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Abstract

The performance of constraint-based causal discovery algorithms is prominently
determined by the performance of the (conditional) independence tests that are
being used. A default choice for the (conditional) independence test is the (partial)
correlation test, which can fail in presence of nonlinear relations between the
variables. Recent research proposes a Bayesian nonparametric two-sample test
(Holmes et al., 2015), an independence test between continuous variables (Fil-
ippi and Holmes, 2017), and a conditional independence test between continuous
variables (Teymur and Filippi, 2019). We extend this work by proposing a novel
Bayesian nonparametric conditional two-sample test. We utilise this conditional
two-sample test for testing the conditional independence C |= Y |X where C de-
notes a Bernoulli random variable, and X and Y are continuous one-dimensional
random variables. This enables a nonparametric implementation of the Local
Causal Discovery (LCD) algorithm with binary variables in the experimental setup
(e.g. an indicator of treatment/control group). We propose a fair performance mea-
sure for comparing frequentist and Bayesian tests in the LCD setting. We utilise this
performance measure for comparing our Bayesian ensemble with state-of-the-art
frequentist tests, and conclude that the Bayesian ensemble has better performance
than its frequentist counterparts. We apply our nonparametric implementation of
the LCD algorithm to protein expression data.

1 Introduction

Conditional independence testing is a fundamental ingredient of causal inference algorithms (Cooper,
1997; Spirtes et al., 1999). These algorithms can be proven to be complete, sound, or have other
desired properties, but these proofs often invoke the use of an “oracle” for determining conditional
independence between variables. In practice, the applicability and performance of the algorithm
heavily relies on the reliability of the marginal and conditional independence tests that are being used.
Conditional independence testing has been proven to be impossible when no additional assumptions
are imposed on the distributions involved (Shah and Peters, 2020). Over the years, multiple conditional
independence tests have been proposed, each of which require additional assumptions. A class
of independence tests that require relatively lenient assumptions are the Bayesian nonparametric
independence tests that are based on Pólya tree priors: random measures which have Kullback-Leibler
support on the entire space of continuous distributions (Lavine, 1994). Therefore the only assumption
is that the data generating process has an absolutely continuous cumulative distribution function.

Among the independence tests that are based on Pólya tree priors is a recently proposed conditional
independence test (Teymur and Filippi, 2019) which extends a continuous marginal independence
test (Filippi and Holmes, 2017) by utilising conditional optional Pólya trees (Ma, 2017). Although
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Figure 1: A one-dimensional Pólya tree partitioning scheme

this conditional independence test performs well on synthetic data originating from a continuous
distribution, we encountered difficulties when applying it to combinations of discrete and continuous
variables. Since causal inference algorithms are often applied to data sets with binary or discrete
variables (e.g. indicating certain interventions that have been administered within an experiment
(Mooij et al., 2020)), designing and evaluating such tests is a relevant area of research.

In this paper we propose a novel conditional two-sample test by extending a two-sample test based on
a Pólya tree prior (Holmes et al., 2015) using a conditional optional Pólya tree prior. We empirically
compare the two-sample test (Holmes et al., 2015), independence test (Filippi and Holmes, 2017) and
our novel conditional two-sample test to both classical and state-of-the-art frequentist (conditional)
independence tests when testing for a single (conditional) independence, and when simultaneously
testing for multiple (conditional) independences as required by the Local Causal Discovery (LCD)
causal inference algorithm.1

Since p-values do not, unlike Bayes factors, reflect any evidence in favour of the null hypothesis,
the comparison of Bayesian and frequentist tests in the LCD setting is not straightforward. We
propose a measure which allows comparison of the LCD algorithm when using tests from both
paradigms, and use it for the comparison of the ensemble of Pólya tree tests with frequentist tests. We
observe that LCD with the ensemble of Pólya tree tests significantly outperforms other state-of-the-art
(conditional) independence tests, while computation time is substantially lower than for competing
tests that have been proposed.

We apply the LCD algorithm with the Pólya tree tests on protein expression data from Sachs et al.
(2005), and conclude that this implementation provides a result that is more likely to resemble the
true model than the output of LCD with the often used partial correlation test.

2 Independence testing using Pólya tree priors

We will test for hypotheses where we assume the observed random variable X to be distributed
according to a distribution lying inM0 orM1 under the null- and alternative hypothesis respectively.
As prior distributions P0 and P1 onM0 andM1 we take Pólya trees: random measures which,
under proper choice of hyperparameters, have Kullback-Leibler support onM (Lavine, 1994). To
construct a Pólya tree random measure on Ω ⊆ R, we consider a cumulative distribution function
G on Ω, and map the family of dyadic partitions of [0, 1] through G−1. This results in a family of
partitions of Ω, where for level j we have Ω =

⋃
κ∈{0,1}j Cκ, with

Cκ := [G−1(k−12j ), G−1( k2j )), (1)

and k denoting the natural number corresponding with the bit string κ ∈ {0, 1}j . A schematic
depiction of this binary tree of partitions is shown in Figure 1. We define the index set by K :=
{{0, 1}j : j ∈ N}, so the family of subsets of Ω that we consider is Π := {Cκ : κ ∈ K}. We assign
random probabilities to the Cκ ∈ Π by splitting from the mass that is assigned to Cκ a fraction θκ0
to Cκ0 and a fraction θκ1 to Cκ1, where we let (θκ0, θκ1) ∼ Dir(ακ0, ακ1). This construction yields
the following formal definition:

1Code for the (conditional) independence tests, simulations and results on real world data are publicly
available at https://github.com/philipboeken/PTTests.
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Definition 2.1 (Lavine, 1992) A random probability measure P on (Ω,B(Ω)) is said to have a
Pólya tree distribution with parameter (Π,A), written P ∼ PT(Π,A), if there exist nonnegative
numbers A = {ακ : κ ∈ K} and random variables Θ = {(θκ0, θκ1) : κ ∈ K} such that the
following hold:

1. all the random variables in Θ are independent;
2. for every κ ∈ K, we have (θκ0, θκ1) ∼ Dir(ακ0, ακ1);

3. for every j ∈ N and every κ ∈ {0, 1}j we have P(Cκ|Θ) =
∏j
i=1 θκ1...κi−1

, for Cκ ∈ Π.

