
Efficient Causal Inference from Combined Observational and Interventional
Data through Causal Reductions

Maximilian Ilse1 Patrick Forré1 Max Welling1 Joris M. Mooij2

1Amsterdam Machine Learning Lab, University of Amsterdam, Amsterdam, the Netherlands
2Korteweg-De Vries Institute for Mathematics, University of Amsterdam, Amsterdam, the Netherlands

Abstract

Unobserved confounding is one of the main chal-
lenges when estimating causal effects. We propose
a novel causal reduction method that replaces an ar-
bitrary number of possibly high-dimensional latent
confounders with a single latent confounder that
lives in the same space as the treatment variable
without changing the observational and interven-
tional distributions entailed by the causal model.
After the reduction, we parameterize the reduced
causal model using a flexible class of transforma-
tions, so-called normalizing flows. We propose a
learning algorithm to estimate the parameterized
reduced model jointly from observational and in-
terventional data. This allows us to estimate the
causal effect in a principled way from combined
data. We perform a series of experiments on data
simulated using nonlinear causal mechanisms and
find that we can often substantially reduce the num-
ber of interventional samples when adding obser-
vational training samples without sacrificing accu-
racy. Thus, adding observational data may help to
more accurately estimate causal effects even in the
presence of unobserved confounders.

1 INTRODUCTION

Estimating causal effects of interventions is one of the funda-
mental problems in causal inference. The gold standard for
studying causal relationships between interventions and out-
comes are controlled experiments, for example in the form
of randomized controlled trials (RCTs) in medicine or A/B-
testing in psychology. However, the acquisition of experi-
mental data is often time consuming, costly, or comes with
logistic difficulties and ethical issues. To give an idea about
the economic relevance within the discipline of medicine
alone, according to Grand Review Research, "the global

clinical trials market size was estimated at 44.3 billion US
dollars in 2020". The high costs of clinical trials and, more
importantly, the low availability of diseased subjects for
such trials present frequent obstacles for the development
of drugs for rare diseases by pharmaceutical companies.

In this work, we propose a novel principled approach for
causal effect estimation that can efficiently combine ob-
servational and interventional samples. We show that this
method can potentially reduce the required RCT sample size
when sufficient observational samples are available (e.g., in
the form of electronic health records). Recent real-world
examples that could benefit from such an approach are the
COVID-19 vaccine trials. The majority of the vaccines re-
quire two dosages. For example, the interval during the
vaccine trials was 21 days between doses for the Pfizer vac-
cine and 28 days for the Moderna vaccine. However, due
to a shortage of supplies and logistical challenges the sec-
ond dosage is delayed in many countries. The question then
arises: What is the effect of the time between the first and
the second dosage on the vaccine efficacy? In the absence of
any large randomized controlled trials that provide a definite
answer to this question, one may hope to estimate this by
combining the few available clinical trial data with massive
global observational data collected as a part of the different
vaccination campaigns performed worldwide. The method
we propose here provides a principled approach for such
causal inference problems.

The main complication when estimating causal effects is the
potential presence of observed and unobserved confounders,
i.e., common causes of the cause and the effect. Our key
technical contribution, which we believe to be a useful tool
on its own, is a construction that typically reduces the size
of the latent confounder space in a structural causal model
(or causal Bayesian network with latent confounders). Our
approach makes only mild assumptions, namely the absence
of causal feedback between cause and effect, and that the
data was not subject to selection bias (due to implicit condi-
tioning on common effects of treatment and outcome).
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This causal reduction operation shows that without loss of
generality, one only needs to model a single latent confound-
ing variable that lives in the same space as the treatment
variable, even if in reality there could be many latent con-
founders and their joint space might be much larger. In
particular, for a real-valued, one-dimensional treatment vari-
able, a real-valued, one-dimensional confounder suffices.
This is a key step towards a parsimonious joint parameteri-
zation of the observational and interventional distributions.

For the linear-Gaussian case, we prove that our reduced
parameterization implies that the observational and inter-
ventional distributions are not independent, but are related
by certain equality constraints. This complements existing
work on inequality constraints in the case of discrete treat-
ment and outcome variables (Bell [1964], Balke and Pearl
[1997], Wolfe et al. [2019]). We conjecture that such de-
pendencies between the observational and interventional
distribution hold more generally (i.e., not only in the linear-
Gaussian or discrete settings), and provide empirical support
for this conjecture.

To make progress in the general non-linear setting, we pa-
rameterize the reduced causal model using a flexible class
of transformations, so-called normalizing flows [Tabak and
Turner, 2013, Rezende and Mohamed, 2015]. This enables
the use of a simple multi-task-like maximum-likelihood ap-
proach to the estimation of the reduced model parameters,
where one can now combine observational and interven-
tional training data.

We perform a series of experiments on data simulated using
nonlinear causal mechanisms. We find that we can signifi-
cantly reduce the number of interventional samples required
to achieve a certain fit when adding sufficient observational
training samples. We observe that parameter sharing allows
one to learn a more accurate model from a combination
of data than when learning from either of the two subsets
individually. This suggests that this approach successfully
exploits the conjectured dependence between the observa-
tional and interventional distributions, and opens up practi-
cal applications and further theoretical questions regarding
the precise nature of the relationship between observational
and interventional distributions.

In summary, our three main contributions are: (i) A causal
reduction method that replaces arbitrary confounders with a
single confounder that lives in the same space as the treat-
ment variable, without changing the observational and in-
terventional distributions entailed by the causal model; (ii)
A flexible parameterization of the reduced model using nor-
malizing flows, which enables us to estimate the observa-
tional and interventional distributions by jointly learning
from observational and interventional data without making
strong parametric assumptions; (iii) A derivation of equality
constraints between interventional and observational distri-
butions entailed by linear Gaussian causal models.

2 RELATED WORK

Prior work on combining observational and interventional
data by Rosenman et al. [2018] relies on the assumptions
that all confounders are measured. This assumption was
removed in Rosenman et al. [2020], however, their new
method requires a minimum of four strata and shared av-
erage treatment effects. Furthermore, Kallus et al. [2018]
make the additional assumption that the hidden confounder
has a parametric structure that can be modeled effectively
and Athey et al. [2020] depend on observed short-term
and long-term outcome variables. In contrast, our approach
makes only mild assumptions, namely the absence of causal
feedback between cause and effect, and that the data was
not subject to selection bias.

There exists a plethora of related work on estimating causal
effects solely from observational data. The majority of meth-
ods assume that there exists a set of observed variables that
can be used to adjust for all confounding factors [Colnet
et al., 2020]. Unfortunately one can never test this assump-
tion, and the reliability of the conclusions of such observa-
tional studies is debated [Madigan et al., 2014]. While much
work is focused on the case in which the treatment is binary,
Hirano and Imbens [2005] generalize the propensity score
for continuous treatment variables.

An approach that sidesteps the strong untestable assumption
of no unobserved confounding is to bound the causal ef-
fect in terms of properties of observational data [Balke and
Pearl, 1997, Pearl, 1995]. While these bounds are valid in
the presence of arbitrary unobserved confounding, they are
often too loose to be of practical relevance and only hold for
discrete treatment variables. Recently, Wolfe et al. [2019]
introduced a technique called inflation that can be used to
derive tighter bounds.

Furthermore, methods that do not rely on bounds or an ad-
justment set have to make other untestable assumptions on
the causal mechanism. For example, Angrist et al. [1996]
relies on the existence of instrumental variables that are
not affected by unobserved confounders. Miao et al. [2018]
and Louizos et al. [2017] assume proxy variables that while
being correlated with unobserved confounders do not con-
found the treatment and outcome themselves. Last, the de-
confounder of Wang and Blei [2019] builds on the assump-
tions that there are no unobserved single-cause confounders.

3 THEORY

For simplicity of exposition, we will make some assump-
tions regarding the types of variables below, but the construc-
tion of the causal reduction can be done for any standard
measurable spaces. Furthermore, we will focus on perfect
interventions as originally introduced by Strotz and Wold
[1960] and popularized by Pearl [2009].
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3.1 REDUCTION OF THE LATENT SPACE

Consider a treatment variable X ∈X = RN and an out-
come variable Y ∈ Y = RM . We assume that the outcome
does not cause the treatment. Furthermore, let there exist
K latent confounders Z1, . . . ,ZK , where Zi ∈Zi = R, with
an arbitrary dependency structure, see Figure 1 (a) for the
corresponding directed acyclic graph (DAG). Without loss
of generality, we can summarize the K latent confounders
Z1, . . . ,ZK with arbitrary dependency structure using a sin-
gle latent confounder Z ∈Z = RK :

p(x,y) =
∫

Z1

· · ·
∫

ZK

p(x,y,z1, . . . ,zK)dz1 . . .dzK (1)

=
∫

Z
p(x,y,z)dz. (2)

The resulting causal Bayesian network is shown in Figure 1
(b), which has the following factorization:

p(x,y,z) = p(y|x,z)p(x|z)p(z). (3)

We aim to replace the above causal Bayesian network with
one that is interventionally equivalent with respect to inter-
ventions on X and Y, but where the latent confounder space
Z is lower-dimensional.

