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Abstract

The Causal Bandit is a variant of the classic Bandit problem where an agent
must identify the best action in a sequential decision-making process, where the
reward distribution of the actions displays a non-trivial dependence structure that
is governed by a causal model. All methods proposed thus far in the literature
rely on exact prior knowledge of the causal model to obtain improved estimators
for the reward. We formulate a new causal bandit algorithm that is the first to
no longer rely on explicit prior causal knowledge and instead uses the output of
causal discovery algorithms. This algorithm relies on a new estimator based on
separating sets, a causal structure already known in causal discovery literature. We
show that given a separating set, this estimator is unbiased, and has lower variance
compared to the sample mean. We derive a concentration bound and construct a
UCB-type algorithm based on this bound, as well as a Thompson sampling variant.
We compare our algorithms with traditional bandit algorithms on simulation data.
On these problems, our algorithms show a significant boost in performance.

1 Introduction

In recent years, there have been several works on the Causal Bandit problem (Lattimore et al., 2016;
Sen et al., 2017; Yabe et al., 2018; Lee and Bareinboim, 2018). This is a variant of the classical
multi-armed bandits problem, where an underlying structural causal model (Pearl, 2009) is assumed
between observed variables.

In the bandit problem, we iteratively choose an arm from a set of arms to play, after which we observe
a reward variable conditional on the chosen arm. In classical bandits, the rewards for the arms are
assumed to be independent. If we assume the rewards are generated by a causal model, the rewards
are no longer independent. We can use this additional structure to improve our performance.

Consider the following example. We play a video game with two buttons A and B. The game is
played in rounds, and in each round we have to choose which combination of the buttons we push.
Then, the game program generates a randomly chosen cute animal S which appears on the screen,
for example a giraffe or a zebra, conditional on the buttons pressed. Afterwards, a random cuteness
score Y is generated by the program. The distribution of this score is conditional on the animal
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that appeared on the screen. Our goal is then to find out which combinations of buttons to press to
maximize the total cuteness score achieved over the course of this game. The generative process of
this game can be represented by a causal graph, which is depicted in Figure 1.

This is an example of a causal bandit, where we choose actions and obtain rewards, but in addition
to a reward variable, we also observe additional variables after choosing our action. All observed
variables are generated through a causal mechanism. If the probability distributions for each button
combination of the animals that appear on the screen do not overlap, then the reward signals of the
buttons pressed are independent of each other and this game can be considered a classical bandit
problem. However, if the distributions overlap, we can share information of the reward signal between
these button combinations to better estimate the expected reward value of each combination.

As a concrete example, consider starting the game with no prior knowledge on the conditional
distributions. We press button A once, observe a giraffe, and gain 10 cuteness points, and then press
button B, again observe a giraffe, but now gain 5 cuteness points. A traditional bandit algorithm
would estimate the expected value of button A with the sample mean, which is 10. However, it is
intuitively obvious that it is a better strategy to separately model the distribution of the animal that
appears on the screen and the expected reward given the animal, thus obtaining an estimated value of
button A of 7.5. We will refer to this sharing of data between actions as ‘information leakage’.

Recent approaches to this problem have shown greatly improved regret bounds compared to naïve
approaches that treat it like a classical bandit problem by leveraging information leakage (Lattimore
et al., 2016; Sen et al., 2017; Yabe et al., 2018). However, they all rely on perfect prior knowledge
of the causal structure. In this work, we formulate a causal bandits algorithm which drops the
assumption of prior causal knowledge.

In the example, the screen S plays a core role. Once we know how the buttons influence what appears
on the screen, we no longer need to know what buttons were pressed to estimate the expected reward:
the screen separates the action from the reward. This corresponds with the separating set concept
known from the causality literature (Spirtes et al., 2000; Magliacane et al., 2018; Rojas-Carulla et al.,
2018), which (assuming faithfulness) is defined as a set S that renders a target variable Y independent
of a context variable I when conditioned upon: I ⊥⊥Y |S, where the context variable encodes which
interventions are performed. We formulate a Causal Bandit algorithm based on separating sets, where
we separately model how actions (i.e. interventions) influence the separating set S and the expected
reward given S. This will turn out to yield an unbiased estimator, with improved variance compared
to a naïve sample mean estimator, on the condition that S is a correct separating set.

Formulating the algorithm in terms of separating sets allows us to combine it with any causal
discovery algorithm that can estimate separating sets from data, and thereby drop the assumption
of prior causal knowledge. We formulate a concentration bound for our estimator, and construct an
Upper Confidence Bound algorithm based on this bound. We then show greatly improved cumulative
regret performance compared to classical bandit algorithms in simulation studies.

A

B

IA

IB

S Y

Figure 1: The causal graph for our example game. IA and IB are intervention variables encoding
interventions on buttons A and B, the screen content is encoded by S, and Y is the reward (cuteness
score). {S} is a separating set for Y and {IA, IB}, since {IA, IB} ⊥G Y | S.

2 Preliminaries

In this section we introduce the required preliminaries regarding causality and causal bandits.
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2.1 Causal modeling and graph definitions

We will very briefly introduce the elements of the theory of graphical causal modeling that are used
in this work. An in-depth introduction can for example be found in Pearl (2009).

We will denote tuples of variables with a bold capital letter, e.g. X = (Xi)
n
i=1, and will use lower

case letter x for a value assigned to X . The domain of X is denoted by D(X). We assume that
we observe variables generated through an acyclic Structural Causal ModelM = 〈V,E,F,P[E]〉,
with a tuple of endogenous variables V and a tuple of independent exogenous variables E with
probability distribution P[E]. The values of V are defined by the tuple of functions F, where for each
Vi ∈ V there is a fVi ∈ F such that Vi = fVi(pa(Vi),Ei). Here pa(Vi) ⊆ V \ {Vi} are the direct
causes (“parents”) of Vi and Ei ⊂ E is a subset of the exogenous variables. We explicitly allow for
confounders (since the Ei can overlap), but exclude cycles, though it would be straightforward to
include them (see e.g. Mooij et al., 2016). For simplicity, we assume all variables henceforth to be
discrete.

Each SCM has an associated graph G = 〈V, E〉, which is acyclic if and only if the SCM is acyclic,
where V is a set of nodes corresponding to the endogenous variables and E is a set of edges. If
Vi directly influences Vj according to fVj , then there is a directed edge Vi → Vj ∈ E . There is a
bidirected edge Vi ↔ Vj ∈ E if they share independent noise variables, i.e., if Ei ∩ Ej 6= ∅. We
adopt the default family relationships: pa, ch, an, and de for parents, children and ancestors and
descendants respectively, where for an and de we include the variable itself.

We may now reason about performing interventions on the variables Vi. In the SCM causal modeling
framework, interventions are defined by altering the functional dependencies of the SCM. For example,
we may force the value of a variable to a specific value ξ. This is called a perfect intervention, and
the joint probability is then notated as P[V | do(Vi = ξ)]. One may also define other types of
interventions, for example soft interventions which alter the functional dependency fVi but may keep
a functional relationship instead of just setting the variable to a value.

Here we make use of context variables (Mooij et al., 2016) to model interventions. We introduce I
to be the set of context variables. We will consider graphs G = (V ∪ I, E) with additional vertices
I corresponding to a different interventions. If Ii ∈ I encodes an intervention on nodes Ti ⊆ V,
we set Ii to ∅ if we do not perform this intervention, and to a different value ξ for each possible
version of intervention Ii (for example to different perfect intervention values in the domain of Ti).
Furthermore, we add an edge Ii → Vi to E for each Vi ∈ Ti. For example, we can model a perfect
intervention do(Vi = ζ) by intervention variable Ii if we modify fVi to:

f∗Vi =

{
ζ if Ii = ζ

fVi(pa(Vi),Ei) if Ii = ∅

Then, if we perform some combination of interventions, this corresponds to choosing a vector of
values ζ, of the same size as the number of intervention variables, and where some values may be
∅, resulting in P[V | do(I = ζ)]. Note that with this formalism, P[V | do(I = ζ)] = P[V | I = ζ],
because the intervention variables are exogenous.

