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Abstract

Often, mathematical models of the real world are simplified representations of
complex systems. A caveat to using models for analysis is that predicted causal
effects and conditional independences may not be robust under model extensions,
and therefore applicability of such models is limited. In this work, we consider
conditions under which qualitative model predictions are preserved when two
models are combined. We show how to use the technique of causal ordering to
efficiently assess the robustness of qualitative model predictions and characterize
a large class of model extensions that preserve these predictions. For dynamical
systems at equilibrium, we demonstrate how novel insights help to select appro-
priate model extensions and to reason about the presence of feedback loops. We
apply our ideas to a viral infection model with immune responses.

1 Introduction

Key aspects of the scientific method include generating a model or hypothesis that explains a phe-
nomenon, deriving testable predictions from this model or hypothesis, and designing an experiment
to test these predictions in the real world. There are quite some interesting statistical systems for
which simple Structural Causal Models [14, 3] do not model all causal and Markov properties of
the system [1, 2]. In those cases the causal ordering algorithm, first introduced by Simon [18], can
be used to better understand these properties [2]. In this paper we consider what happens when two
systems are combined and we give conditions under which the properties of the whole system can
be understood in terms of properties of its parts. We discuss how a holistic approach towards causal
modelling may result in novel insights when we derive and test the predictions of systems for which
new properties emerge from the combination of its parts.

We consider the practical issue of assessing whether qualitative model predictions are robust under
model extensions. We revisit the observations of De Boer [5] concerning a viral infection model
and demonstrate that the qualitative causal predictions of this model can change dramatically when
the model is extended with extra equations describing simple immune responses. To assess the
robustness of predicted causal relations or conditional independences, it would be useful to gain
a better understanding of the class of model extensions that lead to changes in these predictions.
We propose the technique of causal ordering [18] as an efficient method to assess the robustness of
qualitative causal predictions. This allows us to characterize a large class of model extensions under
which these predictions are preserved. We also consider the class of models that are obtained from
the equilibrium equations of dynamical models where each variable is self-regulating. For this class,
we show that the predicted presence of causal relations and absence of conditional independences is
robust when the model is extended with new equations.

The promise of causal discovery algorithms is that they are able to learn causal relations from a
combination of background knowledge and data. The general idea of many constraint-based ap-
proaches (e.g. PC or FCI and variants thereof [19, 21, 4]) is to exploit information about conditional
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independences in a probability distribution to construct an equivalence class of graphs that encode
certain aspects of the probability distribution, and then draw conclusions about the causal relations
from the graphs. There is a large amount of literature concerning particular algorithms for which
the learned structure expresses causal relations under certain conditions (e.g. linearity, causal suffi-
ciency, absence of feedback loops), see for example [16, 19, 10, 21, 4, 9, 7, 20, 11]. In this work,
our main interest is in dynamical models with the property that graphs encoding the conditional
independences of their equilibrium distribution should not be interpreted causally at all. Given a
model for a subsystem, we present novel insights that enable us to reject model extensions based
on conditional independences in equilibrium data of the subsystem. We demonstrate how, for the
equilibrium distribution of certain dynamical models, this approach allows us to reason about the
presence of variables that are not self-regulating and feedback mechanisms that involve unobserved
variables. We hope that, in future work, existing algorithms that are designed for causal discovery
could be useful for reasoning about appropriate model extensions from a combination of partial
models and observational data of a subsystem.

1.1 Causal ordering graph and the effects of interventions

Here, we give a concise introduction to the technique of causal ordering, introduced by Simon [17].1

In short, the causal ordering algorithm takes a set of equations as input and returns a causal ordering
graph that encodes the effects of interventions and a Markov ordering graph that implies conditional
independences between variables in the model [2]. Compared with the popular framework of Struc-
tural Causal Models [14], the distinction between the causal ordering and Markov ordering graphs
does not provide new insights for acyclic models but it results in non-trivial conclusions for models
with feedback, as suggested in the discussion in Section 2.4 and thoroughly explained by Blom et al.
[2].

We consider models consisting of equations F that contain endogenous variables V , independent
exogenous random variables W , and constant parameters P . The structure of equations and the
endogenous variables that appear in them can be represented by the associated bipartite graph
B = 〈V, F,E〉, where each endogenous variable is associated with a distinct vertex in V , and
each equation is associated with a distinct vertex in F . There is an edge (v − f) ∈ E if and only
if variable v ∈ V appears in equation f ∈ F . The causal ordering algorithm constructs a directed
cluster graph 〈V , E〉, where V is a partition of vertices V into clusters and E is a set of directed edges
from vertices in V to clusters in V . Given a bipartite graph B = 〈V, F,E〉 with a perfect matching
M , the causal ordering algorithm proceeds with the following three steps [13, 2]:2

(i) For v ∈ V , f ∈ F orient edges (v − f) as (v ← f) when (v − f) ∈ M and as (v → f)
otherwise; this yields a directed graph G(B,M).

(ii) Find all strongly connected components S1, S2, . . . , Sn of G(B,M). Let V be the set of
clusters Si ∪ M(Si) for i ∈ {1, . . . , n}, where M(Si) denotes the set of vertices that are
matched to vertices in Si in matching M .

(iii) Let cl(f) denote the cluster in V containing f . For each (v → f) such that v /∈ cl(f) add an
edge (v → cl(f)) to E .

