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Abstract
Real-world complex systems are often modelled by sets of equations with endogenous and
exogenous variables. What can we say about the causal and probabilistic aspects of vari-
ables that appear in these equations without explicitly solving the equations? We make use
of Simon’s causal ordering algorithm (Simon, 1953) to construct a causal ordering graph
and prove that it expresses the effects of soft and perfect interventions on the equations un-
der certain unique solvability assumptions. We further construct a Markov ordering graph
and prove that it encodes conditional independences in the distribution implied by the
equations with independent random exogenous variables, under a similar unique solvability
assumption. We discuss how this approach reveals and addresses some of the limitations
of existing causal modelling frameworks, such as causal Bayesian networks and structural
causal models.
Keywords: Causality, Conditional Independence, Structure Learning, Causal Ordering,
Graphical Models, Equilibrium Systems, Cycles, Comparative Statics

1. Introduction

The discovery of causal relations is a fundamental objective in many scientific endeavours.
The process of the scientific method usually involves a hypothesis, such as a causal graph
or a set of equations, that explains observed phenomena. Such a graph structure can
be learned automatically from conditional independences in observational data via causal
discovery algorithms, e.g., the well-known PC and FCI algorithms (Spirtes et al., 2000;
Zhang, 2008). The crucial assumption in causal discovery is that directed edges in this
learned graph express causal relations between variables. However, an immediate concern
is whether directed mixed graphs can actually simultaneously encode the causal semantics
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and the conditional independence constraints of a system.1 We explicitly define soft and
perfect interventions on sets of equations and demonstrate that, for some models, a single
graph expressing conditional independences between variables via d-separations does not
represent the effects of these interventions in an unambiguous way, while graphs that also
have vertices representing equations do encode both the dependence and causal structure
implied by these models. In particular, we show that the output of the PC algorithm does
not have a straightforward causal interpretation when it is applied to data generated by a
simple dynamical model with feedback at equilibrium.

It is often said that the “gold standard” in causal discovery is controlled experimen-
tation. Indeed, the main principle of the scientific method is to derive predictions from a
hypothesis, such as a causal graph or set of equations, that are then verified or rejected
through experimentation. We show how testable predictions can be derived automatically
from sets of equations via the causal ordering algorithm, introduced by Simon (1953). We
adapt and extend the algorithm to construct a directed cluster graph that we call the causal
ordering graph. From this, we can construct a directed graph that we call the Markov
ordering graph. We prove that, under a certain unique solvability assumption, the latter
implies conditional independences between variables which can be tested in observational
data and the former represents the effects of soft and certain perfect interventions which
can be verified through experimentation. We believe that the technique of causal ordering
is a useful and scalable tool in our search for and understanding of causal relations.

In this work, we also shed new light on differences between the causal ordering graph
and the graph associated with a Structural Causal Model (SCM) (see Pearl (2000); Bongers
et al. (2020)), which are also commonly referred to as Structural Equation Models (SEMs).2
Specifically, we demonstrate that the two graphical representations may model different sets
of interventions. Furthermore, we show that a stronger Markov property can sometimes be
obtained by applying causal ordering to the structural equations of an SCM. By explicitly
defining interventions and by distinguishing between the Markov ordering graph and the
causal ordering graph we gain new insights about the correct interpretation of observations
in Iwasaki and Simon (1994); Dash (2005). Throughout this work, we discuss an exam-
ple in Iwasaki and Simon (1994) to illustrate our ideas. Here, we use it to highlight the
contributions of this paper and to provide an overview of its central concepts.

Example 1 Let us revisit a physical model of a filling bathtub in equilibrium that is pre-
sented in Iwasaki and Simon (1994). Consider a system where water flows from a faucet
into a bathtub at a constant rate XvI and it flows out of the tub through a drain with diam-
eter XvK . An ensemble of such bathtubs that have faucets and drains with different rates
and diameters can be modelled by the equations fK and fI below:

fK : XvK = UwK , (1)
fI : XvI = UwI , (2)

1. See, for example, (Dawid, 2010) and references therein for a discussion.
2. The latter term has been used by econometricians since the 1950s. Note that, in the past some econome-

tricians have used (cyclic/non-recursive) “structural models” without requiring that there is a specified
one-to-one correspondence between endogenous variables and equations; see e.g., Basmann (1963). Re-
cent usage is consistent with the implication that there is a specified variable on the left-hand side for
each equation as is common in the SCM framework.
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(b) Causal ordering graph.
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(c) Markov ordering graph.

Figure 1: Three graphical representations for the bathtub system in equilibrium. The
bipartite graph in Figure 1a is a representation of the structure of equations F =
{fK , fI , fP , fO, fD} where the vertices V = {vK , vI , vP , vO, vD} correspond to endogenous
variables and there is an edge (v − f) if and only if the variable v appears in equation f .
The outcome of the causal ordering algorithm is the directed cluster graph in Figure 1b,
in which rectangles represent a partition of the variable and equation vertices into clusters.
The corresponding Markov ordering graph for the variable vertices is given in Figure 1c.

where UwK and UwI are independent random variables both taking value in R>0. When
the faucet is turned on, the water level XvD in the bathtub increases as long as the inflow
XvI of the water exceeds the outflow XvO of water. The differential equation ẊvD (t) =
Uw1(XvI (t) − XvO (t)) defines the mechanism for the rate of change in XvD (t), where Uw1

is a constant or a random variable taking value in R>0. At equilibrium the rate of change
is equal to zero, resulting in the equilibrium equation

fD : Uw1(XvI −XvO ) = 0. (3)

As the water level XvD increases, the pressure XvP that is exerted by the water increases
as well. The mechanism for the change in pressure is defined by the differential equation
ẊvP (t) = Uw2(g Uw3XvD (t)−XvP (t)), where g is the gravitational acceleration and Uw2 , Uw3

are constants or random variables both taking value in R>0. After equilibration, we obtain

fP : Uw2(g Uw3XvD −XvP ) = 0. (4)

The higher the pressure XvP or the bigger the size of the drain XvK , the faster the water
flows through the drain. The differential equation ẊvO (t) = Uw4(Uw5XvKXvP (t) −XvO (t))
models the outflow rate of the water, where Uw4 , Uw5 are constants or random variables both
taking value in R>0. The equilibrium equation fO is given by

fO : Uw4(Uw5XvKXvP −XvO ) = 0. (5)

We will study the conditional independences that are implied by equilibrium equations (1)
to (5). In Sections 5.1 and 5.2 we will define the notion of soft and perfect interventions
on sets of equations as a generalization of soft and perfect interventions on SCMs. The
causal properties of sets of equilibrium equations are examined by comparing the equilibrium
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distribution before and after an intervention. Our approach is related to the comparative
statics analysis that is used in economics to study the change in equilibrium distribution
after changing exogenous variables or parameters in the model, see also Simon and Iwasaki
(1988). In this work, we will additionally consider the effects on the equilibrium distribution
of perfect interventions targeting endogenous variables in the equilibrium equations.

Graphical representations. A set of equations can be represented by a bipartite graph. In
the case of the filling bathtub, the structure of equilibrium equations (1) to (5) is represented
by the bipartite graph in Figure 1a. The set V = {vK , vI , vP , vO, vD} consists of vertices
that correspond to variables and the vertices in the set F = {fK , fI , fP , fO, fD} correspond
to equations. There is an edge between a variable vertex vi and an equation vertex fj
if the variable labelled vi appears in the equation with label fj. A formal definition of a
system of constraints and its associated bipartite graph will be provided in Section 1.1. The
causal ordering algorithm, introduced by Simon (1953) and reformulated by us in Section
2, takes a self-contained bipartite graph as input and returns a causal ordering graph.
A causal ordering graph is a directed cluster graph which consists of variable vertices vi
and equation vertices fj that are partitioned into clusters. Directed edges go from variable
vertices to clusters. For the filling bathtub, the causal ordering graph is given in Figure 1b.
In Section 4 we will show how the Markov ordering graph can be constructed from a causal
ordering graph. For the equilibrium equations of the filling bathtub, the Markov ordering
graph is given in Figure 1c. The causal ordering algorithm of Simon (1953) can only be
applied to bipartite graphs that have the property that they are self-contained. In Section
3 we introduce an extended causal ordering algorithm that can also be applied to bipartite
graphs that are not self-contained.

Markov property. The Markov ordering graph in Figure 1c encodes conditional indepen-
dences between the equilibrium solutions XvK , XvI , XvP , XvO , and XvD of the equilibrium
equations. In particular, d-separations between variable vertices in the Markov ordering
graph imply conditional independences between the corresponding variables under certain
solvability conditions, as we will prove in Theorem 17 in Section 4. In Figure 1c, the vari-
able vertices vI and vD are d-separated by vP . It follows that at equilibrium the inflow rate
XvI and the water level XvD are independent given the outflow rate XvP . In Sections 3 and
4.4 we show how we can use a perfect matching for a bipartite graph to construct a directed
graph that implies conditional independences between variables via σ-separations.3

Soft interventions. The causal ordering graph in Figure 1b encodes the effects of soft inter-
ventions targeting (equilibrium) equations. This type of intervention is often also referred
to as a mechanism change. We assume that the variables in each cluster can be solved
uniquely from the equations in their cluster both before and after the intervention.4 A soft
intervention has no effect on a variable if there is no directed path from the intervention

3. Forré and Mooij (2017) introduced the notion of σ-separations to replace d-separations in directed graphs
that may contain cycles. See Section A.2 for more details.

4. For the underlying dynamical model this assumption means that we assume that the equations of the
model define a unique equilibrium to which the system converges and that the system also converges to a
unique equilibrium that is defined by the model equations after an intervention on one of the parameters
or exogenous variables in the model. For some dynamical systems, extra equations are required that
describe the dependence of the equilibrium distribution on initial conditions. Their causal semantics
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target to the cluster containing the variable, as we will prove in Theorem 20 in Section 5.1.
Consider an experiment where the value of the gravitational acceleration g is altered (e.g. by
moving the bathtub to the moon) resulting in an alteration of the equation fP . This is a soft
intervention on fP . There is no directed path from fP to clusters that contain the vertices
{vK , vI , vP , vO} in the causal ordering graph in Figure 1b. Since the conditions of Theorem
20 are satisfied, the soft intervention on fP has no effect on {XvK , XvI , XvP , XvO} but it
may have an effect on XvD (depending on the precise functional form of the equations and
the values of the parameters).

Perfect interventions. The causal ordering graph in Figure 1b also encodes the effects of
perfect interventions on clusters, under the assumption that variables can be solved uniquely
from the equations of their clusters in the causal ordering graph before and after intervention.
We will formally prove this in Theorem 23 in Section 5.2. Consider a perfect intervention
on the cluster {fK , vK} (i.e., fixing the diameter XvK of the drain by altering the equation
fK) in Figure 1b. This intervention may change the solution for {XvK , XvP , XvD} because
vK is targeted by the intervention and there are directed paths from the cluster of vK to the
clusters of vP and vD. It has no effect on {XvI , XvO} because there are no directed paths
from the cluster of vK to the clusters of vI and vO.

1.1 System of constraints

Our formal treatment of sets of equations mirrors the definition of a structural causal model
in the sense that we separate the model from the endogenous random variables that solve it.
An introduction to cyclic SCMs will be provided in Appendix A.2, while the related graph
terminology and background regarding Markov properties can be found in Appendix A.1
and Appendix A.3, respectively. Here, we introduce a mathematical object that we call
a system of constraints to represent equations together with their structure as a bipartite
graph.

Definition 1 A system of constraints is a tuple 〈X ,XW ,Φ,B = 〈V, F,E〉〉 where

1. X =
⊗

v∈V Xv, where each Xv is a standard measurable space and the domain of a
variable Xv,

2. XW = (Xw)w∈W is a family of independent random variables taking value in XW

with W ⊆ V a set of indices corresponding to exogenous variables,5

3. Φ = (Φf )f∈F is a family of constraints, each of which is a tuple Φf = 〈φf , cf , V (f)〉,
with:

(a) V (f) ⊆ V
(b) cf a constant taking value in a standard measurable space Yf ,
(c) φf : X V (f) → Yf a measurable function,

4. B = 〈V, F,E〉 is a bipartite graph with:

cannot be modelled in the standard SCM framework (Blom et al., 2019). For these systems, Blom et al.
(2019) introduced the more general class of Causal Constraints Models.

5. This means that the nodes V \W correspond to endogenous variables.
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(a) V a set of nodes corresponding to variables,

(b) F a set of nodes corresponding to constraints,

(c) E = {(f − v) : f ∈ F, v ∈ V (f)} a set of edges.

Henceforth we will use the terms ‘variables’ and ‘vertices corresponding to variables’
interchangeably. We will also use the terms ‘constraints’, ‘equations’, and ‘vertices corre-
sponding to constraints’ interchangeably. We will often refer to the bipartite graph in a
system of constraints as the ‘associated bipartite graph’. A constraint is formally defined
as a triple consisting of a measurable function, a constant, and a subset of the variables.
For the sake of convenience we will often write constraints as equations instead. Note that
the notation for adjacencies in the associated bipartite graph is equivalent to the notation
for the variables that belong to a constraint: V (f) = adjB(f). For a set SF ⊆ F , we will
let adjB(SF ) = V (SF ) = ∪f∈SF

V (f) denote the adjacencies of the vertices f ∈ SF .
When modelling some system with a system of constraints, we are implicitly assum-

ing that the constraints are reversible in the sense that the causal relations between the
endogenous variables are flexible and may depend in principle on the entire set of con-
straints in the system. However, there is an important modelling choice regarding which
of the variables to consider as endogenous (“internal” to the system) and which variables
to consider as exogenous (“external” to the system). The implicit assumption here is that
the endogenous variables cannot cause the exogenous variables. This is the (only) causal
“background knowledge” that is expressed formally by a system of constraints. As Simon
(1953) showed, and as we will explicate in later sections, the causal relations between the
endogenous variables can then be obtained by applying Simon’s causal ordering algorithm.

Example 2 Consider two variables: the temperature in a room (X1) and the reading of a
thermometer in the same room (X2). One can think of different systems of constraints to
model these variables. One possibility is the single constraint (X1 −X2 = 0) in which both
X1 and X2 are considered to be endogenous variables. As it turns out, we will then not
be able to draw any conclusion regarding the causal relation between X1 and X2. Another
possibility would be to use the same constraint, but now considering X1 to be exogenous and
X2 to be endogenous. Then, one will find that X1 causes X2, but not vice versa, which may
appear to be a realistic model. Yet another possibility with the same constraint would be to
consider X2 to be the exogenous variable and X1 to be endogenous. This model would be
considered less realistic in most situations (except perhaps in somewhat unnatural settings
where the thermometer would be broken, but its reading would be used by some agent to
adjust the heating in order to control the room temperature).

Thus, the constraint X1 − X2 = 0 on its own does not lead to any conclusions re-
garding the causal relations between variables X1 and X2; it is only through the additional
background knowledge (represented by the distinction between endogenous and exogenous
variables) that the causal directionality is fixed. In cases with more than one endogenous
variable (like in Example 1), the causal ordering algorithm can be used to “propagate” the
causal directionality from exogenous to endogenous variables, and a causal ordering of the
endogenous variables can be obtained.
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1.2 Related work and contributions

Graphical models are a popular statistical tool to model probabilistic aspects of complex
systems. They represent a set of conditional independences between random variables
that correspond to vertices which allows us to learn their graphical structure from data
(Lauritzen, 1996). These models are often interpreted causally, so that directed edges
between vertices are interpreted as direct causal relations between corresponding variables
(Pearl, 2000). The strong assumptions that are necessary for this viewpoint have been
the topic of debate (Dawid, 2010). This work contributes to this discussion by revisiting
an example in Iwasaki and Simon (1994), and discussing how it seems that, in this case,
the presence of vertices representing equations is required to simultaneously express both
conditional independences and the effects of interventions in a single graph.

Throughout this work, we discuss the application of the causal ordering algorithm to
the equilibrium equations of the bathtub model that we discussed in Example 1. In the
literature, feedback processes that have reached equilibrium have been represented by e.g.,
chain graphs (Lauritzen and Richardson, 2002) and cyclic directed graphs (Spirtes, 1995;
Mooij et al., 2013; Bongers and Mooij, 2018). For the latter it was shown that they imply
conditional independences in the equilibrium distribution via the d-separation criterion in
the linear or discrete case (Forré and Mooij, 2017) but that the directed global Markov
property may fail if the underlying model is neither linear nor discrete (Spirtes, 1995). The
alternative criterion that Spirtes (1995) formulated for the “collapsed graph” was recently
reformulated in terms of σ-separations and shown to hold in very general settings (Forré
and Mooij, 2017). Constraint-based causal discovery algorithms for the cyclic setting under
various assumptions are given in Richardson (1996); Forré and Mooij (2018); Strobl (2018);
Mooij et al. (2020); Mooij and Claassen (2020). The causal properties of dynamical systems
at equilibrium were previously studied by Fisher (1970); Mooij et al. (2013); Hyttinen et al.
(2012); Lauritzen and Richardson (2002); Mooij et al. (2011); Bongers and Mooij (2018);
Blom et al. (2019), who consider graphical and causal models that arise from studying
the stationary behaviour of dynamical models. For the deterministic case, Mooij et al.
(2013) propose to map first-order differential equations to labelled equilibrium equations
and then to the structural equations of an SCM. This idea was recently generalized to
the stochastic case and higher order differential equations (Bongers and Mooij, 2018). For
certain systems, such as the bathtub model in Example 1, this construction may lead
to a cyclic SCM with self-cycles (Bongers and Mooij, 2018). The causal and conditional
independence properties of cyclic SCMs (possibly with self-cycles) have been studied by
Bongers et al. (2020). In other work assumptions on the underlying dynamical model have
been made to avoid the complexities of SCMs with self-cycles. Here, we will consider
potential benefits (e.g., obtaining a stronger Markov property) of applying the technique of
causal ordering to the structural equations of the cyclic SCM for the equilibrium equations
of dynamical systems such as the bathtub system.

Our work generalizes the causal ordering algorithm that was introduced by Simon (1953).
Following Dash and Druzdzel (2008), we formally prove that the causal ordering graph that
is constructed by the algorithm is unique. One of the novelties of this work is that we also
prove that it encodes the effects of soft and certain perfect interventions and, moreover,
we show how it can be used to construct a DAG that implies conditional independences
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via the d-separation criterion. There also exists a different, computationally more efficient,
algorithm for causal ordering (Nayak, 1995; Gonçalves and Porto, 2016). We formally prove
that this algorithm is equivalent to the one in Simon (1953). This approach motivates an
alternative representation of the system as a directed graph that may contain cycles. We
prove that the generalized directed global Markov property, as formulated by Forré and
Mooij (2017), holds for this graphical representation. Using methods to determine the
upper-triangular form of a matrix in Pothen and Fan (1990), we further extend the causal
ordering algorithm so that it can be applied to any bipartite graph.

In Section 6 we will present a detailed discussion of how our work relates to that of
Iwasaki and Simon (1994); Bongers and Mooij (2018); Bongers et al. (2020); Dash (2005).
We show that what Iwasaki and Simon (1994) call the “causal graph” coincides with the
Markov ordering graph in our work. We take a closer look at the intricacies of (possible)
causal implications of the Markov ordering graph and notice that it neither represents the
effects of soft interventions nor does it have a straightforward interpretation in terms of
perfect interventions. Because Simon and Iwasaki (1988) assume that a one-to-one corre-
spondence between variables and equations is known in advance, they can use the Markov
ordering graph to read off the effects of soft interventions. We argue that the causal order-
ing graph, and not the Markov ordering graph, should be used to represent causal relations
when the matching between variables and equations is not known before-hand. This sheds
some new light on the work of Dash (2005) on (causal) structure learning and equilibration
in dynamical systems. We further discuss the advantages and disadvantages of our causal
ordering approach compared to the SCM framework.

