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Abstract

Real-world complex systems are often modelled by sets of equations with
exogenous random variables. What can we say about the probabilistic and
causal aspects of variables that appear in these equations without explicitly
solving for them? We prove that, under a solvability assumption, we can
construct a Markov ordering graph that implies conditional independences
and a causal ordering graph that encodes the effects of soft and perfect inter-
ventions by making use of Simon’s causal ordering algorithm (Simon, 1953).
Our results shed new light on discussions in causal discovery about the justifi-
cation of using graphs to simultaneously represent conditional independences
and causal relations in models with feedback.

1 Introduction

The discovery of causal relations is a fundamental objective in many scientific en-
deavours. The process of the scientific method usually involves a conjecture, such
as a causal graph or a set of equations, that explains observed phenomena. In
practice, such a graph structure can be learned automatically from conditional in-
dependences in observational data via the PC/FCI algorithms (Spirtes, Glymour,
and Scheines, 2000; Zhang, 2008). The crucial assumption in causal discovery is
that directed edges in this learned graph express causal relations between variables.
However, an immediate concern is whether directed graphs actually can simultane-
ously encode the causal semantics and the conditional independence constraints of
a system.1 We explicitly define soft and perfect interventions on sets of equations
and demonstrate that the effects of interventions and conditional independences
cannot generally be unambiguously expressed in a single directed graph. In partic-
ular, we show that the output of the PC algorithm does not have a straightforward
causal interpretation when it is applied to data generated by a simple dynamical
model with feedback at equilibrium.

1See, for example, (Dawid, 2010) and references therein for a discussion.
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It is often said that the “gold standard” in causal discovery is controlled ex-
perimentation. Indeed, the main principle of the scientific method is to derive
predictions from a conjecture, such as a causal graph or set of equations, that
are then verified or rejected through experimentation. We show how, in practice,
testable predictions can be derived automatically from sets of equations via the
causal ordering algorithm, introduced by Simon (1953). We slightly adapt the
algorithm to construct either a directed graph that we call the Markov ordering
graph or a directed cluster graph that we call the causal ordering graph. We prove
that the former implies conditional independences between variables which can
be tested in observational data and the latter represents the effects of soft and
certain perfect interventions which can be verified through experimentation. The
technique of causal ordering is a useful and scalable tool in our search for and
understanding of causal relations.

In this work, we also shed new light on differences between the causal ordering
graph and the graph structure of Structural Causal Models (SCMs) (see Bongers,
Forré, et al. (2020) and Pearl (2000)). Specifically, we demonstrate that the two
graphical representations may model different sets of interventions. Furthermore,
we show that a stronger Markov property can sometimes be obtained by applying
causal ordering to the structural equations of an SCM. By explicitly defining inter-
ventions and by distinguishing between the Markov ordering graph and the causal
ordering graph we gain new insights about the correct interpretation of results in
Dash (2005) and Iwasaki and Simon (1994). Throughout this work, we discuss
an example in Iwasaki and Simon (1994) to illustrate our ideas. This example
highlights the contributions of this paper and provides an overview of its central
concepts.

Example 1. Let us revisit a physical model of a filling bathtub in equilibrium
that is presented in Iwasaki and Simon (1994). Consider a system where water
flows from a faucet into a bathtub at a constant rate XI and it flows out of the tub
through a drain with diameter XK . An ensemble of such bathtubs with different
(unknown) faucets and drains can be modelled by the equations fK and fI below:

fK : XK = UK ,

fI : XI = UI ,

where UK and UI are random variables both taking value in R>0. When the
faucet is turned on the water level XD in the bathtub increases as long as the
inflow XI of the water exceeds the outflow XO of water. The differential equation
below defines the mechanism for changes in XD, which is equal to zero when the
bathtub system has reached equilibrium.

fD : ẊD = U1(XI −XO) = 0,

where U1 is a constant or a random variable taking value in R>0. As the water
level XD increases, the pressure XP that is exerted by the water increases as well.
The mechanism for the change in pressure is defined in the differential equation
below, which equals zero when the system is at rest.

fP : ẊP = U2(g U3XD −XP ) = 0,
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where g is the gravitational constant and U2, U3 are constants or random variables
both taking value in R>0. The higher the pressure XP or the bigger the size of the
drain XK , the faster the water flows through the drain. The equilibrium equation
fO below models the outflow rate XO of the water.

fO : ẊO = U4(U5XKXP −XO) = 0,

where U4, U5 are constants or random variables both taking value in R>0.

Graphical representations. A set of equations can be represented by a bipartite
graph. In the case of the filling bathtub, the structure of equations fK to fO is
represented by the bipartite graph in Figure 1(a). The set V = {vK , vI , vP , vO, vD}
consists of vertices that correspond to variables and the vertices in the set F =
{fK , fI , fP , fO, fD} correspond to equations. There is an edge between a variable
vertex vi and an equation vertex fj if the variable corresponding to i appears in
the equation corresponding to j. A formal definition of a system of constraints
and its associated bipartite graph will be provided in Section 1.3. The causal
ordering algorithm, introduced by Simon (1953) and slightly reformulated by us
in Section 2, takes a self-contained bipartite graph as input and returns a causal
ordering graph. A causal ordering graph is a directed cluster graph which consists
of variable vertices vi and equation vertices fj that are partitioned into clusters.
Directed edges go from variable vertices to clusters. For the filling bathtub, the
causal ordering graph is given in Figure 1(b). In Section 3 we will show how the
Markov ordering graph can be constructed from a causal ordering graph. For the
filling bathtub, the Markov ordering graph is given in Figure 1(c).

Markov property. The Markov ordering graph in Figure 1(c) encodes conditional
independences between XK , XI , XP , XO, and XD. In particular, d-separations
between variable vertices in the Markov ordering graph imply conditional inde-
pendences between the corresponding variables, as we will prove in Theorem 2 in
Section 3. In Figure 1(c), the variable vertices vI and vD are d-separated by vO. It
follows that the inflow rate XI and the water level XD are independent given the
outflow rate XO. In Section 4 we show how we can use a perfect matching for a bi-
partite graph to construct a directed graph that implies conditional independences
between variables via σ-separations (see Forré and Mooij (2017)).

Soft interventions. The causal ordering graph in Figure 1(b) encodes the effects
of soft interventions on equations. This type of intervention is often referred to as
mechanism changes. We assume that the variables in each cluster can be solved
from the equations in their cluster both before and after the intervention. A soft
intervention has no effect on a variable if (a) the intervention target is in a different
cluster and (b) there is no directed path from the intervention target to the cluster
containing the variable, as we will prove in Theorem 4 in Section 5.1. Consider
an experiment where the value of the gravitational constant g is altered (e.g. by
moving the bathtub to the moon) resulting in an alteration of the equation fP .
This is a soft intervention on fP . There is no directed path from fP to clusters that
contain the vertices {vK , vI , vP , vO} and fP is not in a cluster with {vK , vI , vP , vO}
in the causal ordering graph in Figure 1(b). Since the conditions of Theorem 4
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are satisfied, the soft intervention on fP has no effect on {XK , XI , XP , XO} but
it generically does have an effect on XD.

Perfect interventions. The causal ordering graph in Figure 1(b) also encodes the
effects of perfect interventions on clusters. We will formally prove this in Proposi-
tion 2 in Section 5.2. Consider a perfect intervention on the cluster {fK , vK} (i.e.
fixing the diameter XK of the drain by altering the equation fK) in Figure 1(b).
This intervention generically changes the solution for {XK , XP , XD} because vK

is targeted by the intervention and there is a directed path from the cluster of vK

to the clusters of vP and vD. It has no effect on {XI , XO} because there is no
directed path to the clusters of vI and vO. △

vI vO vD vP vK

fI fD fO fP fK

(a) Bipartite graph.

vI vD vP

vO

vK

(c) Markov ordering graph.

vI vD vP

fI fP fO

vOfD

vKfK

(b) Causal ordering graph.

Figure 1: Three graphical representations for the bathtub system. The bipartite graph
in Figure 1(a) is a representation of the structure of equations F = {fK , fI , fP , fO, fD}
where the vertices V = {vK , vI , vP , vO , vD} correspond to variables and there is an edge
(v − f) if and only if the variable v appears in equation f . The outcome of the causal
ordering algorithm is the directed cluster graph in Figure 1(b), in which rectangles rep-
resent a partition of the variable and equation vertices into clusters. The corresponding
Markov ordering graph for the variable vertices is given in Figure 1(c).

1.1 Related work

Graphical models are a popular statistical tool to model probabilistic aspects of
complex systems (Pearl, 2000). Formally, they represent a set of conditional inde-
pendences between random variables that correspond to vertices which allows us
to learn their graphical structure from data (Lauritzen, 1996). These models are
often interpreted causally, so that directed edges between vertices are interpreted
as causal relations between corresponding variables (Pearl, 2000). The strong as-
sumptions that are necessary for this viewpoint in the context of Directed Acyclic
Graphs (DAGs) have been the topic of debate (Dawid, 2010). This work con-
tributes to this discussion by revisiting an example in Iwasaki and Simon (1994)
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for which we demonstrate that conditional independences and the effects of perfect
interventions cannot be expressed in a single directed graph.

Our work slightly reformulates the causal ordering algorithm which was intro-
duced by Simon (1953). Following (Dash and Druzdzel, 2008), we formally prove
that the causal ordering graph that is constructed by the algorithm is unique. One
of the novelties of this work is that we also prove that it encodes the effects of
soft and certain perfect interventions and, moreover, we show how it can be used
to construct a DAG that implies conditional independences via the d-separation
criterion (see Pearl (2000)). There also exists a different, computationally more
efficient, algorithm for causal ordering (Gonçalves and Porto, 2016; Nayak, 1995).
We formally prove that this algorithm is equivalent to the one in Simon (1953).
This alternative approach motivates an alternative representation of the system as
a directed graph that may contain cycles. We prove that the generalized directed
global Markov property, as formulated by Forré and Mooij (2017), holds for this
graphical representation.

In Section 6 we will present a detailed discussion of how our work relates to
that of Bongers, Forré, et al. (2020), Bongers and Mooij (2018), Dash (2005), and
Iwasaki and Simon (1994). We show that the “causal graph” in Iwasaki and Simon
(1994) coincides with the Markov ordering graph in our work. We take a closer
look at the intricacies of (possible) causal implications of the Markov ordering
graph and notice that it neither represents the effects of soft interventions nor
does it have a straightforward interpretation in terms of perfect interventions. We
therefore argue that the causal ordering graph, and not the Markov ordering graph,
should be used to represent causal relations. This sheds some new light on the
work of Dash (2005) on (causal) structure learning and equilibration in dynamical
systems. We will also consider potential benefits (e.g. obtaining a stronger Markov
property) of applying the technique of causal ordering to structural equations in
a Structural Causal Model (SCM).

1.2 Preliminaries

Henceforth, variables will be denoted by capital letters and sets of variables will
be denoted by boldfaced capital letters. The proofs of all propositions and theo-
rems will be given in the supplementary material in Section 8. We first introduce
necessary graphical background concepts.

1.2.1 Bipartite graphs

A bipartite graph is an ordered triple B = 〈V, F, E〉 where V and F are disjoint sets
of vertices and E is a set of undirected edges (v − f) between vertices v ∈ V and
f ∈ F . For a vertex x ∈ V ∪ F we write adjB(x) = {y ∈ V ∪ F : (x − y) ∈ E} for
its adjacencies, and for X ⊆ V ∪ F we write adjB(X) =

⋃

x∈X adjB(x) to denote
the adjacencies of X in B. A matching M ⊆ E for a bipartite graph B = 〈V, F, E〉
is a subset of edges that have no common endpoints. We say that two vertices x
and y are matched when (x − y) ∈ M . We let M(x) denote the set of vertices to
which x is matched. Note that if (x − y) ∈ M then M(x) = {y} and if x is not
matched then M(x) = ∅. We let M(X) =

⋃

x∈X M(x) denote the set of vertices

5



to which the set of vertices X ⊆ V ∪ F is matched. A matching is perfect if all
vertices V ∪ F are matched.

1.2.2 Directed graphs

A directed graph is an ordered pair G = 〈V, E〉 where V is a set of vertices and E is
a set of directed edges (v → w) between distinct vertices v, w ∈ V .2 We say that
a vertex v is a parent of w if (v → w) ∈ E and write v ∈ paG(w). Similarly we say
that w is a child of v if (v → w) ∈ E and write w ∈ chG(v). A path is a sequence
of distinct vertices and edges (v1, e1, v2, e2, . . . , en−1, vn) where for i = 1, . . . , n−1
either ei = (vi → vi+1) or ei = (vi ← vi+1). The path is called open if there is
no vi ∈ {v2, . . . vn−1} such that vi−1 → vi ← vi+1 (i.e. there is no collider on the
path). A directed path (v → . . .→ w) from v to w is a path where all arrowheads
point in the direction of w. We say that v is an ancestor of w if there is a directed
path from v to w and write v ∈ anG(w). We say that w is a descendant of v if
there is a directed path from v to w and write w ∈ deG(v).

Let G = 〈V, E〉 be a directed graph and consider the relation:

v ∼ w ⇐⇒ w ∈ anG(v) ∩ deG(v) = scG(v).

Since the relation is reflexive, symmetric, and transitive this is an equivalence rela-
tion. The equivalence classes scG(v) are called the strongly connected components
of G. A directed graph without self-cycles is acyclic if all of its strongly connected
components are singletons.

1.2.3 Interventions and marginalization on mixed graphs

A mixed graph is an ordered triple G = 〈V, E, B〉 where 〈V, E〉 is a directed graph
and B is a set of bi-directed edges between vertices in V . A perfect intervention
do(I) on G removes all edges with an arrowhead at one of the nodes i ∈ I ⊆ V .
That is, Gdo(I) = 〈V, E′, B′〉 where E′ = {(x → y) ∈ E : y /∈ I} and B′ = {(x ↔
y) ∈ B : x /∈ I, y /∈ I}. Marginalizing out a set of nodes W ⊆ V from a mixed graph
G = 〈V, E, B〉 results in a mixed graph Gmar(W ) = 〈V \W, Emar(W ), Bmar(W )〉
where:

(i) Emar(W ) consists of edges (x → y) such that x, y ∈ V \W and there exist
w1, . . . , wk ∈W such that the path x→ w1 → . . .→ wk → y is in G.