Optionally, independent exogenous random variables and parameters can be added as singleton clus-
ters with edges towards the clusters of the equations in which they appear. It was shown that the
resulting directed cluster graph CO(B) = 〈V , E〉, which we refer to as the causal ordering graph,
is independent of the choice of perfect matching [2]. Example 1 shows how the algorithm works
and a graphical illustration of the algorithm for a more elaborate cyclic model can be found in the
supplement.

Example 1. Let V = {v1, v2}, W = {w1, w2}, and P = {p1, p2} be index sets. Consider model
equations f1 and f2 with endogenous variables (Xv)v∈V , exogenous random variables (Uw)w∈W

and constant parameters Cp with p ∈ P below.

f1 : Cp1
Xv1 − Uw1

= 0, (1)

f2 : Cp2
Xv2 +Xv1 + Uw2

= 0. (2)

1Actually, we consider an equivalent algorithm for causal ordering that was shown to be more computation-
ally efficient by [13, 8]. For more details, see [2].

2A perfect matching M is a subset of edges in a bipartite graph so that every vertex is adjacent to exactly
one edge in M . Note that not every bipartite graph has a perfect matching.
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The bipartite graph B = 〈V, F,E〉 in Figure 1a, with E = {(v1 − f1), (v1 − f2), (v2 − f2)} is
a compact representation of the model structure. This graph has a perfect matching M = {(v1 −
f1), (v2 − f2)}. By orienting edges in B according to the rules in step (i) of the causal ordering
algorithm we obtain the directed graph 〈V ∪ F,Edir〉 with Edir = {(f1 → v1), (f2 → v2), (v1 →
f2)}. The clusters C1 = {v1, f1} and C2 = {v2, f2} are added to V in step (ii) of the algorithm,
and the edge (v1 → C2) is added to E in step (iii). Finally, we may add the parameters P and
independent exogenous random variables W as singleton clusters to V , and the edges (p1 → C1),
(w1 → C1), (p2 → C2), and (w2 → C2) to E . The resulting causal ordering graph is given in
Figure 1b. △

Throughout this work, we will assume that models are uniquely solvable with respect to the causal
ordering graph, which roughly means that for each cluster, the equations in that cluster can be
solved uniquely for the endogenous variables in that cluster (see Blom et al. [2] for details). A
perfect intervention on a cluster that contains equation vertices represents a model change where the
equations in the targeted cluster are replaced by equations that set the endogenous variables in that
cluster equal to a constant. A soft intervention targets an equation, parameter, or exogenous variable,
but does not affect which variables appear in the equations. We say that there is a directed path from
a vertex x to a vertex y in a causal ordering graph 〈V , E〉 if either cl(x) = cl(y) or there is a sequence
of clusters V1 = cl(x), V2, . . . , Vk−1, Vk = cl(y) so that for all i ∈ {1, . . . , k − 1} there is a vertex
zi ∈ Vi such that (zi → Vi+1) ∈ E . It can be shown that a) the presence of a directed path from a
cluster, equation, parameter, or exogenous variable that is targeted by a soft intervention towards a
certain variable in the causal ordering graph implies that the intervention has a generic effect on that
variable and b) if no such path exists there is no causal effect of the intervention on that variable [2].

v1 v2

f1 f2

(a) Bipartite graph.

w1

p1

v1 v2

f1 f2

w2

p2

(b) Causal ordering graph.

w1 v1 v2 w2

(c) Markov ordering graph.

Figure 1: The bipartite graph in Figure 1a is a compact representation of the model in Example 1.
The corresponding causal ordering graph and Markov ordering graph are given in Figures 1b and 1c
respectively. Exogenous variables are denoted by dashed circles and parameters by black dots.

1.2 Markov ordering graph and causal discovery

The causal ordering graph CO(B) = 〈V , E〉 of model equations F with endogenous variables V ,
exogenous random variables W , constant parameters P , and bipartite graph B can be used to con-
struct the Markov ordering graph, which is a DAG MO(B) = 〈V ∪W,E〉, with (x → y) ∈ E if
and only if (x → cl(y)) ∈ E . The Markov ordering graph for the model equations in Example 1
is given in Figure 1c. It has been shown that, under the assumption of unique solvability w.r.t. the
causal ordering graph, d-separations in the Markov ordering graph imply conditional independences
between the corresponding variables [2]. Henceforth, we will assume that the probability distribu-
tion of the solution (Xv)v∈V to a set of model equations is faithful to the Markov ordering graph. In
other words, each conditional independence in the distribution implies a d-separation in the Markov
ordering graph. Under the assumption that data is generated from such a model, some causal discov-
ery algorithms, such as the PC algorithm [19], aim to construct the Markov equivalence class of the
Markov ordering graph. In this work, we will specifically focus on feedback models for which the
Markov ordering graph of the equilibrium distribution, and consequently the output of many causal
discovery algorithms, does not have a straightforward causal interpretation.

2 Causal ordering for a viral infection model

This work was inspired by a viral infection model in De Boer [5], who showed through explicit
calculations that the predictions of the model are not robust under addition of an immune response.
This sheds doubt on the correct interpretation of variables and parameters in the model. For many
systems it is intrinsically difficult to study their behaviour in detail. The use of simplified math-
ematical models that capture key characteristics aids in the analysis of a certain properties of the

3



vT vI

fT f+
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(a) Bipartite graph.

vT vI

f+
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wσwf

wδ

dT

β

(b) Causal ordering graph.

vT vI wσ

wδ

wf

(c) Markov ordering graph.

