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uantitative imaging through a spectrograph.
. Principles and theory

ené Tolboom, Nico Dam, Hans ter Meulen, Joris Mooij, and Hans Maassen

Laser-based optical diagnostics, such as planar laser-induced fluorescence and, especially, Raman im-
aging, often require selective spectral filtering. We advocate the use of an imaging spectrograph with a
broad entrance slit as a spectral filter for two-dimensional imaging. A spectrograph in this mode of
operation produces output that is a convolution of the spatial and spectral information that is present in
the incident light. We describe an analytical deconvolution procedure, based on Bayesian statistics, that
retrieves the spatial information while it avoids excessive noise blowup. The method permits direct
imaging through a spectrograph, even under broadband illumination. We introduce the formalism and
discuss the underlying assumptions. The performance of the procedure is demonstrated on an artificial
but pathological example. In a companion paper �Appl. Opt. 43, 5682–5690 �2004�� the method is
applied to the practical case of fuel equivalence ratio Raman imaging in a combustible methane–air
mixture. © 2004 Optical Society of America
OCIS codes: 000.2170, 100.1830, 100.3020.
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. Introduction

ptical techniques find increasingly more applica-
ions in �reactive or nonreactive� gas flow
iagnostics.1–3 There is good reason for that.
ight-scattering techniques are as near as one can
et to nonintrusive diagnostics. There are widely
vailable �laser� light sources of unsurpassed spectral
rightness that permit specific detection of selected
hemical species �of great importance especially in
ombustion�, and a large variety of experimental
echniques has been developed for many specific pur-
oses. In this paper we focus on two-dimensional
2-D� optical imaging of density distributions of spe-
ific chemical species. There are two methods of
hoice for this purpose,1,2 i.e., planar laser-induced
uorescence and planar Raman scattering. Both
ombine a thin �quasi-monochromatic� sheet of light
erived from a powerful laser system with �intensi-
ed� CCD cameras for detection of the scattered light.
oth also usually require good spectral filtering of the
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cattered light for suppression of undesired contribu-
ions to the measured light intensity. In this paper
e discuss the use of an imaging grating spectro-
raph with a CCD camera on the exit port �an optical
ultichannel analyzer �OMA�� for spectrally selec-

ive 2-D imaging. Although we have the specific
urpose of Raman imaging in mind, the technique is
ot restricted to that and can be used for spectrally
elective imaging in general. The use of a spectro-
raph has two main advantages over the use of spec-
ral bandpass filters: Its spectral selectivity is
reater, and it provides a spectrum. Thus undesired
pectral contributions will be suppressed more effec-
ively, and, even if unexpected spectral interferences
ccur, a spectrograph will at least show them,
hereas they are likely to pass unnoticed when band-
ass filters are used.
An ideal imaging grating spectrograph projects a

aithful image of its entrance slit onto its exit plane.
here exactly on the exit plane this image ends up

lso depends on the wavelength of the incident light,
s follows directly from the familiar grating equa-
ion4,5 �see Fig. 1�

d�sin � � sin �� � m�, (1)

here m is the order of diffraction and d is the
roove center distance. Both the angles of inci-
ence ��� and of reflection ��� are defined with re-
pect to the grating normal �dashed–dotted lines�.

he � applies when � and � are on the same side of
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he grating normal; the 	, when they are on oppo-
ite sides �as in the example depicted�. In most
ases a spectrograph is used with a narrow en-
rance slit to record line �one-dimensional� spectra,
.g., Raman spectra in combustion science1,6–9 and
oint �zero-dimensional� spectra for increased
ignal-to-noise ratios.10,11 In the former case �one
imension�, one of the axes that span the exit plane
arries a spectral scale and the other one still car-
ies purely spatial information �along the height of
he entrance slit�. One way to visualize planar
2-D� patterns with one-dimensional imaging is to
erform consecutive line measurements for many
ongitudinal positions. Recently Sijtsema et al.12

ntroduced direct 2-D imaging through a spectro-
raph as a nonintrusive tool for quantitative, pla-
ar gas flow visualization. This technique,
eferred to henceforth as OMA imaging, is the focus
f the present paper. It is shown that OMA imag-
ng, originally introduced for use with quasi-

onochromatic light,12 can be used for extended
pectral structures as well.13

Below, we concentrate on theoretical issues re-
ated to spectrally selective 2-D imaging, using a
etup that incorporates an imaging spectrograph
ith a diffraction grating operated in first order.
he grating effectively produces an output image on
he spectrograph’s exit plane in which the spectral
nd spatial information that is present in the inci-
ent light is scrambled. It is shown that, in spite
f diffraction, the original �spatial� image can nev-
rtheless be reconstructed for many practical situ-
tions. In Section 2 we deal with the formalism
hat describes the scrambling of the spatial and
pectral information by the imaging spectrograph.
nder not-too-stringent restrictions this scram-
ling is shown to take the form of a convolution.
ection 3 describes the straightforward analytical
econvolution that, given the spectral composition
f the input, should in principle return the spatial
nformation. This scheme, however, is shown to
uffer in practice from excessive noise blowup.
herefore a linear Bayesian deconvolution filter
as developed. This filter, which can still be de-

ig. 1. Schematic representation of the diffraction of light by a
rating.
cribed analytically, is presented in Subsection 3.B

670 APPLIED OPTICS � Vol. 43, No. 30 � 20 October 2004
ogether with a discussion of its performance and of
he way in which it is tuned to a particular appli-
ation. The procedures are illustrated in this pa-
er by means of actual recordings of a square grid
hat is illuminated by bichromatic light. This grid
rovides a fairly pathological example of the appli-
ation of this algorithm, because the original object
ontains sharp contrast. Any algorithm that pro-
ides satisfactory results in this case may therefore
e expected to perform well in less demanding cases
lso.
The mathematics in this paper is not exhaustive;
ore mathematical detail and the properties of the
ayesian filter can be found in the thesis of Tol-
oom.14 A companion paper15 �referred hereafter to
s paper T2� is devoted to the practical application of
he general OMA imaging results derived here to 2-D
aman imaging for fuel equivalence ratio mapping.

t turns out that 2-D OMA imaging takes full advan-
age of an imaging spectrograph and provides a tech-
ique that is time and cost efficient for simultaneous
apping of molecule-specific 2-D density distribu-

ions.