We define a path between nodes V0 and Vn as a tuple 〈V0, e1, V1, e2, . . . , en, Vn〉, with Vi ∈ V,
ei ∈ E , where each node occurs at most once and ei is an edge with endpoints Vi−1 and Vi. Vk is
called a collider on a path if there is a subpath 〈Vk−1, ek, Vk, ek+1, Vk+1〉 where the edges ek and
ek+1 meet head to head on node Vk. Otherwise this node is called a non-collider. The endpoints are
also refered to as non-colliders.

Using the definition of paths and colliders, one defines d-separation:

Definition 1. (d-separation) We say a path 〈V0, e1, . . . , en, Vn〉 in graph G = (V, E) is blocked by
C ⊆ V if:
(i): Its first or last node is in C, or
(ii): It contains a collider on a node not in an(C), or
(iii): It contains a non-collider in C
If for sets A,B ⊆ V all paths from nodes in A to nodes in B are blocked by C ⊆ V, we say that A
is d-separated from B by C, and write A ⊥G B |C.
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Consider an acyclic SCMM with graph G. Let PM be the probability distribution induced by this
model. Then the Directed Global Markov Property holds for subsets A,B,C ⊆ V:

A ⊥G B |C =⇒ A⊥⊥ PM B |C.

These conditional independencies are the core information provided by causal reasoning that we
exploit in this work. While our algorithm itself does not explicitly assume the converse (called
faithfulness), this is assumed by many causal discovery algorithms thus we henceforth assume
faithfulness as well.

2.2 Causal Bandit problem

The multi-armed bandit problem is one of the classic problems studied in sequential decision making
literature (Lai and Robbins, 1985). In this setting, an agent decides on which arm to pull and receives
a reward corresponding to that arm. Classically, the rewards of the arms are considered independent
which gives rise to strategies like ε-greedy, UCB (Auer et al., 2002; Cappé et al., 2013) and Thompson
Sampling (Thompson, 1933).

Lattimore, Lattimore, and Reid (2016) introduced the Causal Bandit problem as follows. Consider
an agent in a sequential decision making process consisting of T trials. In each trial, the agent
chooses an assignment of values ζ to intervention variables I (also referred to as choosing an arm).
It then observes variables from P[V | I = ζ], according to an SCM M = 〈V,E,F,P[E]〉 with
corresponding graph G = (V ∪ I, E). One of the endogenous variables Y ∈ V is the target variable.
Thus, when choosing an arm for trial N + 1, the agent has observed data DN = {(ζn,vn)}Nn=1,
which are pairs of intervention node values ζ and realizations of V. In this paper, we assume all
variables to be discrete and for Y to be binary. Let Y n denote the target variable observed in trial n.
The goal is then to minimize the cumulative regretR =

∑T
n=1 [Y n −maxζ E[Y | I = ζ]].

As a convenience, we will introduce notation to count the number of samples in our data for which
a certain predicate p holds. Let NDN (p) = |{(ζn,vn) ∈ DN | (ζn,vn) � p}|. For example,
NDN (Y = 1, I = ζ) is the number of samples in dataset DN for which we performed intervention ζ
and observed the value 1 for reward variable Y .

2.3 Related Work

Two types of algorithms have been proposed to solve this problem, those relying on information
leakage and those that prune the action space based on the structure of the causal graph. The initial
paper by Lattimore et al. (2016) was able to give improved bounds for simple regret for the causal
bandit problem compared to traditional methods which assume independent arms. This was done by
utilizing information leakage: the reward obtained under one intervention may provide information
about other interventions. The authors construct an importance sampling estimator based on this
principle that assumes full prior knowledge of the probability distribution of all variables besides the
target variable. Using this, the authors derive an improved simple regret bound. Sen et al. (2017)
focused on applying more advanced techniques from the Bandit literature. For example, they analyze
gap dependent bounds and apply dynamic clipping, where they divide the T trials into phases and
apply a different clipping constant for each phase. These advances lead to sometimes exponentially
better regret than the algorithm by Lattimore et al. (2016).

Yabe et al. (2018) extend Lattimore et al.’s work in a different direction. They consider only binary
variables and perfect interventions on subsets of nodes. They use the full knowledge of the graph to
estimate the probabilities p(V | pa(V ), I = ζ) for each node V ∈ V. Interestingly, they only require
prior knowledge of the graph and estimate all required probability distributions from data acquired
from the actual bandit.

More recently, Lee and Bareinboim (2018) introduced a new method for the causal multi-armed
bandit problem. They consider perfect interventions on subsets of nodes of the causal graph. Because
they only consider perfect interventions, it is sometimes impossible for some interventions to perform
better than other interventions more downstream, and thus they may be pruned.

One thing that all existing approaches have in common is that they assume the causal relationships to
be known beforehand, an assumption that is often not met in practice.
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3 Separating sets lead to improved estimators

In this section, we generalize the intuition we had about the example game in the introduction to
an estimator based on a separating set with favorable properties compared to direct sample mean
estimation. We then derive a concentration bound for this estimator.

3.1 The information sharing estimator

The core strategy we have seen in Causal Bandits in previous work is to exploit very specific
knowledge about the causal structure in order to construct estimators that share information between
arms. In order to make Causal Bandits suitable for causal discovery, we introduce a novel information
sharing estimator that relies on less specific knowledge about the causal graph, exploiting information
leakage to share data between interventions.

Recall our initial example. The core realization we made is that we may separately estimate the
relationship between the combination of buttons pressed and the screen and between the screen and
the score. More generally, we say that a set of variables S is a separating set for intervention variables
I and target variable Y if I ⊥G Y |S. By the Markov property and faithfulness, this is equivalent to
the conditional independence I⊥⊥ PM Y |S.

If S is a separating set, we have for all possible interventions do(I = ζ) the following identity by the
law of total expectation, where the second equality uses the independence:

E[Y | I = ζ] = E[E[Y | S, I = ζ] | I = ζ]

= E[E[Y | S] | I = ζ].

We introduce separate estimators µ̂(s) for E[Y |S = s] and p̂(s | ζ) for P[S = s | I = ζ]. Inspired by
the above identity, we then propose the following information sharing estimator for E[Y | I = ζ]:

µ̂IS(ζ|DN ;S) :=
∑

s∈D(S)

µ̂(s|DN )p̂(s | ζ,DN ). (1)

Since S is discrete and Y is binary, the sample percentages and mean are the obvious candidates to
estimate these quantities. Thus we define:

p̂(s|ζ,DN ) :=
NDN (S = s, I = ζ)

NDN (I = ζ)
, (2)

µ̂(s|DN ) :=
NDN (Y = 1,S = s)

NDN (S = s)
. (3)

To further understand the proposed estimator, we estimate its bias and variance. In the appendix we
show that the following theorem holds:
Theorem 3.1. If we calculate µ̂IS(ζ|DN ;S) from dataset DN as defined above, I⊥⊥ PM Y |S and
there is at least one sample from each possible intervention, then the information sharing estimator
(1) is unbiased and there exists a constant α∗ ∈ [0, 1) such that its variance conditional on the
number of samples from each intervention is given by: 2

V[µ̂IS(ζ|DN ;S)] =
1

NDN (I = ζ)

(
Vs∼P[S=s|I=ζ]

[
E[Y |S = s]

]
(4)

+ (1− α∗(ζ,DN ))Es∼P[S=s|I=ζ]

[
E[Y |S = s](1− E[Y |S = s])

])
.

Proof. See appendix.

It is easy to see that if α∗(ζ,DN ) = 0 (which for example happens if no data with I 6= ζ is available)
then V[µ̂IS(ζ|DN ;S)] = E[Y |I=ζ](1−E[Y |I=ζ])

NDN (I=ζ) , which is the variance of the naïve sample mean
calculated only from data where I = ζ. Thus the information sharing estimator always performs
at least as well as the sample mean. We can therefore see the variance of the information sharing

2Here, we abuse notation by omitting explit conditioning on {NDN (I = ζ)}.
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estimator in equation (12) as a decomposition of the sample mean variance into first term which can
only be reduced by adding more data where I = ζ, and the second term which can also be reduced
by data where I 6= ζ. Indeed, the first term equals the variance of our estimator if µ̂(s|DN ) would be
perfect estimates for the expectations E[Y |S = s].

