Quantitative imaging through a spectrograph.

1.

Principles and theory

René Tolboom, Nico Dam, Hans ter Meulen, Joris Mooij, and Hans Maassen

1.

Introduction

Laser-based optical diagnostics, such as planar laser-induced fluorescence and, especially, Raman im-
aging, often require selective spectral filtering. We advocate the use of an imaging spectrograph with a
broad entrance slit as a spectral filter for two-dimensional imaging. A spectrograph in this mode of
operation produces output that is a convolution of the spatial and spectral information that is present in
the incident light. We describe an analytical deconvolution procedure, based on Bayesian statistics, that
retrieves the spatial information while it avoids excessive noise blowup. The method permits direct
imaging through a spectrograph, even under broadband illumination. We introduce the formalism and
discuss the underlying assumptions. The performance of the procedure is demonstrated on an artificial
but pathological example. In a companion paper [Appl. Opt. 43, 5682-5690 (2004)] the method is
applied to the practical case of fuel equivalence ratio Raman imaging in a combustible methane—air
mixture. © 2004 Optical Society of America
OCIS codes: 000.2170, 100.1830, 100.3020.

Optical techniques find increasingly more applica-
tions in (reactive or nonreactive) gas flow
diagnostics.'3 There is good reason for that.
Light-scattering techniques are as near as one can
get to nonintrusive diagnostics. There are widely
available (laser) light sources of unsurpassed spectral
brightness that permit specific detection of selected
chemical species (of great importance especially in
combustion), and a large variety of experimental
techniques has been developed for many specific pur-
poses. In this paper we focus on two-dimensional
(2-D) optical imaging of density distributions of spe-
cific chemical species. There are two methods of
choice for this purpose,’2 i.e., planar laser-induced
fluorescence and planar Raman scattering. Both
combine a thin (quasi-monochromatic) sheet of light
derived from a powerful laser system with (intensi-
fied) CCD cameras for detection of the scattered light.
Both also usually require good spectral filtering of the
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scattered light for suppression of undesired contribu-
tions to the measured light intensity. In this paper
we discuss the use of an imaging grating spectro-
graph with a CCD camera on the exit port [an optical
multichannel analyzer (OMA)] for spectrally selec-
tive 2-D imaging. Although we have the specific
purpose of Raman imaging in mind, the technique is
not restricted to that and can be used for spectrally
selective imaging in general. The use of a spectro-
graph has two main advantages over the use of spec-
tral bandpass filters: Its spectral selectivity is
greater, and it provides a spectrum. Thus undesired
spectral contributions will be suppressed more effec-
tively, and, even if unexpected spectral interferences
occur, a spectrograph will at least show them,
whereas they are likely to pass unnoticed when band-
pass filters are used.

An ideal imaging grating spectrograph projects a
faithful image of its entrance slit onto its exit plane.
Where exactly on the exit plane this image ends up
also depends on the wavelength of the incident light,
as follows directly from the familiar grating equa-
tion45 (see Fig. 1)

d(sin a * sin B) = mA\, (1)

where m is the order of diffraction and d is the
groove center distance. Both the angles of inci-
dence (o) and of reflection (B) are defined with re-
spect to the grating normal (dashed—dotted lines).
The + applies when « and B are on the same side of
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Fig. 1.
grating.

Schematic representation of the diffraction of light by a

the grating normal; the —, when they are on oppo-
site sides (as in the example depicted). In most
cases a spectrograph is used with a narrow en-
trance slit to record line (one-dimensional) spectra,
e.g., Raman spectra in combustion science!-6-2 and
point (zero-dimensional) spectra for increased
signal-to-noise ratios.1%11 In the former case (one
dimension), one of the axes that span the exit plane
carries a spectral scale and the other one still car-
ries purely spatial information (along the height of
the entrance slit). One way to visualize planar
(2-D) patterns with one-dimensional imaging is to
perform consecutive line measurements for many
longitudinal positions. Recently Sijtsema et al.12
introduced direct 2-D imaging through a spectro-
graph as a nonintrusive tool for quantitative, pla-
nar gas flow visualization. This technique,
referred to henceforth as OMA imaging, is the focus
of the present paper. It is shown that OMA imag-
ing, originally introduced for use with quasi-
monochromatic light,2 can be used for extended
spectral structures as well.13

Below, we concentrate on theoretical issues re-
lated to spectrally selective 2-D imaging, using a
setup that incorporates an imaging spectrograph
with a diffraction grating operated in first order.
The grating effectively produces an output image on
the spectrograph’s exit plane in which the spectral
and spatial information that is present in the inci-
dent light is scrambled. It is shown that, in spite
of diffraction, the original (spatial) image can nev-
ertheless be reconstructed for many practical situ-
ations. In Section 2 we deal with the formalism
that describes the scrambling of the spatial and
spectral information by the imaging spectrograph.
Under not-too-stringent restrictions this scram-
bling is shown to take the form of a convolution.
Section 3 describes the straightforward analytical
deconvolution that, given the spectral composition
of the input, should in principle return the spatial
information. This scheme, however, is shown to
suffer in practice from excessive noise blowup.
Therefore a linear Bayesian deconvolution filter
was developed. This filter, which can still be de-
scribed analytically, is presented in Subsection 3.B
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together with a discussion of its performance and of
the way in which it is tuned to a particular appli-
cation. The procedures are illustrated in this pa-
per by means of actual recordings of a square grid
that is illuminated by bichromatic light. This grid
provides a fairly pathological example of the appli-
cation of this algorithm, because the original object
contains sharp contrast. Any algorithm that pro-
vides satisfactory results in this case may therefore
be expected to perform well in less demanding cases
also.

The mathematics in this paper is not exhaustive;
more mathematical detail and the properties of the
Bayesian filter can be found in the thesis of Tol-
boom.* A companion paper?!? (referred hereafter to
as paper T2) is devoted to the practical application of
the general OMA imaging results derived here to 2-D
Raman imaging for fuel equivalence ratio mapping.
It turns out that 2-D OMA imaging takes full advan-
tage of an imaging spectrograph and provides a tech-
nique that is time and cost efficient for simultaneous
mapping of molecule-specific 2-D density distribu-
tions.