Figure 2: Graphical representations of the viral infection model in equations (5) and (6). Vertices
vi and wj correspond to variables Xi and Uj , respectively. The causal ordering graph represents
generic effects of interventions. The d-separations in Figure 2c imply conditional independences.

system. The hope is that the explanations inferred from model equations are legitimate accounts of
the true underlying system [5]. In reality, a modeller must take into account that the outcome of
these studies may be contingent on the specifics of the model design. Here, we demonstrate how
causal ordering can be used as a scalable tool to assess the robustness of model predictions without
explicit calculations.

2.1 Viral infection without immune response

Let Uσ be a production term for target cells, dT the death rate for target cells, Uf the fraction of

successful infections, and Uδ the death rate of productively infected cells. Define β = bp
c

, where b is
the infection rate, p the amount of virus produced per infected cell, and c the clearance rate of viral
particles. The following first-order differential equations describe how the amount of target cells
XT (t) and the amount of infected cells XI(t) evolve over time [5]:

ẊT (t) = Uσ − dTXT (t)− βXT (t)XI(t), (3)

ẊI(t) = (UfβXT (t)− Uδ)XI(t), (4)

Suppose that we want to use this simple viral infection model to explain why the set-point viral load
(i.e. the total amount of virus circulating in the bloodstream) of chronically infected HIV-patients
differs by several orders of magnitude, as De Boer [5] does. To analyse this problem we look at the
equilibrium equations that are implied by equations (3) and (4):3

fT : Uσ − dTXT − βXTXI = 0, (5)

f+

I : UfβXT − Uδ = 0. (6)

Throughout the remainder of this work we will use this natural labelling of equilibrium equations,

where the equation derived from the derivative Ẋi(t) is labelled fi. For first-order differential equa-

tions that are written in canonical form, Ẋi(t) = gi(X(t)), the natural labelling always exists.

Suppose that Uσ , Uf and Uδ are independent exogenous random variables taking values in R>0 and
dT , β are strictly positive parameters. The associated bipartite graph, causal ordering graph, and
Markov ordering graph are given in Figure 2. The causal ordering graph tells us that soft interven-
tions targeting Uσ , Uf , Uδ, dT , or β generically have an effect on the equilibrium distribution of
the amount of infected cells XI . From here on, we say that the causal ordering graph of a model
predicts the generic presence or absence of causal effects. The Markov ordering graph shows that
vT and wσ are d-separated. This implies that the amount of target cells XT should be independent of
the production rate Uσ when the system is at equilibrium. Henceforth, we will say that the Markov
ordering graph predicts the generic presence or absence of conditional dependences.

2.2 Viral infection with a single immune response

The viral infection model in equations (3) and (4) can be extended with a simple immune response
XE(t) by adding the following dynamic and static equations:

ẊE(t) = (UaXI(t)− dE)XE(t), (7)

Xδ(t) = dI + UkXE(t), (8)

3Since we are only interested in strictly positive solutions we removed XI from the equilibrium equation
fI : (UfβXT − Uδ)XI = 0 to obtain f+

I .
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where Ua is an activation rate, dE and dI are turnover rates and Uk is a mass-action killing rate [5].
Note that the exogenous random variable Uδ is now treated as an endogenous variable Xδ(t) instead.
We derive the following equilibrium equations using the natural labelling provided by equations (7)
and (8):4

f+

E : UaXI − dE = 0, (9)

fδ : Xδ − dI − UkXE = 0, (10)

Henceforth, we will call the addition of equations F+ to F a model extension. Generally, equations
F+ may contain variables in V but they may also contain additional endogenous variables V+. Pa-
rameters and exogenous variables in equations F can appear as endogenous variables in V+ and in
the extended model Fext = F ∪ F+.

vT vI vE vδ

fT f+

I f+

E
fδ

(a) Bipartite graph.

vT vI vE vδ

fT f+

E
fδ f+

I

wσ wa wk wf

dT dE dI β

(b) Causal ordering graph.

vT vI

vδ vE

wσ wa

wkwf

(c) Markov ordering graph.

Figure 3: Graphical representations of the viral infection model with a single immune response. The
presence or absence of causal relations and d-connections implied by the graphs in Figure 2 are not
preserved if a single immune response is added.

Suppose that Ua and Uk are independent exogenous random variables taking values in R>0 and
dE , dI are parameters taking value in R>0. The bipartite graph, causal ordering graph, and Markov
ordering graph associated with equations (5), (6), (9), and (10) (with Xδ replacing Uδ) are given
in Figure 3. The causal ordering graph predicts a causal effect of Uσ and dT on XT but not on
XI . By comparing with the predictions of the causal ordering graph in Figure 2b, we find that
effects of interventions targeting Uσ and dT are not robust under the model extension. The Markov
ordering graph of the extended model shows that wσ is d-connected to vT , and hence Uσ and XT

are dependent. We conclude that the independence between Uσ and XT that was implied by the
Markov ordering graph of the viral infection model without immune response is not robust under
the model extension.

The systematic graphical procedure followed here easily leads to the same causal conclusions as De
Boer [5] obtained by explicitly solving the equilibrium equations. In addition, it leads to predictions
regarding the conditional (in)dependences in the equilibrium distribution.