The support of the Pólya tree is determined by the choice of Π and A. We will only consider
partitions of the type (1) with G the standard Gaussian cumulative distribution function. Sufficient
conditions on A for the Pólya tree to have support on the continuous distributions are provided by
Kraft (1964). These conditions are satisfied if for each κ ∈ {0, 1}j we take ακ0 = ακ1 = j2, which
we will use throughout this paper, as it is promoted as a “sensible canonical choice” by Lavine (1992).
For this set of parameters (Π,A) the Pólya tree is centred on the base distribution with cumulative
distribution function G, i.e. E(P(Cκ)) =

∫
Cκ
G′(x)dx. As argued by Lavine (1994) we will only

consider partitions up to a pre-determined level J , making P into a truncated Pólya Tree (Teymur
and Filippi, 2019). Hanson and Johnson (2002) provide a rule of thumb J = blog2(n)c, which
corresponds to on average finding one observation in each element of the partition. We find however
that J = blog4(n)c, which corresponds to finding approximately

√
n observations in each element

of the partition, provides similar results and considerably reduces computation time, so we use this
maximum depth.

Let X be a continuous random variable with a distribution that lies in the support of the Pólya tree
P ∼ PT(Π,A). Drawing a distribution from P is done by drawing from each of the random variables
in Θ. If we let X1, ..., Xn be a sample from X , then the likelihood of that sample with respect to a
sampled distribution Θ from the Pólya tree PT(Π,A) is

p(X1:n|Θ,Π,A) =
∏
κ∈K

θnκ0κ (1− θκ)nκ1 , (2)

where nκ denotes the number of observations lying in Cκ, i.e. nκ := #(X1:n ∩ Cκ). If we integrate
out Θ we obtain the marginal likelihood

p(X1:n|Π,A) =
∏
κ∈K

B(ακ0 + nκ0, ακ1 + nκ1)

B(ακ0, ακ1)
, (3)

where B(·) denotes the Beta function.

2.1 A nonparametric conditional two-sample test

We now propose a novel conditional independence test of the type C |= X|Z, where X and Z are
continuous one-dimensional random variables and C is a binary variable. We combine elements of
both the two-sample test proposed by Holmes et al. (2015), and a conditional independence test from
Teymur and Filippi (2019). The conditional independence test from Teymur and Filippi (2019) is
of the type X |= Y |Z for (X,Y, Z) a triple of continuous, one-dimensional random variables, and
produces no sensible results when testing for C |= X|Z in our experimental setup of Section 3.1.

Given n draws {(C1, X1, Z1), ..., (Cn, Xn, Zn)} from binary variable C and continuous one-
dimensional random variables X and Z, define X(0) := {Xi : Ci = 0, i ∈ {1, .., n}} and
X(1) := {Xi : Ci = 1, i ∈ {1, .., n}}. If we let F denote the conditional distribution of X|Z
and let F (0) (resp. F (1)) denote the conditional distribution of X(0)|Z (resp. X(1)|Z), then we
formulate the conditional independence between C and X given Z as a two-sample test, i.e.

H0 : C |= X|Z ⇐⇒ X|Z ∼ F (4)

H1 : C 6 |= X|Z ⇐⇒ X(0)|Z ∼ F (0) and X(1)|Z ∼ F (1) with F (0) 6= F (1). (5)

Teymur and Filippi (2019) utilise conditional optional Pólya tree (cond-OPT) priors (Ma, 2017) for
modelling conditional densities of the form fX|Z(x|z). As we require an expression for the marginal
likelihoods of X|Z,X(0)|Z and X(1)|Z, we briefly review the construction of the cond-OPT.
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We wish to construct a random measure on the space of conditional distributions on ΩX ×ΩZ , where
X is the response variable and Z is the predictor. In order to do so, we first construct a family of
partitions ΠZ on ΩZ according to the partitioning scheme of the optional Pólya tree (OPT) (Wong
and Ma, 2010), which results in a random subset of the standard family of one-dimensional partitions
Π as constructed by equation (1). This random subset of Π is obtained by first adding C∅ := ΩZ to
ΠZ . Then we sample from the random variable S ∼ Bernoulli(ρ); if S = 1 we stop the partitioning
procedure, and if S = 0 we add C0 and C1 to ΠZ . Then, for both C0 and C1 we repeat this procedure;
we draw from S and depending on the outcome we add the children of C0, then we repeat this to
possibly add the children of C1. This process is iterated, and is stopped in finite time when ρ > 0.

When we have obtained the family ΠZ , we construct a random measure P(·|Cκ) on ΩX for each
Cκ ∈ ΠZ by letting P(·|Cκ) ∼ PT(A,Π). This family of random measures on ΩX is the resulting
conditional optional Pólya tree (cond-OPT) (Ma, 2017). In case the family of partitions ΠZ generates
the Borel sets on ΩZ , this construction indeed yields a random conditional probability measure on
ΩX × ΩY . Ma (2017) proves that any conditional density f(·|·) on ΩX × ΩZ is in the L1-closure of
the support of the cond-OPT.