(ii) Bmar(W ) consists of edges (x ↔ y) such that x, y ∈ V \W and there exist
w1, . . . , wk ∈ W such that at least one of the following paths is in G: (i)
x ↔ y, or (ii) x ← w1 ← . . . ← wi → . . . → wk → y, or (iii) x ← w1 ←
. . .← wi ↔ wi+1 → . . .→ wk → y.

The operations of marginalization and intervention commute (Forré and Mooij,
2017).

1.2.4 Graph separation and Markov properties

In the literature, several versions of Markov properties for graphical models and
corresponding probability distributions have been put forward, see e.g. Forré and

2We do not allow for self-cycles in directed graphs.
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Mooij (2017), Lauritzen et al. (1990), and Pearl (2000). For Directed Acyclic
Graphs (DAGs) and Acyclic Directed Mixed Graphs (ADMGs), the d-separation
criterion is often used to relate conditional independences between variables in a
model to the underlying (acyclic) graphical structure of the model (Pearl, 2000).
For graphs that contain cycles, such a relation does not hold in general and for
that purpose Forré and Mooij (2017) introduced the σ-separation criterion and
the generalized directed global Markov property.

Definition 1. For a directed graph G = 〈V, E〉 we say that a path (v1, . . . , vn) is
σ-blocked by Z ⊆ V if

(i) v1 ∈ Z and/or vn ∈ Z, or

(ii) there is a vertex vi /∈ anG(Z) on the path such that the adjacent edges both
have an arrowhead at vi, or

(iii) there is a vertex vi ∈ Z on the path such that: vi → vi+1 with vi+1 /∈ scG(vi),
or vi−1 ← vi with vi−1 /∈ scG(vi), or both.

The path is d-blocked by Z if it is σ-blocked or if there is a vertex vi ∈ Z on the
path such that at least one of the adjacent edges does not have an arrowhead at
vi. We say that X ⊆ V and Y ⊆ V are σ-separated by Z ⊆ V if every path in G
with one end-vertex in X and one end-vertex in Y is σ-blocked by Z, and write

X
σ

⊥
G

Y |Z.

If every such path is d-blocked by Z then we say that X and Y are d-separated by
Z, and write

X
d

⊥
G

Y |Z.

The d-separations or σ-separations in a probabilistic graphical model may im-
ply conditional independences via the Markov properties in Definition 2 below.

Definition 2. For a directed graph G = 〈V, E〉 and a probability distribution PX

on a product X = ⊗v∈V Xv of standard measurable spaces Xv, we say that the pair
(G,PX) satisfies the directed global Markov property if for all subsets W, Y, Z ⊆ V :

W
d

⊥
G

Y |Z =⇒ XW ⊥⊥
PX

XY |XZ .

The pair (G,PX) satisfies the generalized directed global Markov property if for all
subsets W, Y, Z ⊆ V :

W
σ

⊥
G

Y |Z =⇒ XW ⊥⊥
PX

XY |XZ .

It has been shown that for acylic graphs the d-separation and σ-separation cri-
teria are equivalent (Forré and Mooij, 2017). For acyclic structural causal models,
which are also known as recursive structural equation models, the induced proba-
bility distribution on endogenous variables and the corresponding graph satisfy the
directed global Markov property (Lauritzen et al., 1990). A more comprehensive
account of Markov properties for structural causal models is provided by Bongers,
Forré, et al. (2020).
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1.3 System of constraints

We give a formal definition of sets of equations and a representation of their
structure as a bipartite graph by introducing a mathematical object that we call
a system of constraints.

Definition 3. A system of constraints is a tuple 〈X , XW , Φ,B = 〈V, F, E〉〉 where

(i) X =
⊗

v∈V Xv, where each Xv is a standard measurable space and the
domain of a variable Xv,

(ii) XW = (Xw)w∈W is a family of independent random variables taking value
in X W with W ⊆ V a set of indices corresponding to exogenous variables,3

(iii) Φ = (Φf )f∈F is a family of constraints, each of which is a tuple Φf =
〈φf , cf , V (f)〉, with:

(a) V (f) ⊆ V

(b) cf a constant taking value in a standard measurable space Y,

(c) φf : X V (f) → Y a measurable function,

(iv) B = 〈V, F, E〉 is a bipartite graph with:

(a) V a set of nodes corresponding to variables,

(b) F a set of nodes corresponding to constraints,

(c) E = {(f − v) : f ∈ F, v ∈ V (f)} a set of edges.

Henceforth we will use the terms ‘variables’ and ‘vertices corresponding to vari-
ables’ interchangeably. We will also use the terms ‘constraints’, ‘equations’, and
‘vertices corresponding to constraints’ interchangeably. A constraint is formally
defined as a triple consisting of a measurable function, a constant, and a sub-
set of the variables. For the sake of convenience we will often write constraints
as equations instead. Note that the notation for adjacencies in the associated
bipartite graph is equivalent to the notation for the variables that belong to a
constraint: V (f) = adjB(f). We will let adjB(SF ) = V (SF ) = ∪f∈SF

V (f) denote
the adjacencies of the vertices f ∈ SF ⊆ F .

2 Causal ordering

In this section, we adapt the causal ordering algorithm of Simon (1953), as it is
described in Simon (1953), rephrase it in terms of self-contained bipartite graphs,
and define the output of the algorithm as a directed cluster graph.4 We then prove
that Simon’s causal ordering algorithm is well-defined and has a unique output.

Definition 4. A directed cluster graph is an ordered pair 〈V , E〉, where V is a
partition V (1), V (2), . . . , V (n) of a set of vertices V and E is a set of edges v → V (i)

with v ∈ V and V (i) ∈ V . For x ∈ V we let cl(x) denote the cluster in V that
contains x. We say that there is a directed path from x ∈ V to y ∈ V if either
cl(x) = cl(y) or there is a sequence of clusters V1 = cl(x), V2, . . . , Vk−1, Vk = cl(y)
so that for all i ∈ {1, . . . , k−1} there is a vertex zi ∈ Vi such that (zi → Vi+1) ∈ E .

3This means that the nodes V \ W correspond to endogenous variables.
4The notion of a directed cluster graph corresponds to the box representation of a collapsed

graph in Richardson (1996), Chapter 4.
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2.1 Self-contained bipartite graphs

The causal ordering algorithm in Simon (1953) is presented in terms of a self-
contained set of equations and variables that appear in them. For bipartite graphs,
the notion of self-containedness corresponds to the conditions in Definition 5.

Definition 5. Let B = 〈V, F, E〉 be a bipartite graph. A subset F ′ ⊆ F is said to
be self-contained if

(i) |F ′| = |adjB(F ′)|,

(ii) |F ′′| ≤ |adjB(F ′′)| for all F ′′ ⊆ F ′.5

The bipartite graph B is said to be self-contained if |F | = |V | and F is self-
contained. A non-empty self-contained set F ′ ⊆ F is said to be a minimal self-
contained set6 if all its non-empty strict subsets are not self-contained.

Example 2. In Figure 2 a bipartite graph is shown with self-contained sets

{f1}, {f1, f2, f3, f4}, {f1, f2, f3, f4, f5}

where {f1} is a minimal self-contained set. Since the set {f1, f2, f3, f4, f5} is self-
contained and |V | = |F | = 5, we say that this bipartite graph is self-contained. △

v1 v2 v3 v4 v5

f1 f2 f3 f4 f5

Figure 2: A self-contained bipartite graph B = 〈V, F, E〉 with V = {v1, v2, v3, v4, v5}
and F = {f1, f2, f3, f4, f5}. The sets {f1}, {f1, f2, f3, f4}, and {f1, f2, f3, f4, f5} are
self-contained, and {f1} is the only minimal self-contained set.

Sets of equations that model systems in the real world often include both
endogenous and exogenous variables. The distinction is that exogenous variables
are assumed to be determined outside the system and function as inputs to the
model, whereas the endogenous variables are part of the system. The following
example illustrates that the associated bipartite graph for a set of equations with
both endogenous and exogenous variables is usually not self-contained.

Example 3. Let V = {v1, v2, w1, w2} be an index set for endogenous and ex-
ogenous variables X = (Xi)i∈V , W = {w1, w2} a subset that is an index set for
exogenous variables only, and F = {f1, f2} an index set for equations:

Φf1 : Xv1 −Xw1 = 0,

Φf2 : Xv2 −Xv1 −Xw2 = 0.

5This condition is also called the Hall Property (Hall, 1986).
6In this case the Strong Hall Property holds, that is |F ′′| < |adjB(F ′′)| for all ∅  F ′′  F ′

(Hall, 1986).
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The associated bipartite graph B = 〈V, F, E〉 is given in Figure 3(a). It has vertices
V , correspond to both endogenous variables Xv1 , Xv2 and exogenous variables
Xw1 , Xw2 . The vertices F correspond to constraints Φf1 and Φf2 . Edges between
vertices v ∈ V and f ∈ F are present whenever v ∈ V (F ) (i.e. when the variable
Xv appears in the constraint Φf ). Since |V | 6= |F |, the associated bipartite graph
is not self-contained. △

w1 v1 v2 w2

f1 f2

(a) Bipartite graph.

w1 v1 v2 w2

f1 f2

(b) Directed cluster graph.

Figure 3: The bipartite graph in Figure 3(a) is associated with the constraints in Example
3. Exogenous variables are indicated by dashed circles. The directed cluster graph that
is obtained by applying Algorithm 1 is shown in Figure 3(b).

2.2 Causal ordering algorithm

The causal ordering algorithm, as formulated by Simon (1953), has as input a
self-contained set of equations and as output it has an ordering on clusters of
variables that appear in these equations. We reformulate the algorithm in terms
of bipartite graphs and minimal self-contained sets. The input of the algorithm is
then a self-contained bipartite graph and its output a directed cluster graph that
we call the causal ordering graph.

The causal ordering algorithm can easily be adapted for systems of constraints
with exogenous variables. The input is then a bipartite graph B = 〈V, F, E〉 and
a set of vertices W ⊆ V (corresponding to exogenous variables) such that the
subgraph B′ induced by (V \W ) ∪ F is self-contained. The algorithm starts out
by adding the exogenous vertices as singleton clusters to a cluster set V during
an initialization step. Subsequently, the algorithm searches for a minimal self-
contained set SF ⊆ F in B′. Together with the set of adjacent variable vertices
SV = adjB(SF ) a cluster SF ∪ SV is formed and added to V . For each v ∈ V , an
edge (v → (SF ∪ SV )) is added to E if v /∈ SV and v ∈ adjB(SF ). In other words,
the cluster has an incoming edge from each variable vertex that is adjacent to the
cluster but not in it. These steps are then repeated for the subgraph induced by
the vertices (V ∪F )\(SV ∪SF ) that are not in the cluster, as long as this is not the
null graph. The order in which the self-contained sets are obtained is represented
by one of the topological orderings of the clusters in the causal ordering graph
CO(B) = 〈V , E〉. See Algorithm 1 below for more details.

Theorem 1 shows that the output of causal ordering via minimal self-contained
sets is well-defined and unique.

Theorem 1. The output of Algorithm 1 is well-defined and unique.
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Algorithm 1: Causal ordering using minimal self-contained sets.

Input: a set of exogenous vertices W , a bipartite graph B = 〈V, F, E〉 such
that the subgraph induced by (V ∪ F ) \W is self-contained

Output: directed cluster graph CO(B) = 〈V , E〉
E ← ∅ // initialization

V ← {{w} : w ∈ W} // initialization

B′ ← 〈V ′, F ′, E′〉 subgraph induced by (V ∪ F ) \W // initialization

while B′ is not the null graph do

SF ← a minimal self-contained set of F ′

C ← SF ∪ adjB′(SF ) // construct cluster

V ← V ∪ {C} // add cluster

for v ∈ adjB(SF ) \ adjB′(SF ) do

E ← E ∪ {(v → C)} // add edges to cluster

B′ ← subgraph of B′ induced by (V ′ ∪ F ′) \ C // remove cluster

The following example shows how the causal ordering algorithm works on the
self-contained bipartite graph in Figure 2 and the bipartite graph in Figure 3(a).

Example 4. Consider the set of equations in Example 3 and its associated bipar-
tite graph in Figure 3(a). The subgraph induced by the endogenous variables v1, v2

and the constraints f1, f2 is self-contained. We initialize Algorithm 1 with E the
empty set, V = {{w1}, {w2}}, and B′ be the subgraph induced by {v1, v2, f1, f2}.
We then first find the minimal self-contained set {f1}. Its adjacencies are {v1} in
B′ and {v1, w1} in B. We add {v1, f1} to V and add the edge (w1 → {v1, f1}) to E .
Finally, we add {v2, f2} to V and the edges (v1 → {v2, f2}) and (w2 → {v2, f2})
to E . The output of the causal ordering algorithm is the directed cluster graph in
Figure 3(b). This reflects how one would solve the system of equations Φf1 , Φf2

with respect to Xv1 , Xv2 in terms of Xw1 , Xw2 by hand. △

3 Markov ordering graph

First we consider (unique) solvability assumptions for systems of constraints. We
will then prove that the constructed Markov ordering graph implies conditional
independences between variables that appear in constraints. Finally, we apply our
method to the model for the filling bathtub in Example 1.

3.1 Solvability for systems of constraints

We consider (unique) solutions of systems of constraints with exogenous random
variables, and give a sufficient condition under which the output of the causal
ordering algorithm can be interpreted as the order in which sets of (endogenous)
variables can be solved in a set of equations (i.e. constraints).

11



Definition 6. We say that a tuple of random variables X∗ = (X∗
v )v∈V taking

value in X is a solution to a system of constraints 〈X , XW , Φ,B〉 if X∗
W = XW

almost surely and

φf (X∗
V (f)) = cf , ∀ f ∈ F, PX∗ -a.s.