The second term can be reduced by adding data where I 6= ζ, depending on the overlap in distributions
on S between the interventions. In the appendix we provide lower bounds on α∗(ζ,DN ) under
different assumptions to better understand when this estimator behaves well, e.g. we show that if
we condition on that NDN (S = s) ≥ c · NDN (S = s, I = ζ) for all s and some positive c, then
α∗(ζ,DN ) ≥ c

1+c .

3.2 Concentration bound for information sharing estimator

The true mean µ(ζ) = E[Y |I = ζ] is a function of parameters µ(s) = E[Y |S = s] and p(s|ζ) =
P[S = s|I = ζ] through the relation µ(ζ) =

∑
s∈D(S) p(s|ζ)µ(s). We derive a concentration bound

by constraining p(s|ζ) and µ(s) individually with high probability using Hoeffdings bound and the
bound on multinomial variables from Weissman et al. (2003). We may then use a union bound on
these individual events to obtain a simultaneous multidimensional region Θ of high probability for all
parameters. We can then solve the maximization problem:

P

µ(ζ) ≤ max
(µ∗(s),p∗(s|ζ))∈Θ

∑
s∈D(S)

p∗(s|ζ)µ∗(s)

 ≤ P [(µ(s), p(s|ζ)) ∈ Θ]

to obtain a concentration bound. For δ ≥ 0, let us define ucb(µ̂(s|DN )) = µ̂(s|DN ) +√
log(2|D(S)|/δ)/(2NDN (S = s)). Moreover, let ∆p̂(ζ) =

√
|S| log(4/δ)/(2N (I = ζ)). Then

the following theorem holds:
Theorem 3.2. If we calculate µ̂IS(ζ|DN ;S) as in (1) from dataset DN and I⊥⊥ G Y |S, then:

P
[
E[Y |I = ζ] ≥

∑
s∈D(S)

p̂(s | ζ,DN )ucb(µ̂(s|DN )) (5)

+ ∆p̂(ζ)

(
max

s∈D(S)
ucb(µ̂(s|DN ))− min

s′∈D(S)
ucb(µ̂(s′|DN ))

)]
≤ δ.

Proof. See appendix.

4 Separating Set Causal Bandit Algorithms

With a concentration bound in hand, we may now define our Separating Set Causal Bandit UCB
algorithm. Note that while the bound of equation (21) is often tighter than the standard bound used in
UCB for Bernoulli variables, this is not always the case. Therefore, our algorithm will choose the
tightest bound available to it, and will fall back to just the sample mean µ̂SM (ζ|DN ) if the bound of
equation (21) is not tighter than the standard UCB bound. To reduce computational cost, we run the
causal discovery algorithm once every time the number of iterations has increased by 25%. Each
iteration, for each possible intervention, we calculated the normal UCB and for each separating set
we calculate the UCB based on equation (21). We then choose as index the UCB which is closest to
its corresponding estimate (i.e. it has the smallest width). We then pick the action with the highest
index. The full description of the algorithm is in the appendix. Since our UCB algorithm has the
same confidence level as used in normal UCB and the bound is at least as tight, we can show the
following theorem:
Theorem 4.1. If we run the separating set causal bandit UCB algorithm as defined in the appendix
on dataset DN and if I⊥⊥ G Y |S, it has the same cumulative regret upper-bound as normal UCB.

Proof. See appendix.

In practice, as we will see in section 5, this algorithm may perform much better than normal UCB.
We also test a Thompson sampling variant of the Separating Set Causal Bandit algorithm. Here,
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instead of using an index based on an upper confidence bound, given a separating set, we model
the parameters P[S = s|I = ζ] using a Dirichlet prior and the parameters P[Y = 1|S = s] using a
Beta prior. We can then apply Thompson sampling, by sampling the parameters from their posterior
distributions, and calculating the resulting expected value. Given a sample (ζ, s, Y ), we can update
each of the posteriors separately and naturally. A full specification of this variant is in the appendix.

We may combine our novel algorithms with any causal discovery algorithm which outputs separating
sets. The methods we used in our experiments are described in the following subsections.

4.1 Direct Independence Testing

Since we have full interventional data, we can directly test for all sets S whether they have the
separating set property, i.e., whether I⊥⊥ PMY |S. Our baseline causal discovery method is then to
directly test for separating sets from data in this way. We here make use of the G2-test for conditional
independence of discrete variables (Neapolitan, 2004) with p-value threshold α = 2.5/

√
N .

4.2 ASD-JCI123kt

A state-of-the-art causal discovery algorithm for small numbers of variables is ASD-JCI123kt (Mooij
et al., 2016). It is a particular implementation of the Joint Causal Inference framework (Mooij et al.,
2016), which pools data over contexts. This allows it to simultaneously handle data from different
sources, e.g. different interventional distributions. ASD-JCI123kt is a hybrid causal discovery
algorithm that scores how well each hypothetical causal graph matches the (strengths of the) observed
dependences in the pooled data, giving more weight to stronger dependences. As an independence
test, we again make use of the G2-test for conditional independence of discrete variables with p-
value threshold α = 2.5/

√
N . Contrary to the direct testing baseline, ASD-JCI123kt combines all

conditional independence test results in order to score the underlying causal graph(s). Since the
algorithm makes use of an Answer Set Program (ASP) building on work by Hyttinen et al. (2014), it
is straightforward to query the ASP optimizer for separating sets (e.g., how much evidence is there
that variable Vi is independent of Vj given S), by applying the feature scoring approach proposed by
Magliacane et al. (2016). We accept a set S as a valid separating set if for all I ∈ I, the confidence
score for the independence I ⊥⊥ PMY |S output by ASD-JCI123kt is positive.

5 Experimentation

We now proceed to simulate several Causal Bandit problems. For each experiment, initially all
algorithms uniformly pick arms 10 to ensure that all statistical tests are well behaved. Both causal
discovery algorithms have hyperparameters in the form of a test threshold α, and ASD-JCI123kt
furthermore has a score threshold parameter t. We only test one set of these parameters, where we
set α = 2.5/

√
N (which is somewhat reasonable from experience) and t = 0, due to the high cost

of hyperparameter tuning in this setting. We leave hyperparameter tuning as a further optimization
challenge for the future. We compare to UCB and Thompson Sampling baselines, as well as versions
of our algorithm with knowledge of a separating set, namely the parents of the target variable.

5.1 Simulation study design

First, we simulate data inspired by our running example game. We generate data as follows. We
consider two buttons A and B, with corresponding intervention nodes IA and IB . If IA = ∅ or
IB = ∅, we let our younger brother decide whether to press the corresponding button, which he
does independently with 50% probability. If we set IA to 0 we intervene such that button A is not
pressed (i.e., do(A = 0)), if we set IA to 1 we press the corresponding button (i.e., do(A = 1)).
Similarly for IB . Thus there are 32 = 9 possible actions in this bandit. The screen is a binary variable,
generated according to P[S = 1 |A = a,B = b] = 1+a+b

4 . Finally, we generate Y according to
P[Y = 1 |S = s] = 1+s

3 .

Furthermore, we generated all acyclic causal graphs G = (V, E) over 4 binary variables with no
confounders and compare the cumulative regret, with a similar sampling strategy. We allow perfect
interventions on all subsets of variables excluding the target variable, and thus there are 33 = 27
possible actions. We only generate graphs where Y has at least 1 parent (otherwise the regret is
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(a) (b)

Figure 2: (a): Simulation results on the game example causal bandit over 150 runs. Shaded areas are
estimated standard errors. (b): Sensitivity and false positive rate for our causal discovery methods.

(a) (b)

Figure 3: (a): Simulation results on all DAGs of 4 nodes. We generated a parameter sample for each
of the 234 graphs. Shaded areas are estimated standard for errors. (b) Sensitivity and false positive
rate for our causal discovery methods.

always 0). Permutations of the variables excluding Y are disregarded. Full simulation details are
provided in the appendix, including a final simulation study on larger graphs.

