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Abstract

Three distinct phenomena complicate statistical causal analysis: latent common causes,
causal cycles, and latent selection. Foundational works on Structural Causal Models
(SCMs), e.g., Bongers et al. (2021, Ann. Stat., 49(5): 2885-2915), treat cycles and latent
variables, while an analogous account of latent selection is missing. The goal of this ar-
ticle is to develop a theoretical foundation for modeling latent selection with SCMs. To
achieve that, we introduce a conditioning operation for SCMs: it maps an SCM with ex-
plicit selection mechanisms to one without them while preserving the causal semantics of
the selected subpopulation. Graphically, in Directed Mixed Graphs we extend bidirected
edges—beyond latent common causes—to also encode latent selection. We prove that the
conditioning operation preserves simplicity, acyclicity, and linearity of SCMs, and inter-
acts well with marginalization, conditioning, and interventions. These properties make
those three operations valuable tools for causal modeling, reasoning, and learning after
abstracting away latent details (latent common causes and selection). Examples show how
this abstraction streamlines analysis and clarifies when standard tools (e.g., adjustment,
causal calculus, instrumental variables) remain valid under selection bias. We hope that
these results deepen the SCM-based understanding of selection bias and become part of
the standard causal modeling toolbox to build more reliable causal analysis.
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1 Introduction

Bongers et al. (2021) provide a general measure-theoretic foundational theory for causal mod-
eling with Structural Causal Models (SCMs) with cycles and latent variables, but an analogous
treatment for latent selection is still absent. Addressing (latent) selection bias remains a signif-
icant challenge (Wald, 1943; Heckman, 1979; Zhao et al., 2021; Fryer Jr, 2019; Cooper, 1995).
For example, in some cases unconsciously selecting samples can induce “spurious dependency”
among collected samples, and therefore the famous Berkson’s paradox arises (Berkson, 1946;
Munafo et al., 2016). There are many types of selection bias without universally accepted
definitions and various methods to address them (Lu et al., 2022; Smith, 2020). In this work,
we focus on “truncating selection bias,” which occurs when an underlying (unobserved) fil-
tering process, denoted “XS ∈ S”, selects individual samples where the variable XS takes
values within a set S. In probability theory, this can be modeled as conditioning on the event
{XS ∈ S}.

To understand its structural behavior, one approach is to model selection bias via a causal
model that explicitly describes the selection mechanism (Pearl, 2009; Bareinboim and Pearl,
2012; Daniel et al., 2012; Abouei et al., 2024a; Hernán et al., 2004). This necessitates detailed
knowledge of the selection mechanism. However, in many situations, the selection mechanism
is unobserved (Cooper, 1995), which makes such knowledge unavailable and introduces a layer
of complexity with infinitely many possibilities. The goal of the current work is to study how
to model latent selection by effectively abstracting away its details in an SCM (Pearl, 2009;
Bongers et al., 2021).

1.1 Motivation

Marginalization of causal models is a powerful tool for abstracting away latent details, which
makes causal modeling more manageable and trustworthy (Bongers et al., 2021; Pearl, 2009;
Evans, 2016). By marginalizing out latent variables, we use one simplified model to rep-
resent infinitely many complex models, abstracting away unnecessary latent details while
preserving essential causal information such as observational/interventional/counterfactual
distributions, d-separations or σ-separations (Pearl, 2009; Forré and Mooij, 2017), and ances-
tral relationships among the observed variables. The SCM marginalization and causal graph
marginalization interact well and part of the nice properties can be compactly expressed via
Figure 1.1

For instance, the model G in Figure 2 effectively abstracts models Gi for i = 1, . . . , 5, . . .,
yielding the same identification result (under discreteness and positivity assumptions) regard-
less of the latent structure (front-door criterion (Pearl, 2009)):2

P(C = c | do(S = s)) =
∑
t

P(C = c | T = t)P(T = t | S = s).

1Replacing M with the intervened model Mdo(XT=xT ) where we intervene the variable XT to take on the
value xT (cf. Definition 2.2), we get the corresponding results for interventional distributions and intervened
graphs.

2More generally, the ID-algorithm was first proved to be sound and complete for models with bidirected
edges and then the results can be translated to the case with arbitrary latent structures via marginalization
(Tian and Pearl, 2002; Huang and Valtorta, 2008; Richardson et al., 2023).
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XA ⊥⊥
PM (XV )

XB | XC A
d/σ

⊥
G(M)

B | C

XA ⊥⊥
PM\L (XV \L)

XB | XC A
d/σ

⊥
G(M)\L

B | C

d/σ-Faithful

d/σ-Markov

d/σ-Faithful

d/σ-Markov

Figure 1: The logical relations between stochastic conditional independence in simple SCM M
and marginalized model M\L, and graphical separation (d- or σ-separation) in causal graph
G(M) and marginalized graph G(M)\L. SCM M has endogenous variables XV with XL

latent, and A,B,C ⊆ V \ L. The terms “d/σ-Markov” and “d/σ-Faithful” represent d- or
σ-Markov property and d- or σ-faithfulness, respectively, regarding PM (XV ) and G(M) (top),
and PM\L(XV \L) and G(M)\L (bottom).
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Figure 2: G effectively abstracts Gi for i = 1, . . . , 5, . . .

Motivating questions Selection bias is ubiquitous, often latent, and can lead to biased
results; therefore, not taking it into account may lead to an untrustworthy model. Unfor-
tunately, marginalization is not able to deal with latent selection bias (cf. Example 1.1).
Considering this, the following questions arise naturally:

Q1 Given an SCM M with a selection mechanism XS ∈ S, can we always find an SCM
without a selection mechanism to faithfully represent (M,XS ∈ S)?3 (cf. Appendix
D.1)

Q2 If not, which part of the causal semantics of (M,XS ∈ S) can be represented by an SCM
in general? Can we construct a transformation that transforms (M,XS ∈ S) into an
SCMM|XS∈S so thatM|XS∈S encodes this part of the causal semantics? What properties
does it have? (cf. Theorem 3.14, Definition 3.5, Section 3.2.2, and Proposition D.1)

3Note that this question is trickier than it seems. Finding an SCM without a selection mechanism to
represent another SCM with a selection mechanism is, to some extent, analogous to the problem of finding a
DAG to represent the marginalized model of another DAG, which is impossible in general (Richardson and
Spirtes, 2002). See also Blom et al. (2020) for some data-generating processes with clear causal interpretation
that cannot be modeled by SCMs.
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Q3 Can we similarly construct a transformation on causal graphs such that it is compatible
with the transformation at the level of SCMs? What properties does it have and what
is the relation between the “conditioned SCM” M|XS∈S and the “conditioned causal
graph” G(M)|S (Figure 3)? (cf. Definition 3.23, Section 3.3)

We answer these questions in the current manuscript.

XA ⊥⊥
PM (XV )

XB | XC , XS ∈ S A
d/σ

⊥
G(M)

B | C ∪ S

XA ⊥⊥
PM|XS∈S (XV \S)

XB | XC A
d/σ

⊥
G(M)|S

B | C

?

?

?

?

?

?

Figure 3: What are the relations between stochastic conditional independence in M|XS∈S and
graphical separation in G(M)|S? The answer is shown in Figure 11.

A motivating example To illustrate, we first discuss a toy example, demonstrating that
marginalization is not appropriate for abstracting away selection bias and how to obtain
correct results without assuming any specific details about the latent selection mechanism.

Example 1.1 (Car mechanic). A car starts successfully if its battery is charged and its start
engine is operating. Introduce latent binary endogenous variables B0 (“battery”), E0 (“start
engine”) and S0 (“car starts”) measured at time t0 and observed variables B1, E1 and S1 with
a similar meaning for the same car but measured at time t1 with t1 > t0. We model this4

by the following SCM M and denote by M∗ its marginalized model on observed endogenous
variables B1, E1, and S1.

M :


UB ∼ Ber(1− δ), UE ∼ Ber(1− ϵ),
B0 = UB, E0 = UE , S0 = B0 ∧ E0,
B1 = B0, E1 = E0, S1 = B1 ∧ E1,

M∗ :

{
UB ∼ Ber(1− δ), UE ∼ Ber(1− ϵ),
B1 = UB, E1 = UE , S1 = B1 ∧ E1,

where UB and UE are latent exogenous independent Bernoulli-distributed random variables
with parameters 1− δ and 1− ϵ. Their graphs are shown in Figure 4.

The question is whether there exists an SCM with variables B1, E1, S1 encoding the causal
semantics of M for the subpopulation of cars for which S0 = 0. Consider the SCM M̃ , whose
graph is depicted in Figure 4, given by

M̃ :

{
(UB, UE) ∼ P̃(UB, UE)
B1 = UB, E1 = UE , S1 = B1 ∧ E1

P̃(UB, UE) UE = 0 UE = 1

UB = 0 δϵ
δ+(1−δ)ϵ

δ(1−ϵ)
δ+(1−δ)ϵ

UB = 1 (1−δ)ϵ
δ+(1−δ)ϵ 0

4For illustration, we assume such a simplified model. One can add more (endogenous or exogenous random)
variables to the model.
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As one can check,

P
M̃
(B1, E1, S1) = PM (B1, E1, S1 | S0 = 0) ̸= PM∗(B1, E1, S1),

P
M̃
(S1 = 1 | do(B1 = 1)) = PM (S1 = 1 | do(B1 = 1), S0 = 0) ̸= PM∗(S1 = 1 | do(B1 = 1)),

P
M̃
(S1 = 1 | do(E1 = 1)) = PM (S1 = 1 | do(E1 = 1), S0 = 0) ̸= PM∗(S1 = 1 | do(E1 = 1)).

The car mechanic is only interested in cars that failed to start at an early time t0 and are
sent to the studio at a later time t1. So, the car mechanic (who might not even be aware
of the latent selection mechanism S0 = 0) can still use an SCM as an accurate causal model
to predict the effects of interventions on the subpopulation of cars that are of her concern.
Note that the marginalized model M∗ does not possess the correct causal semantics of the
subpopulation. Furthermore, the graph G(M̃) correctly expresses that B1 and E1 might
be dependent in the subpopulation (given S0 = 0) via the d-separation criterion for acyclic
directed mixed graphs (Richardson, 2003), while the graph G(M∗) wrongly claims that B1

and E1 are independent. Therefore, M̃ effectively abstracts away irrelevant latent modeling
details: (i) the latent variables B0, E0 and S0, (ii) their causal mechanisms, and (iii) the
explicit selection step on S0 = 0. However, the marginalized model M∗ does not, which shows
that marginalization alone cannot abstract latent selection mechanisms.

B0 E0

B1 E1

S0

S1

G(M)

B1 E1

S1

G(M∗)

B1 E1

S1

G(M̃) = G(M)|S0
= G(M|S0=0)

Figure 4: The causal graphs of the SCMs M , M∗ and M̃ in Example 1.1. The gray nodes are
latent and the triangle means conditioning on S0 to take some specific values (cf. Notation 2.3,
Definition 3.2). Marginalizing out all the latent variables yields M∗, while conditioning out

S0 (cf. Definition 3.5) and marginalizing out the remaining latent variables yields M̃ .

Note that in Example 1.1, we can obtain the model M̃ directly from M (cf. Definition 3.5
and Example 3.8), by (i) merging UB and UE , (ii) replacing PM (UB, UE) by PM (UB, UE |
S0 = 0), and (iii) marginalizing out B0, E0 and S0 (by substituting the structural equations for
B0, E0 and S0 in the remaining structural equations and then removing these variables from
the model). In fact, this procedure can be generalized and gives the desired transformation
of Question Q2, as we show in Section 3.

1.2 Our contribution

Pearl (2009, p.163) claims that (when doing causal modeling):“...bidirected arcs should be
assumed to exist, by default, between any two nodes in the diagram. They should be deleted
only by well-motivated justifications, such as the unlikely existence of a common cause for the
two variables and the unlikely existence of selection bias.” Although marginalization makes
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it clear how bidirected edges can represent latent common causes, a rigorous approach to
representing (latent) selection bias with bidirected edges has not been formalized yet.

Our main contribution is that we provide a rigorous approach to representing (latent)
selection bias with bidirected edges. To be more precise, given a Structural Causal Model M
with a selection mechanism XS ∈ S (cf. Definition 3.2) where variable XS takes values in a
measurable subset S, we define a transformation that maps (M,XS ∈ S) to a “conditioned”
SCM M|XS∈S without any accompanying selection mechanism, so that M|XS∈S is an effective
abstraction of M w.r.t. the selection XS ∈ S in the sense that:

(i) the conditioned SCM M|XS∈S correctly encodes as much causal semantics (observa-
tional, interventional and counterfactual) of M of the subpopulation XS ∈ S as possible
(cf. Theorems 3.14 and 3.17 and Section D.1);

(ii) the conditioning operation preserves important model classes, e.g., linear, acyclic and
simple SCMs (cf. Proposition 3.10);

(iii) this conditioning operation interacts well with other operations on SCMs, e.g., inter-
vention, marginalization, and the conditioning operation itself (cf. Lemma 3.13, Propo-
sitions 3.18 and 3.19);

(iv) one can read off qualitative causal information about M under the selected subpopula-
tion from the causal graph of M|XS∈S and the conditioned graph G(M)|S (cf. Definition
3.23, Theorems A.8 and A.11, Corollary 3.31).

In Section 3, we will introduce the rigorous mathematical definition of the conditioning
operation (Definition 3.5) and demonstrate that it possesses all the aforementioned properties.

The significance of this conditioning operation lies in the fact that we can take M|XS∈S
as a simplified “proxy” for M w.r.t. the selection XS ∈ S, which effectively abstracts away
details about latent selection (i.e., satisfying the properties listed previously). This makes it
a versatile tool for causal inference tasks with latent selection bias. Specifically:

(1) Causal Reasoning: One can directly apply all the causal inference tools for SCMs on
M|XS∈S , e.g., identification results (adjustment criterion and Pearl’s do-calculus), ID-
algorithm and instrumental inequality, which simplifies causal reasoning tasks under
latent selection bias (cf. Examples 4.3, 4.6 and 4.8).

(2) Causal Modeling: Utilizing the marginalization and conditioning operation, we can rep-
resent infinitely many SCMs with a single marginalized conditioned SCM. This signifi-
cantly streamlines causal modeling, eliminating the need to enumerate all possibilities
with different latent structures and selection mechanisms. Moreover, it improves the ro-
bustness and trustworthiness of the model by reducing the sensitivity to various causal
assumptions (cf. Examples 4.1 and 4.12).

(3) Causal Discovery: Many algorithms exclude selection bias by assumption—an often
unrealistic idealization (Cooper, 1995). Nevertheless, methods originally designed for
latent common causes without selection bias can, under suitable conditions, be applied
directly to selected data, with their outputs interpreted as learning the conditioned
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model M|XS∈S (cf. Example 4.7). This requires no redesign of the algorithm: the un-
modified procedure still admits certain causal interpretation of its output in the presence
of selection.5

It is worth mentioning that many of our results rely on two facts: bidirected edges in
DMGs can be used to represent latent selection bias, and DMGs admit an interpretation as
causal graphs of SCMs. There is one subtlety, though: not all the endogenous variables of the
conditioned SCM retain their causal interpretation. Interventions targeting such nodes yield
predictions that are typically incompatible with those of the corresponding interventions on
the original SCM in the presence of the selection mechanism (see also Section 3.4). However,
these “non-intervenable” endogenous variables are easily identified as the ancestors of the
selection variables.

1.3 Connections to related work

In a series of papers (Bareinboim and Pearl, 2012; Bareinboim and Tian, 2015), the authors
explored the ‘s-recoverability’ problem, aiming to recover causal quantities for the whole pop-
ulation from selected data. This investigation operated under qualitative causal assumptions
on the selection nodes, explicitly expressed in terms of causal graphs. However, such knowl-
edge about selection nodes is not always available (Richardson and Robins, 2013a, Footnote
11). In the current work, we focus on the problem of how to model selection bias with an
SCM without explicitly modeling the selection mechanism and draw (causal) conclusions for
the selected subpopulation.

There are graphical models with well-behaved marginalization and conditioning opera-
tions such as maximal ancestral graphs (MAGs) (Richardson and Spirtes, 2002), d-connection
graphs (Hyttinen et al., 2014) and σ-connection graphs (Forré and Mooij, 2018). Among
them, MAGs were originally developed as a model class representing the conditional indepen-
dence models of the marginalized conditioned conditional independence models of DAGs. By
summarizing the common causal features of causal DAGs represented by a MAG, one can give
a causal interpretation to MAGs and call them causal MAGs. One single causal MAG can
represent infinitely many SCMs with different graphs but the same conditional independences
among observed variables. Interpreting a graph as a causal graph of an SCM and as a causal
MAG respectively will not give the same causal conclusions in general.6 Due to the nature of
model abstraction, MAGs are well suited for causal discovery, and one can further draw some
causal conclusions from MAGs (Spirtes et al., 1995; Richardson, 2003; Zhang, 2008; Mooij
and Claassen, 2020). However, MAGs are not always suitable for causal modeling under se-
lection bias in some cases, since: (i) it is not clear how to read off causal relationships (direct
causal relations, confounding) from MAGs; (ii) there are no causal identification results for
MAGs under selection bias and causal cycles yet; (iii) currently the standard theory of MAGs
cannot deal with counterfactual reasoning. On the other hand, our conditioning operation
transforms an SCM with selection mechanisms to an ordinary SCM, which carries an intuitive

5Due to the abstraction nature of conditioned SCM, we lose some information in this process and see
Sections 3.4 and D.1 and Theorems 3.14 and 3.17 for the subtlety of causal interpretation of conditioned SCM.

6For example, consider a graph consisting of A B C and A C. If it is a causal graph of an
SCM, then we can conclude that variable A has a direct causal effect on C according to this model and we can
identify P(C = c | do(A = a)) = P(C = c | A = a) under the positivity and discreteness assumption. However,
if it is a MAG, then we cannot obtain the above two conclusions.
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causal interpretation. All the theory for SCMs (causal identification, cycles, counterfactual
reasoning) can be directly extended to the case with selection bias via the conditioning op-
eration. Therefore, our results can address causal inference tasks such as fairness analysis
(Kusner et al., 2017; Zhang and Bareinboim, 2018), causal modeling of dynamical systems
(Bongers et al., 2022; Peters et al., 2022) and biological systems with feedback loops (Versteeg
et al., 2022) under selection bias (cf. Definition 2.1, Remarks 4.5 and 4.9, Examples 4.6, 4.10
and 4.12). Another subtle difference between SCM conditioning and MAG conditioning is
that they consider different forms of conditioning (cf. Example B.6).

Although causal graphs provide a means to differentiate selection bias from confounding
due to common causes (Hernán et al., 2004; Cooper, 1995), the potential outcome community
tends to amalgamate the two (Richardson and Robins, 2013a; Hernán and Robins, 2020). In
many cases, one can be sure about the existence of “non-causal dependency”, but cannot be
sure whether it is induced by a latent common cause or latent selection bias or the combination
of the two (see e.g., Richardson and Robins (2013a, Footnote 11) and Pearl (2009, p.163)).
Our conditioning operation formalizes this ambiguity within SCMs. Graphically, we employ
bidirected edges to symbolize the dependence of two variables arising from either unmeasured
common causes, latent selection bias, or any intricate combination of the two. Therefore,
in causal modeling, our work allows the modeler to be able to represent such non-causal
dependency abstractly via bidirected edges.

Some work considers the abstraction of causal models from the perspective of grouping
low-level variables to high-level variables and merging values of variables (Rubenstein et al.,
2017; Beckers and Halpern, 2019). Geiger et al. (2023) study the so-called “constructive
abstraction” of causal models. They show that it can be characterized as a composition of
clustering sets of variables, merging values of variables, and marginalization. Our conditioning
operation does not fall under the umbrella of “constructive abstraction” of Geiger et al. (2023).

1.4 Outline

In Section 2, we review basic notions of SCMs and fix the notation used throughout the article;
additional preliminaries are deferred to Section A to save space. In Section 3.1, we give a
formal definition of SCMs with selection mechanisms. In Sections 3.2 and 3.3, we introduce
the conditioning operations for SCMs and DMGs, respectively, and study their mathematical
properties and mutual relations; Theorems 3.14 and 3.25 and Proposition 3.29 contain the
main results. In Section 3.4, we discuss important caveats concerning the interpretation
of conditioned SCMs. Further remarks and examples related to Section 3 are collected in
Section B, while all proofs of the results in Section 3 are provided in Section C.

We illustrate the applicability of the conditioning operation through a series of examples in
Section 4, including generalized versions of Reichenbach’s principle, the back-door theorem,
the ID-algorithm, instrumental variables, causal model learning, mediation analysis, and a
real-world causal modeling exercise on COVID-19. In Section D.1, we show that SCMs without
selection mechanisms are, in general, not flexible enough to represent SCMs with selection
mechanisms, which answers Questions Q1–Q3 in combination with the discussion in Section 3.
Finally, in Sections D.2 and D.3, we explore alternative conditioning operations, including
variants based on different decompositions of exogenous variables, a conditioning operation
for causal Bayesian networks, and a conditioning operation for SCMs with exogenous non-
stochastic input variables (cf. Definition D.9).
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2 Preliminaries and notation

This section provides the necessary background on SCMs and introduces the notions of com-
mon cause and confounding. To save space, additional preliminaries on SCMs are deferred to
Section A. We follow the formal setup of Bongers et al. (2021), which allows us to formulate
the theory for “simple” SCMs, a class that includes acyclic SCMs as well as well-behaved cyclic
SCMs. However, we also depart from Bongers et al. (2021) in several respects—for instance,
we allow for non-intervenable variables and introduce new node types (dashed nodes and tri-
angle nodes). In this section we define (i) SCMs, (ii) (hard) interventions, (iii) SCM solution
functions, (iv) simple SCMs, (v) marginalization, and (vi) basic causal relationships such as
common cause and confounding (cf. Definitions 2.1, 2.2, 2.4, 2.6, 2.7 and 2.12). We also fix
notation for causal graphs and (conditional) interventional distributions (cf. Notations 2.3
and 2.11).