First, we generate a copy W :=X of the treatment variable X.
We will interpret W as a latent variable and X as an observed
deterministic effect of W, via the function X = id(W). We
obtain the Bayesian Network in Figure 1 (c):

p(x,y,w,z) = p(y|x,z)p(x|w)p(w|z)p(z), (4)

where p(w|z) := p(x|z)|x=w is a copy of the Markov ker-
nel from above evaluated in w rather than in x. Further-
more, p(x|w) := δw(x) is the delta peak centered at w, rep-
resenting the deterministic identity map from W to X. If we
marginalize out W we arrive at the initial causal Bayesian
network in Figure 1 (b) again. Since interventions on ob-
served variables commute with the marginalizing over latent
variables the Bayesian networks in Figure 1 (b) and (c) are
interventionally equivalent with respect to interventions on
X and Y [Bongers et al., 2020]. Note that while copying
X can be understood as an inflation [Wolfe et al., 2019],
we eventually will reduce the Bayesian network shown in
Figure 1 (a).

Second, we refactorize the latent distribution as shown in
Figure 1 (c), (d) and (e):

p(x,y,w,z) = p(y|x,z)p(x|w)p(w|z)p(z) (5)
= p(y|x,z)p(x|w)p(w,z) (6)
= p(y|x,z)p(x|w)p(z|w)p(w). (7)

The causal Bayesian networks representing these three fac-
torizations are interventionally equivalent, as we only factor
the latent distributions differently and do not consider inter-
ventions on the latent variables.

Last, we can marginalize over Z and obtain:

p(x,y,w) = p(y|x,w)p(x|w)p(w), (8)

where we used the following composed Markov kernel:

p(y|x,w) :=
∫

p(y|x,z)p(z|w)dz. (9)

Again, since marginalizing over latent variables and inter-
ventions commute, the final Bayesian network in Figure 1
(f) is interventionally equivalent to the ones in Figure 1 (a–e)
with respect to interventions on X and Y.

Since W is a copy of X, we successfully reduced the di-
mensionality of the latent confounder from K to N. In the
common case of one-dimensional X, we expect N = 1� K
and therefore achieve a significant reduction of the latent
space.

We formulate the conclusion as a theorem:

Theorem 3.1 (Causal Reduction). Let M be a causal
Bayesian network with observed variables X ∈X ,Y ∈ Y
and latent variables,Z1 ∈Z1, . . . ,ZK ∈ZK such that Y is
not an ancestor of X. Then there exists a causal Bayesian
network M ∗ with observed variables X ∈X and Y ∈ Y
and a single latent variable Z ∈X (that takes values in the
same space as X) such that M ∗ is interventionally equiv-
alent to M with respect to perfect interventions on the
observed variables X and Y, i.e.,

pM (x,y) = pM ∗(x,y)

pM (x | do(y)) = pM ∗(x | do(y))

pM (y | do(x)) = pM ∗(y | do(x))

We call the causal Bayesian network M ∗ a causal reduction
of M since it will typically be the case that the latent space
will be reduced, yet the causal semantics are preserved by
construction. The single latent confounder Z in M ∗ will
parsimoniously represent the causal influence of all latent
confounders of X and Y in M . For example, a single binary
confounder suffices for a binary treatment variable. Extend-
ing the derivation to simple structural causal models (an
extension of causal Bayesian networks that can represent
feedback loops [Bongers et al., 2020]) is straightforward, as
long as X and Y are not part of a causal cycle (although the
other variables might be involved in cycles).

3.2 FROM BAYESIAN NETWORKS TO
STRUCTURAL CAUSAL MODELS

Whereas in the previous section we relied on causal
Bayesian networks to conduct our reduction, we now move
to structural causal models (SCMs) [Pearl, 2009, Bongers
et al., 2020] to obtain convenient parameterizations. We
make use of the exogenous variables U,V to represent the
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Figure 1: A graphical explanation of our causal reduction technique. (a) We assume a treatment variable X, an outcome
variable Y, and K latent confounders Z1, . . . ,ZK with an arbitrary dependency structure. (b) We represent the K latent
confounders Z1, . . . ,ZK by Z ∈Z = RK . (c) We create a copy of X called W. We use a double circle to indicate that a
variable is a deterministic function of its parents. (d, e) Instead of using the factorization from (c), p(w,z) = p(w|z)p(z), we
choose p(w,z) = p(z|w)p(w). (f) Last, we marginalize over Z. Note that at every step (a–f) the DAGs are interventionally
equivalent with respect to interventions on X and Y.

noise in the reduced causal model. This in turn allows us to
express all causal relationships as deterministic functions.
Estimating the model then boils down to estimating these
functions, as we will illustrate in Section 4.

Theorem 3.2. Let P(X|Y) be a Markov kernel (e.g. a con-
ditional probability distribution) of a RM-valued variable
X with components Xm, m = 1, . . . ,M and with argument
Y that can take values in any measurable space. Then
there is a M-dimensional standard normal random vari-
able Z ∼N (0,IM) independent of Y and a deterministic
measurable map F such that:

X = F(Z,Y) a.s. (10)

Furthermore, the map F is ‘well-behaved’, in the sense
that it is composed out of (inverse) conditional cumulative
distribution functions.

The proof is provided in the Appendix 7.2. Theorem 3.2 en-
ables us to obtain a reduced SCM from the reduced Bayesian
Network in Equation 8 with structural equations

X = F(U), (11)
Y = G(U,V,X), (12)

where U∼N (0,IN)⊥⊥ V∼N (0,IM), and F,G are deter-
ministic maps. This allows us to parameterize the reduced
causal model in terms of the two functions F and G. The
corresponding DAG is shown in Figure 2.

Y

V

X

U

Y

V

X

U

Figure 2: DAG of the reduced SCM with U∼N (0,IN) and
V∼N (0,IM). Left: Reduced SCM. Right: Reduced SCM
after an intervention on X.

3.3 PARAMETER SHARING IN THE LINEAR
GAUSSIAN CASE

We now consider the case where all causal relationships in
Figure 1 (a) are linear, and all distributions are Gaussian. We
can then guarantee that the reduced causal model is linear
Gaussian as well.

Theorem 3.3 (Reduced linear Gaussian model). Consider
a linear Gaussian SCM (or causal Bayesian network with
possible latent variables) with observed variables X and Y
such that Y is not ancestor of X. Then this causal model
is interventionally equivalent to a reduced linear Gaussian
causal model with the following structural equations:

X = a+Bu,
Y = c+DX+Eu+Fv, (13)

with vectors a, c and matrices B, D, E, F, where B and
F can be chosen to be lower-triangular with non-negative
diagonal entries, and where u is a standard Gaussian latent
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variable of the same dimension as x and where v is a stan-
dard Gaussian latent variable of the same dimension as y
that is independent of u.

The proof of Theorem 3.3 can be found in the Appendix
7.3. Next, we use the reduced linear Gaussian model from
Theorem 3.3 to prove that the parameters of the observa-
tional distribution are constrained by the parameters of the
interventional distribution.

Theorem 3.4 (Linear Gaussian parameter constraints). Con-
sider a linear-Gaussian SCM (or causal Bayesian network
with possible latent variables) with two observed variables
X and Y such that Y is not ancestor of X. The entailed
observational and interventional distributions are Gaussian.
Modeling p(x), p(y|x) and p(y|do(x)) independently from
each other could be done with the following parameteriza-
tion:

p(x) = N (x|α,Σ), (14)
p(y|x) = N (y|γ +∆x,Π), (15)

p(y|do(x)) = N (y|γ̃ + ∆̃x,Π̃), (16)

with covariance matrices Σ, Π, Π̃. However, using the re-
duced causal model from Theorem 3.3 we find that these
parameters are constrained by the following relations:

(γ̃− γ)+(∆̃−∆)α = 0, (17)

(∆̃−∆)Σ(∆̃−∆)>+Π = Π̃. (18)

From Equation 18 we can easily see that Π̃−Π is positive
semidefinite. Furthermore, we see that these constraints lead
to a reduced parameter count, M parameters for Equation 17
and M(M+1)/2 parameters for Equation 18, assuming y to
be M-dimensional. In total, we have reduced the parameter
count by M(M + 3)/2 by modeling the parameters of the
observational and interventional distributions jointly. The
proof of Theorem 3.4 can be found in Appendix 7.4.