. Convolution by a Spectrograph

he images that are the subject of this paper are
ormed through a spectrograph via a reflection grat-
ng operated in first order. The reflection grating
iffracts the incident light into its constituent
avelength components in a direction perpendicu-

ar to the grooves, as described by Eq. �1�. If the
pectrograph is operated with a narrow entrance
lit �as would normally be the case for spectroscopic
easurements�, angle � is well defined and the

ight intensity on any position of the spectrograph
xit plane is, via angle � and for Eq. �1�, directly
elated to a specific wavelength �. However, if the
ntrance slit is not narrow, angle � is not well de-
ned, and this situation may give rise to ambiguity

n the light-intensity distribution in the exit plane.
n this broad-slit case, one dimension of the image
say, x̂� in the exit plane contains both spatial and
pectral information. The other dimension � ŷ; par-
llel to the grooves of the grating and to the height
f the entrance slit� contains spatial information
nly and is omitted from the following discussion.
igure 2 depicts a cross section of the spectrograph,
howing the entrance slit in the focal plane of a
ollimating lens, a reflective grating, and the exit
ort in the focal plane of a second lens. �In com-
ercial spectrographs16 mirrors are used instead of

enses, but this does not make a difference to the
ormalism presented.� The input image on the en-
rance slit is a real image, formed by an external
ens �not shown in Fig. 2�, of some �planar� light
ource. For clarity, Fig. 2 illustrates bichromatic
ight, in which the two wavelengths are chosen to be
ufficiently distinct to prevent the two resultant
mages from overlapping. In practice, however,
he incident light need not be bichromatic; it may be
olychromatic, resulting in overlapping images.

In principle, all rays with a given wavelength �
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riginating from a specific point xin in the entrance
lit plane will be imaged onto exactly one point xout in
he exit plane, thus transforming spectral informa-
ion into spatial information. Conversely, wave-
ength � that can be associated with any position xout
n the exit plane also depends on source position xin.
or an extended, polychromatic source, therefore, the
elation between � and xout is ambiguous. �This, in
act, is what usually is loosely referred to as loss of
pectral resolution if the entrance slit of a spectro-
raph is broadened.� In general terms, the relation
etween measured light-intensity distribution T and
ncident intensity distribution Sin can be written as17

T� xout� � 

�



xin�slit

���, xin; xout�Sin��, xin�d�dxin,

(2)

here xin,out are coordinates in the spectrograph en-
rance and exit planes, respectively, T is the �spatial�
ntensity distribution in the exit plane, Sin is the
pectral and spatial intensity distribution in the en-
rance plane, and � is a transfer function. The in-
egrations run over the whole spectrum and,
ccording to the reasoning above, over the whole
ange of xin along the width of the entrance slit. As
here is input only at the entrance slit, the integra-
ion over space can be extended from 	� to �� with-
ut affecting the result.18

For the present purpose, perfect imaging will be as-
umed, and only grating efficiency ���� is accounted
or. Under this assumption the transfer function
inks � and xin to xout through the following equation:

ig. 2. Cross section of a spectrograph including a first-order ray
race for bichromatic light. The heights of the entrance slit and
he exit port as well as the grooves of the grating are perpendicular
o the plane of the picture. Also shown are coordinates xin and xout

hat appear in the formalism of Section 2.
���, xin; xout� � ����
� xout � f ��, xin��, (3) D
n which the function f ��, xin� depends on grating dif-
raction and imaging optics. It is interpreted as the
unction that describes the place on the exit plane
here a monochromatic point source, that has wave-

ength � and is located at xin would be imaged. The
irac delta function allows only the signals of those

ombinations of � and xin for which a point xout is
lluminated to contribute to the signal at that point
out.
Unraveling of the spectral and spatial information

ontained in the input pattern Sin��, xin� requires
hat Sin can be factorized, that is, that

Sin��, xin� � S���� � S� xin�. (4)

his restriction, by the way, is not peculiar to OMA
maging but applies to spectrally selective imaging
n general. It limits the interpretation of OMA
raphs �that is, photographs taken through an
MA� to applications in which either the light

ource has a uniform spectral composition over the
idth of the entrance slit or the contributions from

ources with different spatial and spectral distribu-
ions do not overlap on the OMA graph �see below,
ubsection 3.A�. In paper T2 we further discuss
hen and whether this factorization is justified for
ultispecies Raman scattered light. For the mo-
ent it suffices to assume that factorization holds

or a single light source that has a spectral profile
���� and a spatial intensity distribution S�xin�. In

his case the factorization leads to

� xout� � 

�



xin

����
� xout � f ��, xin��

� S����S� xin�d�dxin

� 

xin

�� f̂ � xin; xout��S�� f̂ � xin; xout��S� xin�dxin,

(5)

here f̂ �xin; xout� is the inverse of f ��, xin�, yielding �
iven xin and xout. Note that f̂ is a function of one
ariable �xin� only, because xout is a parameter dictated
y the point under investigation.19 In practice, an-
les � and � will vary only over small ranges. Lin-
arization of the sines in the grating equation, Eq. �1�
ith a minus, then provides the relation among the

hree coordinates �subscripts 0 denote reference posi-
ions�:

Ms� xin,0 � xin� � � xout,0 � xout� � ��. (6)

his relation implies true imaging �magnification Ms,
etermined by the spectrograph� and linear diffrac-
ion �grating constant �, characterizing the grating�.
oth Ms and � are dimensionless quantities. The

irac delta function in Eq. �3� selects f ��, xin� � xout

20 October 2004 � Vol. 43, No. 30 � APPLIED OPTICS 5671
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rom Eq. �6�. For this simple relation the inverse
unction is cast explicitly as

f̂ � xin; xout� � � �
� xout � xout,0� � Ms� xin � xin,0�

�
. (7)

ubstitution of this specific inverse function results
n T�xout� of the form

T� xout� � 

xin

��� xout � xout,0� � Ms� xin � xin,0�

� �
� S��� xout � xout,0� � Ms� xin � xin,0�

� �
� S� xin�dxin (8a)

� ��� � S�� � S�� xout�. (8b)

his outcome represents a convolution ��� of a spec-
ral distribution �that is shifted forward and com-
ressed in its argument� with a spatial distribution.
As it is spatial pattern S that is of interest, it needs

o be reconstructed from image T through a deconvo-
ution procedure, once the spectral dependency �� �

�� is known. One can obtain that dependency by
ecording T�xout�, using a narrow entrance slit �lo-
ated at reference position xin,0 and illuminated with
ntensity S0�, in which case

S
� xin� � S0
� xin � xin,0�, (9)

here the subscript 
 indicates the narrow entrance
lit. For this input the convolution ends up as

T
� xout� � ��� xout � xout,0�

� �S��� xout � xout,0�

� �S0,

ig. 3. Three OMA graphs recorded with different widths of the e
orizontal axes contain both spectral and spatial information, and
m grid printed on white paper with a linewidth of 0.5 mm; �b� spe

ndicated�, recorded by reflection off white paper; �c�, �d� OMA grap
n �b�. The traces on top of the images are single-strip cross sectio
f the “68” on the grid. All images are scaled individually. The
rtifacts of the spectrograph.
(10) d

672 APPLIED OPTICS � Vol. 43, No. 30 � 20 October 2004
hich, of course, is just a spectrum. As it is used to
econvolve an OMA graph for the spectral distribu-
ion, we refer to it as a spectral reference function,
�xout�, in what follows. To make the connection to
qs. �8�, we rewrite Eq. �10� as

�� xout � xout,0� � Ms� xin � xin,0�

� �
� S��� xout � xout,0� � Ms� xin � xin,0�

� �
�

R� xout � Ms� xin � xin,0��

S0
. (11)

acksubstitution of this expression for spectral ref-
rence function R turns the convolution, Eqs. �8�, into
ts final form:

T� xout� � 

xin

R� xout � Ms� xin � xin,0��
S� xin�

S0
dxin.

(12)

ote that grating efficiency ���� is canceled, because
t is present in both spectral reference image R and
onvolved image S. Neither does grating constant �
ppear explicitly.
An example of the convolving action of the spec-

rograph is presented in Fig. 3, where three OMA
raphs of a square grid under bichromatic illumi-
ation are shown for three entrance slit widths.
ike all subsequent OMA graphs in this section,
hey were taken through an imaging spectrograph
Acton Research Corporation SpectraPro300i f�4
ith a 2400-grooves�mm grating�. The slight cur-
ature of the OMA graphs is an imaging artifact of
he spectrograph; it will be seen below that the

ce slit of the spectrograph, as indicated in the photographs. The
ertical axes are purely spatial. �a� Imaged object, a 5.0 mm � 5.0

of the light source �a Hg�Ar� calibration lamp; � �in nanometers�
the object shown in �a� under illumination by the same source as

the images at the positions of the arrows, cutting the lower circles
ature of the images and the horizontal extrusion of the grid are
ntran
the v
ctrum
hs of
ns of
curv
econvolution algorithm can automatically correct
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or it. Also, the magnification of the spectrograph
s 14% larger along the x̂ direction than along the ŷ
irection, which causes the square grid to look rect-
ngular; this anomaly not been corrected for in the
xamples presented here �but it was corrected for in
ompanion paper T2�. An intensified CCD camera
Princeton Instruments ICCD-512-T: 512 � 512
ixels; �25-mm intensifier; 16-bit dynamic range�
t the exit port of the spectrograph recorded the
MA graphs corresponding to regions imaged by a

amera objective �Nikon UV-Nikkor, 105 mm, f�4.5�
n the entrance slit of the spectrograph. In the
hotographs of Fig. 3, slit width ds is increased from
0 �m �Fig. 3�b�� to its maximum value of 3.10 mm
Fig. 3�d��. The ds � 40 �m OMA graph is taken as
he infinitesimally narrow slit measurement of the
pectral reference function for deconvolution pur-
oses. It contains two lines of the mercury spec-
rum.20 Further decrease of the entrance slit
idth did not result in a narrower line profile but

nly decreased the intensity levels. When the en-
rance slit is broadened, the spatial images pro-
uced by both lines broaden accordingly �Fig. 3�c��
nd eventually overlap �Fig. 3�d��. On top of every
MA graph the intensity along a single strip is
lotted as a horizontal cross section �fixed y� at the
eight of the white arrows in the graphs.
The notion of recording a somehow distorted ver-

ion of the original input image is not unfamiliar.
n general imaging experiments, for example, arti-
acts are introduced by aberrations of the optical
etection system and its limited resolution. In
mage-restoration literature21–23 such artifacts are
ften described in terms of a point-spread function
psf �, which describes how a point source is mapped
nto the image plane by a convolution procedure
hat is similar to the one presented here. Al-
hough R is not exactly a psf, it can be thought of as
cting as one by linking the input image to the
utput. Note, however, that R is not spatially in-
ariant.

. Deconvolution of Optical Multichannel Analyzer
raphs

he main result of Section 2 is an analytical expres-
ion, Eq. �12�, for the intensity distribution in the exit
lane of a spectrograph as a convolution of
he spatial and spectral intensity distributions inci-
ent onto the entrance slit. In practice, one is often
nterested in just the spatial intensity distribution.
n this section we focus on the deconvolution of the
pectrograph output with the spectral distribution,
hich should provide the desired spatial input inten-

ity distribution. Special attention is paid to the
ole of noise accumulated on the spectrograph output
n the deconvolution procedure. First, a straightfor-
ard deconvolution algorithm is discussed and eval-
ated, followed by a more-sophisticated approach

hat yields much better results. t
. Analytical Formulation

he general formulation of the convolution as given
n Eq. �12� forms the starting point for the deconvo-
ution procedure and is here restated as

T� xout� � 

xin

R� xout � Ms� xin � xin,0��G� xin�dxin

� �� xout�, (13)

here normalized pattern S�S0 is replaced by G for
otational convenience and a noise term � is added.
he importance of this extra contribution to the for-
alism will become clear below. The reconstruction

f original spatial distribution S requires a deconvo-
ution of convolved image T �broad entrance slit mea-
urement� with respect to spectral dependency R
narrow slit measurement�. This inverse problem
an be solved conveniently by Fourier transforma-
ion. The Fourier transform �FT� and its inverse are
efined by

FT�F� x�� � F̃�k� �
def 


x

F� x�exp�	ikx�dx, (14a)

T	1�F̃�k�� � F� x� �
def 1

2� 

k

F̃�k�exp�ikx�dk, (14b)

espectively. Application of the Fourier transform
o the convolution, Eq. �13�, yields