2.1 Structural Causal Model (SCM)

Definition 2.1 (Structural Causal Model). A Structural Causal Model (SCM) is a tuple
M = (V,W,X ,P, f) such that

(i) V,W are disjoint finite sets of labels for the endogenous variables and the latent
exogenous random variables, respectively;

(ii) the state space X =
∏

i∈V ∪̇W Xi is a product of standard measurable spaces Xi;

(iii) the exogenous distribution P is a probability distribution on XW that factorizes as a
product P =

⊗
w∈W P(Xw) of probability distributions P(Xw) on Xw;

(iv) the causal mechanism is specified by the measurable mapping f : X → XV .

Definition 2.2 (Hard intervention). Given an SCM M , an intervention target T ⊆ V and
an intervention value xT ∈ XT , we define the intervened SCM

Mdo(XT=xT ) := (V,W,X ,P, (fV \T , xT )).

This replaces the targeted endogenous variables with specified values. In this work, we
do not assume that all the endogenous variables in an SCM can be intervened on, which
deviates from the standard modeling assumption. If an endogenous variable is modeled as
“intervenable”, then we say that we model it as causal or that it has a causal interpretation.7

7Although some variables are modeled as “non-intervenable”, one can mathematically define an intervention
on them. However, one should be careful with the causal interpretation (Pearl, 2019, 2015). Similar problems
arise in the work of causal model abstraction such as Rubenstein et al. (2017) and Beckers and Halpern (2019).
An intervention on the “high-level” variables in the abstracted models may not correspond to a well-defined
intervention on the “low-level” variables in the detailed models. One can keep track of the “allowed intervention
targets” I ⊆ V and augment M to (M, I). Similarly, one can also encode the information about which variables
are latent or not in the definition of an SCM. This would introduce four types of endogenous nodes, which
makes the notation quite heavy. Note that mathematically they can often be treated equally and the difference
comes only at the phase of modeling. Therefore, we do not distinguish these nodes in the definition of SCMs
and only mark them informally with different types of nodes in the causal graphs (cf. Notation 2.3). Another
method is to introduce the so-called regime indicators (Dawid, 2002, 2021) to indicate on the graphs which
variables are causal and which are purely probabilistic. This usually makes causal graphs much more inflated
and requires us to introduce a conditioning operation for SCMs with exogenous non-stochastic input variables
(cf. Definition D.9). To ease notation and the reader’s mental burden, we do not adopt this approach, either.
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To avoid confusion, most of the time we will only consider interventions do(XT = xT ) with
intervention target T a subset of the intervenable nodes in V . We consider all exogenous
random variables as non-intervenable. Other types of interventions can be defined, such as
soft or stochastic ones (Correa and Bareinboim, 2020).

Given an SCM M , one can define its causal graph G(M) and its augmented causal graph
Ga(M) to give intuitive and compact graphical representations of the causal model (see Defi-
nition A.3). One can read off useful causal information directly from the causal graph without
knowing the details of the underlying SCM.

Notation 2.3 (Causal graphs). In all the causal graphs, we use gray nodes to represent la-
tent variables. Dashed nodes represent non-intervenable variables, and solid nodes represent
intervenable variables. Exogenous variables are assumed latent and non-intervenable, so they
are marked gray and dashed. Triangle nodes mean that there are selection mechanisms con-
ditioning on the corresponding variables to take some specific values.8 We sometimes abuse
the notation by identifying the label and random variables in causal graphs.

Definition 2.4 (Solution function of an SCM). Given an SCM M , we call a measurable
mapping gS : XV \S × XW → XS a solution function of M w.r.t. S ⊆ V if for P(XW )-

a.a. xW ∈ XW and for all xV \S ∈ XV \S,
9 one has that gS(xV \S , xW ) satisfies the structural

equations for S, i.e.,

gS(xV \S , xW ) = fS(xV \S , g
S(xV \S , xW ), xW ).

When S = V , we denote gV by g, and call g a solution function of M .

Definition 2.5 (Unique solvability). An SCM M is called uniquely solvable w.r.t. S ⊆ V
if it has a solution function w.r.t. S that is essentially unique in the sense that if gS

and g̃S both satisfy the structural equations for S, then for P(XW )-a.a. xW ∈ XW and for all
xV \S ∈ XV \S, one has gS(xV \S , xW ) = g̃S(xV \S , xW ). If M has an essentially unique solution
function w.r.t. V , we call it uniquely solvable.

Note that a subset S does not inherit the unique solvability from the unique solvability of
any of its supersets in general (Bongers et al., 2021, Appendix B.2).

Definition 2.6 (Simple SCMs). An SCM M is called a simple SCM if it is uniquely solvable
w.r.t. each subset S ⊆ V .

Note that all acyclic SCMs are simple (Bongers et al., 2021, Proposition 3.4). One benefit
of introducing the class of simple SCMs is that it preserves the most convenient properties
of acyclic SCMs but allows for weak cycles. We focus on simple SCMs in this work so that
we can avoid mathematical technicalities and focus on conceptual issues (cf. Assumption 3.1
and Remark B.2).

For a simple SCM, we can plug the solution function of one component into other parts
of the model so that we can get a simple SCM that “marginalizes” it while preserving the
causal semantics of the remaining variables (Bongers et al., 2021).

8A triangle looks like a funnel, which means that we filter out some samples based on the values of variable
XS .

9The ordering of the two quantifiers does matter and cannot be changed in the definition. See e.g., Bongers
et al. (2021, Lemma F.11) for more details.
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Definition 2.7 (Marginalization). Let M be a simple SCM, L ⊆ V , and gL be a solution
function of M w.r.t. L. Then we call M\L = (V \ L,W,XV \L ×XW ,P, f̃) with

f̃(xV \L, xW ) = fV \L(xV \L, g
L(xV \L, xW ), xW )

a marginalization of M over L.

For SCMs, one can introduce a hierarchy of equivalence relations. Observational, inter-
ventional, and counterfactual equivalence mean that two SCMs have the same observational,
interventional, and counterfactual semantics, respectively (see Bongers et al. (2021, Defini-
tions 4.1, 4.3 and 4.5) or Definition A.5). Counterfactual equivalence is strictly stronger than
interventional equivalence, and interventional equivalence is strictly stronger than observa-
tional equivalence. Equivalence of SCMs is also an equivalence notion stronger than the three
equivalence notions mentioned above.

Definition 2.8 (Equivalence). An SCM M = (V,W,X ,P, f) is equivalent to an SCM M̃ =
(V,W,X ,P, f̃) if for all v ∈ V , for P-a.a. xW ∈ XW and for all xV ∈ XV ,

xv = fv(xV , xW ) ⇐⇒ xv = f̃v(xV , xW ).

If M and M̃ are equivalent, we write M ≡ M̃ .10

A simple SCM induces a collection of distributions that includes its observational distri-
bution and interventional distributions. Besides, one can describe counterfactual semantics of
an SCM by performing interventions in its twin SCM (see Definition A.1). Potential outcomes
are also used to express counterfactual semantics (Hernán and Robins, 2020; Rubin, 1974).
We can define potential outcomes via simple SCMs (Bongers et al., 2021).11

Definition 2.9 (Potential outcome). Let M = (V,W,X ,P, f) be a simple SCM, T ⊆ V be
a subset, and xT ∈ XT be a value. The potential outcome under the perfect intervention
do(XT = xT ) is defined as XV (xT ) := (gV \T (xT , XW ), xT ), where gV \T : XT × XW → XV \T
is the (essentially unique) solution function of M w.r.t. V \ T and XW is a (fixed) random
variable such that XW ∼ P.

Definition 2.10 (Potential-outcome equivalence). We say two SCMs M1 = (V,W 1,X 1,P1, f1)
and M2 = (V,W 2,X 2,P2, f2) are potential-outcome equivalent if X 1

V = X 2
V and

PM1({XV (xTi)}1≤i≤n) = PM2({XV (xTi)}1≤i≤n)

for all Ti ⊆ V , all xTi ∈ XTi and i = 1, . . . , n.

Now we present the notations of (conditional) interventional distributions that we use in
the current manuscript.

10For defining equivalence of SCMs, one does not need to assume that M and M̃ have the same sets of
exogenous nodes but only needs the two sets to be isomorphic. For simplicity, we do not specify this in detail.

11In most of the potential outcome literature, potential outcomes are taken as primitives and are not induced
by an underlying SCM.
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Notation 2.11 ((Conditional) Interventional distributions). We use PM (XV , XW ) to denote
the unique probability distribution of (XV , XW ) induced by a simple SCM M . Let S ⊆ V ,
O := V \ S, and T ⊆ V with T ∩ S = ∅. For a measurable subseteq S ⊆ XS, we use

PM (XO\T | do(XT = xT ), XS ∈ S) := PMdo(XT=xT )
(XO\T | XS ∈ S)

:=
PMdo(XT=xT )

(XO\T , XS ∈ S)
PMdo(XT=xT )

(XS ∈ S)

to represent the probability distribution of XO when first intervening on XT = xT and second
conditioning on XS ∈ S, assuming PMdo(XT=xT )

(XS ∈ S) > 0.12 Using the notation of
potential outcomes, we have

PM (XO\T | do(XT = xT ), XS ∈ S) = PM (XO\T (xT ) | XS(xT ) ∈ S),

which is not equal to PM (XO\T (xT ) | XS ∈ S) in general if T ∩ AncG(M)(S) ̸= ∅. If T = ∅,
then PM (XO\T | do(XT = xT ), XS ∈ S) = PM (XO | XS ∈ S) and XO\T (xT ) = XO.

2.2 Common cause and confounding

“Confounder”, “common cause” and “confounding” have diverse and vague meanings in dif-
ferent literature (VanderWeele and Shpitser, 2013). For conceptual clarity, we give formal
definitions for these notions in the setting of acyclic SCMs.13

Definition 2.12 (Common cause and confounding). Let M = (V,W,X ,P, f) be an acyclic
SCM and A,B,C ∈ V be distinct intervenable nodes.

(1) We say that XC is a common cause of XA and XB according to M if there exist
xA ∈ XA, xB ∈ XB, xC ∈ XC , and x′C ∈ XC such that

PM (XA | do(XC = xC), do(XB = xB)) ̸= PM (XA | do(XB = xB)) and

PM (XB | do(XC = x′C), do(XA = xA)) ̸= PM (XB | do(XA = xA)).

(2) Assume that for all xB ∈ XB, we have PM (XA) = PM (XA | do(XB = xB)). We say
that there is confounding bias between XA and XB, if there exists a measurable subset
A ⊆ XA with PM (XA ∈ A) > 0 such that for xA ∈ A

PM (XB | do(XA = xA)) ̸= PM (XB | XA = xA).

Remark 2.13. (1) Note that a common cause has to be an endogenous variable instead
of an exogenous variable, because we treat exogenous variables as non-causal (non-
intervenable). For example, XC is a common cause of XA and XB according to M1 and
M2, but not according to M3 and M3, whose graphs are shown in Figure 5.

(2) If XA and XB have confounding bias, then there must be a bidirected edge between A
and B in G(M\(V \{A,B})). The bidirected edge can come from either

12“First” and “second” here refer to the order of applying the operations on the SCM, which may not coincide
with the chronological order of these operations in the data-generating process that the SCM is modeling.

13Providing formal definitions of these concepts for cyclic models is an open research question and is not
within the scope of the current manuscript.
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Figure 5: The causal graphs of the SCMs M i, i = 1, 2, 3, 4, where XC is a common cause of
XA and XB according to M1 and M2 but not to M3 and M4.

(i) a common cause XC , or

(ii) a non-intervenable variable XE such that there are directed paths from E to A and
B in G(M)a, which do not intersect B and A respectively,14 or

(iii) any combination of the above two items.

If there is no bidirected edge between A and B in G(M\(V \{A,B})), then by the do-
calculus there is no confounding bias between XA and XB according to M , i.e., we have
for a.a. xA ∈ XA (under the assumption that B /∈ AncG(M\(V \{A,B}))(A))

PM (XB | do(XA = xA)) = PM (XB | XA = xA).

(3) In the potential outcome literature, the unconfoundedness assumption is usually stated
as (for the special case of finite discrete outcome variables and binary “treatments”)
that XB does not cause XA (i.e. XA(xB) = XA for all xB) and

∀xA ∈ {0, 1} : XA ⊥⊥ XB(xA). (1)

If we assume that there is an underlying acyclic SCM M = (V,W,X ,P, f) inducing the
potential outcomes XA and XB(xA), then equation (1) (under a positivity assumption)
implies

PM (XB | do(XA = xA)) = PM (XB | XA = xA) for all xA ∈ {0, 1}. (2)

This means that XA and XB have no confounding bias according to M in the sense of
Definition 2.12. See Remark B.1 for a proof.

3 Theory

In this section, we develop conditioning operations for both SCMs and DMGs. We first
introduce s-SCMs, which explicitly encode selection mechanisms, and then define the cor-
responding conditioning operations and analyze their main properties: the induced causal
semantics, closure of relevant model classes, commutation with marginalization, intervention,
and further conditioning, the associated loss of information, graphical separation criteria and
Markov properties, and the compatibility between the two conditioning operations. After the
mathematical development, we conclude with several important caveats on the modeling side.

In the whole section, we make the following assumption (see Remark B.2):

14We shall show in the next section that this can represent selection bias. Therefore, a bidirected edge
represents the possible existence of “non-causal dependency” between XA and XB , which can arise from either
common cause, selection bias, or any combination of the two, or in other ways.
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Assumption 3.1. M = (V,W,X ,P, f) is a simple SCM such that PM (XS ∈ S) > 0 for some
S ⊆ V and measurable subset S ⊆ XS .

3.1 SCM with selection mechanism

First, we give a definition for SCMs with selection mechanisms.

Definition 3.2 (SCMs with selection mechanism). We call MS := (M,XS ∈ S) an s-SCM
or SCM with a selection mechanism, where M = (V,W,X ,P, f) is an SCM, S ⊆ V is a
subset of endogenous nodes, and S ⊆ XS is a measurable subset. We call MS a simple s-SCM
if M is simple. The causal semantics of MS are defined as:15

(1) Observational distribution:

PMS (XV ) := PM (XV | XS ∈ S);

(2) Interventional distributions: for T ⊆ V \ S and xT ∈ XT with PM (XS ∈ S | do(XT =
xT )) > 0, we define

PMS (XV \T | do(XT = xT )) := PM (XV \T | do(XT = xT ), XS ∈ S).

If PM (XS ∈ S) = 1, then MS = (M,XS ∈ S) is observationally equivalent to M . We
can draw a causal graph of an SCM with a selection mechanism by Definition A.3, and in
addition use triangles to represent the nodes in S like in Figure 2.

To gain some intuition, one can imagine a simple SCM as representing a data-generating

process where the i-th sample is generated as follows: first sampling X
(i)
w ∼ P(Xw) for each

w ∈W , and then using the solution function g : XW → XV to generateX
(i)
v for each v ∈ V . An

SCM with a selection mechanism is adding a rejection step to the above sampling procedure.
More precisely, we have the following rejection sampler Algorithm 3.3. This sampler generates
the observational distribution of MS . To generate interventional distributions of MS , one just
needs to replace M with the corresponding intervened submodel Mdo(XT=xT ), which changes
the solution function but leaves the other parts of the algorithm invariant.

3.2 Conditioning operation for SCMs

3.2.1 Definition

Suppose that we condition on XS ∈ S. Then, the conditioning operation can be divided into
three steps:

(i) merging exogenous variables that become dependent given the observation XS ∈ S;

(ii) updating the exogenous probability distribution P(XW ) to the posterior PM (XW | XS ∈
S) given the observation XS ∈ S;

(iii) marginalizing out the selection variables XS .
16

15We do not specify the counterfactual semantics of s-SCMs.
16Selection variables are marginalized out because we consider latent selection.
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Algorithm 3.3 Sampler for an SCM M with a selection mechanism XS ∈ S
Require: n ≥ 1
i← 1
while i ≤ n do

for each w ∈W do
sample X

(i)
w ∼ PM (Xw)

end for
for each v ∈ V do

calculate X
(i)
v ← gv

(
X

(i)
W

)
end for
if X

(i)
S ∈ S then

output X
(i)
V

i← i+ 1
end if

end while

Before giving a formal definition of the conditioned SCM, we discuss item (i). For the
reason why we need to consider merging exogenous random variables, see Section D.2. There
is a “finest” partition of W given XS ∈ S:

Lemma 3.4 (Finest partition). Let PS denote the set of partitions I = {I1, . . . , Ip} of W

such that {XIi}
p
i=1 are mutually independent under P̃(XW ) = P(XW | XS ∈ S). Then there

exists H ∈ PS such that H is a finer partition than any other partition I ∈ PS .

We now present the formal definition of the conditioned SCM.

Definition 3.5 (Conditioned SCM). Assume Assumption 3.1. Let g : XW → XV and
gS : XV \S × XW → XS be the (essentially unique) solution functions of M w.r.t. V and

S respectively. We define the conditioned SCM M|XS∈S :=
(
V̂ , Ŵ , X̂ , P̂, f̂

)
by:

(i) V̂ := V \ S;

(ii) Ŵ := {ŵ1, . . . , ŵn} is the finest partition of W such that PM (XW | XS ∈ S) =⊗n
i=1 PM (Xŵi

| XS ∈ S);

(iii) X̂ := X
V̂
×X

Ŵ
:= X

V̂
××n

i=1Xŵi
, where Xŵi

:=×w∈ŵi
Xw;

(iv) P̂ :=
⊗n

i=1 P̂(Xŵi
), where P̂(Xŵi

) := PM (Xŵi
| XS ∈ S);

(v) f̂(x
V̂
, x

Ŵ
) := f

V̂
(x

V̂
, gS(x

V̂
, xŵ1

, . . . , xŵn
), xŵ1

, . . . , xŵn
).

It is easy to check that M|XS∈S is indeed an SCM. We mark nodes in AncG(M)(S) as
non-intervenable in M|XS∈S .

Remark 3.6. (1) In Definition 3.5, M|XS∈S actually depends on the choice of gS , but dif-
ferent versions are equivalent (in the sense of Definition 2.8). Here we abuse terminology
and call M|XS∈S “the conditioned SCM” of M given XS ∈ S rather than “a conditioned

SCM”, and implicitly work with equivalence classes of SCMs. Note that if M and M̃
are equivalent, then M|XS∈S is equivalent to M̃|XS∈S .
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(2) The definition of Ŵ does not depend on the choice of g but depends on S and S. Note

that if PM (XS ∈ S) = 1, then Ŵ ∼= W and conditioning on the selection mechanism
XS ∈ S reduces to marginalizing out S.

(3) If w ∈ W \ AncGa(M)(S) or w ∈ W \ AncGa(M\(V \S))(S), then there exists ŵi such that

ŵi = {w}. In other words, if node w is not an ancestor of S in Ga(M) or is not an
ancestor of S in Ga(M\(V \S)), then node w is not merged with any other nodes in W .

In these cases, one has P̂(Xŵi
) = P(Xw).

(4) Since marginalization preserves simplicity and P-null sets are also PM (XW | XS ∈ S)-
null sets, M|XS∈S is simple (cf. Proposition 3.10).

Notation 3.7. We often denote M|XS∈S by M|S if it is clear from the context that S is a
measurable subset in which the variable XS takes values.

Example 3.8 (Example 1.1 continued). We consider Example 1.1 in the Introduction. Let

M be the SCM in Example 1.1. Then M̃ = (M|S0=0)\{B0,E0} = (M\{B0,E0})|S0=0.

Example 3.9 (conditioning operation for SCMs). Consider the following SCMs with nonzero
real coefficients ai for i = 1, . . . , 6 such that a5 + a6 ̸= 0:

M1 :



X = E1 ∼ Uni([0, 1])

Y = E2 ∼ Uni([0, 1])

S = X + Y

Z1 = a1X + E3

Z2 = a2Z1 + E4

Z3 = a3Z1 + a4Z2 + a5S + a6Y + E5

M2 :



X = E1 ∼ Uni([0, 1])

Y = E2 ∼ Uni([0, 1])

S = 1(X + Y ≥ 0.8)

Z1 = a1X + E3

Z2 = a2Z1 + E4

Z3 = a3Z1 + a4Z2 + a5S + a6Y + E5.

With pri denoting the projection to the i-th coordinate andD := {(x, y) ∈ [0, 1]2 : x+y ≥ 0.8},
we then have

M1
|S≥0.8 :



E1,2 ∼ Uni(D)

X = pr1(E1,2)

Y = pr2(E1,2)

Z1 = a1X + E3

Z2 = a2Z1 + E4

Z3 = a3Z1 + a4Z2 + a5X

+ (a5 + a6)Y + E5,

M2
|S=1 :



E1,2 ∼ Uni(D)

X = pr1(E1,2)

Y = pr2(E1,2)

Z1 = a1X + E3

Z2 = a2Z1 + E4

Z3 = a3Z1 + a4Z2

+ a5 + a6Y + E5.