2. Convolution by a Spectrograph

The images that are the subject of this paper are
formed through a spectrograph via a reflection grat-
ing operated in first order. The reflection grating
diffracts the incident light into its constituent
wavelength components in a direction perpendicu-
lar to the grooves, as described by Eq. (1). If the
spectrograph is operated with a narrow entrance
slit (as would normally be the case for spectroscopic
measurements), angle o is well defined and the
light intensity on any position of the spectrograph
exit plane is, via angle B and for Eq. (1), directly
related to a specific wavelength A. However, if the
entrance slit is not narrow, angle « is not well de-
fined, and this situation may give rise to ambiguity
in the light-intensity distribution in the exit plane.
In this broad-slit case, one dimension of the image
(say, %) in the exit plane contains both spatial and
spectral information. The other dimension (y; par-
allel to the grooves of the grating and to the height
of the entrance slit) contains spatial information
only and is omitted from the following discussion.
Figure 2 depicts a cross section of the spectrograph,
showing the entrance slit in the focal plane of a
collimating lens, a reflective grating, and the exit
port in the focal plane of a second lens. (In com-
mercial spectrographs!6 mirrors are used instead of
lenses, but this does not make a difference to the
formalism presented.) The input image on the en-
trance slit is a real image, formed by an external
lens (not shown in Fig. 2), of some (planar) light
source. For clarity, Fig. 2 illustrates bichromatic
light, in which the two wavelengths are chosen to be
sufficiently distinct to prevent the two resultant
images from overlapping. In practice, however,
the incident light need not be bichromatic; it may be
polychromatic, resulting in overlapping images.

In principle, all rays with a given wavelength \
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Fig. 2. Cross section of a spectrograph including a first-order ray
trace for bichromatic light. The heights of the entrance slit and
the exit port as well as the grooves of the grating are perpendicular
to the plane of the picture. Also shown are coordinates x;, and x,
that appear in the formalism of Section 2.

out

originating from a specific point x;, in the entrance
slit plane will be imaged onto exactly one point x, in
the exit plane, thus transforming spectral informa-
tion into spatial information. Conversely, wave-
length \ that can be associated with any position x,;
in the exit plane also depends on source position x;,.
For an extended, polychromatic source, therefore, the
relation between \ and x,,, is ambiguous. (This, in
fact, is what usually is loosely referred to as loss of
spectral resolution if the entrance slit of a spectro-
graph is broadened.) In general terms, the relation
between measured light-intensity distribution 7" and
incident intensity distribution S;, can be written as!?

T(xout) = J. f g(}\7 Xin; xout)sin()\a xin)d)\dxin’
N Vi Eslit
(2)

where x;,, ,,,; are coordinates in the spectrograph en-
trance and exit planes, respectively, T is the (spatial)
intensity distribution in the exit plane, S;, is the
spectral and spatial intensity distribution in the en-
trance plane, and J is a transfer function. The in-
tegrations run over the whole spectrum and,
according to the reasoning above, over the whole
range of x;, along the width of the entrance slit. As
there is input only at the entrance slit, the integra-
tion over space can be extended from —oo to +oo with-
out affecting the result.18

For the present purpose, perfect imaging will be as-
sumed, and only grating efficiency m(\) is accounted
for. Under this assumption the transfer function
links N\ and x;, to x,,, through the following equation:

g()\, Xins xout) = Tl()\)s[xout - f()\a xin)]a (3)

in which the function f(\, x;,) depends on grating dif-
fraction and imaging optics. It is interpreted as the
function that describes the place on the exit plane
where a monochromatic point source, that has wave-
length \ and is located at x;, would be imaged. The
Dirac delta function allows only the signals of those
combinations of N\ and x;, for which a point x,, is
illuminated to contribute to the signal at that point
Xout:

Unraveling of the spectral and spatial information
contained in the input pattern S;,(\, x;,) requires
that S;, can be factorized, that is, that

Sin()\7 xin) = S}\()\) X S(xin)' (4')

This restriction, by the way, is not peculiar to OMA
imaging but applies to spectrally selective imaging
in general. It limits the interpretation of OMA
graphs (that is, photographs taken through an
OMA) to applications in which either the light
source has a uniform spectral composition over the
width of the entrance slit or the contributions from
sources with different spatial and spectral distribu-
tions do not overlap on the OMA graph (see below,
Subsection 3.A). In paper T2 we further discuss
when and whether this factorization is justified for
multispecies Raman scattered light. For the mo-
ment it suffices to assume that factorization holds
for a single light source that has a spectral profile
S,(\) and a spatial intensity distribution S(x;,). In
this case the factorization leads to

T(xout) = J. j n(k)s[xout - f()\7 xin)]

N Vxin

X S)\()\)S(xm) d)\dxin

= J. T][f(xlm xout)]s)\[f‘(xin; xout)]S(xin)d'xin’

5)

where f(x;,; .0 is the inverse of f(\, x;,), yielding \
given x;, and x,,. Note that fis a function of one
variable (x;,) only, because x,, is a parameter dictated
by the point under investigation.l® In practice, an-
gles a and B will vary only over small ranges. Lin-
earization of the sines in the grating equation, Eq. (1)
with a minus, then provides the relation among the
three coordinates (subscripts O denote reference posi-
tions):

Ms(xin,O - xin) - (xout,O - xout) = C)\ (6)

This relation implies true imaging (magnification M,
determined by the spectrograph) and linear diffrac-
tion (grating constant {, characterizing the grating).
Both M, and { are dimensionless quantities. The
Dirac delta function in Eq. (3) selects f(\, x;,) = x

out
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Fig. 3. Three OMA graphs recorded with different widths of the entrance slit of the spectrograph, as indicated in the photographs. The

horizontal axes contain both spectral and spatial information, and the vertical axes are purely spatial.

(a) Imaged object, a 5.0 mm X 5.0

mm grid printed on white paper with a linewidth of 0.5 mm; (b) spectrum of the light source [a Hg(Ar) calibration lamp; \ (in nanometers)
indicated], recorded by reflection off white paper; (c), (d) OMA graphs of the object shown in (a) under illumination by the same source as

in (b).

