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Abstract

Selection bias is ubiquitous in real-world
data, and can lead to misleading results if not
dealt with properly. We introduce a condi-
tioning operation on Structural Causal Mod-
els (SCMs) to model latent selection from a
causal perspective. We show that the condi-
tioning operation transforms an SCM with
the presence of an explicit latent selection
mechanism into an SCM without such se-
lection mechanism, which partially encodes
the causal semantics of the selected subpop-
ulation according to the original SCM. Fur-
thermore, we show that this conditioning op-
eration preserves the simplicity, acyclicity,
and linearity of SCMs, and commutes with
marginalization. Thanks to these proper-
ties, combined with marginalization and in-
tervention, the conditioning operation offers
a valuable tool for conducting causal rea-
soning tasks within causal models where la-
tent details have been abstracted away. We
demonstrate by example how classical results
of causal inference can be generalized to in-
clude selection bias and how the conditioning
operation helps with modeling of real-world
problems.

1 Introduction

Selection bias is prevalent in numerous real-world
problems, and naive analyses can result in counterintu-
itive paradoxes and misleading conclusions (Berkson,
1946; Zhao et al., 2021; Fryer Jr, 2019). While there
are various methods to address selection bias (see, e.g.,

Smith (2020) and the references therein), a causal per-
spective can aid in understanding its behavior struc-
turally (Hernán et al., 2004; Bareinboim and Pearl,
2012).

One approach to modeling selection bias involves
using a Structural Causal Model (SCM, see Pearl
(2009)) that explicitly describes the selection mecha-
nism, as demonstrated in the ‘s-recoverability’ work by
Bareinboim and Pearl (2012). However, this necessi-
tates a detailed knowledge of the selection mechanism,
which is often unavailable. In this context, we propose
an alternative method for addressing latent selection
bias that allows one to abstract away modeling details
irrelevant to the causal inference task of interest.

To illustrate, we discuss a toy example, demonstrating
how to obtain correct results without assuming any
specific details about the latent selection mechanism.

Example 1 (Car mechanic) Cars start successfully
if their battery is charged and their start engine is op-
erational. Introduce binary endogenous variables B0

(“battery”), E0 (“start engine”) and S0 (“car starts”)
measured at time t0 and variables B1, E1 and S1 with
similar meaning for the same car but measured at time
t1 with t1 > t0. Assume that the following SCM, whose
graph is depicted in Figure 1, is a causal model for the
population of all cars:1

M :







UB ∼ Ber(1 − δ), UE ∼ Ber(1− ǫ),
B0 = UB, E0 = UE, S0 = B0 ∧ E0,

B1 = B0, E1 = E0, S1 = B1 ∧ E1.

where UB and UE are latent exogenous independent
Bernoulli-distributed random variables with parame-
ters 1− δ and 1− ǫ. Assume that states of the battery
and start engine do not change from time t0 to t1.

A car mechanic can use this model M to predict the ef-
fects of interventions on cars. For example, the proba-
bility that charging the battery will make non-starting
cars start is PM (S1 = 1 | do(B1 = 1), S0 = 0) =

1For simplicity, we assume no other possible causes of
a non-starting car (like the fuel tank being empty).
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δ(1−ǫ)
δ+(1−δ)ǫ , and the probability that replacing the start

engine will make non-starting cars start is PM (S1 =

1 | do(E1 = 1), S0 = 0) = (1−δ)ǫ
ǫ+δ(1−ǫ) .

Now suppose that the car mechanic is ignorant of the
model M , but wants to take a data-driven approach
to repairing cars. The goal is to use a large num-
ber of observational and interventional data that she
collected from her workshop to estimate an SCM M̃

that allows her to predict the effects of interventions
(charging the battery, replacing the start engine, etc.)
on non-starting cars. The SCM M̃ that she estimates,
whose graph is depicted in Figure 1, is given by

M̃ :

{

(UB, UE) ∼ Pθ(UB, UE)
B1 = UB, E1 = UE , S1 = B1 ∧ E1

with Pθ(UB, UE) = δǫ
δ+(1−δ)ǫδ{UB=UE=0} +

δ(1−ǫ)
δ+(1−δ)ǫδ{UB=0,UE=1} + (1−δ)ǫ

δ+(1−δ)ǫδ{UB=1,UE=0}.

Performing calculations in M̃ gives the two target
interventional quantities PM̃ (S1 = 1 | do(B1 = 1)) =
δ(1−ǫ)

δ+(1−δ)ǫ and PM̃ (S1 = 1 | do(E1 = 1)) = (1−δ)ǫ
ǫ+δ(1−ǫ) .

Besides this, M̃ reproduces the observational dis-
tribution for non-starting cars: PM̃ (B1, E1, S1) =
PM (B1, E1, S1 | S0 = 0). So, the car mechanic (who
might not even be aware of the latent selection mech-
anism S0 = 0) can still use an SCM as an accurate
causal model to predict the effects of interventions (on
the subpopulation of cars that are of her concern).

Note that we could also have obtained the model M̃
directly from M , by (i) replacing PM (UB, UE) by
PM (UB, UE | S0 = 0), and (ii) marginalizing out
B0, E0 and S0 (by substituting the structural equa-
tions for B0, E0 and S0 in the remaining structural
equations and then removing these variables from the
model). This allows us to effectively abstract away
irrelevant latent modeling details: (i) the latent vari-
ables B0, E0 and S0, (ii) their causal mechanisms, and
(iii) the selection step on S0 = 0. In Section 3, we for-
mally define this operation of conditioning on an event
for SCMs in more generality.

B0 E0

B1 E1

S0

S1

G(M)

B1 E1

S1

G(M̃)

Figure 1: The causal graphs of the SCMs M and M̃

in Example 1. Conditioning M on S0 = 0 yields M̃ .
The gray nodes are latent.

Our Contributions We define a conditioning op-
eration on SCMs to model latent selection. The ob-

servational probability distribution of the conditioned
SCM is the same as the one of the original SCM con-
ditional on the selection event. The conditioned SCM
also preserves interventional and counterfactual se-
mantics w.r.t. the non-ancestors of the selection nodes,
and preserves important model properties (acyclic-
ity/linearity/simplicity). For the graphical represen-
tation of SCMs, we generalize the semantics of bidi-
rected edges in directed mixed graphs so that these do
not only indicate latent common confounding but also
indicate dependencies stemming from latent selection.
Our construction allows to easily extend many existing
results for SCMs (e.g., do-calculus, adjustment crite-
ria, identification results, ect.) to allow for condition-
ing and latent selection.

