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Abstract: Perfect adaptation in a dynamical system is the phenomenon that one or more variables have an
initial transient response to a persistent change in an external stimulus but revert to their original value
as the system converges to equilibrium. With the help of the causal ordering algorithm, one can construct
graphical representations of dynamical systems that represent the causal relations between the variables
and the conditional independences in the equilibrium distribution. We apply these tools to formulate suffi-
cient graphical conditions for identifying perfect adaptation from a set of first-order differential equations.
Furthermore, we give sufficient conditions to test for the presence of perfect adaptation in experimental
equilibrium data. We apply this method to a simple model for a protein signalling pathway and test its
predictions both in simulations and using real-world protein expression data. We demonstrate that perfect
adaptation can lead to misleading orientation of edges in the output of causal discovery algorithms.
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1 Introduction

Understanding causal relations is an objective that is central to many scientific endeavours. It is often
said that the gold standard for causal discovery is a randomized controlled trial, but practical experiments
can be too expensive, unethical, or otherwise infeasible. The promise of causal discovery is that we can,
under certain assumptions, learn about causal relations by using a combination of data and background
knowledge |1}, 12}, 2], 24 [33] [37, 4T, [45] 53} [57]. Roughly speaking, causal discovery algorithms construct
a graphical representation that encodes certain aspects of the data, such as conditional independences,
given some constraints that are imposed by background knowledge. Under additional assumptions on the
underlying causal mechanisms these graphical representations have a causal interpretation as well. In this
work, we specifically consider the equilibrium distribution of perfectly adapted dynamical systems. We will
show that such systems may have the property that the corresponding graphs that encode the conditional
independences in the distribution do not have a straightforward causal interpretation in terms of the
changes in distribution induced by interventions.

Perfect adaptation in a dynamical system is the phenomenon that one or more variables in the system
temporarily respond to a persistent change of an external stimulus, but ultimately revert to their original
values as the system reaches equilibrium again. We study the differences between the causal structure
implied by the dynamic equations and the conditional dependence structure of the equilibrium distribution.
To do so, we make use of the technique of causal ordering, introduced by Simon [50], which can be used
to construct a causal ordering graph that represents causal relations and a Markov ordering graph that
encodes conditional independences between variables [5]. We introduce the notion of a dynamic causal
ordering graph to represent transient causal effects in a dynamical model. We use these graphs to provide
a sufficient graphical condition for a dynamical system to achieve perfect adaptation, which does not
require simulations or cumbersome calculations. Furthermore, we provide sufficient conditions to test for
the presence of perfect adaptation in real-world data with the help of the equilibrium Markov ordering
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graph and we explain why the usual interpretation of causal discovery algorithms, when applied to perfectly
adapted dynamical systems at equilibrium, can be misleading.

We illustrate our ideas on three simple dynamical systems with feedback: a filling bathtub model
[13} 28], a viral infection model [2, [I6], and a chemical reaction network [30]. We point out how perfect
adaptation may also manifest itself in protein signalling networks, and take a closer look at the consequences
for causal discovery from a popular protein expression data set [47]. We adapt a model for the RAS-RAF-
MEK-ERK signalling pathway from [49] and study its properties under certain saturation conditions. We
test its predictions both in simulations and on real-world data. We propose that the phenomenon of perfect
adaptation might explain why the presence and orientation of edges in the output of causal discovery
algorithms does not always agree with the direction of edges in biological consensus networks that are
based on a partial representation of the underlying dynamical mechanisms.

2 Background

In this section, we provide an overview of the relevant background material on which this work is based. We
first consider the assumptions underpinning popular constraint-based causal discovery algorithms and give
a brief description of a simple local causal discovery algorithm in Section In Section we proceed
with a concise introduction to the causal ordering algorithm of Simon [50] and demonstrate how it can be
applied to a set of equations together with a pre-specified set of exogenous variables to deduce the implied
causal relations and conditional independences. Finally, in Section [2:3] we discuss the relationship of the
present work with existing work.

2.1 Causal discovery

The main objective of causal discovery is to infer causal relations from experimental and observational data.
The most common causal discovery algorithms can be roughly divided into score-based and constraint-based
approaches. In this work, we will focus on the latter approach (examples include PC, FCI and variants
thereof, see [IT}, [12, [33], 37, 45| 53}, [67]), which exploits conditional independences in data to infer causal
relations. We will first discuss assumptions for constraint-based causal discovery. We then consider the
application of causal discovery algorithms to models with feedback. We proceed with a brief but concrete
introduction to a simple local causal discovery algorithm. Finally, we discuss how the present work relates
to existing literature.

Learning a graphical structure from conditional independence constraints typically relies on Markov
and faithfulness assumptions relating conditional independences to properties of a graph. In particular, a
d-separation is a relation between three disjoint sets of vertices in a graph that indicates whether all paths
between two sets of vertices are d-blocked by the vertices in a third [4I], B3]. If every d-separation in a
graph implies a conditional independence in the probability distribution then we say that the distribution
satisfies the directed global Markov property (or the d-separation criterion) w.r.t. that graph [29]. Conversely,
if every conditional independence in the probability distribution corresponds to a d-separation in a graph
then we say that the distribution is d-faithful to that graphﬂ When a probability distribution satisfies
the d-separation Markov property w.r.t. a graph and is also d-faithful to the graph, then this graph is a
compact representation of the conditional independences in the probability distribution and we say that it
encodes its independence relations. A lot of work has been done to understand the (combinations of) various
assumptions (e.g. linearity, Gaussianity, discreteness, causal sufficiency, acyclicity, no selection bias) under
which a graph that encodes all conditional independences and dependences in a probability distribution

1 While most authors refer to the notion of ‘d-faithful’ simply as ‘faithful’, we distinguish between two different notions,
‘d-faithful’ and ‘o-faithful’.
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has a certain causal interpretation [see, e.g., [TT] 2T], 24] 27 33], [37, 45l 53, 64, 57]. Perhaps the simplest
assumption is that the data was generated by a causal DAG [41], 53]E| This graphical object represents both
the conditional independence structure (the observational probability distribution is assumed to satisfy the
directed global Markov property with respect to the graph) and the causal structure (every directed edge
that is absent in the DAG corresponds with the absence of a direct causal relation between the two variables,
relative to the set of variables in the DAG). For this acyclic setting, sophisticated constraint-based causal
discovery algorithms (such as the PC and FCI algorithms [53]) have been developed. The key assumption
that these algorithms make is that the same DAG expresses both the conditional independences in the
observational distribution and the causal relations between the variables.

However, many systems of interest in various scientific disciplines (e.g. biology, econometrics, physics)
include feedback mechanisms. Cyclic Structural Causal Models (SCMs) can be used to model causal features
and conditional independence relations of systems that contain cyclic causal relationships [7]. For linear
SCMs with causal cycles, several causal discovery algorithms have been developed [24] [27) [45] [54] that are
based on d-separations. The d-separation criterion is applicable to acyclic settings and to cyclic SCMs with
either discrete variables or linear relations between continuous variables, but it is too strong in general
[52]. A weaker Markov property, based on the notion of o-separation, has been derived for graphs that
may contain cycles [7, 20, [52]. If every o-separation in a graph implies a conditional independence in
the probability distribution then we say that it satisfies the gemeralized directed global Markov property
(or the o-separation criterion) w.r.t. that graph [20]. Conversely, if every conditional independence in the
probability distribution corresponds to a o-separation in a graph then we say that it is o-faithful to that
graph. Richardson [44] already proposed a causal discovery algorithm that is sound under the generalized
directed Markov property and the d-faithfulness assumption, assuming causal sufficiency. Recently, a causal
discovery algorithm was proposed based on the o-separation criterion and the assumption of o-faithfulness
that is sound and complete [2I]. It was also shown that, perhaps surprisingly, the PC and FCI algorithms
are still sound and complete in that setting, although their output has to be interpreted differently [33].

For the sake of simplicity, we will limit our attention in this paper to one of the simplest causal discovery
algorithms, Local Causal Discovery (LCD) [12]. This algorithm is a straightforward and efficient search
method to detect a specific causal structure from background knowledge and observational or experimental
data. The algorithm looks for triples of variables (C, X,Y") for which (a) C is a variable that is not caused
by X, and (b) the following (in)dependences hold: C 1 X, X ) Y, and C 1L Y | X. Figure [1| shows
all acyclic directed mixed graphsﬂ that correspond to the LCD triple (C, X,Y), assuming d-faithfulness
and no selection bias. They all have in common that there is no bidirected edge between X and Y, while
there is a directed edge from X to Y. Hence, we can conclude that X causes Y and the two variables
are not confounded. The algorithm was proven to be sound in both the o- and d-separation settings even
when cycles may be present [37]. Even though this algorithm is not as sophisticated as many other causal
discovery algorithms, it suffices for our exposition of the pitfalls of attempting causal discovery on data
generated by a perfectly adaptive dynamical system.

OnON0 OaOn0 OROn0,

Figure 1. All acyclic directed mixed graphs that form an LCD triple (C, X,Y), assuming d-faithfulness. In the absence of
latent confounders, the structure can only be that of the directed acyclic graph on the left.

2 A directed acyclic graph (DAG) is a pair (V, E) where V is a set of vertices and E C {i — j : 4,j € V} a set of
directed edges between vertices such that there are no directed cycles.

3 An acyclic directed mized graph (ADMG) is a triple (V, E, F) where V is a set of vertices, E C {i = j:4,57 € V} a
set of directed edges between vertices such that there are no directed cycles, and FF C {i <> j:4,j € V : i # j} is a set
of bidirected edges between vertices.
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In this paper, we consider equilibrium distributions that are generated by dynamical models. The
causal relations in an equilibrium model are defined through the effects of persistent interventions (i.e.
interventions that are constant over time) on the equilibrium solution of variables that are endogenous to
the model, assuming that the system again converges to equilibrium. It has been shown that directed graphs
encoding the conditional independences between endogenous variables in the equilibrium distribution of
dynamical systems with feedback do not always have a straightforward and intuitive causal interpretation
[5L [13] 25] (see also Appendix . As a consequence, the output of causal discovery algorithms applied to
equilibrium data of dynamical systems with feedback at equilibrium cannot always be interpreted causally
in a naive way. In this work, we will show that this not only happens in isolated cases, but that this is
actually a common phenomenon in a large class of models with perfectly adapting feedback mechanisms. In
our opinion, a better understanding of how perfectly adapting feedback loops affect the causal interpretation
of the conditional independence structure is a prerequisite for successful applications of causal discovery
in fields like systems biology, where one often encounters perfect adaptivity. One way to arrive at such
understanding is through the application of the causal ordering algorithm, the topic of the next section.

2.2 Causal ordering

The causal ordering algorithm of Simon [50] returns an ordering of endogenous variables in a set of equations
given a specification of which variables are exogenous. The algorithm was recently reformulated so that the
output is a causal ordering graph that encodes the generic effects of certain interventions and a Markov
ordering graph that represents conditional independences (both under certain assumptions regarding the
solvability of the equations) [5]. We refer readers that are not yet familiar with the causal ordering algorithm
to [B] for a more extensive introduction to this approach. Here, we will provide only a brief description of
the algorithm and discuss how its output should be interpreted.

First note that the structure of a set of equations and the variables that appear in them can be
represented by a bipartite graph B = (V. F, E'), where vertices F' correspond to the equations and vertices
V' correspond to the endogenous variables that appear in these equations. For each endogenous variable
v € V that appears in an equation f € F there is an undirected edge (v— f) € E. The output of the causal
ordering algorithm is a directed cluster graph (V, ), consisting of a partition V of the vertices V U F' into
clusters and edges (v — S) € &£ that go from vertices v € V' to clusters S € V. Application of the causal
ordering algorithm to a bipartite graph B = (V, F, E) results in the directed cluster graph CO(B) = (V, &),
which we will call the causal ordering graph [0]. For simplicity, we assume here that the bipartite graph has
a perfect matching (i.e. there exists a subset M C E of the edges in the bipartite graph B = (V, F, E) so
that every vertex in VU F' is adjacent to exactly one edge in M )EI The causal ordering graph is constructed
by the following stepsﬂ

1. Find a perfect matching M C F and let M (S) denote the vertices in V' U F' that are joined to vertices
in S CVUF by an edge in M.