Now consider the task of learning the parameters of our
reduced model. In the linear Gaussian case, the reduced
causal model tells us exactly how many parameters we need
to model the observational and interventional distribution,
and which of the parameters are shared. Since the param-
eters c,D,E and, F are shared between the observational
and interventional distribution, we can estimate them jointly
using observational and interventional data. This effectively
leads to a reduced sample complexity when trying to model
the interventional distribution, which is beneficial for causal
effect estimation when we are assuming that we only have
access to a small number of interventional samples and a
large number of observational samples. In the Appendix
7.6, we experiment on observational and interventional data
generated with linear causal mechanisms, giving a linear
parameterization of the reduced linear model that can learn
linear causal mechanisms.

In Section 4, we propose a parameterization of the reduced
causal model using normalizing flows that is suitable for the
general (non-linear, non-Gaussian) setting. We conjecture
that the form of the reduced structural equations (Equations
11 and 12) also imposes constraints on the observational
and interventional distribution in the more general setting.
In Section 5, we conduct a series of experiments where
we simulate observational and interventional data using
nonlinear causal mechanisms and estimate the interventional
distribution p(y|do(x)). We show that we are indeed able
to reduce the sample complexity by training a single flow
model with observational and interventional data.

3.4 REDUCTION WITH OBSERVED
CONFOUNDERS

There are many scenarios where we are interested in esti-
mating the conditional causal effect of interventions given
additional covariates C that might confound treatment and
outcome, for example when estimating the efficacy of a
vaccine depending on age, weight or gender. We consider
an additional set of L observed confounders C1, . . . ,CL of
X and Y, taking values in arbitrary measurable spaces, and
with an arbitrary joint distribution p(c). In the following,
we summarize all L observed confounders using a single
variable C ∈ C . We provide a more detailed derivation in
the Appendix 7.5 and give only a short sketch here. First, we
follow the same steps as in Section 3.1 to derive a reduced
causal model of the following form

p(x,y,w,c) = p(y|x,w,c)p(x|w)p(w|c)p(c). (19)

Again, at every step, the Bayesian network is intervention-
ally equivalent to the ones before, for interventions on X
and Y.

Then, we use a similar approach as in Section 3.2 but also
marginalize out W to convert the causal Bayesian Network
into an SCM with structural equations of the form

X = F(U,C), (20)
Y = G(U,V,X,C), (21)

where U∼N (0,IN)⊥⊥ V∼N (0,IM) and F and G are two
deterministic maps. Again, this preserves the observational
and interventional distributions for interventions on X and
Y. The corresponding DAG is shown in Figure 3.

4 PRACTICAL IMPLEMENTATION

Now that we have successfully reduced the model com-
plexity, we will parameterize the functions F and G so we
can learn the model from data. While this can be done in
many different ways, we make use of diffeomorphisms, i.e.,
mappings that are differentiable and have a differentiable
inverse. By using the change-of-variables formula we can
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X
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Y
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X

U

Figure 3: DAG of reduced SCM with observed confounder
C, U∼N (0,IN) and V∼N (0,IM). Left: Reduced SCM
for observational data. Right: Reduced SCM after interven-
tion on X.

derive a maximum-likelihood estimator for the mappings’
parameters which can be efficently optimized through back-
propagation. In the deep learning community those invert-
ible and differentiable mappings are called (normalizing)
flows and much recent research went into finding flexible
and easily invertible mappings, see Pawlowski et al. [2020]
and Khemakhem et al. [2020] for other recent applications
of normalizing flows to approximate nonlinear causal mech-
anisms. Our flow model consists of two flows that are jointly
trained using observational and interventional data. In the
following, we derive the loss function for observational and
interventional data separately. For the remaining part of
this paper we focus on one-dimensional treatment outcome
pairs, i.e. x ∈X = R and y ∈ Y = R, and (optionally) a
L-dimensional observed confounder c ∈ C = RL.

4.1 OBSERVATIONAL DATA

Starting from the DAG in Figure 2 the joint-likelihood
p(x,y) can be factorized as follows

log p(x,y) = log p(y|x)+ log p(x). (22)

We now use the following bijective transformations between
observed variables x,y and latent variables u,v

u = fφ (x), (23)
v = gx,u;θ (y), (24)

where the function g(.) is invertible with respect to v.

Without loss of generality we assume indepen-
dent, standard Gaussian distributions for u,v:
pU (u) = N (0,1)⊥⊥ pV (v) = N (0,1). The transfor-
mations defined above allow us to rewrite Equation 22
using the change of variable formula

log p(x,y) = log pV (gx,u;θ (y))+ log
∣∣∣∣δgx,u;θ (y)

δy

∣∣∣∣
+ log pU ( fφ (x))+ log

∣∣∣∣δ fφ (x)
δx

∣∣∣∣ . (25)

Last we use u = fφ (x) in order to replace u in gx,u;θ (y). The

final log p(x,y) is given by

log p(x,y) = log pV (gx, fφ (x);θ (y))+ log

∣∣∣∣∣δgx, fφ (x);θ (y)

δy

∣∣∣∣∣
+ log pU ( fφ (x))+ log

∣∣∣∣δ fφ (x)
δx

∣∣∣∣ . (26)

The parameters φ and θ are jointly updated by minimizing
∑

NO
o=1− log p(xo,yo) given NO observational training sam-

ples.

4.2 INTERVENTIONAL DATA

In contrast to the observational setting, we only have to
consider the conditional likelihood p(y|do(x)) in the inter-
ventional case and treat p(do(x)) as a constant. Since we
cannot use fφ (x) to impute u, we instead marginalize over u

log p(y | do(x)) = log
∫

p(y|do(x),u)p(u)du. (27)

Inserting the bijective mapping v = gx,u;θ (y) in Equation 27,
we obtain

log p(y | do(x)) = log
∫

pV (gx,u;θ (y))
∣∣∣∣δgx,u;θ (y)

δy

∣∣∣∣ p(u)du,

(28)

where we use the trapezoidal rule to compute a numeri-
cal approximation of the integral. The parameter θ can be
updated by minimizing ∑

NI
i=1− log p(yi|do(xi)) given NI in-

terventional training samples.

4.3 JOINT OPTIMIZATION

Assuming we have NO observational samples and NI inter-
ventional samples, the full loss is given by

loss =
NO

∑
o=1
− log p(xo,yo)+α

NI

∑
i=1
− log p(yi|do(xi)). (29)

The parameters φ and θ of the transformation f and g are
learned by minimizing the loss using gradient descent. In
the case of N0 6= NI , we find it beneficial to introduce α to
balance the two loss terms and thus scale the gradients. We
find α = NO/NI to work well and will use it throughout the
rest of the paper.

4.4 GENERATING SAMPLES

After training we are able to generate observational and
interventional samples with a single flow model. The sam-
pling procedure for observational samples consists of the fol-
lowing steps: v∼N (0,1),u = fφ (xo), and yo = g−1

xo,u;θ (v),
where we assume xo ∈ R to be observed. If we instead
want to generate an interventional sample, the sample proce-
dure follows: v∼N (0,1),u∼N (0,1), and yi = g−1

xi,u;θ (v),
where we assume xi ∈ R to be observed.
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4.5 ADDITIONAL OBSERVED CONFOUNDERS

In order to parameterize the DAG in Figure 3 we simply
have to replace the functions f (.) and g(.) by u = fc;φ (x)
and v = gx,u,c;θ (y) where c ∈ RL is assumed to be observed.
The optimization procedure does not change.

5 EXPERIMENTS

Following the analysis in Section 3.3, we perform a series
of experiments on simulated data, where the causal relation-
ships between all variables are nonlinear, showing that we
are able to significantly reduce the number of interventional
samples required to estimate the interventional distribution
p(y|do(x)) by training jointly with observational and inter-
ventional samples. Throughout this section, we are using
the parameterization described in Section 4, where we use
linear rational spline flows [Dolatabadi et al., 2020]. For a
detailed description of this choice see the Appendix 7.7. We
perform two sets of experiments: (1) We consider K latent
confounders Z1, . . . ,ZK ∈ R with an arbitrary dependency
structure, as shown in Figure 4. (2) We consider L additional,
observed confounders C1, . . . ,CL ∈ R with an arbitrary de-
pendency structure. All flow models are implemented with
the automatic differentiation packages Pytorch [Paszke et al.,
2019] and Pyro [Bingham et al., 2019]. All code is available
under https://github.com/max-ilse/CausalReduction.

5.1 WITHOUT OBSERVED CONFOUNDERS

Z

X Y

EX EY Z

X Y

EY

Figure 4: DAG of the data generating process.

We simulate cause and effect pairs following the DAG in
Figure 4. The left DAG in Figure 4 is used to generate
observational samples and the right DAG in Figure 4 is
used to generate interventional samples. They share the
same underlying causal process, Y = G(X ,EY ,Z). A single
dataset consists of observational and interventional samples.