From the perspective of hypothesis testing, we are interested in the marginal likelihood of a sample
(X1, Z1), ..., (Xn, Zn) with respect to a cond-OPT prior. This is obtained by first standardising
Z1:n, and for every Cκ ∈ ΠZ considering the subsample X(Cκ) := {Xj : Zj ∈ Cκ}, and
X(0)(Cκ), X(1)(Cκ) defined similarly. As the cond-OPT prior considers a general Pólya tree prior
for this subsample, we simply compute the marginal likelihood p(X(Cκ)|Π,A) using equation (3). If
Cκ is a so called leaf-set, i.e. the set contains at most one observation or it has no children in the family
of partitions ΠZ , then we simply return this marginal likelihood. If Cκ is not a leaf-set, we continue
along the children Cκ0 and Cκ1. We integrate out the randomness of the random family of partitions
by considering the entire family of partitions ΠZ of ΩZ according to equation (1), and incorporating
the stopping probabilities S by weighing the elements Cκ of level j with E(1− S)j = (1− ρ)j . The
recursive mixing formula is given by

Φ(X|Cκ) :=

{
p(X(Cκ)|Π,A) if Cκ is a leaf-set
ρ · p(X(Cκ)|Π,A) + (1− ρ) · Φ(X|Cκ0)Φ(X|Cκ1) otherwise.

(6)

The quantity Φ(X|Cκ) is the marginal likelihood of {(X1, Z1), ..., (Xn, Zn)} ∩ ΩX × Cκ, with
respect to the cond-OPT. We repeat this computation for X(0) and X(1), and compute the Bayes
factor

BF(H0, H1) =
Φ(X|ΩZ)

Φ(X(0)|ΩZ)Φ(X(1)|ΩZ)
. (7)

Throughout this paper we employ ρ = 1/2 (Ma, 2017). Similar to the computation of marginal
likelihoods of regular Pólya trees, we use a maximum partitioning depth of blog4(n)c, so we consider
Cκ to be a leaf-set if it contains at most one value, or if the number of digits in κ exceeds blog4(n)c.
This maximum partitioning depth is also used when computing the Pólya tree marginal likelihoods
p(·|Π,A).

We note that when no data is provided for Z and thus ΩZ constitutes a leaf-set, this test defaults to the
two-sample test from Holmes et al. (2015). An overview of the two-sample test (Holmes et al., 2015)
and the continuous independence test (Filippi and Holmes, 2017) is provided in the supplement. We
note that we deviate from the original tests by only considering partitions until a maximum depth
of blog4(n)c. In all tests we standardise the data, and use a standard Gaussian base measure for
generating the relevant partitions.

3 Experiments

As mentioned earlier, we investigate the performance of the Pólya tree prior based independence
tests when implemented as part of the LCD algorithm (Cooper, 1997). To recapitulate, the LCD
algorithm is based on the result that if the data generating process of the triple of random variables
(X1, X2, X3) has no selection bias, can be modelled by a faithful structural causal model (SCM)
(Pearl, 2009), and X2 is not a cause of X1, then the presence of (in)dependences

X1 6 |= X2, X2 6 |= X3, X1 |= X3|X2 (8)
implies that X2 is a (possibly indirect) cause of X3. If this is the case, we speak of the ‘LCD triple’
(X1, X2, X3). Mooij et al. (2020) have recently shown that LCD is able to deal with cyclic relations.
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Figure 2: Three SCM’s used for the simulations.

The data sets we consider consist of observations of context variables (Ck)k∈K (interventions), and
system variables (Xi)i∈I . We implement LCD by iterating over all triples (Ck, Xi, Xi′), where
k ∈ K and i 6= i′ ∈ I. We emphasise that the LCD algorithm only retrieves ancestral relations, and
thus no direct causes. As mentioned earlier, we consider all context variables to be binary variables,
indicating whether or not a certain intervention has been applied to the system variables.

3.1 Simulations

We are interested in the performance of the LCD algorithm, applied to a data set which may contain
nonlinear relations between the variables. To analyse the performance, we simulate data according
to the graphs shown in Figure 2. We let the binary variable C determine whether we perform
intervention g on X; if C = 1 we intervene on X , and if C = 0 we don’t intervene on X . The link
function ` and intervention g are randomly chosen from

`(x) =


0

x

x2

sin(12πx̃)

and g(x) =



x no intervention
x+ θ mean shift
(1 + θ)x variance shift
θ perfect intervention
x+B mean shift mixture,

(9)

where x̃ = x/(max(x1, ..., xn) − min(x1, ..., xn)), θ ∼ U({2, 3, 4, 5, 6}) (independently drawn
per round of simulations) and B ∼ U({−1, θ}) (independently drawn for every x). The possibility
of picking g(x) = x or `(x) = 0 ensures the occurrence of C |= X and X |= Y respectively. Note
that if we pick `(x) = 0, then in the graphs of Figures 2b and 2c we have C |= Y |X . To have a
balanced occurrence of C |= X,X |= Y,C |= Y |X and the presence of an LCD triple, we pick the
graph of Figure 2a with probability 3/5, and the graphs of Figures 2b and 2c with probability 1/5.
We choose ‘no intervention’ for g and `(x) = 0 (no connection between the variables) independently
with probability 1/5.

A canonical choice for testing conditional independence is the partial correlation test. Despite its
ubiquity, its assumptions do not comply with nonlinear data. To illustrate this we generate 400 samples
from the graph of Figure 2b 2000 times, where we only consider the intervention g(x) = x + 3
(mean shift) and link functions `(x) = 0 (Figure 3a) or `(x) = x2 (Figure 3b). Depending on the
choice of ` we either have C |= X|Z or C 6 |= X|Z. We compare the novel conditional two-sample test
from Section 2.1 (denoted by polyatree) with Pearson’s partial correlation test (denoted by ppcor)
based on their ROC curve, as shown in Figure 3c. We see that partial correlations performs just a
little better than random guessing, and that the Bayesian conditional two-sample test performs well.
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Figure 3: An example of failure of the partial correlation test.