2. Causal ordering

In this section, we adapt the causal ordering algorithm of Simon (1953), rephrase it in
terms of self-contained bipartite graphs, and define the output of the algorithm as a directed
cluster graph.6 We then prove that Simon’s causal ordering algorithm is well-defined and
has a unique output.

Definition 2 A directed cluster graph is an ordered pair 〈V, E〉, where V is a partition
V (1), V (2), . . . , V (n) of a set of vertices V and E is a set of directed edges v → V (i) with
v ∈ V and V (i) ∈ V. For x ∈ V we let cl(x) denote the cluster in V that contains x. We
say that there is a directed path from x ∈ V to y ∈ V if either cl(x) = cl(y) or there is
a sequence of clusters V1 = cl(x), V2, . . . , Vk−1, Vk = cl(y) so that for all i ∈ {1, . . . , k − 1}
there is a vertex zi ∈ Vi such that (zi → Vi+1) ∈ E.

2.1 Self-contained bipartite graphs

The causal ordering algorithm in Simon (1953) is presented in terms of a self-contained
set of equations and variables that appear in them. For bipartite graphs, the notion of
self-containedness corresponds to the conditions in Definition 3.

6. The notion of a directed cluster graph corresponds to the box representation of a collapsed graph in
Richardson (1996), Chapter 4.
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Definition 3 Let B = 〈V, F,E〉 be a bipartite graph. A subset F ′ ⊆ F is said to be self-
contained if

1. |F ′| = |adjB(F ′)|,

2. |F ′′| ≤ |adjB(F ′′)| for all F ′′ ⊆ F ′.7

The bipartite graph B is said to be self-contained if |F | = |V | and F is self-contained.
A non-empty self-contained set F ′ ⊆ F is said to be a minimal self-contained set8 if all its
non-empty strict subsets are not self-contained.

Example 3 In Figure 2 a bipartite graph is shown with self-contained sets

{f1}, {f1, f2, f3, f4}, {f1, f2, f3, f4, f5}

where {f1} is a minimal self-contained set. Since the set {f1, f2, f3, f4, f5} is self-contained
and |V | = |F | = 5, we say that this bipartite graph is self-contained.

v1 v2 v3 v4 v5

f1 f2 f3 f4 f5

Figure 2: A self-contained bipartite graph B = 〈V, F,E〉 with V = {v1, v2, v3, v4, v5}
and F = {f1, f2, f3, f4, f5}. The sets {f1}, {f1, f2, f3, f4}, and {f1, f2, f3, f4, f5} are self-
contained, and {f1} is the only minimal self-contained set.

Sets of equations that model systems in the real world often include both endogenous
and exogenous variables. The distinction is that exogenous variables are assumed to be
determined outside the system and function as inputs to the model, whereas the endogenous
variables are part of the system. An important assumption is that the mechanisms of
the system do not cause the exogenous variables. The following example illustrates that
the associated bipartite graph for a set of equations with both endogenous and exogenous
variables is usually not self-contained.

Example 4 Let V = {v1, v2, w1, w2} be an index set for endogenous and exogenous vari-
ables X = (Xi)i∈V , W = {w1, w2} a subset that is an index set for exogenous variables
only, and F = {f1, f2} an index set for equations:

Φf1 : Xv1 −Xw1 = 0,
Φf2 : Xv2 −Xv1 −Xw2 = 0.

The associated bipartite graph B = 〈V, F,E〉 is given in Figure 3a. It has vertices V that
correspond to both endogenous variables Xv1, Xv2 and exogenous variables Xw1, Xw2. The
vertices F correspond to constraints Φf1 and Φf2. Edges between vertices v ∈ V and f ∈ F
are present whenever v ∈ V (f) (i.e., when the variable Xv appears in the constraint Φf ).
Since |V | 6= |F |, the associated bipartite graph is not self-contained.

7. This condition is also called the Hall Property (Hall, 1986).
8. In this case the Strong Hall Property holds, that is |F ′′| < |adjB(F ′′)| for all ∅  F ′′  F ′ (Hall, 1986).
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w1 v1 v2 w2

f1 f2

(a) Bipartite graph.

w1 v1 v2 w2

f1 f2

(b) Directed cluster graph.

Figure 3: The bipartite graph in Figure 3a is associated with the constraints in Example
4. Exogenous variables are indicated by dashed circles. The directed cluster graph that is
obtained by applying Algorithm 1 is shown in Figure 3b.

2.2 Causal ordering algorithm

The causal ordering algorithm, as formulated by Simon (1953), has as input a self-contained
set of equations and as output it has an ordering on clusters of variables that appear in
these equations. We reformulate the algorithm in terms of bipartite graphs and minimal
self-contained sets. The input of the algorithm is then a self-contained bipartite graph and
its output a directed cluster graph that we call the causal ordering graph.

The causal ordering algorithm below has been adapted for systems of constraints with
exogenous variables. The input is a bipartite graph B = 〈V, F,E〉 and a set of vertices
W ⊆ V (corresponding to exogenous variables) such that the subgraph B′ = 〈V ′, F ′, E′〉
induced by (V \W )∪F is self-contained. The algorithm starts out by adding the exogenous
vertices as singleton clusters to a cluster set V during an initialization step. Subsequently,
the algorithm searches for a minimal self-contained set SF ⊆ F in B′. Together with the
set of adjacent variable vertices SV = adjB′(SF ) a cluster SF ∪ SV is formed and added to
V. For each v ∈ V , an edge (v → (SF ∪ SV )) is added to E if v /∈ SV and v ∈ adjB(SF ).
In other words, the cluster has an incoming edge from each variable vertex that is adjacent
to the cluster but not in it. These steps are then repeated for the subgraph induced by the
vertices (V ′ ∪ F ′) \ (SV ∪ SF ) that are not in the cluster, as long as this is not the null
graph. The order in which the self-contained sets are obtained is represented by one of the
topological orderings of the clusters in the causal ordering graph CO(B) = 〈V, E〉.

Algorithm 1: Causal ordering using minimal self-contained sets.
Input: a set of exogenous vertices W , a bipartite graph B = 〈V, F,E〉 such that its

subgraph induced by (V \W ) ∪ F is self-contained
Output: directed cluster graph CO(B) = 〈V, E〉
E ← ∅ // initialization
V ← {{w} : w ∈W} // initialization
B′ ← 〈V ′, F ′, E′〉 subgraph induced by (V \W ) ∪ F // initialization
while B′ is not the null graph do

SF ← a minimal self-contained set of F ′
C ← SF ∪ adjB′(SF ) // construct cluster
V ← V ∪ {C} // add cluster
for v ∈ adjB(SF ) \ adjB′(SF ) do
E ← E ∪ {(v → C)} // add edges to cluster

B′ ← subgraph of B′ induced by (V ′ ∪ F ′) \ C // remove cluster
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Theorem 4 shows that the output of causal ordering via minimal self-contained sets is
well-defined and unique.

Theorem 4 The output of Algorithm 1 is well-defined and unique.

The following example shows how the causal ordering algorithm works on the bipartite
graph in Figure 3a.

Example 5 Consider the set of equations in Example 4 and its associated bipartite graph
in Figure 3a. The subgraph induced by the endogenous variables v1, v2 and the constraints
f1, f2 is self-contained. We initialize Algorithm 1 with E the empty set, V = {{w1}, {w2}},
and B′ the subgraph induced by {v1, v2, f1, f2}. We then first find the minimal self-contained
set {f1}. Its adjacencies are {v1} in B′ and {v1, w1} in B. We add {v1, f1} to V and add
the edge (w1 → {v1, f1}) to E. Finally, we add {v2, f2} to V and the edges (v1 → {v2, f2})
and (w2 → {v2, f2}) to E. The output of the causal ordering algorithm is the directed cluster
graph in Figure 3b. This reflects how one would solve the system of equations Φf1, Φf2 with
respect to Xv1, Xv2 in terms of Xw1, Xw2 by hand.

3. Extending the causal ordering algorithm

In this section we present an adaptation of an alternative, computationally less expen-
sive, algorithm for causal ordering which uses perfect matchings instead of minimal self-
contained sets, similar to the algorithm suggested by Nayak (1995). Gonçalves and Porto
(2016) proved that Simon’s classic algorithm makes use of a subroutine that solves an NP-
hard problem, whereas the computational complexity of Nayak’s algorithm is bounded by
O (|V | |E|), where |V | is the number of nodes and |E| is the number of edges in the bipartite
graph. Here, we provide a proof for the fact that causal ordering via minimal self-contained
sets is equivalent to causal ordering via perfect matchings. There are many systems of
equations with a unique solution that consist of more equations than there are endogenous
variables, most notably in the case of non-linear equations, or in the presence of cycles. In
that case the bipartite graph associated with these equations may not be self-contained. In
this section, we show how Nayak’s algorithm can be extended using maximum matchings
so that it can be applied to any bipartite graph.

3.1 Causal ordering via perfect matchings

Given a bipartite graph B, the associated directed graph can be constructed from a matching
M by orienting edges. A directed cluster graph can then be constructed via the operations
that construct clusters and merge clusters in Definition 5 below.

Definition 5 Let B = 〈V, F,E〉 be a self-contained bipartite graph and M a perfect match-
ing for B.

1. Orient edges: For each (v−f) ∈ E the edge set Edir has an edge (v ← f) if (v−f) ∈M
and an edge (v → f) if (v − f) /∈ M . Edir has no additional edges. The associated
directed graph is G(B,M) = 〈V ∪ F,Edir〉.

11
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2. Construct clusters: Let V ′ be a partition of vertices V ∪ F into strongly connected
components in G(B,M). For each (x → w) ∈ Edir the edge set E ′ has an edge (x →
cl(w)) if x /∈ cl(w), where cl(w) ∈ V ′ is the strongly connected component of w in
G(B,M). The edge set E ′ has no additional edges. The associated clustered graph is
clust(G(B,M)) = 〈V ′, E ′〉.

3. Merge clusters: Let V = {S ∪M(S) : S ∈ V ′}. For each (x→ S) ∈ E ′ with x /∈M(S)
the edge set E contains an edge (x → S ∪ M(S)). The edge set E has no addi-
tional edges. The associated clustered and merged graph is merge(clust(G(B,M))) =
〈V, E〉.9

Algorithm 2: Causal ordering via perfect matching.
Input: a set of exogenous vertices W , a bipartite graph B = 〈V, F,E〉 such that

the subgraph induced by (V ∪ F ) \W is self-contained
Output: directed cluster graph 〈V, E〉
B′ ← subgraph induced by (V \W ) ∪ F // initialization
M ← perfect matching for B′ // initialization
Edir ← ∅ // orient edges
for (v − f) ∈ E with f ∈ F do

if (v − f) ∈M then
Add (v ← f) to Edir

else
Add (v → f) to Edir

V ′ ← strongly connected components of 〈V ∪ F,Edir〉 // clustering
E ′ ← ∅
for (x→ w) ∈ Edir do

for S ∈ V ′ do
if w ∈ S and x /∈ S then

Add (x→ S) to E ′

V, E ← ∅ // merge clusters
for S ∈ V ′ do

Add S ∪M(S) to V
for (x→ S) ∈ E ′ do

if x /∈M(S) then
Add (x→ S ∪M(S)) to E

For causal ordering via perfect matching we require as input a set of exogenous vertices
W and a bipartite graph B = 〈V, F,E〉, for which the subgraph B′ induced by the vertices
(V ∪ F ) \W is self-contained. The output is a directed cluster graph. The details can be
found in Algorithm 2. We see that the algorithm starts out by finding a perfect matching10

9. In Theorem 6 we will show that this is the causal ordering graph CO(B).
10. Note that a bipartite graph has a perfect matching if and only if it is self-contained (Hall, 1986). See

also Theorem 38 and Corollary 39 in Appendix B.4.
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for B′,11 which is then used to orient edges in the bipartite graph B. The algorithm then
proceeds by partitioning vertices in the resulting directed graph into strongly connected
components to construct the associated clustered graph.12 Finally, the merge operation is
applied to construct the causal ordering graph. Theorem 6 below shows that causal ordering
via perfect matchings is equivalent to causal ordering via minimal self-contained sets.

Theorem 6 The output of Algorithm 2 coincides with the output of Algorithm 1.

The following example illustrates that the output of causal ordering via perfect match-
ings does not depend on the choice of perfect matching and coincides with the output of
Algorithm 1.

Example 6 Consider the bipartite graph B in Figure 4a. The subgraph induced by the
vertices V = {v1, . . . , v5} and F = {f1, . . . , f5} is the self-contained bipartite graph in Figure
2. We will follow the steps in both Algorithm 1 and 2 to construct the causal ordering graph.

For causal ordering with minimal self-contained sets we first add the exogenous variables
to the cluster set V as the singleton clusters {w1}, {w2}, {w3}, {w4}, {w5}, and {w6}. The
only minimal self-contained set in the subgraph induced by the vertices V = {v1, . . . , v5} and
F = {f1, . . . , f5} is {f1}. Since f1 is adjacent to v1 we add C1 = {v1, f1} to V. Since f1
is adjacent to w1 in B we add (w1 → C1) to E. The subgraph B′ = 〈V ′, F ′, E′〉 induced by
the remaining nodes V ′ = {v2, v3, v4, v5} and F ′ = {f2, f3, f4, f5} has {f2, f3, f4} as its only
minimal self-contained set. Since the set {f2, f3, f4} is adjacent to {v2, v3, v4} in B′, we add
C2 = {v2, v3, v4, f2, f3, f4} to V. Since v1, w2, w3, w4, and w5 are adjacent to {f2, f3, f4}
in B but not part of C2, we add the edges (v1 → C2), (w2 → C2), (w3 → C2), (w4 → C2),
and (w5 → C2) to E. The subgraph induced by the remaining nodes v5 and f5 has {f5} as
its minimal self-contained subset. We add C3 = {v5, f5} to V and the edges (v4 → C3) and
(w6 → C3) to E. The directed cluster graph CO(B) = 〈V, E〉 is given in Figure 4e.

For causal ordering via perfect matchings, we consider the following two perfect match-
ings of the self-contained bipartite graph in Figure 2:

M1 = {(v1 − f1), (v2 − f2), (v3 − f3), (v4 − f4), (v5 − f5)},
M2 = {(v1 − f1), (v2 − f4), (v3 − f2), (v4 − f3), (v5 − f5)}.

We use these one-to-one correspondences between endogenous variable vertices and con-
straint vertices in the orientation step in Definition 5 to obtain the associated directed
graphs G(B,M1) and G(B,M2) in Figures 4b and 4c respectively. Application of the clus-
tering step in Definition 5 to either G(B,M1) or G(B,M2) results in the clustered graph
clust(G(B,M2)) = clust(G(B,M1)) in Figure 4d. The final step is to merge clusters in this
directed cluster graph. We find that the causal ordering graph merge(clust(G(B,M1))) =
merge(clust(G(B,M2))) in Figure 4e does not depend on the choice of perfect matching, as
is implied by Theorem 6. Note that the output of causal ordering with minimal self-contained
sets coincides with the output of causal ordering via perfect matchings.

11. The Hopcraft-Karp-Karzanov algorithm, which runs in O(|E|
√
|V ∪ F |), can be used to find a perfect

matching (Hopcroft and Karp, 1973; Karzanov, 1973).
12. Tarjan’s algorithm, which runs in O(|V |+ |E|) time, can be used to find the strongly connected compo-

nents in a directed graph (Tarjan, 1972).
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w1 v1 w2 v2 w3 v3 w4 v4 w5 v5 w6

f1 f2 f3 f4 f5

(a) Bipartite graph B where dashed vertices indicate exogenous variables.

w1 v1 w2 v2 w3 v3 w4 v4 w5 v5 w6

f1 f2 f3 f4 f5

(b) Associated directed graph G(B,M1).

w1 v1 w2 v2 w3 v3 w4 v4 w5 v5 w6

f1 f2 f3 f4 f5

(c) Associated directed graph G(B,M2).

v1 v2 v3 v4 v5

f1 f2 f3 f4 f5

w1 w2 w3 w4 w5 w6

(d) Clustered graph clust(G(B,M1)).

v1 v2 v3 v4 v5

f1 f2 f3 f4 f5

w1 w2 w3 w4 w5 w6

(e) Causal ordering graph CO(B).

Figure 4: Causal ordering with two different perfect matchings M1 and M2 applied to the
bipartite graph in Figure 4a. The results of subsequently orienting edges, constructing
clusters, and merging clusters as in Definition 5 are given in Figures 4b to 4e. The edges in
M1 that are oriented from variables to equations in Figure 4b are indicated with blue edges.
Likewise, edges in M2 are indicated with orange edges in Figure 4c. The clustered graph
in Figure 4d coincides with clust(G(B,M2)) and for the causal ordering graph in Figure 4e
we have that CO(B) = merge(clust(G(B,M1))) = merge(clust(G(B,M2))).
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3.2 Coarse decomposition via maximum matchings

The extension that we propose relies on the coarse decomposition of bipartite graphs in
Pothen and Fan (1990), which was originally proposed by Dulmage and Mendelsohn (1958).
The main idea is that a set of equations (i.e., a system of constraints) can be divided into
an incomplete part that has fewer equations than variables, an over-complete part that
has more equations than variables, and a part that is self-contained. The coarse decompo-
sition in Definition 7 below uses the notions of a maximum matching and an alternating
path for a maximum matching. The former is a matching so that there are no match-
ings with a greater cardinality, while the latter is a sequence of distinct vertices and edges
(v1, e1, v2, e2, . . . , en−1, vn) so that edges ei are alternatingly in and out a maximum match-
ing M . Proposition 8 by Pothen (1985) shows that the coarse decomposition is unique.13

In this section we loosely follow the exposition of the coarse decomposition in Van Diepen
(2019) and Pothen and Fan (1990).

Definition 7 Let M be a maximum matching for a bipartite graph B = 〈V, F,E〉 and let
Vun and Fun denote the unmatched vertices in V and F respectively. The incomplete set
TI ⊆ V ∪ F and overcomplete set TO ⊆ V ∪ F are given by:

TI := {x ∈ V ∪ F : there is an alternating path between x and some y ∈ Vun},
TO := {x ∈ V ∪ F : there is an alternating path between x and some y ∈ Fun}.

The complete set is given by TC = V ∪F \(TI∪TO). The coarse decomposition CD(B,M) is
given by 〈TI , TC , TO〉. The incomplete graph BI is the subgraph of B induced by vertices TI ,
the complete graph BC is the subgraph of B induced by vertices TC , and the overcomplete
graph BO is the subgraph of B induced by vertices TO.

Note that TI and TO are necessarily disjoint, for more details see Lemma 36 in Ap-
pendix B.2.

Proposition 8 [Pothen (1985)] The coarse decomposition of a bipartite graph B is inde-
pendent of the choice of the maximum matching.

There exist fast algorithms that are able to find a maximum matching in a bipar-
tite graph B = 〈V, F,E〉, such as the Hopcraft-Karp-Karzanov algorithm, which runs in
O(|E|

√
|V ∪ F |) time (Hopcroft and Karp, 1973; Karzanov, 1973). In the following exam-

ple we manually searched for maximum matchings to illustrate the result in Proposition 8
that the coarse decomposition is unique.

Example 7 Consider the bipartite graph B′ in Figure 5b, which has the following four
maximum matchings.