All causal relationships are simulated using fully con-
nected neural networks with a single hidden layer, where
the weights are randomly initialized. The activation func-
tions are rectified linear units (ReLUs). This ensures that
the causal mechanisms simulated by X = F(EX ,Z) and
Y = G(X ,EY ,Z) are nonlinear. The values of EX ,EY ,Z and
do(X) are sampled from a random distribution, as seen
in Mooij et al. [2016]. A detailed step-by-step descrip-
tion of the simulation procedure is given in the Appendix
7.8. Following the process described above, we simulate

100 datasets while varying the number of dimensions K of
the unobserved confounder Z and the random seed that is,
among others, controlling the initialization of the neural
networks used to model the causal mechanisms. We choose
K between 1 and 10 since for K > 10 the joint distribution
p(x,y) becomes increasingly more Gaussian due to the cen-
tral limit theorem. Next, we manually select ten datasets
with the smallest overlap of observational and interventional
samples to select cases with “strong” confounding. Note
that we choose these ten datasets before training a single
flow model. A scatter plot of 1000 observational and 1000
interventional samples for each of the ten datasets can be
found in Section 7.10.

In this experiment we are interested in estimating the inter-
ventional distribution p(y|do(x)). For each dataset we train
three variants of our reduced causal model parameterized
with normalizing flows. The first flow model is trained using
only observational data, see Section 4.1. The second flow
model is trained using only interventional data, see Section
4.2. The third flow model is trained using observational and
interventional data jointly, see Section 4.3. For each of the
ten datasets, we keep the number of observational samples
constant at 1000 and use an increasing number of inter-
ventional samples 50, 100, 250, 500, 750, 1000, resulting
in six experiments per dataset. For example in the case of
50 interventional and 1000 observational samples, the first
flow model is trained with 1000 observational samples, the
second flow model is trained with 50 interventional sam-
ples, and the third flow model is jointly trained with 1000
observational and 50 interventional samples. Motivated by
the work of Oliver et al. [2018] on the realistic evaluation
of semi-supervised learning algorithms we use the same
number of samples for training and validation. In every case
we use 1000 interventional samples for testing.

In order to compare the performance of the three flow mod-
els, we calculate the negative log-likelihood averaged over
the test set, − 1

NI
∑

NI
i=1 log p(yi | do(xi)). To have a fair com-

parison, the same training procedure, architecture, optimizer,
and hyperparameters are used for all flow models in all ex-
periments. We use Adam [Kingma and Ba, 2015] with a
learning rate of 0.001 and the default values for β1,β2. We
train for 10000 epochs. The training is terminated early
when the validation loss did not improve for 1000 epochs.
We perform full batch gradient descent, where for the third
flow model we alternate between batches of observational
and interventional samples. For the linear rational spline
flows we use 32 bins and set the bound B = 6. For the con-
ditional version of the linear rational spline flows, we use a
fully connected neural network with two hidden layers and
ReLU activations.

In the Appendix 7.10, we provide extensive visualizations of
the results of all experiments, including scatter plots of train-
ing data, samples from the trained flow models, negative
log-likelihood values for all flow models on the interven-

7

https://github.com/max-ilse/CausalReduction


Table 1: Comparison of a flow model trained with interventional samples only and a flow model trained with interventional
and observational samples. We calculate the ratio N∗I /NI , where N∗I is the number of interventional samples necessary to
match the interventional test log-likelihood of a flow model trained with NI interventional and 1000 observational samples.
E.g. in the case of dataset 3 and NI = 100, if we were to use only interventional samples, we would require twice as many
interventional samples compared to using 100 interventional and 1000 observational samples. For dataset 11 to 15, we
simulate an additional observed confounder C. Note that if a large number of interventional samples (250 < NI ≤ 1000) are
available the improvements become smaller as shown in the Appendix 7.10.

dataset 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ratio for NI = 50 1.4 1.8 2.2 1.2 0.2 2.2 2.1 1.7 1.9 1.6 3.2 3.2 2.2 2.7 3.2

ratio for NI = 100 0.8 2.6 2.0 1.5 0.3 2.1 2.0 2.5 2.0 2.1 3.2 2.9 2.5 3.0 2.5
ratio for NI = 250 1.0 1.5 1.8 1.6 0.5 1.7 1.1 1.5 1.2 1.7 2.4 2.3 2.3 2.1 1.7

tional and observational test sets. To summarize our findings,
we calculate the ratio of samples required to reach the same
performance, measured in averaged negative log-likelihood
when only using interventional samples. In Table 1 we see
that in the case of dataset 3 and NI = 100, we need two times
the number of interventional samples (in the absence of ob-
servational training samples) in order to achieve the same
performance as a flow model that is jointly trained with 100
interventional and 1000 observational samples. In eight of
the ten datasets, we can substantially reduce the number of
interventional samples required when using additional 1000
observational samples.

Only in the case of dataset 5, we find that we need substan-
tially more interventional samples in order to train our flow
model jointly with observational and interventional data. We
argue that in the case of dataset 5 the interventional distribu-
tion resembles a standard Gaussian distribution which can
easily be estimated from very few interventional samples.
Last, the results in Table 1, dataset 1 to 10, are in agreement
with qualitative results in the Appendix 7.10. We find that
samples from the flow model trained with interventional
and observational data better resemble the training data
compared to samples from a flow model trained with only
interventional data.

5.2 WITH OBSERVED CONFOUNDERS

We now consider the case of an additional L-dimensional
observed confounder C. We use the same setup as in Section
5.1 to simulate treatment outcome pairs x,y. We use the fol-
lowing nonlinear causal mechanisms to generate treatment
X and outcome Y : X = f (EX ,Z,C) and Y = g(X ,EY ,Z,C),
a detailed description of the simulation procedure is given in
the Appendix 7.8. Again, we generate 100 datasets by vary-
ing K,L between 1 and 5 as well as the random seed. We
select five datasets following the same criteria as described
in Section 5.1. Furthermore, we use the implementation de-
scribed in Section 4.5 to estimate the SCM in Figure 3.4.
For each of the five datasets, we keep the number of ob-
servational samples constant at 1000 and use an increasing
number of interventional samples: 50, 100, 250, 500, 750,

1000, resulting in six experiments per dataset. We compare
three flow models trained with observational, interventional,
and observational plus interventional data respectively. The
training details are the same as in Section 5.1. An extensive
comparison of the three flow models, as well as visualiza-
tions for each dataset, can be found in the Appendix 7.12.
The main result of the experiments with additional observed
confounders is the following: For each of the five datasets,
we are able to substantially reduce the required number of
interventional samples with our flow model trained with
observational and interventional data, see Table 1, dataset
11 to 15. We find that we can reduce the number of required
samples by a factor of two to three when training with 1000
additional observational samples.

6 CONCLUSION

We propose a causal reduction technique that replaces any
number of (possibly high-dimensional) unobserved con-
founders with a single confounder, of the same dimension-
ality as the treatment variable, preserving the observational
distributions entailed by the model as well as the interven-
tional distributions for interventions on the treatment and
outcome variable. Additionally, we show that we can per-
form such a reduction even in the presence of observed con-
founders. This allows us to derive constraints between the
observational and interventional distributions in the linear
Gaussian case, showing that these objects are not indepen-
dent. In the nonlinear case, we propose a flexible parameter-
ization of the reduced causal model using normalizing flows.
This parameterization allows us to train a single flow model
by combining observational and interventional data. In sim-
ulations, for 13 out of 15 simulated datasets we substantially
reduce the required number of interventional samples if suf-
ficient observational samples are available. Possible future
work includes (i) applying the flow model to high dimen-
sional outcome variables, e.g. medical images, (ii) using
the reduction technique for causal discovery, e.g. inferring
causal directions, and (iii) analyzing the relationship be-
tween the constraints in Section 3.3 and the instrumental
and Bell inequalities [Pearl, 1995, Bell, 1964].
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7 APPENDIX

7.1 THEOREM 7.1 AND PROOF

Theorem 7.1. Let P(X |Y) be a Markov kernel, where the
variable X takes values in R (or [−∞,∞]) and argument Y
has values in any measurable space (e.g. RM). Then there
exists a uniformly distributed variable E ∼U [0,1] that is
independent of Y and a deterministic function F, namely
the conditional quantile function of X given Y, such that:

X = F(E|Y) a.s. (30)

Proof. Consider the interpolated conditional cumulative dis-
tribution function (iccdf) of X given Y with u ∈ [0,1]:

G(x;u|y) := P(X < x|y)+u ·P(X = x|y). (31)

Furthermore, consider the conditional quantile function (cqf)
of X given Y with e ∈ [0,1]:

F(e|y) := inf{x̃ ∈ R |G(x̃;1|y)≥ e}. (32)

Then take any uniformly distributed random variable U ∼
U [0,1] independent of (X ,Y) and define:

E := G(X ;U |Y), (33)

where we plugged X , U and Y into G. Then one can check
using standard arguments for cdf and cqf that E is uniformly
distributed, E ∼U [0,1], which is independent of the value
y of Y. Furthermore, one can show that:

X = F(E|Y) a.s. (34)

7.2 PROOF OF THEOREM 3.2

Proof. We use Theorem 7.1 inductively.