We draw the (augmented) causal graphs of M1, M2, M1
|S≥0.8 and M2

|S=1 as shown in Figure
6. Note that

(i) bidirected edges can not only represent latent common causes but also latent selection
bias;

(ii) given two SCMs with the same causal graphs, the conditioned SCMs can have different
graphs.
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If one applies Definition 2.2 to perform interventions on ancestors of S in M1
|S≥0.8 and

M2
|S=1 (e.g., X and Y in Figure 6), the interventional distribution will correspond to a coun-

terfactual distribution of M . For instance, PM1
|S≥0.8

(Z3 | do(X = x)) = PM1(Z3(x) | S ≥
0.8) ̸= PM1(Z3 | do(X = x), S ≥ 0.8). See Theorem 3.14 and Section 3.4 for details. This
is the reason why we mark the ancestors of S as dashed (non-intervenable) in Ga(M1

|S≥0.8),

Ga(M2
|S=1), G(M1

|S≥0.8) and G(M2
|S=1).

E1 E2

E3 E5

E4

X Y

S

Z1

Z2

Z3

Ga(M1) = Ga(M2)

E{1,2}

E3 E5

E4

X Y

Z1

Z2

Z3

Ga(M1
|S≥0.8)

E{1,2}

E3 E5

E4

X Y

Z1

Z2

Z3

Ga(M2
|S=1)

X Y

S

Z1

Z2

Z3

G(M1) = G(M2)

X Y

Z1

Z2

Z3

G(M1
|S≥0.8)

X Y

Z1

Z2

Z3

G(M2
|S=1)

Figure 6: Graphical representation of conditioning on S ≥ 0.8 and S = 1 respectively in M1

and M2. First, merge the exogenous ancestors of S, i.e., E1 and E2, to obtain a merged
node E{1,2}. Then update the exogenous probability distribution P(E1, E2) to the posterior
PM1(E1, E2 | S ≥ 0.8) and PM2(E1, E2 | S = 1). Finally, marginalize out the node S. After
conditioning, X and Y are dashed, since we mark them as non-intervenable.

3.2.2 Properties

We derive some mathematical properties of the conditioning operation. First, we note that
the conditioning operation preserves the simplicity, linearity, and acyclicity of SCMs.

Proposition 3.10 (Simple, acyclic, linear SCMs and conditioning). If M is a simple (resp.
acyclic) SCM with conditioned SCM M|XS∈S , then the conditioned SCM M|XS∈S is simple
(resp. acyclic). If M is also linear, then so is M|XS∈S .

This implies that opting for simple/acyclic/linear SCMs as a model class and performing
model abstraction through the conditioning operation will consistently maintain one within
the chosen model class. This convenience proves valuable in practical applications, where
adherence to the specific model class is often desired.
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Remark 3.11. Bongers et al. (2021, Proposition 8.2) show that the class of simple SCMs
is closed under marginalization, perfect intervention, and the twinning operation. Here we
show that the class of simple SCMs is also closed under the conditioning operation of Def-
inition 3.5 (ignoring the subtlety that the ancestors of the conditioning variables became
non-intervenable).

In the causal inference community, it is well known that conditioning and intervention do
not commute. For pedagogical purposes, we give an example where T ∩AncG(M)(S) ̸= ∅ and
the intervention and conditioning do not commute. See also, e.g., Mathur and Shpitser (2024)
for an example.

Example 3.12 (Conditioning and intervention do not commute). Consider a linear SCM
with P(ET ),P(EX),P(EY ) such that PM (X = x) > 0 and PM (X = x | do(T = t)) > 0 for
t = 0, 1 and structural equations

M :

{
T = ET , X = αT + EX ,

Y = X + βT + EY .

InM , if we first condition onX = x and second intervene on T (despite T being considered
non-intervenable as T ∈ AncG(M)(X)), then we have

E(M|X=x)do(T=1)
[Y ]− E(M|X=x)do(T=0)

[Y ] = α+ β.

On the contrary, if we first intervene on T and second condition on X = x, then we have

E(Mdo(T=1))|X=x
[Y ]− E(Mdo(T=0))|X=x

[Y ] = β.

In general, conditioning and intervention do not commute.

Conditioning does commute with interventions on the non-ancestors of the conditioned
variables.

Lemma 3.13 (Conditioning and intervention). Assume Assumption 3.1. Let T ⊆ V \
AncG(M)(S) and xT ∈ XT . Then we have(

Mdo(XT=xT )

)
|XS∈S

≡
(
M|XS∈S

)
do(XT=xT )

.

Note that in the above lemma, the probability

PMdo(XT=xT )
(XS ∈ S) = PM (XS ∈ S)

is well defined and strictly larger than zero.
The next presented theorem characterizes the causal semantics of conditioned SCMs in

terms of the original SCM with selection mechanisms.

Theorem 3.14 (Main result I: Causal semantics of conditioned SCMs). Assume Assumption
3.1 and write O := V \ S. Let Ti ⊆ O and xTi ∈ XTi for i = 1, . . . , n. Then we have

PM|XS∈S

(
{XO\Ti

(xTi)}1≤i≤n

)
= PM

(
{XO\Ti

(xTi)}1≤i≤n | XS ∈ S
)
.
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By noticing that PM (XO\T (xT )) = PM (XO\T | do(XT = xT )) and PM (XO\T (xT ) | XS ∈
S) = PM (XO\T | do(XT = xT ), XS ∈ S) provided T ∩AncG(M)(S) = ∅, we have the following
result.

Corollary 3.15. Assume Assumption 3.1 and write O := V \ S. Then we have:

(1) Observational: PM|XS∈S (XO) = PM (XO | XS ∈ S).

(2) Interventional: Let T ⊆ O be T = T1 ∪̇T2 such that T1 ⊆ V \ AncG(M)(S) and
T2 ⊆ AncG(M)(S) \ S. For xT ∈ XT ,

PM|XS∈S

(
XO\T | do(XT = xT )

)
= PM

(
XO\T (xT2) | do(XT1 = xT1), XS ∈ S

)
.

(3) Counterfactual via twinning: Let T ⊆ O be T = T1 ∪̇T2 such that T1 ⊆ V \
AncG(M)(S) and T2 ⊆ AncG(M)(S) \ S. Let T̃ ⊆ V ′ be T̃ = T3 ∪̇T4 such that T3 ⊆
(V \AncG(M)(S))

′ and T4 ⊆ (AncG(M)(S) \ S)′.17 For any xT ∈ XT and x
T̃
∈ X

T̃
,

P
(M|XS∈S)

twin(X(O∪O′)\(T∪T̃ )
| do(XT = xT , XT̃

= x
T̃
))

= PMtwin(XO\T (xT2), XO′\T̃ (xT4) | do(XT1 = xT1 , XT3 = xT3), XS ∈ S).

We see that the conditioned SCM faithfully encapsulates the observational distribution
of every observed endogenous variable under selection XS ∈ S, and (taking T2 = T4 = ∅)
the causal semantics of the non-ancestors of S under selection XS ∈ S, in accordance with
the original SCM. Therefore, the simplified abstracted model yields identical results as the
original more intricate model with the selection mechanism XS ∈ S as long as one does not
consider PM (XO\T | do(XT = xT ), XS ∈ S) where T ∩AncG(M)(S) ̸= ∅.

One may wonder if it is possible to modify the definition of M|XS∈S in such a way that
we have, e.g., PM|XS∈S

(
XO\T | do(XT = xT )

)
= PM

(
XO\T | do(XT = xT ), XS ∈ S

)
also for

some T ⊆ O such that T ∩AncG(M)(S) ̸= ∅. We show in Section D.1 that it is impossible to
find an SCM that preserves the causal semantics of the ancestors of latent selection variables
in general.

Remark 3.16 (Not all data-generating processes with causal interpretation can be modeled
by SCMs). Proposition D.1 shows that there exist simple s-SCMs that cannot be modeled by
simple SCMs. It suggests that not all data-generating processes with certain causal interpre-
tations can be modeled by SCMs. Such examples also exist in the equilibrium behavior of
dynamical systems and functional laws in physics and chemistry (Blom et al., 2020).

In addition, by Theorem 3.14, we have the following simple result. The conditional oper-
ation is an operation with a constructive definition that preserves as much causal information
as possible.

Theorem 3.17 (Conditioning operation preserves as much causal information as possible).

There are no mappings (M,XS ∈ S) 7→ M̃ that preserve more causal information than

17V ′ means a copy of V . See Definition A.1.
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(M,XS ∈ S) 7→M|XS∈S in the following sense. Assume that the mapping (M,XS ∈ S) 7→ M̃
is such that for all Ti ⊆ V and xTi ∈ XTi

P
M̃

(
{XO\Ti

(xTi)}1≤i≤n

)
= PM

(
{XO\Ti

(xTi)}1≤i≤n | XS ∈ S
)
,

and furthermore for some T ⊆ AncG(M)(S) and xT ∈ XT

P
M̃

(
XO\T | do(XT = xT )

)
= PM

(
XO\T | do(XT = xT ), XS ∈ S

)
.

Then it holds

PM|XS∈S

(
XO\T | do(XT = xT )

)
= PM

(
XO\T | do(XT = xT ), XS ∈ S

)
.

The subsequent result establishes the commutativity of conditioning and marginalization.

Proposition 3.18 (Conditioning and marginalization commute). Assume Assumption 3.1
and let L ⊆ V \ S. Then we have (M\L)|XS∈S ≡ (M|XS∈S)\L.

Suppose that we have a selection mechanism XS1∪S2 ∈ S1×S2, then we can generate three
“versions” of the conditioned SCMs:

(i) applying the single conditioning operation w.r.t. XS1∪S2 ∈ S1 × S2 to get M|S1×S2
;

(ii) first conditioning on XS1 ∈ S1 and second conditioning on XS2 ∈ S2 to get (M|S1
)|S2

;

(iii) first conditioning on XS2 ∈ S2 and second conditioning on XS1 ∈ S1 to get (M|S2
)|S1

.

The following proposition demonstrates that these three versions are counterfactually equiv-
alent (and hence empirically indistinguishable).

Proposition 3.19 (Conditioning and conditioning commute). Assume Assumption 3.1 with
S = S1 ∪̇S2 and S = S1 × S2 where S1 ⊆ XS1 and S2 ⊆ XS2 are both measurable. Then
(M|S1

)|S2
, (M|S2

)|S1
, and M|S1×S2

are counterfactually equivalent and induce the same laws
of potential outcomes. Also, G(M|S1×S2

) is a subgraph of G((M|S1
)|S2

) and G((M|S2
)|S1

).
Furthermore, if

(i) AncGa(M\(V \S1)
)(S1) ∩AncGa(M\(V \S2)

)(S2) = ∅, or

(ii) we have

P
(
XW ∈

(
g−1
S1

(S1)△ g−1
S2

(S2)
))

= 0,

then (M|S1
)|S2
≡ (M|S2

)|S1
≡M|S1×S2

.

This result implies that the ordering of applying the conditioning operation does not mat-
ter up to counterfactual equivalence of SCMs. Therefore, there is essentially no ambiguity
in referring to M|XS∈S when the non-empty set S is not a singleton. For marginalization
(Bongers et al., 2021, Proposition 5.4), a stronger property holds: marginalizing out vari-
ables in different orderings yields equivalent marginal SCMs. Overall, marginalization and
conditioning commute both with each other and with themselves up to counterfactual equiv-
alence. So, given a set of latent variables and latent selection mechanisms, irrespective of
the intermediate steps taken, one consistently arrives at counterfactually indistinguishable
models via marginalization and the conditioning operation. This underscores the robustness
and reliability of the overall procedure for model abstraction.
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Example 3.20 (Iterative conditioning and joint conditioning). We give an example showing
that applying the conditioning operation iteratively with different orders gives non-equivalent
conditioned SCMs and joint conditioning gives a finer model than iterative conditioning does.

Consider an SCM

M :

{
Xw1 ∼ Uni{1, 2, 3}, Xw2 ∼ Uni{1, 2},
XS1 = (Xw1 , Xw2), XS2 = (Xw1 , Xw2).

Take S1 := {(2, 1), (2, 2), (3, 1), (3, 2)} and S2 := {(1, 2), (2, 1), (2, 2)}. Write

(M|S1
)|S2

= (V 12,W 12,X 12, f12,P12)

(M|S2
)|S1

= (V 21,W 21,X 21, f21,P21)

M|S1×S2
= (V 1×2,W 1×2,X 1×2, f1×2,P1×2).

Then we have W 12 = {w1, w2} = W , W 21 = {{w1, w2}} (nodes w1 and w2 merge) and

Ŵ 1×2 = {w1, w2} = W . Therefore, (M|S1
)|S2
̸≡ (M|S2

)|S1
and (M|S2

)|S1
̸≡ M|S1×S2

, but
(M|S1

)|S2
≡M|S1×S2

. In addition, M|S1×S2
is finer than (M|S2

)|S1
.

Remark 3.21. The phenomenon in Example 3.20 occurs since: two exogenous random vari-
ables (Xw1 and Xw2) merged due to conditioning on XS2 ∈ S2 may become independent after
further conditioning on XS1 ∈ S1, while the conditioned SCM M|XS2

∈S2
only records the

information of the label set Ŵ where w1 and w2 become merged but forgets the original label
set W where w1 and w2 are distinct. Therefore, w1 and w2 are distinct in M|S1×S2

but merge
in (M|S2

)|S1
.

This problem can be fixed by modifying the definition of SCMs. For example, one can
adapt the definition by equipping it with the information of a specific partition of W . We do
not pursue this approach in the current manuscript and opt in Definition 3.5 for the “joint”
version of the conditioning operation.

Often, the selection nodes do not have children, as depicted in Figure 7. Even when the
selection nodes have children, one can always create a copy of it, reducing it to the situation
where the selection nodes lack children. For example, consider G depicted in Figure 8, where
selections occur on A and C by conditioning on a common effect S1 and on D by conditioning
on S2. Introducing a copy S̃ of (S1, S2), or setting S̃ = 1{(S1,S2)∈S}, yields the causal graph

G̃, where conditioning is performed on S̃ instead of (S1, S2). Consequently, in the causal
graph G̃, the selection node S̃ does not have children. The following lemma validates this
construction.

Lemma 3.22 (Conditioning on binary variable without children). Let (M,XS ∈ S) be a

simple s-SCM and (M̃,X
S̃

= 1) be another simple s-SCM where M̃ := (Ṽ ,W, X̃,P, f̃) is

such that Ṽ = V ∪̇ {S̃}, X̃ = X × X
S̃
:= X × {0, 1} and f̃

Ṽ \S̃(xṼ , xW ) = fV (xV , xW ) and

f̃
S̃
(x

Ṽ
, xW ) = 1S(xS). Then M|XS∈S ≡ (M̃|X

S̃
=1)\S.

Based on the above observation, we give a conditioning operation for if we want to observe
the selection variable. Let M = (V,W,X ,P, f) be a simple SCM. Suppose that we want to
condition on XS ∈ S for S ⊆ V and S ⊆ XS so that PM (XS ∈ S) > 0 but we still want to
observe the values of XS . Then a solution is that we introduce a selection variable X

S̃
such

that X
S̃
= 1S(XS) as we did in Lemma 3.22 and condition on X

S̃
= 1.
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G1
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G2

Figure 7: Causal graphs representing selection on node S.

C

A S1 B

D

S2

G

C

A S1 B

S̃

D

S2

G̃

Figure 8: Causal graphs representing selection on nodes S1 and S2, and on node S̃, respec-
tively.

3.3 Conditioning operation for DMGs

The conditioning operation (Definition 3.5) is defined on simple SCMs. For causal modeling
purposes, people often use causal graphs to communicate causal knowledge without referring
to the precise underlying SCMs. To support this, we give a purely graphical conditioning
operation defined on directed mixed graphs (DMGs). The idea is: (i) to add bidirected
edges to node pairs that are ancestors of the conditioned nodes or siblings of ancestors of the
conditioned nodes, and then (ii) to graphically marginalize the conditioned nodes out.

Definition 3.23 (Conditioned DMG). Let G = (V,Ed, Eb) be a DMG consisting of nodes V ,
directed edges Ed and bidirected edges Eb. For S ⊆ V , we define the conditioned DMG G|S
by

(1) adding bidirected edges to G: {a b : a, b ∈ AncG(S) ∪ SibG(AncG(S))}.18

(2) marginalizing out S and marking ancestors of S as dashed.

The definition is inspired by the conditioning operation for SCMs. As we shall show, the
purely graphical conditioning operation is compatible with the SCM conditioning operation.

Example 3.24 (DMGs conditioning). We show an example of the purely graphical condition-
ing operation. Assume that we are given a graph G as shown in Figure 9. Then conditioning
on node V5 gives the graph G|V5

shown in Figure 9.

The following result shows that the conditioning graph G|S represents σ-separations (also
d-separations) encoded in the original graph G soundly (but not completely in general).
The notion of σ-separation (Definition A.9) is defined for DMGs and reduces to normal d-
separation (or m-separation) of acyclic DMGs (Richardson, 2003) if there are no cycles (Forré

18SibG(v) := {w ∈ G | v w is in G}.
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V1

V6

V8

V2 V3 V4

V5

V7

G

V1

V6

V2 V3 V4

V7

V8

G|V5

Figure 9: DMG G and its conditioned DMG G|V5
in Example 3.24.

and Mooij, 2017). Note that when there are cycles, σ-separation implies d-separation but not
the other direction.

Theorem 3.25 (Main result II: Graphical separation in conditioning graph). Let G =
(V,Ed, Eb) be a DMG and S ⊆ V a set of nodes. Then for any subsets of nodes A,B,C ⊆ V
such that

S ∩ (A ∪B ∪ C) = ∅,

it holds that

A
σ/d

⊥
G|S

B | C =⇒ A
σ/d

⊥
G

B | C ∪ S.

If furthermore S is a singleton set with ChG(S) = ∅ and C ∩AncG(S) = ∅, then we have

A
σ/d

⊥
G

B | C ∪ S =⇒ A
σ/d

⊥
G|S

B | C.

Remark 3.26. If we only consider a singleton conditioning event S = {xS} (see Example
B.6 and Lemma 3.30 for the subtle difference), then we can define another version of the
graphical conditioning operation transforming G to Gcd(S) (“cd” represents condition on). It
is defined by Gcd(S) := (GS)|S , i.e., we first delete all the arrows emerging from S and then
apply the original conditioning operation to GS . It is easy to see that this new construction
can strengthen the above result by removing the assumption that ChG(S) = ∅. This is
similar in spirit to marking constant variables and deterministic dependencies distinctly in a
causal graph to capture more conditional independence information escaping from the usual
d-separation Markov property (see, e.g., Geiger et al. (1990); Spirtes et al. (2001)).

The proof of the second claim in Theorem 3.25 relies on the three assumptions. See
Example B.5 in Section B.

Proposition 3.27 (Graph conditioning commutes with marginalization, conditioning and
intervention). Let G = (V,Ed, Eb) be a DMG.

(1) Let L ⊆ V and S ⊆ V be two disjoint subsets of nodes from G. Then we have(
G\L

)
|S =

(
G|S

)
\L .
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(2) Let S1, S2 ⊆ V be two disjoint subsets. Then we have(
G|S1

)
|S2

=
(
G|S2

)
|S1
⊆ G|S1∪S2

.

(3) Let T ⊆ V and S ⊆ V be two disjoint subsets of nodes from G such that T∩AncG(S) = ∅.
Then we have (

Gdo(T )

)
|S =

(
G|S

)
do(T )

.

Remark 3.28. One should note that
(
G|S1

)
|S2

could be a strict subgraph of G|(S1∪S2). An

example is shown in Figure 10. When knowing that the conditioned set can be decomposed
as a Cartesian product, one should use the iterative conditioned graph, which is finer than
the jointly conditioned graph. See Section 3.3.1.

CA B

S1 S2

G

CA B

(G|S1
)|S2

= (G|S2
)|S1

C

A B

G|(S1∪S2)

Figure 10:
(
G|S1

)
|S2

=
(
G|S2

)
|S1

⊊ G|(S1∪S2)

The following proposition states that the purely graphical conditioning operation is com-
patible with the SCM conditioning operation. See Remark B.3 in Section B for some remarks
on Proposition 3.29.

Proposition 3.29 (Main result III: DMG conditioning is compatible with SCM conditioning).
Let M be a simple SCM with conditioned SCM M|XS∈S . Then G(M|XS∈S) is a subgraph of
G(M)|S. If furthermore S = {s1, . . . , sn} and S =×n

i=1 Si with Si ⊆ Xsi measurable for
i = 1, . . . , n, then G(M|XS∈S) is a subgraph of ((G(M)|s1)...)|sn.

(Generalized) Directed global Markov properties connect the causal graph G(M) and the
induced distribution PM (XV ) of the SCM M in the sense that they enable one to read off
conditional independence relations from the graph via the d-separation (resp. σ-separation)
criterion (Definitions A.7 and A.10). Obviously, PM|XS∈S (XO) satisfies the (generalized) di-

rected Markov property relative to G(M|XS∈S) (Theorems A.8 and A.11). Therefore, the
above proposition immediately implies that PM|XS∈S (XO) satisfies the Markov property rel-

ative to G(M)|S (as Corollary 3.31 states), illustrating the role of the conditioned graph
G(M)|S as an effective graphical abstraction. However, one should be aware of the subtlety
that one cannot directly conclude

A
σ/d

⊥
G(M)

B | C,S =⇒ XA ⊥⊥
PM (XV )

XB | XC , XS ∈ S

even if PM (XV ) satisfies the Markov property relative to G(M). See Example B.6 for details.
The following lemma establishes a connection between conditional independence given a

variable and a family of conditional independencies given certain events.
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Lemma 3.30. Let XA, XB, XC and XS be random variables defined on a probability space
(Ω,F ,P) and XS take values in a standard measurable space (XS ,BXS

). Then the first state-
ment implies the second statement:

(1) XA ⊥⊥ XB | XC , XS ∈ H for all H ∈ BXS
with positive probability.