Related Work Bareinboim and Tian (2015) dealt
with the so-called ‘s-recoverability’ problem of selec-
tion bias. They made an explicit modeling assump-
tion about the selection variables via causal graphs
and explored graphical criteria under which one can
recover causal quantities in the total population from
the data of the subpopulation. There exist probabilis-
tic graphical model classes equipped with marginaliza-
tion and conditioning operations, e.g., ancestral graphs
(Richardson and Spirtes, 2002) and d- or σ-connection
graphs (Hyttinen et al., 2014; Forré and Mooij, 2018)
whose causal interpretation is not completely clear.
For example, Zhang (2008) gave a causal interpreta-
tion to MAGs ruling out selection bias, but no follow-
up work deals with selection bias, as far as we know.

2 Preliminaries

In this section, we recall some basics of SCMs and
introduce notations we use in the current paper. To
save space, we put some definitions in supplement. We
follow the formal setup of Bongers et al. (2021).

Definition 2 (Structural Causal Model) A
Structural Causal Model (SCM) is a tuple
M = (V,W,X ,P, f) such that

• V,W are disjoint finite sets of labels for the en-
dogenous variables and the exogenous ran-
dom variables, respectively;

• the state space X =
∏

i∈V ∪̇W Xi is a product of
standard measurable spaces Xi;

• the exogenous distribution P is a probability
distribution on XW that factorizes as a product
P =

⊗

w∈W P(Xw) of probability distributions
P(Xw) on Xw;

• the causal mechanism is specified by the mea-
surable mapping f : X → XV .
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Definition 3 (Hard intervention) Given an SCM
M , an intervention target T ⊆ V and an intervention
value xT ∈ XT , we define the intervened SCM

Mdo(XT=xT ) := (V,W,X ,P, (fV \T , xT )).

This replaces the targeted endogenous variables by
specified values. In this work, we do not assume that
all the endogenous variables in an SCM can be inter-
vened on, which deviates from the standard modeling
assumption. One can define other types of interven-
tions like soft or probabilistic ones, and the results in
the following also hold replacing hard interventions by
other types of interventions.

Besides interventional semantics, one can also describe
counterfactual semantics of an SCM by performing in-
terventions in its twin SCM (see supplement).

Given an SCM M , one can define its causal graph
G(M) and augmented causal graph Ga(M) to give an
intuitive and compact graphical representation of the
causal model (see supplement). One can read off use-
ful causal information purely from the causal graphs
without knowing the details of the underlying SCMs.

Notation 4 In all the causal graphs, we use gray
nodes to represent latent variables. We assume that la-
tent variables are non-intervenable. Dashed nodes rep-
resent observable but non-intervenable variables, and
solid nodes represent observable and intervenable vari-
ables. Exogenous variables are assumed latent.

Definition 5 (Solution function of an SCM)
Given an SCM M , we call a measurable mapping
gS : XV \S × XW → XS a solution function of M

w.r.t. S ⊆ V if for P(XW )-a.a. xW ∈ XW and for
all xV \S ∈ XV \S, one has that gS(xV \S , xW ) satisfies
the structural equations for S, i.e.,

gS(xV \S , xW ) = fS(xV \S , g
S(xV \S , xW ), xW ).

When S = V , we denote gV by g, and call g a solu-
tion function of M .

Definition 6 (Unique solvability) An SCM M is
called uniquely solvable w.r.t. S ⊆ V if it has a
solution function w.r.t. S that is essentially unique
in the sense that if gS and g̃S both satisfy the struc-
tural equations for S, then for P(XW )-a.a. xW ∈ XW

and for all xV \S ∈ XV \S, one has gS(xV \S , xW ) =
g̃S(xV \S , xW ). If M has an essentially unique solution
function w.r.t. V , then it is called uniquely solvable.

Note that a subset S does not inherit unique solvabil-
ity from unique solvability of any of its supersets in
general (Bongers et al. (2021, Appendix B.2)).

Definition 7 (Simple SCM) An SCM M is called
a simple SCM if it is uniquely solvable w.r.t. each
subset S ⊆ V .

Simple SCMs form a class of SCMs that preserves most
convenient properties of acyclic SCMs but allows for
weak cycles (acyclic SCMs are simple). We focus on
simple SCMs in this work so that we can avoid many
mathematical technicalities interfering with intuition.
We use PM (XV , XW ) to denote the unique probability
distribution of (XV , XW ) induced by a simple SCMM .

For a simple SCM, we can plug the solution function of
one component into other parts of the model so that we
can get a simple SCM that “marginalizes” it out while
preserving causal semantics (Bongers et al., 2021).

Definition 8 (Marginalization) Let M be a sim-
ple SCM and L ⊆ V . Then we call M\L = (V \

L,W,XV \L ×XW ,P, f̃) with

f̃(xV \L, xW ) = fV \L(xV \L, g
L(xV \L, xW ), xW )

a marginalization of M over V \ L.

3 Conditioning Operation on SCMs

In Section 3.1, we define the conditioning operation
on simple SCMs. We shall derive some properties of it
in Section 3.2, and the proofs can be found in supple-
ment. In Section 3.3, we make some important caveats
on how to interpret the conditioned SCMs when mod-
eling. In the whole section, we assume:

Assumption 9 M = (V,W,X ,P, f) is a simple SCM
such that PM (XS ∈ S) > 0 for some S ⊆ V and
measurable subset S ⊆ XS.

We write O := V \ S. We use PM (XO | do(XT =
xT ), XS ∈ S) := PMdo(XT =xT )

(XO | XS ∈ S) to rep-
resent the probability distribution of XO when first
intervening on XT = xT and second conditioning on
XS ∈ S.2

3.1 Definition of Conditioning Operation

Suppose that we condition on the event {XS ∈ S}.
Then roughly speaking, the conditioning operation can
be divided into three steps:

1. merging all the exogenous random variables that
are ancestors of the selection variables;

2. updating the exogenous probability distribution
to the posterior given the observation XS ∈ S;

2“First” and “second” here refer to the order of applying
the operations on the SCM.
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3. marginalizing out the selection variables.