2.3 Viral infection with multiple immune responses

The following static and dynamical equations describe multiple immune responses:

ẊEi
(t) =

pEXEi
(t)Uai

XI(t)

h+XEi
(t) + Uai

XI(t)
− dEXEi

(t), i = 1, 2, . . . , n (11)

Xδ(t) = dI + Uk

n∑

i

Uai
XEi

(t), (12)

where there are n immune responses, Uai
is the avidity of immune response i, pE is the maximum

division rate, and h is a saturation constant [5]. For n = 2 we can derive equilibrium equations fE1
,

fE2
, and fδ using the natural labelling as we did for the equilibrium equations in the previous section.

Together with the equilibrium equations (5) and (6) (with Xδ replacing Uδ) for the viral infection
model this is another extended model. The bipartite graph of this extended model is given in Figure
5a, while the causal ordering graph can be found in Figure 4a. By comparing the directed paths

4Analogous to changing fI to f+

I for strictly positive solutions, we will look at f+

E instead of fE .
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in this causal ordering graph with that of the original viral infection model (i.e. the model without
an immune response) in Figure 2b, it can be seen that the predicted presence of causal relations
is preserved under extension of the model with multiple immune responses, while the predicted
absence of causal relations is not. Similarly, by comparing d-separations in the Markov ordering
graphs in Figure 2c with those in Figure 4b, we find that predicted conditional dependences are
preserved under the extensions, while the predicted conditional independences are not.

vT vI vE1
vE2

vδ

f+

I
fT fE1

fE2
fδ

wσ wk wa1
wa2

wf

dT

β

h

pE

dE

dI

(a) Causal ordering graph.

vT vI vE1
vE2

vδ

wσ

wk

wa1

wa2

wf

(b) Markov ordering graph.

Figure 4: Graphical representations of the viral infection model with multiple immune responses.
The presence of causal relations and d-connections in Figure 2 is preserved.

2.4 Markov ordering graphs and causal interpretations

Here, we will demonstrate that the Markov ordering graphs for the equilibrium equations of the viral
infection models neither have a straightforward causal interpretation in terms of soft interventions
targeting parameters, exogenous variables, or equations nor in terms of perfect interventions on vari-
ables in the dynamical model. To see this, consider the Markov ordering graph in Figure 3c for the
viral infection with a single immune response. The edge (vI → vT ) cannot correspond to the effect

of a soft intervention targeting f+

I , because the causal ordering graph in Figure 3b shows that there is
no such effect. Clearly, directed paths in the Markov ordering graph do not necessarily represent the
effects of soft interventions. The natural way to model a perfect intervention targeting a variable in
the Markov ordering graph is to replace the (differential) equation of that variable with an equation
setting that variable equal to a certain value in the underlying dynamical model [12]. By explicitly
solving equilibrium equations it is easy to check that replacing fδ with an equation setting Xδ equal
to a constant generically changes the distribution of XI . Since there is no directed path from vδ to vI
in the Markov ordering graph, the effect of this perfect intervention would not have been predicted
by the Markov ordering graph, if it would have been interpreted causally. Therefore, contrary to the
causal ordering graph, the Markov ordering graph does not have a causal interpretation in terms of
soft or perfect interventions on the true underlying dynamical model.

3 Robust causal predictions under model extensions

One way to gauge the robustness of model predictions is to check to what extent they depend on
the model design. The example of a viral infection with different immune responses in the previous
section indicates that qualitative causal predictions entailed by the causal ordering graph of a math-
ematical model may strongly depend on the particulars of the model. Both the implied presence or
absence of causal relations at equilibrium and the implied presence or absence of conditional inde-
pendences at equilibrium may change under certain model extensions. Under what conditions are
these qualitative model predictions preserved under extensions? In this section, we characterize a
large class of model extensions under which qualitative equilibrium predictions are preserved.

Theorem 1 gives a sufficient condition on model extensions under which the predicted presence of
causal relations and predicted presence of conditional dependences at equilibrium is preserved. The
proof is given in the supplement.

Theorem 1. Consider model equations F containing endogenous variables V with bipartite graph
B. Suppose F is extended with equations F+ containing endogenous variables in V ∪ V+, where
V+ contains endogenous variables that are added by the model extension.5 Let Bext be the bipartite

5V+ may also contain parameters or exogenous variables that appear in F and become endogenous in the
extended model.
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graph associated with Fext = F ∪ F+ and Vext = V ∪ V+, and B+ the bipartite graph associated
with the extension F+ and V+, where variables in V appearing in F+ are treated as exogenous
variables (i.e. they are not added as vertices in B+). If B and B+ both have a perfect matching then:

(i) Bext has a perfect matching,
(ii) ancestral relations in CO(B) are also present in CO(Bext),

(iii) d-connections in MO(B) are also present in MO(Bext).

This result characterizes a large set of extensions under which the implied causal effects and con-
ditional dependences of a model are preserved. Consider again the equilibrium behaviour of the
viral infection models in Section 2. We already showed explicitly that the extension of the viral in-
fection model with multiple immune responses preserved the predicted presence of causal relations
and conditional dependences, but with the help of Theorem 1 we only would have needed to check
whether the bipartite graph in Figure 5c has a perfect matching to arrive at the same conclusion. The
bipartite graph for the extension with a single immune response in Figure 5b does not have a perfect
matching and hence the conditions of Theorem 1 do not hold. Recall that this model extension did
not preserve the predicted presence of causal relations.