5.2 Results

Results for the experiments are shown in figure (2) and (4). As can be seen, traditional UCB is
outclassed by all our information sharing (IS) based algorithms that rely on causal discovery. In
regimes where the causal discovery methods perform well, Thompson sampling (TS) is also clearly
beaten by our IS TS variants and beaten sometimes by our IS UCB variants. The video game example
is a structure which seems particularly easy to identify, and therefore the performance of all our IS
algorithms is superior on this problem after our causal discovery methods converge.

Unfortunately, in the experiment with all DAGs of 4 nodes, the sensitivity of ASD-JCI123kt converges
poorly, likely due to suboptimal hyperparameter settings. Compared to traditional UCB, even with
somewhat unreliable causal knowledge our methods show increased performance. However, TS seems
to converge quickly for our parameterization strategy after which the mistakes by ASD-JCI123kt are
comparatively too costly. Direct testing does converge and therefore our methods using direct testing
perform very well, with the TS variant almost immediately converging. We see that surprisingly, even
somewhat unreliable causal knowledge may lead to great performance gains, and that this is clearly
a very fruitful direction to pursue. However, when the causal discovery methods do not converge
properly our estimates are not unbiased and thus in that case there are no convergence guarantees.

6 Conclusion

We have shown that exploiting separating sets in causal bandit problems may yield significantly
improved performance compared to traditional UCB and Thompson Sampling. We proved that given
correct separating sets, our algorithm has the same regret bound as UCB. In case the causal graph
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(and hence, the correct separating sets) is not known, we employed causal discovery algorithms to
estimate separating sets from the data in an online fashion. In our simulation experiments, we found
that when the causal discovery methods perform reasonably well, our algorithms that rely on them
clearly outperform their baseline bandit counterparts.

Our estimator and algorithm may be applied whenever we know of a separating set. This furthermore
makes it applicable with pre-existing knowledge less specific than a full causal graph. Furthermore,
there is potential in extending this work to contextual bandits and more general reinforcement learning
if we formulate an equivalent definition of separating set in these settings. Our approach also turns
the Causal Bandit into an interesting task in which to utilize and compare different causal discovery
algorithms.
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Appendix

A Proof of theorems

In this appendix section, we set out to prove the theorems stated in the main paper. Here it is
convenient to introduce vectorized notation for the relevant quantities. Let us consider our estimator
given a particular separating set S with domain D(S). We define the following vectors indexed by
D(S), such that the value at index s ∈ S is given by:(

p̂S(ζ|DN )
)
s

= p̂(s | ζ,DN ), (6)

(pS(ζ))s = P[S = s | I = ζ], (7)(
µ̂S(DN )

)
s

= µ̂(s | DN ), (8)

(µS)s = E[Y = 1 | S = s], (9)(
NS,DN(p)

)
s

= NDN (S = s ∧ p). (10)

With this in hand, we can write the definition of our information sharing estimator (1) as an inner
product:

µ̂IS(ζ|DN ;S) = p̂ᵀ
S(ζ|DN )µ̂S(DN ). (11)

A.1 Proof of Theorem 3.1

We set out to prove the theorem:

Theorem 3.1. If we calculate µ̂IS(ζ|DN ;S) from dataset DN as defined in (1), I⊥⊥ PM Y |S and
there is at least one sample from each possible intervention, then the information sharing estimator
(1) is unbiased and there exists a constant α∗ ∈ [0, 1) such that its variance conditional on the
number of samples from each intervention is given by:

V[µ̂IS(ζ|DN ;S)] =
1

NDN (I = ζ)

(
Vs∼P[S=s|I=ζ]

[
E[Y |S = s]

]
(12)

+ (1− α∗(ζ,DN ))Es∼P[S=s|I=ζ]

[
E[Y |S = s](1− E[Y |S = s])

])
.

We consider the information sharing estimator (11) calculated from data generated under the random
process of the interaction of the policy of a learner with a bandit environment, which we’ll denote Pν ,
where we assume we have at least one sample from each possible intervention ζ ∈ D(I). We first
show that the vectors in (11) are uncorrelated, which has as immediate corollary that the information
sharing estimator is unbiased. This follows from the law of total expectation:

EPν
[
p̂ᵀ
S(ζ|DN )µ̂S(DN )

]
= EPν

[
EPν

[
p̂ᵀ
S(ζ|DN )µ̂S(DN ) | NS,DN (I = ζ),NS,DN (I 6= ζ)

]]
= EPν

[
p̂ᵀ
S(ζ|DN )EPν

[
µ̂S(DN ) | NS,DN (I = ζ),NS,DN (I 6= ζ)

]]
= EPν

[
p̂ᵀ
S(ζ|DN )

]
µS

= pᵀ
S(ζ|DN )µS = E[Y | I = ζ]

where in the second line we use that p̂ᵀ
S(ζ|DN ) is deterministic conditional on NS,DN (I = ζ) and

thus it factors out of the inner expectation. On the third line, we use that conditionally on the counts
NDN (S = s) (which is a deterministic function of the vectors we condition on), µ̂(s | DN ) is just the
mean ofNDN (S = s) Bernoulli variables and thus unbiased, and thus the inner expectation evaluates
to the vector of true means µS(DN ) and factors out. The exact same conditioning argument using the
law of total expectation can be used to show that EPν

[
µ̂S(DN )

]
= µS, from which it follows that

the expectation factors and thus the vectors are uncorrelated. Finally in the fourth line, the elements
of p̂ᵀ

S(ζ|DN ) can be seen as the mean of at least one Bernoulli variable (by assumption) and thus are
unbiased, from which the unbiasedness of the information sharing estimator follows.
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We analyze the variance using a similar strategy, where we add conditioning through the law of total
variance. Let us consider conditioning on the number of samples for each intervention, i.e. we add
conditioning on the set {N (I = ζ)}ζ∈D(I):

VPν [µ̂IS(ζ|DN ;S)] = EPν
[
VPν

[
µ̂IS(ζ|DN ;S) | {N (I = ζ)}ζ∈D(I)

]]
+ VPν

[
EPν

[
µ̂IS(ζ|DN ;S) | {N (I = ζ)}ζ∈D(I)

]]
= EPν

[
VPν

[
µ̂IS(ζ|DN ;S) | {N (I = ζ)}ζ∈D(I)

]]
where on the first line, the second term is 0 since the estimator is unbiased if we have at least one
sample for each possible intervention, which holds by assumption. Thus it suffices to analyze the
estimator conditioned on {N (I = ζ)}ζ∈D(I), and then analyze the expectation of the resulting
expression w.r.t. Pν and the random variables {N (I = ζ)}ζ∈D(I) for a given policy and bandit. We
omit explicit conditioning on {N (I = ζ)}ζ∈D(I) to reduce clutter, and analyze the inner variance:

VPν
[
µ̂IS(ζ|DN ;S) | {N (I = ζ)}ζ∈D(I)

]
= VI

[
µ̂IS(ζ|DN ;S)

]
.

Again, we use the law of total variance, adding the same conditioning we did to show unbiasedness:

VI

[
µ̂IS(ζ|DN ;S)

]
= EI

[
VI

[
p̂ᵀ
S(ζ|DN )µ̂S(DN ) | NS,DN (I = ζ),NS,DN (I 6= ζ)

]]
+ VI

[
EI

[
p̂ᵀ
S(ζ|DN )µ̂S(DN ) | NS,DN (I = ζ),NS,DN (I 6= ζ)

]]
.