We compare our ensemble of Pólya tree based nonparametric tests (being the two-sample test (Holmes
et al., 2015), independence test (Filippi and Holmes, 2017) and conditional two-sample test (Section
2.1)), denoted by polyatree, with both classical and recently proposed (conditional) independence
tests. As mentioned earlier, we compare with the ensemble consisting of the Pearson correlation-
and partial correlation test, denoted by ppcor. We also include a Bayesian version of the Pearson
(partial) correlation test (Wetzels and Wagenmakers, 2012), denoted by ppcor_b. Harris and Drton
(2013) propose the use of Spearman’s (partial) rank correlation test for nonparanormal models,
which we denote by spcor. We compare with a nonlinear extension of the partial correlation test,
the Generalised Covariance Measure (GCM) (Shah and Peters, 2020), implemented with penalised
regression splines as provided by the R-package GeneralisedCovarianceMeasure. We denote
this (conditional) independence test by gcm. Departing from the regression-type independence tests,
we also consider the Randomised Conditional Correlation Test (RCoT) as proposed by Strobl et al.
(2019). For marginal independence testing, this test defaults to an approximate version of the Hilbert-
Schmidt Independence Criterion (Gretton et al., 2008). This ensemble is denoted by rcot. Finally
we compare to the Classifier Conditional Independence Test (CCIT) (Sen et al., 2017), denoted by
ccit.

We do 2000 rounds of simulations. In each round we select a graph from Figure 2, select link function
` and intervention g, and simulate 400 observations from the resulting graph. Then we apply each of
the test ensembles to the two-sample test C |= X , the independence test X |= Y , and the conditional
two-sample test C |= Y |X . For each test we output the p-value, or in case of the Bayesian tests the
H0 model evidence P(H0|data).2 We construct ROC curves for testing ‘positive’ outcomes C 6 |= X ,
X 6 |= Y and C 6 |= Y |X by varying the threshold α, representing the upper bound on the p-value/model
evidence for drawing a positive conclusion. These results can be seen in Figures 4a, 4b and 4c. On the
ROC curves we have marked the reference points α = 0.05 and α = 1/2 for respectively frequentist
and Bayesian tests. The areas under the ROC curves (auc) are shown in the legends of the plots.

Comparing Bayesian and frequentist tests based on their performance in the LCD algorithm is not
straightforward, since the triple of tests does not by default output a confidence score with respect
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Figure 4: ROC results for simulated data for individual tests (a–c) and for the LCD test ensemble (d).

2Recall that P(H0|data) = 1− (1 + BF(H0, H1))−1.
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Figure 5: ROC curves of different ways of scoring an LCD triple (C,X, Y ).

to the hypothesis. Typically, varying the threshold α from 0 to 1 produces an ROC curve between
the points (0, 0) and (1, 1). If we denote the frequentist p-values or Bayesian H0 model evidence for
the tests C |= X , X |= Y and C |= Y |X with pCX , pXY and pCY |X respectively (with independence
under the null hypothesis), and if we were to use the same α as threshold for testing whether pCX < α,
pXY < α and pCY |X > α, then varying α between 0 and 1 does not result in a curve between (0, 0)
and (1, 1), as shown in Figure 5a. Alternatively we could use α for testing pCX < α, pXY < α and
pCY |X > 1−α, as shown in Figure 5b. In this case the level α reflects the amount of evidence for the
desired conclusions C 6 |= X , X 6 |= Y and C |= Y |X . For frequentist tests this would not make sense,
as for decreasing α we require more evidence for H0 : C |= Y |X , and the p-value has a uniform
distribution under H0. This is remedied by, when testing for independence C |= Y |X , only varying α
between 0 and a fixed α0 (Figure 5c). More specifically, for level α the LCD algorithm outputs

pLCD = 1[0,α](pCX) · 1[0,α](pXY ) · 1(α0,1]∪(1−α,1](pCY |X), (10)

where we let α0 = 0.05 for frequentist tests and α0 = 1/2 for Bayesian tests. The triple (C,X, Y )
is given a ‘positive’ label if the data is generated according to the relation C → X → Y . The use of
this performance measure is corroborated by the observation that in Figure 5c the frequentist partial
correlation and Bayesian partial correlation tests have similar performance. We finally compare the
performance of the different LCD implementations using this performance measure, as shown in
Figure 4d.

We compare the computation times of the different tests in Figure 6. We note that the Pólya tree tests
provide a very good trade-off between ROC performance (Figure 4) and computation time (Figure 6).

3.2 Protein expression data

We apply the LCD algorithm, implemented with the Bayesian ensemble of independence tests, to
protein expression data (Sachs et al., 2005). For a detailed description of the data set we refer to the
supplement. Sachs et al. (2005) provide an ‘expert network’, depicting the consensus (at that time)
among biologist literature on the true network of signals between 11 proteins and phospholipids,
and 10 reagents that are added to the cells. They estimate a causal graph which deviates from the
expert network by some edges, refraining from claiming whether these edges should be added to the
true network. Many authors have used this data set for estimating the underlying causal network, of
which the graph of the original paper (Sachs et al., 2005) most closely resembles the expert network
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Figure 6: Runtimes of the different tests ensembles on the entire batch of simulations.
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Figure 7: The output of LCD on the Sachs data. Edges indicate (indirect) causal effects between
the nodes. We report relations for a Bayes Factor threshold of k = 10 (strong evidence, depicted
in black), k = 4 (substantial evidence, depicted in red) and k = 1 (weak evidence, depicted in
blue) (Kass and Raftery, 1995). Interventions on their (indirect) causal effects are indicated with
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(Ramsey and Andrews, 2018). Furthermore, Ramsey and Andrews (2018) and Mooij et al. (2020)
provide sufficient grounds for rejecting the expert network as being the true causal graph of the data.

