (see [18, 19, 21]): C = S = L = Z+ = ∅,

(a) Z
σ

⊥⊥
G

IX ,

(b) Y
σ

⊥⊥
G

IX |X,Z implies:

5In the acyclic case it was shown in [28] that when L is al-
lowed to represent latent variables in a graph G′ that marginalizes
to G then this criterion actually characterizes all adjustment sets
for G and P(Y |do(X)).

P(Y | do(X)) =

∫

P(Y |X,Z) dP(Z).

A generalization of the crition for selection without (or only

partial) external data of [3, 4] is given in the appendix.

Remark 6.10. The conditions in theorem 6.7 and corollary

6.9 are in the acyclic setting usually phrased in terms of

sub-structures of the graph G (see [18,19,21]). E.g. for the

backdoor criterion for a DAG G instead of L ⊥⊥ d
G IX we

could have written that L does not contain any descendent

of X; and for Y ⊥⊥ d
G IX |X,Z that Z blocks all “back-

door paths” from X to Y . As before, we presented the

results only in terms of σ-separation because the relations

to their use is directly indicated (e.g. in the proofs). Fur-

thermore, the formulaic framework of σ-separation makes

the generalization to arbitrary iSCMs possible.

7 TWIN NETWORKS AND

COUNTERFACTUALS

We shortly want to mention that with iSCMs one can

do counterfactual reasoning as well. Given an iSCM M
with graph G+ = (V ∪̇U ∪̇J,E+), a set W ⊆ V ∪
J and xW ∈ XW and the corresponding intervened

iSCM Mdo(W ) with graph G+
do(W ) and distribution δxW

on W one can construct a (merged) twin iSCM Mtwin

similarly to the acyclic case (see [21]). This is done

by identifying/merging the nodes, mechanisms and vari-

ables from the non-descendents of W , NonDescG
+

(W )

and NonDesc
G

+
do(W )(W ), which are unchanged by the ac-

tion do(xW ). Then one has the two different branches

DescG
+

(W ) and Desc
G

+
do(W )(W ) in the network. This

construction then allows one to formulate counterfactual

statements like in the acyclic case (see [21]), but now for

general iSCMs. E.g. one could state the assumption of

strong ignorability (see [21, 27]) as:

(

Y do(X=�), Y do(X=x)
) σ

⊥⊥
Gtwin

X |Z.

All the causal reasoning rules derived so far can thus also

be applied to reason about counterfactuals.

8 CONCLUSION

We proved the three main rules of causal calculus and gen-

eral adjustment criteria with corresponding formulas to re-

cover from interventions and selection bias for general iS-

CMs, which allow for arbitrary probability distributions,

non-/linear functional relations, latent confounders, exter-

nal non-/probabilistic parameter/action/intervention nodes

and cycles. This generalizes all the corresponding results

of acyclic causal models (see [1,3,18,19,21,23,24,28]) to

general iSCMs. Future work might address completeness
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questions (see [12, 21, 29]) and extensions of Tian’s algo-

rithm for identifiability (see [10, 12, 13, 21, 26, 30–32]) to

general iSCMs.
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SUPPLEMENTARY MATERIAL

A MORE ON ADJUSTMENT CRITERIA

The following generalizes the adjustment criterion of type

I in [3].

Theorem A.1 (General adjustment without external data).

Let the setting be like in 6.6. Assume that data was col-

lected under selection bias, P(V |S = s). Further assume

that the variables satisfy:

1. Y
σ

⊥⊥
G

S | do(X),

2. Z0

σ

⊥⊥
G

IX |S,

3. Y
σ

⊥⊥
G

Z+ |Z0, S, do(X),

4. Y
σ

⊥⊥
G

IX |X,Z, S.

Then one can estimate the causal effect P(Y | do(X)) via

the following adjustment formula from the biased data:

P(Y | do(X)) =

∫

P(Y |X,Z, S = s) dP(Z|S = s).

Proof. First note that the σ-separation criterion 5.2 implies

the corresponding conditional independencies in following

when indicated. We implicitly make use of proposition 6.2

when needed. The adjustment formula then derives from

the following computations:

P(Y | do(X))

Y ⊥⊥ S | do(X)
= P(Y |S, do(X))

chain rule
=

∫

P(Y |Z0, S, do(X)) dP(Z0|S, do(X))

Z0 ⊥⊥ IX |S
=
6.2

∫

P(Y |Z0, S, do(X)) dP(Z0|S)

∫
dP(Z+|Z0,S)=1

=

∫

P(Y |Z0, S, do(X)) dP(Z+, Z0|S)

Y ⊥⊥ Z+ |Z0,S,do(X)
=

∫

P(Y |Z+, Z0, S, do(X)) dP(Z+, Z0|S)

Z=Z+∪Z0
=

∫

P(Y |Z, S, do(X)) dP(Z|S)

Y ⊥⊥ IX |X,Z,S
=
6.2

∫

P(Y |Z, S,X) dP(Z|S).

