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1 A stronger version of the assumption in the main paper

In the main paper we make a non-standard assumption, Assumption 2(ii). Here we prove that this
is assumption is a weakened version of two more standard assumptions, i.e. assuming the causal
Markov and faithfulness assumptions in the source and target domains separately. Note that assuming
these two assumptions instead of Assumption 2(ii) implies we cannot have perfect interventions in
the target domain, which is otherwise allowed.
Proposition 1. Assumption 2(ii), i.e. if A ∪B ∪ S contains Y but not C1, then2

A⊥⊥B |S [C1 = 0] =⇒ A⊥⊥B |S [C1 = 1];

is implied by the following assumptions:

(a) the pooled source domains distribution P(V |C1 = 0) is Markov and faithful to G\C1 , and
(b) the pooled target domains distribution P(V |C1 = 1) is Markov and faithful to G\C1 ,

where G\C1 denotes the induced subgraph of the causal graph G on the nodes V \ {C1} (i.e., it is
obtained by removing C1 and all edges involving C1 from the causal graph G).

Proof. Let A,B,S ⊆ V \ {C1}. By assumption, we have that

A⊥⊥B |S [C1 = c] ⇐⇒ A ⊥ B |S [G\C1 ]

holds for both c = 0, 1, which directly gives Assumption 2(ii).

2 Other proofs

Proposition 2. (Proposition 1 in the main paper) Under Assumption 2,
A⊥⊥B |S [C1 = 0] ⇐⇒ A⊥⊥B |S ∪ {C1} ⇐⇒ A ⊥ B |S ∪ {C1} [G]

for subsets A,B,S ⊆ V such that their union contains Y but not C1.
∗Most of the work was performed while at the University of Amsterdam.
2Here, with A⊥⊥B |S [C1 = 0] we mean A⊥⊥B |S [P(V |C1 = 0)], i.e., the conditional independence

of A from B given S in the mixture of the source domains P(V |C1 = 0), and similarly for the target domains.
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Proof. First of all, A 6⊥⊥B |S [C1 = 0] implies (by definition) A 6⊥⊥B |S ∪ {C1}. Second,
A⊥⊥B |S [C1 = 0] implies (by assumption) A⊥⊥B |S [C1 = 1], and taken together, we get
A⊥⊥B |S ∪ {C1}. By the Markov and faithfulness assumption (Assumption 2(i)), this holds iff
A ⊥ B |S ∪ {C1} [G].

Example 1. (Example 2 in the main paper) Assume that Assumptions 1 and 2 hold for two context
variables C1, C2 and three system variables X1, X2, X3 with Y := X2. If the following conditional
(in)dependences all hold in the source domains:

C2⊥⊥X2 |X1 [C1 = 0], C2 6⊥⊥X2 | ∅ [C1 = 0], C2⊥⊥X3 |X2 [C1 = 0], (1)

then C1 ⊥ X2 |X1 [G], i.e., {X1} is a separating set for C1 and X2.

Proof. In the JCI setting, we assume that in the full ADMG G over variables {C1, C2, X1, X2, X3},
C1 and C2 are confounded and not caused by system variables X1, X2, X3. Furthermore, no pair of
system variable and context variables is confounded.

In the context [C1 = 0], if the conditional independences C2⊥⊥X2 |X1 [C1 = 0] and
C2 6⊥⊥X2 | ∅ [C1 = 0] hold, then we can also derive that C2 6⊥⊥X1 | ∅ [C1 = 0], for example
using Rule (9) from Magliacane et al. [2016]. Moreover, we know that C2 is not caused by X1

and X2, or in other words X1 699K C2 and X2 699K C2. Thus we conclude that (C2, X1, X2) is an
LCD triple [Cooper, 1997] in the context C1 = 0. Since in addition, in this case C2 and X1 are
unconfounded, the marginal ADMG G′ on {C2, X1, X2} (in the context C1 = 0, and hence by
Proposition 1 in all contexts) must be given by Figure 1a.

Therefore, the extended marginal ADMG G′′ on variables {C1, C2, X1, X2}must also have a directed
path from C2 to X1 and from X1 to X2. C1 cannot be on these paths, as none of the variables causes
C1, and therefore G′′ also contains the directed edges C2 → X1 andX1 → X2. Moreover, G′′ cannot
contain any edge between C2 and X2, nor a bidirected edge between X1 and X2, because that would
violate the conditional independence. By construction, in the JCI setting there is a bidirected edge
between C1 and C2, and that is the only bidirected edge connecting to C1 or C2. As we assumed
there is no direct effect of C1 on target X2, there is no edge between C1 and X2 in G′′. There is
also no directed edge X1 → C1 in G′′, as the JCI assumption implies none of the other variables
causes C1. Therefore, the marginal ADMG G′′ is given by Figure 1b, either with the directed edge
C1 → X1 present, or without that edge.