2. For each (v — f) € E with v € V and f € F: if (v — f) € M orient the edge as (v + f) and if
(v— f) & M orient the edge as (v — f). Let G(B, M) denote the resulting directed bipartite graph.

3. Partition vertices V' U F' into strongly connected components V' of G(B3, M). Create the cluster set
V consisting of clusters S U M(S) for each S € V'. For each edge (v — f) in G(B, M) add an edge
(v = cl(f)) to & when v ¢ cl(f), where cl(f) denotes the cluster in V that contains f.

4 Although the causal ordering algorithm has been extended to general bipartite graphs that may not have a perfect
matching [5], we will always assume in this work that a perfect matching exists to keep the exposition simple.

5 Here, we actually give the reformulation of the causal ordering algorithm by Nayak [40] based on the block triangular
form of matrices in [42]. It was shown that the output of this algorithm is equivalent to that of the original causal
ordering algorithm [5], but computationally more efficient than the original causal ordering algorithm [23].
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4. Exogenous variables appearing in the equations are added as singleton clusters to V, with directed
edges towards the clusters of the equations in which they appear in €.
5. Output the directed cluster graph CO(B) = (V, ).

Example 1. Consider the following set of equations with index set F' = {f1, fo} that contain endogenous
variables with index set V' = {v1,v2}:

.fl : X’U1 - Uw1 =0, (1)
fQ : X’UQ + X’Ul - U7JJ2 = 0» (2)
where Uy, and U, are exogenous (random) variables indexed by W = {w1,w2}. Figure [2a] shows the
associated bipartite graph B = (V, F, E). This graph has exactly one perfect matching M = {(v1 —
f1), (v2 — f2)}, which is used in step [2| of the causal ordering algorithm to construct the directed graph

G(B, M) in Figure The causal ordering graph that is obtained after applying steps [3|and |4| of the causal
ordering algorithm is given in Figure A
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(d) Equilibrium Markov ordering
(a) Bipartite graph B. (b) Oriented graph G(B, M). (c) Causal ordering graph CO(B).  graph MO(B).

Figure 2. Several graphs occurring in Example The bipartite graph B associated with equations and is given in
Figure The oriented graph G(BB, M) obtained in stepof the causal ordering algorithm (with perfect matching M) is
shown in Figure The causal ordering graph CO(B) is given in Figure The corresponding equilibrium Markov order-
ing graph MO(B) is displayed in Figure

Throughout this work, we will assume that sets of equations are uniquely solvable with respect to the causal
ordering graph, which means that for each cluster, the equations in that cluster can be solved uniquely for
the endogenous variables in that cluster (see Definition 14 in [5] for details). This implies amongst others
that the endogenous variables in the model can be solved uniquely along a topological ordering of the
causal ordering graph. Under this assumption, the causal ordering graph represents the effects of soft and
certain perfect interventions [5]. Soft interventions target equations; they do not change which variables
appear in the targeted equation and may only alter the parameters or functional form of the equation.
Perfect interventions target clusters in the causal ordering graph and replace the equations in the targeted
cluster with equations that set the variables in the cluster equal to constant values. A soft intervention
on an equation or a perfect intervention on a cluster has no effect on a variable in the causal ordering
graph whenever there is no directed path to that variable from the intervention target (i.e. the targeted
equation or an arbitrary vertex in the targeted cluster, respectively), see Theorems 20 and 23 in [5]E| Since
the equations in Example [l| are uniquely solvable w.r.t. the causal ordering graph in Figure we can for
example read off from the causal ordering graph that a soft intervention targeting f; may have an effect
on X,, (since there is a directed path from f1 to vg), and that a perfect intervention targeting the cluster
{va, f2} has no effect on X,,, (as there is no directed path from the cluster {va, fa} to v1).

Given the probability distribution of exogenous random variables, one gets a unique probability distri-
bution on all the variables under the assumption of unique solvability w.r.t. the causal ordering graph. The

6 We say that there is a directed path from vertex x to vertex y in a directed cluster graph (V, £) if either cl(z) = cl(y)

or there is a sequence of clusters Vi = cl(z), Va,..., Vk—1, Vi = cl(y) so that for all ¢ € {1,...,k — 1} there is a vertex
z; € V; such that (z; — Viy1) € €.
7 Indeed, we can solve equation f; uniquely for X,, in terms of Uy, resulting in X,, = U,, and we can solve equation

f2 uniquely for X,, in terms of X,, and U,, resulting in X,, = Uy, — Xy, .



6 =—— Tineke Blom and Joris M. Mooij, Causality and independence under perfect adaptation DE GRUYTER

Markov ordering graph is a directed acyclic graph MO(B) such that d-separations in this graph imply corre-
sponding conditional independences between variables in this joint distribution, provided that all exogenous
random variables are independent [5]. The Markov ordering graph is obtained from a causal ordering graph
CO(B) = (V, &) by constructing a graph (V’, E') with vertices V/ = V and edges (v — w) € E’ if and only
if (v = cl(w)) € €. The Markov ordering graph for the set of equations in Example[I}is given in Figure
The d-separations in this graph imply conditional independences between the corresponding variables un-
der the assumption that U,, and U,, are independent. For instance, since v; and wx are d-separated we
can read off from the Markov ordering graph that X,, and U,, must be independent.

Assuming that the probability distribution is d-faithful to the Markov ordering graph and that we have
a conditional independence oracle, we know that the output of the PC algorithm represents the Markov
equivalence class of the Markov ordering graph [33]E| However, while for acyclic systems, the directed edges
in the Markov ordering graph can also be interpreted as direct causal relations, this is not the case for
all systems [2], 5]. Several examples of this phenomenon are provided in Appendix [F| In this work we will
show that such discrepancy between the causal and the Markov structure is actually a common feature of
perfectly adapted dynamical systems at equilibrium.

2.3 Related work

The causal ordering algorithm can be applied, for instance, to the equilibrium equations of a dynamical
system to uncover its causal properties and conditional independence relations at equilibrium. The rela-
tionship between dynamical models and causal models has received much attention over the years. For
instance, the works of [} [19] 28] [32, [46] [511, [56] considered causal relations in dynamical systems that are
not at equilibrium, while [2| 4l 8, [13] 24}, 25 [27) 28] [35] [36] considered graphical and causal models that
arise from studying the stationary behaviour of dynamical models. In particular, extensions of the causal
ordering algorithm for dynamical systems were proposed and discussed in [25]. Also, the causal ordering
algorithm was applied in [2] to study the robustness of model predictions when combining two systems.
The relationship between the causal semantics of a dynamical system before it reaches equilibrium and at
equilibrium has also been studied [8], [13].

In previous work, researchers have noted various problems when attempting to use a single graphical
model to represent both conditional independence properties and causal properties of certain dynamical
systems at equilibrium [4] [13] [15], 27 [28]. Often, restrictive assumptions on the underlying dynamical
models are made to avoid these subtleties—the most common one being to exclude the possibility of cycles
altogether. In this work, we will not make such restrictive assumptions and instead show that such problems
are pervasive in the important class of perfectly adapted dynamical systems. We follow [2, [5] in addressing
the issues by using the causal ordering algorithm to construct separate graphical representations for the
causal properties and conditional independence relations implied by these systems.

It has been shown that the popular SCM framework [7] 41] is not flexible enough to fully capture
the causal semantics (in terms of perfect interventions targeting variables) of the dynamics of a basic
enzyme reaction at equilibrium, and for that purpose [4] proposed to use Causal Constraints Models
(CCMs) instead. However, CCMs lack a graphical representation (and consequently, all the good things
that usually come with it, like a Markov property and a graphical approach to causal reasoning). The
techniques in [5] can also be used to construct graphical representations of causal relations and conditional
independences of these models. In Section [D] we demonstrate that the basic enzyme reaction is perfectly
adapting and we show how the causal ordering technique can be used to obtain graphical presentations
and a Markov property for this model. This approach offers several advantages over the CCMs approach
to model this system.

8 More generally, if only a subset of the variables is observed, the output of the FCI algorithm represents the Markov
equivalence class of the marginalization (latent projection) of the Markov ordering graph.
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An application area where obtaining a causal understanding of complex systems is often non-trivial due
to feedback and perfect adaptation is that of systems biology. A research question that has seen considerable
interest in that field is which network topologies can achieve perfect adaptation [Il, [I7, 26], 30} [39]. The
present work provides a method that facilitates the analysis of perfectly adapted dynamical systems by
providing a principled and computationally efficient procedure to identify perfect adaptation either from
model equations or from experimental data and background knowledge.

In Section [5] we apply our methodology in an attempt to arrive at a better understanding of the
causal mechanisms present in protein signalling networks. For protein signalling networks, apparent “causal
reversals” have been reported, that is, cases where causal discovery algorithms find the opposite causal
relation of what is expected [0}, 34} [37, [43] [55]. One explanation for these reversed edges in the output of
causal discovery algorithm could be the unknown presence of measurement error [3]. As we demonstrate in
this work, unknown feedback loops that result in perfect adaptation can be another reason why one might
find reversed causal relations when applying causal discovery algorithms to biological data.

3 Perfect adaptation

In this section, we introduce the notion of perfect adaptation by taking a close look at several examples
of dynamical systems that can achieve perfect adaptation. We then consider graphical representations
of these systems both before and after they have reached equilibrium. This will set the stage for our
main theoretical results regarding the identification of perfect adaptation in models or data, which will be
presented in Section 4] The goals of this section are: (i) building intuition about mechanisms that result
in perfect adaptation, (ii) outlining the relevance of this phenomenon in application domains, and (iii)
explaining how the causal ordering algorithm helps to understand perfect adaptation.

The ability of (part of) a system to converge to its original state when a constant and persistent
external stimulus is added or changed is referred to as perfect adaptation. If the adaptive behaviour does
not depend on the precise setting of the system’s parameters then we say that the adaptation is robust. In
the literature, the most interesting of the two is robust perfect adaptation, which is also commonly referred
to simply as ‘perfect adaptation’, and we will do so as well.

3.1 Examples

We consider three different dynamical models corresponding to a filling bathtub, a viral infection with an
immune response, and a chemical reaction network. We use simulations to demonstrate that all of these
systems are capable of achieving perfect adaptation. The details of the simulations presented in this section
are provided in Appendix [B]

3.1.1 Filling bathtub
We consider the example of a filling bathtub of Iwasaki and Simon [25] (see also [B [13]). Let I (t) be

an input signaﬂ that represents the size of a drain in the bathtub. The inflow rate Xj(t), water level
Xp(t), water pressure Xp(t), and outflow rate Xo(t) are modelled by the following static and dynamic

9 In this work, ‘input signal’ will always refer to an exogenous process, that is, a variable whose value may depend
on time and is determined by some mechanism that is external to the system. In particular, it must not be causally
influenced by the system.
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(a) Filling bathtub model. (b) Viral infection model. (c) Reaction network model.

Figure 3. Simulations of the outflow rate X (¢) in the bathtub model (EI) the amount of infected cells X (t) in the viral
infection model @ and the concentration X (¢) in the biochemical reaction network with a negative feedback loop .