T̃�k� � R̃�k�exp�iMs kxin,0�G̃�Ms k� � �̃�k� (15)

hen one takes due care of magnification Ms and
hift xin,0.14 The convolution in direct space thus
ecomes a regular product in reciprocal �k� space, for
hich the components have decoupled.
Once the Fourier components T̃�k� and R̃�k� have

een assessed, the Fourier components of the original
mage at the entrance slit can formally be obtained
nalytically by solution of Eq. �15� for G̃:

G̃�Ms k� �
T̃�k� � �̃�k�

R̃�k�exp�iMs kxin,0�
, (16)

nd after an inverse FT the entrance slit image in
irect space, G�xin�, results.
In practical OMA imaging, the signal at the exit

lane is recorded by a CCD camera, requiring a
eformulation �discretization� of the analytical
roblem. Details of this procedure are given in
ppendix A.
Figure 4 demonstrates the effect of the analytical

econvolution procedure �Appendix A, Eq. �A6�� to
he data of Fig. 3. In this measurement there was
oise in both the spectral reference signal �Fig. 3�b��
nd the convolved distribution �Fig. 3�d��. The
traightforward deconvolution result is extremely
oisy �Fig. 4�a�� and contains virtually no useful
uantitative information, as can be seen clearly from
he single-strip cross section above the image. Note

hat this occurs in spite of the fact that both input

20 October 2004 � Vol. 43, No. 30 � APPLIED OPTICS 5673
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mages �Figs. 3�b� and 3�d�� are not particularly noisy.
closer look at the reciprocal space components �Fig.

�b�� indicates that the resultant noise can be attrib-
ted to large high-k components24 that do not cancel
ach other on inverse Fourier transformation. The
T diagonalizes the convolution problem and hence
he deconvolution. However, because many of its
igh-k components are small, the inverse problem is

numerically� ill conditioned and sensitive to small
ariations �noise� in the recorded data. In a more
hysical explanation, the deconvolution algorithm at-
empts to increase the contrast in the image; i.e., it
ttempts to restore structure in the input that was
meared out by the convolution: Any structure that
s present in the measured �convolved� image must
ave been more pronounced in the actual spatial dis-
ribution on the entrance slit �before convolution�.
here is, however, no way for the reconstruction algo-
ithm to distinguish real data from noise that is added
uring detection and superposes an artificial structure
on a pixel-to-pixel basis, that is, high-frequency� onto
he convolved signal. As the analytical algorithm
oes not treat the noise any differently from the real
ata, it generates high-k components to account for the
apid pixel-to-pixel fluctuations in the measured �sig-
al � noise� data. Unfortunately, it is not trivial to
iscriminate between real data and noise.
Zero padding the data �to array sizes up to 213

ixels� to increase the resolution in k-space did not
lter the deconvolved result in direct space signifi-
antly. Additional windowing of the raw data to im-
ose periodic boundary conditions rigidly as required
or the FT was also insufficient to restore the original
mage. This means that the noise in the straight-
orward reconstruction is not a consequence of ill-
atisfied periodic boundary conditions. At the cost

ig. 4. Strip-by-strip deconvolution of Fig. 3�d� with the spectrum
Eq. �A6� below�. Purely spatial images �a� and �c� show data in d
first half of the k components only�. �a�, �b� Direct deconvolution;
ith two-pixel binning; the high-k components partly cancel �d�.
aseline indicated in �a� and �c�; left ordinates omitted in �b� and
f losing spatial resolution, binning two neighboring i

674 APPLIED OPTICS � Vol. 43, No. 30 � 20 October 2004
ixels is a trivial low-pass filter for the spectral and
he convolved data. A subsequent deconvolution
ields Fig. 4�c�, which looks less noisy than Fig. 4�a�.
ndeed, its corresponding Fourier power spectrum
Fig. 4�d�� shows fewer contributions from high-k
omponents. However, although the structure of
he object can now be recognized, the signal-to-noise
atio in Fig. 4�c� is still poor compared with the input
Fig. 3�d��; compare especially the two single-strip
ross sections above each image�. Clearly, addi-
ional filtering is required for separation of data from
oise by suppression of exploded G̃�k� contributions,
specially at higher reciprocal space components.
here are filters that do this job globally,22 but often

hey are ad hoc and do not provide dramatic improve-
ents. A more general algorithm dedicated to fil-

ered deconvolution is presented below.

. Linear Bayesian Deconvolution Filter

he goal is to reconstruct the original spatial pattern
Gn� �a strip of the input� that gave rise to a measure-
ent �Tm� �a strip of the output� for a given spectral

onvolution function �Rm�. As actual input �Gn� is in
rinciple unknown, many candidates might have
iven the same measured output �including noise�,
nd one of these has to be selected. This boils down
o finding the most likely reconstruction of �Gn�, given
he incomplete knowledge provided by the experi-
ent. “Incomplete” means that the actual noise

ontribution is not known, for example. What we do
now, however, is �i� a measurement of the output
nd �ii� the convolution model of Eq. �12�, which links
he output to the input. A Bayesian statistical anal-
sis25 prescribes a procedure for quantifying the term
most likely” and for assigning reliability to the re-
onstruction. For this purpose the intensities of the

. 3�b� by means of the unfiltered Fourier-transformation algorithm
space; the corresponding power spectra are shown in �b� and �d�

the large high-k components in �b�. �c�, �d� Direct convolution but
, single-strip cross sections at the positions of the arrows. �Zero

emphasize the low-k components.�
of Fig
irect

note
Top
nput pattern, the measured data, and the noise are
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hought of as stochastic variables to which pdf ’s that
escribe the probability that a stochastic variable will
ake a certain value. The spectral reference func-
ion is assumed to be well assessed as the response to

peak input. The principles of the data filter are
resented in this paper; details can be found in the
issertation of Tolboom.14

In this section, uppercase letters denote stochastic
ariables and the corresponding lowercase letters
epresent their actual values �data�. Boldface vector
otation indicates that we deal with the entire set of

stochastic variables or their specific values; sub-
cripts indicate a single component.
Given the pdf ’s and the experimental fact that the
easurement of T resulted in the particular outcome t

denoted T � t�, the reconstruction problem is equiv-
lent to calculating the conditional expectation values