The output of the LCD algorithm, implemented with the Bayesian ensemble of tests, is shown in
Figure 7. We report the output of the LCD algorithm for multiple thresholds for the statistical tests.
We accept H1 : C 6 |= X and H1 : X 6 |= Y when BF(H1, H0) = 1/BF(H0, H1) > k and accept
H0 : C |= Y |X when BF(H0, H1) > k, and we compare the results for multiple values of k.

As we have no reliable ground truth to compare the output of the LCD algorithm with, we compare the
output of LCD with its implementation with partial correlation. For this frequentist implementation
we consider the threshold α = 0.01 for testing C 6 |= X , X 6 |= Y and C |= Y |X . The results of this
implementation are provided in the supplement. First we note that the output of LCD differs among
the use of different statistical tests, corroborating the premise that the performance of the algorithm
highly depends on the choice of statistical test. We also note that LCD with partial correlations
produces a very dense causal graph, whereas LCD with Pólya tree tests produces a graph which is
more likely to resemble the true causal model.

4 Discussion & Conclusion

We note that, although the Pólya tree ensemble of independence tests provides good results in our
setup, we have made some assumptions that might be reconsidered when using these tests in practice.
First we note that the choice of A may highly influence the suitability of the test. Even when A
satisfies the conditions such that samples from the Pólya tree are continuous distributions, there is
a wide variety of parameters to be considered. Walker and Mallick (1999) for example consider
αj = cj2 for c > 0, and propose placing a prior on the parameter c. We note that choosing c between
1 and 10 is in general a good choice (Holmes et al., 2015), where lower values of c correspond with
higher variance of the Pólya tree, and thus less fixation on the mean G (Hanson, 2006). Another
consideration is the choice of the family of partitions Π. We have quite arbitrarily picked G to be
standard Gaussian. As we have chosen αj = j2 (causing relatively low dependence on G) and
pre-process the data by standardising, we believe that our results are not solely valid for the data sets
we considered. We also note that the maximum partitioning depth J = blog4(n)c is quite arbitrarily
chosen, and may be reconsidered when presented with either very small or very large data sets.

As many constraint-based causal inference algorithms (other than LCD) require conditional indepen-
dence testing of the form C |= X|Z for multidimensional Z, further research should look into how
this can be achieved.

The ensemble of Pólya tree prior based independence tests provides good results when utilised in
a causal inference algorithm applied on synthetic data, and produces sensible output on real world
data. We therefore believe that it is a promising area of research, which hopefully will improve the
robustness and applicability of causal inference algorithms.
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Appendix A Hypothesis testing with Pólya tree priors

In general, our setup for independence testing will assume availability of independent samples
X1, ..., Xn of a continuous random variable X . We denote the domain of X with ΩX , and the space
of distributions with continuous cumulative distribution functions on ΩX withM. Our hypotheses
will be of the form

H0 : X ∼ f with f ∈M0, H1 : X ∼ f with f ∈M1, (11)

whereM0,M1 ⊂M, andM0 ∩M1 = ∅. Since we wish to device a Bayesian test, we will define
prior distributions P0 and P1 onM0 andM1 respectively. Then we compare the evidence of the
models given the data via the Bayes factor, i.e.

BF(H0, H1) =
P(H0|X1:n)

P(H1|X1:n)
=
p(X1:n|H0)

p(X1:n|H1)

P(H0)

P(H1)
=

∫
M0

∏n
i=1 f(Xi)dP0(f)∫

M1

∏n
i=1 f(Xi)dP1(f)

(12)

where we have placed equal prior weights on H0 and H1, so P(H0) = P(H1) = 1/2.

A canonical choice for a prior on a space of probability distributions is the Dirichlet Process. However,
the support of the Dirichlet process contains only discrete distributions, and since we wishM to
be contained in the support of our prior, the Dirichlet Process is not a suitable choice for our setup.
The Pólya tree prior does not suffer from this characteristic (Ferguson, 1974), and is thus a suitable
prior onM. Since the elements ofM have support on ΩX , we will speak of a Pólya tree on ΩX .
We will first construct a Pólya tree on ΩX ⊆ R, and then extend this definition to a Pólya tree on
ΩX × ΩY ⊆ R2.

First we recall the construction of the one-dimensional Pólya tree as described in the main paper.
In particular, we construct a Pólya tree on (Ω,B(Ω)), where Ω ⊆ R, and B(Ω) denotes the Borel
sigma-algebra on Ω. In order to construct a random measure on B(Ω), we will assign random
probabilities to a family of subsets Π of Ω which generates the Borel sets. The family of subsets
that we consider are the dyadic partitions of [0, 1], mapped under the inverse of some cumulative
distribution function G on Ω. This results in a family of partitions of Ω, where for level j we have
Ω =

⋃
κ∈{0,1}j Cκ, with

Cκ := [G−1(k−12j ), G−1( k2j )), (13)

and k is the natural number corresponding to the bit string κ ∈ {0, 1}j . A schematic depiction of this
binary tree of partitions is shown in Figure 8. We define the index set by K := {{0, 1}j : j ∈ N},
so the family of subsets of Ω that we consider is Π := {Cκ : κ ∈ K}. From basic measure theory
we know that Π indeed generates B(Ω). We assign random probabilities to the elements of Π by
first assigning random probabilities to C0 and C1, and randomly subdividing these masses among
the children of C0 and C1. In particular, for the first level of the partition we assign the random
probabilities P(C0) = θ0 and P(C1) = θ1 with (θ0, θ1) ∼ Dir(α0, α1), for some hyper-parameters
α0 and α1. Then, for every Cκ ∈ Π we split the mass that is assigned to Cκ by assigning a fraction
θκ0 to Cκ0 and a fraction θκ1 to Cκ1, where we let (θκ0, θκ1) ∼ Dir(ακ0, ακ1). This construction
yields a Pólya tree on Ω, which is a random measure on Π and thus on B(Ω), which we formalise as
follows:

Ω

G−1(0) G−1(1)θ0 θ1

C0 C1

G−1(0) G−1( 1
2 ) G−1(1)

θ00 θ01 θ10 θ11

C00 C01 C10 C11

G−1(0) G−1( 1
4 ) G−1( 1

2 ) G−1( 3
4 ) G−1(1)...