(2) XA ⊥⊥ XB | XC , XS.

This lemma incorporates some classical cases as special instances. For example, if XS has
a countable support XS , then XA ⊥⊥ XB | XS = s for all s ∈ XS implies XA ⊥⊥ XB | XS (the
converse also holds). The converse of the above lemma does not hold as Example B.6 shows.
Also given one single S ⊆ XS such that P(XS ∈ S) > 0 and XA ⊥⊥ XB | XC , XS ∈ S, we
cannot infer XA ⊥⊥ XB | XC , XS in general.

Understanding these subtleties in conditional independence allows us to better appreciate
the following Markov property, which is an easy corollary from Propositions 3.10 and 3.29
and Theorems A.8 and A.11.

Corollary 3.31. Let M be a simple SCM with conditioned SCM M|XS∈S . Then the uniquely
induced distribution PM|XS∈S (XO) satisfies the generalized directed global Markov property

relative to G(M)|S, i.e., for A,B,C ⊆ O we have

A
σ
⊥

G(M)|S
B | C =⇒ XA ⊥⊥

PM|XS∈S (XO)
XB | XC .

19

Furthermore, assume one of the following conditions: (i) M is acyclic; (ii) all endogenous
state spaces Xv are discrete; (iii) M|S satisfies the third assumption in Theorem A.8. Then
PM|XS∈S (XO) satisfies the directed global Markov property relative to G(M)|S, i.e.,

A
d
⊥

G(M)|S
B | C =⇒ XA ⊥⊥

PM|XS∈S (XO)
XB | XC .

We can apply the intervention operation to M|XS∈S and G(M)|S , respectively. Recall that
a simple SCM M always satisfies the generalized Markov property w.r.t. G(M). Therefore, we
obtain that (M|XS∈S)do(XT=xT ) satisfies the generalized Markov property w.r.t. (G(M)|S)do(T )

for any T ⊆ O.
The converse of (generalized) directed global Markov properties is d-faithfulness (resp.

σ-faithfulness) (Spirtes et al., 2001; Pearl, 2009; Forré and Mooij, 2018), which plays an
important role in constraint-based causal discovery algorithms (Spirtes et al., 1995, 1999;
Mooij and Claassen, 2020). A natural question arises: how does faithfulness interact with
the conditioning operation? Recall that marginalization preserves faithfulness. If PM (XV ) is
faithful to G(M), then PM\L(XV \L) is faithful to G(M)\L for any L ⊆ V . However, this does
not generally hold for conditioning. Even if PM (XV ) is faithful to G(M), the distribution
PM|XS∈S (XV \S) may not be faithful to G(M)|S . See Example 3.32 for a simple example.

19Recall that XA ⊥⊥
PM|XS∈S (XO)

XB | XC ⇐⇒ XA ⊥⊥
PM (XV )

XB | XC , XS ∈ S.
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Example 3.32 (Conditioning does not preserve faithfulness). Consider an SCM M and its
conditioned SCM M|Xs=1

M :


Xw1 , Xw2 ∼ Ber(0.5),

Xa = Xw1 , Xs = Xw2

Xb = 1(Xw2 = 0)Xa,

M|Xs=1 :


Xw1 ∼ Ber(0.5), Xw2 = 1,

Xa = Xw1 ,

Xb = 1(Xw2 = 0)Xa.

It is easy to see that Xa ⊥⊥
PM|Xs=1

(XV \{s})
Xb. It holds that PM|Xs=1

(XV \{s}) is faithful to

G(M|Xs=1) but not to G(M)|{s}.

Faithfulness is usually stated in terms of conditional independence given variables while
the conditioned SCMs encode conditional independence information given selection variables
taking values in some sets. Example B.6 in Section B shows the subtle difference between
the two. However, Lemma 3.30 builds the connection between them and allows us to state
faithfulness in terms of conditional independence given events.

Putting all the above results in Section 3 together gives us an answer to Questions Q2 and
Q3 in the Introduction. For the interaction between SCMs and causal graphs, assume that we
have a simple SCM M and only a subset O of V is observable. Denote V \O by L ∪̇S where
L denotes the latent part that is marginalized out and S denotes the latent selection nodes.
Fix a measurable set S ⊆ XS with PM (XS ∈ S) > 0. Define the observable marginalized
conditioned SCM

MO|S := (M\L)|S ≡ (M|S)\L,

and observable marginalized conditioned graph

G[O] := ((G(M))\L)|S = ((G(M))|S)\L,

Then we have Figure 11 (dashed arrows mean that the implications are only true under
some extra conditions, and the numbers near the arrows correspond to theorems, lemmas,
corollaries, and examples) for A,B,C ⊆ O.

A
d/σ

⊥
G[O]

B | C A
d/σ

⊥
G(M)

B | C,S

XA ⊥⊥
PM (XV )

XB | XC , XS

XA ⊥⊥
PMO|S (XO)

XB | XC XA ⊥⊥
PM (XV )

XB | XC , XS ∈ S

3.25

3.25

d/σ-Markov+3.31

d/σ-Markovd/σ-Faith

(*)3.30

3.14

Figure 11: Diagram relating graphical separation and stochastic independence under
marginalization and conditioning for a simple SCM M .

(*): Example B.6 tells us that this implication does not hold in general, but if S = {xs}
is a singleton set (recall that we assume PM (XS ∈ S) > 0) then this implication holds.
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The diagram shown in Figure 11 still holds if we replace G[O] and MO|S with (G[O])do(T )

and (MO|S)do(XT=xT ) respectively.
20

Remark 3.33. To compare observational distributions and interventional distributions in
one single graph and therefore derive the general measure-theoretic causal calculus rigorously,
one may need the so-called exogenous input variables (or non-stochastic regime indicator
variables according to Dawid (2021)) and transitional probability theory (Forré, 2021; Forré
and Mooij, 2020). We discuss a conditioning operation for this more general class of models
in Appendix D.3. With this, we can generalize measure-theoretic causal calculus and other
identification results to the case with latent selection bias via the conditioning operation (cf.
Definition D.9), and develop a commutative diagram similar to the one shown above but
with exogenous non-stochastic input variables. Since causal information can be alternatively
characterized by conditional independence involving regime indicators (Dawid, 2002, 2021),
the corresponding diagram for SCMs with input nodes gives us a clearer picture of what causal
information can be preserved during the process of model abstraction via the conditioning
operation.

3.3.1 Conditioning operation for DMGs: explicit modularity and locality

As mentioned in Remark 3.28, when knowing that the conditioning set S ⊆ XS can be
decomposed as a Cartesian product S =×n

i=1 Si with Si ⊆ Xsi and S = {s1, . . . , sn}, we can
obtain a finer conditioned graph by iterative conditioning than by joint conditioning. We give
a formal definition.

Definition 3.34 (Conditioned DMG: special case). Let G be a DMG. For S = {s1, . . . , sn} ⊆
V , we define the conditioned DMG G|⊠S by ((G|s1)...)|sn.

This definition is more in line with the principle that the SCM expresses the modular
structure of causal mechanisms and selection mechanisms. This is particularly relevant when
modeling physical systems where the locality principle of special relativity should be respected
(both for causal mechanisms and selection mechanisms). Note that the definition of G|⊠S does
not depend on the ordering of the iterative conditioning by Proposition 3.27. Theorem 3.25
and Proposition 3.27 all hold if we replace (·)|S with (·)|⊠S . By Proposition 3.29, we know that

G(M|XS∈S) is a subgraph of G(M)|⊠S where S = {s1, . . . , sn} and S =×n
i=1 Si. Furthermore,

we have (G|⊠S1
)|⊠S2

= (G|⊠S2
)|⊠S1

= G|⊠(S1∪S2)
. If we introduce a common child S∗ of

s1, . . . , sn and call the extended graph G∗, then G|S = (G∗)|S∗ = (G∗)|⊠S∗ ⊇ G|⊠S .

3.4 Caveats on modeling interpretation

In the previous subsections, we presented the SCM conditioning operation and DMG con-
ditioning as purely mathematical operations and derived some mathematical properties of
them. In this subsection, we make some remarks on how to interpret the conditioned SCMs
appropriately to avoid confusion in modeling applications.

The subtleties are about intervening on ancestors of selection nodes. In this case, condi-
tioning and interventions are not commutative, as we showed before. Therefore, one should

20One should be careful with the causal interpretation when T ⊈ O \AncG(M)(S). See Section 3.4 for more
details.
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be careful about the order of these two operations. On the one hand, if we first intervene and
second condition on descendants of intervened variables, then the selected subpopulation will
also change according to the intervention. On the other hand, first conditioning and second
intervening on ancestors of selection nodes has a “counterfactual flavor”. Suppose that an
SCMM with three variables T (“treatment”), Y (“outcome”) and S (“selection”) has a causal
graph T Y S. Intuitively, “first-conditioning-second-intervening” indicates that we
first observe the results of the treatment and select units with specific values (say S = s) and
fix this subpopulation. After that, we “go back” to perform an intervention (say do(T = t))
on this fixed selected subpopulation instead of on the total population.21 Mathematically, we
have

P((M|S=s)do(T=t))(Y ) = PM|S=s
(Y | do(T = t))

= PM|S=x
(Y (t))

= PM (Y (t) | S = s)

= PMtwin(Y ′ | do(T ′ = t), S = s)

̸= PM (Y | do(T = t), S = s), (in general)

= P(
(Mdo(T=t))|S=s

)(Y )

where we used the language of potential outcomes and the twinning operation. In Pearl’s
terminology, this mixes different rungs: a rung-two query in the conditioned SCM is equivalent
to a rung-three query in the original SCM. See also Pearl (2015) for an illustration.

One can think of at least three possible ways to use the conditioning operation for mod-
eling:

(i) marginalize out all the ancestors of the selection nodes, or only consider cases where
selection happens on exogenous random variables, so that there is no chance of being
tempted to intervene on the ancestors of the selection nodes;

(ii) specify in the conditioned SCM or in its graph which variables are ancestors of the
selection nodes in the original SCM and do not apply interventions on them (which is
what we opt for in this work);

(iii) one can ignore the issue if one does not mind mixing up the rung-two quantities and
rung-three quantities for her tasks, at the risk of introducing confusion about the causal
interpretation of the conditioned SCM (which is not recommended).

See Remark B.4 in Section B for some further remarks on modeling interpretation.

4 Applications

In this section, we illustrate several applications of the conditioning operation. The condition-
ing operation has a wide range of uses: all classical results for SCMs, such as identification
results (back-door adjustment, do-calculus), apply directly to the conditioned SCMs M|XS∈S .
Using the properties of the conditioning operation, these conclusions for M|XS∈S can then be

21This is often impossible to do in the real world where time travel is not an option, except if we can “redo”
interventions while the exogenous variables remain invariant. Therefore, we prefer not to degrade from rung-2
causal queries to rung-3 ones.
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translated back to (M,XS ∈ S). In combination with marginalization, conditioning opera-
tion also provides a way to interpret a DMG as a causal graph that compactly encodes causal
assumptions, with latent details of both latent common causes and latent selection abstracted
away.

The examples in this section form a cohesive sequence. It navigates us from the philosoph-
ical implications of conditioning (a “generalized Reichenbach’s principle”), to the versatility
of applying classical results to conditioned SCMs (back-door criterion, ID-algorithm, causal
discovery, instrumental variables, mediation analysis), and finally to a concrete practical ap-
plication of conditioned SCMs to modeling real-world problems (the COVID example).

4.1 Reichenbach’s principle under latent selection

Reichenbach’s Principle of Common Cause (Reichenbach, 1956) is often stated in this way:
if two variables are dependent, then one must cause the other, or the variables must have a
common cause (or any combination of these three possibilities). Note that this conclusion
holds only when latent selection bias is ruled out, an assumption that is often left implicit.

Example 4.1 (Reichenbach’s principle). Using the conditioning operation, we can generalize
and prove the principle under the framework of SCMs in the following way. Assume that
M is a simple SCM that has two observed endogenous variables X and Y . By the Markov
property (Theorem A.11), if X and Y are dependent, then X Y , X Y , or X Y
(or any combination of these three possibilities) are in the graph G(M). There exist infinitely
many SCMs M i, i ∈ I with an infinite index set I, such that (M i

\Li
)|Si

= M where Li is a set

of latent variables of M i and XSi ∈ Si is the latent selection in M i. Hence, it implies that
if two variables are dependent, then one causes the other, or the variables have a common
cause, or are subject to latent selection (or any combination of these four possibilities).

Remark 4.2. This provides one possible explanation for some real-world scenario in which
one can exclude the possibilities of causal effects and common causes between two variables
but can still observe the stochastic dependency between them.

4.2 Causal identification under latent selection

Example 4.3 (Back-door theorem). Let M1 and M2 be two SCMs with three variables T
(“treatment”), X (“covariates”), and Y (“outcome”) whose causal graphs are shown in Figure
12. Under some assumptions, Pearl’s Back-Door Theorem (Pearl, 2009) gives, for i = 1, 2,
the identification result:22

PM i(Y | do(T = t)) =

∫
PM i(Y | X = x, T = t)PM i(X ∈ dx). (3)

Thanks to marginalization and the conditioning operation, we can see M1 and M2 as
abstractions of other SCMs, i.e., M i = (M̃ i

\Li)|Si , for SCMs M̃ i, latent variables Li =

{Li
1, . . . , L

i
n}, and latent selection variables Si = {Si

1, . . . , S
i
m} taking values in measurable

22For simplicity, here we ignore the measure-theoretic subtlety. Indeed, we need to assume PMi(X) ⊗
PMi(T ) ≪ PMi(X,T ) and then the identity holds PMi(T )-a.s. See Forré and Mooij (2025) for more details.
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Figure 12: Causal graphs of SCMs M1 and M2 in Example 4.3 and of M3 in Remark 4.5.

sets Si with i = 1, 2. For both M1 and M2, we present two examples M̃ i
(j) for j = 1, 2,

respectively, out of the infinite possibilities in Figure 13.
With the help of Theorem 3.14, we can write (3) as

P
M̃ i(Y | do(T = t), Si ∈ Si) =

∫
P
M̃ i(Y | X = x, T = t, Si ∈ Si)P

M̃ i(X ∈ dx | Si ∈ Si).
(4)

Thus, the back-door theorem can be applied directly to the conditioned SCM, which is useful
especially if the specific latent structure of the SCM is unknown.
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Figure 13: Some possible causal graphs of SCMs M̃ i in Example 4.3.

Remark 4.4. One can generalize other identification results similarly.

Remark 4.5. The result in Example 4.3 differs from that in Correa and Bareinboim (2017),
where it is assumed that the explicit causal structure of the selection mechanism is known,
allowing identification of the causal effect in the whole population from the selected data. It
is a slight generalization of the conditional back-door adjustment in Pearl (2009), which is
expressed as P(Y = y | do(T = t), S = s) =

∑
x P(Y = y | X = x, T = t, S = s)P(X = x |

S = s) when certain graphical criteria are met. One difference is that in (4), Si may not be a
singleton but a general set. The generalized back-door criterion for MAGs cannot be applied
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here, since it rules out selection bias explicitly (Maathuis and Colombo, 2015). Note that
even if we rule out selection bias, interpreting the graph G(M1) as a MAG will have different
consequences than interpreting it as a causal graph of an SCM. Indeed, P(Y | do(T )) is not
identifiable in G(M3) in Figure 12 while the MAG representation of G(M3) is syntactically
equal to the graph G(M1).

Pearl’s do-calculus is proved to be sound and complete (under some conditions) for iden-
tifying interventional distributions in terms of the observational distribution given a causal
graph (Pearl, 1995a; Huang and Valtorta, 2006). Using a causal graph and observational
distribution as inputs, the ID-algorithm, as a sound and complete algorithm, systematically
expresses the target interventional distribution in terms of a functional of the observational
distribution, if the target is identifiable and outputs FAIL if not (Tian and Pearl, 2002; Sh-
pitser and Pearl, 2006b; Huang and Valtorta, 2008). Various variants of the ID-algorithm
exist, each with different targets and inputs (see e.g., Kivva et al. (2023) and the references
therein).

Example 4.6 (ID-algorithm). One such variant, the s-ID-algorithm, is a sound and complete
algorithm for the s-identification problem, whose goal is to identify interventional distributions
on a subpopulation (P(XA | do(XT = xT ), XS = 1)) given a causal graph with selection
mechanism (G) and selected observational distribution (P(XV | XS = 1)) (Abouei et al.,
2024a, Theorem 1, Corollary 2).23 As we shall see, the conditioning operation can help
simplify a part of the original proof (Abouei et al., 2024b, Lemma 5).

Consider the single-variable case T = {t}. In the setting of Abouei et al. (2024a), there
are no latent variables. Therefore, if T ∩ AncG(S) = ∅, then there are no bidirected edges
connecting to t in G|S , which implies that P(XA | do(XT = xT ), XS = 1) is identifiable by

Tian and Pearl (2002, Theorem 1). Now, assuming that A
d
⊥
GT

T | S, the second rule of

Pearl’s do-calculus provides the identification result. Combining these two gives a sound and
complete algorithm for the s-identification problem (Abouei et al., 2024a, Theorem 1). The
soundness of this algorithm immediately generalizes to settings with latent variables.

Besides, if T ∩AncG(S) = ∅, then one can also consider identifying the conditional causal
effect on the subpopulation P(XA | do(XT = xT ), XB, XS = 1) from a graph with latent
variables and selected observational distribution P(XV | XS = 1), by first applying the
conditioning operation for G to get G|S and then applying the classical ID-algorithm for
conditional causal effect with latent variables on G|S (Shpitser and Pearl, 2006a).24 This result
seems to be new in the literature to our knowledge.25 Similar generalizations can be made for
other variants of the ID-algorithm, by first applying the conditioning operation for the graph
and then applying the corresponding version of the ID-algorithm to the conditioned graph

23Note that in the usual c-ID-algorithm for conditional interventional distribution, the input is P(XV ) but
not P(XV | XS = 1).

24If T ∩ AncG(S) ̸= ∅, one can still apply the corresponding ID-algorithm to G|S , but the algorithm would
output an expression for P(XA(xT ) | XS = 1) instead of P(XA | do(XT = xT ), XS = 1). See Theorem 3.14
and Section 3.4.

25When we were writing this manuscript, we found that an s-ID-algorithm under latent variables was
proposed in Abouei et al. (2024b). However, they only consider identification for the unconditional inter-
ventional distribution P(XA | do(XT = xT ), XS = 1), not for the conditional interventional distribution
P(XA | do(XT = xT ), XB , XS = 1).
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(e.g., in the one-line formulation of the ID-algorithm Richardson et al. (2023, Theorem 48),
replace G with G|S).

However, one should note that applying an ID-algorithm to the conditioned graph alone
can hardly give a complete algorithm in general, due to the abstraction nature of the condi-
tioning operation. For example, in the case of the s-ID-algorithm, we can use the conditioning
operation to handle cases where T ∩ AncG(S) = ∅, but a complete algorithm should also be

able to address cases where T ∩ AncG(S) ̸= ∅ and T
d
⊥
GT

A | S (see Abouei et al. (2024a,

Theorem 1)).

4.3 Causal discovery under latent selection

Many causal discovery algorithms address unobserved common causes, but exclude selection
bias. For simplicity, we consider consistent algorithms that output a single ADMG (instead
of equivalence class). We can interpret the output of such algorithms as G((M\L)|S) where
M is an acyclic SCM with latent nodes L, selection mechanism XS ∈ S, and L∩S = ∅. This
can give a certain causal interpretation to the output of these algorithms under selection bias
even if selection bias is excluded in the original formulations. The high-level idea is: given
one such algorithm A, ideal infinite i.i.d. data D and a model class M of SCMs, the algorithm
outputs a causal graph A(D) such that there exists M in M such that G(M) = A(D). Now
suppose that the data D̃ are generated by an s-SCM MS in some model class MS such that
the conditioning operation projects MS into a subclass M|S of M. Then we can apply the

same algorithm to get A(D̃) and by the fact PMS (XO) = PM (XO | XS ∈ S) = PM|XS∈S (XO),

we have G(M|XS∈S) = A(D̃). Theorems 3.14 and 3.17 and Proposition D.1 tell us that A(D̃)
can be seen as the closest approximation of MS in M.

Example 4.7 (Causal discovery). For one instance, Wang and Drton (2023) explored re-
covering causal graphs uniquely from data generated by an acyclic linear non-Gaussian SCM
with a bow-free graph (i.e., no simultaneous bidirected and directed edges between two vari-
ables) and rule out selection bias. Assume that the data are generated from an acyclic linear
s-SCM (M,XS ∈ S) and the conditioned marginalized SCM of it has a bow-free graph. If the
exogenous distribution of (M\L)|S is non-Gaussian and (M\L)|S satisfies the assumptions in
Wang and Drton (2023, Section 3), then we can use the algorithm BANG in Wang and Drton
(2023) to recover the graph of (M\L)|S .

If we know from data or prior knowledge that a node t is not an ancestor of S, then we
can give a causal interpretation of Xt in the discovered graph and apply causal identification
results to identify PM (XO | do(Xt = xt), XS ∈ S) with O ⊆ V \ (L ∪ S). For example, if
the data are selected by XS = xS , we can sometimes read off whether t /∈ AncG(M)(S) from
a PAG (Partial Ancestral Graphs) or a MAG (Spirtes et al., 1995; Richardson and Spirtes,
2002).26

In addition to the causal discovery algorithms mentioned above, some causal model selec-
tion methods, such as the inflation technique (Wolfe et al., 2019), can also be generalized to
deal with selection bias via the conditioning operation.