We give the formal definition of the conditioned SCMs
specializing to the class of simple SCMs for simplicity.
See Figure 2 for an intuitive graphical representation.3

Definition 10 (Conditioned SCM) Assume
Assumption 9. Write Sc := (V ∪ W ) \ S and
B := AncGa(M)(S). Let gS : XW × XO → XS

be the essentially unique solution function of
M w.r.t. S. We define the conditioned SCM

M|XS∈S :=
(

V̂ , Ŵ , X̂ , P̂, f̂
)

by:

• V̂ := V \ S;

• Ŵ := (W \B) ∪̇ {⋆W} with ⋆W := B ∩W ;

• X̂ := XO × X̂
Ŵ

:= XO ×
(

XW\B ×X⋆W

)

, where
X⋆W

:= XW∩B;

• P̂ := P(XW\B) ⊗ P(X⋆W
), where P(X⋆W

) :=
PM (XW∩B | XS ∈ S);

• f̂(x
V̂
, x

Ŵ
)

:= fO(xO, g
S(xO, xW\B , x⋆W

), xW\B , x⋆W
).

It is easy to check that M|XS∈S is indeed an SCM.

Remark 11 (1) In Definition 10, M|XS∈S actually
depends on the choice of gS, but different ver-
sions are equivalent (in the sense of Definition
32). Here we abuse terminology and call M|XS∈S

“the conditioned SCM” of M given XS ∈ S rather
than “a conditioned SCM”, and work with equiva-
lence classes of SCMs. Note that if M and M̃ are
equivalent, then M|XS∈S is equivalent to M̃|XS∈S .

(2) The reasons of assuming P(XS ∈ S) > 0 are two-
fold. First, in the real world, we never observe
data from a null event, and therefore it is reason-
able not to model such cases. Second, conditioning
on null events will introduce mathematical techni-
calities.

(3) Since marginalization preserves simplicity,
M|XS∈S is simple (see also Proposition 14).

(4) Since M is simple, we only need to update the
exogenous distribution of ancestors of the selec-
tion variables, which is not the case for nonsimple
SCMs. It is possible to generalize all the results
in this work to more general class of SCMs.

3In the graphical representations of the conditioning op-
eration such as Figure 2 and Figure 3, we assume no causal
effects canceled out because of marginalization or changing
the underlying population.

Notation 12 We often denote M|XS∈S by M|S if it
is clear from the context that S is a measurable subset
in which the variable XS takes values.

E1 E2

E3 E4

E5

X Y

S

Z1

Z2

Z3

Ga(M)

E{1,2}

E3 E4

E5

X Y

Z1

Z2

Z3

Ga(M|XS∈S)

Figure 2: Graphical representation of conditioning on
XS ∈ S. First merge the exogenous ancestors of S, i.e.,
E1 and E2, to get a merged node E{1,2}. Then update
the exogenous probability distribution P(XE1 , XE2)
to the posterior PM (XE1 , XE2 | XS ∈ S). Finally,
marginalize out the node S. X and Y are dashed, since
they have become non-intervenable (see Section 3.3).

If S = S1×· · ·×Sn with measurable subsets Si ⊆ XSi

for i = 1, . . . , n, then we could also define M|S :=
(

(M|S1
)···

)

|Sn

by applying the conditioning operation

iteratively to the components of the Cartesian prod-
uct instead. This can give a more fine-grained model
as shown in Figure 3. The problem is that in gen-
eral applying the iterative conditioning in different or-
ders may result in non-equivalent models with different
graphs. Luckily, iterative conditioning will generate
counterfactually equivalent SCMs, as we will show in
the next subsection.4

Note that the above conditioning operation is defined
on simple SCMs. In practice, people often use causal
graphs to communicate causal knowledge, without re-
ferring to the underlying SCMs. To support this, we
give a purely graphical conditioning operation defined
on directed mixed graphs (DMGs). An example is
given in supplement. As we will show in the next sub-
section, the purely graphical conditioning operation
interacts well with the SCM conditioning operation.

Definition 13 (Conditioned DMG) Let
G = (V,E,H) be a DMG consisting of nodes V ,
directed edges E and bidirected edges H. For S ⊆ V ,
we define the conditioned DMG as

G|S =
(

V|S , E|S , H|S

)

,

where

• V|S := V \S with AncG(S) \ S dashed;

4Note that counterfactually equivalent SCMs may
not be equivalent or possess the same graphs. See
Bongers et al. (2021).
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E1 E2 E3 E4 E5

X1 Y1 Z

S1 S2

X2 Y2

S3

Ga(M)

E{123} E{45}

X1 Y1 Z X2 Y2

Ga
(

((M|S1
)|S2

)|S3

)

E{12345}

X1 Y1 Z X2 Y2

Ga(M|S)

Figure 3: Graphical representation of the multiple-
node conditioning operation. If we condition on the
event (S1, S2, S3) ∈ S1 × S2 × S3 via iterative single-
node conditioning, then we get a finer conditioned
SCM ((M|S1

)|S2
)|S3

in contrast to a coarser model M|S

obtained by a single (joint) conditioning operation.

• E|S consists of all v u with v, u ∈ V \ S and
v 6= u for which there exists a directed walk in G:
v s1 · · · sn u, where all intermedi-
ate nodes s1, . . . , sn ∈ S (if any);

• H|S consists of all bidirected edges v u with
v, u ∈ V \ S and v 6= u, for which there ex-
ists a bifurcation in G: v s1 · · ·
sk−1 sk · · · sn u with all interme-
diate nodes s1, . . . , sn ∈ S (if any), or for which
v, u ∈ AncG(S) ∪ SibG(AncG(S)).

5

3.2 Properties of Conditioning Operation

The conditioning operation preserves simplicity, lin-
earity, and acyclicity of SCMs.

Proposition 14 (Simplicity/Acyclicity/Linearity)
If M is a simple (resp. acyclic) SCM with conditioned
SCM M|XS∈S , then the conditioned SCM M|XS∈S is
simple (resp. acyclic). If M is also linear, then so is
M|XS∈S.