The input signal suddenly changes from an (constant) value for t < g to a different (constant) value for ¢t > to. The tim-
ing of this change is indicated by a vertical dashed line. The three systems started with input signals I, = 1.2, I, = 1.6,
and I~ = 1.5, respectively. After a transient response, Xo(¢), X1(t), and X (t) all converge to their original equilibrium
value (i.e., they perfectly adapt to the input signal).

equationsm
Xi(t) =Ur, (3)
Xp(t) = U1(X(t) — Xo(t)), (4)
Xp(t) = U2(9UsXp(t) — Xp(t)), (5)
Xo(t) = Us(UsIk ()X p(t) — Xo(t)), (6)

where g is the gravitational acceleration, and Uy, Uy, Uz, Us, Uy, Us are independent exogenous random
variables taking value in R~q. Let Xp, Xp, and X denote the respective equilibrium solutions for the
water level, water pressure, and outflow rate. The equilibrium equations associated with this model can
easily be constructed by setting the time derivatives equal to zero and assuming the input signal I (¢) to
have a constant value Ix:

Jr: Xr-Ur=0, (7)
fo: Ui(X;—Xo)=0, (8)
fp: Us(gUsXp — Xp) =0, (9)
fo: UwUsIxXp—Xo)=0. (10)

We call the labelling fp, fp, fo that we choose for the equilibrium equations that are constructed from
the time derivatives the natural labelling for this dynamical systemEA solution (X7, Xp, Xp, Xo) to the
system of equilibrium equations satisfies X; = Uy and Xp = X almost surely. From this we conclude that,
at equilibrium, the outflow rate is independent of the size of the drain [k, assuming that Uy is independent
of I'xe. We recorded the changes in the system after we changed the input signal Ix of the bathtub system
in equilibrium. The results in Figure [3a]show that the outflow rate Xo has a transient response to changes

10 With the term ‘static equation’ we refer to equations that do not contain any time derivatives. In this article, the
term ‘dynamic equation’ always corresponds to a first-order differential equation.

11 In general, the natural labeling uses the same index 4 to label as f; the equilibrium equation 0 = h;(X (¢)) obtained
from the dynamic equation Xy, (t) = hi(X(t)) that models the dynamics of variable X,, [36].
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in the input signal I KJEI but it eventually converges to its original value. We say that the outflow rate Xp
in the bathtub model perfectly adapts to changes in [ .

3.1.2 Viral infection model

We consider the example of a simple dynamical model for a viral infection and immune response of De Boer
[16] (also discussed in [2]). The model describes target cells Xp(t), infected cells X;(t), and an immune
response Xpg(t). We will treat I,(t) as an exogenous input signal that represents the production rate of
target cells. The system is defined by the following dynamic equations:

Xr(t) = I,(t) — dr Xp(t) — BXr(t)X (1), (11)
Xr(t) = (BX7(t) — dr — kXp(t)X1(1), (12)
XE(t) = (aX[(t) — dE)XE(t) (13)

We have that g = b?p where b is the infection rate, p is the number of virus particles produced per infected
cell, and c is the clearance rate of viral particles. Furthermore, dr is the death rate of target cells, a is an
activation rate, dg and dj are turnover rates and k is a mass-action killing rate. We assume that a, k are
constants and that dr, d;, dg, and 8 are independent exogenous random variables. We use the natural

labelling for the equilibrium equations that are constructed from the differential equationsE

fr: I, —dr Xt — BX7 X1 =0, (14)
fr: BXr —d; —kXg =0, (15)
fe: aX;—dg =0, (16)

assuming a constant value I, of the input signal. We initialized the model in an equilibrium state and
simulated the response of the model after changing the input signal I, to three different values. Figure [30]
shows that the amount of infected cells X;(t) has a transient response to a change in the input signal I,
but then returns to its original value. Hence, the amount of infected cells perfectly adapts to changes in
the production rate of target cells.

3.1.3 Reaction networks with a negative feedback loop

The phenomenon of perfect adaptation is a common feature in biochemical reaction networks and there
exist many network topologies that can achieve (near) perfect adaptation [ [I7]. For networks consisting of
only three nodes, Ma et al. [30] found by an exhaustive search that there exist two major classes of network
topologies that produce (robust) adaptive behaviour. The reaction diagrams for these networks are given in
Figure |4 Here we will only analyse the ‘Negative Feedback with a Buffer Node’ (NFBN) network topology.
An analysis of the other network, the ‘Incoherent Feedforward Loop with a Proportioner Node’ (IFFLP),
is provided in Appendix [E] The NFBN system can be described by the following first-order differential

12 More precisely, when we speak of a ‘response’ to an input signal, what we mean is that if we have two identical copies
of a system, and from some point in time ty on, we change the input signal of one of the two copies, the endogenous
response variables differ in distribution at some later time ¢ > t.

13 Following [I6], we are only interested in strictly positive solutions of this dynamical system. Therefore, we use the
equilibrium equation fr instead of (f8Xr —dr — kXg)Xr =0 and fg instead of (a X1 — dg)Xg = 0.
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equations:
RO e s TR Y v 1y "
Kolt) = Xe(Okon g, 1 2 ua) ~ Fobens Ty s (%)
Ko (t) = Xalthhac gt O s = Xltbne s, (19)

where X 4(t), Xp(t), Xc(t) are concentrations of three compounds A, B, and C, while I(¢) represents
an external input into the system. Assume that kj4, kcp, and kac are independent exogenous random
variables, that we will denote as Ua, U, Uc respectively, and that the other parameters are constants.
Perfect adaptation is achieved under saturation conditions [30], (1 — X (¢)) > Kcp and Xp(t) > Kp, B,
in which case the following approximation can be made:

Xp(t) ~ Xc(tkop — Fakrg . (20)

Under the assumption that I(t) has a constant value, the system converges to an equilibrium. We will
denote the equilibrium equations that are associated with the time derivatives X 4 (t) and X (t) using the
natural labelling f4 and fc. The equilibrium equation fp is obtained by setting the approximation of the
time derivative Xp(t) in equal to zero. We initialized this model in an equilibrium state and then
simulated its response after changing the input signal I to three different values. Figure shows that
X (t) perfectly adapts to changes in the input signal I.

e e Input -0 e e Input
O Q Output O Q Output

(a) Negative feedback with a buffer node. (b) Incoherent feedforward loop with a proportioner node.

Figure 4. The two network topologies that can achieve perfect adaptation [30]. Figureshows Negative Feedback with a
Buffer Node (NFBN), while Figureshows an Incoherent Feedforward Loop with a Proportioner Node (IFFLP). Orange
edges represent saturated reactions, blue edges represent linear reactions, and black edges are unconstrained reactions.
Arrowheads represent positive influence and edges ending with a circle represent negative influence.

3.2 Graphical representations

We will now provide the different graphical representations of the perfectly adapted dynamical systems
that were introduced in the previous section. These representations are based on the graphs that are used
in [5], 25] to encode the equilibrium structure of equations, causal relations, and conditional independences.
The main difference with previous work is that we also explicitly consider similar graphical representations
for systems that have not yet reached equilibrium.

Bipartite graph: The equilibrium bipartite graphs associated with the equilibrium equations of the filling
bathtub, the viral infection, and the reaction network with feedback are given in Figures and
respectively. We have added also a node representing the input signal. The dynamic bipartite graphs for
the dynamics of these models are constructed from first-order differential equations in canonical form in
the following way. Both the derivative X;(t) and the corresponding variable X;(t) are associated with the
same vertex v;. The natural labelling is used for the differential equations, so that a vertex g; is associated
with the differential equation for X;(t). We then construct the dynamic bipartite graph Bayn = (V, F, E)
with variable vertices v; € V and the corresponding dynamical equation vertices g; € F. Additional static



DE GRUYTER Tineke Blom and Joris M. Mooij, Causality and independence under perfect adaptation = 11

equation vertices f; € F are added as well in case the dynamical system consists of a combination of
dynamic and static equations. The edge set £ has an edge (v; — f;) whenever X;(t) appears in the static
equation f;. Additionally, there are edges (v; —g;) whenever X;(t) or X;(t) appears in the dynamic equation
g; (which includes the cases i = j due to the natural labelling used). The dynamic bipartite graphs for the
bathtub model, the viral infection, and the reaction network with feedback are given in Figures and
respectively.

Comparing the equilibrium bipartite graphs with the dynamic bipartite graphs we note that that there
is no edge (vp — fp) in Figure while (vp — gp) is present in Figure This is a direct consequence
of the fact that the time derivative Xp(t) in equation does not depend on Xp(t) itself. Similarly, the
edges (vr — fr) and (vg — fg) are not present in Figure [5b| whilst the edges (vr — gr) and (vg — gg) are
present in Figure In this case, we see that even though the time derivatives X;(t) and Xp(t) depend
on X;(t) and Xg(t) in differential equations (12) and , these variables do not appear in the associated
equilibrium equations and . Finally, there is no edge (vp — fp) in Figure while the edge
(v — gB) is present in Figure [5ff Here, the variable Xp(¢) does not appear in the equilibrium equation
under saturation conditions that stems from the dynamic equation for Xp(t). The equilibrium
bipartite graph can be compared to the dynamic bipartite graph to read off structural differences between
the equations before and after equilibrium has been reached.

Causal ordering graph: Application of the causal ordering algorithm to the equilibrium bipartite graphs of
the filling bathtub, the viral infection, and the reaction network results in the equilibrium causal ordering
graphs in Figures [5g] [f} and [5]] respectively. Henceforth, we will assume that the dynamic bipartite graph
has a perfect matching that extends the natural labelling of the dynamic equations, i.e., such that all
pairs (v;, ;) are matched. Application of the causal ordering algorithm to the associated dynamic bipartite
graph for the model of a filling bathtub, the viral infection model, and the reaction network results in the
dynamic causal ordering graphs in Figures and respectivelyE

As shown in [0, the absence (presence) of a directed path from an equation vertex to a variable vertex
in the equilibrium causal ordering graph indicates that a soft intervention targeting a parameter in that
equation has no (a generic) effect on the value of that variable once the system has reached equilibrium
again. Furthermore, the absence (presence) of a directed path from a cluster to a variable vertex in the
equilibrium causal ordering graph indicates that a perfect intervention targeting the cluster has no (a
generic) effect on the value of that variable once the system has reached equilibrium again. Notice that the
variables v; in the equilibrium causal ordering graph do not always end up in the same cluster with the
equilibrium equation f; of the natural labelling. For example, we see in Figure [5g that a soft intervention
targeting the equilibrium equation fo (e.g. a change in the value of Us) does not affect the value of the
outflow rate X¢o at equilibrium (since there is no directed path from fo to vp), even though fo was
obtained from the dynamic equation for the time derivative of the outflow rate X¢(t). Similarly, targeting
fr with a soft intervention in the viral infection model has no effect on X at equilibrium and targeting fc
in the reaction network model has no effect on the equilibrium distribution of XCE This suggests that
the causal structure at equilibrium of perfectly adapted dynamical systems may differ from the transient
causal structure. In the next section, we will use this idea to detect perfect adaptation from background
knowledge and experimental data.

Equilibrium Markov ordering graph: As explained in Section [2:2] the Markov ordering graph is constructed
from the causal ordering graph and includes exogenous variables. For the bathtub model, we let vertices
wr, w1, ..., ws represent the independent exogenous random variables Uy, Uy, ..., Us that appear in the
model. For the viral infection model we let wy,wy, wg, wg represent independent exogenous random

14 Our approach here differs from the dynamic causal ordering algorithm proposed in [25], which includes separate
vertices for derivatives and variables that are linked by ‘definitional’ integration links.

15 To preserve an unambiguous causal interpretation, equations and clusters that may be targeted by interventions
should be clearly distinguished from the variables that could be affected by those interventions [5].
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Figure 5. Graphical representations of the bathtub model (left column), the viral infection model (center column), and
the reaction network with negative feedback (right column). The input vertices I, I, and I are represented by black
dots while exogenous variables are indicated by dashed circles. For each model, the structure of the equilibrium equations
can be read off from the equilibrium bipartite graphs in Figures[5a] and The structure of the first-order differential
equations can be represented with the dynamic bipartite graphs in Figures[5d] and The equilibrium causal ordering
graphs corresponding to the equilibrium bipartite graphs are given in Figures [5g} and Similarly, the dynamic causal
ordering graphs corresponding to the dynamic bipartite graphs can be found in Figures 5] and Finally, the equilib-
rium Markov ordering graphs for the equilibrium distribution of the models are given in Figures and
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variables dr,dy, dg, and [ in equations , , and . Finally, for the reaction network with negative
feedback, we let w4, wp, and we represent independent exogenous random variables that appear in the
differential equations for X 4(t), Xp(¢), and X¢(t) respectively. The equilibrium Markov ordering graphs
for the filling bathtub model, the viral infection model, and the model of a reaction network with a negative
feedback loop are given in Figures and respectivelym These equilibrium Markov ordering graphs
can be used to read off conditional independences in the equilibrium distribution that are implied by the
equilibrium equations of the model. For example, since v; is d-separated from vp given vp in the equilibrium
Markov ordering graph in Figure X1 will be independent of Xp given X p once the system has reached
equilibrium. These independences can be tested for in equilibrium data by means of statistical conditional
independence tests. These implied conditional independences can for instance be used in the process of
model selection [2].