The theorem below gives a stronger condition under which (conditional) independence relations and
the absence of causal relations that are implied by a model are also predicted by the extended model.
The proof is provided in the supplement.

Theorem 2. Let F , F+, Fext, V , V+, Vext, B, B+, and Bext be as in Theorem 1. If B and B+ both
have perfect matchings and no vertex in V+ is adjacent to a vertex in F in Bext then:6

(i) ancestral relations absent in CO(B) are also absent in CO(Bext),
(ii) d-connections absent in MO(B) are also absent in MO(Bext).

This result characterizes a large class of model extensions under which all qualitative model pre-
dictions are preserved. Consider again the equilibrium models for the viral infection in Section 2.
The bipartite graph for the extension with a single immune response, which we obtain by adding
equations (9) and (10), does not have a perfect matching. In the bipartite graph associated with
the viral infection model with multiple immune responses the additional endogenous variable vδ is
adjacent to fI . Neither of the model extensions satisfies the conditions of Theorem 2. We already
demonstrated that neither of the model extensions preserves all qualitative model predictions. An
example of a model extension that does satisfy the conditions in Theorem 1 and 2 is an acyclic
Structural Causal Model that is extended with another acyclic Structural Causal Model such that the
additional variables are non-ancestors of the original ones. Together, Theorem 1 and 2, can be used
to understand when the properties of a system can be understood by studying the properties of its
parts.

4 Selection of model extensions

So far, we have considered methods to assess the robustness of qualitative model predictions. In
this section we will show how this idea results in novel opportunities regarding causal discovery.
In particular, if we assume that the systems that we observe are part of a larger partially observed
system, then we can use the methods in this paper to reason about causal mechanisms of unobserved
variables. Consider, for example, the viral infection model for which we have demonstrated that
extensions with different immune responses imply different (conditional) independences between
variables in the original model. The Markov ordering graphs in Figures 2c, 3c, and 4b imply the
following (in)dependences:

(i) Viral infection without immune response: Uσ ⊥⊥ XT , Uσ 6⊥⊥ XI .
(ii) Viral infection with single immune response: Uσ 6⊥⊥ XT , Uσ ⊥⊥ XI .

(iii) Viral infection with multiple immune responses: Uσ 6⊥⊥ XT , Uσ 6⊥⊥ XI .

Given a model for variables XT and XI only, we can reject model extensions based on the (condi-
tional) independences for variables XT , XI , and Uσ. Using this holistic modelling approach, we
can reason about an unknown model extension without observing the new mechanisms or variables.
In the remainder of this section, we further discuss how this idea can be applied to equilibrium data
of dynamical systems.

6Note that V+ is adjacent to F when one of the exogenous random variables or parameters in F becomes
an endogenous variable in the model extension.
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4.1 Reasoning about self-regulating variables

We say that a variable in a set of first-order differential equations in canonical form is self-regulating
if it can be solved uniquely from the equilibrium equation that is constructed from its derivative.
For models in which every variable is self-regulating there exists a perfect matching where each
variable vi is matched to its associated equilibrium equation fi according to the natural labelling,
for more details see Lemma 1 in the supplement.7 It then follows from Theorem 1 that the presence
of ancestral relations and d-connections is robust under dynamical model extensions in which each
variable is self-regulating, as is stated more formally in Corollary 1 below.

Corollary 1. Consider a first-order dynamical model in canonical form for endogenous variables V
and an extension consisting of canonical first-order differential equations for additional endogenous
variables V+. Let F and Fext = F ∪ F+ be the equilibrium equations of the original and extended
model respectively. If all variables in V ∪ V+ are self-regulating then (ii) and (iii) of Theorem 1
hold.

Corollary 1 characterizes a class of models under which qualitative predictions for the equilibrium
distribution are robust, but the result can also be interpreted from a different angle. Suppose that we
have equilibrium data that is generated by an extended dynamical model with equilibrium equations
Fext, but we only have a partial model consisting of equations in F for a subset V ⊆ Vext = V ∪V+

that appear in Fext = F ∪ F+. If we would find conditional independences between variables in V
that do not correspond to d-separations in the Markov ordering graph of the partial model, this does
not necessarily mean that the model equations are wrong. It could also be the case, for example, that
we are wrong to assume that the system can be studied in a reductionist manner and that the model
should be extended. Furthermore, under the assumption that data is generated from the equilibrium
distribution of a dynamical model, Corollary 1 tells us that conditional independences in the data
that are not predicted by the equations of a partial model imply the presence of variables that are not
self-regulating, if we assume faithfulness. This shows that, given a model for a subsystem, we can
reason about the properties of unobserved and unknown variables in the whole system. Consider,
for example, the model of the viral infection without immune response and assume that this is a
submodel of a larger system. Suppose that we observe a conditional independence between Uσ and
XI and assume that the model equations of the submodel are correct. Since the Markov ordering
graph in Figure 2c implies that Uσ and XI are dependent, Corollary 1 tells us that there must be
variables that are not self-regulating in the extended system. If the extended system can be described
by the strictly positive solutions of the viral infection model with a single immune response, so that
Uσ and XI are independent, then we see from equations (5), (6), (9), and (10) that both XE(t) and
XI(t) are not self-regulating.