The following proposition states that the purely graph-
ical conditioning operation is compatible with the
SCM conditioning operation.

Proposition 15 (Conditioned SCM & DMG)
Let M be a simple SCM with conditioned SCM
M|XS∈S. Then G(M|XS∈S) is a subgraph of G(M)|S.

5SibG(v) := {w ∈ G | v w ∈ G}.

Remark 16 Note that G(M|XS∈S) can be a strict
subgraph of G(M)|S.

The following lemma states that the conditioning com-
mutes with interventions on the non-ancestors of the
conditioning variables.

Lemma 17 (Conditioning & intervention)
Assume Assumption 9. Then we have
(

Mdo(XT =xT )

)

|XS∈S
=

(

M|XS∈S

)

do(XT=xT )
for

any T ⊆ O \AncGa(M)(S) and xT ∈ XT .

Remark 18 Since M is simple and T ⊆ O \
AncGa(M)(S), the probability PMdo(XT=xT )(XS ∈ S) =
PM (XS ∈ S) is well defined and strictly larger than
zero.

The following theorem shows that the conditioned
SCM indeed encodes the causal semantics according to
the original SCM for the selected subpopulation and
for interventions targeting the non-ancestors of S.

Theorem 19 (Preserving causal semantics)
Assume Assumption 9. Then we have

(1) PM|XS∈S
(XO) = PM (XO | XS ∈ S);

(2) for any T ⊆ V \AncGa(M)(S) and xT ∈ XT ,

PM|XS∈S

(

XO\T | do(XT = xT )
)

= PM

(

XO\T | do(XT = xT ), XS ∈ S
)

;

(3) for any T1 ⊆ V \ AncGa(M)(S) and xT1 ∈ XT1 ,
and any T2 ⊆ (V \AncGa(M)(S))

′ and xT2 ∈ XT2 ,

P(M|XS∈S)
twin(X(O∪O′)\(T1∪T2) |

do(XT1 = xT1 , XT2 = xT2))

= PMtwin(X(O∪O′)\(T1∪T2) |

do(XT1 = xT1 , XT2 = xT2), XS ∈ S).

The following corollary implies that different orderings
of iterative conditioning operations give rise to coun-
terfactually equivalent SCMs.

Corollary 20 (Iterative conditioning) Assume
Assumption 9 with S = S1 ∪ S2 and S = S1 × S2

with S1 ⊆ XS1 and S2 ⊆ XS2 both measurable. Then
(M|S1

)|S2
, (M|S2

)|S1
, and M|S1×S2

are counterfactu-
ally equivalent w.r.t. V \AncGa(M)(S1 ∪ S2).

6

The restriction that T ∩AncGa(M)(S) = ∅ in Theorem
19 cannot be relaxed, as the following example shows.7

6See Definition 33 or Bongers et al. (2021, Definition
4.5) for the definition of counterfactual equivalence.

7This was also recently observed by Mathur et al.
(2023)
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Example 21 (Conditioning & intervention)
Consider a linear SCM

M :











T = ET ,

X = αT + EX ,

Y = X + βT + EY .

The graph G(M) of M is shown in Figure 4.

T

X

Y

α 1

β

G(M)

Figure 4: Causal graph of linear SCM in Example 21.

In M , if we first condition on X = x and second in-
tervene on T , then we have

E(M|X=x)do(T=1)
[Y ]− E(M|X=x)do(T=0)

[Y ]

= E[(X + β + EY )− (X + EY ) | X = x]

= β.

On the contrary, if we first intervene on T and second
condition on X = x, then we have

E(Mdo(T=1))|X=x
[Y ]− E(Mdo(T=0))|X=x

[Y ]

= EM [α+ EX + β + EY | X = x]

− EM [EX + EY | X = x]

= α+ β.

In general conditioning and intervention do not com-
mute.

The following results show that conditioning and
marginalization commute.

Proposition 22 (Conditioning & marginalization)
Assume Assumption 9 and let L ⊆ V \ S. Then we
have (M\L)|S = (M|S)\L.

3.3 Some Important Caveats on Modeling
Interpretation

In the above two subsections, we presented the condi-
tioning operation as a purely mathematical operation
and derived some mathematical properties of it. In
this subsection, we shall make some remarks on how
to interpret the conditioned SCMs appropriately to
avoid confusion in modeling applications.

The subtleties are about intervening on ancestors of
selection nodes. In this case, conditioning and inter-
ventions are not commutative as we showed before.
Therefore, one should be careful about the order of
these two operations. On the one hand, if we first in-
tervene and second condition on descendants of inter-
vened variables, then the selected subpopulation will

also change according to the intervention. On the
other hand, first conditioning and second intervening
on ancestors of selection nodes has a “counterfactual
flavor”. Suppose that an SCM M with three vari-
ables T (“treatment”), Y (“outcome”) and S (“selec-
tion”) has causal graph T Y S. Intuitively,
“first-conditioning-second-intervening” indicates that
we first observe the results of the treatment and select
units with specific values (say S = s) and fix this sub-
population. After that, we go back to then perform
an intervention (say do(T = t)) on this fixed selected
subpopulation instead of the total population. Mathe-
matically, we have

P((M|S=s)do(T=t))(Y )

= PM|S=s
(Y | do(T = t))

= PM (Yt | S = s)

= PMtwin(Y ′ | do(T ′ = t), S = s)

6= P(Y | do(T = t), S = s), (in general)

= P(

(Mdo(T=t))|S=s

)(Y )

where we used the language of potential outcomes. In
Pearl’s terminology, this mixes different rungs: a rung-
two query in the conditioned SCM is equivalent to a
rung-three query in the original SCM.

As far as we know, there are two possible ways to
use the conditioning operation for modeling without
introducing confusion:

• before (or after) performing the conditioning op-
eration, marginalizing out all the ancestors of the
selection nodes, so that one can no longer inter-
vene on the ancestors of the selection nodes;

• specifying in the conditioned SCM and its graph
which variables are ancestors of the selection
nodes in the original SCM, and marking them as
non-intervenable (e.g., making them dashed).8

Remark 23 When the selection variables do not have
any intervenable ancestors (e.g., all the ancestors of
the selection nodes are latent), one can safely apply
the conditioning operation without any extra steps.