If it additionally holds that C2⊥⊥X3 |X2 [C1 = 0], we have two possibilities:

1. if C2⊥⊥X3 | ∅ [C1 = 0] holds, then X3 is not caused by C2. This means it cannot be on any
directed path from C2 to X1, from X1 to X2, or be a descendant of X2. Therefore the full
ADMG G also necessarily contains the directed edges C2 → X1 and X1 → X2.

2. if C2 6⊥⊥X3 | ∅ [C1 = 0] holds, then in conjunction with C2⊥⊥X3 |X2 [C1 = 0] we can
derive X2 99K X3, for example using Rule (5) from [Magliacane et al., 2016]. This means
X3 must be a descendant of X2 in the full ADMG G, which implies it cannot be on the
directed path from C2 to X1, or on the one from X1 to X2. Therefore the full ADMG G
also necessarily contains the directed edges C2 → X1 and X1 → X2.
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Figure 1: ADMGs for proof of Example 1. Each dashed edge can either be present or absent.
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Because of the independence statements and JCI assumptions, there cannot be a bidirected edge
between X3 and X1, X2, C1 or C2. Similarly, there cannot be directed edges from X3 to one of
those nodes. The edges X1 → X3 and C2 → X3 must also be absent.

In both cases, there can be a directed edge from C1 to X3. Therefore, the full ADMG G is of the
form given in Figure 1c. In all cases we see that C1 ⊥ X2 |X1 [G], and we conclude that {X1} is a
valid separating set.

If the ADMG is as in Figure 2, then a standard feature selection method would asymptotically prefer
the subset {X1, X3} to predict X2 over the subset {X1} (note that the Markov blanket of X2 in
context [C1 = 0] is {X1, X3}). As a result, any prediction method trained on all available features
using source domain data (i.e., in context [C1 = 0]) may incur a possibly unbounded prediction error
when used to predict X2 in the target domain [C1 = 1] (for example, if X3 is an almost deterministic
copy of X2 if C1 = 0, but has a drastically different distribution if C1 = 1).

3 Additional results on synthetic data

We provide more information and experimental results for the synthetic data. We adapted the simulator
of Hyttinen et al. [2014] to our setting. We generate randomly 200 acyclic models with three system
variables, two context variables, and at most two latent variables (chosen randomly, so that the number
of latent variables equals 1 or 2 each with probability 1/4, and 0 otherwise). Each latent variable has
two system variables as children, while the other variables have a random number of system variables
as children, where system variables must be consistent with a chosen topological ordering, and where
we enforce that a context variable may not simultaneously affect all system variables. The system
and latent variables are each described by a linear structural equation with independent noise terms
distributed as N (0, 0.0064). In these equations, each variable is multiplied by a coefficient sampled
from N (0.2, 0.64) or N (−0.2, 0.64) (each with probability 1/2 per variable). The context variables
each correspond to an experimental domain; in their domain, that variable equals 1, otherwise it
equals 0. This way, we simulate soft interventions. In order to scale the effect of these interventions,
we multiply the coefficients of the context variables by the parameter γ, varying it from 0.1 to 100.
We sample N data points each for the observational and two experimental domains. Moreover, we
randomly select C1 and Y from context and system variables respectively. We disallow direct effects
of C1 on Y .

As expected, our method performs well when the target distribution is significantly different from the
source distributions. Figure 2 shows different settings with different scales of intervention effects.
(In most graphs, the vertical axis has been adjusted to clearly show the boxplot, but leaving out the
larger outliers.) In Figure 2a the intervention effects are all scaled by 0.1, resulting in very similar
distributions in all domains. In this case, using our method does not offer any advantage with respect
to the baseline and it actually performs worse. In the other cases, using our method starts to pay off
in terms of prediction accuracy, and the difference increases with the scale of the interventions, as
seen in Figure 2d.

In Figure 3, we vary the number of samples N for each regime. The results improve with more
samples, especially for our method, since the quality of the conditional independence test improves,
but also for the baseline. In particular, as shown in Figure 3a, the accuracy is low for N = 100
samples, but it improves substantially with N = 1000 samples (Figure 2b).
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(a) Synthetic data with a small perturbation (γ =
0.1) and N = 1000 samples.
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(b) Synthetic data with a medium perturbation
(γ = 1) and N = 1000 samples.
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(c) Synthetic data with a large perturbation (γ =
10) and N = 1000 samples.
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(d) Synthetic data with a very large perturbation
(γ = 100) and N = 1000 samples.

Figure 2: Additional results when varying the causal effect of all interventions (γ).
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(a) Synthetic data with N = 100 samples per
regime and a large perturbation (γ = 10).
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(b) Synthetic data with N = 1000 samples per
regime and a large perturbation (γ = 10).
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(c) Synthetic data with N = 5000 samples per
regime and a large perturbation (γ = 10).

Figure 3: Additional results when varying the sample size per regime (N ).
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