1. Consider the cqf F1 of P(X1|Y). Then by 7.1 there is
a random variable E1 ∼U [0,1] independent of Y such
that X1 = F1(E1|Y) a.s.

2. Now consider the cqf F2 of P(X2|E1,Y). Then by 7.1
there is a random variable E2 ∼U [0,1] independent of
E1, Y such that X2 = F2(E2|E1,Y) a.s.

3. Now consider the cqf F3 of P(X3|E2,E1,Y). Then by
7.1 there is a random variable E3∼U [0,1] independent
of E2,E1, Y such that X3 = F3(E3|E2,E1,Y) a.s.

4. and so on .... until:

5. XM = FM(EM|EM−1, . . . ,E1,Y) a.s. with EM ∼U [0,1]
independent of EM−1, . . . ,E1 ,Y.

Now we put Zd := Φ−1(Ed), where Φ is the cdf of N (0,1).
Then Ed = Φ(Zd) and the Zd are N (0,1)-distributed and
Z = (Z1, . . . ,ZM) is independent Y). So Z = (Z1, . . . ,ZM)∼
N (0,IM) and independent of Y. Furthermore, we have
almost surely the equations:

X1 = F1(Φ(Z1)|Y), (35)
X2 = F2(Φ(Z2)|Φ(Z1),Y), (36)

...
. . . (37)

XM = FM(Φ(ZM)|Φ(ZM−1), . . . ,Φ(Z1),Y). (38)

7.3 PROOF OF THEOREM 3.3

Proof. This follows the same steps as the general construc-
tion in Equations 3, 4, 5, 6, where p(x|w) = δw(x) reflects
the identity map. In Equation 7, note that p(z|w) is lin-
ear Gaussian by the well-known conditioning formula for
jointly Gaussian distributions. We then arrive at Equation 8,
where it can be checked that in Equation 9 both parts, p(z|w)
and p(y|x,z), are linear Gaussian, thus makes p(y|x,w) lin-
ear Gaussian. Finally, we use the reparameterization trick
together with a Cholesky decomposition, as seen in Sec-
tion 3.2, to turn p(w) into a standard Gaussian p(u), which
makes p(x|u), as a composition of identity map and linear
Gaussian also a linear Gaussian. Note that p(y|x,u) again
is linear Gaussian by similar arguments. Last we use the
reparameterization trick again to obtain p(y|x,u,v) where
V∼N (0,IM).

7.4 PROOF OF THEOREM 3.4

Proof. The linear version of the reduced SCM in Equation
13 entails the following distributions over x and y

p(x) = N (x|a,BB>), (39)

p(y|x) = N (y|c+Dx+EB−1(x−a),FF>), (40)

p(y|do(x)) = N (y|c+Dx,EE>+FF>), (41)

Comparing Equations 14, 15, 16 with 39, 40, 41 we imme-
diately get the equations for the parameters:

α = a, (42)

Σ = BB>, (43)

γ +∆x = c+(D+EB−1)x−EB−1a, (44)

γ
x=0
= c−EB−1a, (45)

Π = FF>, (46)
γ̃ = c, (47)

∆̃ = D, (48)

Π̃ = EE>+FF>. (49)
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Substituting a,c,D,FF> and then subtracting Equation 45
from 44 and solving for all x we get the constraints:

∆ = ∆̃+EB−1, (50)

γ = γ̃−EB−1
α, (51)

Π̃ = Π+EE>. (52)

With Equation 50 we see that E = (∆− ∆̃)B, which we can
just plug into Equations 51 and 52. Finally using Equation
43 to replace BB> with Σ in Equation 52 will give the claim.

7.5 REDUCTION WITH OBSERVED
CONFOUNDERS

There are many scenarios where we are interested in esti-
mating the conditional causal effect of interventions given
additional covariates C that might confound treatment and
outcome, for example when estimating the efficacy of a vac-
cine depending on age, weight or gender. We again consider
a treatment variable X ∈X = RN , an outcome variable
Y ∈ Y = RM , and a set of K latent confounders Z1, . . . ,ZK
in arbitrary standard measurable spaces (e.g., Rd or dis-
crete). In addition, let there be L observed confounders
C1, . . . ,CL of X and Y, again in arbitrary standard measur-
able spaces. We allow for arbitrary causal relations and
dependencies between the confounders. In the following,
we summarize all observed confounders using a single vari-
able C = (C1, . . . ,CL) ∈ C and all latent confounders as
Z = (Z1, . . . ,ZK) ∈ Z . We follow a similar sequence of
steps as in Section 3.1 to derive a reduced causal model of
the following form

p(x,y,w,c) = p(y|x,w,c)p(x|w)p(w|c)p(c). (53)

as illustrated in Figure 5 (a–d). At every step, the Bayesian
network is observationally equivalent to the ones before,
and also interventionally equivalent for interventions on X
and Y.

We can now use a similar approach as in Section 3.2, and
in addition marginalize out W as seen in Figure 5 (g), to
convert the causal Bayesian Network into an SCM with
structural equations of the form given below

X = F(U,C),

Y = G(V,X,U,C), (54)

where U ∼ N (0,IN)⊥⊥ V ∼ N (0,IM) and F and G are
two deterministic maps. This is illustrated in Figure 5 (e–h).
Again, at every step, the Bayesian network is observation-
ally equivalent to the ones before, and also interventionally
equivalent for interventions on X and Y.

7.6 LINEAR EXPERIMENT

We now show the capabilities of our flow model to learn the
model parameters jointly from observational and interven-
tional data. Throughout this experiment we assume x,y ∈ R.
We generate training, validation and test data using the fol-
lowing linear SCM
Observational

u∼N (0,1)⊥⊥ v∼N (0,1) (55)
xo = 2 ·u+1 (56)
yo = 1.5 · v− xo−3 ·u+2 (57)

Interventional

u∼N (0,1)⊥⊥ v∼N (0,1) (58)
xi ∼N (0,1) (59)
yi = 1.5 · v− xi−3 ·u+2 (60)

Since we know that the data is generated by a linear SCM
we choose the transformations in our flow model to be linear
as well

u = fa,b(x) = a · x+b (61)

x = f−1
a,b (u) =

1
a
· (u−b) (62)

(63)
v = gx,u;c,d,e, f (y) = c · y+d · x+ e ·u+ f (64)

y = g−1
x,u;c,d,e, f (v) =

1
c
· (v−d · x− e ·u− f ), (65)

in this case the volume terms in Equation 26 are simply
given by ∣∣∣∣δ fa,b(x)

δx

∣∣∣∣= |a| (66)

(67)∣∣∣∣δgx,u;c,d,e, f (y)
δy

∣∣∣∣= |c| . (68)

(69)

Given a dataset consisting of observational and interven-
tional data we can optimize the following loss

loss =
NO

∑
o=1
− log p(xo,yo)+α

NI

∑
i=1
− log p(do(xi),yi), (70)

where

log p(xo,yo) = log pV (c · yo +d · xo + e ·u+ f )

+ log |c|+ log pU (a · xo +b)+ log |a| , (71)
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Figure 5: A graphical explanation of our reduction technique in the presence of both observed and latent confounders. (a) We
assume a treatment variable X ∈RN , an outcome variable Y ∈RM , latent confounders Z1, . . . ,ZK , and observed confounders
C1, . . . ,CL, with arbitrary causal and probabilistic relations between the confounders. (b) We combine the latent confounders
into Z ∈Z and the observed confounders into C ∈ C , and factorize their joint distribution as p(z | c)p(c). (c) We create a
copy of X called W. (d) We refactorize p(w,z,c) as p(z |w,c)p(w | c)p(c). (e) We marginalize over Z. (f) We reparameterize
p(w | c) using Theorem 3.2 as a deterministic function, introducing an independent noise variable U. (g) We marginalize
over W. (h) We reparameterize p(y | x,u,c) with Theorem 3.2 as a deterministic function, introducing an independent noise
variable V. Note that at every step (a–h) the models remain observationally equivalent (i.e., p(c,x,y) is invariant), and also
interventionally equivalent with respect to interventions on X and Y (i.e., p(y,c | do(x)) and p(x,c | do(y)) are invariant).

and

log p(do(xi),yi) = log
∫

pV (c · yi +d · xi + e ·u+ f ) |c| p(u)du

+ log p(xi). (72)

We choose α = NO/NI . In Equation 71, we now use u =
fa,b(x) = a · x+b to impute u. Resulting in

log p(xo,yo) = log pV (c · yo +d · xo + e · (a · xo +b)+ f )

+ log |c|+ log pU (a · xo +b)+ log |a| . (73)

In Figure 6, we show the training data set (left) and samples
from our flow model trained with 100 observational samples
and 100 interventional samples (right). Our flow model
correctly finds the parameters used in the SCM used to
generate the data. After training our flow model is able to
generate both observational and interventional samples, as
described in Section 4.4.