M1 = {(v1 − f2), (v2 − f3), (v3 − f4), (v4 − f5)}, (6)
M2 = {(v1 − f1), (v2 − f3), (v3 − f4), (v5 − f5)}, (7)
M3 = {(v1 − f2), (v2 − f3), (v3 − f4), (v5 − f5)}, (8)
M4 = {(v1 − f1), (v2 − f3), (v3 − f4), (v4 − f5)}. (9)

13. For completeness, we have included a proof of this theorem in Appendix B.2.
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By Proposition 8 we know that the coarse decomposition CD(B′,M), withM ∈ {M1,M2,M3,
M4}, does not depend on the choice of maximum matching. The coarse decomposition is
displayed in Figure 5c. It is a straightforward exercise to verify that applying Definition
7 to each of the maximum matchings results in the same coarse decomposition. Note that
if the vertices {f1, . . . f5} are associated with equations, and the vertices {v1, . . . , v5} are
associated with variables, then the incomplete graph BI has fewer equations than variables,
whereas the over-complete graph BO has more equations than variables. The complete graph
BC is self-contained.

w1 v1 w2 v2 w3 v3 w4 v4 v5 w5

f1 f2 f3 f4 f5

(a) Associated bipartite graph B.

v1 v2 v3 v4 v5

f1 f2 f3 f4 f5

(b) Subgraph B′ induced by V ∪ F .

v1 v2 v3 v4 v5

f1 f2 f3 f4 f5

BO BC BI

(c) Coarse decomposition of B′.

Figure 5: The bipartite graph B associated with the system of equations in Example 8 is
given in Figure 5a. Its subgraph B′ induced by V = {v1, . . . , v5} and F = {f1, . . . , f5} in
Figure 5b is not self-contained. The coarse decomposition of B′ is given in Figure 5c.

3.3 Causal ordering via coarse decomposition

Here we present the extended causal ordering algorithm. It relies on the unique coarse
decomposition of a bipartite graph into its incomplete, complete, and over-complete parts.
Lemma 9, due to Pothen (1985), shows that the complete graph has a perfect matching.
Together, Lemma 9 and Lemma 10 justify the steps in Algorithm 3 to construct a causal
ordering graph. The proofs are provided in Appendix B.2.

Lemma 9 [Pothen (1985)] Let B be a bipartite graph with coarse decomposition 〈TI , TC , TO〉.
The subgraph BC of B induced by vertices in TC has a perfect matching and is self-contained.

Lemma 10 [Pothen (1985)] Let B = 〈V, F,E〉 be a bipartite graph with a maximum match-
ing M . Let CD(B,M) = 〈TI , TC , TO〉 be the associated coarse decomposition. No edge joins
a vertex in TI ∩V with a vertex in (TC ∪TO)∩F and no edge joins a vertex in TC ∩V with
a vertex in TO ∩ F .
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Algorithm 3 takes a set of exogenous verticesW ⊆ V and a bipartite graph B = 〈V, F,E〉
as input. In contrast with Algorithms 1 and 2, the subgraph of B induced by (V ∪ F ) \W
need not be self-contained. The output is a causal ordering graph 〈V, E〉. The algorithm
first uses a maximum matching M for the subgraph B′ of B induced by (V \W ) ∪ F to
construct the coarse decomposition 〈TI , TC , TO〉 of B′. Since the complete graph BC is self-
contained (by Lemma 9) the causal ordering algorithm for self-contained bipartite graphs
can be applied to obtain the directed cluster graph CO(BC) = 〈VC , EC〉. The cluster set V
consists of the clusters in VC and the connected components in BI and BO. The edge set E
contains all edges in EC . For edges between vertices v ∈ TO ∩ V and f ∈ TC ∩ F in B an
edge (v → clV(f)) is added to E .14 Similarly, for edges between vertices v ∈ (TO ∪ TC) ∩ V
and f ∈ TI ∩ F an edge (v → clV(f)) is also added to E . By Lemma 10 there are no other
edges between the incomplete, complete, and over-complete graphs. Finally, edges from
exogenous vertices W are added to the causal ordering graph. The details can be found in
Algorithm 3.

Algorithm 3: Causal ordering via coarse decomposition.
Input: a set of exogenous vertices W , a bipartite graph B = 〈V ∪W,F,E〉.
Output: directed cluster graph 〈V, E〉
B′ ← subgraph of B induced by (V \W ) ∪ F
M ← maximum matching for B′
〈TI , TC , TO〉 ← CD(B′,M) // coarse decomposition
BC ← subgraph of B′ induced by TC
BI ← subgraph of B′ induced by TI
BO ← subgraph of B′ induced by TO
〈VC , EC〉 ← causal ordering graph for BC // construct clusters
VI ← partition of TI into connected components in BI
VO ← partition of TO into connected components in BO
V ← VI ∪ VC ∪ VO ∪ {{w} : w ∈W}
E ← EC // find edges
for (v − f) ∈ E do

if v ∈ (TO ∪ TC) ∩ V and f ∈ TI ∩ F then
Add (v → clV(f)) to E

else if v ∈ TO ∩ V and f ∈ TC ∩ F then
Add (v → clV(f)) to E

for w ∈W do
add (w → clV(f)) to E for all f ∈ adjB(w) // exogenous vertices

Corollary 11 The output of Algorithm 3 is well-defined and unique.

Proof This follows directly from Theorem 4 and Proposition 8.

Corollary 11 shows that the output of causal ordering via coarse decomposition does not
depend on the choice of the maximum matching (i.e., the output is unique). The following

14. Note that clV(x) denotes the cluster in the partition V that contains the vertex x.
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example provides a manual demonstration of the causal ordering algorithm via the coarse
decomposition.

Example 8 We apply the causal ordering algorithm via coarse decomposition (i.e., Algo-
rithm 3) to the bipartite graph in Figure 5a. Its subgraph induced by endogenous variables
and equations is the bipartite graph in Figure 5b and its coarse decomposition is given
in Figure 5c. Since, by Lemma 9, BC is self-contained we can apply the causal ordering
algorithm (Algorithm 1) to the complete subgraph resulting in the directed cluster graph
CO(BC) = 〈VC , EC〉 where VC = {{v2, f3}, {v3, f4}} and EC = {(v2 → {v3, f4})}. The
cluster set is then given by V = VC ∪ {{v4, v5, f5}} ∪ {{v1, f1, f2}}. We then add sin-
gleton clusters {w1}, {w2}, {w3}, {w4}, {w5} for each exogenous vertex. Next we add
the edges EC , (v1 → {{v2, f3}) and (v3 → {v4, v5, f5}) to the edge set E. Finally, we
add edges (w1 → {v1, f1, f2}), (w2 → {v1, f1, f2}), (w3 → {v2, f3}), (w4 → {v3, f4}) and
(w5 → {v4, v5, f5}) to the edge set E. The resulting causal ordering graph CO(B) = 〈V, E〉
is given in Figure 6.

w1

v1 v2 v3 v4 v5
w5

f1

w2 w3 w4

f2 f3 f4 f5

Figure 6: Causal ordering graph for the bipartite graph in Figure 5a.

4. Markov ordering graph

First we consider (unique) solvability assumptions for systems of constraints. We will then
construct the Markov ordering graph and prove that it implies conditional independences
between variables that appear in constraints. We also apply our method to the model for
the filling bathtub in Example 1. Finally, we present a novel result regarding the generalized
directed global Markov property for solutions of systems of constraints and an associated
directed graph.

4.1 Solvability for systems of constraints

In this section, we consider (unique) solutions of systems of constraints with exogenous
random variables, and give a sufficient condition under which the output of the causal
ordering algorithm can be interpreted as the order in which sets of (endogenous) variables
can be solved in a set of equations (i.e., constraints).

Definition 12 We say that a measurable mapping g : XW 7→ X V \W that maps values of
the exogenous variables to values of the endogenous variables is a solution to a system of
constraints 〈X ,XW ,Φ,B〉 if

φf (gV (f)\W (XW ),XV (f)∩W ) = cf , ∀ f ∈ F, PXW
-a.s.
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We say that the system of constraints is uniquely solvable (or “has a unique solution”) if
all its solutions are PXW

-a.s. equal.

The system of constraints in the example below is solvable but not uniquely solvable.
The example illustrates that the dependence or independence between solution components
(i.e., endogenous variables) is not the same for all solutions.

Example 9 Consider a system of constraints 〈X ,XW ,Φ,B〉 with X = R4 and independent
exogenous random variables XW = (Xw)w∈{w1,w2} taking value in R2. Suppose that Φ
consists of the constraints

Φf1 = 〈XV (f1) 7→ Xv1 −Xw1 , 0, {v1, w1}〉, (10)
Φf2 = 〈XV (f2) 7→ X2

v2 − |Xw2 |, 0, {v2, w2}〉. (11)

This system of constraints has solutions with different distributions. One solution is given by
(X∗v1 , X

∗
v2) = (Xw1 ,

√
|Xw2 |) and another solution is (X ′v1 , X

′
v2) = (Xw1 , sgn(Xw1)

√
|Xw2 |).

Note that the solution components X∗v1 and X∗v2 are independent, whereas the solution com-
ponents X ′v1 and X ′v2 may be dependent.

Underspecified (and overspecified) systems of constraints can be avoided by the require-
ment that it is uniquely solvable. In Definition 13 below we give a sufficient condition under
which a unique solution can be obtained by solving variables in clusters from equations in
these clusters.

Definition 13 A system of constraints M = 〈X ,XW ,Φ,B〉 is solvable w.r.t. constraints
SF ⊆ F and endogenous variables SV ⊆ V (SF ) \W if there exists a measurable function
gSV

: X V (SF )\SV
→ X SV

s.t. PXW
-a.s., for all xV (SF )\W ∈ X V (SF )\W :

φf (xV (f)\W ,XV (f)∩W ) = cf , ∀ f ∈ SF ⇐= xSV
= gSV

(xV (SF )\(SV ∪W ),XV (SF )∩W ).

M is uniquely solvable w.r.t. constraints SF and endogenous variables SV if the converse
implication also holds.

The following condition suffices for the existence of a unique solution that can be ob-
tained by solving for variables from equations in their cluster along a topological ordering
of the clusters in the causal ordering graph. This weakens the assumptions made in Si-
mon (1953) who requires both unique solvability w.r.t. every subset of equations (and the
endogenous variables that appear in them) and self-containedness of the bipartite graph.

Definition 14 We say thatM is uniquely solvable w.r.t. the causal ordering graph CO(B) =
〈V, E〉 if it is uniquely solvable w.r.t. S ∩ F and S ∩ V for all S ∈ V with S ∩W = ∅.

For systems of constraints for cyclic models or with non-linear equations, for which
the incomplete subgraph is not the empty graph, the condition of unique solvability with
respect to the causal ordering graph is not always satisfied. This is illustrated by Example
10 below.
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Example 10 Let V = {v1, . . . v5} be an index set for endogenous variables Xv1 , . . . , Xv5

taking value in R, W = {w1, . . . , w5} an index set for independent exogenous random vari-
ables Uw1 , . . . , Uw5 taking value in R, and p1, p2 parameters with values in R. Consider the
following non-linear system of constraints:

Φf1 : X2
v1 − Uw1 = 0, (12)

Φf2 : sgn(Xv1)− sgn(Uw2) = 0, (13)
Φf3 : Xv2 − p1Xv1 − Uw3 = 0, (14)
Φf4 : Xv3 − p2Xv2 − Uw4 = 0, (15)
Φf5 : Xv3 +Xv4 +Xv5 − Uw5 = 0. (16)

The associated bipartite graph B is given in Figure 5a and the corresponding causal ordering
graph is given in Figure 6. It is easy to check that the system of constraints is uniquely
solvable with respect to the clusters {v1, f1, f2}, {v2, f3}, and {v3, f4} in the causal ordering
graph. Equation f5 does not provide a unique solution for the variables v4 and v5 and hence
the system is not uniquely solvable with respect to the cluster {v4, v5, f5}.

Generally speaking, systems of constraints are not uniquely solvable with respect to
the clusters in the incomplete set of vertices in the associated bipartite graph. In order to
derive a Markov property for the complete and overcomplete sets of vertices in the associated
bipartite graph, we use the condition in Definition 15 below, which is slightly weaker than
the one in Definition 13. Since self-contained bipartite graphs do not have an incomplete
part there is no difference between the two conditions in that case.

Definition 15 Let M = 〈X ,XW ,Φ,B〉 be a system of constraints. Denote its coarse
decomposition by CD(B) = 〈TI , TC , TO〉 and its causal ordering graph by CO(B) = 〈V, E〉.
We say thatM is maximally uniquely solvable if it is

1. uniquely solvable w.r.t. S∩F and S∩V for all S ∈ V with S∩W = ∅ and S∩TI = ∅,
and

2. solvable with respect to TI ∩ F and (TI ∩ V ) \W .

This condition suffices to guarantee the existence of a solution, and that it is unique on the
(over)complete part (TO ∪ TC) ∩ V \W .

4.2 Directed global Markov property via causal ordering

The Markov ordering graph is constructed from a causal ordering graph by declustering and
then marginalizing out the vertices that correspond to constraints.

Definition 16 Let G = 〈V, E〉 be a directed cluster graph. The declustered graph is given
by D(G) = 〈V,E〉 with V = ∪S∈VS and (v → w) ∈ E if and only if (v → cl(w)) ∈ E. For
a system of constraints M = 〈X ,XW ,Φ,B〉 with B = 〈V, F,E〉, we say that MO(B) =
D(CO(B))mar(F ) is the Markov ordering graph.
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Under the assumption that systems of constraints are uniquely solvable with respect to
the (over)complete part of their causal ordering graph, Theorem 17 relates d-separations
between vertices in the Markov ordering graph to conditional independences between the
corresponding components of a solution of the system of constraints.

Theorem 17 Let X∗ = h(XW ) with h : XW → X V \W be a solution of a system of
constraints M = 〈X ,XW ,Φ,B〉 with coarse decomposition CD(B) = 〈TI , TC , TO〉. Let
MOCO(B) denote the subgraph of the Markov ordering graph induced by TC∪TO and letX∗CO
denote the corresponding solution components. If M is maximally uniquely solvable then
the pair (MOCO(B),PX∗CO

) satisfies the directed global Markov property (see Definition 31).

In particular, when the incomplete and overcomplete sets are empty (i.e., when TI =
∅ and TO = ∅) and the system is uniquely solvable with respect to the causal ordering
graph, Theorem 17 tells us that the pair (MO(B),PX∗) satisfies the directed global Markov
property.

Example 11 Consider the system of constraints in Example 10. The Markov ordering
graph for the associated bipartite graph in Figure 5a can be constructed from the causal
ordering graph in Figure 6 and is given in Figure 7. One can check that the system of
constraints is uniquely solvable with respect to the clusters in the complete and overcomplete
sets. The Markov ordering graph can be used to read off conditional independences from
d-separations between vertices that are not in the incomplete part. For example, since v1
is d-separated from v3 given v2, we deduce that Xv1 ⊥⊥ Xv3 |Xv2, for any solution of the
constraints.

w1 v1 v2 v3 v4

v5

w5

w2 w3 w4

TI ∩ V

(a) MO(B).

w1 v1 v2 v3 w5

w2 w3 w4

(b) MOCO(B).

Figure 7: (a) The Markov ordering graph associated with the system of constraints in
Example 10. It can be constructed from the causal ordering graph in Figure 6. The
vertices in the incomplete graph are indicated by the dashed rectangle. (b) Its subgraph
induced by TC ∩ TO. Theorem 17 shows that d-separations in MOCO(B) imply conditional
independences.

4.3 Application to the filling bathtub

In Example 1 we informally described an equilibrium model for a filling bathtub. The
endogenous variables of the system are the diameter XvK of the drain, the rate XvI at
which water flows from the faucet, the water pressure XvP , the rate XvO at which the water
goes through the drain and the water level XvD . The model is formally represented by a
system of constraintsM = 〈X ,XW ,Φ,B〉 where:
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1. X = R12
>0 is a product of standard measurable spaces corresponding to the domain of

variables that are indexed by {vK , vI , vP , vO, vD, wK , wI , w1, . . . , w5},

2. XW = {UwI , UwK , Uw1 , . . . , Uw5} is a family of independent exogenous random vari-
ables,

3. Φ is a family of constraints:

ΦfK
= 〈XV (fK ) 7→ XvK

− UwK
, 0, V (fK) = {vK , wK}〉,

ΦfI
= 〈XV (fI ) 7→ XvI

− UwI
, 0, V (fI) = {vI , wI}〉,

ΦfP
= 〈XV (fP ) 7→ Uw1(gUw2XvD

−XvP
), 0, V (fP ) = {vD, vP , w1, w2}〉,

ΦfO
= 〈XV (fO) 7→ Uw3(Uw4XvK

XvP
−XvO

), 0, V (fO) = {vK , vP , vO, w3, w4}〉,
ΦfD

= 〈XV (fD) 7→ Uw5(XvI
−XvO

), 0, V (fD) = {vI , vO, v5}〉,

4. The associated bipartite graph B = 〈V, F,E〉 is as in Figure 8. The vertices F =
{fK , fI , fP , fO, fD} correspond to constraints and the vertices V \W = {vK , vI , vP , vO,
vD} andW = {wI , wK , w1, . . . , w5} correspond to endogenous and exogenous variables
respectively. Note that the subgraph induced by the endogenous vertices V \W is the
self-contained bipartite graph presented in Figure 1a.

wI vI w5 vO w4 vD w3 w2 vP w1 vK wK

fOfI fD fP fK

Figure 8: The bipartite graph associated with the equilibrium equations of the bathtub
system.

Solvability with respect to the causal ordering graph: Applying Algorithm 1 to the
bipartite graph results in the causal ordering graph CO(B) in Figure 9. Since the bipartite
graph induced by the endogenous variables and equations is self-contained, there is no
incomplete or overcomplete subgraph. The assumption of maximal unique solvability in
Theorem 17 then reduces to the assumption of unique solvability with respect to the causal
ordering graph. Through explicit calculations, it is easy to verify that M is (maximally)
uniquely solvable with respect to CO(B), whenever g 6= 0:

1. For the cluster {fK , vK} we have that XvK − UwK = 0 ⇐⇒ XvK = UwK .

2. For the cluster {fI , vI} we have that XvI − UwI = 0 ⇐⇒ XvI = UwI .

3. For {fO, vP } we have that Uw3(Uw4XvKXvP −XvO ) = 0 ⇐⇒ XvP = XvO
Uw3XvK

.

4. For {fD, vO} we have that Uw5(XvI −XvO ) ⇐⇒ XvO = XvI .

5. For {fP , vD} we have that Uw1(gUw2XvD −XvP ) ⇐⇒ XvD = XvP
gUw2

.
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In practice, we do not always need to manually check the assumption of unique solvability
with respect to the causal ordering graph. For example, in linear systems of equations
of the form AX = Y , we may use the fact that this assumption is satisfied when the
matrix of coefficients A is invertible. More generally, global implicit function theorems give
conditions under which (non-linear) systems of equations have a unique solution (Krantz
and Parks, 2013).15 We consider detailed analysis of conditions under which (maximal)
unique solvability is guaranteed to be outside the scope of this paper. Note that, under the
assumption of (maximal) unique solvability, the conditional independences can be read off
from the Markov ordering graph without the requirement of calculating explicit solutions.

wI
w1

w2

w3

w4

w5

wK

vI vD vP

fI fP fO

vOfD

vKfK

Figure 9: The causal ordering graph for the equilibrium equations of the bathtub system.