3.3 Existence and uniqueness of solutions

The causal ordering algorithm is a graphical tool that can be useful when solving a system of equations. It
decomposes the question of existence and uniqueness of a “global” solution into several “local” existence and
uniqueness problems corresponding to a partitioning of the equations. When a unique global solution exists
for all possible joint values of the (independent) exogenous variables, this leads to both a causal semantics
and to a Markov property [5]. We argue here that these ideas can also be extended to include differential
equations. We will illustrate this with the filling bathtub model. We start with the (conceptually simpler)
equilibrium model, which solely contains static equations, before discussing what to do when dynamic
equations are present.

The equilibrium equations 7 can be solved in steps by following the topological ordering of the
clusters in the equilibrium causal ordering graph in Figure First, use f; to solve for Xj, resulting in
X7 =Ujs. Then, use fp to solve for X, which results in Xp = X;. Subsequently, use fo to solve for Xp,

yielding Xp = Uffk. Finally, use fp to solve for Xp, resulting in Xp = ;(TF;' By substitution, we obtain
a global solution of the form
Ur Ur
(X1, X0,Xp,Xp) = (UI7 Uy, Uil gU3U5IK) .

Since we obtain a unique solution of each equation for the target variable in terms of the other variables
appearing in the equation, this procedure shows that there exists a unique global solution of the system of
equations for any value of the exogenous variables Uy, Uy, Us, Us, Uy, Us and any value of the input signal
I, . Because of this, we obtain both a causal interpretation and a Markov property for the filling bathtub
model at equilibrium as described in Section @

For the dynamic filling bathtub model, we can follow a similar procedure, but now the clusters may
also contain differential equations. We can make use of the theory for the existence and uniqueness of
solutions of ordinary differential equations (ODEs). First note that the dynamic bipartite graph reflects
the structure of the static and dynamic equations, once we rewrite the differential equations as integral

16 The equilibrium Markov ordering graph for the bathtub model coincides with the result of [13], who simulated data
from the bathtub model until the system reached equilibrium and then applied the PC algorithm to the equilibrium
data. Although Dash [I3] interprets the learned graphical representation as the ‘causal graph’, this graph in itself does
not have a straightforward causal interpretation. See Appendix [F|and the discussion in [5] for more details.
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equations. For example, for the time interval [tg, t]:

Xi(t) =Ur, (21)

Xp(t) = Xp(to) + [ Ua(X1(r) ~ Xo(r)dr (22)
tot

Xp(t):Xp(t())+/U2(gU3XD(T)—Xp(T))dT, (23)

Xo(t) = Xo(to) + /U4(U5IK(T)XP(T) — Xo(T)) dr. (24)
to

Rewriting the differential equations as integral equations has two advantages: (i) there is no need to
introduce the derivatives as if they were (variationally) independent processes; (ii) it makes the depen-
dence on the initial conditions X p(to), Xp(to) and Xo(to) explicit. The equations f@ describing the
dynamical system can be solved in steps by following the topological ordering of the clusters in the dy-
namic causal ordering graph in Figure First, solve fr for Xy, resulting in X;(t) = Us. The cluster
{9D,9P,90,vD,vp,v0} has to be dealt with as a single unit, which means we have to solve the subsystem
of three differential equations {gp, gp,go} (that is, equations f(@) for its solution with components
(Xp(t), Xp(t), Xo(t)). By applying the Picard-Lindeldf theorem [see, e.g., [I0], one obtains that this sub-
system has a unique solution on a time interval [tg, o) for any initial condition (Xp(to), Xp(to), Xo(t0)),
provided that X;(¢) and Ik (t) are continuous and that the input signal I (¢) is bounded. Thus, the equa-
tions 7@ have a unique global solution for any value of the exogenous variables Uy, Uy, Us, Us, Uy, Us,
any initial condition (Xp(to), Xp(to), Xo(to)), and any continuous and bounded input signal Ik (¢). The
approach of [5] can in this way be extended to yield both a dynamic causal interpretation and a Markov
property (by using the trick of [8] to interpret path-continuous stochastic processes as random variables)m

Important to note here is that this explicit solution procedure shows that at equilibrium, the value
of the input signal Ix may affect the value of Xp and Xp, but cannot affect the values of Xp and X7y,
while there can be transient effects of the input signal I (t) on Xp(t), Xp(t) and Xo(t), but not on Xy ().
Furthermore, under appropriate local solvability conditions for each cluster, these observations can directly
be read off from the respective causal ordering graphs.

4 ldentification of perfect adaptation

In Section [3:I] we identified perfect adaptation in three simple models through simulations. Here, we
consider how to identify models that are capable of perfect adaptation without requiring simulations or
explicit calculations. In Section [£:I] we will put the graphical representations of Section [3:2] to use for
identifying perfect adaptation in dynamical models. We discuss possibilities for the identification of perfect
adaptation from equilibrium data in Section

4.1 Identification of perfect adaptation via causal ordering

The identification of perfect adaptation via causal ordering makes use of the causal semantics of the
equilibrium causal ordering graph. The following lemma states that a change in the input signal has no
effect on the value of a variable if there is no directed path from the input vertex to that variable in the
equilibrium causal ordering graph.

17 A more formal and rigorous treatment is left as future work.
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Lemma 1. Consider a model consisting of static equations, a set of first-order differential equations in
canonical form, and an input signal. Assume that the equilibrium bipartite graph has a perfect matching
and that the static equations and equilibrium equations derived from the first-order differential equations
are uniquely solvable w.r.t. the equilibrium causal ordering graph for all relevant values of the input signal.
If there is no directed path from the input vertex to a variable vertex in the equilibrium causal ordering
graph then the value of the input signal does not influence the equilibrium distribution of that variable.

Proof. The statement follows directly from Theorem 20 in Blom et al. [5]. O

To establish perfect adaptation, we assume that the presence of a directed path in the dynamic causal
ordering graph implies the presence of a transient causal effect.

Assumption 1. Consider a model consisting of static equations, a set of first-order differential equations
in canonical form, and an input signal. Assume that the dynamic bipartite graph has a perfect matching
that extends the natural labelling. If there is a directed path from the input vertex to a variable vertex in
the dynamic causal ordering graph, then there will be a response of that variable to changes in the input
signal some time later.

Intuitively, this assumption may seem plausible, as the presence of the directed path in the dynamic causal
ordering graph implies that the input signal enters into the construction of the solution of the variable,
as sketched in Section [3:3] Unless a perfect cancellation occurs, one then expects a generic effect on the
solution some time after the change in the input signal. Assumption [I] can be seen as a consequence of a
certain faithfulness assumption@ We conjecture that this assumption is generically satisfied for a large
class of dynamical systems (for example, it might hold for almost all parameter values w.r.t. the Lebesgue
measure on a suitable parameter space)H
By combining Lemma [I]and Assumption [I} we immediately obtain the following important result.

Theorem 1. Consider a model that satisfies the conditions of Lemma (1| and assume that the associated
dynamic causal ordering graph has a perfect matching that extends the natural labelling. Under Assump-
tion[d] the presence of a direct path from the input signal I to a variable X, in the dynamic causal ordering
graph and the absence of such a path in the equilibrium causal ordering graph implies that X, perfectly
adapts to changes in the input signal I as the system equilibrates.

Theorem [I] can be directly applied to the equilibrium and dynamic causal ordering graphs in Figure [5] to
identify perfect adaptation. For example, we see that there is a directed path from the input signal I to
vo in the dynamic causal ordering graph of the filling bathtub in Figure while no such path exists in
the equilibrium causal ordering graph in Figure [5g] It follows from Theorem [I] that X perfectly adapts
to changes in the input signal Ix. This is in agreement with the simulation in Figure [3a] Similarly, we can
verify that the amount of infected cells X7 in the viral infection model perfectly adapts to changes in the
input signal I, and that X perfectly adapts to I in the reaction network with negative feedback. Clearly,
it is easy to verify that perfect adaptation in the bathtub model, the viral infection model, and the reaction
network with negative feedback can be identified by applying the graphical criteria in Theorem [I] to the
respective causal ordering graphs@

18 Indeed, it appears that Assumption |1f follows from the faithfulness assumption that corresponds with a Markov
property that was derived for Structural Dynamical Causal Models [§].

19 Proving this in sufficient generality seems not straightforward; indeed, even the well-known result that d-faithfulness
is a generic property has only been shown so far for Bayesian networks with discrete variables and for linear-Gaussian
structural equation models [3T].

20 It is important to note that what we can identify in this way is only the possibility of perfectly adaptive behavior,
relying on the implicit assumption that the system will actually equilibrate.
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In Section [D] we show that the sufficient conditions in Theorem [I] for the identification of perfect
adaptation are not necessary. More specifically, we construct graphical representations for a dynamical
model of a basic enzymatic reaction that achieves perfect adaptation but does not satisfy the conditions
in Theorem [} In Appendix [E] we show that the biochemical reaction network in Figure b} which Ma
et al. [30] identified as being capable of achieving perfect adaptation, does not satisfy the conditions in
Theorem [1] either. Interestingly, though, after rewriting the equations the perfectly adaptive behavior of
these systems can be captured via Theorem [I] The further development of methods to analyse perfectly
adapted dynamical systems that do not satisfy the conditions of Theorem [I] remains a challenge for future
work.

4.2 ldentification of perfect adaptation from data

So far we have only considered how perfect adaptation can be identified in mathematical models. In this
section we focus on methods for identifying perfect adaptation from data that is generated by perfectly
adapted dynamical systems under experimental conditions. The most straightforward approach to detect
perfect adaptation is to collect time-series data while experimentally changing the input signal to the
system. One can then simply observe whether the variables in the system revert to their original values.
However, this type of experimentation is not always feasible. Another way to identify feedback loops that
achieve perfect adaptation uses a combination of observational equilibrium data, background knowledge,
and experimental data. Our second main result, Theorem [2] gives sufficient conditions under which we can
identify a system that is capable of perfect adaptation from experimental equilibrium data.

Theorem 2. Consider a set of first-order dynamical equations in canonical form for variables V', satisfying
the conditions of Theorem 1|, with equilibrium equations F under the natural labelling. Consider a soft
intervention targeting an equation f; € F. Assume that the system is uniquely solvable w.r.t. the equilibrium
causal ordering graph both before and after the intervention and that the intervention alters the equilibrium
distribution of all descendants of f; in the equilibrium causal ordering graph. If either

1. the soft intervention does not change the equilibrium distribution of X;, or

2. the soft intervention alters the equilibrium distribution of a variable corresponding to a non-descendant

of v; in the equilibrium Markov ordering graph,
(or both), then the system is capable of perfect adaptation.

Proof. The proof is given in Appendix [A] O

We will now show that Theorem [2]applies to experiments on the filling bathtub, viral infection, and chemical
reaction in Figure[5] For example, a soft intervention targeting fo in the bathtub example has no effect on
the outflow rate at equilibrium vo because there is no directed path from fo to v, and an intervention
targeting fc has no effect on the ve in the reaction network because there is no directed path from fo to
ve. In both cases the first condition of Theorem [2] is satisfied. By considering both the equilibrium causal
ordering graph and the equilibrium Markov ordering graph for the viral infection model, we see that a soft
intervention targeting fg has an effect on the amount of infected cells vy (since there is a directed path
from fg to vr), while there is no directed path from vg to vy in the equilibrium Markov ordering graph.
In this case the second condition of Theorem [ is satisfied.