7.7 BACKGROUND: NORMALIZING FLOWS

Normalizing flows are based on the idea of transforming
samples from a simple distribution into samples from a
complex distribution using the change of variable formula
[Rezende and Mohamed, 2015, Tabak and Turner, 2013]:

p(x) = pZ( f (x))
∣∣∣∣det

(
δ f (x)

δx

)∣∣∣∣ , (74)

where z = f (x) is a bijective map f : X → Z , pZ(z) a
simple prior distribution, and δ f (x)

δx the Jacobian with respect
to x. The transformation f (x) is commonly composed of
K transformations f (x) = fK ◦ · · · ◦ f1(x) to increase the
overall expressivity of f (x). The choice of f (x) is restricted
by the computational complexity of calculating the Jacobian
δ f (x)

δx . In recent years, a multitude of transformations with
easy to compute Jacobians have been developed, for an
overview see Kobyzev et al. [2020], Papamakarios et al.
[2019].

In this paper we will use neural spline flows [Durkan et al.,
2019, Dolatabadi et al., 2020]. Neural spline flows have
two major advantages: 1. A better functional flexibility than
affine transformations (y = sx+ t), 2. A numerically stable,
analytic inverse that has the same computational and space
complexities as the forward operation. While Durkan et al.
[2019] use quadratic, cubic, and, rational quadratic func-
tions whose inversion is done after solving degree 2 or 3
polynomial equations, Dolatabadi et al. [2020] show that
piecewise linear rational splines can perform competitively
with these methods without requiring a polynomial equation
to be solved in the inversion. Because of its reduced compu-
tational cost, we will use linear rational splines throughout
this paper.

Consider a set of monotonically increasing points
{(x(k),y(k))}K

k=0 called knots and a set of derivatives at each
of the points {d(k)}K

k=0. For each bin [x(k),x(k+1)] we want
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Figure 6: Top: 1000 observational and 1000 interventional
samples generated from the linear SCM in Section 7.6. Bot-
tom: 1000 observational and 1000 interventional samples
generated from our flow model trained with 100 observa-
tional and 100 interventional samples.

to find a linear rational function of the form ax+b
cx+d that fit the

given points and derivatives.

Algorithm 1 Fuhr and Kallay [1992] Linear Rational Spline
Interpolation of Monotonic data in the interval

[
x(k),x(k+1)

]
Input: x(k) < x(k+1), y(k) < y(k+1), d(k) > 0, d(k+1) > 0
1: set w(k) > 0
2: set 0 < λ (k) < 1

3: w(k) =

√
d(k)

d(k+1) w(k)

4: ym =
w(k)y(k)

(
1−λ (k)

)
+w(k+1)y(k+1)λ (k)

w(k)
(

1−λ (k)
)
+w(k+1)λ (k)

5: w(m) =
(
λ (k)w(k)d(k)+

(
1−λ (k)

)
w(k+1)d(k+1)

) x(k+1)−x(k)

y(k+1)−y(k)

Return: λ (k),w(k),w(m),w(k+1),y(m)

The values returned by Algorithm 1 are subsequentely used
to express the following linear rational spline function

f (φ) =


w(k)y(k)(λ (k)−φ)+w(m)y(m)φ

w(k)(λ (k)−φ)+w(m)φ
0≤ φ ≤ λ (k)

w(m)y(m)(1−φ)+w(k+1)y(k+1)(φ−λ (k))

w(m)(1−φ)+w(k+1)(φ−λ (k))
λ (k) ≤ φ ≤ 1

(75)

where φ = (x− x(k))/(x(k+1)− x(k)).

Spline flows have two hyperparameters, the boundary B
of the interval [−B,B] and the number of bins K. Outside
of the interval [−B,B] the identity function is used. Using
Equation 74 we can update the parameters of the neural
spline flow using maximum-likelihood estimation in combi-
nation with gradient descent. In the case where x has two or
more dimensions either coupling layers [Dinh et al., 2017]
or autoregressive layers [Papamakarios et al., 2017] can be
used.

At multiple points in this paper we are required to estimate
conditional distributions, e.g. p(y|x), where we will use
conditional normalizing flows to estimate conditional proba-
bilities. We consider the mapping f : X ×Y →Z , which
is bijective in Y and Z , and a simple prior distribution
pZ(z). Again, using the change of variable formula we can
express the conditional distributions p(y|x) as follows

p(y|x) = pZ( fx(y))
∣∣∣∣det

(
δ fx(y)

δy

)∣∣∣∣ . (76)

The conditional version of the linear rational spline trans-
formation uses a neural network to predict the derivatives d,
width w, height h, and λ from x: w,h,d,λ = NNθ (x).

7.8 SIMULATION DETAILS: NONLINEAR
EXPERIMENTS WITHOUT OBSERVED
CONFOUNDERS

The generation of observational and interventional sam-
ples follows Mooij et al. [2016]. Instead of using Gaussian
processes to model the causal mechanisms we use two ran-
domly initialized neural networks, NN1 and NN2.
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Sampling from a random distribution
We use the following steps in order to generate samples
from a random distribution

1. X ∼N (0,1)

2. sort X in ascending order =
−→
X

3. Sample from Gaussian Process: F ∼N (0,Kθ (
−→
X )+

σ2I), where for the kernel Kθ we use the squared expo-
nential covariance function with automatic relevance
determination kernel

4. use the trapezoidal rule to calculate the cumulative
integral of exp(F), we obtain a vector G where each

element Gi corresponds to Gi =
∫ −→Xi−→

X1
exp(F(x))dx

We will denote this whole sampling procedure by
G ∼ RD(θ ,σ), where we sample θ from a Gamma
distribution Γ(a,b) and set σ = 0.0001.

Generate observational and interventional data
1. Sample from latent variables

θEX ∼ Γ(aEX ,bEX ), (77)
θEY ∼ Γ(aEY ,bEY ), (78)
θZ ∼ Γ(aZ ,bZ), (79)
EX ∼RD(θEX ,σ), (80)
EY ∼RD(θEY ,σ), (81)
Z∼RD(θZ ,σ). (82)

2. Generate Xobservational

Xobservational = NN1(EX ,Z). (83)

3. Normalize Xobservational

Xobservational =
Xobservational−E[Xobservational]√

V[Xobservational]
. (84)

4. Generate Yobservational

Yobservational = NN2(Xobservational,EY ,Z). (85)

5. Sample from latent variables

EY ∼RD(θEY ,σ) (86)
Z∼RD(θZ ,σ) (87)

6. Generate Xinterventional

θX ∼ Γ(aX ,bX ), (88)
Xinterventional ∼RD(θX ,σ). (89)

7. Normalize Xinterventional

Xinterventional =
Xinterventional−E[Xinterventional]√

V[Xinterventional]
. (90)

8. Generate Yinterventional

Yinter = NN2(Xinter,EY ,Z). (91)

9. Generate noise

εx,observational ∼N (0,1), (92)
εx,interventional ∼N (0,1), (93)

θεx ∼ Γ(aεx ,bεx), (94)
εy,observational ∼N (0,1), (95)
εy,interventional ∼N (0,1), (96)

θεy ∼ Γ(aεy ,bεy). (97)

10. Add noise

X ′observational = Xobservational +θεx εx,observational, (98)
X ′interventional = Xinterventional +θεx εx,interventional, (99)
Y ′observational = Yobservational +θεy εy,observational, (100)

Y ′interventional = Yinterventional +θεy εy,interventional. (101)

11. Normalize Y jointly

Y ′ = [Y ′observational,Y
′
interventional], (102)

Y ′observational =
Y ′observational−E[Y ′]√

V[Y ′]
, (103)

Y ′interventional =
Y ′interventional−E[Y ′]√

V[Y ′]
. (104)

The two neural networks NN1 and NN2 are Multi-layer
perceptrons with a single hidden layer. The hidden layer
contains 1024 units. The input layer and the hidden layer
use a ReLU activation function. The weights and biases
for both neural networks are uniformly sampled from the
interval [−1,1]. We choose the other simulation parame-
ters as follows: aEX = aEY = aZ = aX = 5, aεx = aεy = 2,
bEX = bEY = bZ = bX = bεx = bεy = 0.1, σ = 0.0001

7.9 SIMULATION DETAILS: NONLINEAR
EXPERIMENTS WITH OBSERVED
CONFOUNDERS

In order to simulate data with additional observed con-
founders, we first generate C

θC = Γ(aC,bC), (105)
C∼RD(θC,σ), (106)

where aC = 10 and bC = 1. In addition, we modify steps 2,4
and 8 as follows

Xobservational = NN1(EX ,Z,C), (107)
Yobservational = NN2(Xobservational,EY ,Z,C), (108)

Yinter = NN2(Xinter,EY ,Z,C). (109)
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7.10 NONLINEAR EXPERIMENT RESULTS
WITHOUT OBSERVED CONFOUNDERS

Dataset 1: # of confounders = 1, random seed = 6

Figure 7: Interventional and observational samples. Top:
Observational and interventional training samples. Center:
Interventional samples from a flow model trained with 50
interventional samples. Bottom: Observational and inter-
ventional samples from a flow model trained with 50 in-
terventional samples and 1000 observational samples. The
samples are generated as described in Section 4.4.