Markov ordering graph: Application of declustering and marginalization of vertices
in F , as in Definition 16, to the causal ordering graph in Figure 9 results in the Markov
ordering graph in Figure 10a. SinceM is uniquely solvable with respect to CO(B), Theorem
17 tells us that the pair (MO(B),PX∗) satisfies the directed global Markov property, where
X∗ is a solution ofM.16

Encoded conditional independences: Since the assumption of unique solvability with
respect to the causal ordering graph holds for this particular example, we can read off
conditional independences between endogenous variables from the Markov ordering graph.
More precisely, the d-separations in MO(B) between vertices in V \W imply conditional

15. In particular, Hadamard’s global implicit function theorem in Krantz and Parks (2013) states the fol-
lowing (Hadamard, 1906). Let f : Rn 7→ Rn be a C2 mapping. Suppose that f(0) = 0 and that the
Jacobian determinant is non-zero at each point. Further suppose that whenever K ⊆ Rn is compact
then f−1(K) is compact (i.e., f is proper). Then f is one-to-one and onto. In the literature, several
conditions have been formulated yielding global inverse theorems in different or more general settings,
see for example Idczak (2016); Gutú (2017).

16. Recall that there is no incomplete and overcomplete part of the bipartite graph. Therefore we have that
MOCO(B) = MO(B).
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wI

w1

w2

w3

w4

w5

wK

vI vD vP

vO

vK

(a) Markov ordering graph.

vI vD vP

vO

vK

(b) Graph of the SCM.

Figure 10: The Markov ordering graph for the equilibrium equations of the filling bath-
tub system, obtained by applying Definition 16 to the causal ordering graph in Figure 9
is given in Figure 10a. The d-separations in the Markov ordering graph imply conditional
independences between corresponding endogenous variables. Most of these conditional in-
dependences cannot be read off from the graph for the SCM of the bathtub system in Figure
10b, except for XvI ⊥⊥ XvK .

independences between the corresponding endogenous variables. For example:

vK
d
⊥

MO(B)
vO =⇒ XvK ⊥⊥ XvO ,

vK
d
⊥

MO(B)
vD | vP =⇒ XvK ⊥⊥ XvD |XvP ,

vI
d
⊥

MO(B)
vP | vO =⇒ XvI ⊥⊥ XvP |XvO ,

vO
d
⊥

MO(B)
vD | vP =⇒ XvO ⊥⊥ XvD |XvP .

For g > 0, every solution to the system of constraints has the same distribution, and
this distribution is d-faithful to the Markov ordering graph. When g = 0, the system of
constraints only has a solution if UwI = 0 almost surely; in that case the corresponding
distribution is not d-faithful w.r.t. the Markov ordering graph in Figure 10a.

Comparison to SCM representation: The (random) differential equations that de-
scribe the system of a bathtub can be equilibrated to an SCM that has a self-cycle. Bongers
et al. (2020) show that the equilibrated model has the following structural equations:

XvK = UwK ,

XvI = UwI ,

XvP = gUw3XvD ,

XvO = Uw5XvKXvP ,

XvD = XvD + Uw1(XvI −XvO ).

The graph of this SCM is depicted in Figure 10b. Because the SCM is uniquely solvable
w.r.t. the strongly connected components {vI}, {vD, vP , vO} and {vK}, the σ-separations in
this graph imply conditional independences (Theorem 6.3 in Bongers et al., 2020). Most
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of the conditional independences implied by the Markov ordering graph cannot be read
off from the graph of this SCM in Figure 10b via the σ-separation criterion, except for
XvI ⊥⊥ XvK . Clearly the distribution of a solution to the system of constraints is not
faithful to the graph of the SCM and causal ordering on the equilibrium equations provides
a stronger Markov property than equilibration to an SCM.

An important difference between SCMs and systems of constraints is that while the
former require a particular one-to-one correspondence between endogenous variables and
structural equations, the latter do not require a similar correspondence between endogenous
variables and constraints. Interestingly, in the case of the bathtub model, a one-to-one
correspondence between variables and constraints is obtained automatically by the causal
ordering algorithm. In general, the bipartite graph of a set of structural equations is self-
contained and perfect matchings connect each variable to an equation. If the SCM is
acyclic then the associated bipartite graph has a unique perfect matching that retrieves the
correspondence between variables and equations in the SCM.We further discuss applications
of the technique of causal ordering to structural equations in Section 6.2.

4.4 Generalized directed global Markov property

For systems of constraints with no over- or incomplete parts, the associated directed graph
that is constructed in the causal ordering algorithm via perfect matchings also yields a
Markov property. Theorem 18 below shows that for systems that are uniquely solvable
with respect to the causal ordering graph, the σ-separations between variable vertices in the
directed graph G(B,M)mar(F ) imply conditional independences between the corresponding
solution components.

Theorem 18 Let X∗ = g(XW ) be a solution of a system of constraints 〈X ,XW ,Φ,B〉,
where the subgraph of B = 〈V, F,E〉 induced by (V ∪ F ) \W has a perfect matching M .
If for each strongly connected component S in G(B,M) with S ∩W = ∅, the system M
is uniquely solvable w.r.t. SV = (S ∪ M(S)) ∩ V and SF = (S ∪ M(S)) ∩ F then the
pair (G(B,M)mar(F ),PX∗) satisfies the generalized directed global Markov property (Defini-
tion 31).

Example 12 Consider a system of constraintsM = 〈X ,XW ,Φ,B〉 withW = {w1, . . . , w6},
V \W = {v1, . . . , v5}, F = {f1, . . . , f5}, and B = 〈V, F,E〉 as in Figure 4a. Suppose that
X = R11 and Φ consists of constraints:

Φf1 : Xv1 −Xw1 = 0,
Φf2 : Xv2 −Xv1 +Xv3 +Xw2 −Xw3 = 0,
Φf3 : Xw4 −Xv3 +Xv4 = 0,
Φf4 : Xw5 +Xv2 −Xv4 = 0,
Φf5 : Xw6 −Xv4 +Xv5 = 0.

It is easy to check that this linear system of equations can be uniquely solved in the or-
der prescribed by the causal ordering graph CO(B) in Figure 4e. Therefore, according to
Theorem 17 the d-separations among endogenous variables in the corresponding Markov
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ordering graph MO(B) imply conditional independences between the corresponding endoge-
nous variables. It follows that d-separations in the Markov ordering graph MO(B)mar(W ) for
the endogenous variables in Figure 11b imply conditional independences between the corre-
sponding variables. For example, we see that v1 and v5 are d-separated by v4 and deduce
that for a solution X∗ to the system of constraints it holds that X∗v1 ⊥⊥ X∗v5 |X

∗
v4. One

may note that d-separations in MO(B)mar(W ) coincide with σ-separations in both associated
directed graphs G(B,M1)mar(F∪W ) and G(B,M2)mar(F∪W ), which are depicted in Figures
11c and 11d respectively. It can be seen from the proof of Theorem 18 in Appendix B.5
that this result holds in general. It follows from Theorem 18 that the σ-separations in
G(B,M1)mar(F∪W ) and G(B,M2)mar(F∪W ) imply conditional independences between the cor-
responding variables. For example, we see that v1 and v5 are σ-separated by v4 in both
graphs, and hence X∗v1 ⊥⊥ X

∗
v5 |X

∗
v4 for a solution X∗.

v1

w1

v5

v2

v3

v4

w2

w3

w4

w5
w5

(a) MO(B).

v1 v2

v3

v4

v5

(b) MO(B)mar(W ).

v1 v2

v3

v4

v5

(c) G(B,M1)mar(F ∪W ).

v1 v2

v3

v4

v5

(d) G(B,M2)mar(F ∪W ).

Figure 11: The Markov ordering graph of the causal ordering graph in Figure 4e is given in
Figure 11a. Marginalization of the exogenous verticesW results in the directed mixed graph
in Figure 11b. The directed graphs in Figures 11c and 11d are obtained by marginalizing
out the constraint vertices F and exogenous vertices W from the directed graphs G(B,M1)
and G(B,M2) in Figures 4b and 4c respectively.

5. Causal implications of sets of equations

Nowadays, it is common to relate causation directly to the effects of manipulation (Wood-
ward, 2003; Pearl, 2000). In the context of sets of equations there are many ways to model
manipulations on these equations. Assuming that the manipulations correspond to feasible
actions in the real world that is modelled by the equations, the effects of manipulations
correspond to causal relations. In order to derive causal implications from systems of con-
straints, we explicitly define two types of manipulation. We consider the notions of both soft
and perfect interventions on sets of equations.17 We prove that the causal ordering graph
represents the effects of both soft interventions on equations and perfect interventions on

17. Our definitions in the context of systems of constraints may deviate from conventional definitions of
interventions on SCMs. In an SCM, each variable is associated with a single structural equation. The
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clusters in the causal ordering graph. We also show that these interventions commute with
causal ordering.

5.1 The effects of soft interventions

A soft intervention, also known as a “mechanism change”, acts on a constraint. It replaces
the targeted constraint by a constraint in which the same variables appear as in the original
one. This type of intervention does not change the bipartite graph that represents the
structure of the constraints.

Definition 19 Let M = 〈X ,XW ,Φ,B〉 be a system of constraints, Φf = 〈φf , cf , V (f)〉 ∈
Φ a constraint, c′f a constant taking value in a measurable space Y, and φ′f : X V (f) → Y a
measurable function. A soft intervention si(f, φ′f , c′f ) targeting Φf results in the intervened
system Msi(f,φ′

f
,c′

f
) = 〈X ,XW ,Φsi(f,φ′

f
,c′

f
),B〉 where Φsi(f,φ′

f
,c′

f
) = (Φ \ {Φf}) ∪ {Φ′f} with

Φ′f = 〈φ′f , c′f , V (f)〉.

For systems of constraints that are maximally uniquely solvable w.r.t. the causal order-
ing graph, both before and after a soft intervention, Theorem 20 shows that such a soft
intervention does not have an effect on variables that cannot be reached by a directed path
from that constraint in the causal ordering graph, while it may have an effect on other
variables.18

Theorem 20 Let M = 〈X ,XW ,Φ,B〉 be a system of constraints with coarse decomposi-
tion CD(B) = 〈TI , TC , TO〉. Suppose thatM is maximally uniquely solvable w.r.t. the causal
ordering graph CO(B) and let X∗ = g(XW ) be a solution ofM. Let f ∈ (TC ∪TO)∩F and
assume that the intervened system Msi(f,φ′

f
,c′

f
) is also maximally uniquely solvable w.r.t.

CO(B). Let X ′ = h(XW ) be a solution of Msi(f,φ′
f
,c′

f
). If there is no directed path from f

to v ∈ (TC ∪ TO)∩ V in CO(B) then X∗v = X ′v almost surely. On the other hand, if there is
a directed path from f to v in CO(B) then X∗v may have a different distribution than X ′v,
depending on the details of the modelM.

Example 13 shows that the presence of a directed path in the causal ordering graph
for the equilibrium equations of the bathtub system implies a causal effect for almost all
parameter values. This illustrates that non-effects and generic effects can be read off from
the causal ordering graph.19

notion of a perfect intervention on an SCM does not carry over to systems of constraints because there
is no imposed one-to-one correspondence between equations and variables.

18. Our result generalizes Theorem 6.1 in Simon (1953) for linear self-contained systems of equations. The
proof of our theorem is similar.

19. If a model contains finitely many parameters, and if a directed path from an equation vertex f to a
variable vertex v implies that for almost all values (w.r.t. Lebesgue measure on the parameter space) of
the parameters there exists an intervention on f that changes the distribution of the solution component
Xv, then we say that there is a generic causal effect of f on v. We will make no attempts to define this
notion of genericity more generally in this work, because (i) it is not directly obvious how this should
be done in non-parametric settings, and (ii) the unique solvability conditions may impose additional
constraints on the parameters in case of cycles, complicating matters further. We thank an anonymous
referee for pointing out the latter complication.
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Table 1: The effects of soft interventions on constraints in the causal ordering graph for the
bathtub system in Figure 9.

target generic effect non-effect

fK XvK , XvP , XvD XvI , XvO

fI XvI , XvP , XvO , XvD XvK

fP XvD XvK , XvI , XvP , XvO

fO XvP , XvD XvK , XvI , XvO

fD XvP , XvO , XvD XvK , XvI

Example 13 Recall the system of constraints for the filling bathtub in Section 4.3. Think of
an experiment where the gravitational acceleration g is changed so that it takes on a different
value g′ without altering the other equations that describe the bathtub system. Such an
experiment is, at least in theory, feasible. For example, it can be accomplished by accelerating
the bathtub system or by moving the bathtub system to another planet. We can model the
effect on the equilibrium distribution in such an experiment by a soft intervention targeting
fP that replaces the constraint ΦfP

by

〈XV (fP ) 7→ Uw1(g′Uw2XvD −XvP ), 0, V (fP ) = {vD, vP , w1, w2}〉. (17)

Which variables are and which are not affected by this soft intervention? We can read off
the effects of this soft intervention from the causal ordering graph in Figure 9. There is
no directed path from fP to vK , vI , vP or vO. Therefore, perhaps surprisingly, Theorem 20
tells us that the soft intervention targeting fP neither has an effect on the pressure XvP

at equilibrium nor on the outflow rate XvO at equilibrium. Since there is a directed path
from fP to vD, the water level XvD at equilibrium may be different after a soft intervention
on fP . If the gravitational acceleration g is equal to zero, then the system of constraints
for the bathtub is not maximally uniquely solvable w.r.t. the causal ordering graph (except
if UwI = 0 almost surely). For all other values of the parameter g the generic effects and
non-effects of soft interventions on other constraints of the bathtub system can be read off
from the causal ordering graph and are presented in Table 1.

5.2 The effects of perfect interventions

A perfect intervention acts on a variable and a constraint. Definition 21 shows that it
replaces the targeted constraint by a constraint that sets the targeted variable equal to
a constant. Note that this definition of perfect interventions is very general and allows
interventions for which the intervened system of constraints is not maximally uniquely
solvable w.r.t. the causal ordering graph. In this work, we will only consider the subset
of perfect interventions that target clusters in the causal ordering graph, for which the
intervened system is also maximally uniquely solvable w.r.t. the causal ordering graph. We
consider an analysis of necessary conditions on interventions for the intervened system to
be maximally uniquely solvable beyond the scope of this work.
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Definition 21 Let M = 〈X ,XW ,Φ,B = 〈V, F,E〉〉 be a system of constraints and let
ξv ∈ Xv. A perfect intervention do(f, v, ξv) targeting the variable v ∈ V \ W and the
constraint f ∈ F results in the intervened systemMdo(f,v,ξv) = 〈X ,XW ,Φdo(f,v,ξv),Bdo(f,v)〉
where

1. Φdo(f,v,ξv) = (Φ \ Φf ) ∪ {Φ′f} with Φ′f = 〈Xv 7→ Xv, ξv, {v}〉,

2. Bdo(f,v) = 〈V, F,E′〉 with E′ = {(i− j) ∈ E : i, j 6= f} ∪ {(v − f)}.

Perfect interventions on a set of variable-constraint pairs {(f1, v1), . . . , (fn, vn)} in a
system of constraints are denoted by do(SF , SV , ξSV

) where SF = 〈f1, . . . , fn〉 and SV =
〈v1, . . . , vn〉 are tuples. For a bipartite graph B so that its subgraph induced by (V ∪F )\W
is self-contained, Lemma 22 shows that the subgraph of the intervened bipartite graph
Bdo(SF ,SV ) induced by (V ∪ F ) \W is also self-contained when S = (SF ∪ SV ) is a cluster
in CO(B) with S ∩W = ∅.

Lemma 22 Let B = 〈V, F,E〉 be a bipartite graph and W ⊆ V , so that the subgraph of
B induced by (V ∪ F ) \ W is self-contained. Consider an intervention do(SV , SF ) on a
cluster S = SF ∪ SV with S ∩W = ∅ in the causal ordering graph CO(B). The subgraph of
Bdo(SF ,SV ) induced by (V ∪ F ) \W is self-contained.

Theorem 23 shows how the causal ordering graph can be used to read off the (generic)
effects and non-effects of perfect interventions on clusters in the complete and overcomplete
sets of the associated bipartite graph under the assumption of unique solvability with respect
to the complete and overcomplete sets in the causal ordering graph.

Theorem 23 Let M = 〈X ,XW ,Φ,B = 〈V, F,E〉〉 be a system of constraints with coarse
decomposition CD(B) = 〈TI , TC , TO〉. Assume that M is maximally uniquely solvable
w.r.t. CO(B) = 〈V, E〉 and let X∗ be a solution of M. Let SF ⊆ (TC ∪ TO) ∩ F and
SV ⊆ (TC ∪ TO) ∩ (V \W ) be such that (SF ∪ SV ) ∈ V. Consider the intervened system
Mdo(SF ,SV ,ξSV

) with coarse decomposition CD(Bdo(SF ,SV )) = 〈T ′I , T ′C , T ′O〉. Let X ′ be a so-
lution ofMdo(SF ,SV ,ξSV

). If there is no directed path from any x ∈ SV to v ∈ (TC ∪TO)∩V
in CO(B) then X∗v = X ′v almost surely. On the other hand, if there is x ∈ SV such that
there is a directed path from x to v ∈ (TC ∪TO)∩V in CO(B) then X∗v may have a different
distribution than X ′v.

One way to determine whether a perfect intervention has an effect on a certain variable
is to explicitly solve the system of constraints before and after the intervention and check
which solution components are altered. In particular, when the distribution of a solution
component is different for almost all parameter values, then we say that there is a generic
effect.19 In this way, we can establish the generic effects of a perfect intervention without
solving the equations by relying on a solvability assumption. Example 14 illustrates this
notion of perfect intervention on the system of constraints for the filling bathtub that we
first introduced in Example 1 and shows how the generic effects and non-effects of perfect
interventions on clusters can be read off from the causal ordering graph.
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Table 2: Solutions for system of constraints describing the bathtub system in Sec-
tion 4.3 without interventions (i.e., the observed system) and after perfect interventions
do(fP , vD, ξD), do(fD, vO, ξO), and do(fD, vD, ξD).

observed do(fP , vD, ξD) do(fD, vO, ξO) do(fD, vD, ξD)

X∗vK
UwK UwK UwK UwK

X∗vI
UwI UwI UwI UwI

X∗vP

UwI
(Uw4UwK

)
UwI

(Uw4UwK
)

ξO
(Uw4UwK

) gUw2ξD

X∗vO
UwI UwI ξO Uw4UwKgUw2ξD

X∗vD

UwI
(Uw4UwK

gUw2 ) ξD
ξO

(Uw4UwK
gUw2 ) ξD

Table 3: The effects of perfect interventions on clusters of variables and constraints in the
causal ordering graph for the bathtub system in Figure 9 obtained by Theorem 23. Since
{fD, vD} is not a cluster in the causal ordering graph, the effects of this intervention cannot
be read off from the causal ordering graph.

target generic effect non-effect

fK , vK XvK , XvP , XvD XvI , XvO

fI , vI XvI , XvP , XvO , XvD XvK

fP , vD XvD XvK , XvI , XvP , XvO

fO, vP XvP , XvD XvK , XvI , XvO

fD, vO XvP , XvO , XvD XvK , XvI

fP , fD, fO, vP , vD, vO XvP , XvO , XvD XvK , XvI

Example 14 Recall the system of constraints M for the filling bathtub at equilibrium
in Section 4.3 and consider the perfect interventions do(fP , vD, ξD), do(fD, vO, ξO), and
do(fD, vD, ξD). These interventions model experiments that can, at least in principle, be
conducted in practice:

1. The intervention do(fP , vD, ξD) replaces the constraint fP by a constraint that sets the
water level XvD equal to a constant and leaves all other constraints unaffected. This
could correspond to an experimental set-up where the constant g in the constraint ΦfP

is controlled by accelerating and decelerating the bathtub system precisely in such a way
that the water level XvD is forced to take on a constant value ξD both in time and across
the ensemble of bathtubs. We observe the system once it has reached equilibrium.