...
...

...

Figure 8: A one-dimensional Pólya tree partitioning scheme.
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Definition A.1 (Lavine, 1992) A random probability measure P on (Ω,B(Ω)) is said to have a
Pólya tree distribution with parameter (Π,A), written P ∼ PT(Π,A), if there exist nonnegative
numbers A = {ακ : κ ∈ K} and random variables Θ = {(θκ0, θκ1) : κ ∈ K} such that the
following hold:

1. all the random variables in Θ are independent;
2. for every κ ∈ K, we have (θκ0, θκ1) ∼ Dir(ακ0, ακ1);

3. for every j ∈ N and every κ ∈ {0, 1}j we have P(Cκ|Θ) =
∏j
i=1 θκ1...κi−1

, for Cκ ∈ Π.

The support of the Pólya tree is determined by the choice of Π and A. In general, any separating
binary tree of partitions of Ω can be considered. In this paper we only consider partitions of the
type of equation (13), where we choose G to be the standard Gaussian cumulative distribution
function. Ferguson (1974) shows that the Pólya tree is a Dirichlet process if ακ = ακ0 + ακ1. The
parameter of this Dirichlet process is mG0, where m = α∅ and G0 is the mean of the Pólya tree, i.e.
G0(Cκ) = E(P(Cκ)) (Lavine, 1994). This implies that for this choice of A, the support of the Pólya
tree is contained in the space of discrete distributions. Sufficient conditions on A for the Pólya tree to
have support on the continuous distributions is given by the following theorem:

Theorem A.1 (Kraft, 1964) Let σ̄j := sup{Var(θκ) : κ ∈ {0, 1}j}. If E(θκ) = 1/2 for all κ ∈ K
and

∑∞
j=1 σ̄j <∞, then with probability one, samples from P are absolutely continuous with respect

to Lebesgue measure.

This condition is satisfied if for each κ ∈ {0, 1}j we take ακ0 = ακ1 = j2, which we will use
throughout this paper, as it is promoted as a ‘sensible canonical choice’ by Lavine (1992). In this case
we indeed have E(θκ) = 1/2, and thus for every j ∈ N, the mass is (in expectation) split uniformly
over the Cκ for all κ ∈ {0, 1}j . As a consequence the Pólya tree is centred on the base distribution
with cumulative distribution function G, i.e. E(P(Cκ)) =

∫
Cκ
G′(x)dx. As mentioned in the main

paper we only consider partitions up to a pre-determined level J = blog4(n)c.
Let X be a continuous random variable with a distribution that lies in the support of the Pólya tree
P ∼ PT(Π,A). Drawing a distribution from P is done by drawing from each of the random variables
in Θ. If we let X1, ..., Xn be a sample from X , then the likelihood of that sample with respect to a
sampled distribution Θ from the Pólya tree PT(Π,A) is

p(X1:n|Θ,Π,A) =
∏
κ∈K

θnκ0κ (1− θκ)nκ1 , (14)

where nκ denotes the number of observations lying in Cκ, i.e. nκ := #({X1, ..., Xn} ∩ Cκ). If we
integrate over all possible values of all θκ, we obtain the marginal likelihood

p(X1:n|Π,A) =
∏
κ∈K

B(ακ0 + nκ0, ακ1 + nκ1)

B(ακ0, ακ1)
, (15)

where B(·) denotes the Beta function. Note that this quantity corresponds to the marginal likelihood∫
M
∏n
i=1 f(Xi)dP(f), a version of which occurs in the numerator and denominator of the right-

hand side of equation (12). This marginal likelihood will therefore be a fundamental quantity in the
Bayesian tests that we consider.

A.1 A nonparametric two-sample test

In order to use the Pólya tree prior for Bayesian testing, we have to formulate our hypotheses H0

and H1 in terms of the relevant spaces of distributionsM0 andM1, as suggested by equation (11).
This is done by picking a Pólya tree prior Pi under Hi, and definingMi to be the support of Pi, for
i = 0, 1. Given data to test our hypothesis with, we calculate marginal likelihoods via equation (15)
for both Pólya trees P0 and P1, which are in turn used for calculating the Bayes factor via (12).

We first use this procedure to describe the nonparametric two-sample test, as proposed by Holmes
et al. (2015). Given a sample {(X1, C1), ..., (Xn, Cn)} from binary variable C and continuous
variable X , define X(0) := {Xi : Ci = 0, i = 1, .., n} and X(1) := {Xi : Ci = 1, i = 1, .., n}. Let

12



ΩY

ΩX

C0 C1

C2 C3

θ0 θ1

θ2 θ3 Level 1
for X 6 |= Y

(a) Partitioning scheme for X 6 |= Y .

ΩY

ΩX

C0 C1

C2 C3

θ0Xθ0Y θ1Xθ0Y

θ0Xθ1Y θ1Xθ1Y Level 1
for X |= Y

(b) Partitioning scheme for X |= Y .

F denote the distribution of X , and let F (0) (resp. F (1)) denote the distribution of X(0) (resp. X(1)).
We formulate the independence between X and C as a two-sample test, i.e.

H0 : X |= C ⇐⇒ X(0) ∼ F and X(1) ∼ F ⇐⇒ X ∼ F (16)

H1 : X 6 |= C ⇐⇒ X(0) ∼ F (0) and X(1) ∼ F (1) with F (0) 6= F (1). (17)

Under H0 we standardise the sample X1:n, and compute its marginal likelihood using equation (15).
Under H1, we model X(0) and X(1) as being samples from independent random variables, having
different distributions. Since separately normalising X(0) and X(1) may erase distinctive features
between the samples, we first standardise X , and then subdivide X into X(0) and X(1).