We say that it is uniquely solvable if all its solutions are almost surely equal.

The system of constraints in the example below is not uniquely solvable and has
solutions with different distributions. The example illustrates that the dependence
or independence between solution components (i.e. endogenous variables) is not
the same for all solutions.

Example. Consider a system of constraints 〈X , XW , Φ,B〉 with X = R4 and
independent exogenous random variables XW = (Xw)w∈{w1,w2} taking value in
R2. Suppose that Φ consists of the constraints

Φf1 = 〈XV (f1) 7→ Xv1 −Xw1 , 0, {v1, w1}〉,

Φf2 = 〈XV (f2) 7→ X2
v2
− |Xw2 |, 0, {v2, w2}〉.

This system of constraints has solutions with different distributions. One solu-
tion is given by the tuple (X∗

v1
, X∗

v2
, X∗

w1
, X∗

w2
) = (X∗

w1
,
√

|X∗
w2
|, Xw1 , Xw2) and

another is given by (X ′
v1

, X ′
v2

, X ′
w1

, X ′
w2

) = (X ′
w1

, sgn(X ′
w1

)
√

|X ′
w2
|, Xw1 , Xw2).

Note that the solution components X∗
v1

and X∗
v2

are independent, whereas the
solution components X ′

v1
and X ′

v2
may be dependent. △

In order to avoid underspecified systems of constraints we require that the
system is uniquely solvable. In Definition 7 below we give a sufficient condition
under which the solution can be obtained by solving clusters of variables from
clusters of equations in the topological ordering of the causal ordering graph.

Definition 7. A system of constraints M = 〈X , XW , Φ,B〉 is uniquely solvable
w.r.t. constraints SF ⊆ F and endogenous variables SV ⊆ V (SF ) \W if for all
v ∈ SV there exists a measurable function gv : X V (SF )\SV

→ Xv s.t. for all
xV (SF ) ∈ X V (SF ):

φf (xV (f)) = cf , ∀ f ∈ SF ⇐⇒ xv = gv(xV (SF )\SV
), ∀ v ∈ SV .

We say thatM is uniquely solvable w.r.t. the causal ordering graph CO(B) = 〈V , E〉
if it is uniquely solvable w.r.t. S ∩ F and S ∩ V for all S ∈ V with S ∩W = ∅.

3.2 Directed global Markov property via causal ordering

The Markov ordering graph is constructed from a causal ordering graph by declus-
tering and then marginalizing out the vertices that correspond to constraints.

Definition 8. Let G = 〈V , E〉 be a directed cluster graph. The declustered graph
is given by D(G) = 〈V, E〉 with V = ∪S∈VS and (v → w) ∈ E if and only if
(v → cl(w)) ∈ E . For a system of constraints M = 〈X , XW , Φ,B = 〈V, F, E〉〉,
where the subgraph of B induced by (V ∪ F ) \W is self-contained, we say that
MO(B) = D(CO(B))mar(F ) is the Markov ordering graph.

12
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fOfI fD fP fK

Figure 4: The bipartite graph corresponding to the bathtub system in Section 3.3.

We assume that systems of constraints are uniquely solvable with respect
to their causal ordering graph. Under this assumption Theorem 2 relates d-
separations between vertices in the Markov ordering graph to conditional inde-
pendences between the corresponding solution components of a uniquely solvable
system of constraints.

Theorem 2. Let X∗ be a solution of a system of constraintsM = 〈X , XW , Φ,B〉,
where the subgraph of B = 〈V, F, E〉 induced by (V ∪ F ) \W is self-contained. If
M is uniquely solvable with respect to the causal ordering graph CO(B) then the
pair (MO(B),PX∗) satisfies the directed global Markov property.

3.3 Application to the filling bathtub

In Example 1 we informally described a model for a filling bathtub. The endoge-
nous variables of the system are the diameter XK of the drain, the rate XI at
which water flows from the faucet, the water pressure XP , the rate XO at which
the water goes through the drain and the water level XD. This model is formally
represented by a system of constraintsM = 〈X , XW , Φ,B〉 where

(i) X = R12
>0 is a product of standard measurable spaces corresponding to the

domain of variables that are indexed by {vK , vI , vP , vO, vD, wK , wI , w1, . . . , w5},

(ii) XW = {UI , UK , U1, . . . , U5} is a family of independent exogenous random
variables indexed by {wK , wI , w1, . . . , w5},

(iii) Φ is a family of constraints:

ΦfK
= 〈XV (fK ) 7→ XK − UK , 0, V (fK) = {vK , wK}〉,

ΦfI
= 〈XV (fI ) 7→ XI − UI , 0, V (fI) = {vI , wI}〉,

ΦfP
= 〈XV (fP ) 7→ U1(gU2XD − XP ), 0, V (fP ) = {vD, vP , w1, w2}〉,

ΦfO
= 〈XV (fO) 7→ U3(U4XKXP − XO), 0, V (fO) = {vK , vP , vO , w3, w4}〉,

ΦfD
= 〈XV (fD) 7→ U5(XI − XO), 0, V (fD) = {vI , vO , v5}〉,

(iv) the associated bipartite graph B = 〈V, F, E〉 is as in Figure 4. The ver-
tices F = {fK , fI , fP , fO, fD} correspond to constraints and the vertices
W = {wI , wK , w1, . . . , w5} and V \W = {vK , vI , vP , vO, vD} correspond to
endogenous and exogenous variable respectively. Note that the subgraph in-
duced by the endogenous vertices V \W is the self-contained bipartite graph
presented in Figure 1(a).

13
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Figure 5: The causal ordering graph for the system of a filling bathtub. The directed
cluster graph is obtained by applying the causal ordering algorithm to the bipartite graph
in Figure 4.

Solvability with respect to the causal ordering graph: Applying Algo-
rithm 1 to the bipartite graph results in the causal ordering graph CO(B) in
Figure 5. It is easy to verify that M is uniquely solvable with respect to CO(B):

(i) For the cluster {fK , vK} we have that XK − UK = 0 ⇐⇒ XK = UK .

(ii) For the cluster {fI , vI} we have that XI − UI = 0 ⇐⇒ XI = UI .

(iii) For {fO, vP } we have that U3(U4XKXP −XO) = 0 ⇐⇒ XP = XO

U4XK
.

(iv) For {fD, vO} we have that U5(XI −XO) ⇐⇒ XO = XI .

(v) For {fP , vD} we have that U1(gU2XD −XP ) ⇐⇒ XD = XP

gU2
.

One way to verify unique solvability with respect to a directed cluster graph is to
explicitly calculate its solutions, as we have done for the bathtub. In practice, we
do not always need to manually check the assumption of unique solvability with
respect to the causal ordering graph. For example, in linear systems of equations
of the form AX = Y , we may use the fact that this assumption is satisfied when
the matrix of coefficients A is invertible. More generally, global implicit function
theorems give conditions under which (non-linear) systems of equations have a
unique solution (Krantz and Parks, 2013).

Markov ordering graph By applying the causal ordering algorithm to the
bipartite graph in Figure 4 we obtain the causal ordering graph in Figure 5. Ap-
plication of declustering and marginalization of vertices in F , as in Definition 8
results in the Markov ordering graph in Figure 6(a). SinceM is uniquely solvable
with respect to CO(B), Theorem 2 tells us that the pair (MO(B),PX∗) satisfies
the directed global Markov property, where X∗ is a solution ofM.

Encoded conditional independences: Under the assumption of unique solv-
ability with respect to the causal ordering graph, we can read off conditional inde-
pendences between endogenous variables from the Markov ordering graph. More
precisely, the d-separations in MO(B) between vertices in V \W imply conditional
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(a) Markov ordering graph
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(b) Graph of the SCM.

Figure 6: The Markov ordering graph for the system of a filling bathtub, obtained by
applying Definition 8 to the causal ordering graph in Figure 5 is given in Figure 6(a).
The d-separations in this graph imply conditional independences between corresponding
endogenous variables. Most of these conditional independences cannot be read off from
the graph for the SCM of the bathtub system in Figure 6(b), except for XI ⊥⊥ XK .

independences between the corresponding endogenous variables. For example:

vK

d

⊥
MO(B)

vO =⇒ XK ⊥⊥ XO,

vK

d

⊥
MO(B)

vD | vP =⇒ XK ⊥⊥ XD |XP ,

vI

d

⊥
MO(B)

vP | vO =⇒ XI ⊥⊥ XP |XO,

vO

d

⊥
MO(B)

vD | vP =⇒ XO ⊥⊥ XD |XP .

Comparison to SCM representation: The (random) differential equations
that describe the system of a bathtub at equilibrium can also be mapped to an
SCM with the following structural equations (see Bongers and Mooij (2018)):

XK = UK ,

XI = UI ,

XP = gU3XD,

XO = U5XKXP ,

XD = XD + U1(XI −XO).

The graph of this SCM is depicted in Figure 6(b). The graph contains both a cycle
and a self-loop. There currently is no Markov property for such an SCM that would
imply the conditional independence between the diameter XK of the drain and
the rate XO at which water flows through the drain, for instance. Actually, most
of the conditional independences implied by the Markov ordering graph cannot
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be read off from the graphical representation of the SCM via the d-separations,
except for XI ⊥⊥ XK .

An important difference between SCMs and systems of constraints is that while
the former require a particular one-to-one correspondence between endogenous
variables and structural equations, the latter do not require a similar correspon-
dence between endogenous variables and constraints. Interestingly, a one-to-one
correspondence between variables and constraints is obtained automatically by
the causal ordering algorithm. We will discuss several advantages of applying the
technique of causal ordering to structural equations in Section 6.2.

4 Generalized dGMP via causal ordering

In this section we present an adaptation of an alternative, computationally less
expensive, algorithm for causal ordering which uses perfect matchings instead of
minimal self-contained sets, similar to the algorithms in Gonçalves and Porto
(2016) and Nayak (1995). We provide a proof for the fact that causal ordering via
minimal self-contained sets is equivalent to causal ordering via perfect matchings.
We also present a novel result regarding the generalized directed global Markov
property for solutions of systems of constraints and an associated directed graph.

4.1 Causal ordering via perfect matchings

The associated directed graph can be constructed from a matching M for a bipartite
graph B by orienting edges. The causal ordering graph is then constructed via the
operations, that construct clusters and merge clusters, in Definition 9 below.

Definition 9. Let B = 〈V, F, E〉 be a bipartite graph and M a matching for B.

(i) Orient edges: For each (v − f) ∈ E the edge set Edir has an edge (v ← f)
if (v − f) ∈ M and an edge (v → f) if (v − f) /∈ M . It has no additional
edges. The associated directed graph is G(B, M) = 〈V ∪ F, Edir〉.

(ii) Construct clusters: Let V ′ be partition of vertices V ∪ F into strongly con-
nected components in G(B, M). For each (x→ w) ∈ Edir the edge set E ′ has
an edge (x→ cl(w)) if x /∈ cl(w), where cl(w) ∈ V ′ is the strongly connected
component of w in G(B, M). It has no additional edges. The associated
clustered graph is given by clust(G(B, M)) = 〈V ′, E ′〉.

(iii) Merge clusters: Let V = {S ∪M(S) : S ∈ V ′}. For each (x → S) ∈ E ′

with x /∈ M(S) the edge set E contains an edge (x → S ∪M(S)). It has
no additional edges. The associated clustered and merged graph is given by
merge(clust(G(B, M))) = 〈V , E〉.

For causal ordering via perfect matchings we require a set of exogenous vertices
W and a bipartite graph B = 〈V, F, E〉, for which the subgraph B′ induced by the
vertices (V ∪ F ) \W is self-contained, as input. The output is a directed cluster
graph. The details can be found in Algorithm 2. We see that the algorithm starts
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out by finding a perfect matching7 8 for B′, which is then used to orient edges
in the bipartite graph B. The algorithm then proceeds by partitioning vertices in
the resulting directed graph into strongly connected components to construct the
associated clustered graph.9 Finally, the merge operation is applied to construct
the causal ordering graph.

Algorithm 2: Causal ordering via perfect matchings.

Input: a set of exogenous vertices W , a bipartite graph B = 〈V, F, E〉 such
that the subgraph induced by (V ∪ F ) \W is self-contained

Output: directed cluster graph 〈V , E〉
B′ ← subgraph induced by (V ∪ F ) \W // initialization

M ← perfect matching for B′ // initialization

Edir ← ∅ // orient edges

for (v − f) ∈ E do

if (v − f) ∈M then
Add (v ← f) to Edir

else
Add (v → f) to Edir

V ′ ← strongly connected components of 〈V ∪ F, Edir〉 // clustering

E ′ ← ∅
for (x→ w) ∈ Edir do

for S ∈ V ′ do

if w ∈ S and x /∈ S then
Add (x→ S) to E ′

V , E ← ∅ // merge clusters

for S ∈ V ′ do

Add S ∪M(S) to V
for (x→ S) ∈ E ′ do

if x /∈M(S) then
Add (x→ S ∪M(S)) to E

Theorem 3 below shows that causal ordering via perfect matchings is equivalent
to causal ordering via minimal self-contained sets.

Theorem 3. The output of Algorithm 2 coincides with the output of Algorithm 1.

The following example illustrates that the output of causal ordering via perfect
matchings does not depend on the choice of perfect matching and coincides with
the output of Algorithm 1.

7Note that a bipartite graph has a perfect matching if and only if it is self-contained (Hall,
1986). See also Theorem 5 and Corollary 1 in Section 8.3 in the supplementary material.

8The Hopcraft-Karp-Karzanov algorithm, which runs in O(|E|
√

|V ∪ F |), can be used to find

a perfect matching (Hopcroft and Karp, 1973; Karzanov, 1973).
9Tarjan’s algorithm, which runs in linear time, can be used to find the strongly connected

components in a directed graph (Tarjan, 1972).

17



Example 5. Consider the bipartite graph B in Figure 7(a). The subgraph in-
duced by the vertices V = {v1, . . . , v5} and F = {f1, . . . , f5} is the self-contained
bipartite graph in Figure 2. We will follow the steps in both Algorithm 1 and 2 to
construct the causal ordering graph.