2. The interventions do(fD, vO, ξO) and do(fD, vD, ξD) may correspond to an experiment
where a hose is added to the system that can remove or add water precisely in such a
way that either the outflow rate XvO or the water level XvD is kept at a constant level
both in time and across the ensemble of bathtubs. The system is observed when it has
reached equilibrium.
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Note that the cluster {fD, vD} is not a cluster in the causal ordering graph in Figure 9.
However, the system of constraintsMdo(fD,vD,ξD) is maximally uniquely solvable with respect
to the causal ordering graph CO(Bdo(fD,vD)), and therefore the effects of the intervention are
well-defined.20 By explicit calculation we obtain the (unique) solutions in Table 2 for the
observed and intervened bathtub systems. By comparing with the solutions in the observed
column we read off that the perfect intervention do(fP , vD, ξD) does not change the solution
for the variables XvK , XvI , XvP , XvO , but it generically does change the solution for XvD .
We further find that do(fD, vD, ξD) and do(fD, vO, ξD) affect the solution for the variables
XvP , XvO , XvD but not of XvK and XvI .

The causal ordering graph CO(B) = 〈V, E〉 for the bathtub system is given in Figure 9.
It has clusters V = {{fK , vK}, {fI , vI}, {fP , vD}, {fO, vP }, {fD, vO}}. Under the assump-
tion that the (intervened) system is maximally uniquely solvable w.r.t. its causal ordering
graph, we can apply Theorem 23 and read off the generic effects and non-effects of perfect
interventions on clusters, which are presented in Table 3. This illustrates the fact that we
can establish the generic effects and non-effects of the perfect interventions do(fP , vD, ξD)
and do(fD, vO, ξO), which act on clusters in the causal ordering graph, without explicitly
solving the system of equations. We will discuss differences between causal implications of
the causal ordering graph and the graph of the SCM in Figure 10b in Section 6.

5.3 Interventions commute with causal ordering

Given a system of constraints we can obtain the causal ordering graph after a perfect
intervention on one of its clusters in the original causal ordering graph by running the
causal ordering algorithm on the bipartite graph in the intervened system of constraints.
In this section we will define an operation of “perfect intervention” directly on the clusters
in a causal ordering graph and show that the causal ordering graph that is obtained after
a perfect intervention coincides with the causal ordering graph of the intervened system
(i.e., perfect interventions on clusters in the causal ordering graph commute with the causal
ordering algorithm). Roughly speaking, a perfect intervention on a cluster in a directed
cluster graph removes all incoming edges to that cluster and separates all variable vertices
and constraint vertices in the targeted cluster into separate clusters in a specified way.

Definition 24 Let B = 〈V, F,E〉 be a bipartite graph and W a set of exogenous variables.
Let CO(B) = 〈V, E〉 be the corresponding causal ordering graph and consider S ∈ V with
S ∩ W = ∅. Let SF = 〈fi : i = 1, . . . , n〉 and SV = 〈vi : i = 1, . . . , n〉 with n = |S ∩
V | = |S ∩ F | be tuples consisting of all the vertices in S ∩ F and S ∩ V respectively.
A perfect intervention do(SF , SV ) on a cluster {SF , SV } results in the directed cluster graph
CO(B)do(SF ,SV ) = 〈V ′, E ′〉 where21

1. V ′ = (V \ {S}) ∪ {{vi, fi} : i = 1, . . . , n},
20. The intervention on {fD, vD} is interesting because it removes the constraint that the water flowing

through the faucet XvI must be equal to the water flowing through the drain XvO . This can be ac-
complished by adding a hose to the system through which additional water can flow in and out of the
bathtub to ensure that XvD remains at a constant level. Notice that, in this example, the total inflow
and total outflow of water remain equal, while the inflow through the faucet and the outflow through the
drain may differ.

21. A perfect intervention do(SF , SV , ξV ) replaces constraints Φfi with causal constraints Φ′fi
=

〈Xvi 7→ Xvi , ξvi , {vi}〉. Notice that the labels fi of the constraints are unaltered, and therefore only
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2. E ′ = {(x→ T ) ∈ E : T 6= S}.

A soft intervention on a system of constraints has no effect on the bipartite graphical
structure of the constraints and the variables that appear in them. Since the bipartite graph
of the system is the same before and after soft interventions, it trivially follows that soft
interventions commute with causal ordering. The following proposition shows that perfect
interventions on clusters also commute with causal ordering.

Proposition 25 Let B = 〈V, F,E〉 be a bipartite graph and W a set of exogenous variables.
Let CO(B) = 〈V, E〉 be the corresponding causal ordering graph. Let SF ⊆ F and SV ⊆ V \W
be such that (SF ∪ SV ) ∈ V. Then:

CO(Bdo(SF ,SV )) = CO(B)do(SF ,SV ).

The bipartite graph in Figure 12 a has the causal ordering graph depicted in Figure
12 b. The perfect intervention do(SF , SV ) with SF = 〈f2, f3〉 and SV = {v2, v3} on this
causal ordering graph results in the directed cluster graph in Figure 12 d. Since perfect
interventions on clusters commute with causal ordering, this graph can also be obtained
by applying the causal ordering algorithm to the intervened bipartite graph in Figure 12 c.
Proposition 25 shows that perfect interventions on the graphical level can be used to draw
conclusions about dependencies and causal implications of the underlying intervened sys-
tem of constraints. We will use this result in Section 6.3 to elucidate the commutation
properties of equilibration and interventions in dynamical models as defined in Dash (2005)
and Bongers and Mooij (2018).

6. Discussion

In this section we give a detailed account of how our work relates to some of the existing
literature on causal ordering and causal modelling.

6.1 “The causal graph”: A misnomer?

Our work extends the work of Simon (1953) who introduced the causal ordering algorithm.
We extensively discussed the example of a bathtub that first appeared in Iwasaki and
Simon (1994), in which the authors refer to the Markov ordering graph as “the causal
graph” and claim that this graph represents the effects of “manipulations”. We observe
here that the Markov ordering graph in Figure 10a does not have an unambiguous causal
interpretation, contrary to claims in the literature. In this work we have formalized soft
and perfect interventions, which are two common types of manipulation. This allows us to
show that the Markov ordering graph, unlike the causal ordering graph, neither represents
the effects of soft interventions nor does it have a straightforward interpretation in terms
of perfect interventions. Iwasaki and Simon (1994) do not clarify what the correct causal
interpretation of the Markov ordering graph should be and therefore we believe that the
term “causal graph” is a misnomer from a contemporary perspective on interventions and
causality.

the edges in the bipartite graph and causal ordering graph change after an intervention, as well as the
clusters in the causal ordering graph, while the labels of vertices are preserved.
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v1 v2 v3 v4

f1 f2 f3 f4

(a) Bipartite graph B.

v1 v2 v3 v4

f1 f2 f3 f4

(b) Causal ordering graph CO(B).

v1 v2 v3 v4

f1 f2 f3 f4

(c) Intervened bipartite graph Bdo(SF ,SV ).

v1 v2 v3 v4

f1 f2 f3 f4

(d) CO(Bdo(SF ,SV )) = CO(B)do(SF ,SV ).

Causal Ordering

Causal Ordering

do(SF , SV ) do(SF , SV )

Figure 12: The intervention do(SF , SV ) with ordered sets SF = 〈f2, f3〉 and SV = 〈v2, v3〉
commutes with causal ordering. Application of causal ordering and the intervention to
the bipartite graph in 12a results in the causal ordering graph in 12b and the intervened
bipartite graph in 12c respectively. The directed cluster graph in 12d can be obtained
either by applying causal ordering to the intervened bipartite graph or by intervening on
the causal ordering graph.

Markov ordering. To support this claim, we consider the bathtub system in Iwasaki
and Simon (1994) that we presented in Example 1. The structure of the equations and
the endogenous variables that appear in them can be represented by the bipartite graph
in Figure 13a. The corresponding Markov ordering graph in Figure 13c corresponds to
the graph that Iwasaki and Simon (1994) call the “causal graph” for the bathtub system.
Note that Iwasaki and Simon (1994) do not make a distinction between variable vertices
and equation vertices like we do. Their “causal graph” therefore has vertices K, I, P,O,D
instead of vK , vI , vP , vO, vD. An aspect that is not discussed at all by Iwasaki and Simon
(1994), is that the Markov ordering graph implies certain conditional independences between
components of solutions of equations.22

Soft interventions. We first consider the representation of soft interventions. Table 1
shows that a soft intervention on fD has a generic effect on the solution for the variables
vP , vO, and vD. This soft intervention cannot be read off from the Markov ordering graph
in Figure 13c because there is no vertex fD. Since Iwasaki and Simon (1994) make no
distinction between variable vertices and equation vertices, a manipulation on D should
perhaps be interpreted as a soft intervention on the vertex D in the Markov ordering
graph in Figure 13c instead. However, the graphical structure would lead us to erroneously
conclude that the soft intervention on D only has an effect on the variable D. In earlier
work, Simon and Iwasaki (1988) assumed that a matching between variable and equation
vertices is known in advance, allowing them to read off effects of soft interventions. We

22. Iwasaki and Simon (1994) consider deterministic systems of equations and therefore it would not have
made sense to consider Markov properties. In earlier work, the vanishing partial correlations implied by
linear systems with three variables and normal errors were studied by Simon (1954).
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conclude that the Markov ordering graph, by itself, does not represent the effects of soft
interventions on equations in general.

Perfect interventions. In Example 14, the perfect intervention do(fD, vD, ξD) has an
effect on the solution of the variables vP , vO and vD. If we would interpret this manip-
ulation as a perfect intervention on D in the Markov ordering graph in Figure 13c then
we would mistakenly find that this intervention only affects the variable D. Since Iwasaki
and Simon (1994) do not make a distinction between variable vertices and equation ver-
tices we could also interpret a manipulation on D as the perfect intervention do(fP , vD, ξD)
or do(fD, vO, ξO). From Table 2 we see that these perfect interventions would change the
solution of the variables {vD} and {vP , vO, vD} respectively. Only the perfect intervention
do(fP , vD, ξD) which targets the cluster containing vD corresponds to a perfect intervention
on D in the Markov ordering graph in Figure 13c. Since it is not clear from the Markov
ordering graph what type of experiment a perfect intervention on one of its vertices should
correspond to, we conclude that the Markov ordering graph cannot be used to read off the
effects of perfect interventions either.

Causal ordering graph. The causal ordering graph for the bathtub system is given in
Figure 1b. We proved that the causal ordering graph, contrary to the Markov ordering
graph, represents the effects of soft interventions on equations and perfect interventions on
clusters (see Theorems 17 and 23). To derive causal implications from sets of equations we
therefore propose to use the notion of the causal ordering graph instead. The distinction
between variable vertices and equation vertices is also made by Simon (1953) who shows how,
for linear systems of equations, the principles of causal ordering can be used to qualitatively
assess the effects of soft interventions on equations. A different, but closely related, notion
of the causal ordering graph is used by Hautier and Barre (2004) in the context of control
systems modelling.

6.2 Relation to other causal models

The results in this work are easily applicable to other modelling frameworks, such as the
popular SCM framework (Pearl, 2000; Bongers et al., 2020). Application of causal ordering
to the structural equations of an SCM with self-cycles may result in a different ordering than
the one implied by the SCM. In particular, causal ordering may lead to a stronger Markov
property and a representation of effects of a different set of (perfect) interventions. Even
though the causal ordering graph itself may not allow us to read off non-effects of arbitrary
perfect interventions, one can still obtain those by first intervening on the bipartite graph,
then applying the causal ordering algorithm, and finally reading off the descendants of the
intervention targets (under appropriate maximal unique solvability conditions).

Structural Causal Models. In an SCM, each endogenous variable is on the left-hand
side of exactly one structural equation and perfect interventions always act on a structural
equation and its corresponding variable. In comparison, a system of constraints consists
of symmetric equations and the asymmetric relations between endogenous variables are
derived automatically by the causal ordering algorithm. Consider, for example, the following
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vI vO vD vP vK

fI fD fO fP fK

(a) The bipartite graph B.

vI vO vD vP vK

fI fD fO fP fK

(b) The bipartite graph Bdo(fD,vD).

I D P

O

K

(c) MO(B).

I D P

O

K

(d) MO(B)do(D).

I D P

O

K

(e) MO(Bdo(fD,vD)).

Figure 13: The bipartite graph for the bathtub system without exogenous variables is given
in Figure 13a. The intervened bipartite graph is given in Figure 13b. The Markov ordering
graphs for the observed and intervened bathtub system are given in Figures 13c and 13e
respectively. Figure 13d shows the graph that we obtain by intervening on the Markov
ordering graph. Note that this does not correspond with the Markov ordering graph of the
intervened bathtub system in Figure 13e.

structural equations:

X1 = U1 (18)
X2 = aX1 + U2, (19)

where X1, X2 are endogenous variables, U1, U2 are exogenous random variables, and a is a
constant. The ordering X1 → X2 can also be obtained by causal ordering of the following
set of equations:

X1 − U1 = 0, (20)
X2 − aX1 − U2 = 0. (21)

Note that any set of structural equations implies a self-contained set of equations.23 We
can thus always apply the causal ordering algorithm to structural equations. Interestingly,
since the output of the causal ordering algorithm is unique (see Theorem 4), the structure
that is provided by the structural equations is actually redundant if the structural equations
contain no cycles.

SCM for the bathtub. Recall that at equilibrium, the bathtub system can be described
by the following structural equations:

fK : XvK = UwK , fO : XvO = Uw5XvKXvP ,

fI : XvI = UwI , fD : XvD = XvD + Uw1(XvI −XvO ),
fP : XvP = gUw3XvD .

23. In a set of structural equations each variable is matched to a single equation. Since the set of equations
has a perfect matching it is self-contained by Hall’s marriage theorem (see Theorem 38 in Appendix B.4).
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The graph of this SCM is depicted in Figure 10b, and the descendants and non-descendants
of vertices are given in Table 4. Can we use this table to read off generic causal effects of
perfect interventions targeting {fK , vK}, {fI , vI}, {fP , vP }, {fO, vO}, and {fD, vD}? The
graph of the SCM contains (self-)cycles and the SCM does not have a (unique) solution
under each of these perfect interventions.24 Therefore, the graph of this SCM may not
have a straightforward causal interpretation. Indeed, Bongers et al. (2020) pointed out that
for SCMs with cycles or self-cycles, the absence (presence) of directed edges and directed
paths between vertices may not correspond one-to-one to the absence (generic presence)
of direct and indirect causal effects, as it does in DAGs. (Self-)cycles may even lead to
(in)direct causal effects without a corresponding directed edge or path being present in the
graph of the SCM. For the bathtub example, that unusual behaviour does not occur, but
instead it illustrates another behaviour: certain causal effects are absent, even though one
would naïvely expect these to be generically present based on the graph of the SCM.25 For
example, Table 4 shows that vO is a descendant of vK in the graph of the SCM while the
solution for the outflow rate XvO does not change after the perfect intervention do(fK , vK).
That this causal relation is absent can actually be read off from the causal ordering graph
in Figure 1b.

For the bathtub system, the causal ordering algorithm can exploit the fact that equation
fD can be replaced by f ′D : 0 = Uw1(XvI −XvO ), which does not involve vD, whereas for the
SCM this self-cycle cannot be removed. This causes the following differences in the results
of the two approaches:

1. The d-separations in the Markov ordering graph in Figure 10a imply more conditional
independences than those implied by the σ-separations in the graph of the SCM in
Figure 10b (as was discussed in detail in Section 4.3).

2. The graph of the SCM and the causal ordering graph represent different perfect inter-
vention targets. In the graph of the SCM, we have minimal perfect intervention targets
of the form {fi, vi} with i ∈ {K, I, P,O,D}, while the causal ordering graph represents
minimal perfect interventions on clusters {fK , vK}, {fI , vI}, {fP , vD}, {fO, vP }, and
{fD, vO}. In both cases, the set of all perfect intervention targets that are represented
by the graph are obtained by taking unions of minimal perfect intervention targets.

3. The causal ordering graph of the bathtub has a straightforward causal interpretation
because the bathtub system still has a unique solution under interventions on clusters
in the causal ordering graph. In contrast, the graph of the SCM for the bathtub
system does not have a straightforward causal interpretation and the bathtub system
does not have a solution under each perfect intervention on the SCM.

We conclude that the causal ordering approach yields a more “faithful” representation of
the bathtub than the SCM framework.

24. There is no (unique) solution if one fixes the outflow rate of the system XvO to a value that is not equal
to XvI for the perfect interventions targeting {fO, vO} and {fP , vP }. In the dynamical model for the
bathtub, these perfect interventions would correspond with the water level becoming (plus or minus)
infinity.

25. Such behaviour is a characteristic of perfectly adaptive dynamical systems (Blom and Mooij, 2021).
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Other frameworks. Since the causal ordering algorithm can be applied to any set of
equations, the results that we developed here are generally applicable to sets of equations
in other modelling frameworks. For example, the recently introduced Causal Constraint
Models (CCMs) do not yet have a graphical representation for the independence structure
between the variables (Blom et al., 2019). The causal ordering algorithm can be directly
applied to a set of active constraints to obtain a Markov ordering graph.

Table 4: The descendants and non-descendants of intervention targets in the graph of the
SCM for the bathtub system in Figure 10b.

target descendants non-descendants

fK , vK vK , vP , vO, vD vI
fI , vI vI , vP , vO, vD vK
fP , vP vP , vO, vD vK , vI
fO, vO vP , vO, vD vK , vI
fD, vD vP , vO, vD vK , vI

6.3 Equilibration in dynamical models

In this subsection we will discuss in more detail the relation between our work and other
closely related work, in particular that of Dash (2005).

Dynamical models in terms of first order differential equations can be equilibrated to a
set of equations by equating each time-derivative to zero (Mooij et al., 2013; Bongers and
Mooij, 2018). They can be equilibrated and mapped to a causal ordering graph by applying
the causal ordering algorithm to the resulting set of equilibrium equations. They can also
be equilibrated and mapped to a Markov ordering graph by subsequently applying Definition
16 to this causal ordering graph. The bathtub system provides an example of what Dash
(2005) calls a “violation of the Equilibration Manipulation Commutability property”.26

Consider the dynamical system version of the filling bathtub, with dynamical equations

fK : XvK = UwK ,

fI : XvI = UwI ,

fD : ẊvD (t) = Uw1(XvI (t)−XvO (t)),
fP : ẊvP (t) = Uw2(g Uw3XvD (t)−XvP (t)),
fO : ẊvO (t) = Uw4(Uw5XvKXvP (t)−XvO (t)).

26. We argue that this is confusing terminology in two ways. First, what Dash calls “equilibration” is what
we would call equilibration to a set of equations, composed with the mapping to the Markov ordering
graph. Second, Dash follows Iwasaki and Simon (1994) in referring to the Markov ordering graph as the
“causal graph”. We argued in Section 6.1 that this is a misnomer, as in general there is no straightforward
one-to-one correspondence between the Markov ordering graph and the causal semantics of the system.
This terminological confusion explains the apparent contradiction with the result of Bongers and Mooij
(2018), who prove that equilibration to an SCM commutes with manipulation (for perfect interventions).
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Equilibration yields the equilibrium equations fK , fI , fD, fP , and fO in equations (1) to
(5). It is clear in this particular case that any perfect intervention do(SF , SV , ξV ) (where we
extended Definition 21 to dynamical equations) commutes with equilibration (substituting
zeroes for all first-order derivatives).27 This type of commutation relation actually holds
also in more general settings (see Mooij et al. (2013) and Bongers and Mooij (2018)).