The traces on top of the images are single-strip cross sections of the images at the positions of the arrows, cutting the lower circles

of the “68” on the grid. All images are scaled individually. The curvature of the images and the horizontal extrusion of the grid are

artifacts of the spectrograph.

from Eq. (6). For this simple relation the inverse
function is cast explicitly as
(xout - xout,O) - Ms(xin

£

Substitution of this specific inverse function results
in T(x,) of the form

T(xout) = JA T||:(x0m - xOUt’O) _cMS(xin - xin,O):|

- xin,O)

f(xin; xout) =\= (7)

(xout - xout,O) - Ms(xin - xin,O):|
g

X S (x;,)dx;, (8a)
= [(n X S)) * S](xou)- (8b)

This outcome represents a convolution () of a spec-
tral distribution (that is shifted forward and com-
pressed in its argument) with a spatial distribution.

As it is spatial pattern S that is of interest, it needs
to be reconstructed from image T through a deconvo-
lution procedure, once the spectral dependency (n X
S,) is known. One can obtain that dependency by
recording 7T(x,..), using a narrow entrance slit (lo-
cated at reference position x;, ; and illuminated with
intensity S,), in which case

X Sk{

S5(%in) = Sod(%Xin — Xino), 9)

where the subscript 8 indicates the narrow entrance
slit. For this input the convolution ends up as

Ts(xou) = ,n|:(xout ;xout,o)}s)\[ (X out ;xout’O)}So,

(10)
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which, of course, is just a spectrum. As it is used to
deconvolve an OMA graph for the spectral distribu-
tion, we refer to it as a spectral reference function,
R(x,,), in what follows. To make the connection to
Eqgs. (8), we rewrite Eq. (10) as

|:(x0ut - xout,O) - Ms(xin - xin,O):|
" ¢

X Sx[

_ R[xout - Ms(xin - xin,O)]
S, '
Backsubstitution of this expression for spectral ref-

erence function R turns the convolution, Egs. (8), into
its final form:

(xout - xout,O) - Ms(xin - xin,O):|
L

(11)

S(xin)
So

T('xout) = J R[xout - Ms(xin - xin,O)] dxin-

(12)

Note that grating efficiency m(\) is canceled, because
it is present in both spectral reference image R and
convolved image S. Neither does grating constant {
appear explicitly.

An example of the convolving action of the spec-
trograph is presented in Fig. 3, where three OMA
graphs of a square grid under bichromatic illumi-
nation are shown for three entrance slit widths.
Like all subsequent OMA graphs in this section,
they were taken through an imaging spectrograph
(Acton Research Corporation SpectraPro300i f/4
with a 2400-grooves/mm grating). The slight cur-
vature of the OMA graphs is an imaging artifact of
the spectrograph; it will be seen below that the
deconvolution algorithm can automatically correct



for it. Also, the magnification of the spectrograph
is 14% larger along the % direction than along the y
direction, which causes the square grid to look rect-
angular; this anomaly not been corrected for in the
examples presented here (but it was corrected for in
companion paper T2). An intensified CCD camera
(Princeton Instruments ICCD-512-T: 512 X 512
pixels; @J25-mm intensifier; 16-bit dynamic range)
at the exit port of the spectrograph recorded the
OMA graphs corresponding to regions imaged by a
camera objective (Nikon UV-Nikkor, 105 mm, f/4.5)
on the entrance slit of the spectrograph. In the
photographs of Fig. 3, slit width d, is increased from
40 pm [Fig. 3(b)] to its maximum value of 3.10 mm
[Fig. 3(d)]. Thed, = 40 pm OMA graph is taken as
the infinitesimally narrow slit measurement of the
spectral reference function for deconvolution pur-
poses. It contains two lines of the mercury spec-
trum.20 Further decrease of the entrance slit
width did not result in a narrower line profile but
only decreased the intensity levels. When the en-
trance slit is broadened, the spatial images pro-
duced by both lines broaden accordingly [Fig. 3(c)]
and eventually overlap [Fig. 3(d)]. On top of every
OMA graph the intensity along a single strip is
plotted as a horizontal cross section (fixed y) at the
height of the white arrows in the graphs.

The notion of recording a somehow distorted ver-
sion of the original input image is not unfamiliar.
In general imaging experiments, for example, arti-
facts are introduced by aberrations of the optical
detection system and its limited resolution. In
image-restoration literature2-23 such artifacts are
often described in terms of a point-spread function
(psf), which describes how a point source is mapped
onto the image plane by a convolution procedure
that is similar to the one presented here. Al-
though R is not exactly a psf, it can be thought of as
acting as one by linking the input image to the
output. Note, however, that R is not spatially in-
variant.

3. Deconvolution of Optical Multichannel Analyzer
Graphs

The main result of Section 2 is an analytical expres-
sion, Eq. (12), for the intensity distribution in the exit
plane of a spectrograph as a convolution of
the spatial and spectral intensity distributions inci-
dent onto the entrance slit. In practice, one is often
interested in just the spatial intensity distribution.
In this section we focus on the deconvolution of the
spectrograph output with the spectral distribution,
which should provide the desired spatial input inten-
sity distribution. Special attention is paid to the
role of noise accumulated on the spectrograph output
in the deconvolution procedure. First, a straightfor-
ward deconvolution algorithm is discussed and eval-
uated, followed by a more-sophisticated approach
that yields much better results.

A. Analytical Formulation

The general formulation of the convolution as given
in Eq. (12) forms the starting point for the deconvo-
lution procedure and is here restated as

T(xout) = J. R[xout - Ms(xin - xin,O)]G('xin)dxin

Xin

+ N(xout)y (13)

where normalized pattern S/S, is replaced by G for
notational convenience and a noise term N is added.
The importance of this extra contribution to the for-
malism will become clear below. The reconstruction
of original spatial distribution S requires a deconvo-
lution of convolved image T (broad entrance slit mea-
surement) with respect to spectral dependency R
(narrow slit measurement). This inverse problem
can be solved conveniently by Fourier transforma-
tion. The Fourier transform (FT) and its inverse are
defined by

FT[F(x)] = F(k) “‘éff F(x)exp(—ikx)dx, (14a)

x

FT [F(k)] = F(x) d:ef% f F(k)exp(ikx)dk,  (14b)

k

respectively. Application of the Fourier transform
to the convolution, Eq. (13), yields

T(k) = R(k)exp(iM kx,0)G(M k) + N(k) (15)

when one takes due care of magnification M, and
shift x;, 0.1* The convolution in direct space thus
becomes a regular product in reciprocal (k) space, for
which the components have decoupled.