Now note, in both terms, p̂ᵀ
S(ζ|DN ) is non-random. In the second term this vector factors out because

of linearity of expectation. In the case of the first term, the individual elements of µ̂S are uncorrelated
with each-other since they are calculated from disjoint sets of data, thus this vector factors out of the
variance element wise squared. This yields:

VI

[
µ̂IS(ζ|DN ;S)

]
= EI

[(
p̂ᵀ
S(ζ|DN )

)2 VI

[
µ̂S(DN ) | NS,DN (I = ζ),NS,DN (I 6= ζ)

]]
(13)

+ VI

[
p̂ᵀ
S(ζ|DN )EI

[
µ̂S(DN ) | NS,DN (I = ζ),NS,DN (I 6= ζ)

]]
where the square of the vector in the first term is elementwise, and the variance of a vector
in the first term is just the vector of diagonal elements of the covariance matrix, i.e. there
are no covariance terms. In the second term, we may now again use that the inner expecta-
tion is unbiased following the same argument as before. For the first term, the variance vector
VI

[
µ̂S(DN ) | NS,DN (I = ζ),NS,DN (I 6= ζ)

]
= µS⊗ (1−µS)�NS,DN (>) is also well defined

as the variance of a sample mean of a set of Bernoulli random variables, where ⊗ is elementwise
product,� is elementwise division and NS,DN (>) = NS,DN (I = ζ)+NS,DN (I 6= ζ). Substituting
this into (13) yields:

VI

[
µ̂IS(ζ|DN ;S)

]
= EI

[(
p̂S(ζ|DN )

)2 �NS,DN (>)
]ᵀ
µS ⊗ (1− µS) (14)

+ VI

[
p̂ᵀ
S(ζ|DN )µS

]
Interestingly, the second term corresponds to our information leakage estimator if we were given
perfect oracle estimates µS. Since the advantage gained by the information sharing estimator is
through better estimation of µS, this term can be seen as a base error that cannot be reduced through
information leakage.

We evaluate the variance of the second term. Let s1, . . . , sN (I=ζ) be the one-hot vector encoded
values of S observed in the subset of our data where I = ζ. These are i.i.d. categorical variables, and
since p̂ᵀ

S(ζ|DN ) = 1
NDN (I=ζ)

∑NDN (I=ζ)

k=1 sk, the second term becomes by independence:

VI

[
p̂ᵀ
S(ζ|DN )µS

]
= VI

 1

NDN (I = ζ)

NDN (I=ζ)∑
k=1

sᵀkµS


=

1

NDN (I = ζ)
VI [sᵀ1µS]

=
1

NDN (I = ζ)
Vs∼P[S=s|I=ζ] [E[Y |S = s]] . (15)
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Let us now turn our attention to the first term of equation (14). This is an inner product between
vectors, where the left factor is an expectation of a vector. Let us consider an element of this
expectation vector at index s ∈ D(S):(

EI

[(
p̂ᵀ
S(ζ|DN )

)2 �NS,DN (>)
])

s
= EI

[
p̂2(s | ζ,DN )

NDN (S = s)

]
= EI

[
p̂(s | ζ,DN )

NDN (I = ζ)

N (S = s, I = ζ)

NDN (S = s)

]
= EI

[
p̂(s | ζ,DN )

NDN (I = ζ)

(
1− NDN (S = s, I 6= ζ)

NDN (S = s)

)]
=

1

NDN (I = ζ)
EI

[
p̂(s | ζ,DN )(1− α(s, ζ,DN ))

]
(16)

where:

α(s, ζ,DN ) :=
NDN (S = s, I 6= ζ)

NDN (S = s)
. (17)

Note that α(s, ζ,DN ) equals 0 if NDN (S = s, I 6= ζ) = 0 (i.e. there is no additional data to use
where I 6= ζ for information sharing for this value of s), and goes 1 if NDN (S = s, I 6= ζ) goes
to∞ and we keep NDN (S = s, I = ζ) fixed, since in the denominator NDN (S = s) = NDN (S =
s, I = ζ) +NDN (S = s, I 6= ζ).

Substituting (15) and (16) into (14), the variance of the information sharing estimator then becomes

VI

[
µ̂IS(ζ|DN ;S)

]
=

1

NDN (I = ζ)

(
EI

[
p̂S(ζ,DN )⊗ (1−α(ζ,DN )))

]ᵀ
µS ⊗ (1− µS)

+ Vs∼P[S=s|I=ζ] [E [Y |S = s]]

)
(18)

where we define α(ζ,DN ) as the vectorized version of α(s, ζ,DN ) indexed by s ∈ D(S) such that(
α(ζ,DN )

)
s

= α(s, ζ,DN ). Let us now consider the term which has α(ζ,DN )) as a factor when
we expand the parenthesis inside the expectation of the first term. From its definition, we see that
α(ζ,DN ) is elementwise upper bounded by 1 (at an infinite of samples where I 6= ζ and a finite
number of samples I = ζ) for all values of s), and elementwise lower bounded by 0 if we have no
samples where I = ζ. Therefore, since all values are positive, if we define:

α∗(ζ,DN ) =
EI[p̂S(ζ,DN )⊗α(ζ,DN ))]ᵀµS ⊗ (1− µS)

EI[p̂S(ζ,DN )⊗ 1]ᵀµS ⊗ (1− µS)
(19)

then α∗(ζ,DN ) is upper bounded by 1 since from its definition we see thatα(ζ,DN )) is elementwise
upper bounded by 1 in which case the numerator and denominator are equal. Furthermore, α∗(ζ,DN )
is lower bounded by 0 since all values are nonnegative. Then α∗(ζ,DN ) ∈ [0, 1) and substitution of
α∗(ζ,DN ) into (18) yields:

VI

[
µ̂IS(ζ|DN ;S)

]
=

1

NDN (I = ζ)

(
(1− α∗(ζ,DN ))EI[p̂S(ζ,DN )⊗ 1]ᵀµS ⊗ (1− µS)

+ Vs∼P[S=s|I=ζ][E[Y |S = s]]

)
=

1

NDN (I = ζ)

(
(1− α∗(ζ,DN ))pᵀ

S(ζ)µS ⊗ (1− µS) + Vs∼P[S=s|I=ζ][E[Y |S = s]]

)
=

1

NDN (I = ζ)

(
Vs∼P[S=s|I=ζ]

[
E[Y |S = s]

]
+ (1− α∗(ζ,DN ))Es∼P[S=s|I=ζ]

[
E[Y |S = s](1− E[Y |S = s])

])
. (20)

which is what was to be shown. The value of α∗(ζ,DN ) is a complicated inner product depending
on the model parameters, and is a measure of the expected relative sizes of NDN (S = s|I = ζ) and
NDN (S = s|I 6= ζ) for the values of s where P[S = s|I = ζ] is large.
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It is easy to see that α∗(ζ,DN ) ≥ mins α(s, ζ), since thenα(ζ,DN )) ≥ mins α(s, ζ)1 elementwise
and we may then factor α∗(ζ,DN ) out of the expectation in the numerator of (19) after which the
fraction cancels. An interesting case is if we condition on knowing {NDN (S = s, I = ζ)}s∈D(S).
Let us define c to be the largest real number such that for all s ∈ D(S), it holds thatNDN (S = s, I 6=
ζ) ≥ cNDN (S = s, I = ζ). From its definition (17), we see that then α(s, ζ,DN ) ≥ c

c+1 , and thus
α∗(ζ,DN ) ≥ c

c+1 .

The relative sizes of Vs∼P[S=s|I=ζ]

[
E[Y |S = s]

]
and Es∼P[S=s|I=ζ]

[
E[Y |S = s](1− E[Y |S = s])

]
signify how well additional data from N(I 6= ζ) helps in estimating E[Y |I = ζ]. Interestingly, not
always it is even beneficial to share data through information leakage. Specifically, if E[Y |S =
s](1 − E[Y |S = s]) = 0 for all s in the support of P[S = s|I = ζ], then there is no error due
to misestimation of E[Y |S = s] (since they are then deterministic thus if we have just 1 sample
this is enough) and all error of the information sharing estimator stems from misestimation of
P[S = s|I = ζ]. In this case, no amount of additional data from I 6= ζ may help. In the best case
however, the term Vs∼P[S=s|I=ζ]

[
E[Y |S = s]

]
may be 0 in which case all error is reducible through

information leakage. This happens for example if P[S = s|I = ζ] is deterministic, in which case
there is no error due to misestimation of these probabilities.

A.2 Proof of Theorem 3.2

We now set out to show the following theorem:
Theorem 3.2. If we calculate µ̂IS(ζ|DN ;S) as in (1) from dataset DN and I⊥⊥ G Y |S, then:

P
[
E[Y |I = ζ] >

∑
s∈D(S)

p̂(s | ζ,DN )ucb(µ̂(s|DN )) (21)

+ ∆p̂(ζ)

(
max

s∈D(S)
ucb(µ̂(s|DN ))− min

s′∈D(S)
ucb(µ̂(s′|DN ))

)]
< δ.