��G�T � t� � ���t� (17)

s a function �� of measured output t. These condi-
ional expectation values are the best a posteriori es-
imates of the a priori input g, given the measured
utcome T � t.26 The criterion “best” is defined as
hat particular ���t� that minimizes the mean-square
rrors

���Gn � �n�t��2� @n, (18)

ased on the measured T � t. In this section we
rovide the best reconstruction by direct calculation of
he conditional expectation value. It is Bayes’s theo-
em, which is used to link a priori knowledge of both
nput and output to a posteriori knowledge. There
re different ways to arrive at the final result, for
xample, by direct minimization of the mean-square
rror, either analytically or graphically.14 However,
e believe that the formulation presented below gives

he clearest insight in the mathematics involved.
In the statistical approach, both input image G and

oise �� are modeled by stochastic variables, that is,

Gn � c � �Xn @n, �m � b � �Ym @m, (19)

espectively, where the values of Xn and Ym are taken
priori from mutually independent standard normal
istributions, a choice that we comment on below. It
s assumed in the model that all pixels in a strip are
haracterized by one set of parameters �c, �, b, ��.
he mutual independence �denoted ��� of all distri-
utions X and Y implies that

Xm �� Xn �m � n�, i.e., the pdf of the optics before

the spectrograph is neglected;

Ym �� Yn �m � n�, i.e., the noise is accounted for

per individual pixel; and

Xm �� Yn @m,n, i.e., the noise is not correlated

to the signal at all. (20)

s G �the normalized input signal� is a dimensionless
uantity, parameters c and � are dimensionless, too.

and � have the same dimension as �, however, f
hich is �count�. It can be shown14 that pdf ��� of
riginal image Gn taking on the value gn can be de-
ived from the standard normal distribution as

�Gn
� gn� �

1

�2��
exp�	

1
2 �gn � c

� �2� @n (21)

nd similarly for the noise term

��m
��m� �

1

�2��
exp�	

1
2 ��m � b

� �2� @m. (22)

arameters b and c are the averages of the noise and
he normalized input image, respectively, and �2 and
2 are the variances in the corresponding signals.
he distribution �Gn

�Eq. �21�� illustrates the di-
emma in choosing �. On the one hand, � has to be
ufficiently large to include all the reasonable data,
ut on the other hand it should be small enough to
xclude negative values �input gm is necessarily pos-
tive�, effectively by assigning small probabilities to
hem. The exclusion of negative numbers is not an
ssue for the noise model. The addition of mean c to
he input is an extension to existing analytical mod-
ls �such as those documented by MacKay27�, because
t shifts the a priori pdf to the �positive� intensities
xpected on physical principles. A physical ap-
roach to determining � and � is discussed at the end
f this section.
The discretized form of the convolution model, Eq.

A2� below, provides the link between the assumed
tochastic variables, Eqs. �19�, and the output, which
e can measure. These output values,

Tm � �
n

Rm	n�n0
Gn � �m @m, (23)

re also treated as stochastic parameters in the cur-
ent approach. Once the values g � �g0, . . . , gN	1�
f input pattern G � �G0, . . . , GN	1� are specified,
he pdf for the output follows from this equation as
he conditional pdf �or likelihood�:

Tm
�tm�G � g� �

1

�2��

� exp		
1
2

tm � ��n

Rm	n�n0
gn � b�

�
�

2

� @m. (24)

his is an equation for a normal distribution once
ore, but it is now centered about the value �¥n

m	n�n0
gn � b� with variance �.

The problem in OMA imaging, however, is that we
easure output T � t, from which we want to re-

rieve the pdf for the input pattern. This �a posteri-
ri� pdf is also a conditional pdf, �Gq

�gq�T � t�, but it
annot be calculated readily. Fortunately, it suffices

or our problem to calculate the conditional expecta-
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ion value of Gq, which is defined for discrete stochas-
ic variables as

��Gq�T � t� � �
gq

gq��Gq � gq�T � t�

� �
g

gq��G � g�T � t� @q. (25)

Note that each of these relations contains a summa-
ion over values gq and g rather than a summation
ver components q. Inasmuch as the individual
omponents are independent, this notation does not
ntroduce additional components.14� Conditional
robability � �of occurrence of an event; for discrete
tochastic variables� that was introduced in Eq. �25�
s related to conditional pdf � �of a value; for contin-
ous stochastic variables� by

��Gq � �a, b��T � t� � 

a

b

�Gq
� gq�T � t�dgq

. (26)

t is at this point that Bayes’s theorem

��G � g�T � t� �
��T � t�G � g� � ��G � g�

��T � t�
(27) into integrals over pdf ’s for every pixel q:

w
t
c
o
t
d
b
c
g

�

nters the statistical approach to deconvolution by re-
ersing the information �T � t� and the unknown �G �
� arguments of the likelihood, turning Eq. �25� into

��Gq�T � t� � �
g

gq

��T � t�G � g� � ��G � g�

��T � t�
@q.

(28)

he denominator does not depend on g, so it can be

aken out of the sum. Additionally, the decomposi- n

676 APPLIED OPTICS � Vol. 43, No. 30 � 20 October 2004
ion relation of probabilities is applied to the denomi-
ator:

��T � t� � �
g

��T � t�G � g� � ��G � g�, (29)

nd the conditional expectation value becomes

��Gq�T � t� �

�
g

gq��T � t�G � g� � ��G � g�

�
g

��T � t�G � g� � ��G � g�
@q,

(30)

howing that the numerator and the denominator
ontain the same probabilities and that the numera-
or carries the additional value gq that is averaged.
his is a relation that is familiar from statistical
hysics, for example, where the population of a grand
anonical ensemble is normalized by the partition
unction.28

In the continuum limit of the stochastic variables,
q. �30� contains Riemann summations that go over
here all stochastic variables are independent and
he prefactors in the numerator and the denominator
ancel. Because the g and R values in the first part
f the exponentials are coupled via the convolution,
hese integrals cannot be performed analytically in
irect space. Substitution of the FTs of the g, R, t,
, and c values provides a convenient change of the
oordinates of integration that decouples the inte-
rand once more. However, this change of coordi-
��Gq�T � t� �



�N

gq�T�t�G � g� � �G�g�dg



�N

�T�t�G � g� � �G�g�dg

�



�N

gq exp�	
1
2 
t � R � g � b

�

2�exp�	

1
2 
g � c

�

2�dg



�N

exp�	
1
2 
t � R � g � b

�

2�exp�	

1
2 
g � c

�

2�dg

�



�N

gq exp�	
1
2 �

m
�
tm � �n

Rm	n�n0
gn � b

�

2

� 
gm � c
�


2��dg



N

exp�	
1
2 �

m
�
tm � �n

Rm	n�n0
gn � b

�

2

� 
gm � c
�


2��dg

, (31)
ates is rather intricate and introduces some
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omplications with respect to the coordinates and do-
ain of integration �see App. 6.A in the dissertation

f Tolboom14�. Analytical evaluation via reciprocal
pace of the integrals in Eq. �31� eventually leads to
he key formula

��Gq�T � t�

�
c�����2 � bR̃k�0

R̃k�0
2 � �����2 � FT	1� R̃*k,n0

t̃k

�R̃k,n0
�2 � �����2�

(32)

or the restoration of the unknown original input im-
ge. �A tilde denotes a FT; see Appendix A.�
Equation �32� is the main result of this paper, de-

cribing the reconstruction of the most probable input
attern by means of filtered deconvolution of the
easured output. Because the expression is analyt-

cally closed, it enables straightforward implementa-
ion to be made in computer code without iterative
oops. In Eq. �32� the first term denotes an offset
bout which data are scattered by FT	1 in the second
erm. Parameter c is always taken as the average
ver the convolved image t.
The filter has only one free model parameter, frac-

ion ���, instead of two �� and � separately�, as might
erhaps be expected from the supposition of the sto-
hastic variables of Eqs. �19�. This effective filter
arameter can be interpreted as a measure of the
ontrast between the real structure in the signal �e.g.,
he grid lines and the numbers� and the noise accu-
ulated in the measurement.
Equation �32� is the linear Bayesian-filtered ver-

ion of the straightforward deconvolution, Eq. �A6�
elow. To compare the two results we rearrange the
rgument of FT	1 in Eq. �32� according to

R̃*k,n0
t̃k

�R̃k,n0
�2 � �����2 �

�R̃k,n0
�2

�R̃k,n0
�2 � �����2

t̃k

R̃k,n0

�
1

1 � �����2�R̃k,n0
�	2

t̃k

R̃k,n0

. (33)

quation �33� shows that the filter effectively sup-
resses all k components of the straightforward de-
onvolution by a factor �1 � �����2�R̃k,n0

�	2� � 1.
lternatively, the power of the Fourier-transformed
omponents within the inverse FT can be written as


 R̃*k,n0

�R̃k,n0
�2 � �����2
2

Ç
filtered deconvolution function

� � �R̃k,n0
�2

�R̃k,n0
�2 � �����2�2

Ç
filter

� 
 1
R̃k,n0


2

Ç
deconvolution function

. (34)

ritten in this way, the Bayesian filter with the
hoice of normal distributions for the stochastic vari-
bles is seen to yield results similar to those of the
iener deconvolution filter.22
The prefactor filter is a measure of the power at- t
ributed by the filter to the real data, depending only
n spectral reference function R and regularization
arameter ���. It is clear that, if ��� approaches
ero �i.e., the measured structures are completely due
o structure in the input image�, the nonfiltered de-
onvolution, Eq. �A6� below, will remain. In that
imit, the offset in Eq. �32� approaches 	b�R̃k�0, cor-
esponding to subtraction of �constant� noise level b
rom the deconvolved data. The results in this pa-
er were obtained for b � 0, so there is no such
dditional offset correction for accumulated noise.
he limit of ���3 �, however, would physically cor-
espond to a measured output that is dominated by
oise. In this case the filter effectively suppresses
ll Fourier components and results in the prediction
f a flat input distribution.
Figure 5 illustrates the action of the �filtered� de-

onvolution in reciprocal space for the single-strip
ata R̃ of Fig. 3�b�. At the right in Fig. 5 are the
owers of the deconvolution function �Fig. 3�b�� and of
he filtered deconvolution function �Fig. 3�d�� on a
inear scale. The spectrum in Fig. 3�b� is dominated
y high-k components, and these cause extreme noise
n the straightforward reconstruction �e.g., Fig. 4�a��.
s can be seen from Fig. 5�c�, it is exactly these high-k

omponents that are strongly suppressed by the filter
actor, Eq. �34�. As a result, the power spectrum of
he filtered deconvolution �Fig. 5�d�, which should be
ompared to Fig. 5�b�� is dominated by �real� struc-
ure in the low-k components, a structure that is
resent as only a minor wrinkle in the unfiltered
pectrum �Fig. 5�b��. The exact shape of the filter
Fig. 5�c�� strongly depends on the shape of �R̃k�2 �Fig.
�a��. In this case the presence of two spectral lines
auses the oscillations in �R̃k�2, and in all traces de-
ived from it. For a single-line spectrum, for exam-
le, all curves would have been smooth.
Figure 6 illustrates the dependence of the recon-

truction on filter parameter ��� in more detail. The
urning point for the filter’s behavior, as can be seen
rom Eq. �34�, lies at ��� � �R�	1. For ��� � �R�	1,

ig. 5. Power spectra �single strips at the location of the arrows
n Fig. 3�. �a� Fourier-transformed spectral reference function R̃k

f Fig. 3�b�, �b� nonfiltered deconvolution function, �c� filtering of �b�
note the logarithmic scale�, �d� linear Bayesian filtered deconvo-
ution function. The power of the filtering function �c� is the pre-
actor filter of Eq. �34�. �c�, �d� Calculated for ��� � 6 counts	1.
he structure in the measured image is taken as dom-
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nated by noise, whereas for ��� 	 �R�	1 it is attrib-
ted to the input image itself. The former situation
esults in a relatively uniform input image �as re-
ected in the smooth reconstruction of Fig. 6�a�� onto
hich readout noise has imposed structure. The lat-

er situation corresponds to an input image with rich
tructure onto which relatively little noise has accu-
ulated. The deconvolution therefore produces a
ildly fluctuating image �Fig. 6�c�� approaching the
onfiltered deconvolution result. In the best result