Once the Fourier components 7T(k) and R(k) have
been assessed, the Fourier components of the original
image at the entrance slit can formally be obtained
analytically by solution of Eq. (15) for G:

T(k) — N(k)
R(k)exp(iMkxin0)”

and after an inverse FT the entrance slit image in
direct space, G(x;,), results.

In practical OMA imaging, the signal at the exit
plane is recorded by a CCD camera, requiring a
reformulation (discretization) of the analytical
problem. Details of this procedure are given in
Appendix A.

Figure 4 demonstrates the effect of the analytical
deconvolution procedure [Appendix A, Eq. (A6)] to
the data of Fig. 3. In this measurement there was
noise in both the spectral reference signal [Fig. 3(b)]
and the convolved distribution [Fig. 3(d)]. The
straightforward deconvolution result is extremely
noisy [Fig. 4(a)] and contains virtually no useful
quantitative information, as can be seen clearly from
the single-strip cross section above the image. Note
that this occurs in spite of the fact that both input

G(M k) = (16)

20 October 2004 / Vol. 43, No. 30 / APPLIED OPTICS 5673



height (pixel)

longitude (pixel)

k (pixel™)

[Eq. (A6) below].
(first half of the £ components only).
with two-pixel binning; the high-k components partly cancel (d).
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Fig.4. Strip-by-strip deconvolution of Fig. 3(d) with the spectrum of Fig. 3(b) by means of the unfiltered Fourier-transformation algorithm

Purely spatial images (a) and (c) show data in direct space; the corresponding power spectra are shown in (b) and (d)
(a), (b) Direct deconvolution; note the large high-%£ components in (b).
Top, single-strip cross sections at the positions of the arrows.

(c), (d) Direct convolution but
[Zero

baseline indicated in (a) and (c); left ordinates omitted in (b) and (d) to emphasize the low-%2 components.]

images [Figs. 3(b) and 3(d)] are not particularly noisy.
A closer look at the reciprocal space components [Fig.
4(b)] indicates that the resultant noise can be attrib-
uted to large high-k components?¢ that do not cancel
each other on inverse Fourier transformation. The
FT diagonalizes the convolution problem and hence
the deconvolution. However, because many of its
high-£ components are small, the inverse problem is
(numerically) ill conditioned and sensitive to small
variations (noise) in the recorded data. In a more
physical explanation, the deconvolution algorithm at-
tempts to increase the contrast in the image; i.e., it
attempts to restore structure in the input that was
smeared out by the convolution: Any structure that
is present in the measured (convolved) image must
have been more pronounced in the actual spatial dis-
tribution on the entrance slit (before convolution).
There is, however, no way for the reconstruction algo-
rithm to distinguish real data from noise that is added
during detection and superposes an artificial structure
(on a pixel-to-pixel basis, that is, high-frequency) onto
the convolved signal. As the analytical algorithm
does not treat the noise any differently from the real
data, it generates high-2 components to account for the
rapid pixel-to-pixel fluctuations in the measured (sig-
nal + noise) data. Unfortunately, it is not trivial to
discriminate between real data and noise.

Zero padding the data (to array sizes up to 23
pixels) to increase the resolution in k-space did not
alter the deconvolved result in direct space signifi-
cantly. Additional windowing of the raw data to im-
pose periodic boundary conditions rigidly as required
for the FT was also insufficient to restore the original
image. This means that the noise in the straight-
forward reconstruction is not a consequence of ill-
satisfied periodic boundary conditions. At the cost
of losing spatial resolution, binning two neighboring
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pixels is a trivial low-pass filter for the spectral and
the convolved data. A subsequent deconvolution
yields Fig. 4(c), which looks less noisy than Fig. 4(a).
Indeed, its corresponding Fourier power spectrum
[Fig. 4(d)] shows fewer contributions from high-%
components. However, although the structure of
the object can now be recognized, the signal-to-noise
ratio in Fig. 4(c) is still poor compared with the input
[Fig. 3(d)]; compare especially the two single-strip
cross sections above each image). Clearly, addi-
tional filtering is required for separation of data from
noise by suppression of exploded G(k) contributions,
especially at higher reciprocal space components.
There are filters that do this job globally,22 but often
they are ad hoc and do not provide dramatic improve-
ments. A more general algorithm dedicated to fil-
tered deconvolution is presented below.

B. Linear Bayesian Deconvolution Filter

The goal is to reconstruct the original spatial pattern
{G,,} (a strip of the input) that gave rise to a measure-
ment {T,,} (a strip of the output) for a given spectral
convolution function {R,,}. As actual input {G,}is in
principle unknown, many candidates might have
given the same measured output (including noise),
and one of these has to be selected. This boils down
to finding the most likely reconstruction of {G,}, given
the incomplete knowledge provided by the experi-
ment. “Incomplete” means that the actual noise
contribution is not known, for example. What we do
know, however, is (i) a measurement of the output
and (ii) the convolution model of Eq. (12), which links
the output to the input. A Bayesian statistical anal-
ysis25 prescribes a procedure for quantifying the term
“most likely” and for assigning reliability to the re-
construction. For this purpose the intensities of the
input pattern, the measured data, and the noise are



thought of as stochastic variables to which pdf’s that
describe the probability that a stochastic variable will
take a certain value. The spectral reference func-
tion is assumed to be well assessed as the response to
a peak input. The principles of the data filter are
presented in this paper; details can be found in the
dissertation of Tolboom.4

In this section, uppercase letters denote stochastic
variables and the corresponding lowercase letters
represent their actual values (data). Boldface vector
notation indicates that we deal with the entire set of
N stochastic variables or their specific values; sub-
scripts indicate a single component.