4 Some Applications

By the properties of the conditioning operation, all
the classical results for SCMs, such as identification
results (do-calculus, the back-door criterion), can be
applied to conditioned SCMs immediately. Combin-
ing with marginalization, the conditioning operation

8This means that we obtain a graph with mixed inter-
pretation in the sense that some part of the graph is causal
and some part is non-causal (purely probabilistic).
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also provides a way for understanding a DMG as a
causal graph that compactly encodes causal assump-
tions, where latent details of both latent confounding
and latent selection have been abstracted away.

For illustration purposes, we briefly discuss four ex-
amples in this section. They form a cohesive sequence
navigating us from high-level philosophical implica-
tions of the conditioning operation (“generalized Re-
ichenbach’s principle”), to the versatility of applica-
tions of classical identification results to conditioned
SCMs (Back-door theorem, instrumental variables),
and finally low-level concrete practical application of
conditioned SCMs in modeling real-world problems
(COVID example).

Example 24 (Reichenbach’s principle)
Reichenbach’s Principle of Common Cause
(Reichenbach, 1956) is often stated in this way:
if two variables are dependent, then one must cause
the other or the variables must have a common cause
(or any combination of these three possibilities). It is
essential to note that this conclusion holds only when
latent selection bias is ruled out, an assumption that
is typically left implicit.

With our conditioning operation, we can generalize it
in the following way. Assume that M is a simple SCM
that has two observed endogenous variables X and Y .
By the Markov property (Bongers et al., 2021, Theo-
rem 6.3), if X and Y are dependent, then X Y ,
X Y , or X Y (or any combination of these
three possibilities) are in the graph G(M). There exist
infinitely many SCMs M i, i ∈ I with an infinite index
set I, such that (M i

\Li
)|Si

= M where Li is a set of

latent variables of M i and XSi
∈ Si is the latent selec-

tion in M i. Hence, it implies that if two variables are
dependent, then one causes the other, or the variables
have a common cause or be subject to latent selection
(or any combination of these four possibilities).

Example 25 (Back-door theorem) Let M1 and
M2 be two SCMs with three variables T (“treatment”),
X (“covariates”), and Y (“outcome”) whose causal
graphs are shown in Figure 5. Under positivity as-
sumptions, Pearl’s Back-Door Theorem (Pearl, 2009)
gives, for i = 1, 2, the identification result:

PMi(Y | do(T = t))

=

∫

PMi(Y | X = x, T = t)PMi(X ∈ dx).
(1)

Thanks to marginalization and the conditioning oper-
ation, we can see M1 and M2 as abstractions of other
SCMs, i.e., M i = (M̃ i

\Li
)|Si

, for SCMs M̃ i, latent

variables Li = {Li
1, . . . , L

i
n}, and latent selection vari-

ables Si = {Si
1, . . . , S

i
m} taking values in measurable

T

X

Y

G(M1)

T

X

Y

G(M2)

Figure 5: Causal graphs of SCMs M i in Example 25.

sets Si with i = 1, 2. We present M̃ i
(j) for j = 1, 2 as

four examples of the infinitely many possibilities for
M̃ i in Figure 6.

With the help of Theorem 19, we can write (1) as

PM̃i(Y | do(T = t), XSi ∈ Si) =

∫

PM̃i(Y | X = x,

T = t,XSi ∈ Si)PM̃i(X ∈ dx | XSi ∈ Si).

Thus, the Back-door theorem can be applied directly to
the conditioned SCM, which is useful if the specific la-
tent structure of the SCM is not precisely known. One
can generalize other identifcation results similarly.

T

X

Y

L1 S1

G(M̃1
(1))

T

X

Y

L2
1

L2
2

L2
3

S2

G(M̃2
(1))

T

X

Y

L1
1

L1
2

S1
1 S1

2

S1
3

S1
4

G(M̃1
(2))

T

X

Y

L2
1

L2
2

L2
3

S2
1

S2
2

G(M̃2
(2))

Figure 6: Some possible causal graphs of SCMs M̃ i in
Example 25.

Example 26 (Instrumental variables) In some
situations, one cannot get point identification results
but can only derive bounds for target causal effects,
e.g., Pearl’s instrumental inequality (Pearl, 2009,
Chapter 8). It was derived for SCMs with graph
G(M) shown in Figure 7. Similar to Example 25, we
can generalize the inequality to any SCM M̃ such that
for latent variables L and latent selection on XS ∈ S,

G

(

(

M̃\L

)

|S

)

is of the form shown in Figure 7.

If we further assume that Y = βX + f(U) in M , then
when Cov(X,Y ) 6= 0 the parameter β is identifiable
from the conditional distribution PM̃ (T,X, Y | XS ∈

S) and given by
Cov

M̃
(T,Y |XS∈S)

Cov
M̃

(X,Y |XS∈S) =: β̃. That is because
CovM (T,Y )
CovM (X,Y ) = β = β̃. Therefore, we have generalized
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T

E

X

U

Y

Ga(M)

T X Y

G

(

(

M̃\L

)

|S

)

Figure 7: Graphs for the instrumental variables model.

the identification result to including a certain form of
selection bias.

Example 27 (Causal modeling) As concise depic-
tions of causal assumptions, causal graphs guide the
selection of appropriate statistical methods for ad-
dressing queries. For example, with the aim of un-
derstanding the effect of treatment strategies of dif-
ferent countries on the COVID-19 case fatality rate,
von Kügelgen et al. (2021) analyzed data from the ini-
tial outbreaks in 2020 in China and Italy and assumed
a causal graph G shown in Figure 8. For the persons
infected with COVID-19, the data record age (A), fa-
tality rate (F ), and country of residence (C) at the
time of infection. The authors draw a directed edge
from C to A to explain the dependency between C and
A observed in the data. However, this assumption im-
plies that if we conduct a randomized trail to assign
people to different countries, then the resulting age dis-
tribution will differ depending on the assigned country,
which does not appear to be a reasonable assumption.