The following theorem generalizes the adjustment criterion

of type III in [4]. For this we have to introduce even more

adjustment sets: ZA
0 , ZB

0 , ZA
1 , Z

B
1 , Z2, Z3 and L0, L1.

Theorem A.2 (General adjustment with partial external

data). Assume that data was collected under selection bias,

P(V |S = s), but we have unbiased data from P(ZB
≤1).

Further assume the conditions that are indicated on the

equality signs in the proof. Then we have the adjustment

formula: P(Y | do(X)) =

∫ ∫

P(Y |S = s, Z,X) dP(Z\ZB
≤1|S = s, ZB

≤1) dP(Z
B
≤1).

Note that this formula does not depend on L1 and L2. So

L1 and L2 can be chosen in a graph G′ that marginalizes

to G.

Proof.

P(Y | do(X))

chain rule
=

∫

P(Y |L0, Z0, do(X))

dP(L0, Z0| do(X))

(L0,Z0) ⊥⊥ IX
=
6.2

∫

P(Y |L0, Z0, do(X))

dP(L0, Z0)
∫
dP(Z1|L0,Z0)=1

=
Z≤1=Z0∪Z1

∫

P(Y |L0, Z0, do(X))

dP(L0, Z≤1)

Y ⊥⊥ Z1 |L0,Z0,do(X)
=

∫

P(Y |L0, Z≤1, do(X))

dP(L0, Z≤1)

chain rule
=

Z≤1=ZA
≤1

∪ZB
≤1

∫

P(Y |L0, Z≤1, do(X))

dP(L0|Z≤1) dP(Z
A
≤1|Z

B
≤1)

dP(ZB
≤1)

ZA
≤1 ⊥⊥ S |ZB

≤1
=

∫

P(Y |L0, Z≤1, do(X))

dP(L0|Z≤1) dP(Z
A
≤1|S,Z

B
≤1)

dP(ZB
≤1)

L0 ⊥⊥ IX |Z≤1
=
6.2

∫

P(Y |L0, Z≤1, do(X))

dP(L0|Z≤1, do(X))

dP(ZA
≤1|S,Z

B
≤1) dP(Z

B
≤1)

chain rule
=

∫

P(Y |Z≤1, do(X))

dP(ZA
≤1|S,Z

B
≤1) dP(Z

B
≤1)

Y ⊥⊥ S |Z≤1,do(X)
=

∫

P(Y |S,Z≤1, do(X))

dP(ZA
≤1|S,Z

B
≤1) dP(Z

B
≤1)

chain rule
=

∫

P(Y |L1, Z2, S, Z≤1, do(X))

dP(L1, Z2|S,Z≤1, do(X))

dP(ZA
≤1|S,Z

B
≤1) dP(Z

B
≤1)
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Z≤2=Z≤1∪Z2
=

∫

P(Y |L1, S, Z≤2, do(X))

dP(L1, Z2|S,Z≤1, do(X))

dP(ZA
≤1|S,Z

B
≤1) dP(Z

B
≤1)

(L1,Z2) ⊥⊥ IX |S,Z≤1
=
6.2

∫

P(Y |L1, S, Z≤2, do(X))

dP(L1, Z2|S,Z≤1)

dP(ZA
≤1|S,Z

B
≤1) dP(Z

B
≤1)

Y ⊥⊥ Z3 |L1,S,Z≤2,do(X)
=∫

P(Z3|L1,S,Z≤2)=1

∫

P(Y |L1, S, Z≤2, Z3, do(X))

dP(L1, Z2, Z3|S,Z≤1)

dP(ZA
≤1|S,Z

B
≤1) dP(Z

B
≤1)

chain rule
=

Z=Z≤2∪Z3

∫

P(Y |L1, S, Z, do(X))

dP(L1|S,Z)

dP(Z \ ZB
≤1|S,Z

B
≤1) dP(Z

B
≤1)

L1 ⊥⊥ IX |S,Z
=
6.2

∫

P(Y |L1, S, Z, do(X))

dP(L1|S,Z, do(X))

dP(Z \ ZB
≤1|S,Z

B
≤1) dP(Z

B
≤1)

chain rule
=

∫

P(Y |S,Z, do(X))

dP(Z \ ZB
≤1|S,Z

B
≤1) dP(Z

B
≤1)

Y ⊥⊥ IX |X,S,Z
=

∫

P(Y |S,Z,X)

dP(Z \ ZB
≤1|S,Z

B
≤1) dP(Z

B
≤1).
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