Given the pdf’s and the experimental fact that the
measurement of T resulted in the particular outcome t
(denoted T = t), the reconstruction problem is equiv-
alent to calculating the conditional expectation values

E[G|T = t] = F(t) 17)

as a function & of measured output t. These condi-
tional expectation values are the best a posteriori es-
timates of the a priori input g, given the measured
outcome T = t.26 The criterion “best” is defined as
that particular %(t) that minimizes the mean-square
errors

E[|G, — F.(V)|*] V., (18)

based on the measured T = t. In this section we
provide the best reconstruction by direct calculation of
the conditional expectation value. It is Bayes’s theo-
rem, which is used to link a priori knowledge of both
input and output to a posteriori knowledge. There
are different ways to arrive at the final result, for
example, by direct minimization of the mean-square
error, either analytically or graphically.'4 However,
we believe that the formulation presented below gives
the clearest insight in the mathematics involved.

In the statistical approach, both input image G and
noise N are modeled by stochastic variables, that is,

G,=c+o0X,V, N,=b+7Y,V,, (19

respectively, where the values of X,, and Y,,, are taken
a priori from mutually independent standard normal
distributions, a choice that we comment on below. It
is assumed in the model that all pixels in a strip are
characterized by one set of parameters {c, o, b, 7}.
The mutual independence (denoted 1) of all distri-
butions X and Y implies that

X,, 1L X,, (m # n), i.e., the pdf of the optics before
the spectrograph is neglected;

Y, IL Y, (m # n), i.e., the noise is accounted for
per individual pixel; and

X, 1Y,V,,, ie., the noise is not correlated

(20)

As G (the normalized input signal) is a dimensionless
quantity, parameters ¢ and ¢ are dimensionless, too.
b and T have the same dimension as N, however,

to the signal at all.

which is [count]. It can be shown!# that pdf (p) of
original image G,, taking on the value g, can be de-
rived from the standard normal distribution as

and similarly for the noise term

—— exp| — = V.. (22)
T

Parameters b and c are the averages of the noise and
the normalized input image, respectively, and 12 and
o are the variances in the corresponding signals.
The distribution p; [Eq. (21)] illustrates the di-
lemma in choosing ¢. On the one hand, o has to be
sufficiently large to include all the reasonable data,
but on the other hand it should be small enough to
exclude negative values (input g,, is necessarily pos-
itive), effectively by assigning small probabilities to
them. The exclusion of negative numbers is not an
issue for the noise model. The addition of mean ¢ to
the input is an extension to existing analytical mod-
els (such as those documented by MacKay?27), because
it shifts the a priori pdf to the (positive) intensities
expected on physical principles. A physical ap-
proach to determining o and 7 is discussed at the end
of this section.

The discretized form of the convolution model, Eq.
(A2) below, provides the link between the assumed
stochastic variables, Egs. (19), and the output, which
we can measure. These output values,

Tm = 2 Rm*nJrnoGn + Nm Vma (23)

are also treated as stochastic parameters in the cur-
rent approach. Once the values g = (g, ..., 8n_1)
of input pattern G = (G, ..., Gn_;) are specified,
the pdf for the output follows from this equation as
the conditional pdf (or likelihood):

1
t G = =
WTm( ’ g \/277”

1 tm - zn anfrﬁrn(,gn + b

X —— Y,,.
exp 2 T "

(24)

This is an equation for a normal distribution once
more, but it is now centered about the value (2,
R, _,in, 8, + b) with variance 7.

The problem in OMA imaging, however, is that we
measure output T = t, from which we want to re-
trieve the pdf for the input pattern. This (a posteri-
ori) pdf'is also a conditional pdf, 9, (gq|T =t), but it
cannot be calculated readily. Fortunately, it suffices
for our problem to calculate the conditional expecta-
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tion value of G, which is defined for discrete stochas-
tic variables as

E[G,T = t] = >, g,P[G,=g,|T = t]
8q
=> g P[G=g|T=t]V, (25)
8

(Note that each of these relations contains a summa-
tion over values g, and g rather than a summation
over components g. Inasmuch as the individual
components are independent, this notation does not
introduce additional components.l4) Conditional
probability PP (of occurrence of an event; for discrete
stochastic variables) that was introduced in Eq. (25)
is related to conditional pdf ¢ (of a value; for contin-
uous stochastic variables) by

b
Pﬁﬂeﬁuwﬁ=t}=fpgwjrzﬂ%¢ (26)

a

It is at this point that Bayes’s theorem

_ P[T=t|G =g] X P[G = g]
B P[T = t]

P[G = g|T = t]
27

tion relation of probabilities is applied to the denomi-
nator:

PT=t]=> P[T=tG=g]XP[G=g], (29

g

and the conditional expectation value becomes

> g,PIT = t|G = g] X P[G = g]

G|T=t]=2%
FeT=t > P[T = t|G = g] X P[G = g] Yo

g

(30)

showing that the numerator and the denominator
contain the same probabilities and that the numera-
tor carries the additional value g, that is averaged.
This is a relation that is familiar from statistical
physics, for example, where the population of a grand
canonical ensemble is normalized by the partition
function.28

In the continuum limit of the stochastic variables,
Eq. (30) contains Riemann summations that go over
into integrals over pdf’s for every pixel g:

J g.91(t|G = g) X pa(g)dg
RN

E[G,T = t] =
p1(t|G = g) X pg(g)dg

RN
1[t-R*g—b|° 1|g—c|?
g, eXp T . exp ~3 dg
v T o
1[t-Rx*g—1b|° 1|g—c|?
exp ol . exp ~3 dg
. T o
2
ox _12 tm_Eanfnﬂzogn_b gn—C 2 dg
RNgq Pl 7y ~ T o
= 2 ) (31)
'[ [ 1 (tm_Ean—n+n0 R b gn.—¢C 2)
exp| — = >, + dg
. 25 1]

enters the statistical approach to deconvolution by re-
versing the information (T = t) and the unknown (G =
g) arguments of the likelihood, turning Eq. (25) into

szﬂngxMngv
P[T = t] ¢
(28)

[E[Gq|T =t]= E 84

g

The denominator does not depend on g, so it can be
taken out of the sum. Additionally, the decomposi-
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where all stochastic variables are independent and
the prefactors in the numerator and the denominator
cancel. Because the g and R values in the first part
of the exponentials are coupled via the convolution,
these integrals cannot be performed analytically in
direct space. Substitution of the FTs of the g, R, t,
b, and ¢ values provides a convenient change of the
coordinates of integration that decouples the inte-
grand once more. However, this change of coordi-
nates is rather intricate and introduces some



complications with respect to the coordinates and do-
main of integration (see App. 6.A in the dissertation
of Tolboom14). Analytical evaluation via reciprocal
space of the integrals in Eq. (31) eventually leads to
the key formula

E[G,|T = t]
_ C(T/O’)Z - bRk:() n FT71 Rﬂ}:,nozk
Ri_o+ (1/0)? \Rpny” + (1/0)?
(32)

for the restoration of the unknown original input im-
age. (A tilde denotes a FT; see Appendix A.)