here ��� � 6 counts	1; see below�, the original object
s well reproduced, and the other parts of the image
re nearly empty. �Ideally, they would be com-
letely dark.� The horizontal cross sections �white
rrows similar to those in Figs. 3 and 4� emphasize
he accurate recovery of the input image; three dis-
inct minima represent the grid lines in the single-
trip data, and an intermediate structure is present
hat comes from cutting the “68”. The grid minima
re separated by approximately 43 pixels, and they
re somewhat broader than 4 pixels �full width at
alf-maximum�, in perfect agreement with the
rinted grid of 1:10 for the line thickness. Still,
here are a few small undershoots �oscillations and
egative numbers�, also in the best result. As dis-
ussed after the Eqs. �21� and �22� for the pdf ’s, their
resence does not come as a surprise.
Although rigorous mathematical procedures exist

or estimating regularization parameter ��� �see,
.g., Engl et al.29�, we have opted for a more physical
pproach. The physical situation is that light is

ig. 6. Strip-by-strip linear Bayesian deconvolution of Fig. 3�d� w
anging from �a� too low ���� � 1 count	1� to �b� best ���� � 6 cou
ingle-strip cross sections �similar to those in Figs. 3 and 4�, and on
he images are scaled individually, but the traces are all on the sam

o show the similarity of the barely filtered, low-k components.
ransmitted through the entrance slit only. Thus 4

678 APPLIED OPTICS � Vol. 43, No. 30 � 20 October 2004
fter deconvolution the signal should ideally be con-
ned to a finite area on the CCD chip that corre-
ponds to the entrance slit image, while the rest of the
hip is empty. Define the image contrast as �P�in���
P�out��, with �P�in�� the average power inside the
econstructed entrance slit image �pixel numbers
76–335� and �P�out�� the average power outside this
art of the image �pixel numbers 1–165�. The best
�� should then maximize the image contrast. From
plot of the image contrast compared with ��� �Fig.

�, such is found to be the case for ��� � 6 counts	1.
ote that the maximum in Fig. 7 is rather broad, so

he filter’s performance is not critical to the exact
alue of ��� that is used.
A final check on the quality of the reconstructed

mage lies in reconvolving it with the spectral refer-

e spectrum of Fig. 3�b�. Right to left, results for three ratios ���,
� to �c� too high ���� � 800 counts	1�. Above the images are the
f them are their power spectra for the first halves of k components.
ar gray scale. The left ordinates of the power spectra are omitted

ig. 7. Contrast �defined in the text� as a function of ���. The
aximum in the curve is taken as the best ��� for the deconvolu-

ion as it minimizes the relative power in the physically dark
egion. The corresponding value for the nonfiltered results �Fig.
ith th
nts	1

top o
e line
�a�� is �P�in����P�out�� � 1.35.
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nce function, as was done for Fig. 8. The difference
f this result from the measured data is also indi-
ated; it is 1–2 orders of magnitude smaller than the
ctual data. The average power in the reconvolved
mage is 0.946 times the average power contained in
he original data, so the filter attributes approxi-
ately 5% of the power to noise for ��� � 6 counts	1.

. Some Properties of Optical Multichannel Analyzer
maging and the Reconstruction of Optical Multichannel
nalyzer Graphs

. Linearity

he linearity of the deconvolution filter can be dem-
nstrated by consideration of the deconvolution of
ny linear combination of two measurements T �
a1t1 � a2t2� given by

��Gq�T � a1t1 � a2t2� � �a1 � a2�
c�����2 � bR̃k�0

R̃k�0
2 � �����2

� FT	1�R̃*k,n0
�a1 t1k � a2 t2k�

�R̃k,n0
�2 � �����2 �

� a1��Gq�T � t1� � a2��Gq�T � t2�. (35)

he factor �a1 � a2� before the offset term may not be
bvious. As the total signal now consists of two sep-
rate measurements �t1 and t2� multiplied by the fac-
ors a1 and a2, the average value c and the average
oise level b of the two images need to be multiplied
y the same factor. Note that the linearity is a con-
equence of our specific choice of standard normal
istributions in Eqs. �19� rather than of its being
resupposed in the derivation of Eq. �32�. The phys-
cal implication for OMA imaging is that �spectral�
tructures that do not overlap in an OMA graph can
e treated separately. Thus various sources with
ifferent spectral distributions can be recorded in a
ingle OMA graph as long as their contributions do
ot overlap in the exit plane. �See Fig. 3�c�; the de-
onvolved image can be found in Tolboom’s disserta-
ion.14� Thus the factorization requirement stated
n Eq. �4� is seen not to be any more severe for OMA
maging than for any other kind of spectrally selec-

ig. 8. Reconvolved image of the data that were obtained with a
econvolution for ��� � 6 counts	1 �solid curve� and its difference
rom the original, measured data �residual; gray curve�. The dif-
erence is 0.04 count on average and has a standard deviation of
ore than 7 kcounts.
ive imaging. y
. Two-Dimensional Image Reconstruction

spectrograph, like any other optical device, intro-
uces imaging defects. Because the effects of these
efects increase with distance from the optical axis,
ondiffracting dimension ŷ in particular will suffer
rom defects. The imaging artifacts of the system
sed in our experiments can be judged from Fig. 3�a�.
he two spectral lines �images of a straight entrance
lit� are curved, and they become a bit less sharp
oward the upper and lower ends. Both effects do
ot noticeably vary over the width of the image. As
orizontal cross sections are treated individually, the
erfect-imaging assumption of Eq. �3� is fulfilled for
ach strip. Furthermore, the strip-by-strip deconvo-
ution provides two additional advantages related to
he inherent properties of deconvolution. If the
pectral reference function is recorded with the same
pectrograph settings as the image �but with a nar-
ow entrance slit, of course; cf. Figs. 3�a� and 3�c��, the
eference image will contain a spectral reference
unction on each image line �pixel row�. The decon-
olution �i� will take into account the one-
imensional psf as part of the spectral reference
unction and �ii� will center the deconvolved image
bout the origin.30 Thus, if individual strips of an
MA graph are deconvolved with a spectral reference

unction of the corresponding strip in a spectral ref-
rence image �like that of Fig. 4�a��, both the addi-
ional blurring and the curvature are corrected for.
n some practically complicated cases, the spectral
eference function cannot be determined for every
trip or need to be averaged for a sufficient signal-to-
oise ratio. In such cases the reconstruction will
till contain residual blurring, the curvature will per-
ist, or both. Nevertheless, these images can often
e used in quantitative studies, as shown in compan-
on paper T2.