26Note that if t ∈ AncG(M)(S), we can still apply the identification result to the interventional distribution
given do(Xt = xt) in M|XS∈S , but the causal identification results will output a formula for PM (XO(xt) |
XS ∈ S) instead of PM (XO | do(Xt = xt), XS ∈ S) (cf. Theorem 3.14, Section 3.4).
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4.4 Instrumental variable and mediation analysis under latent selection

In some situations, we cannot achieve point identification results, but we can derive informa-
tive bounds for target causal effects. A well-known example is the instrumental inequality
(Pearl, 2009; Balke and Pearl, 1994, 1997; Pearl, 1995b). More recent advances include, e.g.,
showing that the instrumental inequality is sharp for finite discrete variables under certain
constraints on the cardinality of the variables (Badhane et al., 2025; Van Himbeeck et al.,
2019), and extending the bounds to continuous outcomes (Zhang and Bareinboim, 2021).
Not only can the original instrumental inequality for binary variables be extended to the case
with certain selection bias immediately via the conditioning operation, but also the results
we mentioned above.

Example 4.8 (Instrumental variables). The instrumental inequality was originally derived
for the SCMs with the graph G(M) shown in Figure 14. Similarly to Example 4.3, if we

know that for an SCM M̃ with latent variables L and latent selection S ∈ S, the causal graph
G
((
M̃\L

)
|S
)
takes the form shown in Figure 14, then we can conclude that the same form of

inequality also holds for M̃ under the subpopulation.
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Figure 14: G(M) and G
((
M̃\L

)
|S
)
are graphs for the instrumental variables model. G is the

graph of a model with selection bias whose marginalized and conditioned graph is G
((
M̃\L

)
|S
)

while G̃ is its MAG representation.

If we further assume a continuous linear model Y = βX+ f(U) in M , then the parameter

β is identifiable when Cov(X,Y ) ̸= 0 and is estimated as CovM (T,Y )
CovM (X,Y ) , where selection bias is

implicitly ruled out (Imbens et al., 2000). With the conditioning operation, we can see that the
parameter remains identifiable from the selected conditional distribution P

M̃
(T,X, Y | S ∈ S)

as
Cov

M̃
(T,Y |S∈S)

Cov
M̃

(X,Y |S∈S) even under certain forms of selection bias. Therefore, we have extended the

identification result to include certain forms of selection bias.

Remark 4.9. Note that it is unclear how MAGs can handle this example. If graph G in
Figure 14 is interpreted as a MAG then conditioning on S and marginalizing out L1 and L2

would yield the MAG G̃ in Figure 14, where the assumptions of instrumental variables are
violated, thus being too coarse to establish the instrumental inequality.

Mediation analysis is crucial in many fields such as epidemiology, natural science, and
policy making, where understanding “path-specific” causal effects is often necessary (Pearl,
2001, 2014, 2009; Robins and Greenland, 1992). Traditional methods rely on linear regression,
but linear SCMs have been proven problematic due to potential nonlinear interactions among
variables, latent common causes, and selection bias in real-world problems (Shpitser, 2013).
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Example 4.10 (Mediation analysis). With the help of potential outcomes and causal graphs
of SCMs, Pearl (2014) and Shpitser (2013) study methods to perform mediation analysis when
there are nonlinear functional dependencies and unobserved common causes. By extending the
interpretation of bidirected edges to also represent selection bias, we can extend these results
to account for selection bias immediately, similarly to the approach in previous examples.

For another example on how the conditioning operation is helpful, suppose that one is
interested in the effect of, e.g., A (obesity) on Y (mortality) while conditioning a mediating
variable on the path between them to a specific value (e.g., S = 1: having heart disease)
(Smith, 2020). The graph G is shown in Figure 15. Applying the graphical conditioning
operation gives G|S . This shows that we can obtain a causal identification result for E[Y (a) |
S = 1]− E[Y (a′) | S = 1] via back-door adjustment on L.

A S Y

L

G

A Y

L

G|S

Figure 15: Graph G for mediation analysis conditioning on one mediator and its conditioned
graph G|S .

Remark 4.11. The previous example shows that the conditioning operation is helpful in
obtaining causal identification results, so it could also play a role in fairness analysis (Nabi
and Shpitser, 2018; Chiappa, 2019; Kusner et al., 2017; Zhang and Bareinboim, 2018; Badhane
et al., 2025).

4.5 Causal modeling under latent selection

The question of how to perform causal modeling under selection bias is one of the original
main motivations for this work. In the following example, we show how the conditioning
operation can help with causal modeling under (latent) selection bias. The high-level idea is
from Example 4.1 that even if there are no causal effects and no common causes between two
variables there could still be dependency between them caused by selection bias. To state the
example, recall that one possible workflow of causal inference is:

(i) asking causal queries;

(ii) building a causal model from prior knowledge and data;

(iii) determining the target causal quantity and identifying the estimand in terms of available
observational and interventional distributions;

(iv) using data to estimate the estimand.

As concise encodings of causal assumptions, causal graphs can be used to decide the estimand
for addressing causal queries, and therefore incorrect graphs might generate wrong results.
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Example 4.12 (Causal modeling). To understand the causal effect of treatment strategies
from different countries on the fatality rate of COVID-19, Von Kügelgen et al. (2021) analyzed
data from the initial virus outbreaks in 2020 in China and Italy, and assumed the causal graph
G shown in Figure 16. For COVID-19 infected people, age (A), country of residence (C) at
the time of infection and fatality rate (F ) are recorded.

The data suggest that C and A are dependent. In the traditional understanding of bidi-
rected edges, assuming that C and A do not share a latent common cause, one has to draw a
directed edge between C and A so that the hypothesized graph is compatible with the obser-
vation. However, drawing a directed edge from C to A is not a reasonable causal assumption.
It assumes that if we conduct a randomized trial to assign people to different countries, then
immediately (A and C are measured almost the same time) the resulting age distribution will
differ depending on the assigned country. Similarly, A C would also be an unreasonable
assumption.

However, the conditioning operation tells us that bidirected edges do not have to represent
latent common causes only, but can also represent latent selection bias. Therefore, we can
draw a bidirected edge C A as shown in G̃ to explain the statistical association between C
and A, which could represent different latent selection mechanisms or latent common causes
or combinations of the two between C and A.27 First, the age distribution may differ between
two countries already before the outbreak of the virus (latent selection on ‘person was alive
(S′ = 1) in early 2020’, as in G1). Second, since only infected patients were registered and
both the country and the age may influence the risk of getting infected, selection of the
infection status (S = 1) can also lead to C A (as in G2). The combinations of both
selection mechanisms (such as in G3 or G4) also lead to C A. With the conditioning
operation, we do not need to list (potentially infinitely many) all the possible causal graphs
in detail, including all relevant latent variables that model the selection mechanism. We only
need to consider DMGs on these three observed variables, which is a much smaller (finite)
model space.

Thanks to properties of the conditioning operation, we can answer causal queries like
“what would be the effect on fatality of changing from China to Italy”. It allows us to
compute the total causal effect TCE(F ; c′ → c) := E[F | do(C = c)] − E[F | do(C = c′)] via
the abstracted (conditioned) model G̃ (e.g., by adjusting on age) without fully knowing all
the latent details. Note that the results based on G and G̃ are clearly different. In fact, for
an SCM with graph G, one has:

TCE(F ; c′ → c) := E[F | do(C = c)]− E[F | do(C = c′)] = E[F | C = c]− E[F | C = c′].

On the other hand, for an SCM with graph G̃, one has:

TCE(F ; c′ → c) := E[F | do(C = c)]− E[F | do(C = c′)]

=
∑
a

(
E[F | C = c, A = a]− E[F | C = c′, A = a]

)
P(A = a)

̸=
∑
a

(E[F | C = c, A = a]P(A = a | C = c) (in general)

− E[F | C = c′, A = a]P(A = a | C = c′))

= E[F | C = c]− E[F | C = c′],

27Note that the difference of common cause and selection bias does not matter for the current task, which
shows the power of model abstraction.
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where in the second equality we use the back-door theorem allowed by the graph G̃.

C

A

F

G

C

A

F

G̃

C

A

C ′

A′

S′

F

G1

C

A

C ′

A′

S

F

G2

C

A

C ′

A′

S
S′

F

G3

C

A

C ′

A′

S
S′

F

G4

Figure 16: Causal graphs for COVID-19 data. Note that after applying the conditioning
operation to selection variables and marginalizing out remaining latent variables, we reduce
Gi to G̃ for i = 1, 2, 3, 4.

5 Discussion

Although SCMs have been widely used to study selection bias from a structural causal view-
point, a formal theory was still absent. We gave a mathematical definition of s-SCMs (Defi-
nition 3.2), which formalizes the idea of SCMs with selection mechanisms, and a description
of the data-generating processes that they are modeling. Motivated by the marginalization
of causal models, which plays an important role in abstracting away unnecessary uncondi-
tioned latent details of causal models, we defined a conditioning operation (Definition 3.5)
to transform an SCM with selection mechanisms into an SCM without selection mechanisms
so that the new SCM preserves important information from the original SCM with selection
mechanisms. The benefit of doing so is that, without the need to develop a separate theory
for s-SCMs, we can reduce the problems involving s-SCMs to ordinary SCMs, so that all the
well-developed tools from SCMs can be applied directly. We also explored the theoretical
limit of such a transformation by showing what can be preserved (Section 3.2.2) and what is
impossible to preserve (Appendix D.1) during such a model abstraction process.

Most importantly, we generalized the interpretation of bidirected edges in directed mixed
graphs (interpreted as causal graphs of SCMs) so that they can represent not only latent
common causes but also latent selection bias. This makes the rough idea of “using bidirected
edges to represent selection bias” formal, such as Pearl’s claim in his causality book (Pearl,
2009, p.163). Using the same symbol (bidirected edge) to represent potential latent com-
mon causes and latent selection bias is also consistent with some observation in epidemiology
(Richardson and Robins, 2013a, Footnote 11). Combined with marginalization and interven-
tion, the conditioning operation provides a powerful tool for causal model abstraction and
helps with many causal inference tasks such as prediction under interventions, identification,
and model selection.
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One approach of causal modeling involves: (i) commencing with a complete graph, i.e., it
has two directed edges in different directions and a bidirected edge between any two observed
endogenous variables; (ii) iteratively deleting edges based on prior knowledge and available
data. Our result contributes to this procedure by mathematically proving that, within the
SCM framework, one should retain the bidirected edge between two variables when there is
insufficient knowledge to rule out both unmeasured common cause and latent selection bias.

The current work focuses mainly on the theoretical aspects of the conditioning operation.
Some of the applications are briefly examined. We envision exploring further and more de-
tailed research of applications enabled by conditioning operation in future work. In particular,
the conditioning operation might be helpful in giving a causal interpretation to the output of
certain causal discovery algorithms under selection bias.

Markov categories have recently emerged as a categorical framework for probability and
statistics (Fritz, 2020). In this “synthetic” approach, classical measure-theoretic foundation
is replaced by a categorical one, and many familiar results can be proved algebraically within
the framework (Fritz, 2020; Fritz et al., 2021; Chen et al., 2024a; Fritz et al., 2025). Crucially,
causal modeling can also be formulated at this abstract level (Fritz and Klingler, 2023; Lorenz
and Tull, 2023). In particular, it is possible to extend the theory of conditioning SCMs to
the categorical setting, where recent work on partializations of Markov categories might be
relevant (Mohammed, 2025).
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A More SCM preliminaries

To be as self-contained as possible, we include the definitions of twin SCM and (augmented)
causal graphs of SCMs. We follow the formal definitions of Bongers et al. (2021).

Definition A.1 (Twin SCM). Let M = (V,W,X ,P, f) be an SCM. The twinning operation
maps M to the twin structural causal model (twin SCM)

M twin :=
(
V ∪ V ′,W,XV ×XV ′ ×XW ,P, f̃

)
,

where V ′ = {v′ : v ∈ V } is a disjoint copy of V and the causal mechanism f̃ : XV ×XV ′×XW →
XV ×XV ′ is the measurable mapping given by f̃ (xV , xV ′ , xW ) = (f(xV , xW ), f(xV ′ , xW )).

Definition A.2 (Parent). Let M = (V,W,X ,P, f) be an SCM. We call k ∈ V ∪W a parent
of v ∈ V if and only if there does not exist a measurable mapping f̃v : XV \k × XW\k → Xv

such that for P(XW )-almost every xW ∈ XW , for all xV ∈ XV ,

xv = fv(xV , xW ) ⇐⇒ xv = f̃v
(
xV \k, xW\k

)
.

Definition A.3 (Graph and augmented graph). Let M = (V,W,X ,P, f) be an SCM. We
define:

(1) the augmented graph Ga(M) as the directed graph with nodes V ∪W and directed edges
u→ v if and only if u ∈ V ∪W is a parent of v ∈ V ;

(2) the graph G(M) as the directed mixed graph with nodes V , directed edges u v if and
only if u ∈ V is a parent of v ∈ V and bidirected edges u v if and only if there exists
a w ∈W that is a parent of both u ∈ V and v ∈ V .

Note that G(M) = (Ga(M))\W , where the graphical marginalization (also known as “la-
tent projection”) is defined in Bongers et al. (2021, Definition 5.7).

Example A.4. Consider the SCM

M :


U ∼ Ber(1− ξ), UB ∼ Ber(1− δ), UE ∼ Ber(1− ε),
B0 = U,E0 = U, S0 = B0 ∧ E0,
B1 = B0 ∧ UB, E1 = E0 ∧ UE , S1 = B1 ∧ E1.

Then we have the (augmented) causal graphs of M shown in Figure 17.

Definition A.5 ((Counterfactual/interventional/observational) equivalence). A simple SCM

M = (V,W,X ,P, f) is counterfactually equivalent to a simple SCM M̃ = (Ṽ , W̃ , X̃ , P̃, f̃)
w.r.t. O ⊆ V ∩ Ṽ if for any T1 ⊆ O and xT1 ∈ XT1, and any T2 ⊆ O′ and xT2 ∈ XT2,

PMtwin(X(O∪O′)\(T1∪T2) | do(XT1 = xT1 , XT2 = xT2))

= P
M̃twin(X(O∪O′)\(T1∪T2) | do(XT1 = xT1 , XT2 = xT2)).

We say M is interventionally equivalent to M̃ w.r.t. O if

PM (XO\T1
| do(XT1 = xT1)) = P

M̃
(XO\T1

| do(XT1 = xT1)).
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U

B0 E0

UB UE

B1 E1

S0

S1

Ga(M)

B0 E0

S0

B1 E1

S1

G(M)

Figure 17: The (augmented) causal graphs of the SCM M in Example A.4.

We say M is observationally equivalent to M̃ w.r.t. O if

PM (XO) = P
M̃
(XO).

We say that M and M̃ are observationally/interventionally/counterfatually equivalent if V =

Ṽ and M is observationally/interventionally/counterfatually equivalent to M̃ w.r.t. V .

Remark A.6. We have

Equivalence of SCMs =⇒ Counterfactual equivalence

=⇒ Interventional equivalence

=⇒ Observational equivalence,

but not conversely. See Bongers et al. (2021, Proposition 4.6).

Definition A.7 (Directed global Markov property). Let G be a DMG with nodes V and
P(XV ) a probability distribution on XV =

∏
v∈V Xv for standard measurable spaces Xv. We

say that the probability distribution P(XV ) satisfies the directed global Markov property
relative to G if for subsets A,B,C ⊆ V the set A being d-separated from B given C implies
that the random variable XA is conditionally independent of XB given XC .

Theorem A.8 (Directed Markov property for SCMs; Forré and Mooij (2017)). Let M be a
uniquely solvable SCM that satisfies at least one of the following three conditions:

(1) M is acyclic;

(2) all endogenous state spaces Xv are discrete and M is ancestrally uniquely solvable
(Bongers et al., 2021, Definition 3.9);

(3) M is linear (Bongers et al., 2021, Definition C.1) and each of its causal mechanisms
{fv}v∈V has a nontrivial dependence on at least one exogenous variable, and P(XW )
has a density w.r.t. the Lebesgue measure on RW .

Then its observational distribution PM (XV ) exists, is unique, and satisfies the directed global
Markov property relative to G(M).
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We first recall the definition of σ-separation. In the following, we write

ScG(C) := {ṽ ∈ V : ∃ṽ · · · v and ṽ · · · v for some v ∈ C}

for the strongly connected component of C ⊆ V .

Definition A.9 (σ-sepation for DMGs, (Forré and Mooij, 2017; Bongers et al., 2021)). Let
G be a DMG with nodes V and C ⊆ V a subset of nodes and π a walk in G:

π = (v0 · · · vn) .

(1) We say that the walk π is C-σ-blocked or σ-blocked by C if:

(i) v0 ∈ C or vn ∈ C or;

(ii) there are two adjacent edges in π of one of the following forms:

left chain: vk−1 vk vk+1 with vk ∈ C ∧ vk /∈ ScG (vk−1) ,
right chain: vk−1 vk vk+1 with vk ∈ C ∧ vk /∈ ScG (vk+1) ,

fork: vk−1 vk vk+1 with vk ∈ C ∧ vk /∈ ScG (vk−1) ∩ ScG (vk+1) ,
collider: vk−1 vk vk+1 with vk /∈ AncG(C).

We say that the walk π is C-σ-open if it is not C-σ-blocked.

(2) Let A,B,C ⊆ V (not necessarily disjoint) be subsets of nodes. We then say that: A is
σ-separated from B given C in G, in symbols:

A
σ
⊥
G
B | C,

if every walk/path from a node in A to a node in B is σ-blocked by C. (In the definition,
taking either walk or path gives an equivalent definition.)

Definition A.10 (Generalized directed global Markov property; Forré and Mooij (2017)).
Let G = (V,E,H) be a DMG and P(XV ) a probability distribution on XV =

∏
v∈V Xv for

standard measurable spaces Xv. We say that the probability distribution P(XV ) satisfies the
generalized directed global Markov property relative to G if for subsets A,B,C ⊆ V
the set A being σ-separated (Definition A.9) from B given C implies that the random variable
XA is conditionally independent of XB given XC .

Theorem A.11 (Generalized directed Markov property for SCMs; Forré and Mooij (2017);
Bongers et al. (2021)). Let M be a simple SCM. Then its observational distribution PM (XV )
exists, is unique, and satisfies the generalized directed global Markov property relative to G(M).

B Some examples and remarks

Remark B.1 (Proof of claim in Remark 2.13). If we assume that there is an underlying
acyclic SCM M = (V,W,X ,P, f) inducing the potential outcomes XA and XB(xA), then
equation (1) is equivalent to

∀xA ∈ {0, 1} : gA(XW ) ⊥⊥ g
V \A
B (xA, XW ), (5)
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where g and gV \A are the (essentially unique) solution functions of M w.r.t. V and V \ A,
respectively. Then we can show that (under a positivity assumption) equation (2) holds.

Indeed, for every xA ∈ {0, 1} with PM (XA = xA) > 0,

PM (XB | XA = xA) = PM (gB(XW ) | gA(XW ) = xA)

= PM (g
V \A
B (gA(XW ), XW ) | gA(XW ) = xA) (Lemma C.3)

= PM (g
V \A
B (xA, XW ) | gA(XW ) = xA)

= PM (g
V \A
B (xA, XW )) (equation (5))

= PM (XB(xA))

= PM (XB | do(XA = xA)).

Remark B.2 (Assumption 3.1 is mild). (1) Note that the class of simple SCMs is a more
general model class than acyclic SCMs. Besides, one can easily generalize all the results
in this work to an even more general class of SCMs than simple SCMs by carefully
postulating corresponding unique solvability assumptions for the SCM w.r.t. certain
subsets of V . However, for non-simple SCMs, there are many counter-intuitive phenom-
ena. For example, non-simple SCMs can induce none or multiple (observational and
interventional) distributions, they lack a Markov property, and interventions may affect
non-descendants of the intervened target (see e.g., Bongers et al. (2021)). This suggests
that non-simple SCMs are not intuitive causal models. Therefore, we focus on simple
SCMs in the current work.

(2) In real-world applications, we mostly observe data from events with positive probabil-
ities. Also, mathematically, although measure theory provides a way to define condi-
tional probabilities given a null event, it is still ambiguous in general when the Borel-
Kolmogorov paradox arises (?Jaynes, 2003). So, it is reasonable not to model selection
events with zero probabilities.

Remark B.3 (Remark on Proposition 3.29). (1) Recall that G(M\L) can be a strict sub-
graph of G(M)\L. Also note that the “merging step” can be more coarse in G(M) than
in M . Therefore, G(M|XS∈S) can be a strict subgraph of G(M)|S due to the merging
step and the marginalization. This means that G(M)|S is generally a (strictly) more
conservative representation of the underlying conditioned SCM with less causal infor-
mation due to the nature of abstraction (recall that a sparser causal graph encodes
stronger assumptions).

(2) Any reasonable attempt to a purely graphical conditioning operation should satisfy this
property. Otherwise, one would conclude from the graph G|S some results that do
not hold for some conditioned SCMs M|XS∈S where M is compatible with the graph
G. Also note that one is not able to further “minimize” the conditioned graph by
eliminating some (bi)directed edges, since there always exists an SCM M and a selection
mechanism XS ∈ S such that G(M|XS∈S) = G(M)|S (consider a linear SCM with
positive coefficients in which every endogenous variable has at least one exogenous parent
such that P(Xw) = N (0, 1) for all w ∈W and with selection mechanism XS ∈ [0,∞)).