In fact, we can draw a bidirected edge C A as
shown in G̃ to explain the statistical association be-
tween C and A, which could represent different latent
selection mechanisms or confounding between C and
A. First, the age distribution may differ between two
countries already before the outbreak of the virus (la-
tent selection on ‘person was alive (S′ = 1) in early
2020’, as in G1). Second, since only infected patients
were registered and both country and age may influ-
ence the risk of getting infected, selection on infection
status (S = 1) can also lead to C A (as in G2).
The combinations of both selection mechanisms (as in
G3 or G4) also lead to C A. With the conditioning
operation, we do not need to list (potentially infinitely
many) all the possible complete causal graphs includ-
ing all relevant latent variables that model the selection
mechanism, and we only need to consider DMGs on
these three observed variables, which is a much smaller
(finite) model space.

Thanks to properties of the conditioning operation, we
can answer causal queries like “what would be the ef-
fect on fatality of changing from China to Italy”, i.e.,
to compute the total causal effect TCE(Y ; c′ → c) :=
E[F | do(C = c)] − E[F | do(C = c′)], via the ab-
stract (conditioned) model G̃ (e.g., via adjusting on
age) without fully knowing all the latent details. Note

that the results based on G and G̃ are clearly different
(see supplement for details).

C

A

F

G

C

A

F

G̃

C

A

C′

A′

S′

F

G1

C

A

C′

A′

S

F

G2

C

A

C′

A′

S

S′

F

G3

C

A

C′

A′

S

S′

F

G4

Figure 8: Causal graphs for COVID-19 data. Note
that after applying the conditioning operation to se-
lection variables and marginalizing out remaining la-
tent variables, we reduce Gi to G̃ for i = 1, 2, 3, 4.

5 Conclusions

While marginalization plays a role of abstracting away
unnecessary unconditioned latent details of causal
models, we need another operation in case of latent
selection mechanisms. We gave a formal definition of
a conditioning operation on SCMs to take care of la-
tent selection. The conditioning operation preserves a
large part of the causal information, preserves impor-
tant model classes and interacts well with other oper-
ations on SCMs. We generalized the interpretation of
bidirected edges in directed mixed graphs to represent
both latent common causes and selection on a latent
event. Combined with marginalization and interven-
tion, the conditioning operation provides a powerful
tool for causal model abstraction and helps with many
causal inference tasks such as prediction of interven-
tions, identification and model selection.
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The supplementary material contains some definitions and detailed proofs of the results that are missing in the
main paper.

Supplement A. More SCM Preliminaries

To be as self-contained as possible, we include the definitions of twin SCM and (augmented) causal graphs of
SCMs. We follow the formal definitions of Bongers et al. (2021).

Definition 28 (Twin SCM) (Bongers et al., 2021, Definition 2.17) Let M = (V,W,X ,P, f) be an SCM. The
twinning operation maps M to the twin structural causal model (twin SCM)

M twin :=
(

V ∪ V ′,W,XV ×XV ′ ×XW ,P, f̃
)

,

where V ′ = {v′ : v ∈ V } is a disjoint copy of V and the causal mechanism f̃ : XV × XV ′ × XW → XV × XV ′ is
the measurable mapping given by f̃ (xV , xV ′ , xW ) = (f(xV , xW ), f (xV ′ , xW )).

Definition 29 (Parent) (Bongers et al., 2021, Definition 2.6) Let M = (V,W,X ,P, f) be an SCM. We call
k ∈ V ∪W a parent of v ∈ V if and only if there does not exist a measurable mapping f̃v : XV \k ×XW\k → Xv

such that for P(XW )-almost every xW ∈ XW , for all xV ∈ XV ,

xv = fv(xV , xW ) ⇐⇒ xv = f̃v
(

xV \k, xW\k

)

.

Definition 30 (Graph and augmented graph) (Bongers et al., 2021, Definition 2.7) Let M =
(V,W,X ,P, f) be an SCM. We define:

(1) the augmented graph Ga(M) as the directed graph with nodes V ∪W and directed edges u → v if and only
if u ∈ V ∪W is a parent of v ∈ V ;

(2) the graph G(M) as the directed mixed graph with nodes V , directed edges u v if and only if u ∈ V is
a parent of v ∈ V and bidirected edges u v if and only if there exists a w ∈ W that is a parent of both
u ∈ V and v ∈ V .

Example 31 Consider the SCM

M :







U ∼ Ber(1− ξ), UB ∼ Ber(1− δ), UE ∼ Ber(1− ε),
B0 = U,E0 = U, S0 = B0 ∧ E0,

B1 = B0 ∧ UB, E1 = E0 ∧ UE, S1 = B1 ∧ E1.

Then we have the (augmented) causal graphs of M shown in Figure 9.

U

B0 E0

UB UE

B1 E1

S0

S1

Ga(M)

B0 E0

S0

B1 E1

S1

G(M)

Figure 9: The (augmented) causal graphs of the SCM M in Example 31.

Definition 32 (Equivalence) (Bongers et al., 2021, Definition 2.5) An SCM M = (V,W,X ,P, f) is equiva-
lent to an SCM M̃ = (V,W,X ,P, f̃) if for all v ∈ V , for P-a.a. xW ∈ XW and for all xV ∈ XV ,

xv = fv(xV , xW ) ⇐⇒ xv = f̃v(xV , xW ).



Leihao Chen, Onno Zoeter, Joris M. Mooij

Definition 33 (Counterfactual equivalence) (Bongers et al., 2021, Definition 4.5) An SCM M =
(V,W,X ,P, f) is counterfactually equivalent to an SCM M̃ = (Ṽ , W̃ , X̃ , P̃, f̃) w.r.t. O ⊆ V ∩ Ṽ if for
any T1 ⊆ O and xT1 ∈ XT1 , and any T2 ⊆ O′ and xT2 ∈ XT2 ,

PMtwin(X(O∪O′)\(T1∪T2) | do(XT1 = xT1 , XT2 = xT2))

= PM̃twin(X(O∪O′)\(T1∪T2) | do(XT1 = xT1 , XT2 = xT2)).

Supplement B. Proofs

B.1 Proof of Proposition 14

Proposition 14 (Simplicity/Acyclicity/Linearity) If M is a simple (resp. acyclic) SCM with conditioned
SCM M|XS∈S , then the conditioned SCM M|XS∈S is simple (resp. acyclic). If M is also linear, then so is
M|XS∈S.