We can devise the following scheme to detect perfectly adapted dynamical systems from data and back-
ground knowledge. The procedure relies on several assumptions, including d-faithfulness of the equilibrium
distribution to the equilibrium Markov ordering graph. We start by collecting observational equilibrium
data and use a causal discovery algorithm (such as LCD or FCI) to learn a (partial) representation of
the equilibrium Markov ordering graph, assuming the observational distribution to be d-faithful w.r.t. the
equilibrium Markov ordering graph. We then consider a soft intervention that changes a known equation in
the first-order differential equation model (i.e. it targets a known equilibrium equation). If this intervention
does not change the distribution of the variable corresponding to this target using the natural labelling,
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or if it changes the distribution of identifiable non-descendants of the variable corresponding to the tar-
get according to the learned Markov equivalence class, we can apply Theorem [2] to identify the perfectly
adapted dynamical system. This way, we could identify perfect adaptation in specific cases such as the
filling bathtub, viral infection, and reaction network by exploiting a combination of background knowledge
and experimental data.

5 Perfect adaptation in protein signalling

In this section we apply the ideas developed in the previous sections to a biological system that has been
intensely studied during the past decades to emphasize the practical relevance of perfect adaptation. The
so-called RAS-RAF-MEK-ERK signaling cascade is a text-book example of a protein signalling network,
which forms an important ingredient of the “machinery” of cells in living organisms. The molecular path-
ways in such a network fulfill various important functions, for instance the transmission and processing of
information. Systems biologists make use of dynamical systems to model such networks both qualitatively
and quantitatively. Because of the high complexity of protein signalling networks, which typically consist
of many different interacting components, this has also been considered a promising application domain
for causal discovery methods.

In an influential paper, Sachs et al. [47] applied causal discovery to reconstruct a protein signaling
network from experimental data. Over the years, the dataset of [47] has become an often used “benchmark”
for assessing the accuracy of causal discovery algorithms, where the “consensus network” in [47] is usually
considered as the perfect ground truth. The apparent successes of causal discovery on this particular dataset
may have led to the impression that causal discovery algorithms can in general successfully discover the
causal semantics of complex protein signaling networks from real-world data. However, this success has
hitherto not been repeated on other, similar datasets, to the best of our knowledge. Indeed, modeling
and understanding such systems and inferring their behavior and structure from data still poses many
challenges, for instance because of feedback loops and the inherent dynamical nature of such systems [4g].

In this section, we focus on understanding the properties of the equilibrium distribution of a simple
model of the RAS-RAF-MEK-ERK signalling pathway, and specifically investigate the phenomenon of
perfect adaptation. Like many other biological systems, protein signalling networks often show adaptive
behavior which helps to ensure a certain robustness of their functionality against various disturbances and
perturbations [I7]. Using the technique of causal ordering to analyse the conditional independences and
causal relations that are implied by the model at equilibrium, we elucidate the causal interpretation of
the output of constraint-based causal discovery algorithms when they are applied to equilibrium protein
expression data if the parameters are such that the system shows perfect adaptation.

We test some of the model’s predictions on real-world data and compare with another model that has
been proposed. We do not claim that the perfectly adaptive model that we analyse here is a realistic model
of the protein signalling pathway. Although we will show in Section [5.4] that the model is able to explain
certain observations in real-world data, this is not that surprising for a model with that many parameters@
Instead, our goal is to demonstrate that in systems with perfect adaptation the standard interpretation of
the output of causal discovery algorithms may not apply@ This could explain why the output of certain
causal discovery algorithms applied to the data of [47] appears to be at odds with the biological consensus
network presented in [47], see for example [43] and [37].

This section is structured as follows. In Section [5.1] we introduce the perfectly adaptive model for
the signalling pathway. We proceed with the associated graphical representations in Section [5-2} Then, in

21 As John von Neumann once put it: “With four parameters I can fit an elephant, and with five I can make him
wiggle his trunk”.

22 This was already pointed out in [13] for the example of the filling bathtub, but our work shows how widespread
this phenomenon may be, and thereby emphasizes its practical relevance for causal discovery.
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Section we study the model’s predictions under a soft intervention and verify these in simulations. In
Sectionwe take a closer look at some real-world data, more specifically, the data from [47], and compare
the model’s predictions with the data. In Section[5.5} we explain how the phenomenon of perfect adaptation
may lead to unexpected outcomes of causal discovery methods. In the end, we will have to conclude that
the causal structure of the RAS-RAF-MEK-ERK cascade seems far from understood, and that it seems
unlikely that the data in [47] is sufficiently rich to be able to draw strong conclusions regarding the causal
behavior of the signalling network.

5.1 Dynamical model

We adapt the mathematical model of [49] for the RAS-RAF-MEK-ERK signalling cascade, as in [z]@ Let
V = {vs, vr, Um, ve } be an index set for endogenous variables that represent the equilibrium concentrations
Xs, Xr, X, and X, of active (phosphorylated) RAS, RAF, MEK, and ERK proteins, respectively. We
model their dynamics as:

. I(t)krs (Ts — Xs(t)) Xs(t)
Xs(t) = 3 - Fsszsi (25)
(Ko + (Ts — Xo(1) (1 n (X;((et)) z) Kp. s+ X5(t)
oo Xs(Oksr (Tr — Xi(1)) X, (1)

UG SR 1) L P 2
o Xe (O k(T — X (1)) Xm(t)

Al = ot T = X)) R X () 27
Xe(t) _ Xon () keme(Te — Xe(t)) — Fkp. Xe(t) (28)

Kme + (T — X (1))

where we assume that I(¢) is an external stimulus or perturbation. Roughly speaking, there is a signalling
pathway that goes from I(t) to Xs(t) to X,(t) to Xy (t) to Xc(t) with negative feedback from X, (t) on
Xs(t). As we did for the reaction network with negative feedback in Section we will consider the
system under certain saturation conditions. Specifically, for (T. — X (t)) > Kpe and Xc(t) > Kp . the
following approximation holds:

Xe(t) ~ Xm(t)kme - FekFEe- (29)

We let fs, fr, fm, and f. represent the equilibrium equations corresponding to the dynamical equations
in 7 , 7 and respectively, where we assume the input signal to have a constant (possibly
random) value 1.

We simulated the model under these saturation conditions (picking values for K. and K . close to
zero) until it reached equilibrium, and then we recorded the changes in the concentrations X (t), X, (¢),
and X, (t) after a change in the input signal I. The details of this simulation can be found in Appendix
The results in Figure[3]show that active RAS, RAF, and MEK revert to their original values after an initial
response. Clearly the equilibrium concentrations X, X, and X, perfectly adapt to the input signal I,
while the equilibrium concentration of active ERK depends on the input signal.

23 For simplicity, we omitted the feedback mechanism through RAF Kinase Inhibitor Protein (RKIP). In the differential
equation for activated MEK we therefore discarded the dependence on RKIP. The goal here is not to give the most
realistic model but to elucidate the phenomenon of perfect adaptation and the causal interpretation of the equilibrium
Markov ordering graph for perfectly adapted dynamical systems.
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(d) Concentration of active ERK

(a) Concentration of active RAS
(Xe(t)) against time (t).

(Xs(¢)) against time (t).

(b) Concentration of active RAF (c) Concentration of active MEK
(X~ (t)) against time (t). (Xm (t)) against time (t).

Figure 6. Perfect adaptation in the model for the RAS-RAF-MEK-ERK signalling pathway. After an initial response to a

change of input signal the equilibrium concentrations of active RAS, RAF, and MEK revert to their original values. The
concentration of active ERK changes as a result of changes in the input signal, however.

5.2 Graphical representations

We consider graphical representations of the protein signalling pathway. Using the natural labelling, we
construct the dynamic bipartite graph in Figure [7a] from the first-order differential equations, with the
input signal I included. The associated dynamic causal ordering graph is given in Figure [7H]

Under saturation conditions, the equilibrium equations fs, fr, fm, and fe obtained by setting equations
[25), (26), [27), and to zero have the bipartite structure in Figure[7d Note that there is no edge (fo—ve)
in the equilibrium bipartite graph because Xg(t) does not appear in the approximation of . The
associated equilibrium causal ordering graph is given in Figure where the cluster {/} is added with an
edge towards the cluster {ve, fs} because I appears in equation and in no other equations. So far we
have treated all symbols in equations , , , and as deterministic parameters. Let ws, w,,
W, and we represent independent exogenous random variables appearing in the equilibrium equations fs,
fry fm, and fe respectively. After adding them to the causal ordering graph with edges to their respective
clusters we construct the equilibrium Markov ordering graph for the equilibrium distribution in Figure [7¢]
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(c) Equilibrium bipartite graph. (e) Equilibrium Markov ordering graph.

Figure 7. Five graphs associated with the protein signalling pathway model under saturation conditions where indices
s,r,m, e correspond to concentrations of active RAS, RAF, MEK, and ERK respectively.

There is a directed path from the input vertex I to vs, vy, and v, in the dynamic causal ordering
graph (see Figure , while the equilibrium causal ordering graph has no directed paths from I to either
Vs, Ur, OF Upy, (see Figure . Under Assumption |1} we can apply Theoremto conclude that X, X,., and
X, will perfectly adapt to a persistent change in the input signal I. This is in line with what we observed
in the simulations (see Figure @

The d-separations in the eqilibrium Markov ordering graph (see Figure imply conditional indepen-
dences between the corresponding variables at equilibrium. For example, from the graph in Figure [7¢] we
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read off the following (implied) conditional independences:
I v, T4 vy, Ve AL v | Oy .

We verified that these conditional independences indeed appear in the simulated equilibrium distribution
of the model (see Appendix |C|for details).

5.3 Inhibiting the activity of MEK

A common biological experiment that is used to study protein signalling pathways is the use of an inhibitor
that decreases the activity of a protein on the pathway. Such an inhibitor slows down the rate at which
the active protein is able to activate another protein. Here, we consider inhibition of MEK activity. We
can model this as a change of the parameters of the differential equations in which X, (¢) appears. We can
interpret this experiment as a soft intervention on differential equation g. in the dynamic model and on
equation f. at equilibrium, decreasing the rate k,,. at which ERK is activated. Since there is a directed
path from fe to vy, vy, vs, and ve in the causal ordering graph in Figure[7d] we expect that a change in an
input signal I, on f. (e.g. a change in the parameter k. in the case of the MEK inhibition) affects the
equilibrium concentrations of active MEK, RAF, RAS, and ERK respectively.

We assessed the effect of decreasing the activity of MEK on the equilibrium concentrations of RAS,
RAF, MEK, and ERK. To that end, we simulated the perfectly adapted model (with parameters as de-
scribed in Appendix in particular, k;,. = 1.1) until it reached equilibrium. We then decreased the
parameter that controls the activity of MEK to k,,e = 1.0. The recorded responses of the concentrations
of active RAS, RAF, MEK, and ERK are displayed in Figure [§] From this we confirm our prediction
that inhibition of MEK activity affects the equilibrium concentrations of RAS, RAF, MEK, and ERK.
A qualitative aspect of this change that one cannot read off from the graph is that the MEK inhibition
increases (rather than decreases) the concentrations of active MEK, RAF, RAS according to the model for
this choice of the parameters.

Note that RAS, RAF, and MEK are ancestors of ERK in the equilibrium Markov ordering graph in
Figure [Te] so that under the assumptions in Theorem [2] we could actually use this experiment to detect
perfect adaptation in the protein pathway.

Concentration

time ¢

Figure 8. Simulation of the response of the concentrations of active RAS, RAF, MEK, and ERK after inhibition of the
activity of MEK. The system starts out in equilibrium with k,,e = 1.1. The concentrations of RAS, RAF, MEK, and ERK
are recorded after the parameter controlling MEK activity is decreased to ke = 1.0 from ¢t = 0 on.