We formulate the Bayes factor as

BF(H0, H1) =
p(X1:n|Π,A)

p(X(0)|Π,A)p(X(1)|Π,A)
. (18)

Upon inspection of equation (15) we see that the Bayes factor can be written as an infinite product of
fractions, being

BF(H0, H1) =
∏
κ∈K

B(ακ0 + nX|κ0, ακ1 + nX|κ1)B(ακ0, ακ1)

B(ακ0 + nX(0)|κ0, ακ1 + nX(0)|κ1)B(ακ0 + nX(1)|κ0, ακ1 + nX(1)|κ1)
,

(19)

where nX|κ := #(X1:n ∩Cκ). We note that whenever nX|κ ≤ 1 the fraction has a value of 1, so we
calculate the marginal likelihoods until we either reach the maximum partitioning depth blog4(n)c,
or until n·|κ ≤ 1.

A.2 Two-dimensional Pólya trees

Now that we have defined a Pólya tree on (Ω,B(Ω)) with Ω ⊆ R, we extend this definition to
a Pólya tree on (ΩX × ΩY ,B(ΩX × ΩY )) with ΩX × ΩY ⊆ R2. This construction is done
similarly to the construction on Ω. We consider a base measure with cumulative distribution function
G on ΩX ∪ ΩY , and partition ΩX × ΩY into the four quadrants C0, C1, C2 and C3, where the
boundaries of the Ci are determined by G−1. We assign random probability θi to quadrant Ci with
(θ0, ..., θ3) ∼ Dir(α0, ..., α3). Then we recursively partition Cκ into quadrants Cκ0, ..., Cκ3, and split
the mass assigned to Cκ according to (θκ0, ..., θκ3) ∼ Dir(ακ0, ..., ακ3). This partitioning scheme is
shown in Figure 9a. Similar to the one-dimensional case we have that Π2 generates the Borel sigma
algebra on ΩX × ΩY . We will denote this two dimensional partition with Π2, the set of parameters
ακ with A2, and the set of splitting variables θκ with Θ2, where the subscript 2 emphasises the
dimension of the space ΩX × ΩY . This leads to the following definition of the two dimensional
Pólya tree:

Definition A.2 (Hanson (2006)) A random probability measure P on (ΩX ×ΩY ,B(ΩX ×ΩY )) is
said to have a Pólya tree distribution with parameter (Π2,A2), written P ∼ PT(Π2,A2), if there
exist nonnegative numbers A2 = {ακ : κ ∈ K2} and random variables Θ2 = {θκ : κ ∈ K2} such
that the following hold:
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1. all the random variables in Θ2 are independent;
2. for every κ ∈ K2 we have (θκ0, θκ1, θκ2, θκ3) ∼ Dir(ακ0, ακ1, ακ2, ακ3);

3. for every j ∈ N and every κ ∈ {0, 1, 2, 3}j we have P(Cκ|Θ2) =
∏j
i=1 θκ1...κi−1

, for
Cκ ∈ Π.

Similarly to the one-dimensional case, samples from the Pólya tree P ∼ PT(Π2,A2) are continuous
with respect to the two-dimensional Lebesgue measure if we take ακ0 = ακ1 = ακ2 = ακ3 = j2,
where j denotes the number of bits in the binary number κ ∈ K (Walker and Mallick, 1999). Similar
to the one-dimensional case, we only consider partitions up to depth J = blog4(n)c.
When observing a sample (X1, Y1), ..., (Xn, Yn) from continuous random variables X and Y of
which the joint distribution lies in the support of the two-dimensional Pólya tree P , we have that the
marginal likelihood of that sample is

p((X,Y )1:n|Θ2,Π2,A2) =
∏
κ∈K

θnκ0κ0 θnκ1κ1 θnκ2κ2 θnκ3κ3 . (20)

If we integrate over all possible values of all θκ, we obtain

p((X,Y )1:n|Π2,A2) =
∏
κ∈K

B̃(nκ0 + ακ0, nκ1 + ακ1, nκ2 + ακ2, nκ3 + ακ3)

B̃(ακ0, ακ1, ακ2, ακ3)
, (21)

where B̃ denotes the multivariate Beta function.3 Similar to the one-dimensional case, we note that
this quantity corresponds to the marginal likelihood

∫
M2

∏n
i=1 f(Xi, Yi)dP(f).

Under the assumption X |= Y , we construct a prior similar to the two-dimensional Pólya tree. First
we note that the two-dimensional family of partitions Π2 can be regarded as the per-level Cartesian
product of the partitions, i.e.

Π2 =
⋃
j∈N
{CX|κ × CY |κ′ : CX|κ ∈ ΠX , CY |κ′ ∈ ΠY , κ, κ

′ ∈ {0, 1}j}, (22)

where ΠX and ΠY are families of one-dimensional partitions over ΩX and ΩY respectively. For
every level κ, we first split the mass over the elements of ΠX according to (θκ0,X , θκ1,X) ∼
Dir(ακ0,X , ακ1,X), and then independently split the mass over the elements of ΠY according to
(θκ0,Y , θκ1,Y ) ∼ Dir(ακ0,Y , ακ1,Y ). We denote the set of parameters ακ,X with AX , and the
parameters ακ,Y with AY . This prior yields a marginal likelihood of

p((X,Y )1:n|Π2,AX ,AY ) =
∏
κ∈K

B(nκ0 + nκ2 + ακ0,X , nκ1 + nκ3 + ακ1,X)

B(ακ0,X , ακ1,X)