Given that S is a separating set, the true mean µ(ζ) = E[Y |I = ζ] is a function of the true parameters
pS(ζ) and µS:

µ(ζ) = pS(ζ)ᵀµS.

We will construct an upper bound for µ(ζ) by constraining the parameters to some set with high
probability, i.e. with high probability (pS(ζ),µS) ∈ Θ = Θp ×Θµ. Then:

P

[
µ(ζ) ≤ sup

(p∗S,µ
∗
S)∈Θ

(p∗S)ᵀµ∗S

]
≥ P [(pS(ζ),µS) ∈ Θ] . (22)

We construct Θ by using existing concentration bounds for individual elements of µ(ζ)’s decomposi-
tion. Let us first consider µS. We construct an estimator µ̂S(DN ) for these parameters, where each
element of this vector is a sample mean of NDN (S = s) of Bernoulli variables. Thus, we can use the
standard Chernoff-Hoeffding bound for each individual index s ∈ D(S) of the vector:

P

[
(µS)s ≥

(
µ̂S(DN )

)
s

+

√
log(1/δµ(ζ))

2NDN (S = s)

]
≤ δµ(ζ).

Then, we can take the union bound of this event over the indices, to obtain a vectorized complementary
version:

P

[
µS < µ̂S(DN ) +

√
1

2
log(1/δµ(ζ))1�NS,DN (>)

]
≤ 1− |D(S)|δµ(ζ),

where the square root and the inequality are elementwise, i.e. a < b implies that for
all s it holds that as < bs. We will refer to the complement of the event inside prob-
ability as Bµ. We now turn to bounding pS(ζ). This is a multinomial variable, i.e.
p̂S(ζ|DN ) ∼ 1

NDN (I=ζ)Multinomial(NDN (I = ζ),pS(ζ)). Then by Weissman, Ordentlich,
Seroussi, Verdu, and Weinberger (2003):

P

[
‖p̂S(ζ|DN )− pS(ζ)‖1 ≥

√
2|D(S)| log(2/δpS )

NDN (I = ζ)

]
≤ δpS .
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We will refer to this event as Bp. Then P [Bµ ∪Bp] ≤ |D(S)|δµ(ζ) + δpS := δ. It is an interesting
optimization problem to choose the values of δµ(ζ) and δpS in order to minimize the width of the
resulting confidence interval. However, out of convenience we will just pick these such that the
confidence is ‘evenly spread out’, i.e. we set |D(S)|δµ(ζ) = δpS

and set all δµ(ζ) equal to eachother.
So then, if we define regions corresponding to the complement of Bµ and Bp:

Θp =

{
ps(ζ) | ‖p̂S(ζ|DN )− pS(ζ)‖1 <

√
2|D(S)| log(4/δ)

NDN (I = ζ)

}
,

Θµ =

{
µS | µS < µ̂S(DN ) +

√
1

2
log

(
2|D(S)|

δ

)
1�NS,DN (>)

}
.

indeed by union bound:
P [(pS(ζ),µS) ∈ Θ] ≥ 1− δ. (23)

It then remains to maximize pS(ζ)ᵀµS over Θ = Θp × Θµ. Let us define ucb(µ̂S(DN )) =

µ̂S(DN ) +

√
1
2 log

(
2|D(S)|

δ

)
1�NS,DN (>) and ∆p̂(ζ) =

√
|D(S)| log(4/δ)

2NDN (I=ζ) . We will prove the

following lemma:
Lemma A.1. The optimization problem:

sup
(p∗S,µ

∗
S)∈Θ

(p∗S)ᵀµ∗S,

under constraints (where inequalities are element-wise):
p∗S ≥ 0,

‖p∗S‖1 = 1,

is upper bounded by:

p̂ᵀ
S(ζ|DN )ucb(µ̂S(DN )) + ∆p̂(ζ)

(
max

s∈D(S)

(
ucb(µ̂S(DN ))

)
s
− min

s′∈D(S)

(
ucb(µ̂S(DN ))

)
s′

)
Proof. First note that since all elements of p∗S(ζ) are nonnegative, and we have element-wise upper
bounds for µ∗S, to maximize w.r.t. µ∗S we can always just pick the maximum possible value for each
element of µ∗S in Θµ, which are given by ucb(µ̂S(DN )). Thus our maximization problem reduces
to:

sup
(p∗S,µ

∗
S)∈Θ

(p∗S)ᵀµ∗S = sup
p∗S∈Θp

(p∗S)ᵀucb(µ̂S(DN )) (24)

Let us define ∆pS
= p∗S − p̂ᵀ

S(ζ|DN ). Let ∆+ be the positive elements of ∆pS
and ∆− be the

absolute value of the negative elements of ∆pS
. Then p∗S = p̂S(ζ|DN ) + ∆+ −∆−. Substituting

this into (24) yields:

sup
p∗S∈Θp

(p∗S)ᵀucb(µ̂S(DN )) = sup
p∗S∈Θp

(
p̂ᵀ
S(ζ|DN ) + ∆ᵀ

+ −∆ᵀ
−
)
ucb(µ̂S(DN )) (25)

Now, since ‖p∗S‖1 = 1 and ‖p̂S(ζ)‖1 = 1 and all values are positive, it follows that
‖∆+‖1 = ‖∆−‖1 and ‖p∗S − p̂S(ζ)‖1 = ‖∆+‖1 + ‖∆−‖1. Looking at the region we are

maximizing over, we see that lV ertp∗S − p̂S(ζ)‖1 ≤
√

2|D(S)| log(4/δ)
NDN (I=ζ) , and thus ‖∆+‖1 =

‖∆−‖1 ≤
√
|D(S)| log(4/δ)

2NDN (I=ζ) = ∆p̂(ζ). Furthermore, it is trivial to check that for strictly posi-

tive values ∆ᵀ
+ucb(µ̂S(DN )) ≤ ‖∆+‖1 maxs∈D(S)

(
ucb(µ̂S(DN ))

)
s

and ∆ᵀ
−ucb(µ̂S(DN )) ≥

‖∆−‖1 mins′∈D(S)

(
ucb(µ̂S(DN ))

)
s′

. Combining these facts with (25) yields:

sup
p∗S(ζ)∈Θp

p∗S(ζ)ᵀucb(µ̂S(DN )) ≤ p̂ᵀ
S(ζ|DN )ucb(µ̂S(DN ))

+ ∆p̂(ζ)

(
max

s∈D(S)

(
ucb(µ̂S(DN ))

)
s
− min

s′∈D(S)

(
ucb(µ̂S(DN ))

)
s′

)
(26)

which finishes the proof.
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We may now easily combine (22), (23) and (26) to obtain a vectorized version of the theorem
statement:

P
[
µ(ζ) ≤ p̂ᵀ

S(ζ|DN )ucb(µ̂S(DN )) + ∆p̂(ζ)

(
max

s∈D(S)

(
ucb(µ̂S(DN ))

)
s
− min

s′∈D(S)

(
ucb(µ̂S(DN ))

)
s′

)]
> 1− δ (27)

which finishes the proof of the theorem. We may follow the exact same argument solving a
minimization problem for (22) and taking the reverse Chernoff-Hoeffding bound by defining

lcb(µ̂S(DN )) = µ̂S(DN )−
√

1
2 log

(
2|D(S)|

δ

)
1�NS,DN (>), to obtain a symmetric lower bound:

P
[
µ(ζ) ≥ p̂ᵀ

S(ζ|DN )lcb(µ̂S(DN ))−∆p̂(ζ)

(
max

s∈D(S)

(
lcb(µ̂S(DN ))

)
s
− min

s′∈D(S)

(
lcb(µ̂S(DN ))

)
s′

)]
> 1− δ (28)

A.3 Proof of theorem 4.1

We set out to prove the theorem:
Theorem 4.1. If we run the separating set causal bandit UCB algorithm as defined in appendix B.1
on a discrete causal bandit with binary rewards, and if I⊥⊥ G Y |S, it has the same cumulative regret
upper-bound as normal UCB on that bandit.