4.2 Reasoning about feedback loops

We say that an extension of a dynamical model introduces a new feedback loop with the original
dynamical model when there is feedback in the extended dynamical model that involves variables
in both the original model and the model extension. To make this definition more precise, consider
the set Enat of edges (vi − fi) that are associated with the natural labelling of the equilibrium equa-
tions of the extended dynamical model. The feedback loops in the dynamical model coincide with
cycles in the directed graph G(Bnat,Mnat) that is obtained by applying step (i) of the causal order-
ing algorithm to the bipartite graph Bnat = 〈Vext, Fext, Eext ∪Enat〉 using the perfect matching
Mnat = Enat.

8 The following proposition can be used to reason about the presence of partially
unobserved feedback loops given a model and observations for a subsystem.

7Interestingly, the Markov ordering graph for the equilibrium equations of such a model always has a causal
interpretation. By construction of the causal ordering graph from the bipartite graph and the perfect matching
provided by the natural labelling, we know that a vertex vi always appears in a cluster with fi in the causal
ordering graph. The presence or absence of directed paths in the Markov ordering graph can then easily be
associated with the presence or absence of directed paths in the causal ordering graph. Consequently, the
Markov ordering graph can be interpreted in terms of both soft interventions targeting equations and perfect
interventions that set variables equal to a constant by replacement of the associated dynamical and equilibrium
equations. Note that dynamical systems with only self-regulating variables were also considered by Mooij et al.
[12], where it was shown that their equilibria can be modelled as Structural Causal Models without self-loops.

8Note that a feedback loop in the dynamical model does not imply a feedback loop in the equilibrium
equations as well. For example, there is feedback in the dynamical equations (3), (4), but there is no feedback in
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Figure 5: The bipartite graphs associated with the viral infection
model with multiple immune responses, the single immune response
extension, and the multiple immune response extension are given in
Figures 5a, 5b, and 5c, respectively.
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Figure 6: Causal ordering
graph for positive and non-
positive solutions of the vi-
ral infection model.

Proposition 1. Consider a first-order dynamical model in canonical form for endogenous variables
V and an extension consisting of canonical first-order differential equations for additional endoge-
nous variables V+. Let F and Fext = F ∪ F+ be the equilibrium equations of the original and
extended model respectively. Let B = 〈V, F,E〉 be the bipartite graph associated with F and
Bext = 〈Vext, Fext, Eext〉 the bipartite graph associated with Fext. Assume that B and Bext both
have perfect matchings. If the model extension does not introduce a new feedback loop with the
original dynamical model, then d-connections in MO(B) are also present in MO(Bext).

Proposition 1 characterizes a class of model extensions under which qualitative model predictions
are robust, but it also shows how we can reason about the existence of unobserved feedback loops.
To be more precise, it shows that, given a submodel for a subsystem, the presence of conditional in-
dependences that are not predicted by the submodel imply the existence of an unobserved feedback
loop, if we assume faithfulness. If, for example, we assume that the viral infection model without an
immune response is a submodel of the system that is described by the strictly positive equilibrium
solutions of the viral infection model with a single immune response, then we would observe an
independence between Uσ and XT that is not predicted by the model equations of the submodel.
Proposition 1 would then imply that there is an unobserved feedback loop. Indeed, it can be seen
from equations (3), (4), (7), (8) that there is an unobserved feedback loop from XI(t) to XE(t) to
Xδ(t) and back to XI(t), while the Markov ordering graphs in Figures 2c and 3c imply that Uσ and
XI are dependent in the original model and independent in the extended model. We consider the
use of existing structure learning algorithms for the detection of feedback loops in models with vari-
ables that are not self-regulating from a combination of background knowledge and observational
equilibrium data to be an interesting topic for future work.

5 Discussion

In this work we revisited several models of viral infections and immune responses. In our treatment
of these models we closely followed the approach in De Boer [5] and therefore we only considered
strictly positive solutions. If we would have modelled all solutions then, for example, we would
have considered the equilibrium equation fI : (UfβXT −Uδ)XI = 0 instead of f+

I in equation (6).
In that case, we would have obtained the causal ordering graph in Figure 6 instead of that in Figure
2b. Clearly, the model predictions of the causal ordering graph for the positive solutions in Figure
2b are more informative. The choice of only modelling strictly positive solutions depends on the
application.

In many application domains mathematical models are used to predict the equilibrium behaviour
of complex systems. An important issue is that (causal) predictions may strongly depend on the
specifics of the model design. We revisited an example of a viral infection model [5], in which
implied causal relations and conditional independences change dramatically when equations, de-
scribing immune reactions, are added. Analysis of this behaviour through explicit calculations is
neither insightful nor scalable. We showed how the technique of causal ordering can be used to
efficiently analyse the robustness of implied causal effects and conditional independences. Using

the causal ordering graph of the equilibrium equations in Figure 2b nor in the directed graph that is constructed
in step (i) of the causal ordering algorithm.

9



key insights provided by this approach we characterized large classes of model extensions under
which predicted causal relations and conditional independences are robust. We hope that the results
presented in this paper are a step towards bringing the world of causal inference closer to practical
applications.