× B(nκ0 + nκ1 + ακ0,Y , nκ2 + nκ3 + ακ1,Y )

B(ακ0,Y , ακ1,Y )
,

(23)

as shown by Filippi and Holmes (2017). We notice that this equals the product of the marginal likeli-
hoods of X and Y according to independent one-dimensional Pólya tree priors PX ∼ PT(ΠX ,AX)
on ΩX and PY ∼ PT(ΠY ,AY ) on ΩY , i.e.

p((X,Y )1:n|Π2,AX ,AY ) = p(X1:n|ΠX ,AX)p(Y1:n|ΠY ,AY ), (24)
where the univariate marginal likelihoods are computed according to equation (15). To ensure that this
prior is not biased when considered in conjunction with the two-dimensional Pólya tree, we consider
parameters ακ0,X = ακ0 + ακ2, ακ1,X = ακ1 + ακ3, ακ0,Y = ακ0 + ακ1 and ακ1,Y = ακ2 + ακ3
(Filippi and Holmes, 2017). Since we use the set of standard parameters A2 for the two-dimensional
Pólya tree, we have A′ := AX = AY = {2j2 : j ∈ N}. As families of partitions ΠX and ΠY we
only consider the standard Π as constructed in equation (13) with a standard Gaussian base measure.

A.3 A nonparametric independence test

A Bayesian independence test that utilises two-dimensional Pólya trees is proposed by Filippi and
Holmes (2017). Considering one-dimensional continuous random variables X and Y , we test the
hypotheses

H0 : X |= Y H1 : X 6 |= Y. (25)
3which is defined as B̃(α1, α2, α3, α4) :=

∏4
i=1 Γ(αi)

/
Γ(
∑4

i=1 αi)
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using the Bayes factor

BF(H0, H1) =
p(X1:n|Π,A′)p(Y1:n|Π,A′)

p((X,Y )1:n|Π2,A2)
, (26)

where the marginal likelihoods are computed according to equations (15) and (23). As mentioned
earlier, we take the partitions Π and Π2 as given by equations (13) and its two-dimensional equivalent,
both with a standard Gaussian base measure. We use the standard parameter sets A′ and A2.

Using similar arguments as for the two-sample test, the Bayes factor can be denoted as an infinite
product, of which the terms are equal to one when nXY |κ ≤ 1. Therefore we compute the marginal
likelihoods up to a level in which either the depth is blog4(n)c, or all elements of the partition contain
at most one observation.

Appendix B Protein expression data

In the main paper we apply the LCD algorithm, implemented with the Bayesian ensemble of indepen-
dence tests, to protein expression data (Sachs et al., 2005). The data set consists of measurements of
11 phosphorylated proteins and phospholipids (Raf, Erk, p38, JNK, Akt, Mek, PKA, PLCg, PKC,
PIP2 and PIP3) and 8 indicators of different interventions, performed by adding reagents to the
cellular system, see Table 1. The biological details of these proteins, phospholipids, and reagents
are described in Sachs et al. (2005). Using flow cytometry, these 11 components are measured from
an individual human immune system cell. Flow cytometry allows for simultaneous, independent
observation of hundreds of cells, producing a statistically large sample, and thus allowing for the
application of causal inference algorithms (Sachs et al., 2005). The ‘expert network’ from Sachs et al.
(2005) is depicted in Figure 10. We note that, as argued in the main paper, we do not accept this
network as the true causal graph, but merely display it suggestively.

Table 1: Interventions from the data set of Sachs et al. (2005).
Description Nr. of observations

1 CD3, CD28 853
2 CD3, CD28, Akt-inhibitor 911
3 CD3, CD28, G0076 723
4 CD3, CD28, Psitectorigenin 810
5 CD3, CD28, U0126 799
6 CD3, CD28, LY294002 848
7 PMA 913
8 β2CAMP 707

We assume that the intervention variables and system variables are not confounded, so when finding
an LCD triple (C,X, Y ) we output C → X → Y . When performing a statistical test we always
use the entire set of observations. Note that we may therefore not interpret the arrows from context
variables to system variables as an effect of merely performing a single intervention as opposed to a
purely observational setting, but as performing an intervention as opposed to performing all the other
interventions. See Mooij et al. (2020) for a detailed discussion on the assumption of no confounding
between context and system variables, and on combining multiple contexts.

By means of comparison, we show the results of both LCD when implemented with the Pólya tree
tests, and an implementation with the partial correlation test. These results are shown in Figure (11).
In both cases, we report edges for different thresholds. We stress that we have not ‘tuned’ these
thresholds to yield a sparse graph, and merely report results with the default hyperparameters as
discussed in the main paper. The output of LCD with partial correlations complies with equation (10)
from the main paper, as we only vary the threshold α for testing C |= X and X |= Y , and determine
C |= Y |X at a fixed level α0 = 0.05.
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Figure 10: The ‘expert network’ as provided by Sachs et al. (2005). Edges indicate (indirect)
causal effects between the nodes. Interventions and their (indirect) causal effects are indicated with
light-coloured and dashed nodes and edges.
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(a) The output of LCD with Pólya tree tests on the Sachs data. We report relations for a Bayes factor threshold
of k = 10 (strong evidence, depicted in black), k = 4 (substantial evidence, depicted in red) and k = 1 (weak
evidence, depicted in blue) (Kass and Raftery, 1995).

CD3/28
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Raf
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U0126b2CAMP + noCD3/28

(b) The output of LCD with (partial) correlation tests on the Sachs data. We report relations for a p-value
threshold of α = 0.0001 (depicted in black), α = 0.005 (depicted in red) and α = 0.05 (depicted in blue).

Figure 11: LCD output on the Sachs data. Edges indicate (indirect) causal effects between the nodes.
Interventions and their (indirect) causal effects are indicated with light-coloured and dashed nodes
and edges.
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