Proof We first show that the conditioning operation preserves simplicity of SCMs. First note that marginaliza-
tion preserves simplicity (Bongers et al., 2021, Proposition 8.2). Also note that both merging exogenous random
variables and changing the exogenous probability distribution preserve simplicity. Hence, the conditioning oper-
ation preserves simplicity.

We give the proof of the fact that the conditioning operation preserves acyclicity of SCMs. First note that merging
exogenous random variables and updating the exogenous probabilistic distribution preserve acyclicity. Then
since marginalization preserves acyclicity (Bongers et al., 2021, Proposition 5.11), we get that the conditioning
operation preserves acyclicity.

We now show that the conditioning operation preserves linearity of SCMs. Merging exogenous random variables
and changing the exogenous probability distribution preserve linearity. Marginalization also preserves linearity
(Bongers et al., 2021, Proposition C.5).

B.2 Proof of Proposition 15

Proposition 15 (Conditioned SCM & DMG) Let M be a simple SCM with conditioned SCM M|XS∈S .
Then G(M|XS∈S) is a subgraph of G(M)|S.

Proof This is easily seen from the definition and Bongers et al. (2021, Proposition 5.11).

B.3 Proof of Lemma 17

Lemma 17 (Conditioning & intervention) Assume Assumption 9. Then we have
(

Mdo(XT=xT )

)

|XS∈S
=

(

M|XS∈S

)

do(XT =xT )
for any T ⊆ O \AncGa(M)(S) and xT ∈ XT .

Proof In the proof, we set B := AncGa(M)(S) and O := V \ S. We check the definition one by one. For
(

M|S

)

do(XT =xT )
:= (V̂ , Ŵ , X̂ , P̂, f̂), we have:

• V̂ = V \ S;

• Ŵ = (W \B) ∪̇ {⋆W } with ⋆W = B ∩W ;

• X̂ = XSc\(B∩W ) ×X⋆W
;

• P̂ = P̂
(

XW\B

)

⊗ P̂(X⋆W
) = P

(

XW\B

)

⊗ PM (XW∩B | XS ∈ S);

• f̂
(

x
V̂
, x

Ŵ

)

=
(

fO\T

(

xO, g
S
(

xO, xW\B , x⋆W

)

, xW\B , x⋆W

)

, xT

)

.

We write B̃ := AncGa(Mdo(XT =xT ))(S). Note that since T∩B = ∅, it follows that B̃ = B. Since T ∩B = T∩B̃ = ∅,

we have PM (XB) = PMdo(XT =xT )
(XB̃). Hence, we can conclude that

PM (XW∩B | XS ∈ S) = PMdo(XT =xT )
(XW∩B̃ | XS ∈ S).
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Combining all the above ingredients, we have for
(

Mdo(XT =xT )

)

|S
:= (

ˆ̂
V,

ˆ̂
W,

ˆ̂X ,
ˆ̂
P,

ˆ̂
f):

•
ˆ̂
V = V \ S;

•
ˆ̂
W =

(

W \ B̃
)

∪̇ {⋆W } = (W \B) ∪̇ {⋆W } with ⋆W = B̃ ∩W = B ∩W ;

•
ˆ̂
X = XSc\(B̃∩W ) ×X⋆W

= XSc\(B∩W ) ×X⋆W
;

•
ˆ̂
P = P(XW\B̃)⊗

ˆ̂
P(X⋆W

) = P(XW\B̃)⊗PMdo(XT =xT )
(XW∩B̃ | XS ∈ S) = P(XW\B)⊗PM(XW∩B | XS ∈ S);

• For the causal mechanism, we have

ˆ̂
f
(

x ˆ̂
V
, x ˆ̂

W

)

= f̃O

(

xO, g̃
S
(

xO, xW\B̃ , x⋆W

)

, xW\B̃ , x⋆W

)

=
(

fO\T

(

xO, g̃
S
(

xO, xW\B , x⋆W

)

, xW\B, x⋆W

)

, xT

)

,

where f̃ is the causal mechanism ofMdo(XT=xT ) and g̃S is the (essentially unique) solution function ofMdo(XT=xT )

w.r.t. S. Note that gS = g̃S as T ∩B = ∅. Overall, it is then easy to see that
(

Mdo(XT =xT )

)

|S
=

(

M|S

)

do(XT=xT )
.

B.4 Proof of Theorem 19

Theorem 19 (Preserving causal semantics) Assume Assumption 9. Then we have

(1) PM|XS∈S
(XO) = PM (XO | XS ∈ S);

(2) for any T ⊆ V \AncGa(M)(S) and xT ∈ XT ,

PM|XS∈S

(

XO\T | do(XT = xT )
)

= PM

(

XO\T | do(XT = xT ), XS ∈ S
)

;

(3) for any T1 ⊆ V \AncGa(M)(S) and xT1 ∈ XT1 , and any T2 ⊆ (V \AncGa(M)(S))
′ and xT2 ∈ XT2 ,

P
(M|XS∈S)

twin(X(O∪O′)\(T1∪T2) |

do(XT1 = xT1 , XT2 = xT2))

= PMtwin(X(O∪O′)\(T1∪T2) |

do(XT1 = xT1 , XT2 = xT2), XS ∈ S).

Proof We first prove (1) of Theorem 19. Let g : XW → XV be the essentially unique solution function of M .
Write O := V \S and B := AncGa(M)(S) and ⋆W = B∩W . First note that the function ĝ : XW\B×X⋆W

→ XV \S

with

ĝ(xW\B , x⋆W
) := gO(xW\B , x⋆W

)

is the essentially unique solution function of M|S . In fact, for P(XW )-a.a. xW ∈ XW and all xV ∈ XV

{

xS = gS(xW )
xO = gO(xW )

⇔

{

xS = fS (xV , xW )
xO = fO (xV , xW )

⇔

{

xS = gS (xO, xW )
xO = fO (xV , xW )

⇔

{

xS = gS (xO, xW )
xO = fO

(

xO, g
S(xO, xW ), xW

)

.