For causal ordering with minimal self-contained sets we first add the exogenous
variables to the cluster set V as the singleton clusters {w1}, {w2}, {w3}, {w4},
{w5}, and {w6}. The only minimal self-contained set in the subgraph induced by
the vertices V = {v1, . . . , v5} and F = {f1, . . . , f5} is {f1}. Since f1 is adjacent to
v1 we add C1 = {v1, f1} to V . Since f1 is adjacent to w1 in B we add (w1 → C1)
to E . The subgraph B′ = 〈V ′, F ′, E′〉 induced by the remaining nodes V ′ =
{v2, v3, v4, v5} and F ′ = {f2, f3, f4, f5} has {f2, f3, f4} as its only minimal self-
contained set. Since the set {f2, f3, f4} is adjacent to {v2, v3, v4} in B′, we add
C2 = {v2, v3, v4, f2, f3, f4} to V . Since v1, w2, w3, w4, and w5 are adjacent to
{f2, f3, f4} in B but not part of C2, we add the edges (v1 → C2), (w2 → C2),
(w3 → C2), (w4 → C2), and (w5 → C2) to E . The subgraph induced by the
remaining nodes v5 and f5 has {f5} as its minimal self-contained subset. We add
C3 = {v5, f5} to V and the edges (v4 → C3) and (w6 → C3) to E . The directed
cluster graph CO(B) = 〈V , E〉 is given in Figure 7(e).

For causal ordering via perfect matchings, we consider the following two perfect
matchings of the self-contained bipartite graph in Figure 2:

M1 = {(v1 − f1), (v2 − f2), (v3 − f3), (v4 − f4), (v5 − f5)},

M2 = {(v1 − f1), (v2 − f4), (v3 − f2), (v4 − f3), (v5 − f5)}.

We use these one-to-one correspondences between endogenous variable vertices
and constraint vertices in the orientation step in Definition 9 to obtain the associ-
ated directed graphs G(B, M1) and G(B, M2) in Figures 7(b) and 7(c) respectively.
Application of the clustering step in Definition 9 to either G(B, M1) or G(B, M2)
results in the clustered graph clust(G(B, M2)) = clust(G(B, M1)) in Figure 7(d).
The final step is to merge clusters in this directed cluster graph. We find that the
causal ordering graph merge(clust(G(B, M1))) = merge(clust(G(B, M2))) in Fig-
ure 7(e) does not depend on the choice of perfect matching. Note that the output
of causal ordering with minimal self-contained sets coincides with the output of
causal ordering via perfect matchings. △

4.2 Generalized directed global Markov property

The main result of this section is stated in Proposition 1 below, which shows that,
for systems that are uniquely solvable with respect to the causal ordering graph,
the σ-separations between variable vertices in the directed graph G(B, M)mar(F )

imply conditional independences between the corresponding variables.

Proposition 1. Let X∗ be a solution of a system of constraintsM = 〈X , XW , Φ,B〉,
where the subgraph of B = 〈V, F, E〉 induced by (V ∪F )\W has a perfect matching
M . If for each strongly connected component S in G(B, M) with S ∩W = ∅, the
systemM is uniquely solvable w.r.t. SV = (S∪M(S))∩V and SF = (S∪M(S))∩F
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(a) Bipartite graph B where dashed vertices indicate exogenous variables.

w1 v1 w2 v2 w3 v3 w4 v4 w5 v5 w6

f1 f2 f3 f4 f5

(b) Associated directed graph G(B, M1).

w1 v1 w2 v2 w3 v3 w4 v4 w5 v5 w6

f1 f2 f3 f4 f5

(c) Associated directed graph G(B, M2).

v1 v2 v3 v4 v5

f1 f2 f3 f4 f5

w1 w2 w3 w4 w5 w6

(d) Clustered graph clust(G(B, M1)) = clust(G(B, M2)).

v1 v2 v3 v4 v5

f1 f2 f3 f4 f5

w1 w2 w3 w4 w5 w6

(e) Causal ordering graph CO(B) = merge(clust(G(B, M1))) = merge(clust(G(B, M2))).

Figure 7: Causal ordering with two different perfect matchings M1 and M2 applied to the
bipartite graph in Figure 7(a). The results of subsequently orienting edges, constructing
clusters, and merging clusters as in Definition 9 are given in Figures 7(b) to 7(e).
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(a) MO(B)mar(W ).
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(b) G(B, M1)mar(F ∪W ).
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(c) G(B, M2)mar(F ∪W ).

Figure 8: The Markov ordering graph of the bipartite graph in Figure 7(a), after marginal-
ization of exogenous vertices W , is given in Figure 8(a). The directed graphs in Figures
8(b) and 8(c) are obtained by marginalizig out the constraint vertices F and exoge-
nous vertices W from the directed graphs G(B, M1) and G(B, M2) in Figures 7(b) and
7(c) respectively. Note that d-separations in the Markov ordering graph correspond to
σ-separations in the associated directed graphs in Figures 7(b) and 7(c).

then the pair (G(B, M)mar(F ),PX∗) satisfies the generalized directed global Markov
property.

Example 6. Consider a system of constraints M = 〈X , XW , Φ,B〉 with W =
{w1, . . . , w6}, V \W = {v1, . . . , v5}, F = {f1, . . . , f5}, and B = 〈V, F, E〉 as in
Figure 7(a). Suppose that X = R11 and Φ consists of constraints:

Φf1 : Xv1 −Xw1 = 0,

Φf2 : Xv2 −Xv1 + Xv3 + Xw2 −Xw3 = 0,

Φf3 : Xw4 −Xv3 + Xv4 = 0,

Φf4 : Xw5 + Xv2 −Xv4 = 0,

Φf5 : Xw6 −Xv4 + Xv5 = 0.

It is easy to check that this linear system of equations can be uniquely solved in
the order prescribed by the causal ordering graph CO(B) in Figure 7(e). There-
fore, according to Theorem 2 the d-separations among endogenous variables in the
corresponding Markov ordering graph MO(B) imply conditional independences
between the corresponding endogenous variables. It follows that d-separations
in the Markov ordering graph MO(B)mar(W ) for the endogenous variables in Fig-
ure 8(a) imply conditional independences between the corresponding variables.
For example, we see that v1 and v5 are d-separated by v4 and deduce that for a
solution X∗ to the system of constraints it holds that X∗

v1
⊥⊥ X∗

v5
|X∗

v4
. Interest-

ingly, d-separations in MO(B)mar(W ) coincide with σ-separations in the associated
directed graphs G(B, M1)mar(F ∪W ) and G(B, M2)mar(F ∪W ). It follows from Propo-
sition 1 that the σ-separations in G(B, M1)mar(F ∪W ) and G(B, M2)mar(F ∪W ), which
are given in Figures 8(b) and 8(c) respectively, imply conditional independences
between the corresponding variables. △

5 Causal implications for sets of equations

It is common to relate causation directly to the effects of manipulation (Pearl, 2000;
Woodward, 2003), although there are many ways to model manipulations on sets
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of equations. In order to derive causal implications from systems of constraints, we
explicitly define two types of manipulation. We consider the notions of both soft
and perfect interventions.10 We prove that the causal ordering graph represents
the effects of both soft interventions on equations and perfect interventions on
clusters in the causal ordering graph. We also show that these manipulations
commute with causal ordering.

5.1 The effects of soft interventions

A soft intervention, also known as a “mechanism change”, acts on a constraint. It
replaces the targeted constraint by a constraint in which the same variables appear
as in the original one. This type of intervention does not change the bipartite graph
that represents the structure of the constraints.

Definition 10. Let M = 〈X , XW , Φ,B〉 be a system of constraints, Φf =
〈φf , cf , V (f)〉 ∈ Φ a constraint, c a constant taking value in a measurable space
Y , and φ : X V (f) → Y a measurable function. A soft intervention si(f, φ, c)
targeting Φf results in the intervened system Msi(f,φ,c) = 〈X , XW , Φsi(f,φ,c),B〉
where Φsi(f,φ,c) = (Φ \ {Φf}) ∪ {Φ′

f} with Φ′
f = 〈φ, c, V (f)〉.

Theorem 4 shows that, under the assumption of unique solvability w.r.t. the
causal ordering graph, a soft intervention on a constraint has no effect on variables
that cannot be reached by a directed path from that variable in the causal ordering
graph, while it generically does have an effect on other variables.11

Theorem 4. Let M = 〈X , XW , Φ,B〉 be a system of constraints such that the
subgraph of B induced by endogenous variables and constraints is self-contained.
Suppose that M is uniquely solvable w.r.t. the causal ordering graph CO(B) and
let X∗ be a solution. Assume that the intervened systemMsi(f,φ,c) is also uniquely
solvable w.r.t. CO(B) and let X ′ be a solution. If there is no directed path from
f to v ∈ V \W in CO(B) then X∗

v = X ′
v almost surely. Conversely, if there is a

directed path f to v in CO(B) then X∗
v may have a different distribution than X ′

v.

This shows that the effects of soft interventions can be read off from the causal
ordering graph. We illustrate this idea on the bathtub system.

Example 7. Recall the system of constraints for the filling bathtub in Section 3.3.
Think of an experiment where the gravitational constant g is changed so that it
takes on a different value g′ without altering the other equations that describe the
bathtub system. Such an experiment is, at least in theory, feasible. For example, it
can be accomplished by accelarating the bathtub system or by moving the bathtub
system to another planet. We can model such an experiment by a soft intervention
targeting fP that replaces the constraint ΦfP

by

〈XV (fP ) 7→ U1(g′U2XD −XP ), 0, V (fP ) = {vD, vP , w1, w2}〉.

10Our definitions in the context of systems of constraints may deviate from conventional defini-
tions of interventions on Structural Causal Models (also known as Structural Equation Models).

11Our results generalize Theorem 6.1 in Simon (1953), where a similar result is proven for
linear systems of equations. The proof of our theorem is similar.
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Table 1: The effects of soft interventions on constraints in the causal ordering graph for
the bathtub system in Figure 5.

target generic effect non-effect

fK XK , XP , XD XI , XO

fI XI , XP , XO, XD XK

fP XD XK , XI , XP , XO

fO XP , XD XK , XI , XO

fD XP , XO, XD XK , XI

Which variables are and which are not affected by this soft intervention? We
can read off the effects of this soft intervention from the causal ordering graph
in Figure 5. There is no directed path from fP to vK , vI , vP or vO. Therefore,
perhaps surprisingly, Theorem 4 tells us that the soft intervention targeting fP

neither has an effect on the pressure XP nor on the outflow rate XO. Since there is
a directed path from fP to vD, the water level XD is generically different after the
soft intervention on fP . The effects and non-effects of soft interventions on other
constraints can also be read off from the causal ordering graph and are presented
in Table 1. △

5.2 The effects of perfect interventions

A perfect intervention acts on a variable and a constraint. It replaces the targeted
constraint by a constraint that sets the targeted variable equal to a constant.12

Definition 11. Let M = 〈X , XW , Φ,B = 〈V, F, E〉〉 be a system of constraints
and let ξv ∈ Xv. A perfect intervention do(f, v, ξv) targeting the variable v ∈
V \W and the constraint f ∈ F results in the intervened system Mdo(f,v,ξv) =
〈X , XW , Φdo(f,v,ξv),Bdo(f,v)〉 where

(i) Φdo(f,v,ξv) = (Φ \Φf ) ∪ {Φ′
f} with Φ′

f = 〈Xv 7→ Xv, ξv, {v}〉,

(ii) Bdo(f,v) = 〈V, F, E′〉 with E′ = {(i− j) ∈ E : i, j 6= f} ∪ {(v − f)}.

Perfect interventions on a set of variable-constraint pairs {(f1, v1), . . . , (fn, vn)}
in a system of constraints are denoted by do(SF , SV , ξSV

) where SF = 〈f1, . . . , fn〉
and SV = 〈v1, . . . , vn〉 are tuples. For a bipartite graph B so that the subgraph
induced by (V ∪ F ) \W is self-contained, Lemma 1 shows that CO(Bdo(SF ∪SV ))
is well-defined if S = (SF ∪ SV ) is a cluster in CO(B) with S ∩W = ∅.

12In an SCM, each variable is associated with a single structural equation. Pearl (2000) defines
perfect interventions on a variable as an operation that replaces its corresponding structural
equation by an equation that sets the variable equal to a constant. This notion of a perfect
intervention is not possible in general for a system of constraints since there is no imposed
one-to-one correspondence between equations and variables.
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Lemma 1. Let B = 〈V, F, E〉 be a bipartite graph and W ⊆ V , so that the subgraph
of B induced by V ∪ F is self-contained. Consider an intervention do(SV , SF ) on
a cluster S = SV ∪ SF with S ∩W = ∅ in the causal ordering graph CO(B). The
subgraph of Bdo(SV ,SF ) induced by (V ∪ F ) \W is self-contained.

Proposition 2 shows how the causal ordering graph can be used to read off
the effects of perfect interventions on clusters under the assumption of unique
solvability with respect to the causal ordering graph.

Proposition 2. Let M = 〈X , XW , Φ,B = 〈V, F, E〉〉 such that the subgraph of
B induced by (V ∪ F ) \ W is self-contained. Assume that it is uniquely solv-
able w.r.t. CO(B) = 〈V , E〉 and let X∗ be a solution of M. Let SF ⊆ F and
SV ⊆ V \W be such that (SF ∪ SV ) ∈ V. Assume that the intervened system
Mdo(SF ,SV ,ξSV

) is uniquely solvable w.r.t. CO(Bdo(SF ,SV )) and let X ′ be a solu-

tion of Mdo(SF ,SV ,ξSV
). If there is no directed path from any x ∈ SV to v ∈ V

in CO(B) then X∗
v = X ′

v almost surely. Conversely, if there is x ∈ SV such that
there is a directed path x to v in CO(B) then X∗

v may have a different distribution
than X ′

v.