(3) Recall that graphical marginalization preserves ancestral relationships, i.e., AncG\L(B) =
AncG(B) \ L. This property also holds for graphical conditioning, i.e., a ∈ AncG(b) iff
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a ∈ AncG|S (b) for any S ⊆ V \{a, b}. However, this is not the case for SCM marginaliza-
tion and conditioning in general. At the level of SCMs, the best we can conclude is that
if a ∈ AncG(M\L)(b) or a ∈ AncG(M|XS∈S)(b), then a ∈ AncG(M)(b) but not conversely.

(4) The conditioning operation for an SCM does not introduce new directed causal paths
to the graph of the original SCM. This aligns with the principle that an “individual
causal effect” present in a subset of the population must also be present in the entire
population, though the reverse is not necessarily true.28

Remark B.4 (Remark on modeling interpretation). (1) The “node-splitting” trick has been
applied in various forms and situations (Pearl, 2009; Richardson and Robins, 2013b).
Usually, a copy A′ is added as a child of A to the original causal model and interventions
are performed on A′ instead of on A. Similarly, one can also use the node-splitting trick
when using the conditioning operation where a copy A′ is added as a parent of A to the
original causal model and selections are performed on A′ instead of on A.

(2) There are some relations between conditioned SCMs and counterfactual reasoning.
Therefore, the conditioning operation can provide an easy way to identify unnested
counterfactual quantities in some cases.29 For example, suppose that we want to iden-
tify the counterfactual quantity PM (Y (t) | S = s) given the graph G(M) in Figure 18.
Then we can apply the graphical conditioning operation to get G(M)|S from G(M). We
know that G(M|S=s) must be a subgraph of G(M)|S by Proposition 3.29. For finite dis-
crete variables under positivity assumptions, the back-door criterion applied to M|S=s

gives

PM|S=s
(Y (t)) =

∑
z

PM|S=s
(Y | T = t, Z = z)PM|S=s

(Z = z).

Hence, we can conclude that

PM (Y (t) | S = s) =
∑
z

PM (Y | T = t, Z = z, S = s)PM (Z = z | S = s).

This is related to the problems of “Type-I selection bias” and “internal validity” ac-
cording to the jargon of Lu et al. (2022) and Smith (2020), respectively.

S T

Z

Y

G(M)

T

Z

Y

G(M)|S

Figure 18: Causal graph G(M) and its conditioned graph G(M)|S on S.

28Note that in contrast to “individual level” causal effects, a “population causal effect” in a subpopulation
may not be present in the whole population due to the fact that “population causal effects” in different
subpopulations may cancel out with each other.

29Notions defined via nested counterfactual quantity such as various notions of fairness (Kusner et al., 2017;
Zhang and Bareinboim, 2018) can always be rewritten as an unnested one using the Counterfactual Unnesting
Theorem (Correa et al., 2021, Theorem 1).
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Example B.5 (The assumptions in Theorem 3.25 cannot be omitted). (1) The assumption
that ChG(S) = ∅ cannot be omitted. Consider the following case shown in Figure 19.

We have A
σ
⊥
G
B | S but do not have A

σ
⊥
G|S

B.

SA B

G

A B

G|S

Figure 19: Causal graphs in the first item of Example B.5.

(2) The assumption that C ∩AncG(S) = ∅ cannot be omitted. Consider the following case

shown in Figure 20. We have A
σ
⊥
G
B | C ∪ S but we do not have A

σ
⊥
G|S

B | C. However,

note that we have A
d
⊥

MAG(G)|S
B | C where MAG(G)|S denotes the conditioned MAG of

G given S (see Richardson and Spirtes (2002)).

C

A B

S

G

C

A B

G|S

C

A B

MAG(G)|S

Figure 20: Causal graphs and MAGs in the second item of Example B.5.

(3) The assumption that S is a singleton set cannot be omitted. Consider the following

case shown by Figure 21. For S = {S1, S2}, we have A
σ
⊥
G
Y | Z ∪S, but we do not have

A
σ
⊥
G|S

Y | Z.

ZA Y

S1 S2

G

Z

A Y

G|S

Figure 21: When S = {S1, S2} is not a singleton set, the σ-separation A
σ
⊥
G

Y | Z ∪ S does

not imply A
σ
⊥
G|S

Y | Z.
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Example B.6 (Markov property does not imply conditional independence given an event).
Consider a discrete acyclic causal model M given by

PM (XA | XS = 0) =
1

2
δ0 +

1

2
δ1, PM (XB | XS = 0) =

1

2
δ0 +

1

2
δ1,

PM (XA | XS = 1) =
1

2
δ0 +

1

2
δ1, PM (XB | XS = 1) =

1

2
δ0 +

1

2
δ1,

PM (XA | XS = 2) =
1

3
δ0 +

2

3
δ1, PM (XB | XS = 2) =

1

3
δ0 +

2

3
δ1,

PM (XS) =
1

3
δ0 +

1

3
δ1 +

1

3
δ2,

and PM (XA, XB, XS) = PM (XA | XS) ⊗ PM (XB | XS) ⊗ PM (XS) whose graph is drawn in
Figure 22.

S

A B

G(M)

Figure 22: Causal graph of M where XA ⊥̸⊥
PM (XV )

XB | XS ∈ {1, 2} even if A
d
⊥

G(M)
B | S.

We can compute that

PM (XA | XS ∈ {1, 2}) =
PM (XA, XS ∈ {1, 2})
PM (XS ∈ {1, 2})

=
5

12
δ0 +

7

12
δ1,

PM (XB | XS ∈ {1, 2}) =
PM (XB, XS ∈ {1, 2})
PM (XS ∈ {1, 2})

=
5

12
δ0 +

7

12
δ1,

PM (XA, XB | XS ∈ {1, 2}) =
PM (XA, XB, XS ∈ {1, 2})

PM (XS ∈ {1, 2})
=

13

72
δ00 +

17

72
δ01 +

17

72
δ10 +

25

72
δ11.

Then it is easy to see that

PM (XA | XS ∈ {1, 2})⊗ PM (XB | XS ∈ {1, 2})

=
25

144
δ00 +

35

144
δ01 +

35

144
δ10 +

49

144
δ11

̸= PM (XA, XB | XS ∈ {1, 2}).

Note that A
d
⊥

G(M)
B | S. From the Markov property or direct calculation, one can see that

XA ⊥⊥
PM (XV )

XB | XS . However, the above calculation implies that XA ⊥̸⊥
PM (XV )

XB | XS ∈

{1, 2}.

Remark B.7 (Remark on Example B.6). Note that one cannot say that this falsifies the
Markov property. In fact, the Markov property is about conditioning on a variable and the
above example is about conditioning on an event, which are fundamentally different.
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C Proofs

Lemma 3.4 (Finest partition). Let PS denote the set of partitions I = {I1, . . . , Ip} of W

such that {XIi}
p
i=1 are mutually independent under P̃(XW ) = P(XW | XS ∈ S). Then there

exists H ∈ PS such that H is a finer partition than any other partition I ∈ PS .

Proof. We first show that (PS ,∨) is a finite join semi-lattice where I ∨ J := {I ∩ J : I ∈
I and J ∈ J } \ {∅}. To achieve that, it suffices to show that PS is closed under the join
operation. If {XIi}

p
i=1 are mutually independent and {XJj}

q
j=1 are mutually independent

under some probability distribution P̃ then we have that {XKk
}mk=1 are mutually independent

under P̃ where {Kk}mk=1 = I ∨J . That is, P̃(XW ) =
⊗p

i=1 P̃(XIi) =
⊗p

i=1

⊗q
j=1 P̃(XIi∩Jj ) =⊗m

k=1 P̃(XKk
). Since (PS ,∨) is finite, there must exist a largest element, which we denote by

H = {Hi}ni=1. This means that every partition J in PS must be coarser than H according to
the order induced by the join ∨, so the partition H is the finest partition in PS .

Proposition 3.10 (Simple, acyclic, linear SCMs and conditioning). If M is a simple (resp.
acyclic) SCM with conditioned SCM M|XS∈S , then the conditioned SCM M|XS∈S is simple
(resp. acyclic). If M is also linear, then so is M|XS∈S .

Proof. Since exogenous random variables do not have parents, merging exogenous random
variables will not introduce cycles. Merging exogenous random variables will also preserve
the simplicity and linearity of SCMs. Indeed, if gA : XV \A×XW → XA is the essentially unique

solution function of M w.r.t. A for some A ⊆ V \S, then the function g̃A : XV \A×XŴ
→ XA

defined by g̃A(xV \A, xŴ ) = gA(xV \A, xW ) with xW = (xŵ)ŵ∈Ŵ = x
Ŵ
∈ X

Ŵ
is the essentially

unique solution function of M̃ w.r.t. A, where M̃ is the same as M but with W replaced by Ŵ
and X by XV ×XŴ

. So merging exogenous variables preserves simplicity. For linearity, let Xu

and Xv denote some linear vector spaces (they do not have to be the real line R), and L(Xu,Xv)
denote the set of linear mappings from Xu to Xv. Let fv(xV , xW ) =

∑
u∈V (Tvu(xW ))xu +

Γv(xW ) where Tvu : XW → L(Xu,Xv) and Γv : XW → Xv are (nonlinear) mappings such that
fv is measurable. Then the mapping f̃v(xV , xŴ ) =

∑
u∈V (T̃vu(xŴ ))xu+Γ̃v(xŴ ) is still linear

and measurable where

T̃vu(xŴ ) := Tvu(xW ) and Γ̃v(xŴ ) := Γv(xW ) with x
Ŵ

= xW .

Updating the probability distributions of the exogenous random variables to the posterior
preserves simplicity, acyclicity, and linearity of SCMs. In particular, this preserves simplicity
because if PM (XS ∈ S) > 0, then PM (XW | XS ∈ S) ≪ PM (XW ). By slightly generalizing
Bongers et al. (2021, Propositions 8.2, 5.11 and C.5),30 we have that marginalization preserves
simplicity, acyclicity, and linearity of SCMs. Hence, we obtain that the conditioning operation
preserves simplicity, acyclicity, and linearity of SCMs.

Lemma 3.13 (Conditioning and intervention). Assume Assumption 3.1. Let T ⊆ V \
AncG(M)(S) and xT ∈ XT . Then we have(

Mdo(XT=xT )

)
|XS∈S

≡
(
M|XS∈S

)
do(XT=xT )

.

30Our definition of linear SCMs is more general than the one in Bongers et al. (2021).
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Proof. We check the definition one by one. Write
(
M|S

)
do(XT=xT )

:= (V̂ , Ŵ , X̂ , P̂, f̂) and(
Mdo(XT=xT )

)
|S := (V ,W,X ,P, f). Set O := V \ S.

First, it is easy to see that V̂ = V \ S = V . Because T ∩ AncG(M)(S) = ∅ and M is

simple, g−1
S (S) = g̃−1

S (S) up to a P(XW )-null set where g and g̃ are solution functions of

M and Mdo(XT=xT ) respectively. Therefore, we can conclude that Ŵ = W . Then we have

X̂ = XO × XŴ
= XO × XW = X . Since M and Mdo(XT=xT ) have the same exogenous

distribution P and g−1
S (S) = g̃−1

S (S) up to a P(XW )-null set, we have PM (Xŵi
, XS ∈ S) =

PMdo(XT=xT )
(XW i

, XS ∈ S). Hence, we can conclude that

PM (Xŵi
| XS ∈ S) = PMdo(XT=xT )

(XW i
| XS ∈ S).

Therefore, we have P̂ =
⊗n

i=1 P̂(Xŵi
) =

⊗n
i=1 P(XW i

) = P. For the causal mechanisms,

we have f̂
(
x
V̂
, x

Ŵ

)
=

(
fO\T

(
xO, g

S
(
xO, xŴ

)
, x

Ŵ

)
, xT

)
with gS the (essentially unique)

solution function of M w.r.t. S. Let f̃ be the causal mechanism of Mdo(XT=xT ) and let g̃S be
the (essentially unique) solution function of Mdo(XT=xT ) w.r.t. S. Then we have

f
(
xV , xW

)
= f̃O

(
xO, g̃

S
(
xO, xW

)
, xW

)
=

(
fO\T

(
xO, g̃

S
(
xO, xW

)
, xW

)
, xT

)
.

Since T ∩S = ∅, we have fS(xV , xW ) = f̃S(xV , xW ) for all xW ∈ XW and all xV ∈ XV . Recall
that gS and g̃S are the (essentially unique) solution functions of M and Mdo(XT=xT ) w.r.t. S
respectively, i.e., for P(XW )-a.a. xW ∈ XW and all xV ∈ XV

xS = gS(xO, xW )⇐⇒ xS = fS(xV , xW ) and xS = g̃S(xO, xW )⇐⇒ xS = f̃S(xV , xW ).

Therefore, for P(XW | XS ∈ S)-a.a. xŴ = xW ∈ XŴ
= XW and all xO ∈ XO

gS(xO, xŴ ) = g̃S(xO, xW ).

Hence, for P(XW | XS ∈ S)-a.a. xŴ = xW ∈ XŴ
= XW and all xO ∈ XO

f̂(xO, xŴ ) = f(xO, xW ).

With the definition of the conditioning operation we conclude(
Mdo(XT=xT )

)
|XS∈S

≡
(
M|XS∈S

)
do(XT=xT )

.

Theorem 3.14 (Main result I: Causal semantics of conditioned SCMs). Assume Assumption
3.1 and write O := V \ S. Let Ti ⊆ O and xTi ∈ XTi for i = 1, . . . , n. Then we have

PM|XS∈S

(
{XO\Ti

(xTi)}1≤i≤n

)
= PM

(
{XO\Ti

(xTi)}1≤i≤n | XS ∈ S
)
.
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Proof. Let T ⊆ O. Let g̃O\T : XT ×XW → XO\T be the (essentially unique) solution function

of M\S w.r.t. O \T and ĝO\T : XT ×XŴ
→ XO\T be the (essentially unique) solution function

of M|S w.r.t. O \ T . For PM (XW | XS ∈ S)-a.a x
Ŵ

= xW ∈ XW and all xV ∈ XV , we have

xO\T = g̃O\T (xT , xW )⇐⇒ xO\T = fO\T
(
xO, g

S (xO, xW ) , xW
)

⇐⇒ xO\T = f̂O\T (xO, xW )

⇐⇒ xO\T = ĝO\T (
xT , xŴ

)
This implies that g̃O\T (xW , xT ) = ĝO\T (x

Ŵ
, xT ) for PM (XW | XS ∈ S)-a.a. xŴ = xW ∈ XW

and all xT ∈ XT . Hence, we have

PM|S

(
{XO\Ti

(xTi)}1≤i≤n

)
=

(
ĝO\T1(xT1 , ·), . . . , ĝO\Tn(xTn , ·)

)
∗
PM|S (XŴ

)

=
(
g̃O\T1(xT1 , ·), . . . , g̃O\Tn(xTn , ·)

)
∗
PM (XW | XS ∈ S)

=
(
g
V \T1

O\T1
(xT1 , ·), . . . , g

V \Tn

O\Tn
(xTn , ·)

)
∗
PM (XW | XS ∈ S)

= PM

(
{XO\Ti

(xTi)}1≤i≤n | XS ∈ S
)
,

since g
V \Ti

O\Ti
(xW , xTi) = g̃O\Ti(xW , xTi) for PM (XW )-a.a. xW ∈ XW and all xTi ∈ XTi where

gV \Ti : XTi∪S × XW → XV \Ti
is the (essentially unique) solution function of M w.r.t. V \ Ti

by Forré and Mooij (2025, Lemma 6.8.4).

Theorem 3.17 (Conditioning operation preserves as much causal information as possible).

There are no mappings (M,XS ∈ S) 7→ M̃ that preserve more causal information than

(M,XS ∈ S) 7→M|XS∈S in the following sense. Assume that the mapping (M,XS ∈ S) 7→ M̃
is such that for all Ti ⊆ V and xTi ∈ XTi

P
M̃

(
{XO\Ti

(xTi)}1≤i≤n

)
= PM

(
{XO\Ti

(xTi)}1≤i≤n | XS ∈ S
)
,

and furthermore for some T ⊆ AncG(M)(S) and xT ∈ XT

P
M̃

(
XO\T | do(XT = xT )

)
= PM

(
XO\T | do(XT = xT ), XS ∈ S

)
.

Then it holds

PM|XS∈S

(
XO\T | do(XT = xT )

)
= PM

(
XO\T | do(XT = xT ), XS ∈ S

)
.

Proof. The proof is obvious by noting that

PM

(
XO\T | do(XT = xT ), XS ∈ S

)
= P

M̃

(
XO\T | do(XT = xT )

)
= P

M̃

(
XO\T (xT )

)
= PM (XO\T (xT ) | XS ∈ S)
= PM|XS∈S

(
XO\T (xT )

)
= PM|XS∈S

(
XO\T | do(XT = xT )

)
.
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Proposition 3.18 (Conditioning and marginalization commute). Assume Assumption 3.1
and let L ⊆ V \ S. Then we have (M\L)|XS∈S ≡ (M|XS∈S)\L.

Proof. Write (M|XS∈S)\L = (V̂ , Ŵ , X̂ , P̂, f̂) and (M\L)|XS∈S = (V ,W,X ,P, f).
First, it is easy to see that V̂ = V = V \ (L ∪ S). Let g̃ : XW → XV \L be the (essen-

tially unique) solution function of M\L. Then we have gS = g̃S P(XW )-a.s. Therefore, by

the definition of Ŵ and W , we have Ŵ = W and P̂(X
Ŵ
) = P(XW ) = PM (XW | XS ∈

S). Furthermore, we have X̂ = X . By Bongers et al. (2021, Proposition 5.4), we have
f̂(xV \(L∪S), xŴ ) = f(xV \(L∪S), xW ) for PM (XW | XS ∈ S)-a.a. xŴ = xW ∈ X

Ŵ
and all

xV \(L∪S) ∈ XV \(L∪S). Overall, (M\L)|XS∈S ≡ (M|XS∈S)\L.

Proposition 3.19 (Conditioning and conditioning commute). Assume Assumption 3.1 with
S = S1 ∪̇S2 and S = S1 × S2 where S1 ⊆ XS1 and S2 ⊆ XS2 are both measurable. Then
(M|S1

)|S2
, (M|S2

)|S1
, and M|S1×S2

are counterfactually equivalent and induce the same laws
of potential outcomes. Also, G(M|S1×S2

) is a subgraph of G((M|S1
)|S2

) and G((M|S2
)|S1

).
Furthermore, if

(i) AncGa(M\(V \S1)
)(S1) ∩AncGa(M\(V \S2)

)(S2) = ∅, or

(ii) we have

P
(
XW ∈

(
g−1
S1

(S1)△ g−1
S2

(S2)
))

= 0,

then (M|S1
)|S2
≡ (M|S2

)|S1
≡M|S1×S2

.

Proof. It is easy to see that (M|S1
)|S2

, (M|S2
)|S1

, and M|S1×S2
are well defined given the

assumption above. Write O := V \ (S1 ∪ S2). The counterfactual and potential-outcome
equivalence among the three SCMs can be deduced by the following observation:

PM|S1×S2

(
{XO(xTi)}ni=1

)
= PM

(
{XO(xTi)}ni=1 | XS ∈ S1 × S2

)
= P(M|S1

)|S2

(
{XO(xTi)}ni=1

)
= P(M|S2

)|S1

(
{XO(xTi)}ni=1

)
.

Now we show that G(M|S1×S2
) is a subgraph of G((M|S1

)|S2
) and G((M|S2

)|S1
). By

Lemma 3.22, we can find a simple SCM M̃ such that Sib
G(M̃)

(S̃1∪ S̃2)∪ChG(M̃)
(S̃1∪ S̃2) = ∅

and M|S1×S2
≡ (M̃|S̃1×S̃2

)\S1∪S2
and (M|S1

)|S2
≡ (((M̃|S̃1

)\S1
)|S̃2

)\S2
. We have by Proposi-

tion 3.18
(((M̃|S̃1

)\S1
)|S̃2

)\S2
≡ (((M̃|S̃1

)|S̃2
)\S1

)\S2
≡ ((M̃|S̃1

)|S̃2
)\S1∪S2

.

It suffices to show that G((M̃|S̃1×S̃2
)\S1∪S2

) is a subgraph of G(((M̃|S̃1
)|S̃2

)\S1∪S2
). Write

M ′ := M̃|S̃1×S̃2
and M ′′ := (M̃|S̃1

)|S̃2
. By definition, M ′ and M ′′ have the same causal

mechanisms and the same exogenous distribution, which is PM (XW | XS1 ∈ S1, XS2 ∈ S2).
Therefore, we can use the same solution functions w.r.t. S1 ∪ S2 for marginalizations. Hence,
the directed edges in their graphs coincide. Note that the exogenous nodes of M̃|S̃1×S̃2

have

the finest partition of W given XS1 ∈ S1 and XS2 ∈ S2. Therefore, the bidirected edges of

M̃|S̃1×S̃2
are a subset of those of (M̃|S̃1

)|S̃2
. This finishes the proof.
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Finally, we show that, under the conditions of the proposition, we have (M|S1
)|S2

≡
(M|S2

)|S1
≡M|S1×S2

. Write

(M|S1
)|S2

= (V 12,W 12,X 12, f12,P12)

(M|S2
)|S1

= (V 21,W 21,X 21, f21,P21)

M|S1×S2
= (V 1×2,W 1×2,X 1×2, f1×2,P1×2).

First, note that to establish (M|S1
)|S2
≡ (M|S2

)|S1
≡ M|S1×S2

, it suffices to show that
W 12 = W 21 = W 1×2.31 Indeed, it is easy to see that V 12 = V 21 = V 1×2. Given that
W 12 = W 21 = W 1×2, we have X 12 = X 21 = X 1×2 and P12 = P21 = P1×2. By the properties
of marginalization, we have f12 = f21 = f1×2 P12-a.s..