Equation (32) is the main result of this paper, de-
scribing the reconstruction of the most probable input
pattern by means of filtered deconvolution of the
measured output. Because the expression is analyt-
ically closed, it enables straightforward implementa-
tion to be made in computer code without iterative
loops. In Eq. (32) the first term denotes an offset
about which data are scattered by FT ! in the second
term. Parameter ¢ is always taken as the average
over the convolved image t.

The filter has only one free model parameter, frac-
tion o/, instead of two (o and T separately), as might
perhaps be expected from the supposition of the sto-
chastic variables of Eqs. (19). This effective filter
parameter can be interpreted as a measure of the
contrast between the real structure in the signal (e.g.,
the grid lines and the numbers) and the noise accu-
mulated in the measurement.

Equation (32) is the linear Bayesian-filtered ver-
sion of the straightforward deconvolution, Eq. (A6)
below. To compare the two results we rearrange the
argument of FT ! in Eq. (32) according to

Ri. B R 7
Rys® + (1/0)* Ry + (1/0)* Ry,
- 1 i,
1+ (T/G)2|Rk,no|_2 Ry,

(33)

Equation (33) shows that the filter effectively sup-
presses all £ components of the straightforward de-
convolution by a factor [1 + (7/0)’|R,, |7*] = 1.
Alternatively, the power of the Fourier-transformed
components within the inverse FT can be written as

2R3 2 5 2
Rﬂk:,no _ [ |ng,n0|2 ]
ARy B A - R A=y
IRy, |” + (1/0) [Rjnel* + (1/0)
filtered deconvolution function filter
1 2
X - (34)
Rk,no

deconvolution function

Written in this way, the Bayesian filter with the
choice of normal distributions for the stochastic vari-
ables is seen to yield results similar to those of the
Wiener deconvolution filter.22

The prefactor filter is a measure of the power at-
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Fig. 5. Power spectra (single strips at the location of the arrows
in Fig. 3). (a) Fourier-transformed spectral reference function R,
of Fig. 3(b), (b) nonfiltered deconvolution function, (c) filtering of (b)
(note the logarithmic scale), (d) linear Bayesian filtered deconvo-
lution function. The power of the filtering function (c) is the pre-
factor filter of Eq. (34). (c), (d) Calculated for o/t = 6 counts ™.

tributed by the filter to the real data, depending only
on spectral reference function R and regularization
parameter o/7. It is clear that, if 7/c approaches
zero (i.e., the measured structures are completely due
to structure in the input image), the nonfiltered de-
convolution, Eq. (A6) below, will remain. In that
limit, the offset in Eq. (32) approaches —b/R,,_, cor-
responding to subtraction of (constant) noise level b
from the deconvolved data. The results in this pa-
per were obtained for b = 0, so there is no such
additional offset correction for accumulated noise.
The limit of 1/0 — o0, however, would physically cor-
respond to a measured output that is dominated by
noise. In this case the filter effectively suppresses
all Fourier components and results in the prediction
of a flat input distribution.

Figure 5 illustrates the action of the (filtered) de-
convolution in reciprocal space for the single-strip
data R of Fig. 3(b). At the right in Fig. 5 are the
powers of the deconvolution function [Fig. 3(b)] and of
the filtered deconvolution function [Fig. 3(d)] on a
linear scale. The spectrum in Fig. 3(b) is dominated
by high-£ components, and these cause extreme noise
in the straightforward reconstruction [e.g., Fig. 4(a)].
As can be seen from Fig. 5(c), it is exactly these high-%
components that are strongly suppressed by the filter
factor, Eq. (34). As a result, the power spectrum of
the filtered deconvolution [Fig. 5(d), which should be
compared to Fig. 5(b)] is dominated by (real) struc-
ture in the low-k2 components, a structure that is
present as only a minor wrinkle in the unfiltered
spectrum [Fig. 5(b)]. The exact shape of the filter
[Fig. 5(c)] strongly depends on the shape of |R, |* [Fig.
5(a)]. In this case the presence of two spectral lines
causes the oscillations in |R,|?, and in all traces de-
rived from it. For a single-line spectrum, for exam-
ple, all curves would have been smooth.

Figure 6 illustrates the dependence of the recon-
struction on filter parameter o /7 in more detail. The
turning point for the filter’s behavior, as can be seen
from Eq. (34), lies at o/7 ~ |R|"'. For o/t < |R|™},
the structure in the measured image is taken as dom-
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Fig. 6. Strip-by-strip linear Bayesian deconvolution of Fig. 3(d) with the spectrum of Fig. 3(b). Right to left, results for three ratios o/,
ranging from (a) too low (/7 = 1 count™ 1) to (b) best (¢/7 = 6 counts 1) to (c) too high (¢/7 = 800 counts™!). Above the images are the
single-strip cross sections (similar to those in Figs. 3 and 4), and on top of them are their power spectra for the first halves of 2 components.
The images are scaled individually, but the traces are all on the same linear gray scale. The left ordinates of the power spectra are omitted

to show the similarity of the barely filtered, low-k components.

inated by noise, whereas for o/t = |R| ! it is attrib-
uted to the input image itself. The former situation
results in a relatively uniform input image [as re-
flected in the smooth reconstruction of Fig. 6(a)] onto
which readout noise has imposed structure. The lat-
ter situation corresponds to an input image with rich
structure onto which relatively little noise has accu-
mulated. The deconvolution therefore produces a
wildly fluctuating image [Fig. 6(c)] approaching the
nonfiltered deconvolution result. In the best result
(here o/T = 6 counts ™ !; see below), the original object
is well reproduced, and the other parts of the image
are nearly empty. (Ideally, they would be com-
pletely dark.) The horizontal cross sections (white
arrows similar to those in Figs. 3 and 4) emphasize
the accurate recovery of the input image; three dis-
tinct minima represent the grid lines in the single-
strip data, and an intermediate structure is present
that comes from cutting the “68”. The grid minima
are separated by approximately 43 pixels, and they
are somewhat broader than 4 pixels (full width at
half-maximum), in perfect agreement with the
printed grid of 1:10 for the line thickness. Still,
there are a few small undershoots (oscillations and
negative numbers), also in the best result. As dis-
cussed after the Eqgs. (21) and (22) for the pdf’s, their
presence does not come as a surprise.