Figure 8: Performances measured in terms of negative log-
likelihood on the observational and the interventional test
sets, respectively. Top: Comparison of a flow model trained
with 1000 observational samples, a flow model trained with
50, 100, 250, 500, 750, 1000 interventional samples, and a
flow model trained with both 1000 observational samples
and 50, 100, 250, 500, 750, 1000 interventional samples. All
flow models are evaluated on 1000 interventional samples
from the test set. Bottom: Comparison of a flow model
trained with 1000 observational samples, a flow model
trained with 50, 100, 250, 500, 750, 1000 interventional
samples, and a flow model trained with both 1000 obser-
vational samples and 50, 100, 250, 500, 750, 1000 inter-
ventional samples. All flow models are evaluated on 1000
observational samples from the test set. We report the mean
and standard error for 10 runs of each experiment.
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Dataset 2: # of confounders = 1, random seed = 8

Figure 9: Interventional and observational samples. Top:
Observational and interventional training samples. Center:
Interventional samples from a model trained with 50 in-
terventional samples. Bottom: Observational and interven-
tional samples from a model trained with 50 interventional
samples and 1000 observational samples. The samples are
generated as described in Section 4.4.

Figure 10: Performances measured in terms of negative log-
likelihood on the observational and the interventional test
sets, respectively. Top: Comparison of a flow model trained
with 1000 observational samples, a flow model trained with
50, 100, 250, 500, 750, 1000 interventional samples, and a
flow model trained with both 1000 observational samples
and 50, 100, 250, 500, 750, 1000 interventional samples. All
flow models are evaluated on 1000 interventional samples
from the test set. Bottom: Comparison of a flow model
trained with 1000 observational samples, a flow model
trained with 50, 100, 250, 500, 750, 1000 interventional
samples, and a flow model trained with both 1000 obser-
vational samples and 50, 100, 250, 500, 750, 1000 inter-
ventional samples. All flow models are evaluated on 1000
observational samples from the test set. We report the mean
and standard error for 10 runs of each experiment.
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Dataset 3: # of confounders = 2, random seed = 7

Figure 11: Interventional and observational samples. Top:
Observational and interventional training samples. Center:
Interventional samples from a model trained with 50 in-
terventional samples. Bottom: Observational and interven-
tional samples from a model trained with 50 interventional
samples and 1000 observational samples. The samples are
generated as described in Section 4.4.

Figure 12: Performances measured in terms of negative log-
likelihood on the observational and the interventional test
sets, respectively. Top: Comparison of a flow model trained
with 1000 observational samples, a flow model trained with
50, 100, 250, 500, 750, 1000 interventional samples, and a
flow model trained with both 1000 observational samples
and 50, 100, 250, 500, 750, 1000 interventional samples. All
flow models are evaluated on 1000 interventional samples
from the test set. Bottom: Comparison of a flow model
trained with 1000 observational samples, a flow model
trained with 50, 100, 250, 500, 750, 1000 interventional
samples, and a flow model trained with both 1000 obser-
vational samples and 50, 100, 250, 500, 750, 1000 inter-
ventional samples. All flow models are evaluated on 1000
observational samples from the test set. We report the mean
and standard error for 10 runs of each experiment.
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7.11 DATASET 4: 3 CONFOUNDERS, RANDOM
SEED = 1

Figure 13: Interventional and observational samples. Top:
Observational and interventional training samples. Center:
Interventional samples from a model trained with 50 in-
terventional samples. Bottom: Observational and interven-
tional samples from a model trained with 50 interventional
samples and 1000 observational samples. The samples are
generated as described in Section 4.4.

Figure 14: Performances measured in terms of negative log-
likelihood on the observational and the interventional test
sets, respectively. Top: Comparison of a flow model trained
with 1000 observational samples, a flow model trained with
50, 100, 250, 500, 750, 1000 interventional samples, and a
flow model trained with both 1000 observational samples
and 50, 100, 250, 500, 750, 1000 interventional samples. All
flow models are evaluated on 1000 interventional samples
from the test set. Bottom: Comparison of a flow model
trained with 1000 observational samples, a flow model
trained with 50, 100, 250, 500, 750, 1000 interventional
samples, and a flow model trained with both 1000 obser-
vational samples and 50, 100, 250, 500, 750, 1000 inter-
ventional samples. All flow models are evaluated on 1000
observational samples from the test set. We report the mean
and standard error for 10 runs of each experiment.
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Dataset 5: # of confounders = 4, random seed = 0

Figure 15: Interventional and observational samples. Top:
Observational and interventional training samples. Center:
Interventional samples from a model trained with 50 in-
terventional samples. Bottom: Observational and interven-
tional samples from a model trained with 50 interventional
samples and 1000 observational samples. The samples are
generated as described in Section 4.4.

Figure 16: Performances measured in terms of negative log-
likelihood on the observational and the interventional test
sets, respectively. Top: Comparison of a flow model trained
with 1000 observational samples, a flow model trained with
50, 100, 250, 500, 750, 1000 interventional samples, and a
flow model trained with both 1000 observational samples
and 50, 100, 250, 500, 750, 1000 interventional samples. All
flow models are evaluated on 1000 interventional samples
from the test set. Bottom: Comparison of a flow model
trained with 1000 observational samples, a flow model
trained with 50, 100, 250, 500, 750, 1000 interventional
samples, and a flow model trained with both 1000 obser-
vational samples and 50, 100, 250, 500, 750, 1000 inter-
ventional samples. All flow models are evaluated on 1000
observational samples from the test set. We report the mean
and standard error for 10 runs of each experiment.
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Dataset 6: # of confounders = 4, random seed = 7

Figure 17: Interventional and observational samples. Top:
Observational and interventional training samples. Center:
Interventional samples from a model trained with 50 in-
terventional samples. Bottom: Observational and interven-
tional samples from a model trained with 50 interventional
samples and 1000 observational samples. The samples are
generated as described in Section 4.4.

Figure 18: Performances measured in terms of negative log-
likelihood on the observational and the interventional test
sets, respectively. Top: Comparison of a flow model trained
with 1000 observational samples, a flow model trained with
50, 100, 250, 500, 750, 1000 interventional samples, and a
flow model trained with both 1000 observational samples
and 50, 100, 250, 500, 750, 1000 interventional samples. All
flow models are evaluated on 1000 interventional samples
from the test set. Bottom: Comparison of a flow model
trained with 1000 observational samples, a flow model
trained with 50, 100, 250, 500, 750, 1000 interventional
samples, and a flow model trained with both 1000 obser-
vational samples and 50, 100, 250, 500, 750, 1000 inter-
ventional samples. All flow models are evaluated on 1000
observational samples from the test set. We report the mean
and standard error for 10 runs of each experiment.
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Dataset 7: # of confounders = 5, random seed = 5

Figure 19: Interventional and observational samples. Top:
Observational and interventional training samples. Center:
Interventional samples from a model trained with 50 in-
terventional samples. Bottom: Observational and interven-
tional samples from a model trained with 50 interventional
samples and 1000 observational samples. The samples are
generated as described in Section 4.4.

Figure 20: Performances measured in terms of negative log-
likelihood on the observational and the interventional test
sets, respectively. Top: Comparison of a flow model trained
with 1000 observational samples, a flow model trained with
50, 100, 250, 500, 750, 1000 interventional samples, and a
flow model trained with both 1000 observational samples
and 50, 100, 250, 500, 750, 1000 interventional samples. All
flow models are evaluated on 1000 interventional samples
from the test set. Bottom: Comparison of a flow model
trained with 1000 observational samples, a flow model
trained with 50, 100, 250, 500, 750, 1000 interventional
samples, and a flow model trained with both 1000 obser-
vational samples and 50, 100, 250, 500, 750, 1000 inter-
ventional samples. All flow models are evaluated on 1000
observational samples from the test set. We report the mean
and standard error for 10 runs of each experiment.
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Dataset 8: # of confounders = 5, random seed = 9

Figure 21: Interventional and observational samples. Top:
Observational and interventional training samples. Center:
Interventional samples from a model trained with 50 in-
terventional samples. Bottom: Observational and interven-
tional samples from a model trained with 50 interventional
samples and 1000 observational samples. The samples are
generated as described in Section 4.4.