One way to determine whether a perfect intervention has an effect on a cer-
tain variable is to explicitly solve the system of constraints before and after the
intervention and check which solution components are altered. Under a solvability
assumption we can establish the effects of a perfect intervention without solving
the equations. Example 8 illustrates this notion of perfect intervention on the
system of constraints for the filling bathtub that we first introduced in Example 1
and shows how the effects and non-effects of perfect interventions on clusters can
be read off from the causal ordering graph.

Example 8. Recall the system of constraints M for the filling bathtub in Sec-
tion 3.3. Consider the perfect interventions do(fP , vD, ξD), do(fD, vO, ξO), and
do(fD, vD, ξD). These interventions model experiments that can, at least in prin-
ciple, be conducted in practice:

(i) The intervention do(fP , vD, ξD) replaces the constraint fP by a constraint
that sets the water level XD equal to a constant. This could correspond to an
experimental set-up where the constant g in the constraint ΦfP

is controlled
by accelerating and decelerating the bathtub system precisely in such a way
that the water level XD is forced to take on a constant value ξD.

(ii) The interventions do(fD, vO, ξO) and do(fD, vD, ξD), may correspond to an
experiment where a hose is added to the system that can remove or add
water precisely in such a way that either the outflow rate XO or the water
level XD is kept at a constant level.

By explicit calculation we obtain the (unique) solutions in Table 2 for the observed
and intervened bathtub systems. By comparing with the solutions in the observed
column we read off that the perfect intervention do(fP , vD, ξD) does not change
the solution for the variables XK , XI , XP , XO, but it generically does change the
solution for XD. We further find that do(fD, vD, ξD) and do(fD, vO, ξD) affect the
solution for the variables XP , XO, XD but not of XK and XI .
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Table 2: Solutions for system of constraints describing the bathtub system in Sec-
tion 3.3 without interventions (i.e. the observed system) and after perfect interventions
do(fP , vD, ξD), do(fD, vO , ξO), and do(fD, vD, ξD).

observed do(fP , vD, ξD) do(fD, vO, ξO) do(fD, vD, ξD)

X∗
K XUK

XUK
XUK

XUK

X∗
I XUI

XUI
XUI

XUI

X∗
P

XUI

(XC4 XUK
)

XUI

(XC4 XUK
)

ξO

(XC4 XUK
) gXC2ξD

X∗
O XUI

XUI
ξO XC4XUK

gXC2ξD

X∗
D

XUI

(XC4 XUK
gXC2 ) ξD

ξO

(XC4 XUK
gXC2 ) ξD

Table 3: The effects of perfect interventions on variables and constraints in the causal
ordering graph for the bathtub system in Figure 5 obtained by Proposition 2.

target generic effect non-effect

fK , vK XK , XP , XD XI , XO

fI , vI XI , XP , XO, XD XK

fP , vD XD XK , XI , XP , XO

fO, vP XP , XD XK , XI , XO

fD, vO XP , XO, XD XK , XI

fP , fD, fO, vP , vD, vO XP , XO, XD XK , XI

The causal ordering graph CO(B) = 〈V , E〉 for the bathtub system is given in
Figure 5. It has clusters V = {{fK, vK}, {fI, vI}, {fP , vD}, {fO, vP }, {fD, vO}}.
Under the assumption that the (intervened) system is uniquely solvable w.r.t. its
causal ordering graph, we can apply Proposition 2 and read off the effects and non-
effects of perfect interventions on clusters, which are presented in Table 3. This
illustrates the fact that we can establish the generic effects and non-effects of the
perfect interventions do(fP , vD, ξD) and do(fD, vO, ξO), which act on clusters in
the causal ordering graph, without explicitly solving the system of equations. We
will discuss differences between causal implications of the causal ordering graph
and the graph of the SCM in Figure 6(b) in Section 6. △

5.3 Interventions commute with causal ordering

We define an operation of “perfect intervention” directly on causal ordering graphs.
Roughly speaking, a perfect intervention on a cluster in a directed cluster graph
removes all incoming edges to that cluster and separates all variable vertices and
constraint vertices in the targeted cluster into separate clusters in a specified way.

Definition 12. Let B = 〈V, F, E〉 be a bipartite graph and W a set of exogenous
variables such that the subgraph of B induced by (V ∪F )\W is self-contained. Let
CO(B) = 〈V , E〉 be the corresponding causal ordering graph and consider S ∈ V
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with S ∩W = ∅. Let SF = 〈fi : i = 1, . . . , n〉 and SV = 〈vi : i = 1, . . . , n〉 with
n = |S ∩ V | = |S ∩ F | be tuples consisting of all the vertices in S ∩ F and S ∩ V
respectively. A perfect intervention on a cluster do(SF , SV ) results in the directed
cluster graph CO(B)do(SF ,SV ) = 〈V ′, E ′〉 where

(i) V ′ = (V \ {S}) ∪ {{vi, fi} : i = 1, . . . , n},

(ii) E ′ = {(x→ T ) ∈ E : T 6= S}.

A soft intervention on a system of constraints has no effect on the graphical
structure of the constraints and the variables that appear in them. Since the
bipartite graph of the system is thus the same before and after soft interventions,
it trivially follows that soft interventions commute with causal ordering. The
following proposition shows that perfect interventions on clusters also commute
with causal ordering.

Proposition 3. Let B = 〈V, F, E〉 be a bipartite graph and W a set of exogenous
variables such that the subgraph of B induced by (V ∪ F ) \W is self contained.
Let CO(B) = 〈V , E〉 be the corresponding causal ordering graph. Let SF ⊆ F and
SV ⊆ V \W be such that (SF ∪ SV ) ∈ V. Then:

CO(Bdo(SF ,SV )) = CO(B)do(SF ,SV ).

The bipartite graph in Figure 9(a) has the causal ordering graph depicted in
Figure 9(b). The perfect intervention do(SF , SV ) with SF = 〈f2, f3〉 and SV =
{v2, v3} on this causal ordering graph results in the directed cluster graph in Figure
9(c). Since perfect interventions on clusters commute with causal ordering this
graph can also be obtained by applying the causal ordering graph to the intervened
bipartite graph in Figure 9(c). Proposition 3 shows that perfect interventions on
the graphical level can be used to draw conclusions about dependencies and causal
implications of the underlying intervened system of constraints.

6 Discussion

In this section we give a detailed account of how our work relates to some of the
existing literature on causal ordering and causal modelling.

6.1 “The causal graph”: A misnomer?

Our work extends the work of Simon (1953) who introduced the causal ordering
algorithm. In this work, we extensively discussed the example of a bathtub that
first appeared in Iwasaki and Simon (1994), in which the authors refer to the
Markov ordering graph as “the causal graph” and claim that this graph represents
the effects of “manipulations”. We note that the Markov ordering graph in the
previous section does not have clear causal implications, contrary to claims in the
literature. In this work we have formalized soft and perfect interventions, which
are two common types of manipulation. This allows us to show that the Markov
ordering graph, unlike the causal ordering graph, neither represents the effects
of soft interventions nor does it have a straightforward interpretation in terms of
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v1 v2 v3 v4

f1 f2 f3 f4

(a) Bipartite graph B.

v1 v2 v3 v4

f1 f2 f3 f4

(b) Causal ordering graph CO(B).

v1 v2 v3 v4

f1 f2 f3 f4

(c) Intervened bipartite graph Bdo(SF ,SV ).

v1 v2 v3 v4

f1 f2 f3 f4

(d) CO(Bdo(SF ,SV )) = CO(B)do(SF ,SV ).

Figure 9: The intervention do(SF , SV ) with ordered sets SF = 〈f2, f3〉 and SV = 〈v2, v3〉
commutes with causal ordering. Application of causal ordering and the intervention to
the bipartite graph in Figure 9(a) results in the causal ordering graph in Figure 9(b) and
the intervened bipartite graph in Figure 9(c) respectively. The directed cluster graph in
Figure 9(d) can be obtained either by applying causal ordering to the intervened bipartite
graph or by intervening on the causal ordering graph.

perfect interventions. Iwasaki and Simon (1994) do not clarify what the correct
causal interpretation of the Markov ordering graph should be and therefore we
believe that the term “causal graph” is a misnomer.

Markov ordering. To support this claim, we consider the bathtub system in
Iwasaki and Simon (1994) that we presented in Example 1. The structure of the
equations and the endogenous variables that appear in them can be represented
by the bipartite graph in Figure 10(a). The corresponding Markov ordering graph
in Figure 10(c) corresponds to the graph that Iwasaki and Simon (1994) call the
“causal graph” for the bathtub system. Note that Iwasaki and Simon (1994) do not
make a distinction between variable vertices and equation vertices like we do. Their
“causal graph” therefore has vertices K, I, P, O, D instead of vK , vI , vP , vO, vD.
An aspect that is not discussed at all by Iwasaki and Simon (1994), is that the
Markov ordering graph represents conditional independences between components
of solutions of equations.

Soft interventions. Table 1 shows that a soft intervention on fD has a generic
effect on the solution for the variables vP , vO, and vD. This soft intervention can-
not be read off from the Markov ordering graph in Figure 10(c) because there is no
vertex fD in the graph. Since Iwasaki and Simon (1994) make no distinction be-
tween variable vertices and equation vertices, a manipulation on D should perhaps
be interpreted as a soft intervention on the vertex D in the graph in Figure 10(c)
instead. However, the graphical structure would lead us to erroneously conclude
that the soft intervention on D only has an effect on the variable D. We conclude
that the Markov ordering graph does not represent the effects of soft interventions
on equations in general.
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Perfect interventions. In Example 8 we calculated that the perfect interven-
tion do(fD, vD, ξD) had an effect on the solution of the variables vP , vO and vD. If
we would interpret this manipulation as a perfect intervention on D in the Markov
ordering graph in Figure 10(c) then we would mistakenly find that this interven-
tion only affects the variable D. Since Iwasaki and Simon (1994) do not make a
distinction between variable vertices and equation vertices we could also interpret
a manipulation on D as the perfect interventions do(fP , vD, ξD) or do(fD, vO, ξO).
From Table 2 we see that these perfect interventions would change the solution
of the variables {vD} and {vP , vO, vD} respectively. Only the perfect intervention
do(fP , vD, ξD) which targets the cluster containing vD corresponds to a perfect
intervention on D in the Markov ordering graph in Figure 10(c). Since it is not
clear from the graph what type of experiment a perfect intervention on one of its
vertices should correspond to, we conclude that the Markov ordering graph cannot
be used to read off the effects of perfect interventions.

Causal ordering graph. The causal ordering graph for the bathtub system is
given in Figure 1(b). We proved that the causal ordering graph, contrary to the
Markov ordering graph, represents the effects of soft interventions on equations
and perfect interventions on clusters (see Theorem 2 and Proposition 2). To derive
causal implications from sets of equations we therefore propose to use the notion
of the causal ordering graph instead. The distinction between variable vertices
and equations vertices is also made by Simon (1953) who shows how, for linear
systems of equations, the principles of causal ordering can be used to qualitatively
assess the effects of soft interventions on equations. A different, but closely related,
notion of the causal ordering graph is used by Hautier and Barre (2004) in the
context of control systems modelling.

6.2 Relation to other causal models

The results in this work apply to self-contained sets of equations and are easily
applicable to other modelling frameworks, such as the popular framework provided
by SCMs (Bongers, Forré, et al., 2020; Pearl, 2000). There are clear benefits of
applying causal ordering to constraints implied by structural equations in SCMs.
In particular, causal ordering may lead to a stronger Markov property or a rep-
resentation of effects of a different set of (perfect) interventions. Even though
the causal ordering graph itself may not allow us to read off the (non)-effects of
arbitrary perfect interventions, these can still be derived by intervening on the bi-
partite graph and then applying the causal ordering algorithm. The corresponding
Markov ordering graph generally gives the strongest Markov property for a causal
model formulated in terms of a set of equations.

Structural Causal Models. In an SCM, each endogenous variable is on the
left-hand side of exactly one structural equation and perfect interventions always
act on a structural equation and its corresponding variable. In comparison, a
system of constraints consists of symmetric equations and the asymmetric rela-
tions between variables are learned automatically by the causal ordering algorithm.
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(a) The bipartite graph B.

vI vO vD vP vK

fI fD fO fP fK

(b) The bipartite graph Bdo(fD,vD).
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(c) MO(B).
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(d) MO(B)do(D).

I D P
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K

(e) MO(Bdo(fD ,vD)).

Figure 10: The bipartite graph for the bathtub system without exogenous variable is
given in Figure 10(a). The intervened bipartite graph is given in Figure 10(b). The
Markov ordering graphs for the observed and intervened bathtub system are given in
Figures 10(c) and 10(e) respectively. Figure 10(d) shows the graph that we obtain by
intervening on the Markov ordering graph. Note that this does not correspond with the
Markov ordering graph of the intervened bathtub system.

Consider, for example, the following structural equations:

X1 = U1

X2 = aX1 + U2,

where X1, X2 are endogenous variables, U1, U2 are exogenous random variables,
and a is a constant. The ordering X1 → X2 can also be obtained by causal ordering
of the following set of equations:

X1 − U1 = 0,

X2 − aX1 − U2 = 0.

Note that any set of structural equations implies a self-contained set of equations.13

We can thus always apply the causal ordering algorithm to structural equations.
Interestingly, since the output of the causal ordering algorithm is unique (see
Theorem 1), the structure that is provided by the structural equations is actually
redundant if the structural equations contain no cycles. If cycles are present it
is not clear exactly what the assumed SCM structure (or equivalently the perfect
matching) adds.

13In a set of structural equations each variable is matched to a single equation. Since the set
of equations has a perfect matching it is self-contained by Hall’s marriage theorem (see Theorem
5 in Section 8).
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SCM for the bathtub. Recall that at equilibrium, the bathtub system can be
described by the following structural equations:

XK = UK , XO = U5XKXP ,

XI = UI , XD = XD + U1(XI −XO),

XP = gU3XD.