By the property of SCMs, there exist measurable functions g̃S1 : XAncGa(M\(V \S1)
)(S1)∩W →

XS1 and g̃S2 : XAncGa(M\(V \S2)
)(S2)∩W → XS2 such that gS1(xW ) = g̃S1(xAncGa(M\(V \S1)

)(S1)∩W )

and gS2(xW ) = g̃S2(xAncGa(M\(V \S2)
)(S2)∩W ) for P(XW )-a.a. xW ∈ XW . Since AncGa(M\(V \S1)

)(S1)∩
AncGa(M\(V \S2)

)(S2) = ∅, we have W 12 = W 21. To see W 1×2 = W 12, it suffices to note that

g−1
S1∪S2

(S1 × S2) = g−1
S1

(S1) ∩ g−1
S2

(S2). If P(XW ∈ (g−1
S1

(S1)△ g−1
S2

(S2))) = 0, then we have

g−1
S1

(S1)
p
= g−1

S2
(S2)

p
= g−1

S1
(S1) ∩ g−1

S2
(S2) = g−1

S1∪S2
(S1 × S2) where

p
= denotes equality up to a

null set. This implies W 12 = W 21 = W 1×2.

Lemma 3.22 (Conditioning on binary variable without children). Let (M,XS ∈ S) be a

simple s-SCM and (M̃,X
S̃

= 1) be another simple s-SCM where M̃ := (Ṽ ,W, X̃,P, f̃) is

such that Ṽ = V ∪̇ {S̃}, X̃ = X × X
S̃
:= X × {0, 1} and f̃

Ṽ \S̃(xṼ , xW ) = fV (xV , xW ) and

f̃
S̃
(x

Ṽ
, xW ) = 1S(xS). Then M|XS∈S ≡ (M̃|X

S̃
=1)\S.

Proof. First note that M̃ defined above is a simple SCM and P
M̃
(X

S̃
= 1) = PM (XS ∈

S) > 0. We declare some notation. We write M|XS∈S = (V̂ , Ŵ , X̂ , P̂, f̂) and (M̃|X
S̃
=1)\S =

(V ,W,X ,P, f). It is easy to see that V̂ = V = V \ S and X̂ = X = XV \S . Also note
that gS(S)−1 = g̃

S̃
(1)−1 up to a P-null set where g and g̃ are the (essentially unique) so-

lution functions of M and M̃ respectively. Then we can conclude that Ŵ = W and also
P̂ = P = PM (XW | XS ∈ S). It is also obvious that f̂(xV \S , xŴ ) = f(xV \S , xW ) =

fV \S(xV \S , g
S(XV \S , xW ), xW ) where gS is the (essentially unique) solution function of M

w.r.t. S, for PM (XW | XS ∈ S)-a.a. xW = x
Ŵ

= xW ∈ XW and all xV \S ∈ XV \S . Overall, we

have M|XS∈S ≡ (M̃|X
S̃
=1)\S .

Theorem 3.25 (Main result II: Graphical separation in conditioning graph). Let G =
(V,Ed, Eb) be a DMG and S ⊆ V a set of nodes. Then for any subsets of nodes A,B,C ⊆ V
such that

S ∩ (A ∪B ∪ C) = ∅,
it holds that

A
σ/d

⊥
G|S

B | C =⇒ A
σ/d

⊥
G

B | C ∪ S.

31Strictly speaking they are not exactly equal to each other but are isomorphic. For simplicity, we see being
isomorphic as equal.



C Proofs 51

If furthermore S is a singleton set with ChG(S) = ∅ and C ∩AncG(S) = ∅, then we have

A
σ/d

⊥
G

B | C ∪ S =⇒ A
σ/d

⊥
G|S

B | C.

Proof. We show the first statement. By Proposition 3.27, we can assume WLOG that S = {s}
is a singleton set. To show

A
σ
⊥
G|S

B | C =⇒ A
σ
⊥
G
B | C ∪ S,

it suffices to show

A
σ
̸⊥
G
B | C ∪ S =⇒ A

σ
̸⊥
G|S

B | C.

Let π : v0 · · · vn be a σ-open walk between A and B given C ∪ S in G such
that all the colliders are in C ∪ S (Forré and Mooij, 2025, Proposition 3.3.6). WLOG we can
assume that s appears on π at most once. Indeed, assume that π is of the form v0 · · ·
vi s · · · s vj · · · vn and the subwalks π(v0, vi) and π(vj , vn) do not contain
s. If we have vi s and s vj , then the walk π(v0, vi) ⊕ π(vi, s) ⊕ π(s, vj) ⊕ π(vj , n)
is σ-open given C ∪ S. If we have vi s and s vj , then vi must be in the same
strongly connected component of s since otherwise π is blocked by S. Therefore, the walk
π(v0, vi) ⊕ π(vi, s) ⊕ π(s, vj) ⊕ π(vj , n) is σ-open given C ∪ S. The same conclusion holds if
vi s and s vj , and likewise if vi s and s vj . If s occurs on π as a non-collider,
i.e., vi−1 s vi+1 or vi−1 s vi+1 or vi−1 s vi+1, then, by replacing the
segments by vi−1 vi+1 or vi−1 vi+1 or vi−1 vi+1 respectively and keeping other
parts of π intact, we have a σ-open walk from A to B given C in G|S . So consider the case
where s does not occur on π as a non-collider in the following. If all colliders on π are in C
and π does not contain s, then π is σ-open between A and B given C in G|S . We consider
the case where s occurs on π as collider. Define vl and vr to be the most left and most
right nodes on π respectively that are in AncG(S) ∪ SibG(AncG(S)). So π is of the form
v0 · · · vl · · · s · · · vr · · · vn. We replace the subwalk π(vl, vr)
with vl vr on π to construct a new walk π̃. Note that vl cannot become a collider on π̃ if
it is a non-collider on π and similarly for vr. If vl is a collider on π̃, it must be in C. Similarly
for vr. If vl is a non-collider on π, it must be unblockable or not in C. If it is unblockable on
π, it remains so on π̃. Similarly for vr. Hence, π̃ is σ-open in G|S from A to B given C.

Overall, given any σ-open walk between A and B given C ∪ S in G, we can find a σ-open
walk between A and B given C in G|S . This shows that

A
σ
̸⊥
G
B | C ∪ S =⇒ A

σ
̸⊥
G|S

B | C.

We now show

A
σ
⊥
G
B | C ∪ S =⇒ A

σ
⊥
G|S

B | C

under the conditions that C ∩ AncG(S) = ∅, ChG(S) = ∅, and S is a singleton set. Assume
that π is a σ-open walk between A and B given C in G|S such that all the colliders are in C.
We shall construct a σ-open walk between A and B given C ∪ S in G.
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For all edges in π that are also in G, we keep them untouched. Note that since ChG(S) = ∅,
there do not exist directed edges in G|S that are not in G. Therefore, if all bidirected edges
on π in G|S are also in G, then we are done. Thus, we are left with the case where there
are some bidirected edges vi vi+1 of π not in G. Note that since S is singleton and the
possibilities of vi s vi+1 and vi s vi+1 and vi s vi+1 are excluded
by the assumption ChG(S) = ∅, we can replace those bidirected edges vi vi+1 with
vi w1 · · · wk s wk+1 · · · wm vi+1 (k could be zero and m could
be k) and get a new walk π̃ in G. Next, we show that π̃ cannot be blocked by C ∪ S at vi or
vi+1 in G.

If vi or vi+1 is an endnode of π, then π̃ cannot be blocked at that node in G. Thus, we
assume that vi and vi+1 are not endnodes of π. Suppose that in π we have · · · vi
vi+1 · · · . Since vi is a collider on π, by the assumption on π, we have vi ∈ C. Then it is
impossible to have · · · vi w1 · · · wk s in G, since in this case we would have
AncG(S) ∩ C ̸= ∅. Hence, we must have · · · vi w1 · · ·wk s, and then we know
that this walk is σ-open given C at vi in G.

Now we suppose · · · vi vi+1. We have to show that · · · vi w1 · · ·
wk s is σ-open given C ∪ S at vi. To check it, first assume · · · vi w1 · · ·
wk s. In this case, if vi /∈ C, then this is obviously σ-open. If vi ∈ C, then it is also
σ-open, since vi must point to the same strongly connected component. Otherwise, π cannot
be σ-open given C at vi in G|S . Second, we assume · · · vi w1 · · · wk s. In
this case vi /∈ C, since if vi ∈ C then Anc(C) ∩ S ̸= ∅. Thus, π̃ is (C ∪ S)-σ-open at vi in G.

A similar argument can be made for vi+1. Then we have constructed a σ-open walk

between A and B given C ∪S in G. This contradicts the fact that A
σ
⊥
G
B | C ∪S. Therefore,

there is no σ-open walk between A and B given C in G|S . So we have A
σ
⊥
G|S

B | C.

Almost the same argument also applies to the case of d-separation.

Proposition 3.27 (Graph conditioning commutes with marginalization, conditioning and
intervention). Let G = (V,Ed, Eb) be a DMG.

(1) Let L ⊆ V and S ⊆ V be two disjoint subsets of nodes from G. Then we have(
G\L

)
|S =

(
G|S

)
\L .

(2) Let S1, S2 ⊆ V be two disjoint subsets. Then we have(
G|S1

)
|S2

=
(
G|S2

)
|S1
⊆ G|S1∪S2

.

(3) Let T ⊆ V and S ⊆ V be two disjoint subsets of nodes from G such that T∩AncG(S) = ∅.
Then we have (

Gdo(T )

)
|S =

(
G|S

)
do(T )

.

Proof. We show the first two results. Denoting by Gabe(S) the graph obtained by the first
step of Definition 3.23 allows us to write G|S = (Gabe(S))\S . By Lemma C.1 and the fact that
marginalizations of two disjoint sets commute (Bongers et al., 2021, Proposition 5.8), we have

(G\L)|S = ((G\L)abe(S))\S = ((Gabe(S))\L)\S = ((Gabe(S))\S)\L = (G|S)\L,



C Proofs 53

and by Lemma C.2 (
G|S1

)
|S2

=
((

(Gabe(S1))\S1

)
abe(S2)

)
\S2

=
((

(Gabe(S1))abe(S2)

)
\S2

)
\S1

=
((

(Gabe(S2))\S2

)
abe(S1)

)
\S1

= (G|S2
)|S1

.

Since (Gabe(S1))abe(S2) ⊆ Gabe(S1∪S2), we have
(
G|S1

)
|S2
⊆ G|S1∪S2

.

We now show the third result. It suffices to consider T = {t} and show that (Gdo(T ))abe(S) =
(Gabe(S))do(T ). Note that there are two cases. One is t /∈ SibG(AncG(S)) and the other one
is t ∈ SibG(AncG(S)) \ AncG(S). Local configuration of a node means the edges adjacent
to that node in the graph. In the first case, the local configuration of t is independent of
performing abe(S). In the second case, first intervening on t breaks the bidirected edge
between t and AncG(S) and second performing abe(S) keeps the local configuration of t un-
touched, while first performing abe(S) adds some bidirected edges between t and nodes in
AncG(S) ∪ SibG(AncG(S)), but second intervening on t then throws these bidirected edges
away. Hence, no matter what order of the conditioning and the intervening are applied, one
still ends up with the same graph.

Proposition 3.29 (Main result III: DMG conditioning is compatible with SCM conditioning).
Let M be a simple SCM with conditioned SCM M|XS∈S . Then G(M|XS∈S) is a subgraph of
G(M)|S. If furthermore S = {s1, . . . , sn} and S =×n

i=1 Si with Si ⊆ Xsi measurable for
i = 1, . . . , n, then G(M|XS∈S) is a subgraph of ((G(M)|s1)...)|sn.

Proof. We call a subset A of V ancestral if AncG(M)(A) = A and call an SCM M ancestrally
uniquely solvable if for every ancestral subset A of V the SCM M is essentially uniquely
solvable w.r.t. A. Since simple SCMs are ancestrally uniquely solvable, we have that G(M\S)
is a subgraph of G(M)\S by Bongers et al. (2021, Proposition 5.11). Let g : XW → XV be
the (essentially) unique solution function of M . Note that there exists a measurable map
g̃ : XW∩AncGa (S) → XS such that g̃ = gS P(XW )-a.s. So, exogenous variables that are not
in W ∩ AncGa(S) will not merge. Denote by Mmerge the SCM obtained from the merging
operation. This implies that G(Mmerge) is a subgraph of G(M)abe(S). Since PM (XW | XS ∈
S)≪ P(XW ), G((Mmerge)update) is a subgraph of G(Mmerge), where Mupdate denotes the SCM
obtained from M via updating the exogenous distribution to the posterior given XS ∈ S.
Definition of the conditioned DMG and Bongers et al. (2021, Proposition 5.11) yield

G(M|XS∈S) = G(((Mmerge)update)\S)

⊆ G((Mmerge)update)\S ⊆ G(Mmerge)\S ⊆ (G(M)abe(S))\S = G(M)|S ,

since (Mmerge)update is simple.
We now show the second claim. From the last part, we have that G(M|Xs1∈S1

) is a
subgraph of G(M)|s1 . Note that if G1 is a subgraph of G2 then (G1)|S is a subgraph of (G2)|S .
By Proposition 3.19, it holds that G(M|X{s1,s2}∈S1×S2

) is a subgraph of G((M|Xs1∈S1
)|Xs2∈S2

)

and is therefore a subgraph of (G(M)|s1)|s2 . Hence, we can conclude that G(M|XS∈S) is a
subgraph of ((G(M)|s1)...)|sn .
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Lemma 3.30. Let XA, XB, XC and XS be random variables defined on a probability space
(Ω,F ,P) and XS take values in a standard measurable space (XS ,BXS

). Then the first state-
ment implies the second statement:

(1) XA ⊥⊥ XB | XC , XS ∈ H for all H ∈ BXS
with positive probability.

(2) XA ⊥⊥ XB | XC , XS.

Proof. Let {Hn}∞n=1 be a countable generator of BXS
such that P(XS ∈ Hn) > 0 for all n,

which exists since (XS ,BXS
) is standard. Define

Gn := σ(XC) ∨ σ(1(XS ∈ H1), . . . ,1(XS ∈ Hn))

and G∞ := σ(XC) ∨ σ(1(XS ∈ H1),1(XS ∈ H2), . . .).

We suppose that XA ⊥⊥ XB | XC , XS ∈ H for all H ∈ BXS
such that P(XS ∈ H) > 0. Then

we have for all measurable subsets C ⊆ XA and D ⊆ XB and for all n ∈ N

P ((XA, XB) ∈ C × D | Gn) = P(XA ∈ C | Gn) · P(XB ∈ D | Gn) P-a.s.

Lévy’s upward theorem (Williams, 1991) implies that P(. . . | Gn)
a.s.→ P(. . . | G∞) = P(. . . |

XC , XS) as n→∞. Therefore,

P((XA, XB) ∈ C × D | XC , XS) = P(XA ∈ C | XC , XS) · P(XB ∈ D | XC , XS) P-a.s.,

which means that XA ⊥⊥ XB | XC , XS .

Lemma C.1 (The first step of Definition 3.23 commutes with marginalization). Let G =
(V,Ed, Eb) be a DMG and S,L ⊆ V be two disjoint subsets. Then we have (Gabe(S))\L =
(G\L)abe(S).

Proof. The two graphs (Gabe(S))\L and (G\L)abe(S) have the same set of nodes. We show that
they have the same set of edges. It is easy to see that v u is in (Gabe(S))\L iff v u is
in (G\L)abe(S). We show that for any v, u ∈ V \ L, we have v u in (Gabe(S))\L iff v u
is in (G\L)abe(S).

Suppose that v u is in (Gabe(S))\L. There are two possibilities: (i) v u is in Gabe(S)

and (ii) v u is not in Gabe(S). We now consider the first case. We will show that if v u
is in G, then it must be in (G\L)abe(S). By the properties of graphical marginalization, we
have AncG\L(S) = AncG(S) \ L and SibG(AncG(S)) \ L ⊆ SibG\L(AncG\L(S)). This implies
SAG(S) \ L ⊆ SAG\L(S), where SAG(S) := AncG(S) ∪ SibG(AncG(S)). So, if u, v ∈ SAG(S),
then v u is in (G\L)abe(S). We now consider the second case. The bidirected edge v u
must come from some bifurcation in Gabe(S). If the bifurcation consists of only edges in G,
then v u must also occur in (G\L)abe(S). If the bifurcation contains edges not in G,
then it must be of the form v l1 · · · lk−1 lk · · · ln−1 u with
lk−1, lk ∈ SAG(S), where li ∈ L for all i. This forces v, u ∈ SAG\L(S). Therefore, v u is in
(G\L)abe(S).

Suppose that v u is in (G\L)abe(S). If there is a bifurcation in G between v and u
with all intermediate nodes in L, then the same bifurcation exists in Gabe(S). Therefore,
marginalizing out L in Gabe(S) creates v u in (Gabe(S))\L. If v u comes from the “abe”
operation on G\L, then v, u ∈ SAG\L(S). If v, u ∈ AncG\L(S), then v, u ∈ AncG(S). Assume
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v ∈ SibG\L(AncG\L(S)) \ AncG\L(S). Then v ṽ must be in G\L for some ṽ ∈ AncG\L(S).
We also have u ũ in G\L for some ũ ∈ AncG\L(S) if u /∈ AncG\L(S). If these bidirected
edges are present in G, then we are done. So we assume that v ṽ is not present in G. Then
there must exist bifurcations of the form v l1 · · · lk−1 lk · · · ln−1 ṽ
with li ∈ L and ũ l̃1 · · · l̃j−1 l̃j · · · l̃m−1 u with l̃i ∈ L (m = 1

if u ũ is present in G or u = ũ) in G. Then lk−1, l̃j ∈ SAG(S). Therefore, we have

v l1 · · · lk−1 l̃j · · · l̃m−1 u or v l1 · · · lk−1 u in Gabe(S).
Finally, v u is in (Gabe(S))\L. This finishes the proof.

Lemma C.2 (The first step of Definition 3.23 commutes with itself). Let G = (V,Ed, Eb) be
a DMG and S1, S2 ⊆ V be two disjoint subsets. Then we have

(Gabe(S1))abe(S2) = (Gabe(S2))abe(S1) ⊆ Gabe(S1∪S2).

Proof. To simplify the notation, we write Gij := (Gabe(Si))abe(Sj). Write D := (SAG(S1) ∩
SAG(S2)) ∩ (AncG(S1) ∪ AncG(S2)). There are two cases: (i) D = ∅, and (ii) D ̸= ∅. In
the first case, SAG(S1) ∩ SAG(S2) = ∅ or SAG(S1) ∩ SAG(S2) does not contain ancestors of
S1 ∪ S2 in G. Then it is not hard to see that adding bidirected edges to nodes in SAG(S1)
and adding bidirect edges to nodes in SAG(S2) are independent. Therefore, we have a b
for every a, b ∈ SAG(S1) and c d for every c, d ∈ SAG(S2) in both G12 and G21, and
there are no other bidirected edges added to G. Hence, G12 = G21 in this case. We now
consider the second case. Pick an arbitrary node a ∈ D. By the definition of the set D,
it holds a ∈ AncG(S1) ∪ AncG(S2). If a ∈ AncG(S1) ∩ AncG(S2), then we have b c for
all b, c ∈ SAG(S1) ∪ SAG(S2) in both G12 and G21, and there are no other bidirected edges
added to G. In the following, WLOG, we assume a ∈ AncG(S1) but a /∈ AncG(S2) by the
symmetry of AncG(S1) and AncG(S2). Note that we have a ã for some ã ∈ AncG(S2).
Then we have ã d for all d ∈ SAG(S1) in G1. This implies SAG(S1) ⊆ SAG1(S2) and
hence SAG1(S2) = SAG(S1)∪SAG(S2). Overall, in G12 we have bidirected edges between any
two nodes in SAG(S1) ∪ SAG(S2) added to G and no other bidirected edges are added. By
the symmetry of S1 and S2, we have the same argument and conclusion hold for G21. This
concludes that G12 = G21.

We now show the second claim. For that, observe that Gabe(S1) ⊆ Gabe(S1∪S2) and
Gabe(S1∪S2) = (Gabe(S1∪S2))abe(S2).

Lemma C.3. Let M = (V,W,X ,P, f) be a simple SCM. Let g : XW → XV be the (essentially
unique) solution function of M . Let A ⊆ V and write B := V \ A. Let gB : XA × XW → XB

be the solution function of M w.r.t. B. Then

gB (xW ) = gB (gA (xW ) , xW )

for P(XW )-a.a. xW ∈ XW .

Proof. For P(XW )-a.a. xW ∈ XW and all xV ∈ XV , we have{
xA = fA(xV , xW )
xB = fB(xV , xW )

⇐⇒
{

xA = gA (xW )
xB = gB (xW ) .
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Since gB is the essentially unique solution function of M w.r.t. B, for P(XW )-a.a. xW ∈ XW

and all xV ∈ XV we have

xB = fB(xV , xW )⇐⇒ xB = gB (xA, xW ) .

Hence, for P(XW )-a.a. xW ∈ XW and all xV ∈ XV we have{
xA = fA(xV , xW )
xB = fB(xV , xW )

⇐⇒
{

xA= gA(xW )
xB = gB(xA, xW )

⇐⇒
{

xA = gA (xW )
xB = gB (gA (xW ) , xW ) .

Since M is uniquely solvable, we can conclude for P(XW )-a.a. xW ∈ XW

gB (xW ) = gB (gA (xW ) , xW ) .