On the other hand, mapping a set of equations to the corresponding Markov ordering
graph does not necessarily commute with perfect interventions. For example, for the perfect
intervention do(fD, vD), the Markov ordering graphs MO(B)do(vD) and MO(Bdo(fD,vD)) are
wildly different, as can be seen by comparing Figures 13d and 13e respectively. Since perfect
interventions do commute with equilibration, one can conclude that also the composition
of equilibration followed by mapping to the Markov ordering graph fails to commute with
this perfect intervention. This is the phenomenon that Dash (2005) pointed out.

This lack of commutability does not hold for all perfect interventions. For example, one
can easily check that the perfect intervention do(fK , vK) commutes with the composition
of equilibration followed by mapping to the Markov ordering graph. More generally, Propo-
sition 25 tells us that for the bathtub, the clusters in the causal ordering graph ({fK , vK},
{fI , vI}, {fP , vD}, {fO, vP }, and {fD, vO}) represent the minimal perfect interventions tar-
gets for which both operations do commute. This means that of the perfect interven-
tions that Dash (2005) considers (do({vK , fK}), do({vI , fI}), do({vD, fD}), do({vO, fO}),
do({vP , fP }), and combinations thereof), exactly three commute with the mapping to the
Markov ordering graph (namely do({fK , vK}), do({fI , vI}), do({fP , vP , fO, vO, fD, vD}),
and combinations thereof). Hence, these are also the three minimal perfect interventions
in that set that commute with equilibration followed by mapping to the Markov ordering
graph.

As pointed out by Dash (2005), this lack of commutability has important implications
when one tries to discover causal relations through structure learning, which we will briefly
discuss in the next subsection.

6.4 Structure learning

We have shown that, under a solvability assumption, d-separations in the Markov ordering
graph (or σ-separations in the directed graph associated with a particular perfect matching)
imply conditional independences between variables in a system of constraints (see Theo-
rem 17 and Theorem 18). Constraint-based causal discovery algorithms relate conditional
independences in data to graphs under the Markov condition and the corresponding d- or
σ-faithfulness assumption. Roughly speaking, the equivalence class of the Markov ordering
graph (or the directed graph associated with a particular perfect matching) can be learned
from data under the assumption that all conditional independences in the data are implied
by the graph. The bathtub system in Example 1 is used by Dash (2005), who simulates data
from the dynamical model until it reaches equilibrium, and then applies the PC-algorithm
to learn the graphical structure of the system. It is no surprise that the learned structure
is the Markov ordering graph in Figure 13c. The usual assumption is then that the Markov
ordering graph equals the causal graph, where directed edges express direct causal relations

27. Note that it is crucially important here to ensure that the labelling of the equations is not changed by
the equilibration operation.
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between variables. In this work we have shown that this learned Markov ordering graph
does not have such a straightforward causal interpretation.

7. Conclusion and future work

In this work, we reformulated Simon’s causal ordering algorithm and demonstrated that it is
a convenient and scalable tool to study causal and probabilistic aspects of models consisting
of equations. In particular, we showed how the technique of causal ordering can be used
to construct a causal ordering graph and a Markov ordering graph from a set of equations,
without calculating explicit global solutions to the system of equations. The novelties of this
paper include an extension of the causal ordering algorithm for general bipartite graphs, and
proving that the corresponding Markov ordering graph implies conditional independences
between variables, whereas the corresponding causal ordering graph encodes the effects of
soft and perfect interventions.

To model causal relations between variables in sets of equations unambiguously, we
generalized existing notions of perfect interventions on SCMs. The main idea is that a
perfect intervention on a set of equations targets variables and specified equations, whereas
a perfect intervention on a Structural Causal Model (SCM) targets variables and their
associated structural equations. We considered a simple dynamical model with feedback
and demonstrated that, contrary to claims in the literature, the Markov ordering graph does
not generally have any obvious causal interpretation in terms of soft or perfect interventions.
We showed that the causal ordering graph, on the other hand, does encode the effects of
soft and certain perfect interventions. The main take-away is that we need to make a
distinction between variables and equations in graphical representations of the probabilistic
and causal aspects of models with feedback. By making this distinction, we clarified the
correct interpretation of some existing observations in the literature. Additionally, we shed
new light on discussions in causal discovery about the justification of using a single directed
graph with endogenous variables as vertices to simultaneously represent causal relations
and conditional independences. In recent work, we show that the phenomenon where the
Markov ordering graph does not encode causal semantics in the usual way manifests itself
in certain biological or econometric models with feedback at equilibrium (Blom and Mooij,
2020, 2021).

We have introduced two different graphical objects that represent causal relations and
conditional independences respectively. A more parsimonious solution would be to use a
bipartite graph together with a perfect matching to construct a single partially oriented
bipartite graph. In that case, edges of the bipartite graph are oriented using the perfect
matching (see Definition 5) if they do not lie on an alternating path that starts and ends
with the same vertex. By construction, this ensures that edges are not oriented if their
orientation varies across perfect matchings. To read off conditional independences from
this graph, a Markov property would need to be defined for this graphical object, which
would then be applicable to a set of equations and a set of declared exogenous variables.
We believe that this would be an interesting direction for future work.

39



Blom, van Diepen, and Mooij

Acknowledgments

We thank Patrick Forré, Stephan Bongers, and Thomas Richardson for fruitful discussions.
We also thank the anonymous reviewers for very detailed and constructive feedback on the
initial draft. This work was supported by the ERC under the European Union’s Horizon
2020 research and innovation programme (grant agreement 639466) and by NWO (VIDI
grant 639.072.410).

40



Conditional independences and causal relations implied by sets of equations

Appendix A. Preliminaries

A.1 Graph terminology

A bipartite graph is an ordered triple B = 〈V, F,E〉 where V and F are disjoint sets of
vertices and E is a set of undirected edges (v − f) between vertices v ∈ V and f ∈ F . For
a vertex x ∈ V ∪ F we write adjB(x) = {y ∈ V ∪ F : (x − y) ∈ E} for its adjacencies,
and for X ⊆ V ∪ F we write adjB(X) =

⋃
x∈X adjB(x) to denote the adjacencies of X in B.

A matching M ⊆ E for a bipartite graph B = 〈V, F,E〉 is a subset of edges that have no
common endpoints. We say that two vertices x and y are matched when (x− y) ∈M . We
let M(x) denote the set of vertices to which x is matched. Note that if (x − y) ∈ M then
M(x) = {y} and if x is not matched then M(x) = ∅. We let M(X) =

⋃
x∈XM(x) denote

the set of vertices to which the set of vertices X ⊆ V ∪F is matched. A matching is perfect
if all vertices V ∪ F are matched.

A directed graph is an ordered pair G = 〈V,E〉 where V is a set of vertices and E is a set
of directed edges (v → w) between vertices v, w ∈ V . A directed mixed graph is an ordered
triple G = 〈V,E,B〉 where 〈V,E〉 is a directed graph and B is a set of bi-directed edges
between vertices in V . If a directed mixed graph 〈V,E,B〉 has an edge (v → v) ∈ E then we
say that it has a self-cycle. We say that a vertex v is a parent of w if (v → w) ∈ E and write
v ∈ paG(w). Similarly we say that w is a child of v if (v → w) ∈ E and write w ∈ chG(v).
A path is a sequence of distinct vertices and edges (v1, e1, v2, e2, . . . , en−1, vn) where for
i = 1, . . . , n − 1 we have that ei = (vi → vi+1), ei = (vi ← vi+1), or ei = (vi ↔ vi+1). The
path is called open if there is no vi ∈ {v2, . . . vn−1} such that there are two arrowheads at
vi on the path (i.e., there is no collider on the path). A directed path (v → . . . → w) from
v to w is a path where all arrowheads point in the direction of w. We say that v is an
ancestor of w if there is a directed path from v to w and write v ∈ anG(w). We say that w
is a descendant of v if there is a directed path from v to w and write w ∈ deG(v).

Let G = 〈V,E,B〉 be a directed mixed graph and consider the relation:

v ∼ w ⇐⇒ w ∈ anG(v) ∩ deG(v) = scG(v).

Since the relation is reflexive, symmetric, and transitive this is an equivalence relation. The
equivalence classes scG(v) are called the strongly connected components of G. A directed
graph without self-cycles is acyclic if and only if all of its strongly connected components
are singletons. A directed graph with no directed cycles is called a Directed Acyclic Graph
(DAG).

A perfect intervention do(I) on a directed mixed graph G = 〈V,E,B〉 removes all edges
with an arrowhead at any of the nodes i ∈ I ⊆ V . That is, Gdo(I) = 〈V,E′, B′〉 where
E′ = {(x → y) ∈ E : y /∈ I} and B′ = {(x ↔ y) ∈ B : x /∈ I, y /∈ I}. Marginalizing out a
set of nodes W ⊆ V from a directed mixed graph G = 〈V,E,B〉 results in a directed mixed
graph Gmar(W ) = 〈V \W,Emar(W ), Bmar(W )〉 (also known as the latent projection) where:

1. Emar(W ) consists of edges (x→ y) such that x, y ∈ V \W and there exist w1, . . . , wk ∈
W such that the directed path x→ w1 → . . .→ wk → y is in G.

2. Bmar(W ) consists of edges (x↔ y) such that x, y ∈ V \W and there exist w1, . . . , wk ∈
W such that at least one of the following paths is in G: (i) x ↔ y, or (ii) x ← w1 ←
. . .← wi → . . .→ wk → y, or (iii) x← w1 ← . . .← wi ↔ wi+1 → . . .→ wk → y.
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The operations of marginalization and intervention commute (Forré and Mooij, 2017).

A.2 Cyclic SCMs

Structural causal models are a popular causal modelling framework that form the basis
of many statistical methods for causal inference (Pearl, 2000). Their origins can be traced
back to early work in genetics (Wright, 1921), econometrics (Wright, 1928; Haavelmo, 1943),
and the social sciences (Goldberger and Duncan, 1973). The properties of acyclic SCMs
(i.e., recursive SEMs) have been widely studied and are well-understood, see for example
Lauritzen et al. (1990); Spirtes et al. (2000); Pearl (2000). For systems that have causal
cycles the class of cyclic SCMs has been proposed as an appropriate modelling class (Spirtes,
1995; Mooij et al., 2013). Recently, Forré and Mooij (2017); Bongers et al. (2020) showed
that modular and simple SCMs retain many of the attractive properties of acyclic SCMs.
Notably, they induce a unique distribution over variables, they obey a Markov property, and
their graphs have an intuitive causal interpretation. Here, we will closely follow Bongers
et al. (2020) for a succinct introduction to cyclic SCMs and their properties. We also discuss
literature on how they may arise from equilibrating dynamical models.

The definition of an SCM in Bongers et al. (2020) slightly deviates from previous notions
of (acyclic) SCMs because it separates the model from the (endogenous) random variables
that solve it. Due to this change, interventions on SCMs are always well-defined, even if
the resulting intervened SCM does not have a (unique) solution. In Definition 26 below, we
explicitly include exogenous random variables, which may be observed or unobserved, and
the graph of the SCM. The endogenous random variables that solve an SCM are defined in
Definition 27.

Definition 26 A structural causal model (SCM) is a tuple 〈X ,PW ,f ,G〉 where

1. X =
⊗

v∈V Xv, where each Xv is a standard measurable space and the domain of a
variable Xv,

2. PW =
∏
w∈W Pw specifies the exogenous distribution, a product probability measure

on
⊗
w∈W Xw, where each Pw is a probability measure on Xw, with W ⊆ V a set of

indices corresponding to exogenous variables,28

3. f : X V → X V \W is a measurable function that specifies causal mechanisms.29

4. G = 〈V,E〉 is a directed graph with:

(a) a set of nodes V corresponding to variables,
(b) a set of edges E = {(vi → vj) : vi is a parent of vj}.30

28. This means that the nodes V \W correspond to endogenous variables.
29. The structural equations of the model are given by xv = fv(x), x ∈ X for v ∈ V \W .
30. We say that vi is a parent of vj if and only if vj ∈ V \W and there does not exist a measurable function

f̃j : X V \{vi} → Xj such that for PW -almost every xW ∈ X W and for all xV \W ∈ X V \W we have
xj = fj(x) ⇐⇒ xj = f̃j(xV \{vi}), see Definition 2.7 in Bongers et al. (2020).
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Definition 27 We say that a random variable X taking value in X is a solution to an
SCM 〈X ,PW ,f ,G〉 if PXW = PW (i.e., if the marginal distribution of X on XW equals the
exogenous distribution specified by the SCM), and

XV \W = f(X) a.s. (22)

The notion of unique solvability w.r.t. a subset is given in Definition 28 below.

Definition 28 An SCM 〈X ,PW ,f ,G〉 is uniquely solvable w.r.t. S ⊆ V \W if there exists
a measurable function gS : X paG(S)\S → X S such that for PW -almost every xW ∈ XW and
for all xV \W ∈ X V \W

xS = gS(xpaG(S)\S) ⇐⇒ xS = fS(x). (23)

SCMs that are uniquely solvable w.r.t. every subset of variables are called simple SCMs
(Bongers et al., 2020). It can be shown that SCMs with acyclic graphs are simple SCMs
(Proposition 3.6 in Bongers et al. (2020)). Furthermore, SCMs are uniquely solvable w.r.t. a
single variable if and only if there is no self-cycle at that variable (Proposition 3.9 in Bongers
et al. (2020)). The notion of (perfect) interventions on an SCM is given in Definition 29.

Definition 29 LetM = 〈X ,PW ,f ,G〉 be an SCM, I ⊆ V \W an intervention target and
ξI ∈ X I the intervention value. A perfect intervention do(I, ξI) on the SCM maps it to an
intervened SCMMdo(I,ξI) = 〈X ,PW , f̃ ,Gdo(I)〉 with

f̃v(x) :=
{
ξv v ∈ I
fv(x) v ∈ V \ (W ∪ I).

(24)

Cyclic SCMs may have no solution, multiple solutions with different distributions, or
all solutions may have the same distribution. This may even change as a result of a perfect
intervention. Because changes in the solution after an intervention may not be compatible
with the structure of the functional relations between variables, the causal interpretation
of the graph of a cyclic SCM may not be intuitive (Bongers et al., 2020). It can be shown
that the graph of a simple SCM, whose unique solvability is preserved under intervention
(Proposition 8.2 in Bongers et al. (2020)), has an intuitive causal interpretation; direct
and indirect causal effects can be read off from the graph of the SCM by checking for the
presence of directed edges and directed paths between variables (Bongers et al., 2020). For
general cyclic models, Bongers et al. (2020) give a sufficient condition for detecting direct
and indirect causes in an SCM with cycles. Roughly speaking, an indirect cause vi of vj can
be detected if by controlling vi we can bring about a change in the distribution of vj and
a direct cause vd of vj can be detected if by controlling vd and keeping all other variables
constant we can bring about a change in the distribution of vj . For the exact formulation
we refer to Proposition 7.1 in Bongers et al. (2020).

Cyclic SCMs have been used to represent the equilibrium distribution of dynamical
models (Fisher, 1970; Spirtes, 1995; Richardson, 1996; Lauritzen and Richardson, 2002;
Mooij et al., 2013; Bongers and Mooij, 2018). Under certain stability assumptions, an
SCM can be obtained by equilibrating a dynamical model (Mooij et al., 2013; Bongers and
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Mooij, 2018). In the deterministic setting, Mooij et al. (2013) showed that a set of first-
order differential equations in a globally asymptotically stable system can be mapped to
a set of labelled equilibrium equations by setting the time derivatives of variables equal to
zero and labelling them as belonging to the time derivative of particular variables. If each
labelled equilibrium equation can be solved for the corresponding variable then the labelled
equilibrium equations can be mapped to a cyclic SCM without self-cycles. The idea that
a dynamical model can be equilibrated to an SCM was formalized in a general stochastic
setting with zeroth and higher order differential equations by Bongers and Mooij (2018),
who also show how to equilibrate the causal dynamics model of the bathtub system that we
discussed in Example 1 to an SCM with self-cycles.

A.3 Graph separation and Markov properties

In the literature, several versions of Markov properties for graphical models and correspond-
ing probability distributions have been put forward, see e.g., Lauritzen et al. (1990); Pearl
(2000); Spirtes et al. (2000); Forré and Mooij (2017). For DAGs and Acyclic Directed Mixed
Graphs (ADMGs), the d-separation criterion is often used to relate conditional indepen-
dences between variables in a model to the underlying (acyclic) graphical structure of the
model (Pearl, 2000). For graphs that contain cycles the ‘collapsed graph’ representation of
Spirtes (1995) inspired Forré and Mooij (2017) to introduce the σ-separation criterion.

Definition 30 For a directed mixed graph G = 〈V,E,B〉 we say that a path (v1, . . . , vn) is
σ-blocked by Z ⊆ V if

1. v1 ∈ Z and/or vn ∈ Z, or

2. there is a vertex vi /∈ anG(Z) on the path such that the adjacent edges both have an
arrowhead at vi, or

3. there is a vertex vi ∈ Z on the path such that: vi → vi+1 with vi+1 /∈ scG(vi), or
vi−1 ← vi with vi−1 /∈ scG(vi), or both.

The path is d-blocked by Z if it is σ-blocked or if there is a vertex vi ∈ Z on the path such
that at least one of the adjacent edges does not have an arrowhead at vi. We say that X ⊆ V
and Y ⊆ V are σ-separated by Z ⊆ V if every path in G with one end-vertex in X and one
end-vertex in Y is σ-blocked by Z, and write

X
σ
⊥
G
Y |Z.

If every such path is d-blocked by Z then we say that X and Y are d-separated by Z, and
write

X
d
⊥
G
Y |Z.

It can be shown that σ-separation implies d-separation and that the two are equivalent
for acyclic graphs (Forré and Mooij, 2017). In general, d-separation does not imply σ-
separation. The d-separations or σ-separations in a probabilistic graphical model may
imply conditional independences via the Markov properties in Definition 31 below.
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Definition 31 For a directed mixed graph G = 〈V,E,B〉 and a probability distribution PX
on a product X = ⊗v∈V Xv of standard measurable spaces Xv, we say that the pair (G,PX)
satisfies the directed global Markov property if for all subsets W,Y,Z ⊆ V :

W
d
⊥
G
Y |Z =⇒ XW ⊥⊥

PX

XY |XZ .

The pair (G,PX) satisfies the generalized directed global Markov property if for all subsets
W,Y,Z ⊆ V :

W
σ
⊥
G
Y |Z =⇒ XW ⊥⊥

PX

XY |XZ .

Since σ-separations imply d-separations but not the other way around, the generalized
directed global Markov property is strictly weaker than the directed global Markov property
(Bongers et al., 2020). For acyclic SCMs the induced probability distribution on endogenous
variables and the corresponding DAG satisfy the directed global Markov property (Lauritzen
et al., 1990). The variables that solve a simple SCM obey the generalized directed global
Markov property relative to the graph of the SCM (Bongers et al., 2020), while d-separation
is limited to more specific settings such as acyclic models, discrete variables, or continuous
variables with linear relations (Forré and Mooij, 2017). A comprehensive account of different
Markov properties for graphical models is provided by Forré and Mooij (2017).