5.4 Testing model predictions on real-world data

In this subsection, we verify some of the predictions of the model we obtained in Sections [5.2] and [5-3] on
real-world data. We will compare with predictions of the causal Bayesian network model proposed by [47].
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Figure |§| shows scatterplots for the (logarithms of) the expressions of active RAF, MEK and ERK in
the multivariate single-cell protein expression dataset that was used in [47], for three (out of 14) different
experimental conditions. The baseline condition (in blue) is the one where the cells were treated with
anti-CD3 and anti-CD28, activators of the RAS-RAF-MEK-ERK signalling cascade. In another condition
(in red), the cells were additionally exposed to U0126, a known inhibitor of MEK activity. By inspecting
the scatter plots, we get a quick visual check of some of the predictions of the model. In particular, these
plots clearly show that inhibition of MEK activity by administering U0126 results in an increase in the
concentrations of active RAF and active MEK and a reduction in the concentration of active ERK. This
suggests the existence of causal pathways from MEK to RAF and from MEK to ERK. Furthermore, we
clearly see a strong dependence between RAF and MEK (in both experimental conditions), but there is
no discernable dependence between RAF and ERK or between MEK and ERK (in either experimental
condition). In the light of the supposedly direct effect of MEK on ERK, it is surprising that the data shows
no significant dependence between the two@ This apparent “faithfulness violation” is problematic for
constraint-based causal discovery methods, as they will typically not identify the causal relation between
MEK and ERK.

10[ 1 10p 110f ]
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2| i 20 A 21 i
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(a) Log-expressions of active MEK and RAF. (b) Log-expressions of active MEK and ERK.  (c) Log-expressions of active RAF and ERK.

Mek

Figure 9. Scatter plots of the logarithms of active RAF, MEK, and ERK concentrations for the data in [47]. The blue cir-
cles correspond to cells treated only with anti-CD3 and anti-CD28, which activate the signaling cascade. The red circles
correspond to cells treated with anti-CD3, anti-CD28 and in addition, the MEK-activity inhibitor U0126. The inhibition of
MEK results in an increase of MEK and RAF, whereas ERK is reduced. The black circles correspond to cells treated with
B2cAMP (but not anti-CD3 and anti-CD28), which seems to affect MEK, but leaves RAF and ERK invariant.

Table 1. For various observations in the data of [47], we indicate whether they are predicted by the causal Bayesian net-
work model RAF — MEK — ERK proposed by [47] and by our perfectly adaptive equilibrium model (Section [5.2).

Observation Causal Bayesian network model  Perfectly adaptive model

RAF and MEK are dependent in both conditions + +
MEK and ERK are independent in both conditions —
Inhibition of MEK activity affects active RAF -
Inhibition of MEK activity affects active MEK —
Inhibition of MEK activity affects active ERK +

+ 4+

24 In addition, ERK levels are considerably lower than those of RAF and MEK. This might be something specific to
this experimental setting (perhaps there was too much time between stimulation and measurement to see the ERK
response), as in other experiments high ERK levels and strong correlations with MEK have been observed [I8]. In the
setting of the experiment of [47], the G06976 treatment condition shows that ERK levels can actually get as high as
those of RAF and MEK.
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According to [47], the biological consensus (at the time) was that there is a signalling pathway from
RAF to MEK to ERKE They propose to model this as a causal Bayesian network RAF — MEK — ERK,
and this is also the structure identified by their causal discovery algorithm. That model predicts that
inhibiting MEK activity can only affect ERK. In Table [l we summarize some of the observations made
using the scatter plots in Figure 0] and whether or not they are in line with the predictions of the models
(our perfectly adaptive model on the one hand, and the causal Bayesian network model on the other hand).
We conclude that the predictions of the perfectly adaptive model are more in agreement with the data
than those of the causal Bayesian network model.

Still, the perfectly adaptive model does not explain all aspects of the data. For example, the effects of
the S2cAMP stimulation (black circles in Figure E[) are hard to explain with either model. S2cAMP is an
AMP analogue that is supposed to activate the RAS-RAF-MEK-ERK cascade by promoting active RAS.
It seems counterintuitive that this would lead to a strong reduction of active MEK in comparison to the
activation of the cascade by means of anti-CD3 and anti-CD28, while leading to the same levels of active
RAF and ERK. For completeness, in Table [2| we have indicated for all 12 perturbations in [47] the effects
on the levels of active RAF, MEK and ERK. It appears questionable whether a simple causal model (such
as the perfectly adaptive model) could account for all the observed perturbation effects.

Table 2. Qualitative effects of reagents on the measured abundances of active RAF, MEK and ERK, as read off from the
data in [47]. Legend: —— strong decrease, — decrease, (—) slight decrease, 0 no change, (+) slight increase, + increase,
++ strong increase. Usually, only conditions 1-9 are used for causal discovery.

Condition Reagents RAF MEK ERK
1 anti-CD3 + anti-CD28 baseline

3 anti-CD3 + anti-CD28 + AKT inhibitor 0 0 0
4 anti-CD3 + anti-CD28 + G06976 ++ ++ ++
5 anti-CD3 + anti-CD28 + Psitectorigenin 0 0 ——
6 anti-CD3 + anti-CD28 + U0126 ++ ++ (+)
7 anti-CD3 + anti-CD28 + LY294002 0 0 0
8 PMA — 0 0
9 B2cAMP = —
2 anti-CD3 + anti-CD28 + ICAM-2 baseline

10 anti-CD3 + anti-CD28 + ICAM-2 + AKT inhibitor 0 0 ——
11 anti-CD3 + anti-CD28 + ICAM-2 + G06976 ++ ++ ++
12 anti-CD3 + anti-CD28 + ICAM-2 + Psitectorigenin 0 0 ——
13 anti-CD3 + anti-CD28 + ICAM-2 4 U0126 0 (+) -
14 anti-CD3 + anti-CD28 + ICAM-2 + LY294002 0 0 -

5.5 Caveats for causal discovery

Experiments in which the protein signalling network is perturbed in various ways are of crucial importance
to obtaining a causal understanding of the system. While very sophisticated causal discovery algorithms
are available, we will here illustrate the key concepts by means of applying one of the simplest causal
discovery algorithms based on conditional independences to equilibrium data from the model. We simulate
the system in two different conditions, a baseline and a condition where the activity of MEK has been
inhibited.

25 Nowadays, the biological consensus appears to be that RAF activates MEK, MEK activates ERK, and that it is
very likely that there is negative feedback from ERK to RAF, although the molecular pathway of this feedback remains
unknown [22].
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Consider observational equilibrium data from the protein signalling pathway model and also experi-
mental equilibrium data from a setting where MEK activity is inhibited. We introduce a context variable C
that in this case simply indicates for each sample whether or not a MEK inhibition was applied. Because the
decision whether to apply the MEK inhibitor to a sample occurs before the measurement, the equilibrium
concentrations measured afterwards cannot causally affect this decision. Hence C' is an exogenous variable,
i.e., it is not caused by other observed variables. This motivates the use of the LCD algorithm, which
assumes the existence of such a variable. For the MEK inhibition, the context variable represents a (soft)
intervention on the equation f. in the causal ordering graph in Figure The equilibrium Markov ordering
graph that includes the context variable C' (but where the independent exogenous random variables have
been marginalized out) is given in Figure To construct this graph, the context variable C' is first added
to the equilibrium causal ordering graph in Figure [7d] as a singleton cluster with an edge towards the
cluster {vp,, fe}. The equilibrium Markov ordering graph is then constructed from the resulting directed
cluster graph in the usual way. From Figure we can read off (conditional) independences to find the
LCD triples that are implied by the equilibrium equations of the model. We find that our model implies
the following LCD triples: (C, vy, vr), (C,Um,0s), (C\vm,ve), (C,vy,vs), (C,vr,ve), and (C,vs,ve). We
verified this by explicit simulation (details in Appendix |C]).

In particular, one of the LCD triples we obtained is (C, vy, v, ), whereas the triple (C, vy, vy,) does
not qualify as such. According to the standard interpretation of causal discovery algorithms, this would
imply that MEK causes RAF rather than the other way around (see also Section , a surprising finding
in the light of the text-book treatments of the RAS-RAF-MEK-ERK signalling pathway. The equilibrium
Markov ordering graph corresponding to the causal Bayesian network model of [47] is shown in Figure m
As one can see from Figure [I0B] the causal Bayesian network model implies no LCD triples at all.

Apparently, the causal relationship RAF—MEK appears to be reversed in the LCD triples found in
the equilibrium data of the perfectly adaptive model. Similar observations of apparent “causal reversals” in
protein interaction networks have been observed more often, see also [6] [34] [37, [43], [55]. We conclude that
the mechanism of perfect adaptation provides one possible theoretical explanation of what might seem at
first sight to be an incorrect reversal of a causal edge.

We investigated which of these LCD patterns can be found in the real-world data. In Table [3] we list
the p-values of conditional independence tests applied to the data of [47]. Using a reasonable critical level
for the test (say o = 0.01), we do not find any LCD pattern. Yet, the conditional dependence of RAF on
the context variable when conditioning on MEK is much weaker than the conditional dependence of MEK
on the context variable when conditioning on RAF. Strictly speaking, no conclusions should be drawn from
this, but it does seem to suggest that also here the data is more in line with the perfectly adaptive model
than with the causal Bayesian network model; indeed, if the adaptation is imperfect, for example because

Table 3. Results of conditional independence tests on the (log-transformed) protein expression data of [47]. Specifically, we
report the p-vlues of Kendall's test for partial correlation.

(Conditional) independence tested p-value

Vp AL vy | C7 < 23107308
vy AL ve |C? 0.79

Um AL ve |C? 0.35

ve AL C? 4.03-107172
vm AL C7? 3.69 - 10245
ve AL C? 3.53 107138
v AL C' | um? 2.67-10~8
Vm AL C'|vp-? 8.20- 107168
vr AL C'|ve? 4.25.107210
U, AL C'|ve? <2.3.107308
ve AL C'|vm? 1.48 - 10134

ve AL C'|vr? 2.61 107156
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the saturation conditions only hold approximately, one would expect to see a weak conditional dependence
v JL C | vm,.

1 C 1 c
(a) Perfectly adaptive model (with feedback) (b) Causal Bayesian network model

Figure 10. Equilibrium Markov ordering graphs of the protein signalling pathway with the context variable C' included,
corresponding to two hypothetical models. This context variable indicates whether a cell was treated with a MEK inhibitor
or not.

6 Discussion and Conclusion

Perfect adaptation is the phenomenon that a dynamical system initially responds to a change of input
signal but reverts back to its original value as the system converges to equilibrium. We used the technique
of causal ordering to obtain sufficient graphical conditions to identify perfect adaptation in a dynamical
system described by a combination of equations and first-order differential equations. To represent the
structure of the (non-equilibrium) dynamical system, we introduced the notions of the dynamic bipartite
graph and the corresponding dynamic causal ordering graph obtained by the causal ordering algorithm.
Moreover, we showed how perfect adaptation can be detected in equilibrium observational and experimental
data for soft interventions with known targets. We illustrated our ideas on a variety of dynamical models
and corresponding equilibrium equations. We believe that the methods presented in this work provide a
useful tool for the characterization of a large class of network topologies that are able to achieve perfect
adaptation and for the automated analysis of the behaviour of certain perfectly adapted dynamical systems.

In all examples that we discussed, the technique of causal ordering revealed the structure of a given set
of equations. In some cases, more structure can be revealed by first rewriting the equations before applying
the causal ordering algorithm. In Appendix [D| we analyse a dynamical system describing a basic enzyme
reaction, for which rewriting of the equilibrium equations reveals more structure (and hence yields a stronger
Markov property). In Appendix we analyse the ‘Incoherent Feedforward Loop with a Proportioner
Node’ (IFFLP). We observe that a nonlinear transformation of the variables (and rewriting the equations
correspondingly) reveals more structure, and hence yields more conditional independences and less causal
relations amongst the transformed variables. Also, the question of how one can more generally discover
causal structure using nonlinear transformations of the variables is an interesting topic for future research,
that relates to what is nowadays known as ‘causal representation learning’ in the field of deep learning [9].