The graph of this SCM is depicted in Figure 6(b), and the descendants and non-
descendants of vertices in this graph are given in Table 4. Can we use this table to
read off generic causal effects of perfect interventions targeting {fK , vK}, {fI , vI},
{fP , vP }, {fO, vO}, and {fD, vD}? The graph of the SCM contains cycles and
does not have a (unique) solution under each perfect intervention.14 Therefore, the
graph of this SCM does not have a straightforward causal interpretation (Bongers,
Forré, et al., 2020). More precisely, the presence or absence of directed paths
between vertices may not directly correspond to the presence or absence of causal
relations.15 For the bathtub system, the advantages of causal ordering on the
structural equations of the SCM are:

(i) There currently is no Markov property for the graph of the SCM in Figure
6(b) that implies all the conditional independences that are implied by the
d-separations in the Markov ordering graph in Figure 6(a).

(ii) The graph of the SCM and the causal ordering graph represent different inter-
vention targets. In the graph of the SCM, we have intervention targets of the
form {fi, vi} with i ∈ {K, I, P, O, D}, while the causal ordering graph repre-
sents perfect interventions on clusters {fK , vK}, {fI , vI}, {fP , vD}, {fO, vP },
and {fD, vO}.

(iii) The causal ordering graph of the bathtub has a straightforward causal in-
terpretation because the bathtub system has a unique solution under inter-
ventions on clusters in the causal ordering graph.16 In contrast, the graph
of the SCM for the bathtub system does not have a straightforward causal
interpretation and the bathtub system does not have a solution under each
perfect intervention on the SCM. Note that Table 4 shows that vO is a de-
scendant of vK in the graph of the SCM while the solution for the outflow
rate XO does not change after the perfect intervention do(fK , vK), a fact
that can be read off from the causal ordering graph in Figure 1(b).

14Note that the perfect interventions on the SCM {fK , vK}, {fI , vI}, {fP , vP }, {fO , vO},
{fD , vD} are a subset of the perfect interventions on the set of equations. Furthermore, there is
no unique solution if one fixes the outflow rate of the system XO to a value that is not equal to
XI via a change in the equation fO. This reflects the draining or overflowing of the bathtub in
this type of experiment.

15Instead, we could check the conditions of Proposition 7.1.1. in Bongers, Forré, et al. (2020)
to test for the presence of generic causal effects. The causal effects of interventions that are
implied by the SCM are presented in Table 5 in the supplementary material.

16Because directed cluster graphs are acyclic by construction, it is often easy to verify that the
system is uniquely solvable with respect to an intervened causal ordering graph. The existence
of a directed path from a cluster targeted by an intervention to a certain variable implies that
the intervention generically changes the solution of that variable.
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Other frameworks. Since the causal ordering algorithm can be applied to any
self-contained set of equations, the results that we developed here are generally
applicable to sets of equations in other modelling frameworks. For example, the
recently introduced Causal Constraint Models (CCMs) do not yet have a graph-
ical representation for the independence structure between the variables (Blom,
Bongers, and Mooij, 2019). The causal ordering algorithm can be directly applied
to a self-contained set of active constraints to obtain a Markov ordering graph.

Table 4: The descendants and non-descendants of intervention targets in the graph of
the SCM for the bathtub system in Figure 6(b).

target descendants non-descendants

fK , vK vK , vP , vO, vD vI

fI , vI vI , vP , vO, vD vK

fP , vP vP , vO, vD vK , vI

fO, vO vP , vO, vD vK , vI

fD, vD vP , vO, vD vK , vI

6.3 Equilibration in dynamical models

Dynamical models in terms of first order differential equations can be equilibrated
to a set of equations by equating each time-derivative to zero, as in Mooij, Janz-
ing, and Schölkopf (2013). They can be equilibrated to a causal ordering graph by
applying the causal ordering algorithm to the resulting set of equilibrium equa-
tions. They can also be equilibrated to a Markov ordering graph by subsequently
applying Definition 8 to this causal ordering graph. The bathtub system provides
an example of what Dash (2005) calls a “violation of the Equilibration Manipula-
tion Commutability property”.17 Following Iwasaki and Simon (1994), and quite
confusingly, the Markov ordering graph is referred to as the “causal graph” by
Dash (2005).18 Consequently, the “equilibration” operator in Dash (2005) should
be interpreted as equilibration to the Markov ordering graph.

Markov ordering graph for the bathtub. The bathtub system shows that
the directed edges in the Markov ordering graph cannot be directly interpreted
as causal relations. Consider the perfect intervention do(fD, vD) for which the
Markov ordering graphs MO(B)do(D) and MO(Bdo(fD ,vD)) are wildly different, as
can be seen by comparing Figures 10(d) and 10(e) respectively. Clearly, equilibra-
tion to the Markov ordering graph does not commute with the perfect intervention

17We argue that this is confusing terminology. As shown by Bongers and Mooij (2018), equi-
libration to an SCM does commute with manipulation (perfect interventions). In his “equili-
bration” operator, Dash (2005) considers equilibration to the Markov ordering graph (not to an
SCM). Therefore, a better name would have been Equilibration-Markov ordering Commutability.

18For the bathtub, we argued in Section 6.1 that this is a misnomer, as in general there is no
straightforward one-to-one correspondence between the Markov ordering graph and the causal
semantics of the system.
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do(fD, vD). We shed some new light on the commutability of interventions and
equilibration to the Markov ordering graph by considering the following novel
insights:

(i) Interventions on the dynamics of the bathtub system target pairs of equations
and variables: {fK , vK}, {fI , vI}, {fP , vP }, {fO, vO}, or {fD, vD}.

(ii) The causal ordering graph of the bathtub systems has intervention targets
(i.e. clusters in the causal ordering graph): {fK , vK}, {fI , vI}, {fP , vD},
{fO, vP }, and {fD, vO}.

(iii) By Proposition 3 we know that application of the causal ordering algorithm
to a set of equations commutes with perfect interventions on clusters in the
resulting causal ordering graph.

This tells us that equilibration to the causal ordering graph commutes with all per-
fect interventions that are both represented by the dynamical model and by the
causal ordering graph.19 For the bathtub system, equilibration to the causal or-
dering graph thus commutes with perfect interventions targeting {fK , vK} and
{fI , vI}, or combinations thereof. Consequently, equilibration of a dynamical
model to the Markov ordering graph also commutes with these interventions. That
is, the graph that we obtain by performing interventions do(vK) and do(vI) on the
Markov ordering graph in Figure 6(a) coincides with the graph that we obtain by
applying interventions do(vK , fK , ξK) and do(vI , fI , ξI) to the dynamical causal
model and then constructing the Markov ordering graph.

6.4 Structure learning

We have shown that, under a solvability assumption, d-separations in the Markov
ordering graph (or σ-separations in the directed graph associated with a particular
perfect matching) imply conditional independences between variables in a system
of constraints (see Theorem 2 and Proposition 1). Constraint-based causal dis-
covery algorithms relate conditional independences in data to graphs under the
Markov and faithfulness assumptions. Roughly speaking, the equivalence class of
the Markov ordering graph (or the directed graph associated with a particular per-
fect matching) can be learned from data under the assumption that all conditional
independences in the data are implied by the graph. The bathtub system in Exam-
ple 1 is used by Dash (2005), who simulates data from the dynamical model until
it reaches equilibrium, and then applies the PC-algorithm to learn the graphical
structure of the system. It is no surprise that the learned structure is the Markov
ordering graph in Figure 10(c). The usual assumption is then that the Markov
ordering graph equals the causal graph, where directed edges express direct causal
relations between variables. In this work we have shown that this learned Markov
ordering graph does not have a straightforward causal interpretation.

19Bongers and Mooij (2018) prove that equilibrating a dynamical causal model to the graph
of an SCM commutes with perfect interventions. By applying the causal ordering algorithm to
structural equations, we find that equilibrating a dynamical causal model to a causal ordering
graph commutes with interventions that are modelled by both the SCM and the causal ordering
graph.
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7 Conclusion and future work

In this work, we slightly reformulated Simon’s causal ordering algorithm and
demonstrated that it is a convenient and scalable tool to study causal and prob-
abilistic aspects of models consisting of equations. In particular, we showed how
the technique of causal ordering can be used to construct either a Markov ordering
graph or a causal ordering graph from a set of equations without calculating explicit
solutions. One of the novelties of this paper is that we proved that the Markov
ordering graph implies conditional independences between variables whereas the
causal ordering graph encodes the effects of soft and perfect interventions.

To model causal relations between variables in sets of equations unambiguously,
we generalized existing notions of perfect interventions. The main idea is that a
perfect intervention on a set of equations targets variables and specified equations,
whereas a perfect intervention on a Structural Causal Model (SCM) targets vari-
ables and their associated structural equations. We considered a simple dynamical
model with feedback and demonstrated that, contrary to claims in the literature,
the Markov ordering graph does not generally have a straightforward causal in-
terpretation in terms of soft or perfect interventions. We showed that the causal
ordering graph does encode the effects of soft and certain perfect interventions.
The main take-away is that we need to make a distinction between graphical rep-
resentations of the probabilistic and causal aspects of models with feedback. By
making this distinction, we clarified the correct interpretation of existing results in
the literature. Additionally, we shed new light on discussions in causal discovery
about the justification of using a single graph to simultaneously represent causal
relations and conditional independences. We believe that the phenomenon where
conditional independences and causal semantics must be represented by different
graphs manifests itself in certain (biological) models with feedback. In future work
we plan to investigate these occurrences further.

The causal ordering algorithm can currently only be applied to self-contained
sets of equations. Particularly for non-linear sets of equations, this is a limiting
assumption since there might be more equations than variables required to specify
a unique solution. An interesting direction for future research is to develop exten-
sions of the causal ordering algorithm for non self-contained sets of equations.
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8 Supplementary material

This section is for the most part devoted to the proofs of the theorems and propo-
sitions that were presented in Sections 2, 3, 4, and 5. In section 8.8 we discuss the
directed edges in SCM representations of the bathtub system in Example 1 that
were mentioned in Section 6.2.

8.1 Proof of Theorem 1

Theorem 1. The output of Algorithm 1 is well-defined and unique.

Lemma 2 below shows that the minimal self-contained sets in a self-contained
bipartite graph are disjoint. Lemma 3 shows that the induced subgraph after one
iteration of Algorithm 1, with a self-contained bipartite graph as input, is self-
contained. The minimal self-contained sets in the graph which are not used in
the iteration are minimal self-contained sets of the induced subgraph. This shows
that the output of Algorithm 1 is well-defined. We then use Lemma 2 and 3 to
prove Lemma 4 which states that the output of Algorithm 1, with a self-contained
bipartite graph as input, is unique. This implies that the output of Algorithm
1, which has an initialization that is uniquely determined by the specification of
exogenous variables W , must also be unique.

Lemma 2. Let B = 〈V, F, E〉 be a self-contained bipartite graph. Let SF be the
set of minimal self-contained sets in B. The sets in SF are pairwise disjoint, and,
likewise, the sets of adjacent nodes

SV = {adjB(S) : S ∈ SF },

of the minimal self-contained sets in SF are pairwise disjoint.

Proof. Let S1 ⊆ F and S2 ⊆ F be non-empty distinct minimal self-contained
sets in SF . For the sake of contradiction, assume that S1 ∩ S2 6= ∅. Since S1 is
minimal self-contained, we know that S1 ∩ S2 ⊂ S1 is not self-contained. Hence,
by Definition 5, we have that

|S1 ∩ S2| < |adjB(S1 ∩ S2)|. (1)

Consider the following equations:

|adjB(S1)|+ |adjB(S2)| − |S1 ∩ S2| = |S1|+ |S2| − |S1 ∩ S2| (2)
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= |S1 ∪ S2|

≤ |adjB(S1 ∪ S2)| (3)

= |adjB(S1) ∪ adjB(S2)|

= |adjB(S1)|+ |adjB(S2)| − |adjB(S1) ∩ adjB(S2)|

≤ |adjB(S1)|+ |adjB(S2)| − |adjB(S1 ∩ S2)|, (4)

where equality (2) holds by condition (i) of Definition 5, since B is self-contained
inequality (3) holds by condition (ii) of Definition 5, and inequality (4) holds
because adjB(S1 ∩ S2) ⊆ adjB(S1) ∩ adjB(S2). It follows that

|S1 ∩ S2| ≥ |adjB(S1) ∩ adjB(S2)| ≥ |adjB(S1 ∩ S2)| ≥ 0.

This is in contradiction with equation (1), and hence S1 ∩ S2 = ∅. This implies
that |S1∩S2| = 0 and therefore by the inequalities above we have that |adjB(S1)∩
adjB(S2)| = 0. Thus adjB(S1) ∩ adjB(S2) = ∅.

Lemma 3. Let B = 〈V, F, E〉 be a self-contained bipartite graph. Suppose that F
has minimal self-contained sets SF . Let B′ be the subgraph of B induced by

V ′ := V \adjB(S), and F ′ := F\S,

with S ∈ SF . Then the following two properties hold:

(i) B′ is self-contained, and

(ii) the sets in SF \{S} are minimal self-contained in B′.

Proof. Let S ∈ SF be a minimal self-contained subset in B. Since B and S are
self-contained we have that |V | = |F | and |S| = |adjB(S)| respectively. Therefore

|V ′| = |V \ adjB(S)| = |V | − |adjB(S)| = |F | − |S| = |F \ S| = |F ′|.

This shows that condition (i) of Definition 5 is satisfied for B′. Assume, for the
sake of contradiction, that F ′ does not satisfy condition (ii) of Definition 5 in the
induced subgraph B′. Then there exists S′ ⊆ F ′ such that |S′| > |adjB′(S′)|.
Consider the following equations:

|S ∪ S′| = |S|+ |S′|

> |adjB(S)|+ |adjB′(S′)|

= |adjB(S)|+ |adjB(S′)| − |adjB(S) ∩ adjB(S′)|

= |adjB(S) ∪ adjB(S′)|

= |adjB(S ∪ S′)|

≥ |S ∪ S′|,

where the last inequality holds because B is self-contained by assumption. This is
a contradiction, and we conclude that both conditions of Definition 5 are satisfied
for B′. This shows that B′ is self-contained.