Figure 22: Performances measured in terms of negative log-
likelihood on the observational and the interventional test
sets, respectively. Top: Comparison of a flow model trained
with 1000 observational samples, a flow model trained with
50, 100, 250, 500, 750, 1000 interventional samples, and a
flow model trained with both 1000 observational samples
and 50, 100, 250, 500, 750, 1000 interventional samples. All
flow models are evaluated on 1000 interventional samples
from the test set. Bottom: Comparison of a flow model
trained with 1000 observational samples, a flow model
trained with 50, 100, 250, 500, 750, 1000 interventional
samples, and a flow model trained with both 1000 obser-
vational samples and 50, 100, 250, 500, 750, 1000 inter-
ventional samples. All flow models are evaluated on 1000
observational samples from the test set. We report the mean
and standard error for 10 runs of each experiment.
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Dataset 9: # of confounders = 7, random seed = 0

Figure 23: Interventional and observational samples. Top:
Observational and interventional training samples. Center:
Interventional samples from a model trained with 50 in-
terventional samples. Bottom: Observational and interven-
tional samples from a model trained with 50 interventional
samples and 1000 observational samples. The samples are
generated as described in Section 4.4.

Figure 24: Performances measured in terms of negative log-
likelihood on the observational and the interventional test
sets, respectively. Top: Comparison of a flow model trained
with 1000 observational samples, a flow model trained with
50, 100, 250, 500, 750, 1000 interventional samples, and a
flow model trained with both 1000 observational samples
and 50, 100, 250, 500, 750, 1000 interventional samples. All
flow models are evaluated on 1000 interventional samples
from the test set. Bottom: Comparison of a flow model
trained with 1000 observational samples, a flow model
trained with 50, 100, 250, 500, 750, 1000 interventional
samples, and a flow model trained with both 1000 obser-
vational samples and 50, 100, 250, 500, 750, 1000 inter-
ventional samples. All flow models are evaluated on 1000
observational samples from the test set. We report the mean
and standard error for 10 runs of each experiment.
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Dataset 10: # of confounders = 7, random seed = 5

Figure 25: Interventional and observational samples. Top:
Observational and interventional training samples. Center:
Interventional samples from a model trained with 50 in-
terventional samples. Bottom: Observational and interven-
tional samples from a model trained with 50 interventional
samples and 1000 observational samples. The samples are
generated as described in Section 4.4.

Figure 26: Performances measured in terms of negative log-
likelihood on the observational and the interventional test
sets, respectively. Top: Comparison of a flow model trained
with 1000 observational samples, a flow model trained with
50, 100, 250, 500, 750, 1000 interventional samples, and a
flow model trained with both 1000 observational samples
and 50, 100, 250, 500, 750, 1000 interventional samples. All
flow models are evaluated on 1000 interventional samples
from the test set. Bottom: Comparison of a flow model
trained with 1000 observational samples, a flow model
trained with 50, 100, 250, 500, 750, 1000 interventional
samples, and a flow model trained with both 1000 obser-
vational samples and 50, 100, 250, 500, 750, 1000 inter-
ventional samples. All flow models are evaluated on 1000
observational samples from the test set. We report the mean
and standard error for 10 runs of each experiment.
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7.12 NONLINEAR EXPERIMENT RESULTS
WITH OBSERVED CONFOUNDERS

Dataset 11: # of latent confounders = 1, # of observed
confounders = 3, random seed = 7

Figure 27: Interventional and observational samples. Top:
Observational and interventional training samples. Center:
Interventional samples from a model trained with 50 in-
terventional samples. Bottom: Observational and interven-
tional samples from a model trained with 50 interventional
samples and 1000 observational samples. The samples are
generated as described in Section 4.4.

Figure 28: Performances measured in terms of negative log-
likelihood on the observational and the interventional test
sets, respectively. Top: Comparison of a flow model trained
with 1000 observational samples, a flow model trained with
50, 100, 250, 500, 750, 1000 interventional samples, and a
flow model trained with both 1000 observational samples
and 50, 100, 250, 500, 750, 1000 interventional samples. All
flow models are evaluated on 1000 interventional samples
from the test set. Bottom: Comparison of a flow model
trained with 1000 observational samples, a flow model
trained with 50, 100, 250, 500, 750, 1000 interventional
samples, and a flow model trained with both 1000 obser-
vational samples and 50, 100, 250, 500, 750, 1000 inter-
ventional samples. All flow models are evaluated on 1000
observational samples from the test set. We report the mean
and standard error for 10 runs of each experiment.
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Dataset 12: # of latent confounders = 1, # of observed
confounders = 3, random seed = 9

Figure 29: Interventional and observational samples. Top:
Observational and interventional training samples. Center:
Interventional samples from a model trained with 50 in-
terventional samples. Bottom: Observational and interven-
tional samples from a model trained with 50 interventional
samples and 1000 observational samples. The samples are
generated as described in Section 4.4.

Figure 30: Performances measured in terms of negative log-
likelihood on the observational and the interventional test
sets, respectively. Top: Comparison of a flow model trained
with 1000 observational samples, a flow model trained with
50, 100, 250, 500, 750, 1000 interventional samples, and a
flow model trained with both 1000 observational samples
and 50, 100, 250, 500, 750, 1000 interventional samples. All
flow models are evaluated on 1000 interventional samples
from the test set. Bottom: Comparison of a flow model
trained with 1000 observational samples, a flow model
trained with 50, 100, 250, 500, 750, 1000 interventional
samples, and a flow model trained with both 1000 obser-
vational samples and 50, 100, 250, 500, 750, 1000 inter-
ventional samples. All flow models are evaluated on 1000
observational samples from the test set. We report the mean
and standard error for 10 runs of each experiment.
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Dataset 13: # of latent confounders = 2, # of observed
confounders = 1, random seed = 0

Figure 31: Interventional and observational samples. Top:
Observational and interventional training samples. Center:
Interventional samples from a model trained with 50 in-
terventional samples. Bottom: Observational and interven-
tional samples from a model trained with 50 interventional
samples and 1000 observational samples. The samples are
generated as described in Section 4.4.

Figure 32: Performances measured in terms of negative log-
likelihood on the observational and the interventional test
sets, respectively. Top: Comparison of a flow model trained
with 1000 observational samples, a flow model trained with
50, 100, 250, 500, 750, 1000 interventional samples, and a
flow model trained with both 1000 observational samples
and 50, 100, 250, 500, 750, 1000 interventional samples. All
flow models are evaluated on 1000 interventional samples
from the test set. Bottom: Comparison of a flow model
trained with 1000 observational samples, a flow model
trained with 50, 100, 250, 500, 750, 1000 interventional
samples, and a flow model trained with both 1000 obser-
vational samples and 50, 100, 250, 500, 750, 1000 inter-
ventional samples. All flow models are evaluated on 1000
observational samples from the test set. We report the mean
and standard error for 10 runs of each experiment.
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Dataset 14: # of latent confounders = 3, # of observed
confounders = 3, random seed = 5

Figure 33: Interventional and observational samples. Top:
Observational and interventional training samples. Center:
Interventional samples from a model trained with 50 in-
terventional samples. Bottom: Observational and interven-
tional samples from a model trained with 50 interventional
samples and 1000 observational samples. The samples are
generated as described in Section 4.4.

Figure 34: Performances measured in terms of negative log-
likelihood on the observational and the interventional test
sets, respectively. Top: Comparison of a flow model trained
with 1000 observational samples, a flow model trained with
50, 100, 250, 500, 750, 1000 interventional samples, and a
flow model trained with both 1000 observational samples
and 50, 100, 250, 500, 750, 1000 interventional samples. All
flow models are evaluated on 1000 interventional samples
from the test set. Bottom: Comparison of a flow model
trained with 1000 observational samples, a flow model
trained with 50, 100, 250, 500, 750, 1000 interventional
samples, and a flow model trained with both 1000 obser-
vational samples and 50, 100, 250, 500, 750, 1000 inter-
ventional samples. All flow models are evaluated on 1000
observational samples from the test set. We report the mean
and standard error for 10 runs of each experiment.

29



Dataset 15: # of latent confounders = 4, # of observed
confounders = 4, random seed = 2

Figure 35: Interventional and observational samples. Top:
Observational and interventional training samples. Center:
Interventional samples from a model trained with 50 in-
terventional samples. Bottom: Observational and interven-
tional samples from a model trained with 50 interventional
samples and 1000 observational samples. The samples are
generated as described in Section 4.4.

Figure 36: Performances measured in terms of negative log-
likelihood on the observational and the interventional test
sets, respectively. Top: Comparison of a flow model trained
with 1000 observational samples, a flow model trained with
50, 100, 250, 500, 750, 1000 interventional samples, and a
flow model trained with both 1000 observational samples
and 50, 100, 250, 500, 750, 1000 interventional samples. All
flow models are evaluated on 1000 interventional samples
from the test set. Bottom: Comparison of a flow model
trained with 1000 observational samples, a flow model
trained with 50, 100, 250, 500, 750, 1000 interventional
samples, and a flow model trained with both 1000 obser-
vational samples and 50, 100, 250, 500, 750, 1000 inter-
ventional samples. All flow models are evaluated on 1000
observational samples from the test set. We report the mean
and standard error for 10 runs of each experiment.
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