Constraint-based causal discovery algorithms require an additional faithfulness assump-
tion. A probability distribution is d-faithful to a directed mixed graph when each condi-
tional independence implies a d-separation in that graph. Similarly, a probability distribu-
tion is σ-faithful to a directed mixed graph when each conditional independence implies a
σ-separation in that graph. In non-linear, non-discrete, cyclic settings the σ-faithfulness as-
sumption is a natural extension of the common d-faithfulness assumption with σ-separation
replacing d-separation. In the acyclic setting, d-separation has been shown to be strongly
complete in the discrete and linear-Gaussian cases without latent confounders (Meek, 1995),
which means that d-faithfulness holds for almost all values of the parameters (with respect
to Lebesgue measure in the natural parametrization). This is often used to motivate the
assumption of d-faithfulness for constraint-based causal discovery. No analogous results are
known regarding the completeness of σ-separation in the general non-linear, non-discrete
cyclic setting (although Spirtes (1995) conjectures its completeness in the setting where
latent confounders are absent).

Various constraint-based causal discovery algorithms have been proposed for the cyclic
case. Under the additional assumption of causal sufficiency (i.e., no latent confounding vari-
ables), the NL-CCD algorithm was shown to be sound under the generalized directed Markov
property and the weaker d-faithfulness assumption (Chapter 4 in Richardson (1996)). Re-
cently, Forré and Mooij (2018); Mooij et al. (2020); Mooij and Claassen (2020) proved
soundness for a variety of causal discovery algorithms under the generalized directed Markov
property and the σ-faithfulness assumption. Strobl (2018) proved soundness of a causal dis-
covery algorithm under the directed Markov property and the d-faithfulness assumption,
allowing for latent confounding and selection bias.
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Appendix B. Proofs

In this section of the appendix, all proofs are provided.

B.1 Causal ordering via minimal self-contained sets

In this section we prove Theorem 4 below.

Theorem 4 The output of Algorithm 1 is well-defined and unique.

Lemma 32 below shows that the minimal self-contained sets in a self-contained bipartite
graph are disjoint. Lemma 33 shows that the induced subgraph after one iteration of
Algorithm 1, with a self-contained bipartite graph as input, is self-contained. The minimal
self-contained sets in the graph which are not used in the iteration are minimal self-contained
sets of the induced subgraph. This shows that the output of Algorithm 1 is well-defined. We
then use Lemma 32 and 33 to prove Lemma 34 which states that the output of Algorithm
1, with a self-contained bipartite graph as input, is unique. This implies that the output of
Algorithm 1, which has an initialization that is uniquely determined by the specification of
exogenous variables W , must also be unique.

Lemma 32 Let B = 〈V, F,E〉 be a self-contained bipartite graph. Let SF be the set of
minimal self-contained sets in B. The sets in SF are pairwise disjoint, and, likewise, the
sets of adjacent nodes

SV = {adjB(S) : S ∈ SF },

of the minimal self-contained sets in SF are pairwise disjoint.

Proof Let S1 ⊆ F and S2 ⊆ F be non-empty distinct minimal self-contained sets in SF .
For the sake of contradiction, assume that S1 ∩ S2 6= ∅. Since S1 is minimal self-contained,
we know that S1 ∩ S2 ⊂ S1 is not self-contained. Hence, by Definition 3, we have that

|S1 ∩ S2| < |adjB(S1 ∩ S2)|. (25)

Consider the following equations:

|adjB(S1)|+ |adjB(S2)| − |S1 ∩ S2| (26)
= |S1|+ |S2| − |S1 ∩ S2| (27)
= |S1 ∪ S2|
≤ |adjB(S1 ∪ S2)| (28)
= |adjB(S1) ∪ adjB(S2)|
= |adjB(S1)|+ |adjB(S2)| − |adjB(S1) ∩ adjB(S2)|
≤ |adjB(S1)|+ |adjB(S2)| − |adjB(S1 ∩ S2)|, (29)

where equality (27) holds by condition 1 of Definition 3, since B is self-contained inequality
(28) holds by condition 2 of Definition 3, and inequality (29) holds because adjB(S1∩S2) ⊆
adjB(S1) ∩ adjB(S2). It follows that

|S1 ∩ S2| ≥ |adjB(S1) ∩ adjB(S2)| ≥ |adjB(S1 ∩ S2)| ≥ 0.
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This is in contradiction with equation (25), and hence S1 ∩ S2 = ∅. This implies that
|S1∩S2| = 0 and therefore by the inequalities above we have that |adjB(S1)∩adjB(S2)| = 0.
Thus adjB(S1) ∩ adjB(S2) = ∅.

Lemma 33 Let B = 〈V, F,E〉 be a self-contained bipartite graph. Suppose that F has
minimal self-contained sets SF . Let B′ be the subgraph of B induced by

V ′ := V \adjB(S), and F ′ := F\S,

with S ∈ SF . Then the following two properties hold:

1. B′ is self-contained, and

2. the sets in SF \{S} are minimal self-contained in B′.

Proof
Let S ∈ SF be a minimal self-contained subset in B. Since B and S are self-contained

we have that |V | = |F | and |S| = |adjB(S)| respectively. Therefore

|V ′| = |V \ adjB(S)| = |V | − |adjB(S)| = |F | − |S| = |F \ S| = |F ′|.

This shows that condition 1 of Definition 3 is satisfied for B′. Assume, for the sake of
contradiction, that F ′ does not satisfy condition 2 of Definition 3 in the induced subgraph
B′. Then there exists S′ ⊆ F ′ such that |S′| > |adjB′(S′)|. Consider the following equations:

|S ∪ S′| = |S|+ |S′|
> |adjB(S)|+ |adjB′(S′)|
= |adjB(S)|+ |adjB(S′)| − |adjB(S) ∩ adjB(S′)|
= |adjB(S) ∪ adjB(S′)|
= |adjB(S ∪ S′)|
≥ |S ∪ S′|,

where the last inequality holds because B is self-contained by assumption. This is a con-
tradiction, and we conclude that both conditions of Definition 3 are satisfied for B′. This
shows that B′ is self-contained.

Let S1 ∈ SF and S2 ∈ SF be two distinct minimal self-contained sets in B. Suppose
that B1 is a subgraph of B induced by V \ adjB(S1) and F \ S1. By Lemma 32 we know
that S1 ∩ S2 = ∅ and adjB(S1) ∩ adjB(S2) = ∅. It follows that for all S′ ⊆ S2 we have that
adjB(S′) = adjB1(S′). We find that

|S2| = |adjB(S2)| = |adjB1(S2)|,
|S′| ≤ |adjB(S′)| = |adjB1(S′)|,

for all S′ ⊆ S2. This shows that S2 satisfies the conditions of Definition 3 in the bipartite
graph B1. Since S2 has no non-empty strict subsets that are self-contained in B we have
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that S2 has no non-empty strict subsets that are self-contained in B1. We conclude that
S2 is a minimal self-contained subset in B1. This shows that the sets SF \ {S} are minimal
self-contained in B′.

Lemma 34 Let B = 〈V, F,E〉 be a self-contained bipartite graph. The output CO(B) of
Algorithm 1 is unique.

Proof
Suppose G1 = 〈V1, E2〉 and G2 = 〈V2, E2〉 are directed cluster graphs that are obtained by

running Algorithm 1. Let A = (1, 2, . . . , |V1|) be an ordered set that indicates the order in
which clusters S(a) (with a ∈ A) are added to V1 in the first run of the algorithm. Similarly,
B = (1, 2, . . . , |V2|) is an ordered set that indicates the order in which clusters T (b) (with
b ∈ B) are added to V2 in the second run of the algorithm. With a slight abuse of notation
we define B \ (S(k))k<i as the subgraph of B induced by the nodes (S(k))k≥i. Similarly,
B \ (T (k))k<i denotes the subgraph of B induced by the nodes (T (k))k≥i.

Intermediate result: We will prove that for i ∈ (1, 2, . . . , |V1|) there exists bi ∈ B such that
S(i) = T (bi) by induction.

Base case: The algorithm adds the cluster S(1) to V1 in the first step of the first run.
Therefore, we know that the set of nodes F ∩S(1) must be minimal self-contained in B. Let
1 ≤ k ≤ |V2| be arbitrary. By Lemma 33 it follows that F ∩S(1) is minimal self-contained in
B \ (T (j))j<k provided S(1) 6= T (j) for all j < k. Since B is finite, the minimal self-contained
set S(1) must be chosen eventually, and hence there exists b1 ∈ B such that S(1) = T (b1).

Induction hypothesis: Let 1 ≤ i < |V1| be arbitrary and assume that for all j ≤ i there
exists bj ∈ B such that S(j) = T (bj). We want to show that there exists bi+1 ∈ B such that
S(i+1) = T (bi+1).

Induction step: Let B′ = B \ (b1, . . . , bi) = (b′1, . . . , b′|V2|−i) be an ordered set such that
b′j ≺ b′j+1 for all j = 1, . . . , |V2| − (i+ 1).

1. In the second run of the algorithm, the cluster T (b′1) is added to V2 right after the
clusters T (bj) with bj ≺ b′1 are added to V2 and removed from the bipartite graph.
Therefore, the set F ∩T (b′1) is minimal self-contained in B\(T (bj))j≤i,bj≺b′1 . In the first
run of the algorithm, the clusters S(1) = T (b1), . . . , S(i) = T (bi) are subsequently added
to V1 and removed from the bipartite graph. Therefore, by Lemma 32 and Lemma 33,
we have that F ∩T (b′1) is minimal self-contained in B′ = B \ (T (bj))j≤i = B \ (S(k))k≤i.
Hence, both F ∩ T (b′1) and F ∩ S(i+1) are minimal self-contained in B′. Therefore,
by Lemma 32 and Lemma 33, either T (b′1) = S(i+1) (in which case we are done) or
F ∩ S(i+1) is minimal self-contained in B′ \ T (b′1).

2. Let k ≤ |V2|−i be arbitrary. By iteration of the argument in the previous step we find
that F ∩T (b′k) is minimal self-contained in (B \ (T (bj))j≤i,bj≺b′k) \ (T (b′j))j<k and hence
in B′ \ (T (b′j))j<k, so that either T (b′k) = S(i+1) or F ∩ S(i+1) is minimal self-contained
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in B′ \ (T (b′j))j≤k. Since the bipartite graph is finite, there exists m ∈ 1, . . . , |V2| − i
such that T (b′m) = S(i+1). By definition of B′ there exists bi+1 ∈ B such that S(i+1) =
T (bi+1).

This proves that the clusters in V1 are also clusters in V2. By symmetry we find that the
clusters S(a) in V1 and the clusters T (b) in V2 coincide. Since V1 = V2 it follows immediately
from the construction of edges in the algorithm that E1 = E2 and hence G1 = G2.

B.2 Coarse decomposition

For completeness, we include the proofs of the results in Pothen and Fan (1990) that are
necessary to show that the output of the extended causal ordering algorithm (Algorithm 3)
is unique. The presentation in this section is based on the exposition of Van Diepen (2019).
In order to prove the statements in Lemma 10 and Proposition 8, we require additional
results. Lemma 35 and 36 show that the incomplete, complete, and over-complete set are
disjoint. The former uses the notion of an augmented path for a bipartite graph B and a
matching M , which is an alternating path for M that starts and ends with an unmatched
vertex.

Lemma 35 [Berge (1957)] M is a maximum matching for a bipartite graph B if and only
if B does not contain any augmenting paths for M .

Proof The proof can be found in Berge (1957).

Lemma 36 [Pothen (1985)] Let B = 〈V, F,E〉 be a bipartite graph with a maximum match-
ing M . The incomplete set TI and the overcomplete set TO in Definition 7 are disjoint.

Proof For the sake of contradiction, assume that there is a vertex v ∈ TI ∩TO. Then there
is an alternating path from an unmatched vertex in V to v and there is also an alternating
path from an unmatched vertex in F to v. By sticking these two paths together we obtain
an augmented path. It follows from Lemma 35 that M is not maximum. This is a contra-
diction and therefore TI and TO must be disjoint.

Lemma 37 and Lemma 9 show that for a bipartite graph and a maximum matching
with coarse decomposition CD(B,M), the vertices in TI , TC , TO are matched to vertices in
TI , TC , TO respectively. Furthermore the subgraph of B induced by TC is self-contained, so
that Algorithm 1 can be applied.

Lemma 37 [Pothen (1985)] Let B = 〈V, F,E〉 be a bipartite graph with a maximum match-
ing M . Let CD(B,M) = 〈TI , TC , TO〉 be the associated coarse decomposition. A matched
vertex in TI is matched to a vertex in TI and a matched vertex in TO is matched to a vertex
in TO.
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Proof For a matched vertex x ∈ TI there is an alternating path starting from an un-
matched vertex uv ∈ V to x. When x ∈ V , this alternating path ends with a matched edge
and hence x is matched to a vertex in TI . When x ∈ F the alternating path ends with an
unmatched edge. We may extend the alternating path with the edge adjacent to x that
is in M , and hence is matched to a vertex in TI . For a matched vertex x ∈ TO there is
an alternating path starting from an unmatched vertex uf ∈ F to x. When x ∈ F , this
alternating path ends with a matched edge and hence x is matched to a vertex in TO. When
x ∈ V , the alternating path ends with an unmatched edge. The alternating path may be ex-
tended with the edge adjacent to x that is inM , and hence x is matched to a vertex in TO.

Lemma 9 [Pothen (1985)] Let B be a bipartite graph with coarse decomposition 〈TI , TC , TO〉.
The subgraph BC of B induced by vertices in TC has a perfect matching and is self-contained.

Proof By Lemma 37 we know that vertices in TI and TO can only be matched to a vertex
in TI and TO, respectively. There are no unmatched vertices in TC , so vertices in TC ∩ V
are perfectly matched to vertices in TC ∩ F . It follows from Hall’s marriage theorem that
BC is self-contained (Hall, 1986).

The following lemma restricts edges that can be present between the incomplete, com-
plete and overcomplete sets. This shows that clusters of the causal ordering graph that
are in the overcomplete set are never descendants of clusters in the incomplete or complete
set. Similarly, it also shows that clusters in the incomplete set are never ancestors of the
complete or overcomplete sets. Lemma 10 is then used to prove Proposition 8.

Lemma 10 [Pothen (1985)] Let B = 〈V, F,E〉 be a bipartite graph with a maximum match-
ing M . Let CD(B,M) = 〈TI , TC , TO〉 be the associated coarse decomposition. No edge joins
a vertex in TI ∩V with a vertex in (TC ∪TO)∩F and no edge joins a vertex in TC ∩V with
a vertex in TO ∩ F .

Proof Suppose that there is an edge e = (v − f) between a vertex v ∈ TI ∩ V to a vertex
f ∈ (TC ∪ TO) ∩ F . By Lemma 37 the edge is not in the maximum matching. Note that
there is an alternating path from an unmatched vertex in TI ∩ V to v that starts with an
unmatched edge and ends with a matched edge. By adding the edge (v − f), we obtain
again an alternating path so that f ∈ TI . This is a contradiction, and hence there is no
edge between (v − f). The second part of the lemma follows by symmetry.

Proposition 8 [Pothen (1985)] The coarse decomposition of a bipartite graph B is inde-
pendent of the choice of the maximum matching.

Proof Let M be an arbitrary matching and let CD(B,M) = 〈TI , TC , TO〉. Note that
all vertices in (TI ∩ V ) \ UV are M -matched to vertices in TI ∩ F (by construction and
Lemma 37). Also, all vertices in (TO ∩ F ) \ UF are M -matched with vertices in TO ∩ V .
Finally, all vertices in TC ∩ V are M -matched with vertices in TC ∩ F and vice versa by
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Lemma 9. By Lemma 10 we have adjB(TI ∩ V ) = TI ∩ F and adjB(TO ∩ F ) = TO ∩ V , so
any matching for B can only match vertices in TI ∩ V with vertices in TI ∩ F and vertices
in TO ∩ F with vertices in TO ∩ V .

For the sake of contradiction, assume that there exists a maximum matching M ′ that
matches a vertex in TI ∩ F with a vertex in (TC ∪ TO) ∩ V . Write:

MV = {v ∈ V : ∃f ∈ F : v − f ∈M}, M ′V = {v ∈ V : ∃f ∈ F : v − f ∈M ′},
MF = {f ∈ F : ∃v ∈ V : v − f ∈M}, M ′F = {f ∈ F : ∃v ∈ V : v − f ∈M ′}.

Note that the number of edges in matching M ′ is bounded by

|M ′| = |M ′V |
= |M ′V ∩ TI |+ |M ′V ∩ TC |+ |M ′V ∩ TO|
≤ (|F ∩ TI | − 1) + |V ∩ TC |+ |V ∩ TO|
= (|MV ∩ TI | − 1) + |MV ∩ TC |+ |MV ∩ TO|
= |MV | − 1 = |M | − 1,

where we used that (i) vertices in TI ∩ V can only be matched with vertices in TI ∩ F , (ii)
all nodes in TI ∩ F are M -matched with vertices in MV ∩ TI , (iii) all variable vertices in
TC are M -matched, and (iv) all vertices in TO ∩ V are M -matched. This contradicts the
assumption that M ′ is a maximum matching.

In a similar way, one obtains a contradiction when assuming the existence of a maximum
matching M ′′ that matches a vertex in TO ∩ V with a vertex in (TI ∪ TC) ∩ F . Hence any
maximum matching of B must match all vertices in TI ∩ F with vertices in TI ∩ V , and all
vertices in TO ∩ V with vertices in TO ∩ F . We conclude that TO and TI do not depend on
the choice of maximum matching. By definition TC is uniquely determined by TO and TI .
Therefore the coarse decomposition is independent of the choice of maximum matching.

B.3 Markov property via d-separation

In this section we prove Theorem 17 below.

Theorem 17 Let X∗ = h(XW ) with h : XW → X V \W be a solution of a system of
constraints M = 〈X ,XW ,Φ,B〉 with coarse decomposition CD(B) = 〈TI , TC , TO〉. Let
MOCO(B) denote the subgraph of the Markov ordering graph induced by TC∪TO and letX∗CO
denote the corresponding solution components. If M is maximally uniquely solvable then
the pair (MOCO(B),PX∗CO

) satisfies the directed global Markov property (see Definition 31).

Proof Let v ∈ (TC∪TO)∩(V \W ) be arbitrary and define SV = cl(v)∩V and SF = cl(v)∩F .
First, we will show that V (SF ) \ SV = paMO(B)(v). The following equivalences hold for
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x ∈ V :

x ∈ V (SF ) \ SV ⇐⇒ x ∈ adjB(SF ) \ SV (by Definition 1)
⇐⇒ (x→ cl(v)) in CO(B) (by definition of Algorithm 3)
⇐⇒ (x→ v) in D(CO(B)) (by Definition 16)
⇐⇒ (x→ v) in D(CO(B))mar(F )

⇐⇒ (x→ v) in MO(B) (by Definition 16)
⇐⇒ x ∈ paMO(B)(v).

By assumption, the system of constraints is maximally uniquely solvable w.r.t. CO(B).
Note that SV ⊆ V (SF ). Hence, there exist measurable functions gi : X paMO(B)(v) → Xi for
all i ∈ SV such that PXW

-a.s., for all xV (SF )\W ∈ X V (SF )\W :

∀ f ∈ SF : φf (xV (f)\W ,XV (f)∩W ) = cf ⇐⇒
∀ i ∈ SV : xi = gi(xpaMO(B)(v)\W ,XpaMO(B)(v)∩W ).

Since v ∈ (TC ∪ TO) ∩ (V \W ) was chosen arbitrarily and X∗ = h(XW ) with h a solution
ofM, it follows that

X∗v = gv(X∗paMO(B)(v)) PXW
-a.s.,

for all v ∈ (TC ∪TO)∩ (V \W ). The directed global Markov property was already shown to
hold for pairs (G,PX) where G is a DAG andX is a solution to a set of structural equations
with functional dependences corresponding to the DAG (Pearl, 2000; Lauritzen, 1996). Be-
cause the Markov ordering graphs MO(B) and MOCO(B) are acyclic by construction, and
MOCO(B) is the graph corresponding to this set of structural equations, this completes the
proof.