D Discussions on conditioning operation for SCMs

D.1 SCMs are not flexible enough for representing s-SCMs

In this subsection, we show that, in general, it is impossible to find a simple SCM encoding
all the causal semantics of a simple s-SCM. This gives an answer to Question Q1: the causal
semantics of the ancestors of selection nodes cannot be preserved in general under the frame-
work of simple SCMs and Theorem 3.14 shows that the causal semantics of the non-ancestors
of the selection nodes can always be preserved when applying the conditioning operation.

We can see the rung-one and rung-two semantics of an SCM M = (V,W,X ,P, f) as a
collection of distributions CV =

{
P[xT ](XV \T ) : T ⊆ V, xT ∈ XT

}
, which satisfies some con-

straints given by the SCM M , i.e., P[xT ](XV \T ) = PM (XV \T | do(XT = xT )) for all T ⊆ V
and xT ∈ XT .

Let

CV \S :=
(
P[xT ](XV \(S∪T )) : T ⊆ V \ S, xT ∈ XT ,PM (XS ∈ S | do(XT = xT )) > 0

)
where

P[xT ](XV \(S∪T )) :=
PM (XV \(T∪S), XS ∈ S | do(XT = xT ))

PM (XS ∈ S | do(XT = xT ))

for some simple s-SCM (M,XS ∈ S) with M = (V,W,X ,P, f). Note that CV \S is just
the collection of observational and interventional distributions induced by the simple s-SCM
(M,XS ∈ S). Now Question Q1 can be rephrased as: given CV \S defined above, can we

always find a simple SCM M̃ with endogenous nodes O := V \ S such that

∀T ⊆ O, xT ∈ XT P[xT ](XO\T ) = P
M̃
(XO | do(XT = xT ))? (6)

The answer is No:32

Proposition D.1. There exists a simple s-SCM (M,XS ∈ S) such that it is impossible to

find a simple SCM M̃ with endogenous nodes O := V \ S such that Equation (6) holds.

Proof. We first show that in general there is no acyclic SCM M̃ such that equation (6) holds
and second show that in general there is no simple (even cyclic) SCM satisfying equation (6).
This can be summarized by Figure 23.

32This is also related to Lauritzen (1998), who shows that any hierarchical model can be generated from
graphical models represented by a DAG with selection.
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acyclic SCMs

simple SCMs

simple s-SCMs

Figure 23: Venn diagram for different causal modeling classes with rung-two information.

No acyclic SCM M̃ satisfying equation (6). Let M be an acyclic SCM with XS =
XA +XB, XA = EA ∼ Uni[0, 1], XB = EB ∼ Uni[0, 1], and selection mechanism XS ≥ 0.8,
whose graph is shown in Figure 24.

A B

S

G(M)

Figure 24: The causal graphs of the SCM M with selection XS ≥ 0.8.

We shall explain the non-existence of an acyclic SCM M̃ satisfying equation (6) by contra-

diction. Assume that there exists an acyclic SCM M̃ satisfying equation (6). For xA ∈ [0, 1]
and xB ∈ [0, 1], we require P

M̃
(XB | do(XA = xA)) = PM (XB | do(XA = xA), XS ≥ 0.8)

and P
M̃
(XA | do(XB = xB)) = PM (XA | do(XB = xB), XS ≥ 0.8). Since PM (XB | do(XA =

xA), XS ≥ 0.8) and PM (XA | do(XB = xB), XS ≥ 0.8) are not constant in xA and xB respec-
tively, we must have a directed edge from A to B and a directed edge from B to A in the
causal graph G(M̃). Hence, M̃ cannot be an acyclic SCM.

No simple (even cyclic) SCM M̃ satisfying equation (6). Let M be an SCM that
satisfies

PM (XB) = 0.9δ0 + 0.1δ1,

PM (XA | do(XB = 0)) = 0.6δ0 + 0.4δ1, PM (XA | do(XB = 1)) = 0.1δ0 + 0.9δ1,

PM (XS | do(XA = 0)) = 0.9δ0 + 0.1δ1, PM (XS | do(XA = 1)) = 0.1δ0 + 0.9δ1,

selection mechanism XS = 1, and graph G(M) shown in Figure 25.

AB S

G(M)

Figure 25: The causal graph of the SCM M with selection XS = 1.

Manski and Nagin (1998) proved a “natural” bound and we point out here that it also holds

for simple SCMs. More specifically, for an arbitrary simple SCM M̃ with discrete endogenous
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variables {XA, XB}, it must hold that P
M̃
(XA = xA, XB) ≤ P

M̃
(XB | do(XA = xA)) for all

xA ∈ XA.
33 Indeed, by the consistency XB = XB(XA) a.s. (see also Forré and Mooij (2025,

Proposition 7.5.1)) and elementary probability theory, we have

P
M̃
(XA = xA, XB) = P

M̃
(XA = xA, XB(xA))

≤ P
M̃
(XB(xA)) = P

M̃
(XB | do(XA = xA)).

Assume that M̃ is a simple SCM satisfying equation (6). Then by requiring

P
M̃
(XA = 1, XB = 1) = PM (XA = 1, XB = 1 | XS = 1)

and
P
M̃
(XB = 1 | do(XA = 1)) = PM (XB = 1 | do(XA = 1), XS = 1),

we have
P
M̃
(XA = 1, XB = 1) ≈ 0.176 > 0.1 = P

M̃
(XB = 1 | do(XA = 1)),

which contradicts the natural bound P
M̃
(XA = 1, XB = 1) ≤ P

M̃
(XB = 1 | do(XA = 1))

that the simple SCM M̃ must satisfy.

Remark D.2 (Interventions on ancestors of selection nodes). Let T ⊆ AncG(M)(S). The
above theorem tells us that in general PM|XS∈S (XO\T | do(XT = xT )) ̸= PM (XO\T | do(XT =

xT ), XS ∈ S), since PM|XS∈S (XO\T | do(XT = xT )) = PM (XO\T (xT ) | XS ∈ S) and

PM (XO\T (xT ) | XS ∈ S) ̸= PM (XO\T | do(XT = xT ), XS ∈ S) in general. However,
in some cases, we can infer that PM|XS∈S (XO\T | do(XT = xT )) = PM (XO\T | do(XT =

xT ), XS ∈ S). For example, if PM (XS ∈ S | do(XT = xT )) = PM (XS ∈ S) then we
can conclude that PM|XS∈S (XO\T | do(XT = xT )) = PM (XO\T | do(XT = xT ), XS ∈ S).
As another example, if we know that the second rule or the third rule of do-calculus ap-
plies to PM|XS∈S (XO\T | do(XT = xT ), XC) and PM (XO\T , XS ∈ S | do(XT = xT ), XC)

to reduce do(XT ) to given XT or eliminate do(XT ) entirely, then we have the equality
PM|XS∈S (XO\T | do(XT = xT )) = PM (XO\T | do(XT = xT ), XS ∈ S) under the assump-
tion of discreteness and positivity. Consider a concrete toy example where we have an SCM
with causal graph S T O. Under discreteness and positivity assumption, we have

PM|XS∈S (XO | do(XT = xT )) = PM|XS∈S (XO | XT = xT )

= PM (XO | XT = xT , XS ∈ S)

=
PM (XO, XS ∈ S | XT = xT )

PM (XS ∈ S | XT = xT )

= PM (XO | do(XT = xT ), XS ∈ S).

It might be possible to find some interesting conditions to guarantee this, and therefore in
the given setting one does not need to treat the ancestors of selection nodes differently than
the non-ancestors.

33This inequality is interpreted as PM̃ (XA = xA, XB = xB) ≤ PM̃ (XB = xB | do(XA = xA)) for all
xB ∈ XB .
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D.2 Other variants of conditioning operation for SCMs

Definition 3.5 is not the only possible way to define a “conditioned SCM”. In this section, we
explore some other possibilities of conditioning operations such as different decompositions of
exogenous nodes, and conditioning for Causal Bayesian Networks.34

D.2.1 Different decomposition of exogenous nodes

Why do we care about decomposition of exogenous variables and make sure that the new
coarse-grained variables are mutually independent given selection? That is because we want
to have a Markov property of the causal graphs of our SCMs (so that we can apply do-calculus,
and so on) and without mutual independence of the exogenous variables this may fail.

For example, in some literature (such as Bareinboim et al. (2022)), SCMs are not required
to have mutually independent exogenous random variables but can have any exogenous prob-
ability distribution P(XW ) on XW . A bidirected edge is drawn between two endogenous
variables Xv1 and Xv2 if they share the same exogenous variables or their exogenous par-
ents are correlated according to P(XW ). It seems that if we adopt this framework, then we
just need to update the exogenous distribution and not to merge exogenous variables when
defining a conditioning operation. Consider the “SCM”

M :


P(E1, E2, E3) =

1

4
δ000 +

1

4
δ011 +

1

4
δ101 +

1

4
δ110

X1 = E1

X2 = E2

X3 = E3.

According to the above definition, this “SCM”M would have graphG(M) shown in Figure 26.

E1 E2 E3

X1 X2 X3

Ga(M)

X1 X2 X3

G(M)

Figure 26: The “causal” graph of the “SCM” M .

The graph is of this form because Ei ⊥⊥ Ej for i, j = 1, 2, 3 and i ̸= j. However, although the

graph implies that X1, X2

d
⊥

G(M)
X3, we know from the model M that

X1, X2 ⊥̸⊥
PM (X1,X2,X3)

X3.

Therefore, the Markov property does not hold, and all the results based on it may not hold
either, such as the back-door criterion and Pearl’s do-calculus.

It is worth mentioning that one can have different decompositions of the exogenous nodes
of the conditioned SCMs. One extreme is to merge all the exogenous nodes into one single

34Conditioning on a variable that we want to observe is discussed in Section 3.2.2.
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node, which results in the “coarsest” model without much information. The other extreme is
to consider the “finest” decomposition of the exogenous nodes under the current framework
of SCMs, which results in “most fine-grained” models with as much information as possible.

In Definition 3.5, we used a “finest” decomposition. We can consider any decomposition
of label set W given XS ∈ S that is coarser than the one given in Definition 3.5. There are
two such examples that appear natural, but one should note that the properties of these two
operations are slightly different from the ones of Definition 3.5.

Definition D.3 (Conditioned SCMs II). In the setting of Definition 3.5, we define M|XS∈S =

(V̂ , W̄ , X̂ , f̂ , P̂) where V̂ , X̂ , f̂ , P̂ are the same as Definition 3.5, while

W̄ := {W ∩AncGa(M\(V \S))(S)} ∪̇ (W \AncGa(M\(V \S))(S)).

Definition D.4 (Conditioned SCMs III). In the setting of Definition 3.5, we define M|XS∈S =

(V̂ , ¯̄W, X̂ , f̂ , P̂) where V̂ , X̂ , f̂ , P̂ are the same as Definition 3.5, while

¯̄W := {W ∩AncGa(M)(S)} ∪̇ (W \AncGa(M)(S)).

For Definition D.4, we do not have Proposition 3.18, but we can obtain the commutativity
of marginalization and conditioning up to counterfactual equivalence (see an old version of
the current article (Chen et al., 2024b)).

D.2.2 conditioning operation for causal Bayesian networks

Given a Causal Bayesian Network N = (G = (V,Ed), {P(Xv | do(XPaG(v)))}v∈V ), we can use
the deterministic representation of Markov kernels to construct an SCM MN = (V,W,X ,P, f)
(i.e., there exist a uniformly distributed random variable Uv and a measurable function fv such
that P(Xv | do(XPaG(v))) = fv(XPaG(v), Uv)∗P(Uv), see, e.g., Bogachev (2007, Proposition
10.7.6)). We can then apply the conditioning operation for MN and then transform the
conditioned SCM back to get a conditioned Causal Bayesian Network with latent variables.

D.3 Conditioning operation for SCMs with inputs

In this section, we extend the definition of the conditioning operation (Definition 3.5) on
SCMs to SCMs with input nodes, which we call iSCMs and are introduced in Forré and
Mooij (2025). The difference between iSCMs and SCMs is that iSCMs have exogenous (non-
stochastic) input variables in addition to endogenous and exogenous random variables. Note
that such an extension of conditioning operation is not straightforward due to interactions
between non-stochastic variables and stochastic variables (cf. Remark D.6 and Definition D.9).

Definition D.5 (SCMs with input nodes (iSCMs)). A Structural Causal Model with
input nodes (iSCM) is a tuple M = (J, V,W,X ,P, f) where J represents the label set for
exogenous input (non-stochastic) variables. Other components have the same defini-
tions as their counterparts in Definition 2.1, except for X =

∏
i∈J ∪̇V ∪̇W Xi.

All the definitions in Section 2 can be extended to iSCMs with minor modifications (see
(Forré and Mooij, 2025) for more details. For example, an iSCM could induce a Markov
kernel PM (XV | do(XJ)) in general and not merely a probability distribution PM (XV ). A
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solution function g : XJ × XW → XV has also arguments from xJ ∈ XJ and all quantifiers
“for P(XW )-a.a. xW ∈ XW , and all xV ∈ XV ” used in the relevant definition (e.g., essentially
unique solution function) are replaced by “for all xJ ∈ XJ , P(XW )-a.a. xW ∈ XW , and all
xV ∈ XV ” (note that the ordering of these quantifiers is important). We define Mdo(T ) as an
iSCM where we transform T from endogenous nodes to exogenous input nodes for T ⊆ V .
This is in contrast to the case in SCMs where we always need to assign a specific value to the
intervened variables.

The input variables can model hard/soft interventions, (non-stochastic) parameters for
models, context variables, and regime indicators (Dawid, 2002, 2021) or say policy variables
(Spirtes et al., 2001), etc. Conceptually, iSCMs model data-generating processes where first
the values ofXJ are assigned (e.g., by the experimenter) and then the process in Algorithm 3.3
is implemented (function g also depends on XJ). Mathematically, input variables can help
rigorously develop a general measure-theoretic causal calculus (Forré, 2021; Forré and Mooij,
2025).35 One common feature of all these concepts is that they are modeled by variables
without probability distributions on them and, therefore, need a distinct treatment from
ordinary random variables.

One convenient foundational framework for dealing with such non-stochastic and ordinary
stochastic variables universally is named transitional probability theory in (Forré, 2021).
We will use relevant concepts directly and refer the reader to Forré (2021) for more details.

Remark D.6 (Interaction between non-stochastic variables and stochastic variables). Given
XS ∈ S, the exogenous distribution P(XW ) becomes an exogenous Markov kernel

PM (XW | XS ∈ S,do(XJ)) =
PM (XW , XS ∈ S | do(XJ))

PM (XS ∈ S | do(XJ))
,

where the exogenous distribution has a dependency on XJ . Since PM (XS ∈ S | do(XJ =
xJ)) = 0 might be possible for some xJ ∈ XJ , this might require merging some exogenous
input nodes and restricting XJ .

To eliminate the “entanglement” between XJ and XW mentioned in Remark D.6, we
need Bogachev (2007, Theorem Proposition 10.7.6). It states that we can represent a Markov
kernel as a deterministic map of a random variable.

Proposition/Definition D.7 (Deterministic representation of Markov kernels). Let Z be
any measurable space, X be a standard measurable space, and P(X | Z) : Z → P(X ) be a
Markov kernel. Then there exists a measurable function R : Z × U → X such that

P(X | Z) = P(R(Z,U) | Z),

where U is a measurable space and U a random variable taking values in U . We call (U,R) a
deterministic representation of the Markov kernel P(X | Z).

Remark D.8. One can take P(U) to be Uni([0, 1]n) or N (0, In). After fixing U , in general,
the measurable function R is not unique, injective, or surjective.

35When the variables are not discrete, a naive approach would not work. See the discussions in Forré and
Mooij (2020) and Forré (2021).
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The conditioning operation for iSCMs can be seen as the composition of (i) merging all
the input nodes that are ancestors of the selection nodes and exogenous random nodes that
are ancestors of the selection nodes, respectively, restricting the values that input variables
can take given XS ∈ S, and then representing the corresponding conditioned Markov ker-
nel deterministically to eliminate the “dependence” between input variables and exogenous
random variables, and (ii) marginalizing out the selection variables.

Let M = (J, V,W,X ,P, f) be a simple iSCM (Forré and Mooij, 2025, Definition 6.6.5).
Let S ⊆ V be a subset of endogenous nodes and S ⊆ XS a measurable subset of values
XS may take where there exists xJ ∈ XJ such that PM (XS ∈ S | do(XJ = xJ)) > 0. Let
g : XJ×XW → XV be the (essentially unique) solution function of M . Note that we can see gS
as a map from XJ∩AncG(M)(S)×XW∩AncGa(M)(S) to XS . Write O := V \S, B1 := AncG(M)(S)∩J ,
and B2 := AncGa(M)(S) ∩W .

Definition D.9 (Conditioned iSCM). Under the above setting, we define a conditioned iSCM

M|XS∈S :=
(
Ĵ , V̂ , Ŵ , X̂ , P̂, f̂

)
by

(1) Ĵ := {⋆J} ∪̇ (J \B1) where ⋆J = B1;

(2) Ŵ := {⋆W } ∪̇ (W \B2) where ⋆W = B2;

(3) V̂ := V \ S;

(4) X
Ĵ
:= X⋆J ×XJ\B1

where

X⋆J := {xB1 ∈ XB1 | PM (XS ∈ S | do(XB1 = xB1)) > 0}

and X
Ŵ

:= X⋆W ×XW\B2
with X⋆W = [0, 1] and X

V̂
:= XV \S;

(5) P̂(X
Ŵ
) := P(XW\B2

)⊗ P(X⋆W ) with P(X⋆W ) = Uni([0, 1]);

(6) causal mechanism:

f̂(x
Ĵ
, x

V̂
, x

Ŵ
) :=

fO(xJ\B1
, x⋆J , xO, g

S(xJ\B1
, x⋆J , xO, xW\B2

, R(x⋆J , x⋆W )), xW\B2
, R(x⋆J , x⋆W )),

where (X⋆W , R) is a deterministic representation of the Markov kernel PM (XB2 | do(XB1), XS ∈
S) and gS : XJ × XO × XW → XS is the (essentially unique) solution function of M
w.r.t. S.

Remark D.10. Here we simply merge all the input node ancestors of S and exogenous node
ancestors of S, respectively. One can also derive a finer merging scheme, similar to what we
did for Definition 3.5. For the sake of space, we did not spell out all the details. The essential
point that we want to show in this subsection is how to eliminate the dependency between
input variables and exogenous random variables given XS ∈ S.

One can develop a theory for the conditioning operation for iSCMs and show the corre-
sponding properties in parallel to what we did in Section 3. We now define an operation on
iSCMs called exogenous (quasi-)pullback of iSCMs, which defines formally the first step
of the conditioning operation for iSCMs. Because of the nice properties of marginalization
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Forré and Mooij (2025, Section 6.8), to show properties of the conditioning operation for
iSCMs it suffices to show that the corresponding properties of exogenous quasi-pullback of iS-
CMs hold. See Forré and Mooij (2025, Section 8.3.2) for some properties of exogenous pullback
of iSCMs. Note that merging exogenous nodes is a special case of exogenous (quasi-)pullback
of iSCMs.

Definition D.11 (Exogenous quasi-pullback iSCMs). Let M = (J, V,W,X ,P, f) be an iSCM.

Let M̃ = (J̃ , V, W̃ , X̃ , P̃, f̃) be an iSCM. Let ΦJ : X
J̃∪W̃ → XJ be a measurable mapping that

does not depend on the X
W̃
-component, and let ΦW : X

J̃∪W̃ → XW be a measurable mapping

such that Q(XW | XJ̃
) := (ΦW )∗

(
δ(X

J̃
| X

J̃
)⊗ P̃(X

W̃
)
)
≪ P(XW ), i.e., for all x

J̃
∈ X

J̃
,

and for every measurable subset A ⊆ XW , P(XW ∈ A) = 0 implies that Q(XW ∈ A | XJ̃
=

x
J̃
) = 0. Assume that

f̃(x
J̃
, xV , xW̃ ) = f

(
ΦJ(xJ̃), xV ,ΦW (x

J̃
, x

W̃
)
)
.

Then we call Φ = (ΦJ ,ΦW ) : X
J̃∪W̃ → XJ × XW an exogenous quasi-pullback function

of M and M̃ an exogenous quasi-pullback iSCM of M associated with (Φ, P̃). We

denote M̃ by M
ep(Φ,P̃)

.

It is easy to see that M|XS∈S =
(
M

ep(Φ,P̂)

)
\S

is a marginalized exogenous quasi-pullback

iSCM of M associated with the exogenous quasi-pullback function Φ = (ΦJ ,ΦW ) and distri-
bution P̂(X

Ŵ
) where

ΦJ : X
Ĵ∪Ŵ → XJ ,ΦJ(xĴ , xŴ ) := xJ

and ΦW : X
Ĵ∪Ŵ → XW ,ΦW (x

Ĵ
, x

Ŵ
) := (xW\B2

, R(x⋆J , x⋆W )).

The graphical conditioning operation for DMGs with input nodes can be defined similarly
to Definition 3.23 by (i) merging all the input node ancestors of S, (ii) adding bidirected edges
to output nodes that are ancestors or siblings of ancestors of S, and (iii) marginalizing out S.
In the graph, we make both the merged input node (that corresponds with those input nodes
that were ancestors of S) and the output nodes that were ancestors of S dashed. One can
develop a theory for this operation and show the corresponding properties in parallel to what
we did in Section 3.3. Note that one needs to replace stochastic conditional independence
and the usual graphical σ-separation with transitional conditional independence (Forré, 2021,
Definition 3.1) and a nuanced graphical separation (Forré, 2021, Definition 5.9), respectively.

We leave further exploration of the properties of the conditioning operations for iSCMs
and on DMGs with input nodes for future work.
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