Our results for the characterization of the robustness of model extensions can also be used to reason
about the properties of models that are the combination of two submodels. This way, we can study
systems whose causal and Markov properties can be understood in a reductionistic manner by con-
sidering the properties of its parts. When the properties of the whole model differ from those of its
parts, a holistic modelling approach would be required. For models of the equilibrium distribution
of dynamical systems, we proved that extensions of dynamical models where each variable is self-
regulating preserve the predicted presence of causal effects and d-connections in the original model.
Based on those insights, we proposed a novel approach to model selection, where information about
conditional independences can be used in combination with model equations to reason about possi-
ble model extensions or the presence of feedback mechanisms. For dynamical models with feedback,
the output of structure learning algorithms does not always have a causal interpretation in terms of
soft or perfect interventions for the equilibrium distribution. We have shown that in dynamical sys-
tems where each variable is self-regulating the identifiable directed edges in the learned graph do
express causal relations between variables. In future work we plan to further develop these ideas.

Broader Impact

In this work we presented novel ideas that can be used in the context of dynamical and mathematical
modelling of real-world systems. Therefore there is no direct societal impact of our work.
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Supplement

A graphical illustration of the causal ordering algorithm applied to the equations of a cyclic model
is provided in the first section. The second section contains proofs of the results in the main paper.

Causal ordering algorithm applied to a cyclic model

In this section we demonstrate how the causal ordering algorithm works on a set of equations for
a cyclic model. The algorithm is also presented graphically. Consider the following equations for
endogenous variables X and exogenous random variables U :

f1 : g1(Xv1 , Uw1
) = 0, (13)

f2 : g2(Xv2 , Xv1 , Xv4 , Uw2
) = 0, (14)

f3 : g3(Xv3 , Xv2 , Uw3
) = 0, (15)

f4 : g4(Xv4 , Xv3 , Uw4
) = 0, (16)

f5 : g5(Xv5 , Xv4 , Uw5
) = 0. (17)

The associated bipartite graph in Figure 7a consists of variable vertices V = {v1, . . . , v5} and
equation vertices F = {f1, . . . , f5}. There is an edge between a variable vertex and an equation
vertex whenever that variable appears in the equation. The associated bipartite graph has exactly
two perfect matchings:

M1 = {(v1 − f1), (v2 − f2), (v3 − f3), (v4 − f4), (v5 − f5)},

M2 = {(v1 − f1), (v2 − f3), (v3 − f4), (v4 − f2), (v5 − f5)}.

Application of the first step of the causal ordering algorithm results either in the directed graph in
Figure 7b or that in Figure 7c, depending on the choice of the perfect matching. The segmentation of
vertices into strongly connected components, which takes place in the second step of the algorithm,
results in the clusters {v1}, {f1}, {v2, v3, v4, f2, f3, f4}, {v5}, and {f5}. To construct the clusters
of the causal ordering graph we add Si ∪M(Si) to a cluster set V for each Si in the segmentation.
The segmentation of vertices into strongly connected components is displayed in Figures 7d and
7e. Notice that the segmentation in Figure 7d is the same as that in Figure 7e. It is known that the
segmentation into strongly connected components is unique (i.e. it does not depend on the choice of
the perfect matching), a result that can be found in Pothen and Fan [15], Blom et al. [2]. The cluster
set V for the causal ordering graph in Figure 7f is constructed by merging clusters in the segmented
graph whenever two clusters contain vertices that are matched and by adding exogenous variables as
singleton clusters. The edge set E for the causal ordering graph is obtained by adding edges (v → C)
from an endogenous vertex v to a cluster C, whenever v /∈ C and there is an edge from v to f ∈ C
in the directed graph. Finally, we also add edges from exogenous vertices to clusters that contain
equations in which the corresponding exogenous random variables appear.

Proofs

Theorem 1. Consider model equations F containing endogenous variables V with bipartite graph
B. Suppose F is extended with equations F+ containing endogenous variables in V ∪ V+, where
V+ contains endogenous variables that are added by the model extension.9 Let Bext be the bipartite
graph associated with Fext = F ∪ F+ and Vext = V ∪ V+, and B+ the bipartite graph associated
with the extension F+ and V+, where variables in V appearing in F+ are treated as exogenous
variables (i.e. they are not added as vertices in B+). If B and B+ both have a perfect matching then:

(i) Bext has a perfect matching,
(ii) ancestral relations in CO(B) are also present in CO(Bext),

(iii) d-connections in MO(B) are also present in MO(Bext).

Proof. The causal ordering graph CO(B) is constructed from a perfect matching M for the bipartite
graph B = 〈V, F,E〉. Let M+ be a perfect matching for B+. Note that Mext = M ∪M+ is a perfect
matching for Bext = 〈V ∪ V+, F ∪ F+, Eext〉. Following the causal ordering algorithm for B,M

9V+ may also contain parameters or exogenous variables that appear in F and become endogenous in the
extended model.
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(c) Directed graph (M2).

v1 v2 v3 v4 v5

f1 f2 f3 f4 f5
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(f) Causal ordering graph.

Figure 7: Graphical illustration of the causal ordering algorithm that was described in Section 1.1.
Figure 7a shows the bipartite graph that is associated with equations (13) to (17). Application of
the first step of the causal ordering algorithm results in the directed graph in Figure 7b for perfect
matching M1 and that in Figure 7c for perfect matching M2. The blue and orange edges correspond
to the edges in the perfect matchings M1 and M2, respectively. Figures 7d and 7e show that the
segmentation into strongly connected components does not depend on the choice of the perfect
matching. Exogenous vertices and edges from these vertices to clusters were added to the causal
ordering graph in Figure 7f.

and Bext,Mext, we note that G(B,M) is a subgraph of G(Bext,Mext) and hence clusters in CO(B)
are fully contained in clusters in CO(Bext). Therefore ancestral relations in CO(B) are also present
in CO(Bext).