Let S1 ∈ SF and S2 ∈ SF be two distinct minimal self-contained sets in B.
Suppose that B1 is a subgraph of B induced by V \adjB(S1) and F \S1. By Lemma
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2 we know that S1 ∩ S2 = ∅ and adjB(S1) ∩ adjB(S2) = ∅. It follows that for all
S′ ⊆ S2 we have that adjB(S′) = adjB1

(S′). We find that

|S2| = |adjB(S2)| = |adjB1
(S2)|,

|S′| ≤ |adjB(S′)| = |adjB1
(S′)|,

for all S′ ⊆ S2. This shows that S2 satisfies the conditions of Definition 5 in the
bipartite graph B1. Since S2 has no non-empty strict subsets that are self-contained
in B we have that S2 has no non-empty strict subsets that are self-contained in
B1. We conclude that S2 is a minimal self-contained subset in B1. This shows that
the sets SF \ {S} are minimal self-contained in B′.

Lemma 4. Let B = 〈V, F, E〉 be a self-contained bipartite graph. The output
CO(B) of Algorithm 1 is unique.

Proof. Suppose G1 = 〈V1, E2〉 and G2 = 〈V2, E2〉 are directed cluster graphs that are
obtained by running Algorithm 1. Let A = (1, 2, . . . , |V1|) be an ordered set that
indicates the order in which clusters S(a) (with a ∈ A) are added to V1 in the first
run of the algorithm. Similarly, B = (1, 2, . . . , |V2|) is an ordered set that indicates
the order in which clusters T (b) (with b ∈ B) are added to V2 in the second run
of the algorithm. With a slight abuse of notation we define B \ (S(k))k<i as the
subgraph of B induced by the nodes (S(k))k≥i. Similarly, B\ (T (k))k<i denotes the
subgraph of B induced by the nodes (T (k))k≥i.

Intermediate result: We will prove that for i ∈ (1, 2, . . . , |V1|) there exists bi ∈ B
such that S(i) = T (bi) by induction.

Base case: The algorithm adds the cluster S(1) to V1 in the first step of the
first run. Therefore, we know that the set of nodes F ∩ S(1) must be minimal
self-contained in B. Let 1 ≤ k ≤ |V2| be arbitrary. By Lemma 3 it follows that
F∩S(1) is minimal self-contained in B\(T (j))j<k provided S(1) 6= T (j) for all j < k.
Since B is finite, the minimal self-contained set S(1) must be chosen eventually,
and hence there exists b1 ∈ B such that S(1) = T (b1).

Induction hypothesis: Let 1 ≤ i < |V1| be arbitrary and assume that for all j ≤ i
there exists bj ∈ B such that S(j) = T (bj). We want to show that there exists
bi+1 ∈ B such that S(i+1) = T (bi+1).

Induction step: Let B′ = B\(b1, . . . , bi) = (b′
1, . . . , b′

|V2|−i
) be an ordered set such

that b′
j ≺ b′

j+1 for all j = 1, . . . , |V2| − (i + 1).

(i) In the second run of the algorithm, the cluster T (b′

1) is added to V2 right after
the clusters T (bj) with bj ≺ b′

1 are added to V2 and removed from the graph.

Therefore, the set F ∩ T (b′

1) is minimal self-contained in B \ (T (bj))j≤i,bj ≺b′

1
.

In the first run of the algorithm, the clusters S(1) = T (b1), . . . , S(i) = T (bi)

are subsequently added to V1 and removed from the graph. Therefore, by
Lemma 2 and Lemma 3, we have that F ∩ T (b′

1) is minimal self-contained in
B′ = B \ (T (bj))j≤i = B \ (S(k))k≤i. Hence, both F ∩ T (b′

1) and F ∩ S(i+1)

are minimal self-contained in B′. Therefore, by Lemma 2 and Lemma 3,
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either T (b′

1) = S(i+1) (in which case we are done) or F ∩ S(i+1) is minimal
self-contained in B′ \ T (b′

1).

(ii) Let k ≤ |V2| − i be arbitrary. By iteration of the argument in the previous
step we find that F ∩T (b′

k) is minimal self-contained in (B\(T (bj))j≤i,bj ≺b′

k
)\

(T (b′

j))j<k and hence in B′ \ (T (b′

j))j<k, so that either T (b′

k) = S(i+1) or

F ∩ S(i+1) is minimal self-contained in B′ \ (T (b′

j))j≤k. Since the graph is

finite, there exists m ∈ 1, . . . , |V2|− i such that T (b′

m) = S(i+1). By definition
of B′ there exists bi+1 ∈ B such that S(i+1) = T (bi+1).

This proves that the clusters in V1 are also clusters in V2. By symmetry we find
that the clusters S(a) in V1 and the clusters T (b) in V2 coincide. Since V1 = V2 it
follows immediately from the construction of edges in the algorithm that E1 = E2

and hence G1 = G2.

8.2 Proof of Theorem 2

Theorem 2. Let X∗ be a solution of a system of constraintsM = 〈X , XW , Φ,B〉,
where the subgraph of B = 〈V, F, E〉 induced by (V ∪ F ) \W is self-contained. If
M is uniquely solvable with respect to the causal ordering graph CO(B) then the
pair (MO(B),PX∗) satisfies the directed global Markov property.

Let v ∈ V \W be arbitrary and define SV = cl(v)∩V and SF = cl(v)∩F . First, we
will show that V (SF ) \ SV = paMO(B)(v). Let x ∈ adjB(SF ) \ SV be an arbitrary
vertex that is adjacent to SF but not in SV . The following equivalences hold:

x ∈ V (SF ) \ SV ⇐⇒ x ∈ adjB(SF ) \ SV (by Definition 3)

⇐⇒ (x→ cl(v)) in CO(B) (by definition of Algorithm 1)

⇐⇒ (x→ v) in D(CO(B)) (by Definition 8)

⇐⇒ (x→ v) in D(CO(B))mar(F )

⇐⇒ (x→ v) in MO(B) (by Definition 8)

⇐⇒ x ∈ paMO(B)(v).

By assumption, the system of constraints is uniquely solvable with respect to
CO(B). Note that SV ⊆ V (SF ). Hence, there exists a measurable function gi :
X paMO(B)(v) → Xi for all i ∈ SV s.t. for all xV (SF ) ∈ X V (SF ):

∀ f ∈ SF , φf (xV (f)) = cf ⇐⇒ ∀ i ∈ SV , xi = gi(xpaMO(B)(v)).

Let X∗ be a solution to the system of constraints. Since v ∈ V \W was chosen
arbitrarily it follows that

X∗
v = gv(X∗

paMO(B)(v)),

for all v ∈ V \W almost surely. The directed global Markov property was already
shown to hold for pairs (G,PX) where G is a DAG and X is a solution to a set
of structural equations with functional dependences corresponding to the DAG
(Lauritzen, 1996; Pearl, 2000). Because the Markov ordering graph MO(B) is
acyclic by construction this finishes the proof.
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8.3 Proof of Theorem 3

Theorem 3. The output of Algorithm 2 coincides with the output of Algorithm 1.

The following result gives a necessary and sufficient condition for the existence
of a perfect matching for a bipartite graph and can be found in (Hall, 1986).

Theorem 5 (Hall’s Marriage Theorem). Let B = 〈V, F, E〉 be a bipartite graph
with |V | = |F |. Then B has a perfect matching if and only if |F ′| ≤ |adjB(F )| for
all F ′ ⊆ F .

From Hall’s Marriage Theorem it trivially follows that a bipartite graph has a
perfect matching if and only if it is self-contained.

Corollary 1. Let B = 〈V, F, E〉 be a bipartite graph. Then B has a perfect match-
ing if and only if B is self-contained.

Proof. If B has a perfect matching then |V | = |F |. By Definition 5 we know that
if B is self-contained then |V | = |F |. Hence, the statement follows from Definition
5 and Theorem 5.

The following technical lemma is used to prove Lemma 6, which shows that
the output of Algorithm 1 coincides with that of Algorithm 2 in the case that the
input of the algorithm is a self-contained bipartite graph and W = ∅.

Lemma 5. Let M be a perfect matching for a self-contained bipartite graph B =

〈V, F, E〉. Let S
(1)
V , . . . , S

(n)
V be a topological ordering of the strongly connected

components in G(B, M)mar(F ). Let B(i) be the subgraph of B induced by
⋃n

j=i(S
(j)
V ∪

M(S
(j)
V )). Then B(i) is self-contained and M(S

(i)
V ) is a minimal self-contained set

in B(i).

Proof. We use the notation G(k) := G(B(k), M (k)) and S
(k)
F := M (k)(S

(k)
V ), where

M (1) = M (we will define M (i) with i > 1 later). First we show that S
(1)
F is

self-contained in B(1). We proceed by proving that S
(1)
F is minimal self-contained

in B(1) and that B(2) is a self-contained bipartite graph. Finally, we consider how
these arguments can be iterated to prove the lemma.

By definition of a perfect matching and the fact that B(1) = B is self-contained,
we know that:

|S
(1)
V | = |S

(1)
F | ≤ |adjB(1) (S

(1)
F )|.

By definition of topological ordering and the orientation step in Definition 9 we
know that:

adjB(1) (S
(1)
F ) ⊆ S

(1)
V .

Together, these two inequalities show that |S
(1)
F | = |adjB(1) (S

(1)
F )|. Because B(1) is

self-contained, the set S
(1)
F satisfies both conditions of Definition 5. We conclude

that S
(1)
F is self-contained in B(1).
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Assume, for the sake of contradiction, that S
(1)
F is not minimal self-contained.

Then there exists a non-empty strict subset F ′ ⊂ S
(1)
F that is self-contained in

B(1). First note that, by Definition 5, we have that |F ′| = |adjB(1) (F ′)| and

|S
(1)
V | = |S

(1)
F | so that S

(1)
V \ adjB(1) (F ′) 6= ∅ and adjB(1) (F ′) 6= ∅. Furthermore, by

Definition 9 (orientation step), we must have that:

paG(1) (adjB(1) (F ′)) = M (1)(adjB(1) (F ′)) = F ′.

Therefore there is no directed edge from any vertex in F \ F ′ to any vertex in

adjB(1) (F ′). Clearly, there can be no edge in G(1) between any vertex v ∈ S
(1)
V \

adjB(1) (F ′) and any vertex f ′ ∈ F ′ and hence

paG(1) (S
(1)
V \ adjB(1) (F ′)) = M (1)(S

(1)
V \ adjB(1)(F ′)) = F \ F ′.

Therefore, there can be no directed path from any v ∈ S
(1)
V \ adjB(1) (F ′) to any

f ∈ F ′ in G(1). This contradicts the assumption that S
(1)
V is a strongly connected

component in G
(1)
mar(F ). We conclude that S

(1)
F is minimal self-contained in B(1).

Clearly, the set M (2) := {(i − j) ∈ M (1) : i, j /∈ S
(1)
V ∪ S

(1)
F } is a perfect

matching for B(2). By Corollary 1 we therefore know that B(2) is self-contained.

Since S
(2)
V , . . . , S

(n)
V is a topological ordering for the strongly connected components

in G
(2)
mar(F ) the above argument can be repeated to show that S

(2)
F is minimal self-

contained in B(2). For arbitrary i ∈ {1, . . . , n} this entire argument can be iterated

to show that S
(i)
F is minimal self-contained in the self-contained bipartite graph

B(i).

Lemma 6. Let M be an arbitrary perfect matching for a self-contained bipartite
graph B = 〈V, F, E〉. The directed cluster graph G1 = 〈V1, E1〉 that is obtained by
application of Definition 9 coincides with the output G2 = 〈V2, E2〉 of Algorithm 1.

Proof. Let S(1), . . . , S(n) be a topological ordering of the strongly connected com-
ponents in G(M,B)mar(F ). By Definition 9 the cluster set V1 consists of clusters

S(i) ∪M(S(i)) with i ∈ {1, . . . , n}. By Lemma 5, Algorithm 1 can be run in such
a way that the clusters S(i) ∪M(S(i)) are added to V2 in the order specified by
the topological ordering. By Theorem 1 the output of Algorithm 1 is unique and
therefore V1 = V2. By Definition 9 the following equivalences hold for C ∈ V1 = V2

and v ∈ V \ C:

(v → C) ∈ E1 ⇐⇒ ∃w ∈ C s.t. (v → w) in G(M,B)

⇐⇒ ∃w ∈ C s.t. (v − w) ∈ E and (v − w) /∈M

⇐⇒ v ∈ adjB(C ∩ F ) \M(C ∩ F )

⇐⇒ v ∈ adjB(C ∩ F ) \ (C ∩ V )

⇐⇒ (v → C) ∈ E2.

Let C ∈ V1 = V2 and f ∈ F ∩ (adjB(C) \ C). By definition of Algorithm 1 we
know that (f → C) /∈ E2. Note that M(C ∩ F ) = C ∩ V . By Definition 9 there
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is no edge (f → v) with v ∈ C ∩ V in G(B, M) and hence by Definition we know
that (f → C) /∈ E2. By construction, edges (x→ C) with x ∈ C are neither in E1

nor in E2. We conclude that E1 = E2 and consequently G1 coincides with G2.

Lemma 6 shows that the output of Algorithm 1 coincides with the output
of Algorithm 2 if the input is a self-contained bipartite graph. Otherwise, both
Algorithm 1 and 2 have an initialization that is determined by the specification
of exogenous variables. The exogenous variables are placed into separate clusters
and there are directed edges from each exogenous variable to the clusters of its
adjacencies for both algorithms. The output of the two algorithms coincides for
any valid input.

8.4 Proof of Proposition 1

Proposition 1. Let X∗ be a solution of a system of constraintsM = 〈X , XW , Φ,B〉,
where the subgraph of B = 〈V, F, E〉 induced by (V ∪F )\W has a perfect matching
M . If for each strongly connected component S in G(B, M) with S ∩W = ∅, the
systemM is uniquely solvable w.r.t. SV = (S∪M(S))∩V and SF = (S∪M(S))∩F
then the pair (G(B, M)mar(F ),PX∗) satisfies the generalized directed global Markov
property.