We also investigated the consequences of the phenomenon of perfect adaptation for causal discovery.
We demonstrated that for perfectly adapted dynamical systems the output of existing constraint-based
causal discovery algorithms applied to equilibrium data may appear counterintuitive and at odds with
our understanding of the mechanisms that drive the system. As we have illustrated in this work, careful
application of the causal ordering algorithm enables a better theoretical understanding of these phenomena.

We applied our approach to a model for a well-known protein signalling pathway, and tested the
model’s predictions both in simulations and on real-world protein expression data. The challenges for causal
discovery that are encountered in non-linear dynamical systems with feedback loops, possibly leading to
context-specific perfectly adaptive behavior, seem substantial. If the behavior of the model that we analysed
in Section [5|is representative of that of actual systems occuring in vitro and in vivo, then it seems unlikely
that existing causal discovery methods based on causal Bayesian networks will lead to reasonable results.
These observations further motivate the development of causal discovery algorithms based on bipartite
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graphical representations that would be more widely applicable than the existing ones based on causal

Bayesian networks or simple structural causal models.
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A Proof of Theorem H

Theorem 2. Consider a set of first-order dynamical equations in canonical form for variables V', satisfying
the conditions of Theorem with equilibrium equations F under the natural labelling. Consider a soft
intervention targeting an equation f; € F. Assume that the system is uniquely solvable w.r.t. the equilibrium
causal ordering graph both before and after the intervention and that the intervention alters the equilibrium
distribution of all descendants of f; in the equilibrium causal ordering graph. If either

1. the soft intervention does not change the equilibrium distribution of X;, or

2. the soft intervention alters the equilibrium distribution of a variable corresponding to a non-descendant

of v in the equilibrium Markov ordering graph,
(or both), then the system is capable of perfect adaptation.

Proof. If condition [1] holds there is no directed path in the causal ordering graph from f; to v; in the equi-
librium causal ordering graph, by the assumption that the soft intervention on f; changes the equilibrium
distribution of all its descendants. By definition of the dynamic bipartite graph there is a directed path
from g¢; to v; in the dynamic causal ordering graph, because g; and v; end up in the same cluster (note that
this follows by using the natural labelling as perfect matching and the result that the causal ordering graph
does not depend on the chosen perfect matching [5]). It follows from Theorem (1| that X; perfectly adapts
to an input signal Iy, on f; (i.e. a soft intervention targeting X;(t) and thus the equilibrium equation f;).

Suppose that |1| does not hold while [2[ does hold. By Theorem 4 in [5] (which roughly states that the
presence of a causal effect at equilibrium implies the presence of a corresponding directed path in the
equilibrium causal ordering graph) we have that f; is an ancestor of v; and some vy, in the equilibrium
causal ordering graph, while v; is not an ancestor of vy in the equilibrium Markov ordering graph. For a
perfect matching M of the equilibrium bipartite graph let v; = M(f;). Then v; is in the same cluster as
fi in the equilibrium causal ordering graph by construction. Note that j = ¢ would give a contradiction,
as then v; would be an ancestor of vy, in the equilibrium Markov ordering graph. Suppose that the vertex
fj, that is associated with v; through the natural labelling, is matched to a non-ancestor of v; in the
equilibrium causal ordering graph. Because of the edge (g; —v;) in the dynamic bipartite graph, it follows
from Theorem [I] that X; perfectly adapts to an input signal Iy, on f;. Therefore the system is able to
achieve perfect adaptation. Now suppose that f; is matched to an ancestor vi of v;, and consider the
vertex fr. The previous argument can be repeated to show perfect adaptation for Xy is present when fy, is
matched to a non-ancestor of vy in the equilibrium causal ordering graph. Otherwise, f; must be matched
to an ancestor of v;. Note that the ancestors of vy, are a subset of the ancestors of v;, which in turn are a
subset of the ancestors of v;. In a finite system of equations, v; has a finite set of ancestors and therefore
we eventually find, by repeating our argument, a vertex f,, that cannot be matched to an ancestor of v,,
because v, has no ancestors that are not matched to one of the vertices f;, f;, fx, ... that were considered
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up to that point. Because f,, is matched to a non-ancestor we then find that X,, perfectly adapts to an
input signal on Iy, as before. O

B Simulation settings

For the simulations in Figures [3] [6] and [§] of the model of a filling bathtub, the viral infection model, the
reaction network with a feedback loop, and the protein pathway we used the settings listed below. Since
we only simulated a single response, we used constant values for the exogenous random variables as well.

1. Filling bathtub: First we recorded the behaviour of the system for the parameters Ix = 1.2, Uy = 5.0,
Uy =11,U3=1.0,U3 =1.2,U4 = 1.0, U5 = 0.8, g = 1.0 until it reached equilibrium. We then changed
the input parameter Ix to 0.8, 1.0, and 1.3 and recorded the response until the system reverted to
equilibrium.

2. Viral infection: For the parameter settings I, = 1.6, dpr = 0.9, 5 = 0.9, df = 0.3, £k = 1.5, a = 0.1,
dg = 0.25, we simulated the model until it reached equilibrium. We changed the input parameter I,
to 1.1, 1.3, and 2.0 and recorded the response until equilibrium was reached.

3. Reaction Network: We simulated the model until it reached equilibrium with parameters I = 1.5,
kra =14, Krg =08, Fa =11, kp,a =09, Kp,a =12, kcp = 0.6, Kcp = 0.0001, Fp = 0.7,
kryp = 0.7, Kpyp = 0.0001, kac = 2.1, Kac = 1.5, kpc = 0.7, Kpc = 0.6. The settings were
chosen in such a way that the saturation conditions (1 — Xpg(t)) > Kcp and Xg(t) > Kp,p were
satisfied. We then changed the input signal to 0.25, 1.0, and 10.0 and recorded the response.

4. Protein pathway: The parameter settings of the simulation were I = 1.0, k;, = 1.0, T, = 1.0, K75 = 1.0,
K. =12, F; =10, kp,s = 1.0, Kp,s = 0.9, ks = 1.0, K5 = 1.0, T, = 1.0, F;. = 0.3, kr., = 1.0,
Kpp = 0.8, kpp = 1.0, Ky = 0.9, Ty = 1.0, Fy, = 0.2, ko = 1.0, Koy = 1.2, kppe = 1.1,
Kpe = 0.0001, T, = 1.0, F, = 0.7, kg, = 1.2, KF,. = 0.0001. This ensured that the saturation
conditions (T, — Xe(t)) > Kpe and X((t) > Kp . were satisfied. For Figure @ we changed the
input signal I to 0.9, 1.1, 1.2, respectively, after the system had reached equilibrium, and continued the
simulation. For Figure [§] we similarly changed the parameter value of ke to 1.0 at some point in time
after the system had equilibrated.

The qualitative behaviour can be observed for a range of parameter values and does not require exact
tuning of the parameters.

C Conditional independences and causal discovery

The equilibrium Markov ordering graph in Figure [7g was derived from the equilibrium equations of the
protein pathway model under saturation conditions. From this we can read off the following d-separations:
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It is easy to check that the equilibrium equations and endogenous variables in this model are uniquely
solvable w.r.t. the causal ordering graph. Therefore, the d-separations above imply conditional indepen-
dences between the variables in the model, assuming the exogenous variables to be independent.

To test whether the predicted conditional independences hold when the system is at equilibrium,
we ran the simulation n = 500 times (with parameters as described in Appendix until it reached
equilibrium and recorded the equilibrium concentrations X, X,, X,,, and X.. We tested all (conditional)
independences with a maximum of one conditioning variable using Spearman’s rank correlation test with a
p-value threshold of 0.01@Tablcshows that the conditional independences with a maximum conditioning
set of size one that are implied by the equilibrium Markov ordering graph are indeed present in the simulated
data.

To verify the predicted LCD triples of Section [5.5] we run the simulation n = 500 times with ke = C,
where the context variable C' is drawn from a uniform distribution on the interval (0.98,1.1). To avoid
deterministic relations, we draw the parameter kp,. from a uniform distribution on (0.7,1.0). We run the
simulations until the system reaches equilibrium and record the equilibrium values of the variables. We then
apply the LCD algorithm to search for LCD triples in this equilibrium data with context variable C'. For
the conditional independence tests we used Spearman’s rank correlation with a p-value threshold of 0.01.
We found the expected LCD triples (C, vy, vy), (C,0m,vs), (C,vm,ve), (C,vr,vs), (C,vp,ve), (C,vs,ve)
and no others.

D Rewriting equations may reveal additional structure

Theorem (1] specifies sufficient but not necessary conditions for the presence of perfect adaptation. The
equilibrium distribution of some systems is not faithful to the equilibrium Markov ordering graph associated
with the equilibrium equations in the model. Here, we will discuss the dynamical model for a basic enzymatic
reaction and we will demonstrate that this model is capable of perfect adaptation. However, it does not
satisfy the conditions in Theorem [I} and the presence of directed paths in the equilibrium causal ordering
graph does not imply the presence of a causal effect at equilibrium. We will also show that this may be
addressed by rewriting the equations.

26 Because the LCD algorithm only uses conditional independence test with a maximum of one variable in the con-
ditioning test, we do not consider conditional independence tests with larger conditioning sets in this work. We did
experiment with larger conditioning sets but we were not able to retrieve all predicted conditional dependences with
our parameter settings and only n = 500 samples.
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The basic enzyme reaction models a substrate S that reacts with an enzyme E to form a complex C,
which is converted into a product P and the enzyme E. The dynamical equations for the concentrations
Xs(t), Xg(t), Xc(t), and Xp(t) are given by:

Xg(t) = ko — ki Xs(t)Xp(t) + k_1Xc(t), (30)
Xo(t) = ki Xs()XE(t) — (k_1 + ko) X (1), (31)
Xp(t) = -k Xs(t)Xp(t) + (k-1 + k2) X (1), (32)
Xp(t) = ko Xc(t) — ks Xp(t), (33)

where k_1, ko, k1, k2, k3 and the initial conditions are independent exogenous random variables Sy, Co, Ep,
and Py taking value in R+ [4, B8]. We consider the parameter ki as an input signal. Since there is a path
from k1 to Xp(t) we would expect that a change in k1 would generically lead to a transient response of
Xp(t). We verified this by simulating this model with k_1 = 1.0, kg = 1.0, k1 = 1.0, ko = 0.8, k3 = 2.5
and with initial conditions Xg(0) = 1.0, Xg(0) = 0.5, X¢(0) = 0.5, and Xp(0) = 1.0 until the system
reached equilibrium. We then recorded the response after changing the input signal k;. Figure [[TD] shows
that Xp perfectly adapts to changes in the input signal k;.
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a) Dynamic bipartite graph of the erfect adaptation in the basic enzyme reaction
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basic enzyme reaction model. model.

Figure 11. The dynamic bipartite graph of the basic enzyme reaction modelled by equations , , , and in
Figure mshows that there is a directed path from an input signal that controls the parameter k; to all endogenous vari-
ables Xg, X¢, Xg, Xp. Figureshows that the concentration X p perfectly adapts after an initial transient response
to a persistent change in the parameter kq.