To see why this is true, consider the proof of the regret bound for UCB in chapter 8.1 of Lattimore
and Szepesvári (2020). To ease notation, this proof is for 1-subgaussian variables, while our problem
concerns Bernoulli variables, which are 1/4-subgaussian. This causes an extra factor of 1/4 inside the
square of our bounds, but this is an uninteresting technicality. Following that proof and its notation,
let µi be the expected reward of action i, µ∗ = maxi µi = µi be the optimal action indexed by 1
for convenience. Then ∆i = µ∗ − µi is the expected regret of action i. We consider the regret
decomposition at timestep n:

Rn =
∑

i:∆i>0

∆iE[Ti(n)]

where Ti(n) is the number of times we have chosen action i at timestep n. Let µ̂i(t) be the estimated
reward of action i (corresponding to some intervention ζ) by the Information Sharing UCB algorithm
at timestep t, and ucbi(t) be the calculated additive upper bound bonus (i.e. the best_width calculated
in the Information Sharing UCB algorithm). We can then upper-bound Ti(n) as follows:

Ti(n) =

n∑
t=1

1{At = i} ≤
n∑
t=1

1 {µ̂1(t− 1) + ucb1(t− 1) ≤ µ1 − ε}

+

n∑
t=1

1 {µ̂i(t− 1) + ucbi(t− 1) > µ1 − ε and At = i} , (29)

where At is the chosen action, and we have a term corresponding to the number of times the index of
the optimal arm is less than µ1 − ε and the second term which corresponds to the number of times
that At = i and its index is larger than µ1 − ε. Let us start with analyzing the expectation of the first
term of (29):

E

[
n∑
t=1

1 {µ̂1(t− 1) + ucb1(t) ≤ µ1 − ε}

]
(30)

Let us assume we picked the information sharing estimator for µ̂1 at timestep t − 1. Now, from

construction of our algorithm we know that ucb1(t) ≤
√

log(f(t))
2T1(t−1) where f(t) = 1 + t log2(t), where

for the information sharing estimator, ucb1(t− 1) is given through the definition of idx(ζ,DN ;S) in
(43) (after some simplification):

ucbi(t− 1) = p̂ᵀ(ζi,DN )

√
1

2
log

(
2|D(S)|

δ

)
1�NS,DN (>) (31)

+

√
|D(S)| log(4/δ)

2NDN (I = ζi)

(
max

s

(
µ̂S(DN )

)
s
−min

s′

(
µ̂S(DN )

)
s′

)
, (32)
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where ζi is the intervention corresponding to action Ai, and S is the separating set chosen by the
algorithm at timestep t − 1 for that intervention. Let us now introduce some further simplifying
notation. Let:

Ki(t− 1) = p̂ᵀ(ζi,DN )

√
1

2
1�NS,DN (>),

Li(t− 1) =

√
|D(S)|

2NDN (I = ζi)

(
max

s

(
µ̂S(DN )

)
s
−min

s′

(
µ̂S(DN )

)
s′

)
Then:

ucbi(t− 1) = Ki(t− 1)
√

log(1/δ) + log(2|D(S)|) + Li(t− 1)
√

log(1/δ) + log(4) (33)

Now, since we picked this upper bound over the sample mean bound, by construction of the algorithm
it must hold that at the chosen confidence at parameter at timestep t given by δ(t) = 1/f(t), it holds
that:

ucbi(t− 1) = Ki(t− 1)
√

log(f(t)) + log(2|D(S)|) + Li(t− 1)
√

log(f(t)) + log(4) ≤

√
log(f(t))

2Ti(t− 1)

(34)

Which implies that Ki(t − 1) + Li(t − 1) ≤
√

1
2Ti(t−1) . Now consider taking the derivative of

ucbi(t− 1) with regard to log(1/δ):

∂

∂(log(1/δ))
ucbi(t− 1) =

Ki(t− 1)

2
√

log(1/δ) + log(2|D(S)|)
+

Li(t− 1)

2
√

log(1/δ) + log(4)
(35)

≤ Ki(t− 1) + Li(t− 1)

2
√

log(1/δ)
(36)

≤ 1

2
√

2Ti(t− 1) log(1/δ)
=

∂

∂(log(1/δ))

√
log(1/δ)

2Ti(t− 1)
(37)

This shows that the information sharing bound grows more slowly as log(1/δ) grows than the
traditional UCB bound for 1/4-subgaussian variables. Let us now consider ucbi(t) as a function of δ
and calculate δ′ε such that:

P [µ̂i(t− 1) + ucbi(t, 1/(f(t)) + ε ≤ µ1] = P [µ̂i(t− 1) + ucbi(t, δ
′
ε)] ≤ δ′ε, (38)

i.e. we solve δ′ε such thatKi(t−1)
√

log(1/δ′ε) + log(2|D(S)|)+Li(t−1)
√

log(1/δ′ε) + log(4) =
ucbi(t, 1/(f(t)) + ε. We may then compare this to analyzing the same event as a 1/4-subgaussian
variable as in the book, i.e. in that case we solve δ∗ε such that:√

log(1/δ∗ε )

2Ti(t− 1)
=

√
log(f(t))

2Ti(t− 1)
+ ε

Then, since we have shown that the information sharing bound grows more slowly than the 1/4-
subgaussian bound as δ decreases, and since clearly δ′ε ≥ 1/(f(t)) and δ∗ε ≥ 1/(f(t)), it must hold
that δ′ε ≥ δ∗ε . Thus when we analyze the event:

E

[
n∑
t=1

1

{
µ̂1(t− 1) +

√
log(f(t))

2T1(t− 1)
≤ µ1 − ε

}]
, (39)

where we consider µ̂1(t− 1) a 1/4-subgaussian variable, the resulting upper bound must also be an
upper bound for the event µ̂i(t− 1) + ucbi(t, 1/(f(t)) + ε analyzed with our concentration bound.
Substituting this into (39) yields:

E

[
n∑
t=1

1 {µ̂1(t− 1) + ucb1(t) ≤ µ1 − ε}

]
≤ E

[
n∑
t=1

1

{
µ̂1(t− 1) +

√
log(f(t))

2T1(t− 1)
≤ µ1 − ε

}]
(40)
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where again very importantly, on the right side we treat µ̂1(t − 1) as a 1/4-subgaussian variable.
This analysis was conditional on µ̂1(t− 1) being an information sharing estimator, however, (40) is
trivially true if the algorithm reverted to the sample mean. From here, we may continue the analysis
of first term exactly as in the book as the expression is exactly the same modulo the 1/4 factor inside
the square due to the fact that a Bernoulli variable is 1/4-subgaussian, while the book focusses on
1-subgaussian variables to simplify notation. For the analysis of the second term, the following
inequality trivially holds:

E

[
n∑
t=1

1 {µ̂i(t− 1) + ucbi(t) ≥ µ1 − ε and At = i}

]
(41)

≤ E

[
n∑
t=1

1

{
µ̂i(t− 1) +

√
log(f(t))

2Ti(t− 1)
≥ µ1 − ε and At = i

}]
, (42)

where µ̂i(t − 1) may be result of the algorithm picking an information sharing estimator or the
algorithm reverting to the sample mean. Consider the information sharing estimator. Since its
variance is upper bounded by that of the sample mean, and it is bounded between [0, 1], by Hoeffdings
lemma it is itself a 1/(4

√
n)-subgaussian variable, which implies that corollary 5.5 from the book

also holds if µ̂i(t− 1) is an information sharing estimator. Thus, we may just continue the analysis
in the book regardless of the estimator chosen. This concludes the proof of the theorem.

B Algorithm specification

In this section of the appendix, we specify our information sharing Causal Bandit Separating Set
algorithms, specifically a UCB and a Thompson sample variant. For both algorithms, we will use the
upper bound (27). To ease notation, let us define:

idx(ζ,DN ;S) = p̂ᵀ
S(ζ|DN )ucb(µ̂S(DN )) + ∆p̂(ζ)

(
max

s∈D(S)

(
ucb(µ̂S(DN ))

)
s
− min

s′∈D(S)

(
ucb(µ̂S(DN ))

)
s′

)
.