Let P̂ denote the exogenous probability distribution of M|S , that is, P̂ := P(XW\B)⊗ P̂(X⋆W
), where P̂(X⋆W

) =
PM (XW∩B | XS ∈ S). Recall that we have

PM (XV ) = g∗ (P(XW )) (XV ) i.e. PM (XV ∈ A) = P(XW ∈ g−1(A))
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for any measurable subset A ⊆ XV . Then we have for any measurable subset A ⊆ XV

PM|S
(XO ∈ A) = P̂

(

X
Ŵ

∈ ĝ−1(A)
)

= P̂
(

X
Ŵ

∈ g−1
O (A)

)

= PM (XW ∈ g−1
O (A) | XS ∈ S)

= PM (XO ∈ A | XS ∈ S) .

We then show (2) of Theorem 19. Lemma 17 gives that
(

M|S

)

do(XT =xT )
=

(

Mdo(XT =xT )

)

|S
for any T ⊆ V \ B

and xT ∈ XT . We then have for T ⊆ V \B and xT ∈ XT

PM|S

(

XO\T | do(XT = xT )
)

= P(M|S)do(XT =xT )

(

XO\T

)

= P(Mdo(XT =xT ))|S

(

XO\T

)

= PMdo(XT =xT )
(XO\T | g̃S(XW ) ∈ S)

= PM (XO\T | do(XT = xT ), gS(XW ) ∈ S)

= PM (XO\T | do(XT = xT ), XS ∈ S),

where g̃ is the essentially unique solution function of Mdo(XT =xT ), which satisfies g̃S(xW ) = gS(xW ) for P(XW )-
a.a. xW ∈ XW .

We finally show (3) of Theorem 19. By the definition of conditioning operation and twinning operation, we
have

(

(M twin)|S
)

|S′ =
(

(M twin)|S
)

\S′ = (M|S)
twin, where S ′ ⊆ XS′ is such that S ′ = S and S′ is the copy

of S. We have from (2) of Theorem 19 that for any T1 ⊆ V \ AncGa(M)(S) and xT1 ∈ XT1 , and for any
T2 ⊆ (V \AncGa(M)(S))

′ and xT2 ∈ XT2 ,

P(M|S)
twin

(

X(O∪O′)\(T1∪T2) | do(XT1 = xT1 , XT2 = xT2)
)

= P((Mtwin)|S)
\S′

(

X(O∪O′)\(T1∪T2) | do(XT1 = xT1 , XT2 = xT2)
)

= P(Mtwin)|S

(

X(O∪O′)\(T1∪T2) | do(XT1 = xT1 , XT2 = xT2 )
)

= PMtwin(X(O∪O′)\(T1∪T2) | do(XT1 = xT1 , XT2 = xT2), XS ∈ S).

B.5 Proof of Corollary 20

Corollary 20 (Iterative conditioning) Assume Assumption 9 with S = S1 ∪ S2 and S = S1 × S2 with
S1 ⊆ XS1 and S2 ⊆ XS2 both measurable. Then (M|S1

)|S2
, (M|S2

)|S1
, and M|S1×S2

are counterfactually equivalent
w.r.t. V \AncGa(M)(S1 ∪ S2).

9

Proof Write O := V \(S1∪S2). From (3) of Theorem 19, it is easy to see that for any T1 ⊆ V \AncGa(M)(S1∪S2)
and xT1 ∈ XT1 , and any T2 ⊆ (V \AncGa(M)(S1 ∪ S2))

′ and xT2 ∈ XT2 ,

P((M|S1
)|S2)

twin

(

X(O∪O′)\(T1∪T2) | do(XT1 = xT1 , XT2 = xT2)
)

= P(M|S1)
twin

(

X(O∪O′)\(T1∪T2) | do(XT1 = xT1 , XT2 = xT2), XS2 ∈ S2

)

= PMtwin(X(O∪O′)\(T1∪T2) | do(XT1 = xT1 , XT2 = xT2), XS1 ∈ S1, XS2 ∈ S2)

= P(M|S2)
twin

(

X(O∪O′)\(T1∪T2) | do(XT1 = xT1 , XT2 = xT2), XS1 ∈ S1

)

= P
((M|S2

)|S1)
twin

(

X(O∪O′)\(T1∪T2) | do(XT1 = xT1 , XT2 = xT2)
)

.

Also note that

P(M|S1×S2)
twin

(

X(O∪O′)\(T1∪T2) | do(XT1 = xT1 , XT2 = xT2)
)

= PMtwin(X(O∪O′)\(T1∪T2) | do(XT1 = xT1 , XT2 = xT2), XS1 ∈ S1, XS2 ∈ S2).
9See Definition 33 or Bongers et al. (2021, Definition 4.5) for the definition of counterfactual equivalence.



Modeling Latent Selection with Structural Causal Models

B.6 Proof of Proposition 22

Proposition 22 (Conditioning & marginalization) Assume Assumption 9 and let L ⊆ V \ S. Then we
have (M\L)|S = (M|S)\L.

Proof When conditioning, we merge the exogenous ancestors of S, which commutes with marginalization. It
is easy to see that updating the exogenous probability distribution also commutes with marginalization. Also
note that (M\L)\S = (M\S)\L, since S ∩ L = ∅ (Bongers et al., 2021, Proposition 5.4). Combining these three
implies that (M\L)|S = (M|S)\L.

Supplement C. Details of Some Examples

C.1 Example of Definition 13

Here we show an example of the purely graphical conditioning operation, i.e., Definition 13. Assume we are
given a graph G as shown in Figure 10. Then conditioning on the node V5 gives the graph G|V5

shown in Figure
10.

V1

V6

V8

V2 V3 V4

V5

V7

G

V1

V6

V2 V3 V4

V7

V8

G|V5

Figure 10: DMG G and its Conditioned DMG G|V5
.

C.2 Example 27

We explain why one has two different answers to the same question based on G and G̃, respectively. For an SCM
with graph G, one has:

TCE(Y ; c′ → c) := E[F | do(C = c)]− E[F | do(C = c′)] = E[F | C = c]− E[F | C = c′].

On the other hand, for an SCM with graph G̃, one has:

TCE(Y ; c′ → c) := E[F | do(C = c)]− E[F | do(C = c′)]

=
∑

a

(E[F | C = c, A = a]− E[F | C = c′, A = a]) P(A = a)

6=
∑

a

(E[F | C = c, A = a]P(A = a | C = c)− E[F | C = c′, A = a]P(A = a | C = c′)) (in general)

= E[F | C = c]− E[F | C = c′].
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