Although rigorous mathematical procedures exist
for estimating regularization parameter o/t (see,
e.g., Engl et al.29), we have opted for a more physical
approach. The physical situation is that light is
transmitted through the entrance slit only. Thus
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after deconvolution the signal should ideally be con-
fined to a finite area on the CCD chip that corre-
sponds to the entrance slit image, while the rest of the
chip is empty. Define the image contrast as (P(in))/
(P(out)), with (P(in)) the average power inside the
reconstructed entrance slit image (pixel numbers
176-335) and (P(out)) the average power outside this
part of the image (pixel numbers 1-165). The best
o/7 should then maximize the image contrast. From
a plot of the image contrast compared with o/t (Fig.
7), such is found to be the case for o/t = 6 counts .
Note that the maximum in Fig. 7 is rather broad, so
the filter’s performance is not critical to the exact
value of ¢/7 that is used.

A final check on the quality of the reconstructed
image lies in reconvolving it with the spectral refer-

100
80 /A\'\ .
‘g 60 / S
2 404
8 204 A \\_
ol - [ S

1 10 100
o/ 1 (count™)

Fig. 7. Contrast (defined in the text) as a function of /1. The
maximum in the curve is taken as the best o/t for the deconvolu-
tion as it minimizes the relative power in the physically dark
region. The corresponding value for the nonfiltered results [Fig.
4(a)] is (P(in))/(P(out)) = 1.35.
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Fig. 8. Reconvolved image of the data that were obtained with a
deconvolution for o/t = 6 counts ! (solid curve) and its difference
from the original, measured data (residual; gray curve). The dif-
ference is 0.04 count on average and has a standard deviation of
more than 7 kecounts.

ence function, as was done for Fig. 8. The difference
of this result from the measured data is also indi-
cated; it is 1-2 orders of magnitude smaller than the
actual data. The average power in the reconvolved
image is 0.946 times the average power contained in
the original data, so the filter attributes approxi-
mately 5% of the power to noise for o/t = 6 counts ™ 1.
4. Some Properties of Optical Multichannel Analyzer
Imaging and the Reconstruction of Optical Multichannel
Analyzer Graphs

A. Linearity

The linearity of the deconvolution filter can be dem-
onstrated by consideration of the deconvolution of
any linear combination of two measurements T =
(a1t; + asty) given by

c(t/o)*— bR,_,
E[G,|T = at; + asts] = + —_
[ q| ait; + asty] = (a; + ay) R;%:0+(T/0')2
R}, faity, + asty)
[Rpn* + (1/0)?

= a,E[G,|T = t,] + a,E[G,|T = t,].

+ FT!

(35)

The factor (@, + a,) before the offset term may not be
obvious. As the total signal now consists of two sep-
arate measurements (¢; and ¢,) multiplied by the fac-
tors a; and a,, the average value ¢ and the average
noise level b of the two images need to be multiplied
by the same factor. Note that the linearity is a con-
sequence of our specific choice of standard normal
distributions in Eqs. (19) rather than of its being
presupposed in the derivation of Eq. (32). The phys-
ical implication for OMA imaging is that (spectral)
structures that do not overlap in an OMA graph can
be treated separately. Thus various sources with
different spectral distributions can be recorded in a
single OMA graph as long as their contributions do
not overlap in the exit plane. [See Fig. 3(c); the de-
convolved image can be found in Tolboom’s disserta-
tion.14] Thus the factorization requirement stated
in Eq. (4) is seen not to be any more severe for OMA
imaging than for any other kind of spectrally selec-
tive imaging.

B. Two-Dimensional Image Reconstruction

A spectrograph, like any other optical device, intro-
duces imaging defects. Because the effects of these
defects increase with distance from the optical axis,
nondiffracting dimension § in particular will suffer
from defects. The imaging artifacts of the system
used in our experiments can be judged from Fig. 3(a).
The two spectral lines (images of a straight entrance
slit) are curved, and they become a bit less sharp
toward the upper and lower ends. Both effects do
not noticeably vary over the width of the image. As
horizontal cross sections are treated individually, the
perfect-imaging assumption of Eq. (3) is fulfilled for
each strip. Furthermore, the strip-by-strip deconvo-
lution provides two additional advantages related to
the inherent properties of deconvolution. If the
spectral reference function is recorded with the same
spectrograph settings as the image [but with a nar-
row entrance slit, of course; cf. Figs. 3(a) and 3(c)], the
reference image will contain a spectral reference
function on each image line (pixel row). The decon-
volution (i) will take into account the one-
dimensional psf as part of the spectral reference
function and (ii) will center the deconvolved image
about the origin.3° Thus, if individual strips of an
OMA graph are deconvolved with a spectral reference
function of the corresponding strip in a spectral ref-
erence image [like that of Fig. 4(a)], both the addi-
tional blurring and the curvature are corrected for.
In some practically complicated cases, the spectral
reference function cannot be determined for every
strip or need to be averaged for a sufficient signal-to-
noise ratio. In such cases the reconstruction will
still contain residual blurring, the curvature will per-
sist, or both. Nevertheless, these images can often
be used in quantitative studies, as shown in compan-
ion paper T2.