It follows directly from the definition (see Forré and Mooij [6]) that σ-connections in a graph remain
present if the graph is extended with additional vertices and edges. The directed graphsG(B,M) and
G(Bext,Mext) can be augmented with exogenous variables by adding exogenous vertices to these
graphs with directed edges towards the equations in which they appear. The σ-connections in the
augmentation of G(B,M) must also be present in the augmentation of G(Bext,Mext). By Corollary
2.8.4 in Forré and Mooij [6] and Lemma 7 in Blom et al. [2] we have that d-connections in MO(B)
must also be present in MO(Bext).

Theorem 2. Let F , F+, Fext, V , V+, Vext, B, B+, and Bext be as in Theorem 1. If B and B+ both
have perfect matchings and no vertex in V+ is adjacent to a vertex in F in Bext then:10

(i) ancestral relations absent in CO(B) are also absent in CO(Bext),
(ii) d-connections absent in MO(B) are also absent in MO(Bext).

Proof. Since B and B+ both have perfect matchings the results of Theorem 1 hold. Let G(B,M),
and G(Bext,Mext) be as in the proof of Theorem 1. Note that in Mext vertices in F+ are matched
to vertices in V+ and therefore edges between f+ ∈ F+ and v ∈ adjBext

(F+) \ V+ are oriented as
(f+ ← v) in G(Bext,Mext). By assumption, we therefore have that vertices in V+ are non-ancestors
of vertices in V ∪ F in G(Bext,Mext). Since M ⊆ Mext we know that the same directed edges
between vertices in V and F appear in both G(B,M) and G(Bext,Mext). Notice that the subgraph
of G(Bext,Mext) induced by the vertices V ∪ F coincides with G(B,M). Hence CO(B) is the
induced subgraph of CO(Bext) and MO(B) is the induced subgraph of MO(Bext).

Lemma 1. Consider a first-order dynamical model in canonical form for endogenous variables V
and let F be the equilibrium equations of the model. If all variables in V are self-regulating then B
has a perfect matching.

Proof. Recall that the equilibrium equation constructed from the derivative of a variable i is labelled
fi according to the natural labelling. When a variable in vi ∈ V is self-regulating then it can be

10Note that V+ is adjacent to F when one of the exogenous random variables or parameters in F becomes
an endogenous variable in the model extension.
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matched to its equilibrium equation fi. If this holds for all variables in V then B has a perfect
matching.

Lemma 2. Let B be a bipartite graph and let M and M ′ be two distinct perfect matchings. The as-
sociated directed graphs G(B,M) and G(B,M ′) that are obtained in step (i) of the causal ordering
algorithm differ only in the direction of cycles.

Proof. This follows directly from the fact that the output of the causal ordering algorithm does not
depend on the choice of the perfect matching. This result is a direct consequence of Theorem 1 and
Theorem 3 in Blom et al. [2].

Proposition 1. Consider a first-order dynamical model in canonical form for endogenous variables
V and an extension consisting of canonical first-order differential equations for additional endoge-
nous variables V+. Let F and Fext = F ∪ F+ be the equilibrium equations of the original and
extended model respectively. Let B = 〈V, F,E〉 be the bipartite graph associated with F and
Bext = 〈Vext, Fext, Eext〉 the bipartite graph associated with Fext. Assume that B and Bext both
have perfect matchings. If the model extension does not introduce a new feedback loop with the
original dynamical model, then d-connections in MO(B) are also present in MO(Bext).

Proof. Let Enat be the set of edges (vi− fi) associated with the natural labelling of the equilibrium
equations of the extended dynamical model. Note that the feedback loops in the dynamical model
coincide with cycles in the directed graph G(Bnat,Mnat) that is obtained by applying step (i) of the
causal ordering algorithm to the bipartite graph Bnat = 〈Vext, Fext, Eext ∪ Enat〉 using the perfect
matching Mnat = Enat.

By Theorem 1, we know that if B and B+ (the subgraph of Bext induced by V+ ∪ F+) both have
perfect matchings then d-connections in MO(B) must also be present in MO(Bext). Therefore, if
there exists a perfect matching Mext for Bext so that each f ∈ F is Mext-matched to a vertex v ∈ V
and each f+ ∈ F+ is Mext-matched to a vertex v+ ∈ V+ in Bext, d-connections in MO(B) are also
present in MO(Bext).

We will prove the contrapositive of the proposition, so we start with the assumption that the d-
connections in MO(B) are not preserved in MO(Bext). In that case, there must exist a perfect
matching Mext for Bext so that there is an f ∈ F that is Mext-matched to a v+ ∈ V+ and a v ∈ V
that is Mext-matched to a f+ ∈ F+. Note that sinceBext is a subgraph of Bnat, this perfect matching
Mext is also a perfect matching for Bnat. Lemma 2 says that G(Bnat,Mnat) and G(Bnat,Mext) only
differ in the direction of cycles. We know that vertices in V are only Mnat-matched to vertices in
F , while vertices in V+ are only Mnat-matched to vertices in F+. Therefore, the vertices v+ and f
must be on a directed cycle in both directed graphs, as well as v and f+. Hence the model extension
F+ introduced a new feedback loop that includes variables in the original model.
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