. Improvements and Restrictions

main advantage of the Bayesian deconvolution fil-
er presented here is that it is expressed in closed
orm �Eq. �32��. Thus the expectation values can be
alculated directly, which obviates the need for CPU-
ntensive optimization schemes. This direct calcu-
ation, however, has its price. We had to assume
inear imaging �Eq. �6�� and found that the linearity
f the filter in fact arises from our choice of normally
istributed stochastic variables �Eq. �19��. The lin-
ar imaging assumption was required for the spec-
rograph output to take on the form of a convolution
Eq. �12��. It may break down for extended spectral
tructures, depending also on the equipment used.
robably the best check of whether this assumption is

ustified will be empirical.
The choice of normal distributions for the stochas-

ic variables is in itself not expected to be a serious
estriction, but it does allow �unphysical� negative
alues to appear in the final result �see the discussion
f Fig. 6 above�. More-elaborate distributions could
emedy this defect but probably at the expense of not

ielding a closed expression for the filter any more.
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uch, for example, is the case with the maximum
ntropy method,31 for which positivity of the recon-
truction is ensured but finding it requires a numer-
cal global optimization algorithm.

Finally, there is the assumption of �piecewise� fac-
orizability of the input �Eq. �4��. We do not consider
his a restriction that is peculiar to OMA imaging but
ather one that holds for all spectrally selective quan-
itative imaging schemes. In fact, we consider it one
f the advantages of using a spectrograph compared,
or instance, with bandpass filters: If the factoriz-
bility assumption breaks down, the spectrum will at
east tell you that it does.

. Summary and Conclusions

nder the hypothesis of factorizability of the input to
linearized spectrograph into a purely spectral and a
urely spatial part, the entangling of spatial and
pectral information by an optical multichannel an-
lyzer setup is described effectively by a convolution.
econstruction is achieved by a dedicated linear
ayesian deconvolution filter, depending on one free
odel parameter only. The data filter is based on
aussian probability-density functions for the un-
nown spatial input and the accumulated noise, allow-

ng for a closed analytical filter expression �Eq. �32��.
he resultant reconstruction shows clear contrast
nd a good reproduction of the factual input. More-
ver, the algorithm prescribes a recipe for generating
uantitatively interpretable data, thus satisfying an
ssential criterion for quantitative two-dimensional
maging.

Inasmuch as OMA imaging requires just an imag-
ng spectrograph and a single camera, it is a reliable,
elatively cheap, efficient technique for quantitative
maging experiments. A practical application is dis-
ussed in the companion paper.15

ppendix A. Discretization

he photodetection chip in a CCD camera32 has a
nite �say, N� number of pixels of finite �nonzero�
imension. These properties require a discretiza-
ion of the analytical formulation �Eq. �13��. As the
ixels have a finite dimension, they already integrate
he signal over a finite region of xout. All integrals
ver space therefore become a sum over the subinte-
rals, i.e., the pixel values. The discretized version
f Eq. �13� thus reads as

Tnout
� �

nin

Rnout	Ms�nin�nin,0� � Gnin
� �nout

, (A1)

here nout and nin denote discrete positions �or,
quivalently, pixel numbers� and replace continuous
arameters xout and xin, respectively. This discreti-
ation implies that not only the output signal at the
xit port but also the input signal at the entrance slit
s discretized. Thus the aim will be to estimate sig-
al G as a function of pixel number �discretized po-
ition�. The subscript �nout 	 Ms�nin � nin,0�� of
pectral reference function R labels the �discretized�

avelength. It is expressed in terms of both discrete
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ositions nin and nout and need not be an integer
ecause it contains the magnification Ms � �. From
q. �6�, however, we know that for every wavelength
any specific Msnin �or Msxin� may be converted into
specific nout �or xout�, where nin and nout both denote
ixel numbers. Therefore the references to “in” and
out” can be omitted and the subscripts can simply be
ny integer counter without reference to the specific
lanes �input or output�.
Another consequence of the CCD chip’s having only
finite number of pixels is that T and R can be

ecorded only for a finite number of points. The ex-
erimental settings must, of course, be such that this
nite segment is representative of the complete sig-
al so this representative part can be put into the
onvolution. When periodic boundary conditions
period N� are assumed, the discretized convolution
n direct space �Eq. �A1�� becomes

Tm � �
n�0

N	1

Rm	n�n0
� Gn � �m. (A2)

ll subsequent summations and products over indi-
es will be from 0 through N 	 1.

The discretized form of the Fourier transform and
ts inverse are33

F̃k � �
n�0

N	1

Fn exp�	
2�ikn

N � ,

Fn �
1
N �

k�0

N	1

F̃k exp�2�ikn
N � , (A3)

espectively. Like m and n, k is merely a counter,
hich denotes the reciprocal space component of a
ourier-transformed signal. The discrete FTs are

mplemented in a computer program as fast FTs on
12 ��29� data points. The discretized analog of Eq.
15� is

T̃k � R̃k,n0
� G̃k � �̃k, R̃k,n0

�
def

R̃k exp�2�ikn0

N � ,

(A4)

nd the relation for the discretized deconvolved sig-
al in reciprocal space �Eq. �16�� becomes

G̃k �
T̃k � �̃k

R̃k,n0

. (A5)

s phase factor exp�2�ikn0�N� will always appear in
ombination with R̃k, it is absorbed by the latter for
otational brevity, as is indicated by the additional
ubscript n0 to R̃k,n0

. The pixel values in direct
pace are

Gn � FT	1�G̃k� � FT	1�T̃k � �̃k

R̃k,n0

�
�

1 N	1 T̃k � �̃k exp
2�ikn

, (A6)

N �

k�0
� R̃k,n0

� � N �
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here the subscript n numbers the pixels �formally in
he entrance slit plane�. Because the Fourier algo-
ithm is essentially just a mathematical trick, the
hysical information should be contained only in the
eal part of FT	1. The imaginary part ought to van-
sh. The program that performed the deconvolution,
q. �A6�, was tested successfully on computer-
enerated data �not shown�. The average power34 in
he imaginary part was always found to be �25 or-
ers of magnitude smaller than the average power in
he real part, and indeed zero within the limit of
omputational accuracy.
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