C. Improvements and Restrictions

A main advantage of the Bayesian deconvolution fil-
ter presented here is that it is expressed in closed
form [Eq. (32)]. Thus the expectation values can be
calculated directly, which obviates the need for CPU-
intensive optimization schemes. This direct calcu-
lation, however, has its price. We had to assume
linear imaging [Eq. (6)] and found that the linearity
of the filter in fact arises from our choice of normally
distributed stochastic variables [Eq. (19)]. The lin-
ear imaging assumption was required for the spec-
trograph output to take on the form of a convolution
[Eq. (12)]. It may break down for extended spectral
structures, depending also on the equipment used.
Probably the best check of whether this assumption is
justified will be empirical.

The choice of normal distributions for the stochas-
tic variables is in itself not expected to be a serious
restriction, but it does allow (unphysical) negative
values to appear in the final result (see the discussion
of Fig. 6 above). More-elaborate distributions could
remedy this defect but probably at the expense of not
yielding a closed expression for the filter any more.
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Such, for example, is the case with the maximum
entropy method,3! for which positivity of the recon-
struction is ensured but finding it requires a numer-
ical global optimization algorithm.

Finally, there is the assumption of (piecewise) fac-
torizability of the input [Eq. (4)]. We do not consider
this a restriction that is peculiar to OMA imaging but
rather one that holds for all spectrally selective quan-
titative imaging schemes. In fact, we consider it one
of the advantages of using a spectrograph compared,
for instance, with bandpass filters: If the factoriz-
ability assumption breaks down, the spectrum will at
least tell you that it does.

5. Summary and Conclusions

Under the hypothesis of factorizability of the input to
a linearized spectrograph into a purely spectral and a
purely spatial part, the entangling of spatial and
spectral information by an optical multichannel an-
alyzer setup is described effectively by a convolution.
Reconstruction is achieved by a dedicated linear
Bayesian deconvolution filter, depending on one free
model parameter only. The data filter is based on
Gaussian probability-density functions for the un-
known spatial input and the accumulated noise, allow-
ing for a closed analytical filter expression [Eq. (32)].
The resultant reconstruction shows clear contrast
and a good reproduction of the factual input. More-
over, the algorithm prescribes a recipe for generating
quantitatively interpretable data, thus satisfying an
essential criterion for quantitative two-dimensional
imaging.

Inasmuch as OMA imaging requires just an imag-
ing spectrograph and a single camera, it is a reliable,
relatively cheap, efficient technique for quantitative
imaging experiments. A practical application is dis-
cussed in the companion paper.15

Appendix A. Discretization

The photodetection chip in a CCD camera3? has a
finite (say, N) number of pixels of finite (nonzero)
dimension. These properties require a discretiza-
tion of the analytical formulation [Eq. (13)]. As the
pixels have a finite dimension, they already integrate
the signal over a finite region of x,,,. All integrals
over space therefore become a sum over the subinte-
grals, i.e., the pixel values. The discretized version
of Eq. (13) thus reads as

Tnout = 2 Rnouths(nin*’nin,O) X Gnin + N"out’ (Al)

Nin

where n,,, and n;, denote discrete positions (or,
equivalently, pixel numbers) and replace continuous
parameters x,, and x;,, respectively. This discreti-
zation implies that not only the output signal at the
exit port but also the input signal at the entrance slit
is discretized. Thus the aim will be to estimate sig-
nal G as a function of pixel number (discretized po-
sition). The subscript [n,,, — M (n;, + ni,0)] of
spectral reference function R labels the (discretized)
wavelength. It is expressed in terms of both discrete
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positions n;, and n,, and need not be an integer
because it contains the magnification M, € R. From
Eq. (6), however, we know that for every wavelength
\ any specific M n;, (or M x;,) may be converted into
a specific n, (or x,,.), where n,, and n,,; both denote
pixel numbers. Therefore the references to “in” and
“out” can be omitted and the subscripts can simply be
any integer counter without reference to the specific
planes (input or output).

Another consequence of the CCD chip’s having only
a finite number of pixels is that 7" and R can be
recorded only for a finite number of points. The ex-
perimental settings must, of course, be such that this
finite segment is representative of the complete sig-
nal so this representative part can be put into the
convolution. When periodic boundary conditions
(period N) are assumed, the discretized convolution
in direct space [Eq. (Al)] becomes

N-1
T,= 2> Roppin, X G, + N, (A2)
n=0
All subsequent summations and products over indi-
ces will be from 0 through N — 1.
The discretized form of the Fourier transform and
its inverse are33

N Nl 2mik
szzF,L exp(— m n)’

n=0 N
1 2mikn
F,=— A3
n N kE:O k eXp( N ) ’ ( )

respectively. Like m and n, k is merely a counter,
which denotes the reciprocal space component of a
Fourier-transformed signal. The discrete FTs are
implemented in a computer program as fast FTs on
512 (=2°) data points. The discretized analog of Eq.
(15) is

Tk = Rk,no X Gk + Nk) Rk,no d:ef Rk exp(

(Ad)

and the relation for the discretized deconvolved sig-
nal in reciprocal space [Eq. (16)] becomes

Tk_ﬂ‘k

Gk = Rk’no . (A5)

As phase factor exp(2wikn,/N) will always appear in
combination with R,, it is absorbed by the latter for
notational brevity, as is indicated by the additional
subscript n, to Rk’no. The pixel values in direct
space are

T,- N
G,=FT G = FT{’Z k}
Rk,no
133 [T, - N, (21'rikn> (A6)
= — e ,
N = Rk,no P N



where the subscript n numbers the pixels (formally in
the entrance slit plane). Because the Fourier algo-
rithm is essentially just a mathematical trick, the
physical information should be contained only in the
real part of FT™!. The imaginary part ought to van-
ish. The program that performed the deconvolution,
Eq. (A6), was tested successfully on computer-
generated data (not shown). The average power34in
the imaginary part was always found to be ~25 or-
ders of magnitude smaller than the average power in
the real part, and indeed zero within the limit of
computational accuracy.

We appreciate the critical and constructive discus-
sions that we had with Marianna Sijtsema. This
study was made possible by financial support from
the Technology Foundation, the Applied Science Di-
vision of the Netherlands Organisation for Scientific
Research, and the technology program of the Minis-
try of Economic Affairs.
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