(43)

One important detail when calculating this quantity, is the effect of perfect interventions with
known targets. Specifically, consider intervention ζ corresponding to perfect interventions on nodes
O ⊆ V \ {Y }. If S ∩O = O′ is not the empty set, then under intervention ζ, the values for O′ are
fixed. This limits the possible support for P[S = s|I = ζ], and in the calculation of (43) we may
then limit ourselves to values of s that are possible given the known targets of ζ instead of the full
domain D(S), effectively reducing the dimension the problem of estimation of P[S = s|I = ζ] by
|O′|. This prior knowledge is used when calculating (43) in our experiments and when we construct
our Thompson Sampling index.

Both of our algorithms take as input a causal discovery algorithm disc_sep_set, that given a dataset
DN , the set of possible interventions D(I)) and the target variable Y attempts to infer the sets S such
that Y ⊥G I | S and returns those inferred separating sets.

B.1 Information Sharing UCB

We first define our UCB variant using the information sharing estimator. The full details are in
Algorithm 1. First, on line 5, the algorithm retrieves all separating set. Then, for each possible
intervention, on line 6 it initializes the best found width so far to the width of the standard naïve
UCB bound for Bernoulli variables, and sets the best found index to that of the standard naïve UCB
algorithm. For that intervention it then checks each separating set if the bound (27) is tighter, after
which on line 17 we store as index for that intervention the index corresponding to the tightest bound.
As intervention for that round we then pick the intervention with the highest index.

B.2 Information Sharing TS

Next we define the Thompson Sampling variant of our algorithm. Given a true separating set, it
is very natural to construct a Thompson Sampling estimator as follows. We impose a Dirichlet
prior on ps(ζ) with parameter α = 1 · 1 and for each element of µS we impose a Beta prior with
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Algorithm 1 Information Sharing UCB
1: Input: Data: DN = {(ζn,vn)}Nn=1, set of possible interventions D(I), target variable Y

Separating set algorithm: disc_sep_set
2: Output: Next action to pick at iteration N + 1
3: δ = 1

1+N log2(N)

4: Initialize array index[ζ] for ζ ∈ D(I)
5: S_set← disc_sep_set(DN , Y,D(I))
6: for all ζ ∈ D(I) do
7: best_width =

√
log(1/δ)

2NDN (I=ζ)

8: best_index = µ̂SM (ζ|DN ) + best_width
9: for all S ∈ S_set(ζ) do

10: new_index = idx(ζ,DN ;S)
11: new_width = new_index− µ̂IS(ζ|DN ;S)
12: if new_width < best_width then
13: best_index = new_index
14: best_width = new_width
15: end if
16: end for
17: index[ζ] = best_index
18: end for
19: return arg maxζ index[ζ]

parameters α = β = 1, where the parameters are chosen to maximize entropy. We may then calculate
the posteriors of these distributions given our data, which are simple and closed form, and then
sample from the parameters from them. Given this parameter sample, we may then calculate the
corresponding mean and use that as an index.

Unfortunately, our chosen causal discovery methods are inherently frequentist, and thus we did not
implement and end-to-end Bayesian approach. Instead, we rely on our Information Sharing UCB
algorithm to select a separating set, after which we may construct our Thompson Sampling index
assuming that the separating set is correct. If no separating set is found, we revert to a traditional
direct Thompson sampling index for that intervention. The full details are given in Algorithm 2,
where from line 1-16, we run a variant of Algorithm 1 that just selects for each intervention the
separating set that Algorithm 1 would have picked to construct its index. Then, from line 17-20, we
construct a Thompson Sampling index for that intervention if a separating set is found.

C Experiments

In this section of the appendix, we specify the details of the experimental design of the experiments
with all DAGs of 4 nodes. Furthermore, we detail a final experiment on larger graphs of 6 nodes.

C.1 All DAGs of 4 nodes experiment

When we generate all DAGs of 4 nodes in the manner described in section 5.1, we end up with 234
DAGs. For each generated graph G = (V, E), we model each node as a binary variable, and add an
intervention node IV for each variable V ∈ V \ {Y }. Each intervention node IV models a perfect
intervention on V , where we can either set IV = ∅ which corresponds to not intervening on V , we
can set it to 1 which corresponds to intervening on V such that V = 1, and we can set it to 0 which
corresponds to intervening on V such that V = 0. For each variable V , we generate a random binary
target vector tV of size |pa(V )| with uniform distribution. Let match(tV , pa(V )) be a function that
counts the number of parents of V that matches the target vector. We then sample V according to:

P[V = 1|pa(V )] =
1 +match(tV , pa(V ))

2 + |pa(V )|
, (44)

if we do not intervene on that variable. That is, the probability depends on the numerator which
counts the number of parents of V that match the target vector.
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Algorithm 2 Information Sharing TS
1: Input: Data: DN = {(ζn,vn)}Nn=1, set of possible interventions D(I), target variable Y

Separating set algorithm: disc_sep_set
2: Output: Next action to pick at iteration N + 1
3: δ = 1

1+N log2(N)

4: Initialize array index[ζ] for ζ ∈ D(I)
5: S_set← disc_sep_set(DN , Y,D(I))
6: for all ζ ∈ D(I) do
7: best_width =

√
log(1/δ)

2NDN (I=ζ)

8: best_sep_set = NULL
9: for all S ∈ S_set(ζ) do

10: new_index = idx(ζ,DN ;S)
11: new_width = new_index− µ̂IS(ζ|DN ;S)
12: if new_width < best_width then
13: best_width = new_width
14: best_sep_set = S
15: end if
16: end for
17: if best_sep_set 6= NULL then
18: Sample p̃ ∼ Dirichlet(NS,DN (I = ζ) + 0.5 · 1)
19: Sample µ̃ ∼ (Beta(NDN (Y = 1,S = s) + 1,NDN (Y = 0,S = s) + 1))s∈D(S)

20: index[ζ] = p̃ᵀµ̃
21: else
22: traditional_TS_index = Beta (NDN (Y = 1, I = ζ) + 1,NDN (Y = 0, I = ζ) + 1))
23: end if
24: end for
25: return arg maxζ index[ζ]

C.2 Experiment with DAGs of 6 nodes

We describe our experiment on randomly generated graphs of 6 nodes. The graph generation process
is as follows. We define nodes V1, . . . , V6 ordered by their topological ordering, and set Y = V6.
For each node Vi with i > 1, we randomly sample between one or two from Vi′<i with uniform
distribution on the nodes selected and the number of nodes sampled.

We allow interventions on all subsets of nodes besides Y , and thus add an intervention variable IV
for all nodes except Y . Each intervention node IV models a perfect intervention on V , where we can
either set IV = ∅ which corresponds to not intervening on V , we can set it to 1 which corresponds
to intervening on V such that V = 1, and we can set it to 0 which corresponds to intervening on
V such that V = 0. This implies that there are 35 = 243 possible actions. Because of the large
action space, we reduced the number of initial pulls for each possible intervention to 3. For each
variable V , we generate a random binary target vector tV of size |pa(V )| with uniform distribution.
Let match(tV , pa(V )) be a function that counts the number of parents of V that matches the target
vector. We then sample V according to:

P[V = 1|pa(V )] =
1 +match(tV , pa(V ))

2 + |pa(V )|
, (45)

if we do not intervene on that variable. That is, the probability depends on the numerator which
counts the number of parents of V that match the target vector.

The results are shown in figure 4. Unfortunately, we did not have enough time to include the
Information Sharing Thompson Sampling variant due to long computation time. Furthermore,
ASD-JCI123kt is too slow to generalize to this setting. As can be seen, information sharing UCB
outperforms baseline methods significantly. The baseline models are slow to converge in this setting
due to the high number of actions, while the separating set algorithm performs very well due to the
large number of data that can be shared for each action.
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(a) (b)

Figure 4: (a): Simulation results on the game example causal bandit over 150 runs. Shaded areas are
estimated standard errors. (b): Sensitivity and false positive rate for our causal discovery methods.
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