The proof of this proposition relies on results by Forré and Mooij (2017), who
define the notion of an acyclic augmentation for a class of graphical models that
they call HEDGes. They define the augmentation of a HEDG as a directed graph
where hyperedges are represented by vertices with additional edges. The acyclic
augmentation of a HEDG is obtained by acyclification of the edge set of it aug-
mentation (Forré and Mooij, 2017).

Definition 13. Let G = 〈V, E〉 be a directed graph. The acyclification of E,
denoted by Eacy, has edges (i → j) ∈ Eacy if and only if i /∈ scG(j) and there
exists k ∈ scG(j) such that (i→ k) ∈ E.

Lemma 7 shows that the clustering operation in Definition 9 on directed graphs,
followed by the declustering operation in Definition 8, results in the same directed
graph as the one that is obtained by applying the acyclification operation to its
edge set.

Lemma 7. Let G = 〈V, E〉 be a directed graph. It holds that Gacy = 〈V, Eacy〉 =
D(clust(G))).

Proof. This follows from Definitions 8, 9, and 13.

The following proposition shows that σ-separations in a directed graph coincide
with d-separations in the graph that is obtained by clustering and subsequently
declustering that directed graph.

Proposition 4. Let G = 〈V, E〉 be a directed graph with nodes V and Gacy =
〈V, Eacy〉. Then for all subsets A, B, C ⊆ V :

A
σ

⊥
G

B |C =⇒ A
d

⊥
Gacy

B |C ⇐⇒ A
d

⊥
D(clust(G))

B |C.
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Proof. The proof of the first implication follows from Corollary 2.8.4 and Lemma
2.7.7 in Forré and Mooij (2017). The second equivalence follows directly from
Lemma 7.

We now have all ingredients to finish the proof of Proposition 1. First note that,
since the subgraph of B = 〈V, F, E〉 induced by (V ∪F )\W has a perfect matching,

CO(B) = 〈V , E〉 is well-defined by Corollary 1. Let S
(1)
V , . . . , S

(n)
V be the strongly

connected components in Gdir, where Gdir := G(B, M)mar(F ). By Lemma 5 and the

definition of Algorithm 1 we know that V consists of the clusters S
(i)
V ∪M(S

(i)
V )

with i = 1, . . . , n. Therefore, M is uniquely solvable with respect to CO(B). By
Theorem 2 we have that for subsets A, B, C ⊆ V :

A
d

⊥
MO(B)

B |C =⇒ XA ⊥⊥
PX

XB |XC . (5)

By Proposition 4 we have that:

A
σ

⊥
Gdir

B |C =⇒ A
d

⊥
Gacy

dir

B |C ⇐⇒ A
d

⊥
D(clust(Gdir))

B |C. (6)

The desired result follows from implications (5) and (6) when D(clust(Gdir)) =
MO(B). Consider the cluster set Vmar(F ) = {S ∩ V : S ∈ V} and note that edges
in CO(B) go from vertices in V to clusters in V . By Definition 8 and 9 we have
that:

D(〈Vmar(F ), E〉) = D(〈V , E〉)mar(F ) and clust(Gdir) = 〈Vmar(F ), E〉,

respectively. It follows that

D(clust(Gdir)) = D(CO(B))mar(F ) = MO(B).

This finishes the proof.

8.5 Proof of Theorem 4

Theorem 4. Let M = 〈X , XW , Φ,B〉 be a system of constraints such that the
subgraph of B induced by endogenous variables and constraints is self-contained.
Suppose that M is uniquely solvable w.r.t. the causal ordering graph CO(B) and
let X∗ be a solution. Assume that the intervened systemMsi(f,φ,c) is also uniquely
solvable w.r.t. CO(B) and let X ′ be a solution. If there is no directed path from
f to v ∈ V \W in CO(B) then X∗

v = X ′
v almost surely. Conversely, if there is a

directed path f to v in CO(B) then X∗
v may have a different distribution than X ′

v.

The directed cluster graph CO(B) is acyclic by construction and therefore there
exists a topological ordering of its clusters. When there is no directed path from
f to v in CO(B) then there exists a topological ordering V (1), . . . , V (n) of the
clusters such that cl(v) comes before cl(f). By the assumption of unique solvability
w.r.t. CO(B) we know that the solution component for any variable v ∈ V (i) can
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be solved from the constraints in V (i) after plugging in the solution components
⋃i−1

j=1 V (j). By the assumption of unique solvability, the solution components X∗
v

and X ′
v are equal almost surely.

By assumption, the variables in cl(f) can be solved from the constraints in
cl(f). Hence, a soft intervention on a constraint in cl(f) will generically change
the distribution of the solution components X∗

cl(f)∩V that correspond to the vari-
able vertices in cl(f). Suppose that there exists a sequence of clusters V1 =
cl(f), V2, . . . , Vk−1, Vk = cl(v) such that for all Vi ∈ {V1, . . . , Vk−1} there is a
vertex zi ∈ Vi such that (zi → Vi+1) in CO(B). By the assumption of unique
solvability w.r.t. CO(B) the solution components for the variables in V2, . . . Vk

generically depend on the distribution of the solution components X∗
cl(f)∩V that

correspond to the variable vertices in cl(f). It follows that the solution X∗
v is

generically different from that of X ′
v, if there is a directed path from f to v in

CO(B).

8.6 Proof of Lemma 1 and Proposition 2

Lemma 1. Let B = 〈V, F, E〉 be a bipartite graph and W ⊆ V , so that the subgraph
of B induced by V ∪ F is self-contained. Consider an intervention do(SV , SF ) on
a cluster S = SV ∪ SF with S ∩W = ∅ in the causal ordering graph CO(B). The
subgraph of Bdo(SV ,SF ) induced by (V ∪ F ) \W is self-contained.

Proof. By definition of Algorithm 2 we know that the subgraph of B induced by
(V ∪ F ) \W has a perfect matching M such that M(SF ) = SV . By definition
of a perfect intervention on the bipartite graph we know that M is also a perfect
matching for the subgraph of Bdo(SV ,SF ) induced by (V ∪ F ) \ W . The result
follows from Corollary 1.

Proposition 2. Let M = 〈X , XW , Φ,B = 〈V, F, E〉〉 such that the subgraph of
B induced by (V ∪ F ) \ W is self-contained. Assume that it is uniquely solv-
able w.r.t. CO(B) = 〈V , E〉 and let X∗ be a solution of M. Let SF ⊆ F and
SV ⊆ V \W be such that (SF ∪ SV ) ∈ V. Assume that the intervened system
Mdo(SF ,SV ,ξSV

) is uniquely solvable w.r.t. CO(Bdo(SF ,SV )) and let X ′ be a solu-

tion of Mdo(SF ,SV ,ξSV
). If there is no directed path from any x ∈ SV to v ∈ V

in CO(B) then X∗
v = X ′

v almost surely. Conversely, if there is x ∈ SV such that
there is a directed path x to v in CO(B) then X∗

v may have a different distribution
than X ′

v.

Let v ∈ SV . Since the variable vertices SV are targeted by the perfect intervention,
we have that X ′

v = ξv, which is generically different from the solution component
X∗

v . Consider v ∈ V \SV and its cluster cl(v) in CO(B). Since the causal ordering
graph is acyclic by construction, there exists a topological ordering V (1), . . . , V (i) =
cl(v), . . . V (n) of the clusters in CO(B) (where n is the amount of clusters in CO(B))
such that V (j) ≺ cl(v) implies that there is a directed path from some vertex in
V (j) to the cluster cl(v) in CO(B). By assumption, the solution component X∗

v

can be solved from the constraints and variables in V (i) = cl(v) by plugging in
the solution for variables in V (1), . . . , V (i−1). Let s1

f , . . . sm
f and s1

v, . . . sm
v denote
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the ordered vertices in SF and SV respectively and suppose that SV ∪ SF = V (k)

for some k ∈ {1, . . . , n}. By definition of a perfect intervention on a cluster we
know that V (1), . . . , V (k−1), {s1

f , s1
v}, . . . , {sm

f , sm
v }, V (k+1), . . . V (n) is a topological

ordering of clusters in CO(B)do(SF ,SV ) = CO(Bdo(SF ,SV )) (by Proposition 3).

Suppose that V (k) ≻ V (i) in the topological ordering for CO(B). By as-
sumption of unique solvability w.r.t. CO(B)do(SF ,SV ), X ′

v can be solved from

the constraints and variables in V (i) by plugging in the solution for variables in
V (1), . . . , V (i−1). It follows that X∗

v = X ′
v almost surely and by construction of

the topological ordering there is no directed path from any x ∈ SV to v in CO(B).
Suppose that V (k) ≺ cl(v) in the topological ordering for CO(B). By assumption
of unique solvability w.r.t. CO(B)do(SF ,SV ), we know that X ′

v can be solved from

the constraints and variables in V (i) by plugging in the solution for variables in
V (1), . . . , V (k−1), {s1

f , s1
v}, . . . , {sm

f , sm
v }, V (k+1), . . . V (i−1). It follows that X∗

v and
X ′

v generically have a different distribution, and by construction of the topological
ordering there is a directed path from a vertex in SV to the cluster cl(v) in CO(B).

8.7 Proof of Proposition 3

Proposition 3. Let B = 〈V, F, E〉 be a bipartite graph and W a set of exogenous
variables such that the subgraph of B induced by (V ∪ F ) \W is self contained.
Let CO(B) = 〈V , E〉 be the corresponding causal ordering graph. Let SF ⊆ F and
SV ⊆ V \W be such that (SF ∪ SV ) ∈ V. Then:

CO(Bdo(SF ,SV )) = CO(B)do(SF ,SV ).

Let SV = 〈s1
v, . . . , sm

v 〉 and SF = 〈s1
f , . . . sm

f 〉 denote the targeted variables and
constraints. We consider the output CO(B) = 〈V , E〉 of the causal ordering al-
gorithm. Suppose that the order in which clusters V (i) are added to V1 is given
by

V (1), . . . , V (k) = (SF ∪ SV ), . . . , V (n).

Consider CO(Bdo(SF ,SV )) = 〈V ′, E ′〉. It follows from Definition 11, Lemma 2,
Lemma 3, and the definition of Algorithm 1 that

V (1), . . . , V (k−1), {s1
f , s1

v}, . . . , {sm
f , sm

v }, V (k+1), . . . V (n)

is an order in which clusters could be added to V ′. This shows that there are two
differences between CO(B) = 〈V , E〉 and CO(Bdo(SF ,SV )) = 〈V ′, E ′〉: first (SF ∪
SV ) ∈ V whereas {{si

f , si
v} : i = 1, . . . , m} ⊆ V ′ and second the clusters (SF ∪SV )

may have parents in CO(B) but the clusters {si
f , si

v} (with i ∈ {1, . . . , m}) have
no parents in CO(Bdo(SF ,SV )). The result follows directly from Definition 12.

8.8 Directed edges in the graph of the SCM

The SCM for the bathtub system that we discussed in Section 3.3 does not have
a unique solution under every possible intervention on the SCM. Therefore, ac-
cording to Bongers, Forré, et al. (2020), the graph of this SCM does not have a
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straightforward causal interpretation. Instead, we may apply Proposition 7.1.1 in
Bongers, Forré, et al. (2020), which gives a sufficient condition for detecting an
edge (vi → vj) in the graph of an SCM. For an edge (vi → vj) in the bathtub sys-
tem, it says to consider ξI ∈ R

3
>0 (with I = {K, I, P, O, D} \ {i, j}) such that the

SCM has a unique solution under the intervention do(I, ξI). The edge (vi → vj) is
present if there exist distinct values ξi, ξ̃i ∈ R>0 such that the SCM has a unique
solution after subsequently applying the interventions do(I, ξI) and do(i, ξi) that
does not coincide with the unique solution after subsequently applying the inter-
ventions do(I, ξI) and do(i, ξ̃i). From the second column in Table 5 we can read
off that the directed edges (vK → vO), (vP → vO), and (vD → vO) are implied by
the proposition. Proposition 7.1.1 in Bongers, Forré, et al. (2020) also provides
a sufficient condition for the presence of edges (vi → vj) in the latent projection
onto {i, j}. If there exists distinct ξi, ξ̃i ∈ R>0 such that the SCM has a unique
solution under the intervention do(i, ξi) that does not coincide with the unique
solution after the intervention do(i, ξ̃i). From the third column in Table 5 we can
read off that the edges (vK → vP ), (vK → vD), (vI → vP ), (vI → vO), (vI → vD),
(vD → vP ), and (vD → vO) are present in the corresponding latent projections
onto two variables.

Note that the effects of interventions on {fK , vK} and {fI , vI} implied by Table
5 agree with those presented in Table 3. Interestingly, the proposition implies that
the edge (vK → vO) is present in the graph of the SCM, while it does not imply
the presence of this edge in the latent projection onto {vK , vO}.
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Table 5: The presence of directed edges in the graph of the SCM for the bathtub system
that is implied by Proposition 7.1.1 in Bongers, Forré, et al. (2020). We also consider
the implied presence of directed edges in the graph of an SCM in which only two out of
five variables are observed. Under interventions targeting {vK , vI , vP , vO} or there is no
unique solution for XD. Under interventions targeting {vK , vI , vP , vO} the intervention
values there is no solution if the values ξI or ξO are varied individually. Similarly, for
interventions targeting either vO or vP there are no two distinct interventions values
under which the intervened system is solvable.

Edge (x→ y) Graph of the SCM Latent projection onto x, y

vK → vI not implied not implied
vK → vP not implied present
vK → vO present not implied
vK → vD solution XD not unique present
vI → vK not implied not implied
vI → vP not implied present
vI → vO not implied present
vI → vD cannot vary XI present
vP → vK not implied cannot vary XP

vP → vI not implied cannot vary XP

vP → vO present cannot vary XP

vP → vD solution XD not unique cannot vary XP

vO → vK not implied cannot vary XO

vO → vI not implied cannot vary XO

vO → vP not implied cannot vary XO

vO → vD cannot vary XO cannot vary XO

vD → vK not implied not implied
vD → vI not implied not implied
vD → vP present present
vD → vO not implied present
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