The equilibrium equations of the model are given by:

fs:  ko—kXsXp+k1Xc=0, (
for kmXsXp— (k-1 +k2)Xc =0, (
fE: — k1 XsXp+ (k-1 + ko)X, (36)
fp: keXc — ks Xp, (
for : C+E—-(Co+ Ep) =0, (

where the last equation is derived from the constant of motion C(t) + E(t) (see [] for more details).
The equilibrium bipartite graph does not have a perfect matching (as it contains more equations than
endogenous variables), but we can apply the extended causal ordering algorithm [5] to construct the
equilibrium causal ordering graph in Figure[I2} There is a directed path from k1 to vp in the equilibrium
Markov ordering graph. Therefore, even though the basic enzyme reaction does achieve perfect adaptation,
we see that it does not satisfy the conditions of Theorem [I} The simulation in Figure indicates that
there is no causal effect of k1 on Xp at equilibrium. The basic enzyme reaction is an example of a system
for which directed paths in the equilibrium causal ordering graph do not imply generic causal relations
between variables.
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Figure 12. The equilibrium causal ordering graph constructed from the equilibrium equations of basic enzyme reaction
modelled by equilibrium equations fs, fc, fE. fp, and fcE.

By rewriting the equilibrium equations we can achieve stronger conclusions for this particular case.
For instance, we can consider the equation f/,, obtained from summing equations fs and fc:

fo kg — ko Xc =0, (39)

in combination with fg, fp, and fog. The equilibrium equations fo and fg can be dropped because
they are linear combinations of the other equations. The equilibrium bipartite graph and equilibrium
causal ordering graph associated with fs, for, fi, and fp are given in Figure The equilibrium causal
ordering graph in Figure for the rewritten equilibrium equations reveals more structure than the one
in Figure[I2] for the original equilibrium equations. The two causal ordering graphs do not model the same
set of perfect interventions. For example, the (non)effects of an intervention targeting the cluster {vg, fs}
in the causal ordering graph in Figure m (where fg is replaced by an equation vg = £g setting vg equal
to a constant g € Rsg) cannot be read off from the equilibrium causal ordering graph in Figure
Furthermore, now there is no directed path from ki to vp, and hence we can now make use of Theorem
to conclude that the concentration Xp(t) perfectly adapts to persistent changes of the parameter k;.
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(a) Equilibrium bipartite graph. (b) Equilibrium causal ordering graph.
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Figure 13. The equilibrium bipartite graph and equilibrium causal ordering graph associated with the basic enzyme reac-
tion after rewriting the equilibrium equations. The equilibrium bipartite graph is sparser than that in Figure@ and conse-
quently the equilibrium causal ordering graph reveals more structure than that in Figure@

E IFFLP Network: Transforming variables may reveal structure

The IFFLP topology in Ma et al. [30] that we briefly discussed in Section could be a graphical
representation of the following differential equations:

XA(t) = I(t)kIA K[,Lx(l—i-_(f(fg?j(t)) - FAkFAAm%%v (40)
Xp(t) = Xa(Ohhan i ;1+_(ff@;g;(t)) _ FBkFBB#@Mv (41)
Xo(t) = Xa(t)k 1=-Xe®) __ Xtk Xe(t) (42)

AC BC 7= v~ /.
Kyo+ (1 —Xce(t)) Kpc + Xc(t)

where I(t) represents an external input into the system. This network is capable of perfect adaptation if
the first term of Xp(t) is in the saturated region (1 — Xp5(t)) > Kap and the second term is in the linear
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region Xp(t) < Kp,p, which allows us to make the following approximation:

dXp(t)
dt

FpkryB
KryB

%XA(t)kAB— XB(t). (43)
Therefore, a steady-state solution Xp for B is proportional to the steady-state solution X 4 for A. Since
both terms in equation are proportional to X4 we find that the steady-state solution X for C'is a
function of only the parameters kac, Kac, kpc, and Ko (note that X4 factors out of the equilibrium
equation corresponding to )7 and hence it does not depend on the input parameter I(¢). Since a change
in the input signal I(¢) changes X 4(t) there is a transient effect on X 4(t). Similarly there must also be a
transient effect on both Xp(t) and X (t). It follows that the system achieves perfect adaptation.

The equilibrium equations associated with equations , the approximation to 7 and
are given by:

(1—XA) X4
Ik — Fakpa—A 44
fa IAK +(1—XA) AFAAKFAA-i-XA ( )
Fpk
IB: XAIfAB_iI]? 5B xp =0, (45)
FsB
(1-Xc) Xc
: Xpkpo————"—"——XBkpc———— =0 46
fe akac g A xg) T AEkBO L i xG (46)

The associated equilibrium causal ordering graph in Figure shows that there is a directed path from
the input signal I to the cluster {va,vp,vc}. Therefore, the conditions of Theorem [1|are not satisfied for
the system.

Interestingly, though, if we first make a change of variables from (X 4, Xp, X¢) — (X4, Xg, X¢) with
Xpg := Xp/X 4 (assuming that X4 € Rs¢), we can make use of the causal ordering approach. Indeed, we
can rewrite the equilibrium equations as follows in terms of the new variables X 4, X, X¢:

(I—XA) X4
Ik — Fakpa——A 47
fa IAK[A-I—(l—XA) AFAAKFAA-i-XA ( )
Fgk
fr:  kap— IB(FBBXRZO, (48)
FuB
(1-Xc¢) Xc
= k — Xpkpec————— =0. 49
fe AT T = Xo)  ERBO TR (49)

This yields a sparser equilibrium bipartite graph, and as shown in Figure [[4h] we can now read off from
the corresponding equilibrium causal ordering graph that the input signal I does not affect the equilibrium
values of X and X¢. Hence, in this parameterization of the model, Theorem [I] can be used to identify
the perfect adaptive behavior of the system.

ONONG )| | (0
0 & ® @) |@)] |

(a) Original parameterization. (b) Alternative parameterization.

Figure 14. Equilibrium causal ordering graphs for the IFFLP network. (Eb modelled by equations , , and and
variables X 4, Xp, X¢; (]E[) modelled by equations , , and and variables X 4, Xgr, X¢.
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F Markov ordering graphs have no inherent causal
interpretation

The causal interpretation of the equilibrium Markov ordering graph for the bathtub model is discussed at
length in [5]. The conclusion is that the Markov ordering graph alone does not contain enough information
to read off the effects of interventions in an unambiguous way@ As a result, the Markov ordering graph does
not have a straightforward causal interpretation in terms of interventions, contrary to what is sometimes
claimed [I3], [25]. For the sake of completeness we will summarize the discussion of the causal interpretation
of the equilibrium Markov ordering graph of the bathtub model.

Example 2. For the bathtub model (Section , consider an intervention targeting the dynamical
equation gp that also changes the associated equilibrium equation fp. For example, consider putting the
bathtub outside in the rain. This will not change the inflow through the faucet, but will add to the total
amount of inflowing water into the tub, and can be modeled by modifying equation into:

Xp(t) = Ur(X1(t) = Xo(t) + Ur(t),

where Ugr(t) is a new exogenous variable that quantifies the amount of inflowing water due to the rain (in
the original model, Ur(t) = 0). Through explicit calculations, it can be shown that this soft intervention
has an effect on Xp, Xp, and Xp at equilibrium@ If we were to read off the effects of a soft intervention
targeting fp by verifying whether there is a directed path from vp in the equilibrium Markov ordering
graph, we would erroneously conclude that this intervention only has an effect on Xp. In a similar fashion
it can be shown that the graph does not represent the effects of perfect interventions targeting {fp,vp}
or {fp,vo} either. From the equilibrium causal ordering graph one can read off that the absence and
presence of (generic) effects of the perfect intervention {fp,vp} correspond with the absence and presence
of directed paths in the equilibrium Markov ordering graph starting from vp. Because the equilibrium
Markov ordering graph alone does not specify to which experiment a perfect intervention on one of its
vertices corresponds to, we conclude that the equilibrium Markov ordering graph on its own does not
posess a causal interpretation. A

A correct interpretation of a directed edge (v; — v;) in the equilibrium Markov ordering graph would be
that an intervention targeting equations in the cluster of v; in the causal ordering graph generically will have
an effect on the equilibrium distribution of v;. However, the Markov ordering graph itself does not specify
the variables and equations that share a cluster with the variables in the causal ordering graph. In many
dynamical systems, though, the equilibrium equations f; derived from differential equations for variables
X;(t) end up in the same cluster as the associated variable v;. Under such an assumption, one could give
an unambiguous causal interpretation to the Markov ordering graph in terms of perfect interventions@
However, there is another obstacle to interpreting a directed edge (v; — v;) in the Markov ordering
graph as a direct causal effect. This can go wrong in case causal cycles are present. Indeed, the Markov
ordering graph for a simple SCM is the acyclification of its graph [7]. Therefore, if v; is part of a feedback
loop together with vy, and the structural equation of v depends on v;, the Markov ordering graph will

27 To arrive at this conclusion, we first need to explicitly state what we mean when we talk about ‘causal relations’.
We follow the common interpretation in contemporary literature in terms of interventions. In the context of a specific
model, this means that an intervention on the cause brings about a change in the effect.

28 Assuming that the system converges to equilibrium after the intervention, the equilibrium causal ordering graph in
Figure tells us that soft interventions on fp generically change the equilibrium distributions of Xo, Xp, and Xp.
We need explicit calculations to verify that the generic effects correspond to a change in distribution.

29 For dynamical models in which each variable is self-regulating, each variable v; shares a cluster with the equilibrium
equation f; associated with the time derivative X;(¢) [2]. Note that the examples of perfectly adaptive systems that we
have considered in this work do contain variables that are not self-regulating.
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contain the directed edge v; — v; even if there is no direct effect of v; on v; (that is, if the structural
equation for v; does not depend on v;).

Therefore, if one cannot rule out the possibility of feedback, one should avoid reading the Markov
ordering graph as if the directed edges represent direct causal effects (and as if directed paths represent
causal effects).
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Table 4. The conditional independences in the simulation of the protein pathway described in Section were assessed

using Spearman’s rank correlations. With a p-value threshold of 0.01, d-separations with a separating set of size 0 or 1

coincide with conditional independences with conditioning sets of size 0 or 1.

Independence test Correlation  p-value d-separation
Il X, 0.029 0.51 yes
Il X, 0.020 0.66 yes
Il X, 0.021 0.64 yes
I 1 X, 0.777 < 2.2e16 no
X 1 X, 0.957 < 2.2e716 no
Xs Al Xom 0.933 < 2.2e716 no
Xs 1 Xe —0.561 < 2.2e716 no
Xr UL X, 0.977 < 2.2¢716 no
X, AL X, —0.542 < 2.2¢716 no
Xm AL Xe —0.524 < 2.2¢716 no
Il Xs| X, 0.037 0.83 yes
Il X Xm 0.027 0.61 yes
Il X, |Xs —0.030 0.51 yes
Il X | X —0.005 0.91 yes
Il X | Xs —0.018 0.69 yes
Il X |Xr 0.010 0.83 yes
Xe UL X, | Xs —0.019 0.67 yes
Xe AL X | X5 —2.1-107%  0.99 yes
Xe Il X | Xor 0.031 0.49 yes
Xs UL X | X —0.031 0.48 yes
Il Xe|Xs 0.959 6.0-10727% no
Il Xc|Xr 0.937 1.6-107229 no
Il Xe|Xm 0.925 1.2-107211  no
I Xs|Xe 0.894 4.7-10717%  no
Il X,|Xe 0.832 1.5-107129  no
Il Xpm|Xe 0.799 1.1-10711  no
Xe I Xo| Xy —0.176 8.0-1075 no
Xe 1L Xs| Xm —0.236 9.3-1078 no
Xe I Xo|T —0.928 8.7-107216  no
Xe AL X0 | Xom, —0.164 2.2-107% no
Xe AL X, | T —0.885 5.3-107167  no
Xe 1L X | I —0.859 2.8-10716  no
Xo L X, |1 0.957 1.7-107269  no
Xs AL Xp | Xe 0.939 5.3-107232  no
Xs L Xp | Xm 0.590 3.2-107%  no
Xs Al X | T 0.933 3.0-107223  no
Xs AL Xy | Xe —0.907 1.2-107188  no
Xp AL X | 1 —0.977 0 no
X L X | Xe 0.968 2.8-107392  no
Xr UL X | X 0.807 1.1-107%  no
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