B.4 Causal ordering via perfect matchings

In this section we prove Theorem 6 below.

Theorem 6 The output of Algorithm 2 coincides with the output of Algorithm 1.

The following result gives a necessary and sufficient condition for the existence of a
perfect matching for a bipartite graph and can be found in Hall (1986).

Theorem 38 (Hall’s Marriage Theorem) Let B = 〈V, F,E〉 be a bipartite graph with
|V | = |F |. Then B has a perfect matching if and only if |F ′| ≤ |adjB(F )| for all F ′ ⊆ F .

From Hall’s Marriage Theorem it trivially follows that a bipartite graph has a perfect
matching if and only if it is self-contained.

Corollary 39 Let B = 〈V, F,E〉 be a bipartite graph. Then B has a perfect matching if and
only if B is self-contained.
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Proof If B has a perfect matching then |V | = |F |. By Definition 3 we know that if B is
self-contained then |V | = |F |. Hence, the statement follows from Definition 3 and Theorem
38.

The following technical lemma is used to prove Lemma 41, which shows that the output
of Algorithm 1 coincides with that of Algorithm 2 in the case that the input of the algorithm
is a self-contained bipartite graph and W = ∅.

Lemma 40 Let M be a perfect matching for a self-contained bipartite graph B = 〈V, F,E〉.
Let S(1)

V , . . . , S
(n)
V be a topological ordering of the strongly connected components in the graph

G(B,M)mar(F ). Let B(i) be the subgraph of B induced by
⋃n
j=i(S

(j)
V ∪M(S(j)

V )). Then B(i) is
self-contained and M(S(i)

V ) is a minimal self-contained set in B(i).

Proof We use the notation G(k) := G(B(k),M (k)) and S(k)
F := M (k)(S(k)

V ), whereM (1) = M

(we will define M (i) with i > 1 later). First we show that S(1)
F is self-contained in B(1).

We proceed by proving that S(1)
F is minimal self-contained in B(1) and that B(2) is a self-

contained bipartite graph. Finally, we consider how these arguments can be iterated to
prove the lemma.

By definition of a perfect matching and the fact that B(1) = B is self-contained, we know
that:

|S(1)
V | = |S

(1)
F | ≤ |adjB(1)(S(1)

F )|. (30)

By definition of topological ordering and the orientation step in Definition 5 we know that:

adjB(1)(S(1)
F ) ⊆ S(1)

V .

Together, these two inequalities show that |S(1)
F | = |adjB(1)(S(1)

F )|. Because B(1) is self-
contained, the set S(1)

F satisfies both conditions of Definition 3. We conclude that S(1)
F is

self-contained in B(1).
Assume, for the sake of contradiction, that S(1)

F is not minimal self-contained. Then
there exists a non-empty strict subset F ′ ⊂ S

(1)
F that is self-contained in B(1). First note

that, by Definition 3, we have that |F ′| = |adjB(1)(F ′)| and |S(1)
V | = |S(1)

F | so that S(1)
V \

adjB(1)(F ′) 6= ∅ and adjB(1)(F ′) 6= ∅. Furthermore, by Definition 5 (orientation step), we
must have that:

paG(1)(adjB(1)(F ′)) = M (1)(adjB(1)(F ′)) = F ′. (31)

Therefore there is no directed edge from any vertex in F \ F ′ to any vertex in adjB(1)(F ′).
Clearly, there can be no edge in G(1) between any vertex v ∈ S

(1)
V \ adjB(1)(F ′) and any

vertex f ′ ∈ F ′ and hence

paG(1)(S(1)
V \ adjB(1)(F ′)) = M (1)(S(1)

V \ adjB(1)(F ′)) = F \ F ′. (32)
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Therefore, there can be no directed path from any v ∈ S
(1)
V \ adjB(1)(F ′) to any f ∈ F ′

in G(1). This contradicts the assumption that S(1)
V is a strongly connected component in

G(1)
mar(F ). We conclude that S(1)

F is minimal self-contained in B(1).
Clearly, the setM (2) := {(i−j) ∈M (1) : i, j /∈ S(1)

V ∪S
(1)
F } is a perfect matching for B(2).

By Corollary 39 we therefore know that B(2) is self-contained. Since S(2)
V , . . . , S

(n)
V is a topo-

logical ordering for the strongly connected components in G(2)
mar(F ) the above argument can

be repeated to show that S(2)
F is minimal self-contained in B(2). For arbitrary i ∈ {1, . . . , n}

this entire argument can be iterated to show that S(i)
F is minimal self-contained in the self-

contained bipartite graph B(i).

Lemma 41 Let M be an arbitrary perfect matching for a self-contained bipartite graph
B = 〈V, F,E〉. The directed cluster graph G1 = 〈V1, E1〉 that is obtained by application of
Definition 5 coincides with the output G2 = 〈V2, E2〉 of Algorithm 1.

Proof Let S(1), . . . , S(n) be a topological ordering of the strongly connected components
in G(M,B)mar(F ). By Definition 5 the cluster set V1 consists of clusters S(i) ∪ M(S(i))
with i ∈ {1, . . . , n}. By Lemma 40, Algorithm 1 can be run in such a way that the clusters
S(i)∪M(S(i)) are added to V2 in the order specified by the topological ordering. By Theorem
4 the output of Algorithm 1 is unique and therefore V1 = V2. By Definition 5 the following
equivalences hold for C ∈ V1 = V2 and v ∈ V \ C:

(v → C) ∈ E1 ⇐⇒ ∃w ∈ C s.t. (v → w) in G(M,B)
⇐⇒ ∃w ∈ C s.t. (v − w) ∈ E and (v − w) /∈M
⇐⇒ v ∈ adjB(C ∩ F ) \M(C ∩ F )
⇐⇒ v ∈ adjB(C ∩ F ) \ (C ∩ V )
⇐⇒ (v → C) ∈ E2.

Let C ∈ V1 = V2 and f ∈ F ∩ (adjB(C) \C). By definition of Algorithm 1 we know that
(f → C) /∈ E2. Note that M(C ∩ F ) = C ∩ V . By Definition 5 there is no edge (f → v)
with v ∈ C ∩ V in G(B,M) and hence by Definition we know that (f → C) /∈ E2. By
construction, edges (x → C) with x ∈ C are neither in E1 nor in E2. We conclude that
E1 = E2 and consequently G1 coincides with G2.

Lemma 41 shows that the output of Algorithm 1 coincides with the output of Algorithm
2 if the input is a self-contained bipartite graph. Otherwise, both Algorithm 1 and 2 have an
initialization that is determined by the specification of exogenous variables. The exogenous
variables are placed into separate clusters and there are directed edges from each exogenous
variable to the clusters of its adjacencies for both algorithms. The output of the two
algorithms coincides for any valid input.

B.5 Markov property via σ-separation

Here, we prove the following theorem.
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Theorem 18 Let X∗ = g(XW ) be a solution of a system of constraints 〈X ,XW ,Φ,B〉,
where the subgraph of B = 〈V, F,E〉 induced by (V ∪ F ) \W has a perfect matching M .
If for each strongly connected component S in G(B,M) with S ∩W = ∅, the system M
is uniquely solvable w.r.t. SV = (S ∪ M(S)) ∩ V and SF = (S ∪ M(S)) ∩ F then the
pair (G(B,M)mar(F ),PX∗) satisfies the generalized directed global Markov property (Defini-
tion 31).

The proof of this theorem relies on results by Forré and Mooij (2017), who define the no-
tion of an acyclic augmentation for a class of graphical models that they call HEDGes. They
define the augmentation of a HEDG as a directed graph where hyperedges are represented
by vertices with additional edges. The acyclic augmentation of a HEDG is obtained by acy-
clification of the edge set of its augmentation (Forré and Mooij, 2017). The acyclification
of a directed graph is given in Definition 42.

Definition 42 Let G = 〈V,E〉 be a directed graph. The acyclification of E, denoted by
Eacy, has edges (i → j) ∈ Eacy if and only if i /∈ scG(j) and there exists k ∈ scG(j) such
that (i→ k) ∈ E.

Lemma 43 shows that the clustering operation in Definition 5 on directed graphs, fol-
lowed by the declustering operation in Definition 16, results in the same directed graph as
the one that is obtained by applying the acyclification operation to its edge set.

Lemma 43 Consider a directed graph G = 〈V,E〉 be a directed graph. It holds that Gacy =
〈V,Eacy〉 = D(clust(G))).

Proof This follows from Definitions 16, 5, and 42.

The following proposition shows that σ-separations in a directed graph coincide with
d-separations in the graph that is obtained by clustering and subsequently declustering that
directed graph.

Proposition 44 Let G = 〈V,E〉 be a directed graph with nodes V and Gacy = 〈V,Eacy〉.
Then for all subsets A,B,C ⊆ V :

A
σ
⊥
G
B |C ⇐⇒ A

d
⊥
Gacy

B |C ⇐⇒ A
d
⊥

D(clust(G))
B |C.

Proof The first equivalence is Proposition A.19 in Bongers et al. (2020). The second
equivalence follows directly from Lemma 43.

We now have all ingredients to finish the proof of Theorem 18. First note that, since the
subgraph of B = 〈V, F,E〉 induced by (V ∪F ) \W has a perfect matching, CO(B) = 〈V, E〉
is well-defined by Corollary 39. Let S(1)

V , . . . , S
(n)
V be the strongly connected components in

Gdir, where Gdir := G(B,M)mar(F ). By Lemma 40 and the definition of Algorithm 1 we know
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that V consists of the clusters S(i)
V ∪M(S(i)

V ) with i = 1, . . . , n. Therefore, M is uniquely
solvable with respect to CO(B). By Theorem 17 we have that for subsets A,B,C ⊆ V \W :

A
d
⊥

MO(B)
B |C =⇒ XA ⊥⊥

PX

XB |XC . (33)

By Proposition 44 we have that:

A
σ
⊥
Gdir

B |C ⇐⇒ A
d
⊥
Gacy

dir

B |C ⇐⇒ A
d
⊥

D(clust(Gdir))
B |C. (34)

The desired result follows from implications (33) and (34) when D(clust(Gdir)) = MO(B).
Consider the cluster set Vmar(F ) = {S ∩ V : S ∈ V} and note that edges in CO(B) go from
vertices in V to clusters in V. By Definition 16 and 5 we have that:

D(〈Vmar(F ), E〉) = D(〈V, E〉)mar(F ) and clust(Gdir) = 〈Vmar(F ), E〉, (35)

respectively. It follows that

D(clust(Gdir)) = D(CO(B))mar(F ) = MO(B). (36)

Note that both d-separations and σ-separations are preserved under marginalization of
exogenous vertices W (Forré and Mooij, 2017; Bongers et al., 2020). This finishes the
proof.

B.6 Effects of interventions

This section is devoted to the proofs of the results that were presented in Section 5.

Theorem 20 Let M = 〈X ,XW ,Φ,B〉 be a system of constraints with coarse decomposi-
tion CD(B) = 〈TI , TC , TO〉. Suppose thatM is maximally uniquely solvable w.r.t. the causal
ordering graph CO(B) and let X∗ = g(XW ) be a solution ofM. Let f ∈ (TC ∪TO)∩F and
assume that the intervened system Msi(f,φ′

f
,c′

f
) is also maximally uniquely solvable w.r.t.

CO(B). Let X ′ = h(XW ) be a solution of Msi(f,φ′
f
,c′

f
). If there is no directed path from f

to v ∈ (TC ∪ TO)∩ V in CO(B) then X∗v = X ′v almost surely. On the other hand, if there is
a directed path from f to v in CO(B) then X∗v may have a different distribution than X ′v,
depending on the details of the modelM.

Proof The directed cluster graph CO(B) is acyclic by construction and therefore there
exists a topological ordering of its clusters. When there is no directed path from f to v
in CO(B) then there exists a topological ordering V (1), . . . , V (n) of the clusters such that
cl(v) comes before cl(f). Note that clusters of vertices in the incomplete set TI are never
ancestors of clusters in TC ∪ TO by Lemma 10 (the proof of this lemma will be given in
Appendix B.2). Therefore there exists a topological ordering of clusters so that no cluster in
TI precedes a cluster in TC ∪TO. By the assumption of unique solvability w.r.t. the clusters
TC∪TO in CO(B) we know that the solution component for any variable v ∈ V (i) ⊆ TC∪TO
can be solved from the constraints in V (i) after plugging in the relevant solution components
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⋃i−1
j=1 V

(j). By the solvability assumption, the solution components X∗v and X ′v are equal
almost surely.

By assumption, the variables in cl(f) can be solved from the constraints in cl(f).
Hence, a soft intervention on a constraint in cl(f) may change the distribution of the
solution components X∗cl(f)∩V that correspond to the variable vertices in cl(f). Suppose
that there exists a sequence of clusters V1 = cl(f), V2, . . . , Vk−1, Vk = cl(v) such that for all
Vi ∈ {V1, . . . , Vk−1} there is a vertex zi ∈ Vi such that (zi → Vi+1) in CO(B). In that case
we know that Vi∪TI = ∅ for i = 1, . . . , k. By the assumption of maximal unique solvability
w.r.t. CO(B) the solution components for the variables in V2, . . . Vk may depend on the
distribution of the unique solution components X∗cl(f)∩V that correspond to the variable
vertices in cl(f). It follows that the solution X∗v may be different from that of X ′v, if there
is a directed path from f to v in CO(B).

Lemma 22 Let B = 〈V, F,E〉 be a bipartite graph and W ⊆ V , so that the subgraph of
B induced by (V ∪ F ) \ W is self-contained. Consider an intervention do(SV , SF ) on a
cluster S = SF ∪ SV with S ∩W = ∅ in the causal ordering graph CO(B). The subgraph of
Bdo(SF ,SV ) induced by (V ∪ F ) \W is self-contained.

Proof By definition of Algorithm 2 we know that the subgraph of B induced by (V ∪F )\W
has a perfect matching M such that M(SF ) = SV . By definition of a perfect intervention
on the bipartite graph we know that M is also a perfect matching for the subgraph of
Bdo(SF ,SV ) induced by (V ∪ F ) \W . The result follows from Corollary 39.

Proposition 25 Let B = 〈V, F,E〉 be a bipartite graph and W a set of exogenous variables.
Let CO(B) = 〈V, E〉 be the corresponding causal ordering graph. Let SF ⊆ F and SV ⊆ V \W
be such that (SF ∪ SV ) ∈ V. Then:

CO(Bdo(SF ,SV )) = CO(B)do(SF ,SV ).

Proof Let SV = 〈s1
v, . . . , s

m
v 〉 and SF = 〈s1

f , . . . s
m
f 〉 denote the targeted variables and

constraints. We consider the output CO(B) = 〈V, E〉 of the causal ordering algorithm.
Suppose that the order in which clusters V (i) are added to V is given by

V (1), . . . , V (k) = (SF ∪ SV ), . . . , V (n). (37)

Consider CO(Bdo(SF ,SV )) = 〈V ′, E ′〉. It follows from Definition 21, Lemma 32, Lemma 33,
and the definition of Algorithm 3 (i.e., the extended causal ordering algorithm) that

V (1), . . . , V (k−1), {s1
f , s

1
v}, . . . , {smf , smv }, V (k+1), . . . V (n) (38)

is an order in which clusters could be added to V ′. This shows that there are two differ-
ences between CO(B) = 〈V, E〉 and CO(Bdo(SF ,SV )) = 〈V ′, E ′〉: first (SF ∪ SV ) ∈ V whereas
{{sif , siv} : i = 1, . . . ,m} ⊆ V ′ and second the clusters (SF ∪ SV ) may have parents in
CO(B) but the clusters {sif , siv} (with i ∈ {1, . . . ,m}) have no parents in CO(Bdo(SF ,SV )).
The result follows directly from Definition 24.
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Theorem 23 Let M = 〈X ,XW ,Φ,B = 〈V, F,E〉〉 be a system of constraints with coarse
decomposition CD(B) = 〈TI , TC , TO〉. Assume that M is maximally uniquely solvable
w.r.t. CO(B) = 〈V, E〉 and let X∗ be a solution of M. Let SF ⊆ (TC ∪ TO) ∩ F and
SV ⊆ (TC ∪ TO) ∩ (V \W ) be such that (SF ∪ SV ) ∈ V. Consider the intervened system
Mdo(SF ,SV ,ξSV

) with coarse decomposition CD(Bdo(SF ,SV )) = 〈T ′I , T ′C , T ′O〉. Let X ′ be a so-
lution ofMdo(SF ,SV ,ξSV

). If there is no directed path from any x ∈ SV to v ∈ (TC ∪TO)∩V
in CO(B) then X∗v = X ′v almost surely. On the other hand, if there is x ∈ SV such that
there is a directed path from x to v ∈ (TC ∪TO)∩V in CO(B) then X∗v may have a different
distribution than X ′v.

Proof First note that TC ∪TO = T ′C ∪T ′O by Definition 21. Let v ∈ SV . Since the variable
vertices SV are targeted by the perfect intervention, we have thatX ′v = ξv, which may be dif-
ferent from the solution component X∗v . Consider v ∈ V \SV and its cluster cl(v) in CO(B).
Since the causal ordering graph is acyclic by construction, there exists a topological ordering
V (1), . . . , V (i) = cl(v), . . . V (n) of the clusters in CO(B) (where n is the amount of clusters
in CO(B)) such that V (j) ≺ cl(v) implies that there is a directed path from some vertex in
V (j) to the cluster cl(v) in CO(B). Note that clusters in TI are never ancestors of clusters in
TC ∪TO and that the ordering V (1), . . . , V (n) is such that no cluster in TI precedes a cluster
in TC ∪ TO. By assumption, the solution component X∗v can be solved from the constraints
and variables in V (i) = cl(v) by plugging in the solution for variables in V (1), . . . , V (i−1).
Let s1

f , . . . s
m
f and s1

v, . . . s
m
v denote the ordered vertices in SF and SV respectively and

suppose that SV ∪ SF = V (k) for some k ∈ {1, . . . , n}. By definition of a perfect interven-
tion on a cluster we know that V (1), . . . , V (k−1), {s1

f , s
1
v}, . . . , {smf , smv }, V (k+1), . . . V (n) is a

topological ordering of clusters in CO(B)do(SF ,SV ) = CO(Bdo(SF ,SV )) (by Proposition 25).
Furthermore, maximal unique solvability w.r.t. CO(B) implies maximal unique solvability
w.r.t. CO(Bdo(SF ,SV )).

Suppose that V (k) � cl(v) in the topological ordering for CO(B). By maximal unique
solvability w.r.t. CO(B)do(SF ,SV ), X ′v can be solved from the constraints and variables in
cl(v) by plugging in the solution for variables in V (1), . . . , V (i−1). It follows that X∗v = X ′v
almost surely and by construction of the topological ordering there is no directed path from
any x ∈ SV to v in CO(B). Suppose that V (k) ≺ cl(v) in the topological ordering for
CO(B). By maximal unique solvability w.r.t. CO(B)do(SF ,SV ), we know that X ′v can be
solved from the constraints and variables in V (i) by plugging in the solution for variables in
V (1), . . . , V (k−1), {s1

f , s
1
v}, . . . , {smf , smv }, V (k+1), . . . V (i−1). It follows that X∗v and X ′v may

have a different distribution, and by construction of the topological ordering there is a di-
rected path from a vertex in SV to the cluster cl(v) in CO(B).
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